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Abstract
This paper presents a practical approach for maintenance optimization of a network of aging highway 
bridge decks that integrates a stochastic deterioration model based on Bogdanoff’s cumulative 
damage theory with an effective multi-objective optimization approach. The multi-objective 
maintenance optimization takes into account all relevant objectives, such as improving bridge deck 
condition, minimizing maintenance costs, and minimizing traffic disruption and associated user costs. 
The consideration of these three objectives enables to take full advantage of the available bridge 
inspection data and implicitly lead towards the minimization of the risk of failure due to bridge deck 
deterioration and maintenance activities. A multi-objective optimality index is proposed as an 
optimality criterion for priority ranking of the deficient bridge decks for maintenance. The obtained 
optimal maintenance project prioritization strategy achieves a satisfactory trade-off or compromise 
between the selected relevant and competing optimization objectives. The proposed approach is 
illustrated on a small network of ten bridge deck projects that are optimized for maintenance.

Introduction
The deterioration of reinforced concrete bridge decks due to reinforcement corrosion is recognized as 
the main cause of failure of bridge decks and it is estimated that one-third to one-half of the projected 
bridge rehabilitation costs in North America are related to bridge deck deterioration  (Weyers 1998; 
Lounis and Mirza 2001). The corrosion of the reinforcing steel is caused by the chlorides (from 
deicing salts), which penetrate the concrete cover and destroy the protective passive film on the steel 
reinforcement. As the corrosion products accumulate, they generate high tensile stresses, which 
eventually lead to irreversible damage such as concrete cracking, delamination and spalling. 
Furthermore, corrosion leads to reduction of concrete and reinforcement cross sectional areas, loss of 
bond between steel and concrete, reduction in strength, and ductility. The effects of corrosion are 
compounded by other deterioration factors, such as initial damage  (e.g. due to shrinkage cracking), 
increased traffic loads, freeze-thaw cycles, poor workmanship, and inadequate maintenance.   

 The extensive deterioration of highway bridge decks in North America and the limited funds 
allocated for their maintenance present considerable technological and economic challenges for 
bridge owners and managers, namely: (i) which bridge decks to maintain; (ii) when to maintain 
them; and (iii) how to maintain them (i.e. identify the most effective maintenance strategy, which 
could be a patch repair, overlay, partial depth replacement and overlay, cathodic protection, total 
replacement, etc.). The importance of a pro-active maintenance policy is confirmed by the study 
carried out by Dunker and Rabbat (1990) on the performance of highway bridges included in the 
U.S. National Bridge Inventory (NBI), which showed that bridge deterioration varied considerably 
from state to state with the highest deterioration level being observed in the central and southeastern 
states, while the lowest deterioration was observed in the southwestern states. This considerable 
difference in structural deficiency between the different states was attributed to differences in design, 
construction, inspection, funding and most importantly maintenance policies. 

 Different approaches to maintenance optimization have been implemented in the different bridge 
management systems ranging from simplified economic models to advanced Markovian decision 
processes. In the literature on bridge management, the main optimization objective used for 
maintenance optimization is the minimization of the present value life cycle cost, which represents all 
the costs incurred throughout the life cycle of a bridge structure, including, the costs of design, 
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construction, maintenance, repair, rehabilitation, replacement, demolition, and in some instances 
users’ costs, and possibly costs of failure.  Most of these systems are based on a single-objective 
optimization , namely, the minimization of the maintenance costs.

 Given the importance and high consequences of failure of highway bridge structures, a risk-based 
maintenance management methodology can be more effective and objective as it enables the 
optimization of different types of structures and systems from different bridges within a network by 
considering not only their probability of failure but also their consequences of failure. The 
implementation of a quantitative risk-based bridge maintenance management, however, is very 
complex task due to the difficulties of assessing quantitatively the probability and the consequences of 
failure, especially for a large network of bridge structures.  

 The failure modes of bridge decks may include the loss of serviceability (e.g. excessive cracking, 
concrete delamination and spalling, and deformation), loss of functionality (e.g. poor traffic 
conditions, inadequate deck geometry/approach roadway alignment, limited clearance, etc.), and 
possibly the partial or total collapse. As mentioned earlier, the loss of serviceability and loss of 
functionality, although not catastrophic or life-threatening, are by far the most frequent failure modes 
for bridge decks and involve significant cumulative costs. The consequences of failure of highway 
bridges are multiple and may include loss of life, injury, excessive maintenance costs, user costs, 
traffic disruption, environmental impacts, etc. It is clear that some of these consequnces are 
incommensurable and cannot be evaluated in monetary terms.  

 To overcome the above difficulties, a multi-objective maintenance optimization approach that 
enables to consider all relevant criteria of a risk-based approach, namely the maximization of 
condition rating, minimization of maintenance costs, and minimization of user costs is presented in 
this paper. The proposed approach can address the requirements of many decision-makers (bridge 
owners/ managers/ engineers) seeking to satisfy implicitly and/or explicitly several objectives at the 
same time in planning the maintenance of a large network of aging bridge decks. The proposed 
approach enables a better evaluation of the effectiveness of maintenance strategies in terms of several 
criteria and determines the optimal solution that achieves the best trade-off between all criteria 
(including conflicting ones, such as condition and cost). 

Methodology for Risk-Based Maintenance Optimization 

The proposed methodology for network-level bridge deck maintenance optimization is based on the 
simultaneous satisfaction of three relevant and competing criteria, namely: (i) maximization of 
condition rating; (ii) minimization of maintenance costs; and (iii) minimization of user costs. The 
development of such a methodology requires the integration of three simple and practical decision 
support models, namely: (i) qualitative condition assessment model; (ii) qualitative deterioration 
prediction model; and (iii) multi-objective optimization model to determine the optimal maintenance 
strategy for a network of bridge decks. The proposed methodology is symbolically outlined in Fig.1. 
The qualitative condition assessment model enables to take full advantage of the available bridge 
inspection data. The deterioration of bridge decks is modeled using an appropriate stochastic process 
that captures the time-dependence and uncertainty of the deterioration mechanism. The deterioration 
prediction model is compatible with the existing condition assessment procedure, and is developed 
based on the historical field performance data collected during bridge inspections.  

 As mentioned earlier, the governing failure modes for bridge decks are the loss of serviceability 
and loss of functionality due to corrosion-induced damage. The consequences of bridge deck 
deterioration can range form a simple riding discomfort to a loss of life as a result of a traffic accident 
on the deteriorated deck or on a detour route  (with a poor condition) due to the closure of one lane or 
the entire bridge during its maintenance or due to its excessive deterioration.  As opposed to life cycle 
cost or cost-benefit criteria used in most bridge maintenance optimization studies, the use of a risk of 
failure as a criterion for maintenance optimization is more rational and relevant, however its 
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implementation is not easy given the complexity of assessing the consequences of failure in monetary 
terms This means that monetary values need to be assigned for fatalities, injuries, and social costs 
which are not easily quantified, and various methods have been developed. 

Fig. 1. Schematic of multi-objective maintenance optimization approach for bridge decks 
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 Given the difficulty of accepting the notion of placing any sort of value on human life, Starr 
(1969) evaluated the risk of death from various causes and identified two general categories for risk of 
death: (i) risk associated with voluntary activities in which the individual evaluates and adjusts his 
exposure to risk; and (ii) risk associated with involuntary activities, which are determined by 
regulations from governmental agencies. Starr (1969) indicated that the public typically was willing to 
accept voluntary risks 1,000 times greater than involuntary risks. Paté-Cornell (1994) proposed 
different ranges of acceptable levels of risks for the public and workers ranging from 10 8 to 10 3 per 
year.

 The consideration of these three objectives within the multi-objective optimization framework is a 
practical approach for the solution of the risk minimization problem through the minimization of the 
probability of failure (by maximizing the condition rating) and minimization of the consequences of 
failure (by minimizing the maintenance costs and user costs), as indicated in Fig.1. The proposed 
approach overcomes the difficulties of assessing quantitatively the probability of failure and the 
consequences of failure for a large network of bridge decks. A detailed description of the models is 
given in the next sections.   

Predicting Deterioration of Bridge Decks Using Bogdanoff’s Cumulative Damage Model 

Different types of models, including empirical, mechanistic, statistical, and logistic haven been 
proposed in the literature for the prediction of bridge deck deterioration (Golabi and Shepard 1997; 
Frangopol et al. 1997; Weyers 1998; Stewart and Rosowsky 1998; Lounis and Madanat 2002; 
Morcous et al. 2003). The prediction of the deterioration and service life of bridge decks is a difficult 
task due to the complexity of the mechanisms involved, such as the penetration of chlorides into 
concrete, onset of corrosion, damage initiation, damage accumulation, and coupling effects of 
corrosion and other deterioration factors (e.g. traffic load, initial damage, etc.). This deterioration 
prediction is further complicated by the considerable uncertainty in the governing parameters of the 
damage initiation and accumulation models, as well as in the uncertainty in the models themselves.  
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 The fluctuations from mean performance and mean life are sufficiently large and cannot be ignored 
without serious consequences owing to the large fluctuations in the in-service environment, deck 
design, initial damage, etc. Hence, a probabilistic modeling of the damage accumulation and service 
life is required to achieve reliable results. Furthermore, these models should be developed by using 
the available data collected during the regular or special inspections of bridge structures in the 
inventory of highway agencies. These models can be updated as more data become readily available 
and/or by using data from long term in-service exposure, accelerated laboratory testing, or from the 
use of fundamental mechanistic models (Golabi and Shepard 1997; Lounis and Madanat 2002; 
Morcous et al. 2003). 

Condition Assessment Model 

In order to ensure the implementation of the proposed methodology, it is imperative to take full 
advantage of the bridge inspection data collected in the bridge inventory database of different 
highway agencies. In general, highway bridge decks (and other bridge components) are inspected 
every two years on average (FHWA 1995; MTO 1989). The inspector rates the condition of the 
bridge deck and assigns condition ratings for the deck. This condition rating consists of mapping the 
level of observed damage in the structure during visual inspections and non-destructive evaluation 
(or predicted using empirical or statistical methods) onto a discrete  (1 to 9, 1 to 7, or 1 to 5) rating 
scale. Concrete bridge decks are inspected for cracking, spalling, delamination, potholing, rust 
staining, scaling, reinforcement corrosion, chloride contamination, and partial or full depth failures. 
In this paper, the condition rating (CR) of concrete bridge decks is based on the following seven-
state rating scale, which reflects the different damage states associated with chloride-induced 
corrosion and is adapted from existing different condition assessment systems (Golabi and Shepard 
1997; FHWA 1995; MTO 1989; Morcous et al. 2003). Table 1 provides a summary description of 
the adopted condition rating system. 

Table 1. Condition rating system for concrete bridge decks 

Condition Rating (CR) Description
1 Excellent condition: no contamination; no corrosion; no repaired area. 
2 Very good condition: minor cracks, no spalls or delaminations; chloride  

contaminated  or repaired areas  2% (of total deck area). 
3 Satisfactory condition: spalls or delaminations  2%; cracked, corroded,  

contaminated, or  repaired area 10%. 
4 Fair condition: spalls or delaminations  5%; cracked, corroded, 

contaminated, or  repaired area 20%. 
5 Poor condition: spalls or delaminations  10%; cracked, corroded, 

contaminated, or  repaired area 25%. 
6 Critical condition: spalls or delaminations  15%; cracked, corroded, 

contaminated, or  repaired area  25%. 
7 Failed condition (total loss of serviceability or functionality): extensive 

spalling, delamination, repaired areas  30%; maintenance required. 

 Such a condition assessment system is very practical and cost-effective (in terms of 
inspection/evaluation costs) for the long- and short-term analysis of maintenance needs for a network 
of hundreds or thousands of structures, which is the case for many highway agencies. However, for 
safety-critical elements and for high-risk structures, a detailed and a more rigorous condition 
assessment may be required.
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Bogdanoff’s Cumulative Damage Model  

In this paper, a Bogdanoff’s cumulative damage (CD)-based model is used to predict the future 
condition and service life of reinforced concrete bridge decks. The proposed model assumes a 
probabilistic evolutionary structure of the damage accumulation process. The condition of the bridge 
deck is discretized into a finite state space with seven (7) damage states. A basic element of the model 
is the concept of duty cycle, which is a repetitive period of operation in the life of a deck in which the 
damage accumulation is assumed non-negative (Bogdanoff 1978). A duty cycle is defined as one-year 
in which the deck is subjected to de-icing salts in winter, freeze-thaw cycles, traffic load (in addition 
to its own weight).
 The probability distribution of damage after a duty cycle is assumed to depend only on the duty 
cycle itself and the damage accumulated at the start of the duty cycle; thus its is assumed independent 
of how the damage was accumulated at the start of the duty cycle. This represents the first-order type 
of stochastic process correlation underlying the Markovian process (Bogdanoff 1978). These 
assumptions lead to the fact that the damage process can be modeled as a discrete-time and discrete-
state Markovian process (Bogdanoff 1978). The probabilistic evolution of damage is completely 
determined by the transition matrix for each duty cycle and initial damage state. The transition 
probability matrix for a duty cycle is given by: 

P=[pj,k]        j=1,2,……,b; and  k=1,2,….,b  (1a)

with pjk= P(Dt+1=k | Dt=j) (1b)

where pjk represents the probability of the deck being in state k at the end of the duty cycle given it 
was in state j at the start of the duty cycle (with j < k for non-maintained systems). Damage states 1 to 
6 are transient states, whereas damage state 7, denoted “state b” is called an absorbing state, which is 
a state that cannot be vacated without a maintenance action.  

 Given the adopted condition rating scale and short duration of the duty cycle or transition time (1 
year), the probability of deteriorating by more than one state (i.e. multiple damage states transitions) 
may be assumed negligible (Golabi and Shepard 1997; Lounis 2000; Morcous et al. 2003). Therefore, 
the transition matrix is greatly simplified and has only two elements per row, namely pk,k and pk,k+1,
which is referred to as the “unit jump Markov chain” (Bogdanoff 1978). Given the uncertainty in 
defining the end of life or failure criterion, it is possible to have different definitions of the absorbing 
state, depending on the requirements of the bridge owner, risk of failure, etc. The initial state of 
damage D0 is identified by the vector p0=[po(i)]i=1,b, where po(i) is the probability of being in state i at 
time t=0. This initial damage may arise from poor materials, inadequate design and/or construction. It 
follows from Markov chain theory (Bogdanoff 1978; Ross 1996) that the damage state vector at time 
t, pt, is given by: 

pt = po P1P2……..Pt = [pt(1)  pt(2)           pt(b)]  (2a) 

where Pj is the transition matrix for the jth duty cycle, and pt(k) is the probability of being in state k at 
time t. If we assume that the duty cycles are all of constant magnitude throughout the deck lifetime, 
then the transition probability matrices are time-invariant and equal to P, which yields a stationary 
stochastic process. Therefore, Eq. (2a) simplifies to: 

  pt = po Pt (2b)

 The above transition probability matrix is generated from the data collected during the inspections 
of the bridge decks. Contrary to lifetime models, the transition matrix and thus the proposed 
cumulative damage model can be developed from a limited set of data, which then can be further 
refined using the Bayesian updating approach (Golabi and Shepard 1997; Lounis and Madanat 2002).  
The probability that the deck be in damage state j at time t is given by: 
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  P(Dt = j)= pt(j)  (3a)

The cumulative distribution function of damage at time t, Dt, is defined by: 

  FDt(j)= P(Dt  j) =
j

k
t kp

1
)( (3b)

The expected damage at time t, E[D(t)] is given by: 

  E[D(t)] =
b

1j

t )j(jp (3c)

The service life (L) of the deck may be defined as the time to absorption at state b. For the case of an 
initial damage vector with p0(1)=1, its cumulative distribution function FL is given by (Bogdanoff 
1978):   

FL(t) = P(L   t) = Pt(b)         t=1, 2,…., n (4)

The expected service life E[L] is given by the mean time to absorption (Bogdanoff 1978), i.e.: 

   

1t

L )]t(F1[)L(E (5)

For the case of an initial damage vector with multiple nonzero elements, the cumulative 
distribution function of service life (or time to absorption) is given by (Bogdanoff 1978): 

  FT(t) = P(T   t) =
1b

1k

Tk0 )t(F)k(p   (6) 

where FTk(t)is the cumulative distribution function of the time at which the damage state first enters 
the absorbing state, given the initial damage state is k.  

 The probabilistic prediction of accumulation of damage in the bridge deck using Eq.(2a) is 
illustrated in Fig.2, which indicates the evolution with time of the probability mass function of the 
damage. In Fig.2, it is seen that in the early stages of the deck life, the probability mass of the damage 
is near state 1, but with aging and damage accumulation, this probability mass shifts to higher damage 
states. Ultimately, if no maintenance is undertaken, all the probability mass accumulates in the 
absorbing state 7 or state “b”. 

Fig. 2. Probabilistic evolution of bridge deck deterioration using Bogdanoff’s CD model
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Multi-objective Maintenance Optimization of Aging Bridge Decks 

As discussed earlier, the actual maintenance optimization problem is multi-objective in nature as the 
bridge owner or manager seeks to satisfy simultaneously several objectives, such as the minimization 
of maintenance costs, improvement of safety, serviceability and functionality, minimization of 
maintenance time, minimization of traffic disruption, minimization of user costs, and minimization of 
risk of failure, etc. The solution of this maintenance management problem can be obtained using the 
techniques of multi-criteria or multi-objective optimization. Several approaches have been developed 
to solve multi-objective optimization problems, including multi-attribute utility theory (Von Neumann 
and Morgenstern 1947; Keeney and Raiffa 1976), weighted sum approach (Zadeh 1963), compromise 
programming, constraint approach, and sequential optimization (Koski 1984; Duckstein 1984; Lounis 
et al. 1993, 2000). In this paper, the compromise programming approach is used to solve the multi-
objective maintenance optimization problem, and is presented in the next section.    

Overview of Multi-objective Optimization Approach 

For single-objective optimization problems, the notion of optimality is very well defined as the 
minimum or maximum value of some given objective function is sought. In multi-objective (or 
vector) optimization problems, the notion of optimality is not obvious because of the presence of 
multiple, incommensurable and conflicting objectives. In general, there is no single optimal (non-
dominated or superior) solution that simultaneously yields a minimum (or maximum) for all objective 
functions. The Pareto optimality concept has been introduced as the solution to multi-objective 
optimization problems (Koski 1984; Duckstein 1984). A maintenance strategy x* is said to be a Pareto 
optimum if and only if there exists no maintenance strategy in the feasible set of maintenance 
alternatives that may yield an improvement of some criterion without worsening at least one other 
criterion. The multi-objective maintenance optimization problem can be mathematically stated as 
follows:

 Find:  optimum]x,......,x,x[x *
n

*
2

*
1

*  (7a) 

Such that: imummin)]x(f).........x(f),x(f[)x(f n21 x  (7b) 

and   max

n

1j

jt,m C)x(C  (7c) 

thCR)x(CR:Nx  (7d) 

        

where: *x = vector of optimum solutions; f = vector of optimization objectives (e.g. condition rating, 
maintenance cost, user cost, etc.); )x(C jt,m =maintenance cost of project jx  at time t ; Cmax= available 

budget; = subset of the bridge network that at time t contains deficient bridge decks having a 
condition rating (CR) above a specified  threshold value (requiring maintenance); N= entire set of 
bridge deck projects within the network.  
 The concept of Pareto optimality mentioned above, may be stated mathematically as follows 
(Koski 1984; Lounis and Cohn 1993):  

x* = Pareto optimum (8a)
if   fi(x)  fi(x

*)                      for  i=1,2,…,m (8b)
and    fk(x) < fk(x

*)                     for  at least one k (8c)  

 In general, for a multi-objective optimization problem, there are several Pareto optima, and the 
problem is to select the solution that achieves the best compromise between all competing objectives. 
Such a solution is referred to as “satisficing” solution in the multi-objective optimization literature 
(Koski 1984; Lounis and Cohn 1995). The determination of this satisficing solution is discussed in the 
next section.   
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 Decision-Making under Multiple and Conflicting Objectives 

In compromise programming, the “satisficing” solution is defined as the solution that minimizes the 
distance from the set of Pareto optima to the so-called “ideal solution”. This ideal solution is defined 
as the solution that yields minimum (or maximum) values for all criteria. Such a solution does not 
exist, but is introduced in compromise programming as a target or a goal to get close to, although 
impossible to reach. The criterion used in compromise programming is the minimization of the 
deviation from the ideal solution f* measured by the family of Lp metrics (Koski 1984; Lounis and 
Cohn 1993). In this paper, a multi-criteria optimality or multi-objective index, “MOI”, is defined as 
the value of the weighted and normalized deviation from the ideal solution f* measured by the family 
of Lp metrics: 

p/1pm

1i )x(ii

iip
ip fmin)x(fmax

)x(fmin)x(f
w)x(MOI  (9) 

 This family of Lp metrics is a measure of the closeness of the satisficing solution to the ideal 
solution. The value of the weighting factors wi of the optimization criteria fi (i=1,…,m) depends 
primarily on the attitude of the decision-maker towards risk.  The choice of p indicates the importance 
given to different deviations from the ideal solution. For example, if p=1, all deviations from the ideal 
solution are considered in direct proportion to their magnitudes, which corresponds to a group utility 
(Duckstein 1984). However, for p 2, a greater weight is associated with the larger deviations from 
the ideal solution, and L2 represents the Euclidian metric. For p= , the largest deviation is the only 

one taken into account and is referred to as the Chebyshev metric or mini-max criterion and L
corresponds to a purely individual utility (Duckstein 1984; Koski 1984; Lounis and Cohn 1995; 
Lounis and Vanier 2000). In this paper, both the Euclidean and the Chebyshev metrics are used to 
determine the multi-objective optimality index and corresponding satisficing solution.   

Illustrative Example 

The approach presented in this paper is applied for the maintenance optimization of 100 bridge deck 
projects from different bridges within a network of a highway agency.  The objective here is to 
optimize the prioritization of the bridge deck projects for maintenance, considering simultaneously 
their condition rating, maintenance cost, and user costs, assuming a constraint on the allocated 
funding for the current year, which is assumed as $1.5 Million. The physical condition of the bridge 
decks is assessed using the 1-5 condition rating scale described earlier.  

 The deterioration of the bridge decks is predicted using the Bogdanoff’s cumulative damage 
model described earlier, assuming a unit-jump and stationary deterioration model. A constant duty 
cycle is assumed throughout the service life of bridge decks that consists in one-year exposure to 
chloride-induced corrosion due to deicing salts, freeze-thaw cycles, and traffic loading. The transition 
probability matrix has the following elements (Lounis 2000): p11=0.7, p22=0.765, p33=0.85, p44=0.9, and 
p55=0.98, p66=0.98, and p77=1. The probability mass function of the current network condition is shown 
in Fig.3(a), and is given by the following initial condition vector: 

p0=[0.06  0.34  0.31   0.19   0.08  0.01  0.01] (10a)

 Using Eq. 2(b), the predicted deterioration of the bridge deck network after 10, 20 and 30 years is 
shown in Fig. 3(b). For example, after 30 years, the probabilistic distribution of the condition of the 
deck network is given by the vector: 

p30=[0.  0.  0.008   0.089   0.547  0.273  0.082] (10b)
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Hence, after 30 years, no deck of the network is in damage state 1 or 2 (i.e. no damage or minor 
damage), and about 90% of the deck network is in damage state 5, 6 or 7 (i.e. poor to failed states). 
 For bridge decks with condition ratings (or damage states) 1 or 2, no action or some preventive 
maintenance may be needed. For decks in damage states 3 and 4, some intermediate maintenance 
actions may be required (patch repair, asphalt overlay). For the decks with damage states 5 or higher, 
the possible maintenance actions include deck overlay using latex-modified concrete or low-slump 
dense concrete, cathodic protection, partial or complete replacement of the deck. To illustrate the 
application of the approach, the maintenance optimization is carried on a group of bridge decks with 
damage states 5 or higher, i.e. the threshold condition rating CRth is assumed equal to 5. 
 In this example, the maintenance alternatives are assumed optimized for the individual deficient 
bridge decks on the basis of life cycle cost minimization. The present value costs of the maintenance 
alternatives for the ten most damaged bridge decks are summarized in Table 2. The user costs are 
assumed to represent the sum of all costs incurred by the users during the maintenance activity, which 
include the delay costs, accident costs, and vehicle operating costs. These user costs depend primarily 
on the duration of the maintenance activity, average daily traffic, accident rate increase due to traffic 
detour or/and lane closure, and are summarized in Table 2.    
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Fig.3. Current and future network condition predicted using Bogdanoff CD model 

 The normalized values (normalized with regard to the maximum value) of the three selected 
objective functions are shown in Fig. 4. Table 2 and Fig. 4 illustrate the conflicting nature of these 
criteria and the difficulty in prioritizing, as the project with the highest urgency in terms of condition 
rating (Project #1) is neither the same in terms of maintenance cost (Project #9) nor in terms of user 
cost (Project #4). If single objective-based optimizations are undertaken, the bridge deck projects will 
be prioritized for maintenance following these three different schemes, depending on the selected 
objective:

Damage condition rating -based prioritization:  the projects will be ranked in terms of decreasing 
condition rating, i.e. the project with the highest condition rating will given first priority, and end 
up with the project which exhausts the available budget; 
Maintenance cost-based prioritization: the projects will be ranked in terms of increasing cost, i.e. 
the project with the lowest maintenance cost will be given first priority, ending with the project at 
which the available budget is exhausted;  
User cost-based prioritization:  the projects will be ranked in terms of decreasing user costs, i.e. 
the project with the highest user cost will be given first priority, ending with the project at which 
the available budget is exhausted.  
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 The required total fund to address all maintenance needs for the 10 deck projects is  $2.891 million, 
which is well in excess of the available budget of $1.5 million. From Table 2, the “ideal” (but non-
existing) maintenance solution is associated with the following “ideal” objective vector f*=[f1max  f2min

f3max]
T= [7,   75000, 153000]T.

Fig. 4. Normalized values of objective functions for deck maintenance projects 
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Table 2.  Multi-objective-based maintenance optimization of bridge decks 

Bridge 
Deck
Project  # 

   Damage 
Condition 
Rating 

Maintenance 
Costs
($1,000) 

User  
Costs
($1,000) 

Euclidean 
Metric
MOI2

Chebyshev 
Metric   
MOI

1 7 620 120 1.260 1.000 
2 6 832 132  1.130 1.000 
3 5 350 124  0.424 0.363 
4 5 364 153  0.382 0.382 
5 5 125 76  0.583 0.579 
6 5 150 76   0.587 0.579 
7 5 100 56  0.730 0.729 
8 5 125 20   1.002 1.000 
9 5 75 20  1.000 1.000 
10 5 150 84   0.528 0.519 
 Average= 5.3 =$2891,000 =$861,000 MIN=0.382 MIN=0.363 

 Using Eq. (9), the values of the multi-objective optimality indices MOI2 and MOI , corresponding 
to the Euclidean and Chebyshev metrics, respectively, are determined for the bridge deck projects and 
are summarized in Table 2. Using the min. MOI2 criterion, the “satisficing” solution is found to be 
Project # 4, however using the min. MOI  criterion, the “satisficing” solution is found to be Project # 
3. Fig. 5, however, illustrates the similarity between the rankings of projects for maintenance obtained 
using both the min. MOI2 and min. MOI  criteria for the other deck projects.   
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Considering now the budgetary constraint, the scheduling of projects maintenance will be as follows: 
(i) Euclidean metric-based prioritization: Projects #4, #3, #10,#5, #6, #8, and #9, for a total cost 

of $1.439 million. The other projects may delayed until the next year; however, a detailed 
analysis may be required. 

(ii) Chebyshev metric-based prioritization: Projects #3, #4, #10, #5, #6, #7, #8, and #9 for a total 
cost of $1.439 million. 

From the above example, both the Euclidean and Chebyshev (or minimax) criteria for multi-objective 
optimization yield the same prioritization of bridge deck projects for maintenance. It should be 
pointed out that for both metrics, project #6 has always a higher priority than project #8, because the 
latter is not a “true” Pareto optimum, as it is dominated by solution (or project) #6. It is also possible 
to use the proposed approach by introducing different weighting factors on the different objectives, as 
discussed in the previous sections. 

Conclusions 

This paper illustrated that the bridge deck maintenance optimization problem can be formulated as a 
multi-objective optimization problem. The major merits of the approach are: (i) consideration of all 
possible (even conflicting) objective functions; (ii) ability to put more emphasis on the more relevant
objectives (e.g. condition improvement); and (iii) rational decision-making regarding the selection of
bridge projects for maintenance. The prioritization of the bridge decks is based on the satisfaction of 
several conflicting objectives simultaneously, including improving the physical condition, reducing
the maintenance costs and user costs.  The proposed multi-objective optimization approach provides a 
decision support tool for effective bridge management that enables decision-makers to select all 
relevant objectives in planning the maintenance of their bridge network. The development and 
integration of the proposed models for maintenance optimization will lead to an effective approach to 
bridge maintenance management, which optimizes the allocation of maintenance funds, as well as 
improves the risk management of bridge decks. The solutions obtained achieved a satisfactory trade-
off between several competing criteria, including the maximization of the bridge deck condition, 
minimization of maintenance costs, and minimization of user costs. The proposed multi-objective 
optimality index can be used as an effective optimality criterion for the prioritization of deteriorated 
bridge decks for maintenance.   
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