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Abstract:  Probabilistic assessment of the ductility demand and reliability analysis were carried 
out for bilinear hysteretic SDOF systems.  The assessment considered two sets of strong ground 
motion records, and was focused on the evaluation of the mean and the coefficient of variation of 
the ductility demand for a given value of the normalized yield strength.  The results indicate that 

obtained results, empirical equations were provided to predict the mean of the ductility demand 
for bilinear SDOF systems of different natural vibration periods, damping ratios, and ratios of the 
post yield stiffness to the initial stiffness.  The numerical results show that the coefficient of 
variation (cov) of the ductility demand can go as high as to about 1.0 depending on the 
characteristics of the structure.  Also, a simple approach was given to estimate the probability of 
incipient damage and the probability of incipient collapse using the developed probabilistic 
characterization of the ductility demand.  The approach, which could be suitable for carrying out 
design code calibration analysis, is illustrated numerically. 

Introduction 
For a given strong ground motion, the peak responses of a linear or nonlinear single-degree-

of-freedom (SDOF) system with and without strength degradation can be carried out using time-
step integration methods.  The obtained peak responses of SDOF systems can be employed in 
defining the linear elastic response spectrum and yield response spectra, and/or the ratios between 
peak linear elastic response and inelastic responses (Chopra 2000).  These quantities are relevant 
for designing and assessing the safety of structures.  Its use for the so-called displacement-based 
design has been discussed by many including Chopra and Geol (2000) and Borzi et al. (2001). 

Let FE denote the minimum strength required for a SDOF system to remain linear elastic 
during a ground motion, and ),( ξnE TD  denote the peak linear elastic displacement where Tn and 

ξ are the natural vibration period and the damping ratio, respectively.  If the strength of the 
structure is less than FE, the system responds inelastically with yield displacement represented by 

),,( µξny TD  and peak inelastic displacement represented by ),,( µξnI TD , where µ represents the 

displacement ductility factor.  Given a set of strong ground motion records, the yield reduction 
factor Ry, ),,(/),( µξξ nynEy TDTDR = , and the ratio Rµ, ),(/),,( ξµξµ nEnI TDTDR = , can be 

calculated.  Note that yRR /µµ =  which can be written as µφµ =R  where φ is defined as 1/Ry

and is known as the normalized yield strength or the de-amplification factor.  Note also that µ
does not always increase monotonically as Ry decreases and more than one value of Ry could lead 
to the same ductility demand µ.  By considering that for a given value of µ it is the largest yield 
strength, hence the largest φ (or smallest Ry) that is relevant for design, an iterative procedure that 
is described in detail in Chopra (2000) can be employed to evaluate the required φ (or Ry) for a 
given ductility factor µ.  Note that the above is equivalent to say that given a value of φ, it is the 
maximum ductility demand, for all the normalized yield strength less than or equal to the 
specified value of φ, that is relevant for design.  This view is adopted though out this study. 
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the ductility demand could be modeled as a Frechet (Extreme value type II) variate.  Based on the
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Samples of Ry or Rµ obtained to meet specified target ductility level are employed to find 
statistics of the ratios Ry and/or Rµ and to develop empirical equations to predict the mean of the 
Ry and/or Rµ as functions of ductility demand µ (Veletsos and Newmark 1960, Krawinkler and 
Nassar 1992, Vidic et al. 1994, Miranda 2000 and Riddell et al. 2002, Hong and Jiang 2004).  The 
means of Ry and/or Rµ are employed to scale the design response spectrum or peak linear elastic 
responses to obtain the design yield strength or the yield responses. 

The evaluation of Ry or Rµ to meet specified target ductility factor is computationally 
intensive because the iteration mentioned previously.  It is much more efficient to evaluate the 
ductility demand for a given value of the normalized yield strength because the latter does not 
require the iteration over the ductility factor.  Also, it is noted that rather than develop empirical 
equations to predict the values of Ry, Rµ, or the normalized yield reduction factor φ for given 
values of µ, one may instead develop empirical equations to predict the ductility demand µ based 
on regression analysis conditioned on φ.  A regression equation developed to predict the expected 
normalized yield strength is likely to differ from the one developed to predict the expected 
ductility (factor) demand.  Perhaps, the former may be interpreted as a designer knows the 
ductility capacity of the structure to be designed and is interested in finding the minimum 
required yield strength; and the latter may be considered as a designer’s task is to check a new 
design or evaluate an existing structure with a known yield strength level and is interested in 
finding what would be the ductility demand due to strong ground motions.  Therefore, the latter 
that seems lacking in the literature is equally relevant as the former.  The need for empirical 
equations to predict the ductility demand may be further justified based on that the uncertainty or 
variability associated with the ductility capacity is much greater than the yield strength 
(Nakashima 1997), hence, a designer could have better control on the yield strength level than on 
the ductility capacity, and a codification should be focused on incorporating the uncertainty in 
ductility capacity and ductility demand.  Note that systematic assessment of the impact of 
uncertainty in ductility capacity on the structural reliability is not often investigated 

In the following, statistics of the ductility demand are evaluated using two sets of strong 
ground motion records.  The evaluation of samples of the ductility demand is carried out for 
given values of φ.  This largely reduces the computing time since iterations over φ to find the 
ductility factor that matches a specified ductility level are not required.  Also, empirical equations 
for the statistics of µ conditioned on the normalized yield strength are presented.  In a few cases, 
comparison of these results to the ones obtained to meet specific ductility level is also given.  The 
evaluation of the ductility demand presented in this study considers several damping ratios and 
the elastoplastic as well as bilinear hysteretic systems.  A very simple method for assessing the 
reliability of bilinear system by using the developed empirical equations is presented.  The 
method can be used to evaluate the probability of incipient collapse as well as the incipient of 
damage.  Its use is illustrated by numerical examples. 

Statistics, ratios and inelastic displacement 
Records 

Two sets of records considered in this study are for California earthquakes.  The first set 
includes 230 components of records that were used by Miranda (2000) and were found in the 
database prepared by Silva (2001).  This set was adopted by Hong and Jiang (2004) as well. 

The second set of records adopted in the present study is the one used by Riddell et al. (2002) 
to represent earthquakes occurred in California.  This set contains 44 records obtained for only 
two earthquakes, Northridge earthquake and Loma Prieta earthquake.  22 of these 44 components 
of records are common to the first set.  The use of this set of records is aimed at gauging how 
sensitive are the estimated ratios mentioned previously to the selected records. 
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Figure 1.  Expected ductility demand for elastic-perfectly-plastic SDOF system. 
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Results for elastocplastic systems 
By using the first set of records and carrying out nonlinear dynamic analysis of elastic-

perfectly plastic single-degree-of-freedoom (SDOF) system, the obtained mean of the ductility 
demand is presented in Figures 1a to 1c for several values of the natural vibration period and ξ = 
2%, 5%, and 10%. 

The results shown in the figure suggest that one may consider that the logarithmic of the 
expected ductility demand, mµ, is a power function of ln(φ).  This leads to 

( )( )β
µ φα lnexp 1−=m , (1) 

where α1 and β are parameters to be determined.  The parameters for the models given in Eq. (1) 
may depend on the natural vibration period Tn and the damping ratio ξ.  By minimizing the error ε
defined by, 

( )2
)(∑ −= φε µmm i , (2) 

the estimates of α1 and β can be obtained.  In Eq. (2), imµ  is the mean of µ obtained from the 

samples such as those shown in Figure 4, )(φµm  represents mµ predicted using Eq. (1) for each 

given set of values of Tn and ξ.
If one is interested in obtaining simple empirical equations for predicting α1 and β, the 

following fitted equations may be employed, 

( )3/exp 211
a

nTaa=α , (3) 
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where values of the parameters ai and bi, i = 1,2,3, are given in Table 1.  An example of the 
predicted mµ obtained by using the model given in Eq. (1) with α1 and β calculated from Eqs. (3) 
and (4) is illustrated in Figure 2 for ξ equal to 5%.  Comparison of the results shown in this figure 
and those presented in Figure 1b suggests that the empirical predicting model provides a good 
approximation to those given in Figure 1b. 

ξ  For Eq. (3) For Eq. (4) 
γ = 0 0.01 0.05 0.1  γ = 0 0.01 0.05 0.1 

2% a1 0.893 0.866 0.813 0.786 b1 1.22 1.14 1.14 1.14 
a2 0.105 0.109 0.105 0.097 b2 0.30 0.30 0.40 0.60 
a3 0.972 0.952 0.941 0.928 b3 0.82 0.82 0.82 0.82 

5% a1 0.927 0.907 0.857 0.828 b1 1.32 1.28 1.28 1.28 
a2 0.162 0.158 0.148 0.139 b2 0.30 0.40 0.70 1.00 
a3 0.815 0.817 0.818 0.810 b3 0.82 0.82 0.82 0.82 

10% a1 0.973 0.952 0.876 0.858 b1 1.42 1.38 1.38 1.38 
a2 0.182 0.180 0.199 0.176 b2 0.30 0.50 0.90 1.10 
a3 0.752 0.755 0.697 0.711 b3 0.82 0.82 0.82 0.82 

The obtained cov of the ductility demand is illustrated in Figure 3 for ξ equal to 0.05.  The 
results shown in the figure suggest that for the mean ductility demand less than about 10 (see 
Figure 1) the cov of µ increases as φ decreases.  The cov of µ for relatively rigid structures is 
larger than that for the flexible structures, and decreases as the damping ratio increases.  In almost 
all cases with a mean ductility demand less than 10, the cov of µ can be considered to be less than 

Table 1.  Parameters for Eqs. (3) and (4) 

µ
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1.0.  Similar trends of the cov values were observed for the results obtained for ξ equal to 0.02 
and 0.10. 

for elastic-perfectly-plastic SDOF system with ξ = 5%. 

Now if the second set of records mentioned in the previous section is employed, the obtained 
mean and cov of the ductility demand for ξ = 0.05 are shown in Figures 4a and 4b.  Comparison 
of the results shown in Figure 1b and Figure 4a and the results shown in Figure 3 and Figure 4b 
suggest that: 

1) the difference between the predicted ductility demand obtained by using the first set of 
records and the second set of records is not very significant; and 

2) The values of the cov of the ductility demand depend somewhat on the set of records used; 
however, the conclusion, that the cov of µ is less than about 1.0 for the mean of µ less than 10, is 
still adequate. 

Figure 2.  Predicted expected ductility demand using the model given in Eq. (1) for ξ = 5%. 

Figure 3.  Coefficient of variation of the ductility demand 
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Note that no detailed analysis of the cov of µ was presented.  This is because that the 

dominant role in characterizing the uncertainty in the peak inelastic displacement since the cov of 
the peal elastic displacement usually ranges from 0.8 to higher than 10 for different sites in 
Canada.

for elastic-perfectly-plastic SDOF system with ξ = 5%. 

To investigate possible probabilistic distribution models for the ductility demand, we plot the 
samples of the ductility demand in the lognormal probability paper for a given value of φ.  It was 
found that the samples slightly curved, therefore, the assumption that the ductility demand is 
lognormally distributed can be very convenient but may not be very adequate.  However, if the 
samples are presented in the Frechet probability paper as illustrated in Figure 5, the ductility 
demand samples could be approximate by straight liners for each given values of φ.  Therefore, 

Figure 4.   Statistics of ductility demand obtained using the second set of records 

uncertainty in peak elastic displacement rather than that in the ductility demand is likely to play a 
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the lognormal variate could be adopted to model the ductility demand but the use of Frechet 
distribution is preferred. 

Results for Bilinear systems 
To investigate the effect of the strain-hardening on the statistics of the ductility demand, 

bilinear hysteretic systems are considered in this section.  Let γ denote the ratio of the post yield 
stiffness to the initial stiffness.   

The analysis carried out for the elasto-perfectly-plastic SDOF systems is repeated for the 
bilinear system for the combinations of γ (= 0.01, 0.05 and 0.1) and ξ (= 0.01, 0.05 and 0.1) 
values.  The obtained results are employed to find the values of α1 and β for the model given in 
Eq. (1) as was done for elasto-perfectly-plastic SDOF systems.  Eqs. (3) and (4) are then 
employed to fit these values leading to the parameters presented in Table 1. 

Use of empirical equations in estimating reliabilities 
Limit state functions and reliability analysis 

The developed empirical equations can be employed for the probabilistic evaluation of the 
performance of a designed or an existing structural system, and for design code calibration.  For 
the evaluation, only two levels, one for the incipient damage (incipient inelastic deformation) and 
the other for the incipient collapse (Wen 2001), will be considered.  Let ),( ξnR TD  denote the 

yield displacement capacity of the structural system, and ζ denote the ratio of ),( ξnR TD  to 

),( ξnE TD .  In this section, ),( ξnE TD  represents the annual peak linear elastic displacement.  

Since the yield displacement capacity ),( ξnR TD less than the seismic demand ),( ξnE TD  implies 
that the structure will at least sustain damage, and the maximum inelastic displacement (capacity) 

),( ξµ nRR TD  less than the maximum inelastic ductility demand implies that the structure will 
collapse, the limit state functions for these two performance levels are, 

11),(/),( −=−= ζξξ nEnRD TDTDg , (5) 
and,

( ) ( ) 1),()(/),( −= ξφφµξµ nEnRRC TDTDg , (6) 

where Dg  represents the limit state function of the incipient damage; Cg  represents the limit 

state function of the incipient collapse, respectively; ),(/),( ξξζ nEnR TDTD= ; and µR denotes the 

Figure 5.  Frechet probability paper plot for the ductility demand samples 

ductility capacity of the structural system.  To emphasize that the ductility demand µ is a function 
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of the normalized yield strength φ, the notation for the ductility demand µ in Eq.(6) is replaced by 
µ(φ).  Damage occurs if Dg  is less than zero and, collapse occurs if Cg  is less than zero. 

Note that if ζ is greater than unity (i.e., gD > 0) implying that the yield displacement capacity 
of the structural system is greater than the linear elastic demand caused by the strong ground 
motions.  Note also that since by definition ),(/),( ξξζ nEnR TDTD= , ζ represents the normalized 

yield strength (i.e., ζ = φ), Eq. (6) can be re-written as 
1)(/ −= ζµµRCg . (7) 

The yield strength is usually considered to be normal or lognormally distributed with a cov of 
about 0.1 to 0.15 (Ellingwood et al. (1980), Nakashima (1997)).  Therefore, the yield 
displacement capacity of the structure can be considered to be lognormally distributed with a cov 
of 0.15.  The uncertainty associated with the ductility capacity µR is much more significant than 
that associated with the yield strength.  According to Nakashima (1997), the cov of µR can vary 
from about 0.5 to 1.0.  In this section it is considered that µR can be modeled as a lognormal 
variate with a cov with of 0.5.  Further, it is considered that the peak linear elastic displacement 

),( ξnE TD  is lognormally distributed as well with a cov within 1 to 10.  This can be justified 
based on the seismic hazard studies given by Adams and Halchuk (2003). 

Based on these adopted probabilistic models, the evaluation of the probability of the incipient 
damage, PD, is straight forward (Madsen et al. (1986)).  It can be calculated from, 

)1()1(Prob ζζ FPD =<= , (8a) 

where 

++−Φ= )1ln(/1/lnln)( 22
ζζζζ ζζ vvmF  (8b) 

where ERE mmvm /1 2+=ζ , 1)1)(1( 222 −++= ER vvvζ , mR and mE denote the means of ),( ξnR TD

and ),( ξnE TD , respectively; vR and vE denote the cov of ),( ξnR TD  and ),( ξnE TD , and ( )•Φ  is 

the standard normal probability distribution function.  Note that ζ is lognromally distributed with 
mean mζ and cov of vζ since ),( ξnR TD  and ),( ξnE TD  are lognormally distributed. 

The probability of the incipient collapse, PC, ( )0Prob ≤= CC gP , can be evaluated by 

recursively using the first-order reliability method (FORM) or the simulation techniques.  In this 
study, the simulation technique is employed for the analysis.  Note that ( )0Prob ≤= CC gP  can be 
expressed as 

( ) ( ) ( ) D11)(/Prob1Prob11)(/Prob PP RRC <≤=<<≤= ζζµµζζζµµ , (9) 

since ( ) 011)(/Prob =≥≤ ζζµµR .  The basic steps for evaluating ( )11)(/Prob <≤ ζζµµR  by 

using simulation technique are: 
1) Generate a sample of ζ according to the updated (or truncated) probability distribution 

function of ζ, ( ) DPF /ζζ

2) Find the mean of µ(ζ) using Eq. (1) with parameters defined in Eqs. (3) and (4), and the cov 
of µ(ζ) from figures similar to Figure 3; 

3) Using the obtained value in Step 2) define the probability distribution of µ(ζ), which is 
considered to be Frechet distributed; 

4) Generate samples of µR and µ(ζ) according to their probability distributions; and check if 
)(/ ζµµR  is less than or larger than unity; 

5) Repeat Steps 1) to 5) to generate enough samples of )(/ ζµµR  and to count number of times 

that )(/ ζµµR  is less than one for estimating ( )11)(/Prob <≤ ζζµµR .

( )
( (( (( (
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Numerical examples 
The formulations given in previous section are illustrated by simple numerical examples.  For 

the analysis, it is assumed that the structure can be modeled as a SDOF system with natural 
vibration period equal to 0.5 (sec).  Consider that the ratio between the yield displacement 
capacity of a bilinear hysteretic system mR and the displacement corresponding to the design 
earthquake load for a linear elastic SDOF system, ),( ξnEN TD , φD, is known.  φD takes into 
account factors such as the ductility-related force reduction and the mean resistance is greater 
than the factored resistance.  The yield displacement capacity is considered to be lognormally 
distributed with cov of 0.15.  Further, consider that φD equals 0.5; the mean of the ductility 
capacity, mµR, equals 4; the ratio of the post yield stiffness to the initial stiffness γ takes the value 
of 0, 0.01 or 0.05; and ),( ξnEN TD  equals 475-year return period value of the peak linear elastic 

displacement demand ),( ξnE TD  that is considered to be lognormally distributed.  The cov of 

),( ξnE TD , vE, that equals 0.8, 2 and 10 are considered.  The small and large values of vE were 

used to represent approximately the seismic hazard conditions for, respectively, the west and the 
east of Canada Adams and Halchuck (2003). 

Based on these considerations, it can be shown that mζ is given by, 

( ) ( ) −Φ++=+=+= −

475
1

1)1ln(exp1
),(

11 12222
EED

E

nEND
E

E

R
E vv

m

TD
v

m

m
vm φξφ

ζ , (10) 

which is independent of mE.  In Eq. (10), ( )•Φ−1  denotes the inverse of the normal probability 

distribution function.  Substituting Eq. (10) into Eq. (8) gives PD equal to 21044.3 −× , 21010.1 −× ,

and 31074.5 −×  for vE equal to 0.8, 2 and 10, respectively. 
To simplify the evaluation of PC, the numerical analysis was carried out by considering that 

the cov of µ(ζ) is independent of ζ.  The effect of this assumption on the estimated probability 
will be investigated by comparing the results obtained for the cov of µ(ζ) equal to 0.4 and 0.8, 
which are shown in Table 2.  The results shown in the table suggest that the probability of 
incipient collapse is not very sensitive to the assumed cov of the seismic demand (i.e., cov of 

),( ξnE TD , vE) nor to the assumed cov of µ(ζ).  Also, it is noted that that the obtained probability 
of incipient collapse is insensitive to the considered post-yield stiffness.  This may be explained 
by noting that a structure with Tn = 0.5 and for a normalized yield strength (i.e., φD) around 0.5 
the expected ductility demand for γ = 0 does not differ significantly from that for γ = 5%. 

It should be noted that no attempt is made in this study to carry out a design code calibration 
excise (Madsen et al. (1986)).  However, it is noteworthy that given the mean ductility capacity of 
structure mµR and the nominal or factored design earthquake demand ),( ξnEN TD , the formulation 
and procedure given in this study can be used to calibrate the required resistance factor for the 
yield displacement (or strength) φD such that use of the factor in design will leads to the designed 
structures to meet a specified target reliability level. 

vEcov of µ(ζ) γ 
0.8 2 10 

0 1.54E-03 1.15E-03 1.40E-03 
1% 1.52E-03 1.15E-03 1.33E-03 0.4
5% 1.25E-03 1.02E-03 1.16E-03 
0 2.41E-03 1.61E-03 1.54E-03 

1% 2.54E-03 1.50E-03 1.44E-03 0.8
5% 2.17E-03 1.38E-03 1.34E-03 

Table 2.  Estimated probability of incipient collapse 

((((
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Conclusions 
A statistical analysis of the ductility demand was carried out for bilinear hysteretic SDOF 

systems.  The analysis results indicate that the ductility demand can be modeled as a Frechet 
(Extreme value type II) variate for given values of the normalized yield strength. 

The mean of the ductility demand and the normalized yield strength when plotted in a 
logarithmic paper, follow approximately a straight line for SDOF systems having the same initial 
natural vibration period.  This observation leads to a simple empirical equation in predicting the 
expected ductility demand.  Model parameters for the proposed empirical predicting models were 
obtained for different natural vibration periods, damping ratios, and ratios of the post yield 
stiffness to the initial stiffness.  The coefficient of variation (cov) of the ductility demand can go 
as high as to about 1 depending on the characteristics of the structure. 

Using the developed probabilistic characterization of the ductility demand, a simple approach 
to estimate the probability of incipient damage or incipient collapse was given.  Numerical results 
suggest that an accurate empirical predicting model for the cov of the ductility demand may not 
be necessary since sensitivity analysis results indicate that the variation of this cov on the 
probability of incipient collapse is not very significant. 
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