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1 Introduction

Time-dependent reliability analysis is necessary to develop optimum strategies for the life-cycle 
management of infrastructure systems that include roads, bridges, nuclear plants and transmission lines. 
The decisions regarding the time and frequency of inspection, maintenance and replacement are 
confounded by uncertainties associated with the deterioration of structural resistance. In general, the 
modelling of deterioration is influenced by sampling and temporal uncertainties. The sampling 
uncertainty refers to the variability of deterioration from sample to sample. The uncertainty inherent with 
the progression of deterioration over time is referred to as temporal uncertainty. The sampling 
uncertainty, an epistemic uncertainty, can be reduced by additional inspections. The temporal uncertainty 

inspections. An adequate consideration of temporal uncertainty is necessary for a credible and effective 
life cycle management of critical infrastructures. 

The probabilistic models of deterioration can be classified in two broad categories, namely, random 
variable (RV) model and stochastic process model. In the RV model, parameters associated with an 
empirical deterioration law are randomized to reflect the sampling variability observed in a sample of 
deterioration data, such as the rate of deterioration (Hong 2000, Pandey 1998). The stochastic process 
model, such as the Markov chain or Gamma process, incorporates the temporal uncertainty associated 
with evolution of deterioration (Bogdanoff and Kozin 1985, Nicolai et al. 2004, van Noortwijk and 
Frangopol 2004). A key distinction between these two models is that a specific sample path is 
deterministic in RV model, but it remains uncertain in the stochastic process model. 

The application of the random variable and stochastic process deterioration models have been hitherto 
reported, but a clear interpretation of conceptual distinctions between these two models and their impact 
on maintenance optimization problem have been lacking in the engineering literature. To address this 
issue, the paper evaluates the random variable and stochastic Gamma process models in a simplified 
setting of time-dependent structural reliability analysis. The two equivalent versions of the deterioration 
models are compared in terms of distributions of lifetime, deterioration magnitude and the life cycle cost. 
The paper presents an original exposition of the implications of deterioration models to the age-based and 
condition-based preventive maintenances policies.

on the other hand is aleatory in nature so that it cannot be eliminated completely by increasing 
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2 Models of Deterioration 

2.1 Random Variable (RV) Deterioration Model 

In case of a deteriorating system, the structural failure is defined as an event when the strength falls short 
of the applied stress. A corresponding limit state function is defined as 

[ ] 0)()()( 0 ≤−=−−=− tXstXrstR ρ  (1) 

where R(t) denotes the deteriorating resistance at time t, s the load effect, r0 the initial resistance, X(t) the 
cumulative deterioration at time t, and ρ = (r0 - s) > 0 is the available design margin or a failure threshold. 
For the sake of simplicity of the discussion, r0, s and ρ are assumed as deterministic constants. Thus the 
failure is the event of cumulative deterioration X(t) exceeding the threshold ρ.

The random variable (RV) model characterizes the randomness of the deterioration by a finite-
dimension vector of time invariant random variablesΘ  as ( ; )X t . For example, consider a simple linear 
deterioration model as  

AttX =)( (2)

where A is the deterioration rate, which is typically randomized to reflect the variability in a large 
population of similar components. Given the probability distribution of random rate, FA(a), the 
distribution of the amount of deterioration, X(t), is derived as FX(t)(x) = FA(x/t). The mean, variance and 
coefficient of variation (COV) of X(t) are expressed respectively as  
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According to the failure definition in Eq. (1), the cumulative probability distribution of the lifetime, T,
can be written as
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Depending on the probability distribution of A, the lifetime distribution can be derived analytically or 
computed numerically.  

Suppose the deterioration rate is a gamma distributed random variable with probability density 
function given as 
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where η and δ are the shape and scale parameter, respectively. We denote the gamma density function by 
),;( δηaga  and its cumulative distribution function by ),;( δηaGA . From Eq.(2), the deterioration, X(t),

is also gamma distributed with density function ),;( txga δη . From Eq.(4), the lifetime (T = ρ /A)
follows an inverted gamma distribution with the following density function: 

t
T e

t
tf δρ

η

δ
ρ

η
ρδ /

1

)(
)/()( −

+

Γ
=  (6) 

and the cumulative distribution function is written as 
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It can be shown that the moments of the lifetime are given as follows: 
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Since the gamma distributed deterioration rate has mean δη  and COV η/1 , the moments of lifetime 
distribution can be related with that of the degradation rate as  
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2.2 Gamma Process (GP) Deterioration Model 

The gamma process is a continuous-time Markov process with independent and gamma distributed 
increments (Abdel-Hameed 1975). The gamma process is a limit of a compound Poisson process with 
gamma distributed increments. The limit is reached when the Poisson rate approaches infinity in any 
finite time interval as the size of the increment tends proportionally to zero (Dufresne et al. 1991). In 
other words, the gamma process model implies that deterioration progresses with frequent occurrence of 
very small increment. A physical example such process is the flow accelerated corrosion in nuclear piping 
system. 

In the stationary gamma process (GP) model, the cumulative deterioration X(t) follows a gamma 
distribution );( βα  ,txga with the shape parameter αt and the scale parameter β. The mean, variance and 
COV of X(t) are given as 
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In this model, both mean and variance of the deterioration are linear in time. In RV model, the 
variance is quadratic in time as shown in Eq.(3). From Eq. (1), the cumulative lifetime distribution can be 
expressed as 

],;[1])([)( βαρρ tGAtXPtFT −=≥=  (11) 

The probability density function, fT(t) = dFT(t)/dt, has no closed form expression, but it can be computed 
numerically. Similarly, the moments of the lifetime have to be evaluated by numerical integration. 

3 Comparison of RV and GP Models 

3.1 Calibration of the Parameters of RV and GP Models 

In order to have a consistent comparison between the RV and GP models, a careful scheme is required for 
the calibration of the model parameters. In practical situations, typically a sample of lifetime data is 
available from the past failures records, and the mean ( Tµ ) and COV ( Tν ) of the lifetime can be 
estimated from such a sample. 

If we assume that the random lifetime sample is generated by a RV deterioration model, the 
parameters of random rate can be derived in terms of the mean and COV of the lifetime using Eq.(8) as  
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If however the underlying degradation model is assumed to be a stochastic gamma process, the shape and 
scale parameters can be obtained by solving the following equations of moments:  
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The two simultaneous equations must be solved numerically to compute the parameters α and β.
In summary, in the present calibration scheme, both RV and GP models are equivalent in a sense that 

they have identical mean and variance of the lifetime. The parameters of these two models are given in 
Tables 1 and 2.

Table 1: Parameters used in the model calibration 

Mean Lifetime Tµ  COV of Lifetime Tν Failure threshold ρ

50 units of time (fixed) Varied from 0.1 to 0.9 100 units (fixed) 

Table 2: Examples of RV and GP model parameters  

Parameters 3.0=Tν 6.0=Tν 9.0=Tν
Shape (η) 13.1111 4.7778 3.2346 

RV Model 
Scale (δ) 0.1651 0.5294 0. 8950 

Shape (α) 0.2099 0.0408 0. 0078 
GP Model 

Scale (β) 10.01 64.63 1,453.6 

3.2 Comparison of Deterioration Distribution 

The evolution of deterioration is compared in the two equivalent RV and GP models. Figure 1 compares 
the mean rate of deterioration as a function of COV of the lifetime distribution (νT) by fixing the mean 
lifetime and failure threshold as µT = 50 and ρ = 100.  

Figure 1: Comparison of the mean deterioration rate in equivalent RV and GP models (µT = 50) 

The mean deterioration rates in the RV and GP model are given as µA = ηδ and αβ, respectively. 
When νT < 0.6, the mean rates in both models are almost identical. However, in cases of νT > 0.6, the GP 
deterioration rate accelerates much faster than that in the RV model.  
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Figure 2: Coefficient of variation (COV) of deterioration states in equivalent RV and GP models 

Figure 2 compares the COV of deterioration, ( )X tν , in the two models. It is a time-invariant and nonlinear 

function (Eq.3 and 9) of νT in the RV model. In contrast, ( )X tν in GP model is a time-dependent parameter 

(Eq. 10), which is decreasing over time. Nevertheless, ( )X tν  of GP model is always greater than that of an 
equivalent RV model.  

Figure 3: Probability density functions of deterioration X(t) for νT = 0.3 

The probability density function (PDF) of X(t) is given as ),;( txga δη  and ),;( βα txga in the RV 
and GP models, respectively. The evolution of the PDF with time is displayed in Figure 3 for 3.0=Tν .
A key observation is that deterioration in GP model has greater variability than that in an equivalent RV 
model. 
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3.3 Comparison of Lifetime Distributions 

The model calibration scheme is based on the method of moments that yields the parameters of RV and 
GP models such that the mean and COV of the lifetime distribution are identical in both models. In spite 
of the identical first two moments, the tails of lifetime distribution in RV and GP models can be 
remarkably different, as shown in Figure 4. Figure 4(a) shows that the lifetime distribution of the RV 
model is more skewed that that of the GP model. The difference between distribution tails can be seen 
more clearly through a comparison of survival functions in Figure 4(b). The GP model is more 
pessimistic than RV model about the prospect of survival due to uncertainty associated with evolution of 
deterioration that takes place in form of independent gamma distributed increments. In contrast, the 
deterioration in the RV model is fully correlated over the lifetime, which results in an overestimation of 
the survival probability. 

Figure 4: Comparison of lifetime distributions in equivalent RV and GP models for νT = 0.3: (a) probability density, 
and (b) survival function 

4 Age-Based Replacement Policy 

The age-based replacement is the simplest policy for the renewal of aged fleet of structures and 
components. In this policy, a component is replaced when it reaches to a specific age (t0) regardless of its 
condition. The component is of course replaced, if failure occurs before the replacement time, t0.

Denote the total cost associated with all the consequences of a structural failure as CF, and the cost of 
a preventive replacement as CP. According to the renewal theory, the average cost per unit time in long 
term, also known as the mean cost rate K, can be computed as a function of the replacement age (Barlow 
and Proschan 1965):  
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It is easy to check that K(to) → TFC µ/  as t0 → ∞. Using Eq.(14), an optimal age of preventive 
replacement (t0) can be found that would minimize the mean cost rate.  

Since the calculation of the cost rate is sensitive to the lifetime distribution FT(t), it would be of 
interest to examine the impact of RV and GP model on the replacement policy. For an illustration, the 
cost data are assumed as CP = 10 and CF = 50. The basic data given in Tables 1 and 2 are used in the 
calculation of lifetime distribution. Figure 5 shows the variation of mean cost rate with the replacement 
age when the lifetime COV is νT = 0.3. The optimal replacement age for both models is about the same, 
29 units, but corresponding mean cost rate for the GP model (K(29) = 0.45 units) is greater than that of 
the RV model (0.38).  The reason is that the GP model involves higher uncertainty than the RV model, as 
discussed in Section 3.
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Figure 5: Mean cost rate as a function of replacement age in equivalent RV and GP models (νT = 0.3) 

A comprehensive comparison of optimal cost rate and replacement age results for other values of νT
in the RV and GP models are shown in Figure 6. The results of optimal replacement age obtained from 
the two models are qualitatively different. In the RV model, the optimal replacement age decreases 
continuously as the lifetime COV νT increases. This observation is somewhat intuitive in the sense that 
when faced with increased uncertainty it is prudent to reduce the replacement age. The results of GP 
model exhibit two distinct trends. Initially, with increase in lifetime COV the replacement age decreases. 
However, as νT increases beyond 0.5, the trend reverses and the replacement age begins to increase. It 
means that in case of large uncertainty associated with component lifetime, the life-cycle cost can be 
optimized by extending the replacement age.  

Figure 6: Comparison of age replacement policy in equivalent RV and GP models: (a) replacement age, and (b) 
mean cost rate 

The comparison of the cost rate in Figure 6(b) shows that mean cost rate obtained from GP model is 
always higher than that of the RV model as a result of additional temporal uncertainty associated with GP 
model. The difference between the optimum cost rates increases with increase in lifetime uncertainty. 
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5 Condition Based Maintenance (CBM) Policy 

5.1 The Strategy 

The deterioration along a specific sample path is deterministic in the RV model, whereas it varies 
probabilistically in the GP model. In a linear RV model, one inspection determines the deterioration rate 
and it fixes the future deterioration path. An inspection in GP model reveals only its current state from 
which we can infer only the probability distribution of future deterioration. This distinction has profound 
implications to the optimization of condition-based maintenance strategies. 

The condition based maintenance (CBM) strategy involves the periodic inspection of a structure at a 
fixed time interval tI and cost CI. We assume that the inspection is accurate such that the deterioration X(t)
can be measured with negligible error. The threshold for the preventive maintenance, cρ (0 < c <1), is a 
fraction of the failure threshold. The preventive maintenance (PM) results in complete renewal (as good 
as new) of the component. If X(tI) < cρ , no action is taken until the next inspection. A component is 
renewed with cost CP when cρ  < X(tI) < ρ. The structure would be immediately replaced upon failure at 
any time when X(t) > ρ, incurring a failure cost, CF. Typically PM cost is much lower than the failure cost 
(CP < CF).

The optimization of the condition-based maintenance means finding the inspection interval (tI) and 
the PM ratio (c) that would minimize the mean cost rate. This in principle involves a two-dimensional 
optimization problem. In practical situations, however, the PM threshold cρ is known from experience or 
prescribed by operation standards or regulation. In such cases, the inspection interval is the only 
optimization variable. For illustration purpose, we fix the PM ratio as c = 0.8 and determine the optimal 
inspection interval and the associated mean cost rate for the RV and GP models. 

5.2 RV Model for Condition Based Maintenance 

The three possibilities that arise at any time of inspection are: do nothing, PM or renewal, as shown in the 
maintenance decision tree in Figure 7.  

Figure 7: CBM decision tree for the RV model 

At the time of first inspection tI, if we observe X(tI) < cρ  we do nothing and the time of the future 
preventive maintenance can be predicted as )(/ IIPM tXtct ρ= , since one inspection suffices to 
determine the sample path in the linear RV deterioration. This is referred to as delayed PM and note that 
no additional inspection is required before the time of replacement. The other two situations are 
straightforward. The PM is immediately conducted when cρ < X(tI) < ρ , and it is replaced when X(tI) > 
ρ . A renewal is thus a delayed PM, immediate PM, or a CM. 

The most important point is that the under assumption of RV deterioration model, only one inspection 
is required for the implementation of CBM strategy. 

Using the maintenance decision tree and associated costs shown in Figure 7, it is easy to set up 
expressions for the mean renewal cycle cost, C, and length, L in terms of the time of first inspection 

Start Inspection

Failed & CM

X(tI) > ρ

cρ < X(tI) < ρ

 X(tI) < cρ

Immediate PM

Delayed PM

(C = CF, L = tF )

(C = CI + CP, L = tPM )

(C = CI + CP, L = tI )
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interval tI and PM ratio c. The renewal cycle cost is simply evaluated as  
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Note that the mean cycle cost is independent of the PM ratio, c. The renewal cycle length is evaluated as  
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The derivation of Eq. (16) uses the mathematical identity for the expectation of a non-negative random 

variable, i.e., [ ]∞
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Eq. (15) and (16) can be easily evaluated given the parameters of the gamma distribution of the 
random rate A. According to renewal theory, the mean cost rate is given as 
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When c = 1, the renewal cycle length equals the mean lifetime for any inspection interval. As the 
inspection interval tI → ∞, the CBM policy becomes equivalent to the age-based replacement policy. 

Figure 8: CBM decision tree for the GP model 

5.3 GP Model for Condition Based Maintenance 

The inspection and replacement scenarios in the GP model are more involved due to temporal 
uncertainty. The three possible situations arise at every inspection interval, namely, inspection and do 
nothing, preventive maintenance, or failure, as shown in the maintenance decision tree in Figure 8. In this 
case, a renewal is either an immediate PM or a corrected maintenance after unchecked failure. The 
renewal cycle cost is derived as (Park 1988, van Noortwijk et al. 1996) 
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The mean cycle length can be obtained as  
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Expressing each probability above in terms of the probabilities of the deterioration at corresponding 
times, we calculate numerically the mean cycle cost and mean cycle length using the following 
expressions (Park 1988): 
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There are two limiting cases of the CBM policy. As the inspection interval tI becomes large, the mean 
cost rate converges to TFC µ/ . Secondly, as the PM ratio c approaches 1, tI converges to the optimal 
replacement age similar to that in the age-based maintenance policy. 

5.4 Numerical Examples 

In the optimization of inspection interval with respect to the cost rate, the following cost data are used: CI
= 1, CP = 10, CF = 50 and the PM ratio c = 0.8. The parameters of the RV and GP models are the same as 
calibrated in Section 3.1.

Figure 10: Mean cost rate as a function of inspection interval in equivalent RV and GP models (νT = 0.3) 

Figure 9 compares the mean cycle cost and mean cycle length obtained from the RV and GP models 
(for νT = 0.3), whereas the mean cost rates, and its different component, are plotted in Figure 10. These 
results show remarkable differences between the two equivalent models of deterioration.  

The cost curve for RV model has two plateaus, the lower one extends from tI =0 – 30 and the 
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corresponding cost is CI + CP. The upper limit of the cost is CF. Because of the lack of temporal 
uncertainty, the RV model favors a short inspection interval. The GP model shows a distinct optimum of 
inspection interval (topt = 7 units) in Figure 10(b). For a small inspection interval, the cycle cost is fairly 
high due to increase in cost associated with frequent inspections. This aspect is qualitatively different 
from the RV model, which associates a smaller cost with a short inspection interval. For a large interval, 
the GP cycle cost approaches to the failure cost as expected. In general, the GP cycle cost is higher than 
that for RV model due to the effect of temporal uncertainty.  

Figure 11: Comparison of DBM policy for RV and GP models: (a) inspection interval age, and (b) mean cost rate 

The optimization results for RV and GP models for other values of the lifetime COV are compared in 
Figure 11. It is remarkable in the RV model that both the optimum cost rate and inspection interval are 
insensitive to the variance of lifetime distribution, which is due to the lack of consideration of temporal 
uncertainty. In contrast, the minimum cost rate in the GP model increases with lifetime uncertainty. The 
cost rate increases from 0.38 to 0.97 as the COV of lifetime (νT) is increased from 0.1 to 0.8. The optimal 
inspection interval increases from 7 to 30 units, as νT is increased from 0.1 to 0.8.  

6 Conclusion

The purpose of infrastructure life cycle management is to mitigate the risk of structural failures caused by 
unchecked deterioration. The uncertainty associated with deterioration can be incorporated through 
probabilistic models that can be classified in two broad categories, namely the random variable (RV) 
model and stochastic process model. The paper introduces a versatile stochastic gamma process (GP) 
model and compares it with an equivalent random variable (RV) model with respect to distributions of 
lifetime, deterioration magnitude and the life cycle cost. 
The paper underscores the points that a RV model cannot capture temporal variability associated with 
evolution of degradation. As a consequence, the deterioration along a specific sample path is 
deterministic in the RV model, whereas it varies probabilistically in the GP model. This distinction has 
profound implications to the optimization of age-based and condition-based maintenance strategies. The 
results presented in the paper show that the optimum cost and inspection interval obtained from stochastic 
process model are qualitatively different than that obtained from the RV model. The RV model appears to 
underestimate the life cycle cost due to lack of consideration of temporal uncertainty. 

In summary, a careful consideration of the nature of uncertainties associated with deterioration is 
important for a meaningful time-dependent reliability analysis and life-cycle management of structures. If 
the deterioration process is affected by temporal uncertainty, it is mandatory to model it as a stochastic 
process.
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