
A computer-automated design and optimization process for pile foundations with rigid concrete slabs 
is presented.  Optimality Criteria methodology is used to provide optimal pile designs.  A three-
dimensional optimization computer program has been developed that designs a foundation system 
with an optimal number of piles, geometric layout, pile orientation, batter, and size for a given 
structure subjected to multiple load cases.  The optimization procedure controls displacements while 
reducing the overall weight of the pile foundation design.  A new method for optimizing weightless 
variables, such as batter, was also created.  Thus, the challenges of optimizing variables that indirectly 
affect the weight of the pile foundation can still be designed to create weight savings.  In one example, 
the total volume of the steel piles is reduced from 61,920 in3 to 49,570 in3 by optimizing only the pile 
sizes.  Furthermore, the weight is reduced again by simultaneously optimizing each pile group’s size 
coupled with the weightless variable, batter. 

The purpose of this research is to create a computer-automated optimization process for large pile 
foundations.  The U.S. Army Corps of Engineers (USACE) designs large-scale locks and dams that 
can easily contain thousands of piles, costing millions of dollars.  The USACE currently uses pile 
analysis computer programs but none with optimal design.  Therefore, the process for reducing the 
number and size of the piles is very time-consuming and uncertain, involving the tedious process of 
manual design, computer analysis, and redesign.  This can easily take months and still result in a non-
optimal final design.  An automated computer optimization process would find an optimal design and 
take only minutes rather than months.  The designer only enters an initial design, load cases, soil 
conditions, and constraints while the program alters the many design variables to create an optimal 
foundation design. 

Work in pile foundation optimization was originally developed for the USACE by Hill in 1981, using 
a trial and error approach (Hill, 1981).  His method involved first optimizing the batter and then 
finding an optimal pile spacing.  The process finished by iteratively deleting the most and/or least 
stressed piles.  However, this method is not numerically based, and it does not simultaneously 
optimize all the pile variables, so a true optimum solution is never found.  Hoback and Truman used a 
numerical method to optimize pile designs of both rigid-slab foundations (Hoback et al., 1991) and 
flexible-slab foundations (Hoback et al., 1993).  Their method utilized an Optimality Criteria method 
employed earlier by Cheng and Truman for structural frames (Cheng et al., 1983).   

Optimality Criteria was chosen for this optimization for the following reasons: first, the Optimality 
Criteria method converges quickly with most examples converging in less than ten iterations.  Second, 
Hoback and Truman were able to simultaneously optimize pile size, layout, batter, orientation, and 
number while still controlling all stress, strain, or displacement constraints. 

objective function, whether the objective function to minimize is weight, volume of steel, or cost.  For 
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example, pile size directly affects the weight of a design.  However, some variables such as batter or 
geometric layout do not have direct effects on the weight of a design, but altering these weightless 
variables can clearly create large reductions in weight.  Thus, a novel approach to optimizing these 
weightless variables was developed.  Using a weightless scaling factor that acts as a pseudo-weight 
gradient, the Optimality Criteria method can still optimize these weightless variables.  The challenges 
in choosing an appropriate weightless scaling factor were overcome by creating a unique way of 
gradually decreasing the scaling factor from iteration to iteration, approaching a more optimal design.  

The Optimality Criteria method requires an objective function to be minimized.  Because the goal of 
this research is to minimize the cost of the pile foundation while still satisfying the constraints, the 
objective function is the total weight of the steel, WT, in the piles which is directly related to cost: 

where:  

An unconstrained minimum weight of Equation 2.1 does not exist.  Once displacement, stress, and/or 
strain constraints, hj, are introduced to the problem, the Lagrangian function, L, can be written as 

where:

and when the constraint is displacement, uj, with a maximum displacement in the jth direction of j,

A minimum of the Lagrangian will be located where the derivative with respect to each design 
variable, d, is equal to zero.  Thus, a pile foundation design can be a local minimum weight if all the 
constraints, hj  0, are satisfied and there exist j such that 

where:

It is important to note that the Lagrange multipliers, j, cannot be negative because negative j values 
would still allow the constraints to be satisfied while the weight of the piles increases.  Thus,  

i = Pile number 
n = Number of piles 

= Density of Steel 
Li = Length of element i 
Ai = Area of element i 

j = Constraint number 
m = Number of constraints 

j = Lagrange multiplier for constraint j 

d = Design variable (pile size, batter, etc.) 
i = Design variable number 
n = Number of design variables 

(2.1)

(2.2)

(2.4)

(2.5)

(2.3)

2. Optimality Criteria Method 
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If the optimality criteria, Ti, is less than one and the weight gradient, WT/ di, is positive, then the ith

variable can be decreased.  This is because the weight gradient is larger than the constraint gradient 
(the numerator), indicating a benefit in reducing the ith variable.  The opposite is true if the weight 

design toward a local minimum.  The recurrence formula is based on the expanded power law, and Ti

where:

The convergence control parameter, r, assures that the prediction of the design variable, di, for the next 
iteration does not go beyond the optimum.  A reasonable value for r is 2, but r > 1. 

Now, the only unknowns in the recurrence relation are the Lagrange multipliers, j.  The change in the 
active constraints will give us these values:  

Substituting Equation (2.7) for d and letting hj
k+1 go to zero as expected,  

Equation (2.9) to be reevaluated with the corresponding constraint removed and recalculated to get the 
remaining values.  If negative values still appear after recalculating, then this process will have to 
be repeated until all values are positive.  After substituting the remaining positive Lagrange multipliers 
into Equation (2.7), the new design variables can be calculated, and the process is repeated to further 
improve the design variables. 

Getting the partial derivative of the constraint with respect to the design variable, hj/ di, is rather 
simple when the constraint is displacement, uj, as in Equation (2.3).  Thus, with the goal to find 

uj/ di, begin with the pile stiffness equation,   

where:

k = Index of the iteration number 
r  = Convergence control parameter 

K = Global stiffness matrix (6x6) 
u = Displacement vector (6x1) 
P = Load vector (6x1) 

(2.6)

(2.7)

(2.8)

(2.10)

(2.9)

Equations (2.4) and (2.5) are the Kuhn-Tucker conditions (Kirsch, 1993).  Equation (2.4) is rewritten 

is used as the efficiency of each variable:  

to provide the optimality criteria:  

gradient is negative. Linear recurrence equations are used to change the design variables, pushing the 

gives m linear equations with m unknown  values.  Any negative Lagrange multipliers,  require 
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The global stiffness is calculated by transforming and summing the local stiffness of each individual 
pile at one global point where we want to know and control the displacements.  The local pile stiffness 
is calculated in the same manner used by the USACE and their rigid-pile analysis program, CPGA 
(CASE Task Group on Pile Foundations, 1983).  Taking the derivative with respect to the design 
variable, di, we get: 

and rearranging terms gives: 

As seen in Equation (2.1), the weight of the pile foundation is only governed by the length and area of 
the piles.  Thus, optimizing the size of the piles, and assuming an infinite selection of pile sizes, is 
rather straightforward because WT/ di = WT/ Ai = Li.  The weight gradient, located in the 
denominator of the optimality criteria, Equation (2.6), is non-zero.  However, for other design 
variables, such as batter (when the length is constant) or pile spacing, WT/ di = 0. 

Even though the weight gradient of these topological design variables is zero, they still have an 
indirect effect on the weight.  Unfortunately, this effect is immeasurable.  To solve this problem, 
Hoback and Truman created a new optimality criterion that can model the behavior of topological 
variables (Hoback et al., 1993).  First the optimality criteria for the weightless gradient is rewritten 
from Equation (2.4) with WT/ di = 0:

Because the efficiency is one when the design variable is optimal, the weightless optimality criteria 
from Equation (2.6) is rewritten as: 

The weightless scaling factor, w, replaces the weight gradient in the optimality criteria, effectively 
acting as a pseudo-weight gradient.  Because the weightless optimality criteria is formulated to 
approach one at optimum, Ti can still be used in the same recurrence relationship, Equation (2.7). 

The difficult step is finding an acceptable value for w.  Hoback’s method involved two steps.  First, he 
scaled w so that the coefficients of the weightless Lagrange multipliers, j, along the main diagonal of 
the linear equations were at least as large as the corresponding weighted coefficients.  The second step 
involved increasing w until an estimated weight change converged.  Although Hoback found this 
method successful, his work showed inconsistencies at finding a better, lower-weight design, and a 
new method has been developed. 

(2.11)

(2.12)

(3.1)

(3.2)

3. Optimization of Weightless Design Variables 

A.J. Hurd and K.Z. Truman656



After testing random optimization problems for the effects of the weightless scaling factor, w, on the 
optimization process, a pattern was discovered.  First, a single value for w would not work for several 
reasons.  If w is too large, the weightless variable would remain unchanged, for Ti will always be too 
close to one.  The final solution would still optimize the weighted variables, but the final weight would 
be less than optimal without the optimization of the weightless variables.  If w is too small, Ti will take 
on very large and very small values, throwing the weightless variable to their extremes, never reaching 
an optimum.  This creates a very unstable optimization process that may never converge to a single 
design.

Figure 3.1 shows the typical results of simultaneously optimizing weighted variables and weightless 
variables.  Weightless scaling factors of 1012, 108, 106, and 103 are each tried from the same initial 
design point.  When w = 1012, the weightless variables were untouched because w was too high, and 
when w = 103, the optimization became unstable, resulting in sudden large increases and decreases in 
weight.

Because several random examples displayed similar results as figure 3.1, a new method for 
determining w was created.  The weightless scaling factor, w, will begin at a very large value (such as 
1012 in figure 3.1).  Optimization will continue at that value of w until the weight converges (at 
iteration 4 in figure 3.1).  For the next iteration, the square root, or another appropriate reduction 

6

reduce the weightless scaling factor and further decreasing the overall weight of the pile foundation 
design.  Figure 3.1 shows how gradually decreasing w would result in a continuously decreasing 

12 to 106 to 103.  Eventually, the weightless scaling factor will 
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Figure 3.1. A typical optimization, including weightless variables, with different w values tested.  Note that 
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4. Example 

The following example illustrates the effortless weight reduction of a rigid-slab pile design, using the 
optimization methods described.  First, the program will be run, optimizing only the pile sizes.
Because pile size is a weighted variable, the optimization is rather straightforward since it does not 
require the use of the weightless scaling factor, w.  Second, the optimization will include both pile size 
and the weightless variable, batter (weightless because the length will be held constant).  For 
simplicity, all other variables will not be varied. 

The problem consists of a rigid slab foundation with 5-piles, arranged into 4 groups, as seen in figure 
4.1.  Group 1 initially has no batter but is only allowed to batter to the left while groups 2, 3, and 4 are 
battered to the right, initially at a value of 5.  The loading, constraints, and site conditions are listed in 
figure 4.1. 

From analysis of the initial design and the prescribed loading, the displacements are already rather 
close to the maximum displacements.  The lateral displacement is 0.46”, and the rotational 
displacement is 0.0015 rad., both just under the constraints of 0.5” and 0.002 rad., respectively.  The 
weight of the initial volume of steel in the five HP14x117 piles is 61,920 in3.  With the displacements 
this close to their maximums, it is difficult to find a significantly lighter design by hand. 

For this first optimization, only the pile sizes are optimized, keeping all other variables constant.  After 
only four iterations, the design converged, and the total volume of the piles reduced to 49,570 in3.
Even though the total weight of the piles decreased, the displacements remained under their 
constraints.  The lateral displacement is now 0.49” and the rotational displacement is 0.0020 rad.  The 
volume decrease is shown in Figure 4.2, and the original and optimized pile foundation design is 
compared in Table 4.1. 

CONSTRAINTS
LATERAL DISPLACEMENT CANNOT

EXCEED 0.5" (u1 < 0.5")
ROTATIONAL DISPLACEMENT CANNOT 

EXCEED 0.002 (u3 < .002)

INITIAL DESIGN
ALL PILES HP14x117
GROUP 1 BATTER = 100 (VERTICAL)
GROUP 2,3,4 BATTER = 5

CONSTANT CONDITIONS
Es = 0.019 KSI (CONSTANT W/ DEPTH)
SLAB IS RIGID
ALL PILES FIXED
PILE LENGTH = 30'
ALL PILES ORIENTED W/ WEAK AXIS 

RESISTING THE LATERAL FORCE
GROUP 1 PILES ARE BATTERED TO

THE LEFT
GROUPS 2, 3, & 4 ARE BATTERED TO

THE RIGHT

Figure 4.1. Example problem, showing constraints, initial design, and constant site and design conditions.

4.1 Optimization of a 2-D Pile Foundation, Optimizing Only Pile Size 

A.J. Hurd and K.Z. Truman658



Original Design Optimized Design 
HP14x117 HP14x117 
HP14x117 HP14x73 
HP14x117 HP14x89 
HP14x117 HP14x73 

0.46” 0.49” 
0.0015 rad. 0.0020 rad. 

Optimizing the batter involves using the weightless scaling factor when pile length is held constant.  
The initial design will be the optimized design from example 4.1.  From there the optimization is run, 
simultaneously optimizing pile size and batter.  The batter’s weightless scaling factor will begin at 
1024 and will decrease at iterations that have only a small change in weight.  The weight reduction is 
shown in the figure 4.3, and the corresponding weightless scaling factor, w, in each iteration can be 
seen in figure 4.4. 

The weightless scaling factor begins very high, and is reduced gradually by taking it to the 2/3 power 
when the weight reduction from the previous iteration is low.  Comparing Figures 4.3 and 4.4, w does 
not take on a weight reducing value until the fourth iteration (w  107).  This value proved to optimize 
batter while reducing the overall weight of the piles for several iterations.  Finally, as the weight began 
to converge near iteration 11, w was further reduced, but the optimization became unstable at iteration 
13.  As explained earlier, when w becomes too low, the changes in the weightless variable (batter in 
this case) become too large, creating an unstable optimization.  The final design, reached on iteration 
12, changed the batters only slightly but was able to significantly alter the pile sizes to find an overall 
lighter pile design.  The volume of steel was further reduced from 49,570 in3 to 46,580 in3.
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Figure 4.2. Convergence of optimization iterations. 

Total Volume of Piles 61,920 in 49,570 in  3 3

4.2 Introducing the Optimization of Batter 

Pile Size:             Group 1

Lateral Displacement
Rotational Displacement

Group 4
Group 3

Table 4.1. Original and Optimized Foundation Design

Group 2
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Original Design Optimized Design 
HP14x117 HP14x89 
HP14x73 HP14x73 
HP14x89 HP14x73 
HP14x73 HP14x117 

100 (Vertical) 86
5 5.3 

Group 3 5 4.8 
5 4.4 

0.49” 0.46” 
0.0020 rad. 0.0019 rad. 
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Figure 4.3. Convergence of optimization iterations after introducing the optimization of batter. 

Pile Size:             Group 1
Group 2
Group 3

Batter:                 Group 1
Group 4

Group 2

Rotational Displacement

Group 4
Lateral Displacement

Figure 4.4. Change in the weightless scaling factor, w, with each iteration. 

Table 4.2. Original and Optimized Foundation Design after simultaneously 

Iteration

Total Volume of Piles 49,570 in  46,580 in  33
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Optimality Criteria is an effective method at reducing the weight of steel in piles under rigid, concrete 
slabs.  The method has successfully reduced the weight of piles in many real-life problems, both 
simple and complicated.  Using weightless scaling factors provides a way to optimize zero-weight 
gradient variables such as batter or spacing.  By gradually reducing this factor exponentially when 
weight reductions become sufficiently small, a near-optimal final design can be reached.  However, it 
is important to note that the final design reached is only a local minimum, not a global minimum.  
Thus, the initial design plays an important role in determining the final pile layout.  Because of the 
ease of use of this optimality criteria program, varying the initial design and rerunning the program 
with the same loads and constraints can result in several low-weight final designs, allowing the 
engineer to choose between several near-optimal designs. 
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