
DAMAGE DETECTION USING STATIC RESPONSE DATA AND OPTIMALITY
CRITERION 

Introduction
Damage of a structure is caused by many factors, some of which include earthquakes, 

wind, snow, increased live loads and simply the age of a structure in the form of fatigue or 

continuous degradation of the structure, ultimately leading to a catastrophic failure of the system. 
Traditional methods of detecting this damage are invasive and often require partial destruction of 
non-structural elements, such as wall panels and finish work. This detection process is executed 
blindly with little a priori knowledge of the possible location or extent of damage. Furthermore, 
damage often is not detected until it becomes so extensive that it is visible by building occupants. 
Structural health monitoring is employed to avoid unnecessary demolition through accurate 
prediction of damage location. 

Background
Even though the area of structural health monitoring has been studied extensively in 

recent years, the majority of research and implementation has been based on damage detection 
using dynamic properties of the system. Using changes in vibration characteristics of a structure, 
damage may be detected and located (Salawu 1997). These vibrational characteristics are 
dependent on several system parameters such as; mass, stiffness, and damping, all of which 
require time and effort to obtain. Dynamic structural health monitoring has yielded significant 
results and therefore extensive research is justified, however requiring multiple system 
parameters creates inherent challenges in dynamic analysis. Because of the difficulties associated 
with dynamic analysis, a process using static properties merits exploration. Several methods have 
been developed using static responses to detect damage. Some methods combine both static and 
dynamic responses in order to locate damage. One such method predicts the location of damage 
by attempting to correlate expected and actual damage signs using first-order approximations for 
changes in static displacements and natural frequencies. Next a separate routine is used to 
determine the extent of damage at the predicted location (Wang et al.,2001). Although the results 
of such a procedure have been shown to be accurate for a planar truss and fixed-fixed beam, the 
effectiveness of the procedure for more complicated structures is not well known. Still other 
methods have been explored using solely static data. Such methods have investigated the 
correlation between measured displacements at various degrees of freedom and applied forces at 
other degrees of freedom in order to assemble the stiffness matrix of the system (Sanayei et al. 
1991). Approximation techniques can then be used to obtain unknown displacement values. Such 
methods have accurately located and quantified damage for 2-D truss and beam element frames. 
A similar technique has been developed using unconstrained nonlinear optimization (Johnson et 
al. 2004). Displacements are incorporated into an error function which is dependent on only the 
cross sectional properties of each structural member. This method successfully detected damage 
in continuous beams and multi-bay, multi-story frames. Again, the effectiveness of this method is 
not known for other structural systems. The current theory will also present a method of detecting 
and quantifying damage using only static measurements in order to assemble the stiffness matrix 
of the structure. Once the damaged stiffness matrix is known, comparison with the healthy 
stiffness matrix can locate and quantify damage using the cross sectional properties of each 
structural element. 
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Theory

Damage Detection 
In order for a damage detection procedure to be practical to implement it must use easy to 

obtain information. Static response data, i.e. displacements resulting from static loads, can be 
obtained using electronic distance meters and can even be automated. Therefore it seems natural 
that static response data can serve well as a basis for a damage detection procedure. The 
measured displacements are a function of the loads applied to the structure and also the stiffness 
matrix of the structure. Damage must be quantified using the variables obtained from static 
response data. 

What is damage? 
Structural damage is usually associated with the inability of a structure to support loads. 

As a result, large displacements occur that normally would have been minimal. It is natural to 
associate the increased displacements of a structure with a decrease in overall stiffness. Therefore 
damage is defined as a reduction in stiffness of a structure. For this reason, the change in 
structural properties that comprise the stiffness matrix must be used as a measure for the location 
and severity of damage. 

Structural Elements 
The problem presented in this paper utilizes bending elements to construct the two 

dimensional frame structures. The stiffness matrix of a bending element is of the form: 
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By utilizing bending elements, the stiffness matrix is dependent on only the length, modulus of 
elasticity, and moment of inertia of each element. In reality the length of each element can be 
determined either from structural drawings or direct measurement of each member and the 
modulus of elasticity can be taken as the industry standard. Therefore, these values can be 
considered constant for both the healthy and damaged element. On the other hand, the moment of 
inertia of each element can change between the healthy and damaged member. By assembling the 
global stiffness matrix of the damaged structure and extracting the moment of inertia values, 
comparison with the healthy stiffness matrix values allows damage to be located and quantified. 

Frame Assembly 
A typical one-bay, one-story frame comprised of 3 bending elements is shown in 

Figure1(a). As shown, the frame has 3 degrees of freedom (DOF), two rotations and one lateral 
displacement. The damage detection procedure will require loads be applied at a subset of DOF 
and displacement measurements be taken at another subset of DOF. Although mathematically 
feasible, practical applications prevent concentrated moments be applied to a structure and 
additionally rotational displacements can be difficult to measure. Therefore, the frame shown in 
Figure1(a) is not a good model to use in actual damage detection routines. As a solution, rather 

Eq(1)
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than using a single bending element to connect each column span, two elements are used. This 
modification creates two additional degrees of freedom at the joint between each element, as 
shown in Figure1(b). As can be seen, now a vertical degree of freedom exists where loads can be 
applied and displacements can be measured. To reiterate, the additional DOF are not required for 
the mathematical formulation, but it does create a damage detection procedure that is more 
suitable to conversion to actual practice as it is less difficult to obtain vertical displacements than 
it is to obtain rotational displacements. 

Why use optimization? 
As stated, the structures being considered in this paper are formed using bending 

elements, whose stiffness is a function of the moment of inertia of each structural member. 
Resulting is an engineering design problem with two main variables; a set of design variables 
(moment of inertia values) and a set of analysis values (measured displacements). Unfortunately, 
without an entire set of measured displacements at all DOF, there is not enough information to 
determine the design variables directly from the analysis values. As such, an optimization 
algorithm must be utilized to determine all unknown design variables. This can be accomplished 
by using constrained nonlinear optimization. 

Fundamental to the optimization process is the force displacement relationship, 

KuP ,

where P is the static load vector applied to the structure, K is the global stiffness matrix, and u is 
the displacement vector of the structure. With knowledge of the healthy stiffness matrix of a 
structure, a set of displacements for all DOF can be calculated for any set of applied static loads. 
Next, by applying the same static loads to the present, damaged structure and measuring strategic 
displacements, insight can be gained as to which structural elements have reduced in stiffness. A 
general explanation of the optimization routine to gain this insight will be explained next. 

Optimization
Because the moment of inertia of a damaged member can take on any positive real value, 

the structure contains continuous design variables and, in turn, can be formulated to have 
continuous constraint and objective functions. This engineering problem lends itself well to 
gradient-based optimization. Several gradient based optimization procedures have been 
developed over the years, but most follow a similar form. The typical constrained optimization 
problem has the form: 
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Figure 1(a,b). One-bay, One-story Frame Comprised of Bending Elements
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The classical approach to solving constrained optimization is the method of Lagrange multipliers. 
This approach converts the constrained optimization problem into an unconstrained problem 
(Kirsch 1993). The objective function and constraint equations can be used to create another 
scalar valued function, known as the Lagrangian, which takes the form: 
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where,
j = lagrange multiplier for the jth constraint 

By giving a set of necessary conditions to identify optimal points of equality constrained 
problems, each stationary point found by the optimization routine can be guaranteed to be a local 
minimum. These conditions, known as the Karush-Kuhn-Tucker conditions are as follows: 
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The aforementioned conditions provide a powerful means to verify solutions. Next, the gradient 
of each constraint equation can be written as: 

n

i
i

i

j
jj x

dx
dg

xgxxg
1

)()(

Note, Eq(5) and Eq(6) provide sufficient equations to solve for all lagrange multipliers. 

Side Constraints 
A useful concept in constrained optimization is the idea of side constraints. As an 

example, although mathematically feasible, a negative moment of inertia for a structural element 
is physically meaningless. As a result, the current problem must contain a subroutine within the 
optimization process that prevents design variables from taking on negative values. Side 
constraints restrict the range of values that each design variable can assume. Each iteration of the 
optimization process can check as to whether a design variable has left the feasible range. When 
such an event occurs, the algorithm can repeat the current iteration but artificially set the design 
variable to the maximum or minimum of the feasible range. In turn, the algorithm can adjust the 
gradient calculations to reflect the restriction on the design variable and the remaining design 
variables in the feasible range will change accordingly (Cheng et al.). An optimal solution can 
then be found with each design variable remaining within the feasible range. 

Linking
Just as it may be desirable to restrict design variables to a certain range of values, it may 

also be desirable to force several design variables to take on the same value for every iteration of 
the optimization process. This is accomplished through linking. For example, the current 
formulation uses two bending elements to span a single bay. Although two elements are used, in 
reality this bay would be spanned by a single beam. In turn, the two separate elements should be 
forced to take on the same design value. Again, within the optimization algorithm it is possible to 
represent multiple design variables with a single variable yet still account for the change in both 
structural elements within the gradient calculations (Cheng et al.). Although both beam elements 
can be represented by a single variable, the change in cross sectional properties of each element 
must be accounted for as they both have an effect on the convergence to a local minimum of the 
objective function subject to the constraint equations. 

Eq(4)

Eq(5)

Eq(6)
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Scale factor 
 To aid convergence of the optimization algorithm, it is beneficial to include a scale factor 
that will automatically scale all design variables to produce a structure that will satisfy at least 
one constraint equation exactly. To illustrate, the current problem will use displacement 
measurements as constraints. At the beginning of each iteration, the displacements will be 
calculated using the same load cases used to produce the measured displacements for the 
damaged structure. The most violated displacement will be used as the basis for the scale factor. 
For example, say at the beginning of the first iteration, where all design variables start at those of 
the healthy structure, the calculated displacement at the first degree of freedom is half as large as 
the measured displacement at that same degree of freedom. In order for the calculated and 
measured displacements to match, all design variables must be cut in half, thus reducing the 
stiffness of the structure by a factor of 2. As a result, the displacement constraint on the first DOF 
will automatically be satisfied. A scale factor is calculated and applied to the initial design 
variables of each iteration. 

Damage Detection Problem 
Objective function 

In order to create an optimization routine that can locate and detect damage, an objective 
function must be found that achieves a minimum value at the damaged state of the structure. 
Without prior knowledge of the damage state it is difficult to create an objective function that 
reaches a minimum value at all possible damage states. In order to solve this challenge, it was 
hypothesized that the damage state of the structure would be that which produces the least 
damage compared to the healthy structure. Since damage has been defined as a reduction in 
stiffness of the structure, the objective function is written as to minimize the total reduction in 
stiffness. Although bending elements are used for each element, it was found that the reduction of 
the shear stiffness of each element produced the best results. As a result, the objective function is 
written as: 
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where,
Ii = moment of inertia of the ith member 
Li = length of the ith member 

Since each change in moment of inertia is divided by the length of each respective member, the 
function inherently weights the change in cross section properties according to the length of each 
member, thereby taking into account the affect each member has on the total stiffness of the 
structure.

Constraints
When loads are applied to the structure, naturally displacements occur at each degree of 

freedom. These displacements are a function of the applied loads, which are known, and the 
stiffness matrix of the damaged structure, which is not known. Using Eq(1), the displacements 
can be solved for in terms of the known and unknown values by: 

PKu *1 .

If every displacement were measured this equation could easily be solved to find the damaged 
stiffness matrix. However, as stated earlier, the objective is to develop a damage detection 

Eq(7)

Eq(8)
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procedure that is easy, accurate and practical. It is impractical to measure every displacement as 
one, it is time consuming, and two, often impossible due to obstructions. What remains is an 
expression with more unknowns than equations. Fortunately, strategic displacement 
measurements coupled with the correct objective function will provide a good basis that will 
determine the damaged stiffness matrix and therefore the cross-sectional properties of each 
member. 

The number of constraints is equal to the number of measured displacements for all load 
cases. Using the measured displacements of the structure and Eq(8), equality constraints can be 
created that must be satisfied by the optimization procedure given by: 

measureduPK *1 .
where,

umeasured = vector of measured displacements 
K = global stiffness matrix 
P = Load vector used to produce measured displacements 

Next, in order to write the constraints in a form suitable for optimization, i.e. Eq(3b), Eq(9) can 
be written as: 

0)*( 1
measureduPK .

Thus, Eq(10) provides a set of constraint equations that must be satisfied at the optimum set of 
design variables. 

Side Constraints 
In order to avoid convergence to a physically meaningless point, it was desired to include 

side constraints on each design variable. First, as explained earlier side constraints were applied 
to each design variable preventing negative values. Second, it is physically impossible for 
damage to create additional moment of inertia for each structural element, therefore an upper 
bound equal to the value of the healthy moment of inertia was placed on each design variable. 

Even though complete damage or collapse of a member would reduce its moment of 
inertia to zero, it was not desirable to set the lower side constraint to zero in this process. This is 
because if the optimization process follows a path that forces one of the design variables to pass 
through zero, as will be seen, the recursive formula which predicts the design values for each 
subsequent iteration will be unable to change any design variable once it has been set to zero. To 
solve this apparent problem, the lower bound was set to a value that is small enough to be 
insignificant in reality but large enough to carry mathematical weight in the optimization process. 
Therefore, the lower side constraint was set to 5in4 for every member. 

Problem Statement 
Using the above formulations the engineering problem becomes: 

Min
n
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Eq(9)

Eq(10)

Eq(11a-c)
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As before, the optimality criterion must be developed for the current engineering problem. To do 
this the Lagrangian must be written using the objective function and constraint equations. With 
the inclusion of lagrange multipliers for each constraint, the Lagrangian becomes: 
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where uj are the calculated displacements of the healthy structure. From this, the necessary 
condition for optimality can be found by: 

0L

In turn, a local minimum of Eq(12) occurs when 
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Eq(14) can also be used as a barometer for how close each intermediate point within the 
optimization routine is to the optimal solution. Thus, a recursive formula can be created to 
determine the design variables for the next iteration based on the optimality criterion of the 
previous iteration (Cheng et al.). Manipulation of Eq(14) gives, 
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When the optimality criterion is satisfied Ti is equal to 1. 
In order to solve for each lagrange multiplier, gradients of each constraint equation must 

be calculated in order to provide a system of equations sufficient to solve for all unknowns (Haug 
et al. 1979). From the definition of a derivative, the gradient of the constraint equations can be 
written as such: 
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Simple manipulation of Eq(16) yields: 
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The I term that appears in Eq(17) is determined using Eq(15). The change in I can be calculated 
using the recursive formula: 
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Eq(13)

Eq(14)

Eq(15)

Eq(16)

Eq(17)

Eq(18)
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Solving for I yields: 
k
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Substituting Eq(19) in to Eq(17) yields: 
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where r is a convergence control parameter that restricts the step size for each iteration (Cheng et 
al.). The control parameter is assumed to be 2 for all problems covered in this paper. 
Manipulation of Eq(20) yields: 
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Eq(21) provides n equations for n unknown Lagrange multipliers, which can be used in Eq(15) 
and Eq(19) to determine the design values for the next iteration. The cycle is repeated until the 
optimality criterion is met. 

Example
A two-bay frame is pictured in Figure 2. It is used to demonstrate the importance of the 

location of the applied loads in the damage detection process. Each structural element is assumed 
to be made of steel with modulus of elasticity 29,000 ksi and dimensions shown in Figure 2.  

Table 1 shows the initial and final design variables of each structural element. For this 
example, all elements will experience damage. All initial values are assumed to be known and 
will serve as the starting point for each member size. The final design values are not known, 
however, and will be determined by the optimization routine. 

Eq(20)

Eq(21)

Eq(19)

Figure 2. Two-bay Frame 
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Member Iinitial(in
4) Ifinal(in

4

1 3500 1500 
2 3500 1000 
3 3500 1000 
4 3500 1000 
5 3500 1000 
6 3500 700 
7 3500 700 

Case 1 
For the first instance, 5 different load cases are used to measure displacements of the 

damaged structure. Loads are applied individually at each of the first 5 DOF and the resulting 
displacement at the same DOF is measured. The applied load and resulting displacement for each 
of the 5 DOF is shown in Table 2. 

Load
Case 

DOF
Loaded LOAD

DOF
Measured Displacement 

1 1 10 k 1 0.10743 in 
2 2 10 k 2 0.28251 in 
3 3 10 k 3 0.30796 in 
4 4 10 k-in 4 0.000017438 in/in 
5 5 10 k-in 5 0.000012803 in/in 

Each measured displacement is used as a constraint equation given by Eq(10). Table 3 
shows the results of the optimization process using 5 displacements as constraint equations. As 
can be seen, the optimization routine converged to the damage state in 5 iterations. The first 7 
columns of the last row are identical to the final design values shown in Table 1. It is also 
observed that all Ti values converged to 1. From the previous formulation (Eq.14-15) this 
signifies that the optimality criterion has been met and the current design variables are those that 
minimize the objective function and satisfy the constraint equations. The results are promising in 
that only 5 measured displacements were required for convergence to the correct damage state 
rather than all 8 measured displacements. However, two of the five measured displacements 
required not only rotation measurements but also concentrated moments to be applied, which can 
be difficult. In order for the damage detection procedure to be practical, these complications must 
be eliminated. 

Iteration I 1 I 2 I 3 I 4 I 5 I 6 I 7 Obj 1 2 3 4 5 T 1 T 2 T 3 T 4 T 5 T 6 T 7

1 3500 3500 3500 3500 3500 3500 3500 88.83 -45.864 -7.6083 -29.748 -23246 -920240 1.9243 1.2886 1.2886 1.2881 1.2881 0.6796 0.9914

2 1221 955.6 955.6 955.4 955.4 701.3 831.5 85.44 22.267 -6.6294 -27.925 -268290 -1E+06 1.3802 1.0788 1.0788 1.0795 1.0795 0.9998 0.7224

3 1453 993.3 993.3 993.4 993.4 701.2 716.1 84.16 6.2744 -10.394 -27.727 -238190 -1E+06 1.0627 1.0132 1.0132 1.013 1.013 0.9966 0.9562

4 1499 999.8 999.8 999.8 999.8 700 700.4 83.9 1.1466 -11.446 -27.548 -232980 -1E+06 1.0017 1.0004 1.0004 1.0003 1.0003 0.9999 0.9987

5 1500 1000 1000 1000 1000 700 700 83.89 0.9853 -11.478 -27.543 -232820 -1E+06 1 1 1 1 1 1 1

Table 1. Initial and Final Design Values 

Table 2. Load Cases and Resulting Displacements for Case 1 & 2 

Table 3. Optimization Results for Case 1 

)
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Case 2
If the number of displacement measurements is reduced to 4, the final design values are 

not close to the actual damage state. Case 2 uses the same initial and final design values and the 
same loading cases, however only the first 4 DOF measurements are used. The results of reducing 
the number of measured displacements to 4 are shown in Table 4. The structural members 
spanning each bay, namely I2, I3, I4, and I5, converged to values within 8% of their actual values 
and I6 to within 2.1%. However, I1 and I7 were grossly misjudged with error in excess of 50% for 
I1 and 70% for I7.

Iteration I 1 I 2 I 3 I 4 I 5 I 6 I 7 Obj 1 2 3 4 T 1 T 2 T 3 T 4 T 5 T 6 T 7

1 3500 3500 3500 3500 3500 3500 3500 88.83 -167.66 -24.429 -25.749 224600 1.044 1.3504 1.3504 1.2011 1.2011 0.6952 1.5845
2 853.5 981.4 981.4 919.1 919.1 707.9 1079 86.16 -146.39 -27.873 -21.749 -37047 0.8936 1.085 1.085 1.0261 1.0261 1.0154 1.1011
3 808.1 1023 1023 931.1 931.1 713.3 1134 85.631 -147.38 -27.955 -21.3 -41909 0.9229 1.0127 1.0127 0.995 0.995 1.0014 1.0453
4 776.9 1030 1030 928.7 928.7 713.8 1159 85.625 -147.44 -28.131 -21.118 -42553 0.9534 1.0059 1.0059 0.9967 0.9967 1.0008 1.0259
5 758.9 1033 1033 927.2 927.2 714.1 1174 85.627 -147.39 -28.253 -21.013 -42938 0.9724 1.0035 1.0035 0.9981 0.9981 1.0005 1.0149
6 748.4 1034 1034 926.3 926.3 714.2 1183 85.628 -147.35 -28.325 -20.952 -43182 0.9839 1.002 1.002 0.9989 0.9989 1.0003 1.0086
7 742.3 1036 1036 925.8 925.8 714.3 1188 85.629 -147.32 -28.367 -20.917 -43329 0.9906 1.0012 1.0012 0.9994 0.9994 1.0002 1.0049
8 738.9 1036 1036 925.5 925.5 714.4 1191 85.629 -147.3 -28.392 -20.896 -43416 0.9946 1.0007 1.0007 0.9996 0.9996 1.0001 1.0028
9 736.9 1036 1036 925.3 925.3 714.4 1193 85.629 -147.29 -28.406 -20.885 -43467 0.9969 1.0004 1.0004 0.9998 0.9998 1.0001 1.0016
10 735.7 1037 1037 925.2 925.2 714.4 1194 85.629 -147.28 -28.414 -20.878 -43496 0.9982 1.0002 1.0002 0.9999 0.9999 1 1.0009

Case 3 
At this point several alterations to the method can be made, two of which are to find an 

alternate objective function to be minimized or to try alternate loading cases from which to 
measure displacements. The former has been explored, using the minimization of strain energy, 
and minimizing the reduction in bending stiffness. However results have not shown to improve 
beyond Case 2. The latter alternative has proven to produce favorable results with a similar 
number of measured displacements. Table 5 shows an alternate loading condition with the 
resulting displacements using the final design values in Table 1. 

Load
Case 

DOF
Loaded LOAD

DOF
Measured Displacement 

1 2 10 k 1 -0.024894 in 
2 2 10 k 2 0.28251 in 
3 2 10 k 3 -0.055233 in 
4 2 10 k 4 0.00025174 in/in 

For Case 3, a 10 kip load is applied at only degree of freedom 2 and displacements are 
measured at the first 4 DOF. Again the optimization routine is executed in an identical manner as 
the previous two cases and the results are shown in Table 6. 

Iteration I 1 I 2 I 3 I 4 I 5 I 6 I 7 Obj 1 2 3 4 T 1 T 2 T 3 T 4 T 5 T 6 T 7

1 3500 3500 3500 3500 3500 3500 3500 100.54 -345.81 -19.46 207.68 -18825 3.1223 1.9186 1.9186 1.067 1.067 0.8183 1.8332
2 997.1 705.9 705.9 499.9 499.9 439.8 685.3 94.828 -924.66 -27.458 524.62 -36304 2.2241 1.5161 1.5161 1.4795 1.4795 1.2379 1.1959
3 1607 888.1 888.1 619.8 619.8 492.1 752.4 91.626 -1708.4 -16.893 790.29 -85194 1.3868 1.4052 1.4052 1.9392 1.9392 1.7721 1.1523
4 1691 941.4 941.4 802.9 802.9 601.2 713.7 85.433 -2055.6 -21.505 734.75 -144990 0.8756 1.1042 1.1042 1.3687 1.3687 1.2473 0.978
5 1586 990.5 990.5 950.9 950.9 675.6 705.8 84.161 -1889.3 -28.551 572.51 -159140 0.9451 1.0229 1.0229 1.0792 1.0792 1.0499 0.9987
6 1535 997 997 983.8 983.8 689.1 702 83.92 -1829.8 -30.415 533.78 -159880 0.988 1.0028 1.0028 1.0119 1.0119 1.0105 0.999
7 1525 998 998 989.2 989.2 692.5 701.3 83.893 -1818.7 -30.74 527.84 -159730 0.9977 1.0003 1.0003 1.0016 1.0016 1.0016 0.9998
8 1523 998.1 998.1 990 990 693 701.2 83.892 -1816.7 -30.793 526.99 -159660 0.9997 1 1 1.0002 1.0002 1.0002 1
9 1523 998.2 998.2 990.1 990.1 693.1 701.2 83.892 -1816.4 -30.799 526.9 -159650 1 1 1 1 1 1 1

Table 4. Optimization Results for Case 2 

Table 5. Load Cases and Resulting Displacements for Case 3 

Table 6. Optimization Results for Case 3 
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The optimization routine did not identically match the actual damage state given in Table 
1, however the found values are all within 2% of the actual damaged values. By adjusting the 
loading condition when measurements were taken, results improved compared to Case 2 and one 
rotational degree of freedom measurement and both concentrated moment loads were eliminated 
compared to Case 1. Utilizing a loading condition with only vertical loads also provides a process 
better suited for implementation on real structures. 

Conclusion
As shown from examples presented, the damage detection process is highly dependent on 

the load cases used to produce the measured displacements utilized by the optimization routine. 
In order for the damage detection process to be easily implemented it is desired that only vertical 
loads and vertical displacements be required for the damage detection procedure. The example 
presented is just one example of the possible load cases that can be used to measure 
displacements. Future work will include the exploration of additional load cases coupled with 
strategic displacements measurements in order to determine the effectiveness with regards to 
damage detection. 

The optimization routine lends itself well to such engineering problems as all design 
variables are continuous. Furthermore, the results show quick convergence to a local minimum as 
signified by the satisfaction of the optimality criterion. Since so few iterations are required 
computational effort is kept to a minimum. Minimizing computing effort will prove beneficial for 
damage detection in larger structures. 
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