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Abstract 

A methodology of enhanced computational efficiency is presented for continuum topology optimization 
of sparse structural systems. Such systems are characterized by the structural material occupying only a 
small fraction of the structure’s envelope volume. When modeled within a continuum mechanics and 
topology optimization framework such structures require models of very high refinement which is 
computationally very expensive.  The methodology presented herein to deal with this issue is based on the 
idea of starting with a relatively coarse mesh of low refinement and employing a sequence of meshes 
featuring progressively greater degrees of uniform refinement. One starts by solving for an initial 
approximation to the final material layout on the coarse mesh.  This design is then projected onto the next 
finer mesh in the sequence, and the material layout optimization process is continued.  The material 
layout design from the second mesh can then be projected onto the third mesh for additional refinement, 
and so forth.  The process terminates when an optimal design of sufficient sparsity, and sufficient mesh 
resolution is achieved.  Within the proposed methodology, additional computational efficiency is realized 
by using a design-dependent analysis problem reduction technique. As one proceeds toward sparse 
optimal designs, very large regions of the structural model will be devoid of any structural material and 
hence can be excluded from the structural analysis problem resulting in great computational efficiency.   
The validity and performance characteristics of the proposed methodology are demonstrated on three 
different problems, two involving design of sparse structures for buckling stability, and the third 
involving design of a hinge-free gripper compliant mechanism.    

 Introduction 

For nearly twenty years, beginning approximately with the work of Bendsøe and Kikuchi (1988), 
continuum structural topology optimization has been used to investigate optimal forms of structures and 
mechanical systems. During this time, myriad gains have been realized in understanding how different 
continuum topology formulations work in relation to an ever-widening circle of applications.  Although 
there are many exceptions, continuum structural topology optimization methods have for the most part 
been applied to the design of structures and mechanical systems in two-dimensions. One would hope that 
the methods can eventually be applied to design of structures and mechanical systems in three-dimensions 
with the same ease that they currently enjoy in two dimensions.  If this vision is to become reality, the 
potentially huge computational costs must be reduced to the extent possible while preserving the inherent 
generality and flexibility of continuum structural topology optimization.  In many design applications, the 
structural will be very sparse in that the volume of structural material will occupy only a small fraction of 
the structural system’s envelope volume.   In such cases, continuum structural topology optimization can 
require highly refined finite element meshes to achieve convergent and interpretable material layout 
solutions and models that realistically estimate system performances (i.e. overall compliance; buckling 
stability; vibrational eigenvalues; etc).  

One approach to achieving and dealing with fine meshes in continuum topology optimization [Maute 
et al. 1998] is to use adaptive mesh refinement to decrease the number of design variables and to seek 
smooth final topological forms. A similar approach is now extensively involved in finding optimal design 
forms using the evolutionary structural optimization method (ESO)(3). In another approach, researchers 
enforced design symmetry during the optimization process by reducing the design space(4)  by, or to 
remove the void nonstructural elements temporarily from the structural analysis, but reintroduce them if 
they needed (5,6). The latter approach has been shown to be very effective in dealing with problems 
involving geometrical nonlinearity. 
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The material usage constraint is another important factor and plays a considerable role in achieving 
low weight and certain performances when utilizing continuum topology optimization method. For 
example, most existing optimal large civil structures such as long span bridges are sparse in nature, where 
the real structural material occupies only a small percentage (less than 1%) of the structure’s envelope 
volume. Therefore, in utilizing continuum structural topology optimization to obtain optimal design forms 
for such systems, it is crucial to impose stringent material usage constraint and implement very fine 
meshes in order to capture a realistic performance for such systems. The importance of such an approach 
has been demonstrated in a previous work (6) where it proved to be very effective when designing 
structural systems for buckling instability.  Similarly, it has been shown in designing hinge-free compliant 
mechanisms to achieve considerable flexibility (7), the amount of structural material comprising the 
mechanism can be progressively reduced until the desired flexibility of the mechanism is achieved. It is 
also crucial toward this end to use stringent material usage constraint with very fine finite element meshes   

This article presents a methodology for solving large-size sparse systems in continuum structural 
topology design framework based on sequential refinement and size reduction strategy in a new way that 
is conceptually simple and theoretically sound. In sequential refinement, the proposed methodology 
solved a preliminary problem involving relatively coarse meshes and moderate material usage constraint. 
The resulting optimal form from this stage, which comprises the solid structural material, is then mapped 
onto a finer mesh and with realistic material usage constraint. The new problem is then solved where a 
new topological form is obtained. The mesh refinement process is repeated until the final design 
converges to a realistic shape and performance with minimum error.  

A size reduction strategy is implemented within each structural analysis, where the void nonstructural 
elements are removed temporarily from structural analysis but can come back quite easily and naturally if 
needed. The proposed size reduction technique has been tested on many linear and nonlinear systems 
involving geometrical nonlinearity and buckling instability and shown to be a very effective and powerful 
tool for reducing the computational costs, especially when dealing with sparse systems and very fine 
meshes.  

It should be noted here that the current methodology is based on interpolation of nodal design 
variables using nodal basis functions(8) as opposed to element-based design variables. Although node-
based design variables feature C0 continuity, they must generally be used with perimeter constraints to 
achieve design convergence with mesh refinement.   

Problem Formulations 

Structural Model and Material Layout Description 

The objective of continuum structural optimization is to find a layout of a structural material of specified 
properties in a defined spatial region that provides optimum structural performance.  In order that the 
widest possible class of structural layouts can be considered, the methods in question must accommodate 
such generality.  In this work, the spatial region that the candidate structural models can occupy is 
denoted s.  To facilitate both description of the structural material layout in s and analysis of the 
performance associated with each layout considered, the domain is discretized into a relatively fine mesh 
of nodes and finite elements.   

It is desired that at the end of the form-finding process, the structural region s will be decomposed 
into a collection of regions cumulatively denoted A that contain the structural material in question, and 
the remaining regions B = s \ A that are devoid of structural material.  Since solution of the form-
finding problem in this way is ill-posed, an alternative relaxed approach is usually employed, wherein it is 
assumed that an amorphous “mixture” of structural material A and a void material B exists throughout the 
structural region s.    In each region of s, the nature of the mixture is characterized by a local 
volumetric density A of structural material A.  By permitting mixtures, the structural material A  and a 
fictitious void material B  are allowed to simultaneously occupy an infinitesimal neighborhood about 
each Lagrangian point sX . The volumetric density of structural material A  at a fixed Lagrangian 
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Clearly, when 1XA
 the point X contains solid structural material, and when 0XA

 the point X is 

devoid of structural material.  The last physical constraint of  (1) states that the material volume fractions 
at X are not independent and so one need only be concerned with the layout of structural material A .  The 
design of a structure is here considered to be the spatial distribution of the structural material A in s.   

To describe the distribution of material A throughout s using a finite number of design parameters, 
the volumetric density at each of the NUMNP nodal point forms a set of NUMNP design variables.   

point sX  is denoted by XA
 and represents the fraction of an infinitesimal region surrounding point 

X occupied by material A . Natural constraints upon the volumetric densities are:  

These are then interpolated over the space of all intermediate points in the structure using the nodal shape
functions:    

sii XXX        )(Nb)(
NUMNP

1i
      (2) 

where bi are the nodal volumetric density values associated with the structural material; and Ni(X) are the
nodal shape functions. This approach yields a C0 continuous design variable field that is not susceptible to
“checkerboarding” instabilities. 

Given the finite element model of the structural region s, the structural loads and restraints (or 
supports) on this region are specified as the set of design loads.  For each set of design loadings, and for 
each realization of the design vector NUMNPb,,b,b 21b , the response performance of the structure 
will be analyzed as a boundary value problem.  From the computed response of the structure, the
performance of the structure will be quantified, as will be the sensitivity of the performance to variations
in the design variables.   

Constitutive Mixing Rules 

In the proposed design framework, each finite element comprising the spatial domain s of the structure
will generally contain a spatially varying mixture of the structural and void materials. It is necessary to
prescribe the stiffness (or elastic moduli) of such mixtures in terms of the stiffness characteristics of the
solid material solidC , those of the fictitious void material voidC , and the local volumetric density of the
structural material (X).  Here, the well-known powerlaw formula (Bendsøe and Sigmund 1999) is used
to accomplish this task, providing the local effective stiffness of the mixture C* as: 

                    
void

p
solid

p )1(* CCC                                                                          (3) 

where typically the mixing rule parameter 4,1p .  With p=1, the Voigt rule of mixtures is obtained
which does not penalize mixtures, but which does yield a convex formulation for compliance
minimization problems (Swan and Kosaka, 1997) so that only one solution exists for the design problem.
With p=4, mixtures are penalized in the final design, so that regions of s tend to be either solid or void, 
but the optimization problem is not convex, and will admit a number of solutions that satisfy the first 
order optimality conditions.   

Structural Analysis 

For each design, a structural analysis problem is solved on the continuum domain s.  In general terms,
the structural analysis problem solved for each realization of the design vector b is the following:  Find
the displacement field u(X) s

3 such that the variational equilibrium problem is solved: 

sss d   d d :
s ss

uguh        (4) 
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where (X) is the local stress field in the structure; h is a traction vector consistent with the design loads 
being applied to the structure;  (X) is the local mass density of the structural material; g is the 
gravitational body force vector; u is a kinematically admissible variational displacement field; and  is 
the corresponding variational strain field.   In the structural model, the material features linear elastic 
behavior such that C :*  where the effective elasticity tensor is design dependent and prescribed in 
accordance with Eq. (3).  The matrix problem associated with variational equilibrium of the discrete finite 
element structural model, for which ii iN uXXu  )()( , is 

extintext  fffuK0         (5)

where: 
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In all of the above, N denote the nodal shape functions and B denote the standard strain-displacement 
matrices [c.f. Bathe, 1996].  The structural stiffness matrix K is positive definite due to the characteristics 
of the effective elasticity tensor C*, and this guarantees a unique solution to the structural analysis 
problem for each realization of the design b.

Once the equilibrium solution to the problem of Eq. (5) is obtained, then the linearized geometrical 
stiffness matrix G can be computed based on the stress field  in the structure: 

s

sjk
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n
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jk dNNG   mn,,

        (7) 

It is worth noting that G is not necessarily positive definite but rather depends heavily upon the nature of 
the stress field in the structure.  A purely tensile stress field clearly makes G positive definite, although 
for any compressive stresses, G will not be positive definite.   

Structural Performance Measures 

As noted previously, structural topology design problems can be formulated in a number of alternative 
ways through utilization of assorted objective and constraint functions. Generally, the objective function 
measures the performance of the structure, and the constraint function limits the amount of structural 
material that can be used, although the roles can be reversed equally well. The significant aspects of using 
CSTO to design large-scale sparse structures can be demonstrated here using the linear elastic structural 
compliance performance measure and the critical load buckling factor. 

Linear Elastic Structural Compliance  

If a structure features a linear elastic response behavior, the resulting displacement field u in response to a 
set of applied external loads extf will be simply ext1 fKu where K  represents the stiffness matrix of 
the structure. For a given set of loads, the compliance ( )b  of the structure is simply 

          ufb ext

2
1)(  .                                                                                        (8) 

Structural concept designs b that are stiff with respect to the applied loads will have small compliance 
( )b , whereas structures that are not stiff with respect to the applied loads will have large compliance. To 

facilitate usage of gradient-based optimization solution techniques, it is necessary to compute the design 
derivatives of the compliance function.  It can be shown that the design gradient of structural compliance 
is provided by the following expression: 
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Linearized Buckling Performance Measure 

Linearized buckling eigenvalue analysis proceeds as follows: A prescribed force loading fext is applied to 
the structure with its magnitude necessarily being less than that required to induce geometric instability in 
the structure.  Once the resulting linear, elastostatic displacement solution { } N

iuu R  in response to 
the applied loading extf  is obtained texfuK , where K is the linearized stiffness matrix, then the 
following eigenvalue problem is solved   

    0buGbK ),()(                                                                                                (10) 

In the preceding, M
e R}{bb  is again the vector of design variables; K  is the tangent stiffness 

operator; ),( buG is the linearized geometric stiffness matrix; GK /  is an eigenvalue 
denoting the magnitude by which fext must be scaled to create instability in the structure, and  is a 
normalized eigenvector satisfying 1K .  To avoid numerical difficulties in the solution of (10) 
stemming from the indefinite characteristics of G , it is common (Bathe 1996) to solve a modified 
eigenvalue problem that deals with two positive definite matrices. 

    0KGK                                                                                                               (11) 

where 

1
1    1 .                                         (12) 

In Eq. (11), the matrix K is positive definite irrespective of the loading applied to the structure, whereas 
the matrix (K+G) will only be positive definite when the magnitude of the loading applied to the 
structural model is less than the critical magnitude that creates instability in accordance with linearized 
buckling theory.  

The design problem is formulated to maximize the calculated minimum-buckling load factor ( ), and 
accordingly the objective function 

Ef  to be minimized for this problem would simply be the reciprocal of 
the lowest eigenvalue  as follows. 

)min(
1),( buEf                                                                                                          (13) 

The optimization problem is thus stated to minimize the reciprocal of the first (or minimum) critical 
buckling load as follows 

    
K
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ububub
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,
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subject to the normal bound constraints on the design variables (1), the linear structural equilibrium state 
equation (5), and a constraint on material resources.  

The design gradient of the objective function can be expressed as: 

         
b
u

ubb
EEE fff

d
d                                                                                               (15) 

To avoid explicit computation of the term b
u , adjoint design sensitivity analysis is employed by 

augmenting the objective function fE with the equilibrium state equation as follows 

rua
Ef          (16) 
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The last term of Eq. (17) vanishes due to satisfaction of the equilibrium constraint (r=0), and the second 
term can be made to vanish by selecting the adjoint displacement vector to solve the following linear 
adjoint equality statement 

u
GuK a .                                                                    (18) 

Since it can be shown that 
bb d

d
d

d Ef , it follows that the design gradient expression for the objective 

function is 
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d
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The preceding expression is valid only when the minimum eigenvalue is a simple, or non-repeated, 
eigenvalue.  When the minimum eigenvalue is nonsimple, or repeated, the variation of the eigenvalue in 
design space is non-smooth, and direct usage of the expression in Eq. (19) is technically incorrect (Choi et 
al 1983; Seyranian et al 1994). Resolution of this issue is nontrivial, although it can be ameliorated 
somewhat by using small and variable move limits in the design optimization process.  Despite this 
challenge, designs that successfully maximize the buckling stability of a structural system can 
nevertheless be obtained. Further details on formulation and solution of stability design problems using 
linearized buckling theory are provided in Rahmatalla and Swan(10).

Analysis Problem Size Reduction Technique 

In continuum topology optimization of sparse structures with limited structural material usage and 
realistically large design loads, geometrical instabilities become a definite possibility. If modeled, 
geometrical instabilities in structural systems can result in finite deformations. The modeling of finite 
deformations in mixed solid-void grid-like meshes used in continuum structural topology optimization 
can result in excessive distortion of void or low-density elements that can in turn lead to numerical 
difficulties solving the structural analysis problem.   Since the optimization process in continuum 
topology optimization typically removes structural material from low stress, or low-sensitivity areas, 
fairly substantial regions of low-density elements are common. As these elements are highly compliant, 
they contribute very little to structural stability, while being subject to excessive deformation that creates 
numerical difficulties.  Therefore, it is sometimes advantageous to identify these large regions of void and 
low-density elements and to remove them, at least temporarily, from the structural analysis problem.  An 
automated algorithm for identifying such regions and removing them from the structural analysis problem 
is presented and discussed below. It is worth noting that the procedure proposed and investigated here is 
reversible in that it permits low-density regions of the structure to return as high-density structural regions 
even after they have previously been removed from consideration during structural analysis.      

The essence of the proposed analysis problem reduction technique can be captured in the three steps 
listed below: 

where au  is the adjoint displacement vector which functions as a matrix of Lagrange multipliers and 
determined by the solution of a linear adjoint problem.  The design derivative of the augmented 
Lagrangian is then written as follows:  

b
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1. All finite elements in the structural analysis model that are devoid of solid material, or nearly so, are 
identified as “void” elements.  (Typically, in the examples presented below, if an element’s volume 
fraction of solid material is less than or equal to .002, it is identified as “void”.) 
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2. All nodes that are members only of “void” elements are identified as “prime” nodes.  The degrees of 
freedom of such “prime” nodes are restrained, reducing the size of the analysis problem. 

3. If only “prime” nodes comprise an element, that element is then denoted as a “prime” element.  Such 
“prime” elements are then neglected in the structural analysis problem so that if they undergo 
excessive distortion it does not create any singularities in the system of finite element equations.  It is 
worth noting, that “prime” elements are those that are surrounded by “void” elements. 

A graphical description supporting the explanation of this technique for reducing the analysis problem is 
presented in Figure 1. 

The matter of reducing the analysis problem by neglecting significant regions of void elements has 
been addressed in preceding works (9,10).  The current reduction techniques have proven to be both robust 
and efficient in all of the example problems presented in the section below.  The techniques are especially 
powerful and effective when applied in design problems involving extremely sparse structures, since 
highly refined meshes are needed when very stringent material resource constraints are imposed.  When a 
fine mesh is employed with a very limited amount of structural material, the proposed reduction 
techniques will allow for dramatic savings in computing effort. 

Examples 

The validity of the proposed methodology is demonstrated in this article on three problems,where the first 
two are benchmark linear stability design problems with extreme sparsity and the third involves design of 

Figure 1.  Schematic of partial mesh to illustrate 
analysis problem reduction technique.  Nodes 
having vanishing design variable values are 
denoted with open circles; filled circles denote 
nodes associated with nonzero design values; 
nodes represented by open circles with X’s are 
“prime” nodes whose degrees of freedom are 
restrained in the size reduction method.  Elements 
designated with “S” are at least partially solid and 
those with “V” are devoid of material.  Those 
designated with “P” are prime and need not be 
considered during structural analysis since all of 
their degrees of freedom are restrained. 

a very sparse, hinge-free gripper compliant mechanism.   In all problems presented, the void material is 
assumed to have a stiffness equal to that of structural material scaled down by a factor of 10-6.

Stability Design of Sparse Structure under Fixed-Fixed End Conditions 

In this problem, a point load is applied to the top central portion of a structural region with fixed supports 
at both lateral edges of the domain.  A sparse, stable structural design is sought that carries the applied 
load back to the supports.  This problem is solved here by optimizing the material layout such that the 
minimum buckling eigenvalue is maximized.  Details on the formulation of such problems were presented 
in references 6 and 8.  The problem has also been solved using different formulations and objective 
functions by Buhl et al  (2000) and Gea and Luo (2001). In this specific example (Figure 2a), a point load 
of magnitude 1.0·105 is applied to the domain as shown which has relative dimensions of 100 by 50.  The 
optimization problem is solved to find the constrained material layout under the applied loading that 
maximizes the minimum buckling eigenvalue (see Eq. 14).   
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Fig. 2.  Stability design of sparse structure for fixed-fixed end conditions.  a) shows 
the design domain, support conditions, and loading; b) design obtained on a mesh of 
100 x 50 bilinear elements with material usage constraint of 0.10; b) preceding design 
mapped onto mesh of 200 x 100 elements and further optimized while imposing a 
tightened material usage constraint of 0.05, and a perimeter constraint of 5000; d) 
preceding design mapped onto mesh of 400 x 200 elements and further optimized 
with material usage constraint of 0.03 and perimeter constraint of 3750. 

The material layout optimization problem was first solved on a relatively coarse mesh of 100 by 50 
bilinear quadrilateral continuum elements.  The material layout shown in Figure 2b was obtained from a 
starting “design” of structural material completely occupying the entire the structural region, followed by 
imposition of a constraint on structural material: domainmaterial VV 20.0  where domainV  represents the volume 
of the 100 by 50 structural domain.  The design solution shown was obtained using a powerlaw parameter 
[p=1.75].  The material layout in Fig. 2b is both heavy and somewhat difficult to interpret.  Consequently, 
the design shown was then projected onto a uniformly refined mesh of 200 by 100 bilinear continuum 
elements.  With this refine mesh, a reduced material usage constraint of domainmaterial VV 080.0  was 
imposed in addition to a perimeter constraint  hlP 2

1  where l  and h  are the lateral and vertical 
dimensions of the structural region in Fig. 2a.  The material layout was then optimized on the refined 
mesh for 100 SLP (sequential linear programming) iterations with the result being as shown in Fig. 2c.  
To obtain a very clear, yet sparse, structural design, the design of Fig. 2c. was then mapped onto a mesh 
of 400 by 200 bilinear continuum elements.  The material usage constraint was tightened to 

domainmaterial VV 030.0 , and a mixing rule powerlaw parameter of [p=4] was employed along with a 
tightened perimeter constraint hlP 3

1 .  The final, optimal material layout design achieved is as shown 
in Fig. 2d.  This final design shown in Fig. 2d. is similar those obtained in the previous study by the 
authors using this same problem(6).

Circular Domain Stability Design Problem 

In this second test problem, the circle domain test problem introduced previously by the authors
(Rahmatalla and Swan, 2003, 2004) is revisited.  A downward acting point-load of magnitude 1.0·109 is 
applied at the center-node of the circular structural domain of radius R=50.  In Fig. 3a, the coarsest mesh 
features 896 bilinear elements; the next mesh (3c) features 3584 elements; that of (3e) features 14,336 
elements; and the finest (3g) features 57,344 elements.  The design objective is to find the optimal form of 
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Size reduction was essential to these computations.  As the refinement process utilized finer and finer 
meshes, the analysis problem size remained very modest in size.  For example, even on the finest mesh of 
57,344 elements, the reduced problem size involved only 4,464 degrees of freedom, and the actual 

structure that carries the design from the center back to the fixed boundaries.  The design problem was 
first solved on the coarse mesh of 896 elements with a powerlaw value [p=1.75] and a material usage 
constraint Vmaterial/Vstructure  0.20 and the resulting design is shown in Fig. 3b.  This design was then 
mapped onto the mesh of Fig.3c and the layout optimization continued with [p=2.5] with a tightened 
material usage constraint of Vmaterial/Vstructure  0.05.  The resulting design (Fig. 3d) was then projected 
onto the mesh of (Fig. 3e), and the optimization process continued with [p=4.0] and an even tighter 
material usage constraint of Vmaterial/Vstructure  0.015.  The design obtained from Fig. 3f. was projected 
onto the finest mesh and further optimized with the same powerlaw value and material usage constraint.  
The buckling eigenvalue on the finest mesh and the material layout are in close agreement with those 
from the previous mesh, and in this sense have converged. 

structural and eigenvalue analysis were performed on an HP J-class workstation in less than 10 cpu-
seconds. 

Sparse Compliant Mechanism Design Problem 

In this final example, the importance of the proposed methodology is explored by considering the design 
of hinge-free gripper mechanism (7). The design domain for this problem is shown in Fig. 4a.  When a 
horizontal force is applied at the input port, the opposing output ports move vertically to pinch and thus 
grip a workpiece. The mechanism is designed with aluminum.  In the first stage, the mechanism is 
designed utilizing a quadrilateral bilinear mesh of 5,000 elements and a material usage constraint of 12%. 
The resulting topology depicted in Fig.4b looks reasonable with no hinges in the resulting design; yet, 
such design is very stiff and very hard to use. Accordingly, a better design with higher flexibility can be 
achieved by using less material usage constraint; in this case, the material usage constraint is set at 3%. In 
order to capture a realistic performance with such a sparse system, the resulting topology is mapped onto 
a finer mesh of 22,500 elements and the resulting topology is shown in Fig.4c. In spite of this relatively 
fine mesh, it is still not capable of handling such a sparse system; therefore, it is very important to use a 
finer mesh. Thus, the resulting topology is then mapped onto a mesh of 90,000 elements, and the material 
usage constraint is kept at the same level of 3%; the resulting topology is shown in Fig. 4d. While this 

Figure 3.  a) coarsest mesh of 896 elements; b) design with Vmat/Vstructure =0.20 and 
=2.17·103; c) mesh with 3,584 elements; d) material layout design with Vmat/Vstructure =0.05 

and =1.20·102; e) mesh with 14,336 elements; f) material layout design with Vmat/Vstructure

=0.015 and =1.00·101; g) mesh with 57,344 elements; h) material layout design with 
Vmat/Vstructure =0.015 and =1.05·101;
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resulting topology looks much better and clearer than the previous one, more refinement is still needed in 
order to achieve a final design.  

Summary 

In this work, a new methodology is introduced to solve large-size sparse systems in continuum topology 
optimization framework with relatively very low computational costs. The validity and performance of 
the proposed methodology has been demonstrated here in two examples involving linear and compliant 
mechanism design problems; however, the methodology has been successfully tested on numerous 
problems involving geometrical nonlinearity and buckling stability.  
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