
Abstract

This paper presents a consistent approach for the optimal seismic design of added viscous damping in 
framed structures. The approach presented is appropriate for use in elastic as well as yielding frames. 
The sum of added damping is chosen as the objective function and the performance of the structure, 
under the excitation of an ensemble of deterministic ground motion records, is constrained. The 
performance of the structure is measured by the maximal inter-story drifts in both the linear and 
nonlinear cases. The nonlinear case however, uses an additional performance measure of the 
normalized hysteretic energy of the plastic hinges  

Gradients of the performance measures are first derived to enable the use of an appropriate first order 
optimization scheme. Moreover, an efficient selection scheme enables the consideration of only a few 
records rather than the whole ensemble, hence making the optimization process efficient in terms of 
the computational effort. 

Introduction

The problem of seismic retrofitting of existing structures has gained much attention lately due to the 
new performance-based-design approach, which allows engineers to design structures for a desired 
level of seismic performance. Installation of viscous dampers is an effective means for this seismic 
retrofitting, hence, the problem of optimal design of these dampers is of paramount importance. This 
problem was tackled by several researchers with limited results for the particular class of regular 
buildings (see for example Zhang and Soong 1992; Inaudi et al. 1993; Gluck et al. 1996; Takewaki 
1997 to name only few). Since most existing buildings are irregular, available methodologies remain 
academic. 

For an efficient and computationally effective solution of the optimization problem of dynamic 
systems subjected to time varying loads, first order schemes that require constraints' gradients are 
preferred. Zero order optimization schemes, e.g. genetic algorithms, require a large number of function 
and constraints evaluations, that is to say time history analyses, making them less attractive to use. 

Several approaches for the gradient computation have been introduced in the literature. Hsieh and 
Arora (1985) derived the gradients of point-wise as well as integral type constraints for linear elastic 
systems by deriving the first variations of these constraints which depend on the variation on the 
displacements of the degrees of freedom. They further used a direct differentiation method of the 
equations of motion, and alternatively an adjoint variables method, to evaluate these variations on the 
displacements. Another approach for the gradient computation uses the finite difference method (see 
for example Falco et al., 2004). Here the derivative of the constraint with respect to each design 
variable is approximated by the forward or backward finite difference approximation. This method 
actually requires an additional analysis for each design variable. Conte et al. (2003) distinguished two 
methods for computing the response sensitivities considering plastic behavior of the structure. The 
first method uses the differentiation of the response equations with respect to each of the design 
variables, and then discretizes the resulting response sensitivity equations in time. The second method 
discretizes the response equations in time, and then differentiates the resulting discrete response 
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equations with respect to each of the design variables. It should be noted that both methods require an 
additional analysis for each design variable. 

The present research proposes a gradient based approach for the optimal design of viscous dampers for 
the seismic retrofitting of existing, regular as well as irregular, structures. This approach uses a first 
order optimization scheme whose success lies in the ability to derive the gradients of the constraints 
with respect to the damping coefficients of the dampers. Thus, the main effort in this paper is the 
gradient derivation of constraints in linear as well as nonlinear dynamic optimization problems under 
earthquake excitations. The relatively small computational effort associated with their evaluation using 
the proposed scheme makes these gradients highly desirable.  

Problem Formulation 

The formulation of the optimization problem is comprised of the total added damping as an objective 
function, and an inequality constraint on the upper bound of each of the local performance indices 
which are computed based on the behavior of the structure, i.e., satisfying the equations of motion of 
the damped structure. These constraints are repeated for each ground motion record. The damping 
coefficients which are the design variables are required to be nonnegative and are assigned an upper 
bound. 

Equations of motion 
The general equations of motion of a yielding structure, retrofitted by added damping, and excited by 
an earthquake can be given by: 
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where x = displacements vector of the degrees of freedom (DOFs); M = mass matrix; C = inherent 
damping matrix; dc = added damping vector; dd cC = supplemental damping matrix; 

K =secondary stiffness matrix; thf =hysteretic forces/moments vector in local coordinates of the 
plastic hinges with zero secondary stiffness; fxB =transformation matrix that transforms the restoring 
forces/moments from the local coordinates of the plastic hinges to the global coordinates of the DOFs; 
e = excitation direction matrix with zero/one entries; tga =ground motion acceleration vector, and a 
dot represents differentiation with respect to the time. 

Performance indices 
Normalized hysteretic energy: Following Uang and Bertero, (1990), hysteretic energy accumulated 
at the plastic hinge i, (a measure of the structural damage in yielding frames), normalized by an 
allowable value, is given by: 
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where ft = the final time of the excitation\computation; fih tE , =normalized hysteretic energy at the 

plastic hinge i at the time ft ; tf ih, =hysteretic force/moment in the plastic hinge i; tvi =velocity of 

the plastic hinge i, and all
ihE , =allowable value of the hysteretic energy at the plastic hinge i which is 
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where zD = operator that forms a diagonal matrix whose diagonal elements are the elements of a 
given vector z , and xfB =transformation matrix that transforms the velocities from the global 
coordinates of the DOFs to the local coordinates of the plastic hinges.  

Normalized maximal inter-story drifts can be written as: 

t
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where md =vector of normalized maximal inter-story drifts; alld = vector of allowable maximal inter-
story drifts; xH =transformation matrix that transforms the displacements from the global coordinates 
of the DOFs to the coordinates of inter-story drifts, and the “abs” stands for the absolute function as it 
acts on each of the vector components separately. 

Formal optimization problem  
The formal optimization problem may now be written as: 
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where 1 = unity vector, and maxd,c =upper bound on dc .

Optimization Scheme 
Gradient derivation 
The evaluation of the gradient of the objective function is trivial since this function depends on the 
design variables explicitly, and is given by 1c J

d
. The evaluation of the gradients of the 

constraints, however, is not an easy matter since the constraints depend on the design variables 
through differential equations. It is achieved indirectly by formulating the problem in state-space
notation and using optimal control theory.  

The optimization problem (Eq. 5) is reformulated in terms of a single constraint on maximal values as: 

usually taken proportional to the elastic energy at yielding of the plastic hinge. In matrix notation, the 
hysteretic energy in the plastic hinges as depicted by Eq. 2 can be written as: 
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where pi = performance index. 

A differentiable equivalent of the constraint: Before proceeding formally with the gradient 
formulation it is necessary, since use is made of variational approach, to replace the max function on t
in Eq. 6 by a differentiable function.  

Differentiable equivalent of md . It is proposed to use a norm of the p-type differentiable 

function as an equivalent to t
t

m xHdd x
all1absmax D .Thus, md  takes the form: 
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where p = a large positive even number. It follows that: 
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Differentiable equivalent of pi. The maximal component of a vector with non-negative 
entries, z , can be evaluated using a differentiable weighted average of the form: 
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where iw =weight of iz , and q = an index. When q is large, say q=p, and the components of z  are 

used as their own weights, i.e. ii zw , this weighted average approaches the value of the maximum 
component of z . Since fthE  and md  are normalized quantities pi can be written as 

mftpi dE ,max h  and reformulated Eq. 9 as: 
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Substituting Eq. 7 yields: 
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The state space formulation (a set of first order differential equations) of the optimization problem 
thus becomes: 
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 (12) 
where v = the velocity vector.  

Gradient derivation: Equation 12 has the general form of: 
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The augmented function is given by 
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Taking the first three variations as arbitrary results in the following three differential equations and 
boundary conditions to be satisfied:  
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The multiplier of the variation dc  will yield the expression for the evaluation of the gradient 
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yc . This expression becomes: 
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which is the desired gradient since 
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The gradient of the constraint in Eq. 12, can now be evaluated from: 
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and the following set of differential equations and boundary conditions: 
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Equations 23 return the equality constraints; Eqs. 21 and 22 give expressions for the evaluation of the 
Lagrange multipliers, x , v  and xmp  which are needed for the evaluation of Eq. 20. Now since 

the elements of d
T

d cC  are linear combinations of the elements of dc , the differentiation of 

d
T

d cC  with respect to id,c  (also needed in Eq. 20) is rather simple and easily programmed. The 
computation of the gradient for a single record is summarized as follows: 
Step 1: Solve the equations of motion (Eq. 23). 
Step 2: Solve the equations of the Lagrange multipliers (Eq. 21 with conditions for tf in Eq. 22). 
Step 3: Calculate the desired gradient (Eq. 20). 

Optimization scheme 
The gradients of the objective function and the constraints are needed at each iteration for first order 
optimization schemes. Thus the solution requires a time history analysis for each record (constraint) at 
every iteration cycle. In order to reduce the computational effort, optimization is first carried out for 
one “active” ground motion (loading condition), rather than for the whole ensemble. If the optimal 
solution for this ground motion violates other records in the ensemble, additional ground motions are 
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added one at a time (Stage 4 below). Following are the main steps in the methodology that are used for 
the optimization scheme.  

Step 1: Select the “active” ground motion. The record with the maximal displacement is selected to 
begin the process. It is evaluated from a SDOF with the 1st period of the undamped structure within the 
expected total damping ratio range. 
Step 2: Compute an initial starting value for the damping vector. The starting point is evaluated by 
first assuming a distribution of equal dampers for the damping vector. Then this damping vector is 
factored so as to satisfy 0.1pi  where pi  is computed from a time history analysis of the frame 
excited by the “active” ground motion of Step1.
Step 3: Solve the optimization problem for the active set of records. An appropriate gradient based 
optimization scheme is used. The gradients are evaluated as described above. If more than one record 
is “active”, say two, then the gradients are calculated separately for each record and the size of the 
problem doubles. 
Step 4: Feasibility check. A time history analysis is performed on the optimally damped structure for 
each of the remaining records in the ensemble, separately. One new ground motion is added to the 
active set only if its pi  is largest and greater than 1.0. Then Step 3 is repeated.
Step 5: Stop.

Linear Frames –A Particular Case 

A class of structures, usually regular, can be brought to behave elastically under an earthquake 
excitation, by the addition of a reasonable amount of added damping. In this case nonlinear analysis 
methodologies, which are computationally expensive, are not essential and some of the nonlinear 
performance indices, such as hysteretic energy, become meaningless. Since the optimization problem 
of linear structures is a particular case the same procedure presented earlier holds. Minor changes ease 
the computations. First, the equations of motion are reduced to their linear form by substituting 

KK  and 0f th  (or, equivalently, 0f0f ott hh ; ). Substituting these relations into Eqs. 
25 and 26 leads to simpler equations for the gradient computation as well.  Then, the constraint on the 
hysteretic energy will be omitted since no hysteretic energy dissipates in the elastic range. This leads 
to simpler equations for the gradient computation as well since 0E fth . Inter-story drifts remain 
the only constraints. In 3D structures the inter-story drifts of the peripheral frames are used. 

Fundamental Results

The optimal design of added damping in 2D frames, assuming linear behavior of the 
damped structure, and in 2D yielding frames is characterized by assigning damping 
only in stories that reached the allowable drift. 
The optimal design of added damping in 2D yielding shear frames is characterized by 
assigning damping only in stories that reached the allowable normalized hysteretic 
energy.
The optimal design of added damping of 3D framed structures is characterized by 
assigning damping at the peripheral frames only, where the peripheral drift has 
reached the allowable. 

These observations are strikingly analogous to the classical “fully-stressed-design” behavior of 
optimal trusses reported in the sixties. 

Conclusions 

A gradient based methodology for the optimal design of added viscous damping for an ensemble of 
realistic ground motion records with constraints on the maximum inter-story drifts for linear frames, 
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and additional constraints on maximum energy based local damage indices for nonlinear frames, was 
presented. This methodology is appropriate for use in linear, as well as nonlinear, frames. 

The computational effort is appreciably reduced by first using one “active” ground motion record 
since experience shows that one or two records dominate the design. 

The gradients of the constraints were derived so as to enable the use of an efficient first order 
optimization scheme for the solution of the optimization problem. The approach for the gradient 
derivation has several advantages over other approaches. It is appropriate for use when the equations 
of motion assume nonlinear plastic behavior as well, and it requires a relatively small computational 
effort, in the form of a single additional solution of a set of differential equations (that is, the equations 
for the Lagrange multipliers). 
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