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1. Introduction 

During the last phase of the Second World War huge quantities of goods were transported across 
Atlantic ocean from the United States and Canada to Europe. Diminishing the overall cost of this 
logistic task even by several percents meant sparing millions of dollars. This demand motivated US-
authorities to allocate money for research and many mathematicians started to investigate a problem of 
transportation: how to organize the flow of goods between given locations in order to minimize the 
total cost of delivery. G.B. Dantzig proposed very efficient method of solving such problems – the 
simplex algorithm – and named the domain Linear Programming(LP). He did not realize that the 
second term of this name will soon collide with the vast area of computer programming. 

After Dantzig published his first paper on LP (Dantzig, 1948), this approach attracted much 
interest in the West. It remained unnoticed that similar results were obtained by L.V. Kantorovich in 
the Soviet Union already before the Second World War (Kantorovich, 1939). At the beginning of the 
1950-ties a general theory of Mathematical Programming (MP) was developed, with major 
contribution given by H.W. Kuhn and A.W. Tucker (Kuhn, Tucker, 1951). The subject of this theory 
is a Non-Linear Programming Problem (NLP-problem):
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Here nRx  is a column matrix of unknowns, )(xff  is a cost function and )(xii gg  are 
constraints with mi ,,2,1 . Usually it is assumed that functions f  and ig  are convex. In 
particular, the cost function may be quadratic and the constraints may be linear. This leads to a 
particular form of the NLP-problem called Quadratic Programming Problem (QP-problem):

}|
2
1{ bxAxcxDx TT

0x
nim (2)

Matrices nmRA , mRb , nRc  and nnRD  are given. In order to assure convexity of the cost 
function, matrix D  must be positive definite.  

Finally, taking 0D  in (2), we obtain the simplest form of MP-problems, namely a Linear
Programming Problem (LP-problem):
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It turns out that each minimization problem in LP has its maximization counterpart: 
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Problems (3) and (4) are said to be mutually dual and the entries of mRy  are called dual variables.
For the sake of simplicity, we quote MP-problems in their canonical form: the problems (1) to (4) 
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contain only non-negative variables and inequality constraints. In general, free variables and equality 
constraints can be present as well. 

At the beginning Linear Programming was used only in management and economics. The 
remnants of this period are still present in the terminology (the cost function, the shadow prices, etc.). 
A typical application of the model (4) would be maximizing the total production of a factory that uses 
different technological processes and different resources. The unknowns iy  are then the time slots 
allocated for each process, the entries of c  represent given efficiency of each process, the entries of 
A  tell us how much of each resource is consumed by a particular process and the entries of b
describe available amount of each resource.  

In parallel to things happening in Mathematical Programming, revolutionary changes occurred 
in Structural Analysis. Instead of relying on linear elasticity and on admissible stresses, a concept of 
safety factors against possible ultimate states was introduced. Again the Cold War precluded the 
exchange of ideas and the pioneering work of A.A. Gvozdev (Gvozdev, 1949) remained unknown in 
the Western hemisphere.  

It was proved soon that the safety factor against plastic collapse does not depend on elastic 
properties of the structural material and that such factor can be found by maximizing the load 
multiplier over all statically admissible stress fields. For skeletal structures with a single dominant 
internal force (e.g. the axial force or the bending moment) a stress state s  is statically admissible if 
each js  remains less or equal to the yield stress js0  and if s  is equilibrated with a load p . Assuming 
strains q  and displacements w  to remain small prior to the plastic collapse, we can write the 
equilibrium equation as psCT , where C  is the matrix of kinematics: wCq . Let loading be 
proportional: 0pp µ , where µ  is an unknown multiplier and 0p  is a given reference load. 
According to the static theorem, the ultimate value µ  of the load factor can be found solving the 
problem: 
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Looking at this model today we see at once that it is a LP-problem. However, the pioneers of 
the MP-based modeling of structural behavior had to overcome the barrier between economics and 
mechanics. Having accomplished that, they could enjoy the power of mathematics: the semantics of 
the production planning problems and the ultimate load problem is completely different but the formal 
structure of both problems is identical. We believe that the following papers, cited in the alphabetic 
order after the first author, were important in providing impetus to the MP-oriented approach: Biron & 
Hodge, 1968; Brown & Ang, 1964; Ceradini & Gavarini, 1965; Hodge, 1966; Koopman & Lance, 
1965; Sacchi & Buzzi-Ferraris, 1966; Wolfensberger, 1964.  

Special tribute should be given to two persons: Mircea Z. Cohn and Aleksandras yras. 
Already in 1956 Cohn published in Romania his first paper on the plastic structural analysis (Cohn, 
1956). In 1972 an inspiring paper on the unified theory of plastic analysis appeared (Cohn et al., 
1972). During the NATO Advanced Study Institute that took place in Waterloo in 1977 he was invited 
to deliver a keynote lecture (Cohn, 1979). The celebration of his 65th birthday in 1991 gathered over 
60 contributors from 14 countries. The results of this meeting were published in a book edited by 
Cohn’s former students D.E. Grierson, A. Franchi and P. Riva  (Grierson et al., 1991). Their 
contribution to the considered domain is substantial (Franchi & Cohn, 1980), (Grierson & Gladwell, 
1971), (Grierson, 1972), (Riva & Cohn, 1990). 

Since Lithuania was a part of the Soviet Union at the time of his scientific carrier, yras was 
for a long time isolated from the Western scientific community. Most of his early papers were written 
in Russian ( yras, 1963) and published in a local Lithuanian journal. His first paper in English, 
written with the present author, appeared in Poland in 1968 ( yras & Borkauskas, 1968). Already well 
known in the Soviet Union and in other countries of the Eastern block, he was invited in 1974 by 
Wac aw Olszak to present his results at the CISM-course ( yras, 1974).  
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( yras, 1969). Two further books ( yras, 1971), ( yras et al., 1974) were also written in Russian 
language. The first English edition appeared in 1983 – this was the translation of the book ( yras, 
1982). In 2002 the 75th birthday of Aleksandras yras was celebrated in Vilnius. This motivated his 
former students R. Karkauskas and the present author to prepare new edition of the book ( yras et al., 
1974). Substantially updated and rewritten it appeared in 2004 ( yras et al., 2004).  

Being a founder and a long time Rector of the Institute of Civil Engineering in Vilnius (VISI), 
yras inspired many researchers to work on the MP-applications in Structural Analysis and Optimum 

Design. This group contributed substantially to progress in such areas as the ultimate state under 
constrained strains ( yras & ižas, 1966), the evaluation of displacements prior to collapse ( yras & 
Baronas, 1971), the ultimate state of shells ( yras & Karkauskas, 1971), ( yras & Kalanta, 1974), the 
plastic shakedown problem ( yras & Atko i nas, 1984). The present author took part in the 
development of general concept of the dual approach ( yras & Borkauskas, 1969). In 1988 he 
published a book in Polish that was translated three years later into English (Borkowski, 1988). 

The above overview is by no means complete. It reflects personal experience of the author 
who was involved in this fascinating scientific adventure. 

2. Dual View of Mechanics

It seems that the first new insight brought by the MP-approach to Structural Mechanics was 
discovering the equivalence of kinematic and static formulations. In Mathematical Programming this 
property is known as duality: under certain premises each problem of constrained extremum has its 
dual and the values of cost functions for such problems attained at the solutions coincide. We already 
quoted the dual LP-problems (1) and (2). If x  is the solution of (1) and if the constrained minimum 

xcx T)(f  is finite, then there exists a solution y  of the dual problem (2) and the optimum 
values of the cost functions coincide: )()( xyby T ff .

Let us expand slightly the QP-problem (4) by introducing additional variables nRy :
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Here mRxb , nRyb , mmRxxA , nnRyyA , mnRyxA . Moreover, xxA  is positive definite 

and yyA  is negative definite. The dual of (6) reads 
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Duality has simple geometrical interpretation. Solving a pair of dual problems (6), (7) is equivalent to 
finding the saddle point
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of the Lagrange function
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In 1969 yras published a book that contained many fundamental results on the applications 
of Linear Programming in the analysis and design of structures made of rigid-perfectly plastic material 
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Such point can be reached in two ways. One can first establish the parabola that contains all maxima 
with respect to y -variables and then find the minimum on this curve. This sequence corresponds to 
the problem (6). Alternatively, one can begin with finding the parabola that corresponds to all minima 
with respect to the x -variables and then look for the maximum of this concave function. This way 
leads to the dual problem (7). 

Point )( y,x  is the saddle point of L  if it satisfies Kuhn-Tucker conditions (KT-conditions):

0y0,x0L0L yx ,, (10)
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Here nRxL  and mRyL  are gradients of L  with respect to x  and y . If all variables were 
free, then the KT-conditions would reduce to the common stationarity conditions: 

0L0L yx , (12)

or, explicitly, to the set of linear algebraic equations 
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Note two features that distinguish this set: a) its matrix of coefficients is symmetric; b) the sub-
matrices situated along the diagonal have special properties – xxA  is positive definite, yyA  is negative 
definite

It is easy to check by inspecting the Table 1 that the set of equations governing linear static 
analysis of elastic structures follows exactly the template (13). The goal of such analysis is to find 
displacements1 w , stresses s and reactions r of elastic structure caused by a given static load 0p and
by a given kinematic load 0w . The structure is represented by a common discrete model, where E  is 
the matrix of elasticity, C  is the matrix of compatibility, subscript p  refers to the degrees of freedom 
with prescribed external forces and subscript w  refers to the degrees of freedom with prescribed 
displacements. 

It is seen from the Table 1 that displacements play the role of x -variables, whereas stresses 
and reactions correspond to y -variables in the model (13). The first two rows of the Table 1 contain 
the equilibrium equations. The third row comes from substituting strains wwpp wCwCCwq
into the constitutive equation sEq 1 . The last row merely says that 0w ww . A matrix with zero 
entries can be treated either as positive semi-definite or as negative semi-definite. The inverse of 
matrix of elasticity is strictly positive definite. Hence, 1E  is strictly negative definite. 

Note that there are no inequalities in the Table 1 and that all variables are free with respect to sign. 
Hence, we don’t need to take the KT-conditions into account.  

                                                
1 In the sequel we write „displacements”, „strains”, „stresses” and „loads” having in mind generalized variables 
taken usually in Structural Analysis.  
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Table 1. Governing equations of linear elastic analysis of structures

pw ww s r 1

pwL 0 0 T
pC 0 0p 0

wwL 0 0 T
wC I 0 0

sL pC wC 1E 0 0 0

rL 0 I 0 0 0w 0

What do we gain by using the MP-based approach in elastic analysis? First, having filled the Table 1, 
we can derive easily the dual energy principles (compare the templates (6) and (7)): 

a) kinematic principle –  
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b) static principle – 
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Second, since the QP-problems (14), (15) contain no inequality constraints or non-negative variables, 
each of them can be reduced to a set of equations. This leads us very naturally to the fundamental 
computational tools of elastic analysis: the Stiffness (Force) Method and the Flexibility (Displace-
ment) Method.

Third, the existence and uniqueness of solution for any given loading 00 w,p  follows 
immediately from the convexity of problems (14), (15). Moreover, a generalization of the model (14), 
(15) to unilateral contact is straightforward. The replacement of 0w ww  in (14) by less restrictive 
condition 0w ww  induces sign constraint on r  in the dual problem: 
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Seemingly minor, this modification has dramatic consequences: a) the linearity of the problem is lost 
due to the KT-condition 0)w(wr w0

T ; b) the energy principles (16), (17) can not be replaced by 
the sets of equations. Moreover, for certain loads 00 w,p  the constraints of the problems (16), (17) 
might become contradictory. Thus the existence of solution is not warranted any more.  
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3. Expanding Area of Application 

As shown by G. Maier in (Maier, 1970) Quadratic Programming allows us to model a broad range of 
piecewise-linear structural behaviors. The constitutive laws of such behaviors are given in Fig.2. An 
exhaustive overview of the QP-based approach, including both continuum and discrete models, can be 
found in (Borkowski, 2004). Let us recall, for the sake of brevity, only two cases – a cable-strut elastic 
structure and a structure made of strain-hardening material.  

The entries of the stress matrix s  for the cable-strut structure can be split into two sub-
matrices: ss  represents axial forces in struts and cs  represents axial forces in cables. Obviously, cables 
work only in tension, while struts can be either extended or compressed. Table 2 shows the set of 
relations governing elastic behavior of the cable-strut system. In order to simplify things, we assume 
purely static loading. 

The adjoint variable for the axial force in cable is its slackness – the axial strain taken with 
negative sign. Grouping the slackness unknowns into a column matrix cq , we consider it as a matrix 
of non-negative variables. Then, the entries of cs  remain formally unconstrained in sign: they will 
become non-negative in the solution due to the constraint 0L

cq .
Applying the templates (6), (7) to the Table 2, we obtain the following energy principles for 

the cable-strut system:  
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Fig. 2. Piecewise-linear behaviors of material: a) elastic; b) elastic-strain hardening; c) elastic-perfectly plastic; 
d) rigid-perfectly plastic.
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Note that the existence of solution is not warranted: for a certain load 0p  there might be no equili-
brated stress state. Then the constraints of the QP-problem (19) become contradictory. On the other 
hand, if a solution exists, then it is unique due to the convexity of the problems (18), (19). 

Table 2. Governing relations for a cable-strut structure

w cq ss cs 1

wL 0 0 T
sC T

cC 0p 0

cqL 0 0 0 I 0 0

ssL sC 0 1E 0 0 0

csL cC I 0 0 0 0

0qc , 0c
T
c Lq

Similar procedure can be applied to a structure made of elastic-strain hardening material. A complete 
set of governing relations for such a structure is shown in Table 3. The first row of this table includes 
linearised yield condition 0

T kHsN . A positive definite )( rr -matrix of hardening H  is 
responsible for a shift of the yield planes caused by the plastic strains. The equation of equilibrium that 
relates the given load 0p  to the unknown stress s  can be recognized in the second row. The last row 
ensures the kinematic compatibility of strains pe qqq  and displacements w . Elastic strains obey 

the Hooke’s law sEq 1
e . Plastic strains are governed by the associated flow rule Nqp . Plastic 

multipliers represented by a column matrix rR  are supposed to be non-negative. 

Table 3. Governing relations for a structure made of elastic-strain hardening material.

w s 1

L H 0 TN 0k 0

wL 0 0 TC 0p 0

sL N C 1E 0 0

0 , 0LT

Applying the templates (6), (7) to the Table 2, we obtain the following energy principles for elastic-
strain hardening structures:
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Solutions of these QP-problems exist for any 0p  since the admissible domain for stresses adjusts itself 
automatically to the loading. The convexity of the problems (20), (21) ensures uniqueness of the 
structural response. The only drawback of the model (20), (21) is its holonomic nature: a possible local 
unloading is not taken into account. 

Assuming 0H , we obtain structure made of elastic-perfectly plastic material. The relevant 
dual QP-problems 
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still retain the uniqueness of solutions but the nice property of the existence of solution for any 0p  is 

lost. The yield surface 0
T ksN  is now fixed and too high loading would cause the absence of 

statically admissible field of stresses. 
If we would like to neglect elastic strains as well, the static energy principle (23) would loose 

its cost function (since there would be 0E 1 ). This shows clearly that for a structure made of the 
rigid-perfectly plastic material the problem “find the response to the given load” is ill-posed. The right 
formulation is “find the load factor that corresponds to the state of plastic collapse”. A complete set of 
relations for this formulation is given in Table 4. 

Table 4. Governing relations for ultimate load factor.

w s µ 1

L 0 0 TN 0 0k 0

wL 0 0 TC 0p 0 0

sL N C 0 0 0 0

µL 0 T
0p 0 0 1 0

0 , 0LT

The primal problem generated by this table is 

}1|{
,

wp0,wCNk T
0

T
0nim

µ

(24)
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4. Explicit and Implicit Optimization 

Models based on Mathematical Programming give the user clear insight into the possible ways of 
structural optimization. Let us begin with the topological optimum design. Changing the layout of 
structural elements makes the entries of C  variable. Hence, all relations where this matrix appears 
become non-linear. This circumstance explains why the topological formulation of the optimum 
design problem is still an open research area. 

The search for optimum sizing of structural elements under given topology becomes much 
easier if we neglect elastic strains. Assuming additionally that a form of each element is given up to 
certain parameters, we can take the entries of k  as unknowns, retaining the fixed matrices C  and N .
Hence, basic relations of the rigid-perfectly plastic model remain linear. Note, that is not possible for 
elastic structures: in the sizing problem matrix E  becomes variable which destroys linearity of the 
constitutive relations.  

Let us assume that the unknown plastic modulae k are governed by a relatively small number 
of design variables the : zGk T , where G  is )( rg -matrix of configuration. In order to maintain 
linearity of the problem, we adopt linear cost function zcz T

0)(f , where the entries of column 
matrix gR0c  are given cost coefficients. A problem to be solved reads: “given the structural layout 
find the optimum sizing z  that minimizes f  and assures given safety factor µ against plastic 
collapse”. In fact, we know an expected load carrying capacity 0pp µ  of the optimized structure, 
since both the safety factor µ  and the reference load 0p  are given. 

and the dual one has been already given as Eq. (5). All sub-matrices located at the diagonal of the 
Table 4 have zero values. This leads to vanishing quadratic terms in the cost functions of the dual 
problems. On the other hand, we can not expect the solution to be unique in terms of stresses and/or 
collapse mechanisms, since linear functions are not strictly convex (concave). 

Table 5. Governing relations for optimum plastic design.

w s z 1

L 0 0 TN TG 0 0

wL 0 0 TC 0 p 0

sL N C 0 0 0 0

zL G 0 0 0 0c 0

0 , 0z , 0LT , 0z
T Lz

Table 5 shows the internal structure of the problem of optimum plastic design. This problem is 
equivalent to the following pair of dual LP-problems: 

}|{ psC0,sNzGzc TTTT
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0zs,
nim (25)
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0w,
cG0,wCNwpxam (26)
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Duality reveals an interesting role of the cost coefficients: according to the second constraint of the 
kinematic energy principle (26) these coefficients bound linear combinations of plastic multipliers. If 
we would take IG  and rg  which means that each plastic modulus is treated as an independent 
design variable, then the second constraint in (26) would reduce to the inequality c . In those parts 
of optimum structure that undergo yielding this constraint must be satisfied as equality. Hence, 
assuming certain cost coefficients we in fact impose certain collapse mechanism on the optimum 
structure. It can be shown that this mechanism ensures uniform dissipation of energy over the 
structure.
Sizing is the case of explicitly formulated optimization problem. It is worth noting that the MP-
approach allows us to uncover also certain possibilities of optimization hidden in the problems 
formulated from the analysis point of view. A good example of that is the problem of rigid-perfectly 
plastic structure brought to the state of plastic collapse by purely kinematic loading. Let us split again 
the degrees of freedom of the discrete structural model into the parts denoted by the indices p  and w ,
as it was already done in the model (14), (15). Then the considered problem can be formulated in the 
following way: “given the structural layout and the distribution of plastic modulae 0k  find the state 

ws ,,  of the structure brought to the plastic collapse by a given kinematic load 0w ”2.

Table 6 shows the governing relations for this problem. They correspond to the following pair 
of dual LP-problems: 

}|{ 0wwwpp
T
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0,w,w
ww0,wCwCNk
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nim (27)

                                                
2 For structures made from the rigid-perfectly plastic material the kinematic unknowns w,  should be replaced 
by their rates w, .

Table 6. Governing relations for kinematically induced plastic collapse.

pw ww s r 1

L 0 0 0 TN 0 0k 0

pwL 0 0 0 T
pC 0 0 0

wwL 0 0 0 T
wC I 0 0

sL N
pC wC 0 0 0 0

rL 0 0 I 0 0 0w 0

0 , 0LT

},|{ 0rsC0sC,ksNrw T
p

T
p0

TT
0

rs,
xam (28)

The kinematic principle (27) says us that the collapse mechanism w,  corresponds to the minimum 
dissipated power TkD . According to the static principle (28), the stresses s  and the reactions r
at the plastic collapse correspond to the maximum power of reactions done on the prescribed displace-
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ment rates 0w . Note that if the kinematic loading would be introduced in unilateral manner, which 
means replacing the last constraint in (27) by 0w ww , then the reactions would become sign con-
strained: 0r .
A. yras and his co-workers looked at the problem (28) from different perspective. They treated p  as 
unknown loading and introduced linear quality measure of load pdT

0f . Here nR0d  is a given 
column matrix of weight factors. Then the following load optimization problem was formulated: 
“given the structural layout and the distribution of plastic modulae 0k  find the ultimate load p  that 
has the highest quality index f ”. Obviously, the dual problem revealed that the entries of 0d  should 
be treated as prescribed displacement rates.  

Approaching the problem from the kinematic side seems to be more natural. The implicit 
optimization of reaction forces that comes out via duality is probably more interesting in the 
continuum formulation. It can be shown then that by prescribing displacement rates on a part of the 
surface of the rigid-perfectly plastic body we obtain the distribution of surface tractions optimal in a 
certain sense (Borkowski, 2004). 

5. Final Remarks 

Computational complexity of MP-problems depends heavily upon their degree of non-linearity. It is 
quite easy to solve large LP-problems. Several simplex codes available on the market are able to solve 
problems with hundreds of thousands of variables and/or constraints. These codes usually use some 
version of sparse-matrix technique in order to cope with large matrices. Interestingly enough, the 
simplex algorithm, discovered over 50 years ago, is still the best solver. 

QP-problems are more demanding and one can hardly expect to solve in reasonable time a 
problem with more than couple of hundreds variables and/or constraints. Despite huge effort spend on 
developing general purpose Non-Linear Programming solvers, the result is rather unsatisfactory. Most 
available codes work sufficiently well in the range of several tenths of variables and/or constraints. 

Structural analysis and optimization taking into account elastic properties of the material is not 
reducible to Linear Programming. On the other hand, the efficiency of QP- and NLP-solvers is far 
below the efficiency of modern solvers of the sets of linear algebraic equations. This explains why 
expectations that Mathematical Programming will replace Linear Algebra in the domain of computing 
were not met. 

On the other hand, the language of Mathematical Programming is excellent in teaching 
Structural Analysis and Structural Optimum Design. It discloses common background of the broad 
class of problems governed by geometrically linear kinematics, allows students to grasp the principal 
difference between bilaterally and unilaterally constrained problems, trains them in a good custom of 
looking at each problem from two perspectives – the kinematic one and the static one, simplifies 
checking of existence and uniqueness of solutions.  

Obviously, a prerequisite of teaching the MP-based approach to the theory of structures is the 
prior knowledge of the Mathematical Programming by the students. A class on this subject should be 
taught during the first or second year of undergraduate studies, as a supplement to courses on Linear 
Algebra and Differential Calculus. The knowledge acquired on the MP-theory could be exploited in 
teaching not only Structural Analysis and Structural Optimum Design but also in the classes on other 
aspects of Civil Engineering (e.g. road planning, cost optimization, construction planning, etc.). 
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