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Abstract

An application of a comprehensive and compact methodology to obtain the asymptotically-correct
stiffness matrix of anisotropic, thin-walled, closed cross-section, and rotating slender beams is
presented. The Variational Asymptotic Method (VAM), which utilizes small geometrical parameters
inherent to thin-walled slender beams, is used to obtain the displacement and strain fields, and the
cross-sectional stiffness matrix without any ad hoc assumptions. The advantage of this approach is
that the asymptotically-correct and populated 4 × 4 cross-sectional stiffness matrix provides all the
necessary information about the elastic behavior of the rotating beam, thereby nullifying the need
for refined beam theories that incorporate higher order deformation modes, like the Vlasov’s mode.
The implementation of the theory using MATLAB was validated against the Vartiational Asymptotic
Beam Sectional Analysis (VABS) computer software, a two-dimensional finite element program that
utilizes a more general approach to the VAM that is applicable to thick/thin-walled anisotropic cross-
sections with arbitrary geometry. Sample applications of the theory to rotor blades are presented.
The paper concludes with a discussion of how the presented material would be used directly in the
dynamic modelling of rotating helicopter blades.

Introduction

The structural dynamics modelling of rotating composite blades closely follows the advances
made in capturing the elastic behavior of anisotropic, slender, and rotating beams with arbitrary
cross-sectional geometry. In the past, the highly coupled structural and dynamics aspects of the
model along with its strong nonlinearity proved to be an unyielding obstacle, and engineers were
forced to adopt various approximations that limited the scope and applications of their models
(Volovoi et al., 2001), and were later proved to be less than stellar in predicting the behavior of the
rotating blades (Hodges and Patil, 2005, Volovoi et al., 2001). Some modifications were added to
these models, which improved their performance, but not to the levels required for today’s advances
in composite and highly flexible blades. However, these modified preliminary models are still used
by the industry today despite existing limitations. One may attribute this to be the result of their
simplicity in terms of their formulation, and the experience and insight into their functioning that
has been accumulated over time. Performing 3D finite element analysis on the rotating composite
blades is an expensive and an unfeasible option even with current computational capabilities, espe-
cially when the analysis is directed at devising vibration control strategies or studying the structural
dynamics interaction of the blades with other rigid/flexible multibody systems.

Recent advances in the cross-sectional modelling of anisotropic composite beams with arbitrary
geometry is a major triumph in overcoming the difficulties discussed above. It was found that for
slender beams, asymptotical analysis of the 3D elastic energy can split the problem into a two-
dimensional analysis over the cross-section and one-dimensional analysis along the span of the
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beam without any ad hoc assumptions. Utilizing other geometrical design aspects of the rotor blade,
one can also arrive at a closed form solution of the stiffness properties of the cross-section. This
significantly reduces the amount of effort the engineer has to spend on modelling the elastic behavior
of the blade, since the asymptotically-correct development is found to be surprisingly compact for a
problem that seemed to be impossibly complex from the earlier models’ point of view.

The VAM was originally developed by Berdichevsky (1982) for elastic slender rods that have
an inherent small dimensionless parameter, which is the slenderness ratio defined by the ratio of
the characteristic dimension of the cross-section, ‘a’, to the elastic deformation wavelength, ‘l’.
Since only global elastic deformation modes that propagate along most of the beam span are of
interest here, the deformation length is always of the order of the length of the beam. The theory
was refined by Hodges and Cesnik (1994) and implemented in Variational Beam Sectional Analysis
(VABS), a software package that utilizes the finite element method to obtain the elastic constants
of any composite cross-sections with initial twist. VABS has been extensively validated against
experimental data and results from other reliable 3D finite element software like ABAQUS and
NASTRAN (Yu et al., 2002). Concurrently, Badir (in Berdichevsky et al., 1992) expanded the theory
to thin-walled composite beams that have an additional small dimensionless parameter, which is the
thinness ratio defined by the ratio of the thickness of the wall, ‘h’, to the characteristic dimension
of the cross-section, ‘a’. This allowed for a simple closed form solution for the stiffness constants,
which has been used to model rotor blades with active materials (Cesnik and Shin, 1998, 2001a,
2001b). However, it was later found that Badir’s work neglected the shell bending strain measure,
which made it asymptotically-incorrect and produced results inconsistent with those produced by
VABS for certain cross-sections. Hodges and Volovoi (2000) identified and corrected this flaw, and
developed the asymptotically-correct theory for anisotropic thin-wall beams.

Rotor blades can be idealized as thin-walled closed cross-section beams while retaining high
degree of fidelity. The asymptotically-correct theory has been successfully implemented using
MATLAB to arrive at the elastic properties of any closed cross-section including helicopter rotor
blades, which are at the centre of many research efforts of the Applied Dynamics Group at Carleton
University. The versatility of the implementation allows it to obtain the elastic properties about any
desired point in the plane of the cross-section like the elastic axis of the blade. Additionally, it allows
for any desired material composition and distribution throughout the cross-section.

Theory

The Variational Asymptotic Method

A brief symbolic outline of the VAM and its general features is presented to complement the sub-
sequent discussion. Let the 3D elastic energy of the beam be symbolically defined by the energy
functional F with the small parameter that is for now called η such that (Cesnik, 1994):

F (�, η) = E1(ϒ, z1)+ Eη0(ϒ, z1, η),

z1 = [
w11 w12 w13

]
, (1)

where � is a 6×1 column matrix that represents the 3×3 symmetric Biot–Jaumann strain field, and
ϒ is a function of the axial coordinate along the span of the beam only (in this case it corresponds
to �) (Danielson and Hodges, 1987).

The energy functional F is decomposed into two parts: E1(ϒ, z1) which contains all terms of
order η0 ≡ 1 and Eη0(ϒ, z1, η) that contain all terms of order η1 and higher with respect to this small
parameter. The vector z1 represents a perturbation in the classical 3D displacement field, which in
reality is the in/out-of-plane warping functions to a first correction, that gives rise to low and high
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order terms as is apparent from its appearance in both parts of the energy functional. In order to
find the first correction to the displacement field, z1, the high-order component of the functional
is discarded and then the functional is minimized with respect to z1. The solution of the Euler
minimization problem is not unique and the displacement field is four times redundant. The four
rigid body modes have to be eliminated from z1 (the warping field) over the surface area of the
cross-section S, therefore, the following four constraints are imposed:

minz1F = minz1E1(ϒ, z1),∫
S

C1(z1) ds = 0,
∫
S

C2(z1) ds = 0,
∫
S

C3(z1) ds = 0,
∫
S

C4(z1) ds = 0. (2)

When Equations (2) are solved over the cross-section they yield what is called the “zeroth-
approximation" or the building block of the solution, z1. This must not be confused with the order of
the components of z1 itself, which could be of some order of η, but rather it refers to it being obtained
by minimizing the part of the energy that has zeroth order of η (i.e., η0). In most cases, there is no
closed form solution for z1, and the problem is discretized over the cross-section with the constraints
leading to a Sturm–Liouville problem followed by finite element calculations, which is the method-
ology of VABS (Cesnik et al., 1993, Cesnik and Hodges, 1997). The order of the components of z1
is not known a priori but determined throughout the minimization procedure. The solution of Euler
equations of the functional is symbolically written as:

z1 = f1(ϒ, ζ2, ζ3), (3)

where ζ2 and ζ3 are the perpendicular axes defining the 2D Cartesian plane of the cross-section.
The displacement field is then perturbed again. Let the new perturbation be called z2 such that:

z2 = z1 − f1(ϒ, ζ2, ζ3). (4)

The new perturbation is substituted back into the energy functional of Equation (1) to obtain:

F (�, η) = F1(ϒ)+ E2(ϒ, z2)+ Eη1(ϒ, z2, η),

z2 = [
w21 w22 w23

]
. (5)

The function F1(ϒ) represents all the terms that do not contain the new unknown, z2. It is subscripted
with 1 to indicate that it contains contributions from the first correction to the displacement field z1.
The function E2 contains the lowest-order terms involving z2, while Eη1 contains all high-order
terms.

Following the same procedure as before, the high order terms (i.e., Eη1) are discarded and the
functional is minimized with respect to z2 subject to the same constraints:

minz2F = F1(ϒ)+minz2E2(ϒ, z2)∫
S

C1(z2) ds = 0,
∫
S

C2(z2) ds = 0,
∫
S

C3(z2) ds = 0,
∫
S

C4(z2) ds = 0. (6)

Similarly,

z2 = f2(ϒ, ζ2, ζ3). (7)

The process is repeated until the new perturbation yields no terms in the energy functional of order
that is of the highest yielded by the previous perturbation, and at this point the displacement field is
said to have converged. For example, assume that the perturbation zk produced terms in the energy
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Fig. 1. Shell/thin-walled bar coordinate systems (Hodges and Volovoi, 2000).

functional with one being the highest order having an order of O(n). A further perturbation, zk+1,
produces terms that are of order O(n + 1) and higher, then at this stage the iteration is terminated.
In fact, one may not have to go as far as this in order to obtain the correct elastic behavior of the
beam since η is a small parameter to start with. Terms of order O(η0 ≡ 1) are the only ones needed
to obtain the asymptotically-correct global elastic behavior of the beam.

The energy functional can then be written after the kth perturbation as:

F (�, η) = F1(ϒ) + F2(ϒ)+ · · · + Fk(ϒ)+ Ek+1(ϒ, zk+1, η)+ Eηk(ϒ, zk+1, η). (8)

Alternatively, the energy functional can be expanded implicitly as an asymptotic series in the small
parameter η:

F (�, η) = O(η0)+ O(η1)+ O(η2)+ O(η3)+ · · · + O(ηk). (9)

It must be evident by now that no ad hoc assumptions are made in order to arrive at the
asymptotically-correct stiffness matrix that can be extracted from terms of order O(η0). The pro-
cess of dropping high order terms during the minimization or truncating them from the asymptotic
expansion of the functional is equivalent to a correct and systematic neglect of insignificant terms
in more conventional solution methods that rely on the Theory of Elasticity, equilibrium equations,
and boundary conditions. But these conventional methods usually involve a multitude of partial
differential equations, rendering the identification of these insignificant terms extremely difficult if
not outright impossible.

The Asymptotically-Correct Stiffness Matrix

Hodges and Volovoi (2000, 2002) applied the VAM to thin-wall open/closed shells and strips depic-
ted in Figure 1, and obtained the asymptotically-correct stiffness matrix for each case respectively.
The intersection of the middle surface of the shell with the plane of the beam cross-section defines
the contour s, which does not change along the span of the beam.
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The energy functional of the composite beam in this case is the elastic shell energy per unit area
written in terms of the six generalized shell strain measures:

2Ushell = ψTQψ + 2φT Sψ + φT Pφ
ψT = [

γ11 hρ11 hρ12
]

φT = [
2γ12 γ22 hρ22

]
, (10)

where Q, S, and P are material property matrices that depend on the 2D elastic modulus tensor of
the material, which is obtained from the reduced stiffness coefficients Qmn of Classical Laminate
Theory (Badir, 1992).

The six generalized shell strain measures are given in terms of the curvilinear displacements,
which in turn can be expressed in terms of the cartesian displacements u1, u2, and u3:

γ11 = v1,1 ρ11 = v3,11,

2γ12 = v1,2 + v2,1 ρ12 = v3,12 + 1
4R (v1,2 − 3v2,1),

γ22 = v2,2 + v3
R

ρ22 = v3,22 − ( v2
R
),2,

(11)

The subscripted comma indicates a differentiation with respect to the curvilinear coordinate sub-
sequent to it, and R is the radius of curvature defined using the cartesian coordinates x2 and x3 along
b2 and b3 respectively as R = ẋ2/ẍ3 = −ẋ3/ẍ2. The over-dot implies a differentiation with respect
to the curvilinear coordinate s. The generalized strain measures in Equation (11) are substituted in
the shell energy in Equation (10) and integrated over the contour to give the functional:∮

2Ushell ds ≡ F (ψ, φ). (12)

It is reemphasized in this problem, that two small dimensionless parameters are present: the slender-
ness ratio η1 = a/l, and the thinness ratio η2 = h/a. All deformation modes are assumed to have
the same order of magnitude O(ε), and therefore they are all included in the development to make it
general: extension, torsion, bending about the b2 axis, and bending about the b3 axis.

An asymptotic expansion of the shell energy functional in terms of the small parameters is sought
in the form:∮

2Ushell = O(ε2 · η0
1 · η0

2)+ O(ε2 · η1
1 · η0

2)+
+ O(ε2 · η0

1 · η1
2)+ O(ε2 · η1

1 · η1
2)+ · · · + O(ε2 · ηi1 · ηj2). (13)

Only the first term in Equation (13) is retained, since it is the dominant one, to give the elastic energy
per unit length:

E = εTSε, (14)

where εT = [u′
1 θ

′ − u′′
3 u

′′
2], which is the classical linear strain measures vector.

The matrix S, which has a closed form solution given in Hodges and Volovoi (2000, 2002),
is the 4×4 asymptotically-correct stiffness matrix, which is beyond the Euler–Bernoulli Theory of
bending and St. Venant’s Theory of torsion in terms of its rigor. It takes into account all in-plane
warping deformations since γ12 is never assumed to be zero throughout the development, in addition
to the shell bending strain measure ρ22. Given the natural boundary conditions on the tip of the
anisotropic thin-wall beam, the correct elastic response can be obtained from the flexibility matrix,
which is the inverse of the stiffness matrix:

ε = S
−1

⎡
⎢⎢⎣
F1
Mθ ′
M2
M3

⎤
⎥⎥⎦ . (15)
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Fig. 2. Anisotropic single-cell box beam (Yu, 2005).

Table 1. The elements of the stiffness matrix obtained using the thin-walled anisotropic beam theory
and VABS for Figure 2.

Stiffness Element Thin-Walled VABS (Popescu and Hodges, 2000) Difference

S11 1.2185 × 106 lb 1.2500 × 106 lb 2.52%

S12 0.0522 × 106 lb − in 0.0521 × 106 lb − in 0.19%

S13 0 lb − in 0 lb − in Exact

S14 0 lb − in 0 lb − in Exact

S22 0.1730 × 105 lb − in2 0.1770 × 105 lb − in2 2.26%

S23 0 lb − in2 0 lb − in2 Exact

S24 0 lb − in2 0 lb − in2 Exact

S33 0.0508 × 106 lb − in2 0.0543 × 106 lb − in2 6.44%

S34 0 lb − in2 0 lb − in2 Exact

S44 0.1283 × 106 lb − in2 0.1340 × 106 lb − in2 4.25%

Implementation

Validation

The theory has been implemented in a MATLAB software module and validated against VABS. The
first validation case was for a single-cell composite box beam VABS example shown in Figure 2.

The elements of the 4×4 stiffness matrix, S, obtained from the implementation are compared
to those produced by VABS in Table 1. Not all elements are shown since the stiffness matrix is
symmetric.

The three-cell isotropic box beam shown in Figure 3 is another validation of the current imple-
mentation against VABS, where the stiffness matrix is now calculated about the lower-left corner of
cross-section.

Similarly, The elements of the 4×4 stiffness matrix, S, obtained from the implementation are
compared to those produced by VABS in Table 2.
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Fig. 3. Isotropic three-cells box beam (Yu, 2005).

Table 2. The elements of the stiffness matrix obtained using the thin-walled anisotropic beam
theory and VABS for Figure 2.

Stiffness Element Thin-Walled VABS (Yu, 2005) Difference

S11 0.0611 × 1013 lb 0.0608 × 1013 lb 0.49%

S12 0 lb − in 0 lb − in Exact

S13 0.0611 × 1013 lb − in 0.0608 × 1013 lb − in 0.49%

S14 −0.2699 × 1013 lb − in −0.2692 × 1013 lb − in 0.26%

S22 0.0515 × 1013 lb − in2 0.0540 × 1013 lb − in2 4.63%

S23 0 lb − in2 0 lb − in2 Exact

S24 0 lb − in2 0 lb − in2 Exact

S33 0.1073 × 1013 lb − in2 0.1069 × 1013 lb − in2 0.37%

S34 −0.2699 × 1013 lb − in2 −0.2692 × 1013 lb − in2 0.26%

S44 1.7091 × 1013 lb − in2 1.7072 × 1013 lb − in2 0.11%

The results presented in Tables 1 and 2 clearly validate the present implementation to model
single/multi-cell thin-walled anisotropic cross-sections of rotor blades found on actual helicopters
and turbine engines.

Applications

A two-cell anisotropic rotor blade with a SIKORSKY DBLN-526 Airfoil cross-section is the first
example and it is depicted in Figure 4. Differences in the laminate design are highlighted by different
line formats in Figure 4 including the webs, and they are given in Tables 3–5.

The solid-line region has elastic modula values that are the same as those in Table 3 but the wall
thickness is 0.03 in, and the laminate stacking sequence is [(40◦/− 40◦/(30◦/0◦)2)].

The stiffness matrix of this cross-section about the origin of the axes in Figure 4 was found to be:

S =

⎡
⎢⎢⎣

0.4334 × 1012 lb 0.9970 × 107 lb − in 0.3120 × 1012 lb − in −0.1725 × 1012 lb − in
0.9970 × 107 0.1094 × 109 lb − in2 0.7177 × 107 lb − in2 −0.4463 × 108 lb − in2

0.3120 × 1012 0.7177 × 107 1.2372 × 1012 lb − in2 −0.1792 × 1010 lb − in2

−0.1725 × 1012 −0.4463 × 108 −0.1792 × 1010 1.3014 × 1012 lb − in2

⎤
⎥⎥⎦ .
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Fig. 4. Two-cell anisotropic SIKORSKY DBLN-526 Airfoil cross-section.

Table 3. Laminate design: dashed-line region in Figure 4.

Parameter Value

wall thickness ‘h’ 0.01 in

laminate design [(0◦/90◦)], ply thickness = 0.005 in

El 20.59 × 106 psi

Et 1.42 × 106 psi

Glt 8.7 × 105 psi

Gtn 6.96 × 105 psi

νlt = νtn 0.42

Table 4. Laminate design: dotted-line region in Fig 4.

Parameter Value

wall thickness ‘h’ 0.03 in

laminate design [45◦/60◦/− 45◦/0◦/60◦/45◦], ply thickness = 0.005 in

El 0.11 × 1012 psi

Et 0.02 × 1012 psi

Glt 0.27 × 1011 psi

Gtn 0.96 × 1011 psi

νlt 0.37

νtn 0.42
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Table 5. Laminate design: web region in Figure 4.

Parameter Value

wall thickness ‘h’ 0.3 in

laminate design [60◦], ply thickness = 0.3 in

El 0.26 × 1012 psi

Et 0.26 × 1012 psi

Glt 0.1 × 1011 psi

Gtn 0.96 × 1011 psi

νlt = νtn 0.3

Fig. 5. Three-cells anisotropic NACA 6-H-10 Airfoil cross-section.

A second application example is the three-cells rotor blade cross-section shown in Figure 5.
The laminate design convention is the same as that for the previous example. The only exception

is the second web, which has its ply fibre orientation at −60◦ instead of 60◦ as in the first web.
Similarly, the stiffness matrix of this cross-section about the origin of the axes in Figure 5 was found
to be:

S =

⎡
⎢⎢⎣

0.4018 × 1011 lb 0.7104 × 106 lb − in 0.2683 × 1011 lb − in 1.2344 × 1011 lb − in
0.7104 × 106 0.2818 × 107 lb − in2 0.1652 × 106 lb − in2 −0.4188 × 107 lb − in2

0.2683 × 1011 0.1652 × 106 0.2769 × 1011 lb − in2 0.6500 × 1011 lb − in2

1.2344 × 1011 −0.4188 × 107 0.6500 × 1011 9.8795 × 1011 lb − in2

⎤
⎥⎥⎦ .
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Advantages

One must enumerate the advantages of this implementation in light of the fact that it will be utilized
in tackling the dynamics of rotating blades for various research efforts in the Applied Dynamics
Group at Carleton University. Relative to other specialized cross-sectional finite element packages
like VABS and ABAQUS, the thin-walled asymptotic theory offers the following advantages:

• It provides a vast design space for parametric studies and easily interfaces with other disciplines
like dynamics and control, which may necessitate keeping the information about the elastic
deformation in a maximally compressed, yet correct, form.

• The meshing step and preparation of special input files are not required. The only input in-
formation required is the geometry of the airfoil (contour of the cross-section), which is readily
available for any airfoil in simple and compact format, as well as the laminate design.

• As the thinness ratio increases, the analytical method becomes superior to VABS from the
numerical point of view, since the finite element method results become unstable for high aspect
ratio elements.

• It allows all but the essential variables to be eliminated offering a simple output and almost
instantaneous execution time compared to more specialized software packages.

Conclusion

An implementation of a compact, yet comprehensive, asymptotically-correct anisotropic thin-wall
theory to calculate the cross-sectional elastic constants of slender beams with airfoil-like cross-
sections has been presented. It represents an essential step in the research efforts in the Applied
Dynamics Group at Carleton University to model the structural dynamics of active rotor systems in
maritime applications.
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