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1. Introduction 

Design sensitivity analysis of structures deals with the calculation of the response derivatives with 
respect to the design variables. These derivatives, called the sensitivity coefficients, are used in the 
solution of various problems. In design optimization, the sensitivity coefficients are often required to 
select a search direction. These coefficients are used also in generating approximations for the 
response of a modified system. In addition, the sensitivities are required for assessing the effects of 
uncertainties in the structural properties on the system response. Calculation of the sensitivities 
involves much computational effort, particularly in large structural systems with many design 
variables. As a result, there has been much interest in efficient procedures for calculating the 
sensitivity coefficients. Developments in methods for sensitivity analysis are discussed in many 
studies (e.g. Haug et. al. 1986; Haftka and Adelman, 1989; Haftka and Gurdal, 1993; van Keulen et. 
al. in press). Methods of sensitivity analysis for discretized systems can be divided into the following 
classes:

a. Finite-difference methods, which are easy to implement but might involve numerous repeated 
analyses and high computational cost, particularly in problems with many design or response 
variables. In addition, finite-difference approximations might have accuracy problems. The 
efficiency can be improved by using fast reanalysis techniques. 

b. Analytical methods, which provide exact solutions but might not be easy to implement in some 
problems such as shape optimization. 

c. "Semi-analytical" methods, which are based on a compromise between finite-difference methods 
and analytical methods. These methods use finite-difference evaluation of the right-hand-side 
vector. They are easy to implement but might provide inaccurate results.

In general, the following factors are considered in choosing a suitable sensitivity analysis method for 
a specific application: the accuracy of the calculations, the computational effort involved and the 
ease-of-implementation. The implementation effort is weighted against the performance of the 
algorithms as reflected in their computational efficiency and accuracy. The quality of the results and 
efficiency of the calculations are usually two conflicting factors. That is, higher accuracy is often 
achieved at the expense of more computational effort. 

Dynamic sensitivity analysis has been demonstrated by several authors. Using the mode 
superposition approach and assuming harmonic loading, the response sensitivities were evaluated by 
direct differentiation of the equations of motion in the generalized coordinates (Kramer and Grierson, 
1989). In cases of earthquake loading the ground acceleration is usually given in discrete time steps, 
thus the loading is not given analytically. In several studies (Kim and Choi, 2000; van Keulen et. al, in 
press) the unconditionally stable implicit numerical equation was directly derived. It was found that 
the analysis equations and the sensitivity equations have the same left-hand side expression. Thus, it 
was possible to use the available factorized coefficient matrix. A numerical procedure was applied for 
calculation of the sensitivity of the response. 

1 This paper is a shortened version of the paper "Efficient design sensitivities of structures subjected to dynamic 
loading" by the authors, in press in the International Journal of Solid and Structures. 
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Approximation concepts are often used to reduce the computational cost involved in repeated 
analysis of structures (Kirsch, 2002). However, most approximations that are adequate for structural 
reanalysis are not sufficiently accurate for sensitivity analysis. In this study, approximate reanalysis is 
used to improve the efficiency of dynamic sensitivity analysis by finite-differences. Given the results 
of exact analysis for an initial design, the displacements for various modified designs are evaluated 
efficiently by the recently developed Combined Approximations (CA) approach (Kirsch, 2002; 
2003a). Originally, the approach was developed for linear static problems. Recently, accurate results 
were reported also for eigenproblem (Kirsch, 2003b; Kirsch and Bogomolni, 2004) and dynamic 
reanalysis problems (Kirsch et. al. submitted, in press). 

Calculation of analytical derivatives using approximate analysis models have been demonstrated 
previously (Kirsch, 1994; Kirsch and Papalambros, 2001). It was found that accurate results can be 
achieved but, as noted earlier, analytical derivatives might not be easy to implement. It was 
demonstrated recently (Kirsch et. al. 2005, Bogomolni et. al. in press) that accurate derivatives can be 
achieved efficiently by CA and finite-differences for linear static problems and eigenproblems.  

The present study deals with the design sensitivity analysis for discrete linear systems subjected to 
dynamic loading. The problem of dynamic analysis by mode superposition is first introduced, and the 
response derivatives with respect to design variables are presented as a combination of sensitivities of 
the eigenvectors and the generalized displacements. A procedure for reducing the number of 
differential equations that must be solved during the solution process is then proposed. Procedures 
intended to improve the accuracy of the approximations are developed, and efficient evaluation of the 
response derivatives by the combined approximations approach is presented. Numerical examples 
demonstrate the accuracy of the results. 

2. Problem Formulation 

2.1 Dynamic Analysis 
Consider the equations of motion for a linear system subjected to dynamic forces 

      RrKrCrM +  (1) 

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, r is the unknown 
displacement vector, and R is the load vector. 

Considering mode superposition, we use the following transformation from the nodal 
displacements to the generalized displacements 

      Zr
p

k
kk Z

1
 (2) 

where p is the number of mode shapes considered (in general p<<m, where m is the number of 
degrees of freedom), Z is a vector of generalized displacements, and  is the matrix of eigenvectors 
(mode shapes). The eigenvectors k and eigenvalues k = k

2 ( k are the circular frequencies) are 
obtained by solving the eigenproblem 

      K k = k k k = 1, …, p (3)

In the presentation that follows we assume damping such that classical modal analysis can be used. 
Substituting Eq. (2) into Eq. (1) and pre-multiplying the resulting equations by T, we obtain 

      PZZZI 2  (4) 
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In these equations the right hand side vector in normalized coordinates is P = TR, and the mass 
matrix is an identity matrix I= TM . The damping matrix and the stiffness matrix are diagonal low-
order matrices 
      = TC

2

= TK  (5) 
The elements on the diagonals of these matrices are given by kk2 , 2

k , respectively, k = 1, …, p,

k  being the damping ratios. Thus, Eq. (4) consists of the p uncoupled equations 

      kkkkkkk PZZZ 22+ k = 1, …, p (6) 

In many problems (e.g. earthquake loading) the load vector R, and therefore the right hand side terms 

      Pk= k
TR   (7)

are given as discrete values at each time step, and not by analytical functions.
In summary, computation of the dynamic response by modal analysis involves the following steps. 

a. Determine the matrices K, M, and C.
b. Determine the p requested eigenpairs k, k by solving the eigenproblem of Eq. (3). 
c. Compute the modal coordinates Zk by solving Eqs. (6).  
d. Compute the nodal displacements r by Eq. (2). 
e. Calculate the element forces using the element stiffness properties. 

2.2 Displacement Derivatives 
The derivative expressions of the displacement vector r with respect to a design variable Xj, r/ Xj,
are given by differentiating Eq. (2) 

      
p

k j

k
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The derivatives k/ Xj can be evaluated efficiently by finite-differences using the CA approach, as 
will be shown later. Assuming that the damping ratios k  are independent of the design variables 
(which is typical, for example, in civil engineering structures), we calculate Zk/ Xj by 
differentiation of Eq. (6) 
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Denoting
    jkkjkkjkk XZqXZqXZq ///  (10) 

and substituting Eqs. (7), (10) into Eq. (9) yields 
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Note that the left hand sides of Eqs. (6) and (11) are similar, whereas the right hand sides are 
different. For identical initial conditions (e.g. 0kk qq  for t = 0) this similarity can be used to 
reduce the number of differential equations that must be solved during the solution process. 

Dynamic Sensitivities Using Efficient Reanalysis of Structures 551



In summary, given the eigenpairs and the response for a certain design and time, evaluation of the 
displacement derivatives involves the following steps. 
a. Evaluate the derivatives of the eigenpairs ( k/ Xj and k/ Xj ). 
b. Compute the right side of Eq. (11).  
c. Compute the derivatives qk = Zk/ Xj by solving Eq. (11). 
d. Evaluate the displacement derivatives r/ Xj by Eq. (8). 
Assuming a problem with p mode shapes and n design variables, the main computational effort is 
involved in the following two steps: 
a. Solution of the pn differential equations (11).
b. Evaluation of pn derivatives of the eigenpairs ( k/ Xj and k/ Xj).
A procedure intended to reduce the number of differential equations to be solved during the solution 
process is proposed below. Efficient evaluation of the derivatives of the eigenpairs, using finite-
difference and the CA approach, is presented later. 

3. Reducing the Number of Differential Equations

Due to the linearity of Eq. (11), we can use superposition and divide it into the following 3 equations 
with identical initial conditions 

      )()(2)()( 2 ii
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kkkk
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Noting that the right hand sides of Eq. (6) and Eq. (12) for i = 1 are 

      Pk= k
TR   (15)
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and assuming that the load vector can be expressed in the form R(X, t)=R(X) g(t), then Eqs. (15), (16) 
describe similar functions in time with different amplitudes. For zero initial conditions (or, if we 
neglect the influence of the homogeneous solution), the ratio between the two displacement functions 
of Eqs. (6) and (12) is equal to the ratio between the right-hand side terms. Thus, given the solutions 
Zk of Eq. (6) for all p modes, the solutions )1(

k
q  of Eq. (12) for i = 1 can be determined directly by 
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To find )3()2( ,
kk

qq , Eq. (12) must be solved for i=2 and i=3. For X1 we have to solve the two equations 
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Given the solutions of Eqs. (18), (19) with respect to X1, it is observed that the solutions for any other 
variable Xj can be determined directly by 
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In the particular case where k and R are orthogonal we obtain Pk= k
TR = 0. From Eq. (6) we 

have 0kkk ZZZ , and from Eqs. (17) - (19) we find 0)3()2()1(
kkk qqq .

In summary, assuming a problem with p considered mode shapes and n design variables, the 
number of times that the differential equations (11) must be solved in order to perform sensitivity 
analysis is usually pn. Considering the procedure presented in this section and assuming that the 
solution of the analysis problem [Eq. (6)] is known, the number of times that the differential equations 
must be solved in order to perform sensitivity analysis is only 2p [Eqs. (18), (19)]. Thus, the ratio 
between the two numbers is pn/2p=n/2, which means a significant reduction in the computational cost. 
For example, for a problem with 10 design variables, the procedure presented requires about 20% of 
the effort involved in complete sensitivity analysis. 

4. Derivatives of the Eigenpairs 

4.1 Analytical Derivatives 
For simplicity, we eliminate the subscripts k (mode shapes) and j (design variables). Thus, the 
eigenproblem of Eq. (3) is expressed as 

      K  = (21)

The eigenvector is often normalized such that 

      T  =1 (22)

To evaluate the derivatives of the eigenpairs ( / X and / X), we differentiate Eqs. (21), (22) 
with respect to a design variable X and rearrange to obtain 

    
MKMMK )()(
XXXX

 (23) 
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2
1

(24)

or, in matrix form 
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In the solution of Eq. (25) care must be taken because the principal minor (K- ) is singular. In 
many cases we are interested only in the derivatives / X. These derivatives may be obtained by 
premultiplying Eq. (23) by T and rearranging 

      
M

MK

T

T

XX
X

)(
 (26) 

Note that this is only correct if the eigenvalue  is distinct.
Several methods have been proposed to solve Eq. (25). In general, the solution involves much 

computational effort. Specifically, a matrix of the order (m+1), m being the number of degrees of 
freedom, must be factorized for each of the p considered mode shapes. In addition, the matrices 

XX /,/ MK must be calculated and forward and backward substitutions must be carried out for 
each design variable.

4.2 Finite-Difference Derivatives 
In the forward-difference method, the derivatives are approximated from the exact displacements at 
the original point X and at the perturbed point X+ X by 

      
X

XXX
X

)()(
 (27) 

where X is a predetermined step-size. The accuracy can be improved by adopting the central-
difference approximation, where the derivatives are computed from the exact displacements at the two 
points X- X and X+ X by

      
X

XXXX
X 2

)()(
 (28) 

Finite-difference methods are the easiest to implement and therefore they are attractive in many 
applications. When (X is known, application of Eq. (27) involves only one additional calculation of 
the displacements at X+ X whereas Eq. (28) requires calculation at the two points X- X and X+ X
For a problem with n design variables, finite difference derivative calculations require repetition of the 
analysis for n+1 [Eq. (27)] or 2n+1 [Eq. (28)] different design points. This procedure is usually not 
efficient compared to, for example, analytical and semi-analytical methods. An efficient solution 
procedure using the CA approach is described below. 

As noted earlier, finite-difference approximations might have accuracy problems. The following 
two sources of errors should be considered whenever these approximations are used: 
a. The truncation error, which is a result of neglecting terms in the Taylor series expansion of the 

perturbed response.
b. The condition error, which is the difference between the numerical evaluation of the function and 

its exact value. Examples for this type of error include round-off error in calculating / X
from the original and perturbed values of , and calculation of the response by approximate 
analysis. The latter can also be the result of a finite number of iterations being used within an 
iterative procedure. 
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These are two conflicting considerations. That is, a small step size X will reduce the truncation error, 
but may increase the condition error. In some cases there may not be any step size which yields an 
acceptable error. Some considerations for choosing the forward-difference step-size are discussed 
elsewhere (Burton, 1992). In certain applications, truncation errors are not of major importance since 
it is often sufficient to find the average rate of change in the structural response and not necessarily 
the accurate local rate of change at a given point. Therefore, to eliminate round-off errors due to 
approximations it is recommended to increase the step-size.  

It is well known that relatively small response values are not calculated as accurately as large 
response values (Haftka and Gurdal, 1993). The same applies to derivatives. Thus, it would be difficult 
to evaluate accurately small response derivatives by finite difference or other approximations. 

5. Efficient Finite-Difference Derivatives 

5.1 The Reduced Eigenproblem 
Eigenproblem reanalysis by the CA method has been discussed in detail in previous studies (Kirsch, 
2003b; Kirsch and Bogomolni, 2004). The solution procedure is briefly described in this section. We 
assume that the corresponding stiffness matrix K0 is given in the decomposed form 

      K0 = U0
TU0

   (29)

where U0 is an upper triangular matrix. The initial eigenpair 0, 0 is obtained by solving the initial 
eigenproblem 
      K 0 = 0 0  (30) 

Assume a perturbation X in the design and corresponding changes K in the stiffness matrix and M
in the mass matrix, respectively. The modified matrices are given by  

      K = K0 + K M = M0 + M   (31)

The object is to estimate efficiently and accurately the requested eigenpair , , without solving the 
complete set of modified equations 

      (K0 + K)  = M     (32)

The solution process involves the following steps. 
a. Calculate the modified matrices K, M [Eqs. (31)]. 
b. Calculate the matrix of basis vectors rB

      rB = [r1, r2, ..., rs]  (33)

 where r1, r2, ..., rs are the basis vectors, and s is much smaller than the number of degrees of 
freedom. For any requested eigenpair ,  the basis vectors are determined separately, using the 
steps described in the next section. 

c. Calculate the reduced matrices KR and MR by 

      B
T
BR rKrK B

T
BR rMrM  (34) 

d. Solve the reduced s s eigenproblem for the first eigenpair 1, y1

      111 yMyK RR    (35)

 where y1 is a vector of unknown coefficients
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      y1T = {y1, y2, ... , ys} (36)

 Various methods (e.g. inverse vector iteration) can be used for this purpose. 
e. Evaluate the requested mode shape  by  

 = y1r1 + y2r2 + ... + ysrs = rB y1 (37) 

 The requested eigenvalue is already given from Eq. (35)  = 1.

It was found that high accuracy is often achieved with a very small number of basis vectors. In such 
cases the above solution procedure is most effective. 

5.2 Improved Basis Vectors 
The effectiveness of the solution approach depends, to a great extent, on the appropriate choice of the 
basis vectors. Proper selection of the basis vectors is perhaps the most important factor affecting the 
successful application of the method. It was found that the basis vectors determined by the method 
described in this section provide accurate results with a small computational effort.  

The basis vectors for any requested eigenpair ,  , are first calculated by the terms of the binomial 
series as follows (Kirsch et. al. submitted b). The first basis vector is selected as 

      r1 = 1
0K M (38)

Additional vectors are calculated by the terms of the binomial series 

      rk = -B rk-1     (39)

where matrix B is given by 

      B = 1
0K K   (40)

Calculation of each basis vector by Eq. (39) involves only forward and backward substitutions, since 
K0 is given in the decomposed form of Eq. (29) from the initial analysis. 

Substituting Eq. (40) into Eq. (39) yields 

      rk  = - 1
0K K rk-1    (41)

It was found (Barthelemy et. al. 1988; Pedersen et. al. 1989) that the expression of Eq. (41) might 
cause inaccurate results in calculating sensitivities with respect to shape design variables. To improve 
the accuracy, it is possible to use the central-difference expression 

      K  = K(X+ X) - K(X- X)    (42)

in Eq. (40), instead of the forward-difference expression [Eq. (31)] 

      K = K(X+ X) - K0     (43)

This modification may reduce significantly the number of basis vectors required to achieve 
sufficiently accurate results. In summary, the resulting expressions for calculating the basis vectors 
[instead of Eqs. (38) - (40)] are 

      1r  = r1 = 1
0K M  (44) 
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      kr   = - B 1kr     (45)

      B = 1
0K K (46)

It should be noted that forward-difference derivatives [only one additional reanalysis for (X+ X)] can 
be used with the central difference expressions of Eqs. (44) - (46). 

To improve the accuracy of the results for the higher mode shapes, we use Gram-Schmidt 
orthogonalizations of the approximate mode shapes and the basis vectors, with respect to the mass 
matrix (Bogomolni et. al. in press). 

6 Numerical Example 

Consider the fifty-story frame shown in Fig. 1. The number of degrees of freedom is 600, and the 
damping ratios for all modes are 0.05. The masses are assumed to be concentrated at the joints, and 
only horizontal inertia forces are considered. The inertia force is due to the frame self-weight and an 
additional concentrated mass of 50 ton in an internal joint and 25 ton in an external joint. The width 
of all elements is 0.5m, the depth of all columns is 1.0m and the depth of all beams is 0.8m. The 
modulus of elasticity is 3x107 kNm2. The loading is due to the ground acceleration of the El Centro 
earthquake, shown in Fig. 2. The object is to evaluate the sensitivities of the horizontal displacements 
at the 1st story and the 50th story with respect to the following four design variables; 

X1 – depth of the columns in the 1st story.
X2 – depth of the beams in the 1st story.
X3 – depth of the columns in the 50th story.
X4 – depth of the beams in the 50th story.
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Fig. 1. Fifty-story frame   Fig. 2. El Centro Earthquake 

Dynamic Sensitivities Using Efficient Reanalysis of Structures 557



0 2 4 6 8 10-0.01

-0.005

0

0.005

0.01

0.015

Time (sec)

D
is

pl
ac

em
en

t (
m

)

0 2 4 6 8 10-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (sec)

D
is

pl
ac

em
en

t (
m

)

Fig. 3. Horizontal displacements:  (a) 1st floor (b) 50th floor.

(a)         (b)

Table 1. Eigenvalue sensitivities, fifty-story frame 

Sensitivity Mode   FD(exact)    FD(CA2) 
/ X1 1 0.0480 0.0480 

 2 0.4723 0.4723 
 3 1.4404 1.4404 
 4 2.8998 2.8998 
 5 4.9780 4.9780 
 6 7.7050 7.7050 
 7 11.232 11.232 
 8 15.617 15.617 

/ X2 1 0.0330 0.0330 
 2 0.5834 0.5834 
 3 1.7403 1.7403 
 4 3.5348 3.5348 
 5 5.9373 5.9373 
 6 9.0852 9.0852 
 7 12.876 12.876 
 8 17.485 17.485 

/ X3 1 -0.00315 -0.00315 
 2 -0.02443 -0.02443 
 3 -0.05199 -0.05198 
 4 -0.04155 -0.04154 

5  0.06455  0.06457 
6  0.33255  0.33257 
7  0.85281  0.85282 
8  1.69010  1.69010 

/ X4 1 -0.00774 -0.00779 
 2 -0.06148 -0.06149 
 3 -0.13726 -0.13723 
 4 -0.12572 -0.12572 

5  0.13424  0.13425 
6  0.84037  0.84042 
7  2.28830  2.28840 
8  4.73610  4.73610 

Choosing the time-step t = 0.02 sec. and considering the first 8 mode shapes, the results obtained by 
forward-difference derivatives using exact analysis formulation [FD(exact)] are compared with those 
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achieved by the CA approach with only 2 basis vectors [FD(CA2)]. Table 1 shows the eigenvalue 
sensitivities, Fig. 3 shows the displacements, and Figs. 4, 5 show the displacement sensitivities of the 
1st and the 50th stories. It is observed that high accuracy is achieved by the procedure presented. 

Solving various frames with different numbers of degrees of freedom, it was found that in all cases 
only 2 basis vectors provide accurate sensitivities. This result is typical for small perturbations in a 
single design variable. 

7 Conclusions 

Calculation of response derivatives with respect to design variables often involves much 
computational effort, particularly in large structural systems subjected to dynamic loading. 
Approximation concepts, which are often used to reduce the computational cost involved in repeated 
analysis, are usually not sufficiently accurate for sensitivity analysis.  

In this study efficient sensitivity analysis, using the recently developed combined approximations 
approach and finite-differences, is presented. Assuming modal analysis, a procedure intended to 
reduce the number of differential equations that must be solved during the solution process is 
proposed. Computational procedures intended to improve the accuracy of the approximations are 
developed, and efficient evaluation of the response derivatives by the combined approximations 
approach is presented. Numerical examples show that accurate results can be achieved efficiently. In 
general, sensitivity analysis by the CA method is used in problems of small perturbations in a single 
design variable. In such cases a very small number of basis vectors provide accurate results even for 
structures having large numbers of degrees of freedom. 
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