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Introduction

Failures in randomly vibrating structures are defined to occur if the response exceeds permissible
thresholds, within specified time durations. Estimating the failure probability involves characterizing
the probability of the exceedance of the structure response, which are modeled as random processes.
An elegant approach for addressing this problem lies in expressing the failure probability in terms
of the probability distribution function (PDF) of the extreme values associated with the response.

In structural series systems, failure of any of the individual components signals system failure.
The system reliability is thus expressible in terms of the joint probability of exceedance of the
component response processes. Often, the loads acting on the various components of a system have
common source, and hence, the component responses, and in turn, their extremes, are mutually
dependent. This emphasizes the need to characterize the joint PDF of these extreme values for
estimating the system reliability.

A common approach in characterizing the extreme value distributions for random processes, is
to study the associated first passage failures, based on the assumption that level crossings can be
modeled as Poisson counting processes. The parameter of the counting process is related to the
mean outcrossing rate, which in turn, can be estimated if the joint probability density function
(pdf) of the process and its time derivative, is available (Rice, 1956). For Gaussian random pro-
cesses, this is readily available and closed form expressions for the extreme value distributions have
been developed (Lin, 1967; Nigam, 1983). This knowledge is, however, seldom available for non-
Gaussian processes. A literature review on the various approximations developed for the extreme
value distributions for scalar and vector non-Gaussian processes is available (Manohar and Gupta,
2005). Outcrossing rates of vector random processes have been studied in the context of problems in
load combinations and in structural reliability. The focus of many of these problems have been in de-
termining the probability of exceedance of the sum of the component processes, and the outcrossing
event has been formulated as a scalar process outcrossing. Some of these results have been used in
the geometrical approach (Leira, 1994, 2003) in the studies on development of multivariate extreme
value distributions for vector Gaussian/non-Gaussian random processes. Multivariate extreme value
distributions associated with a vector of Gaussian random processes have been developed (Gupta and
Manohar, 2005), based on the principle that multi-point random processes can be used to model the
level crossing statistics associated with the vector Gaussian processes. Similar principles have been
applied in developing approximations for the multivariate extreme value distributions associated
with a vector of non-Gaussian processes, obtained as nonlinear transformations of vector Gaussian
processes (Gupta and van Gelder, 2005).

Here, we extend the above formulation to illustrate its usefulness in estimating the reliability
of a randomly vibrating structural system, in series configuration. The response of the structural
components have been modeled as a vector of mutually correlated log-normal loads and approxim-
ations have been developed for the joint extreme value distribution for the response of the structural
components. This is of particular importance in the context of risk analysis of nuclear plants, where
the dynamic loads arising from various load effects, are modeled as log-normal random processes.
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Problem Statement

We consider a linear structural system consisting of m components in series configuration. We
assume that the structural system is excited by a n-dimensional vector of mutually correlated, sta-
tionary, log-normal loads {Yk(t)}nk=1. The structure response of the j th component is given by

Zj(t) = g̃j [Y1(t), . . . , Yn(t)] = gj [X1(t), . . . , Xn(t)], (1)

where Yj (t) = eXj (t), (j = 1, . . . , n) and g̃j [eX1(t), . . . , eXn(t)] = gj [X1(t), . . . , Xn(t)]. Here,
{Xj(t)}nj=1 constitutes a vector of mutually correlated Gaussian random processes, gj [·] is a determ-
inistic nonlinear function which relates the random processesXj(t) to the component responseZj(t)
and t is time. It is clear that Zj(t) is a non-Gaussian process whose probabilistic characteristics are
difficult to estimate. A component failure is defined to occur when Zj(t) exceeds specified threshold
levels and is given by

Pfj = 1 − P [Zj (t) ≤ αj ; ∀t ∈ (0, T )], (2)

where αj denotes the threshold level, T is the duration of interest and P [·] is the probability measure.
Equation (2) can be recast into the following time invariant format

Pfj = 1 − P [Zmj ≤ αj ] = 1 − PZmj (αj ), (3)

where Zmj = max0≤t≤T Zj (t) is a random variable denoting the extreme value of Zj(t) in [0, T ]
and PZmj (·) is the corresponding PDF. We assume that αj , (j = 1, . . . ,m) to be high and the
spectral bandwidth ratio (Vanmarcke, 1972) of the processes Zj(t), (j = 1, . . . ,m) to be such that
the outcrossings of Zj(t) can be modeled as a Poisson point process. This leads to the following
expression for PZmj (αj ):

PZmj (αj ) = exp[−ν+
j (αj )T ]. (4)

Here, ν+
j (αj ) is the mean outcrossing rate of Zj(t) across level αj . An estimate of ν+

j (αj ) can be
determined from the well known expression (Rice, 1956)

ν+
j (αj ) =

∫ ∞

0
żpZj Żj (αj , ż; t, t)dż, (5)

where pZj Żj (z, ż; t, t) is the joint pdf of the process Zj(t) and its instantaneous time derivative

Żj (t), at time t . A crucial step in this formulation lies in determining the joint pdf pZj Żj (z, ż).
For a structural system comprising of m components, the structure is deemed to have failed if

any of the constituentm components fail. Thus, the system failure, denoted by Pfs , is expressed as

Pfs = 1 − P [∩mj=1{Zmj ≤ αj }] = 1 − PZm1 ...Zmm
(α1, . . . , αm). (6)

Here, PZm1 ...Zmm
(·) is them-dimensional joint PDF for the vector of extreme value random variables

{Zmj }mj=1. Assuming that the respective thresholds, αj , corresponding to each component process
Zj(t), are sufficiently high for the respective outcrossings to be rare, the level crossings, denoted
by {Nj(αj )}mj=1, can be modeled as Poisson random variables. Since the different components
have common source of excitations, {Zj(t)}mj=1, and, in turn, {Nj(αj )}mj=1, are mutually correlated.
Consequently, {Zmj }mj=1 are also expected to be mutually dependent. This implies the need for devel-
oping approximations for the joint multivariate PDF for the level crossings. Based on recent studies
(Gupta and Manohar, 2005; Gupta and van Gelder, 2005) we construct the multivariate PDF for the
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extreme values of the vector of non-Gaussian random processes {Zj(t)}mj=1. We first illustrate the
proposed method for the case whenm = 2 and then extend it to the more general multi-dimensional
situation.

Bivariate Vector

We first consider the case whenm = 2 andZ1(t) andZ2(t) constitute a vector of mutually dependent
non-Gaussian random variables, given by

Z1(t) = g[X1(t), . . . , Xn(t)], (7)

Z2(t) = h[X1(t), . . . , Xn(t)], (8)

where g[·] and h[·] are deterministic nonlinear functions. Let N1(α1) and N2(α2) be the number of
level crossings for Z1(t) and Z2(t), across thresholds α1 and α2, in time duration [0, T ]. For high
thresholds, N1(α1) and N2(α2) can be modeled as mutually dependent Poisson random variables.
Introducing the transformations,

N1(α1) = U1 + U3,

N2(α2) = U2 + U3, (9)

where {Uj }3
j=1 are mutually independent Poisson random variables with parameters {λj }3

j=1, it can
be shown that N1(α1) and N2(α2) are Poisson random variables with parameters (λ1 + λ3) and
(λ2 + λ3) respectively and covariance equal to λ3. This construct for multivariate Poisson random
variables has been discussed in the literature (Johnson and Kotz, 1969). The parameters {λj }3

j=1 are,
as of yet, unknowns.

Taking expectation on both sides of Equation (9), it can be shown that⎡
⎣ 1 0 1

0 1 1
0 0 1

⎤
⎦
⎧⎨
⎩
λ1
λ2
λ3

⎫⎬
⎭ =

⎧⎨
⎩

〈N1(α1)〉
〈N2(α2)〉

Cov[N1(α1),N2(α2)]

⎫⎬
⎭ . (10)

Here, Cov[N1(α1),N2(α2)] = 〈N1(α1)N2(α2)〉 − 〈N1(α1)〉 − 〈N2(α2)〉 and if Zj(t) are stationary
random processes,

〈Nj (αj )〉 = T

∫ ∞

0
żpZj Żj (αj , ż)dż, j = 1, 2, (11)

〈N1(α1)N2(α2)〉 =
∫ T

−T
(T − |τ |)

{∫ ∞

0

∫ ∞

0
ż1ż2pZ1Z2Ż1Ż2

(α1, α2, ż1, ż2; τ )dż1dz2

}
dτ, (12)

where τ = t2 − t1. Details of the derivation for Equation (12) is available (Gupta and Manohar,
2005). Thus, a solution for {λj }3

j=1 can be obtained from Equation (10). Furthermore, it has been

shown (Gupta and Manohar, 2005) that the joint PDF for the extreme values are related to {λj }3
j=1

through the relation

PZm1Zm2
(α1, α2) = exp

⎡
⎣−

3∑
j=1

λj

⎤
⎦ . (13)
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A crucial step in this formulation, however, lies in evaluating the expressions 〈N1(α1)〉, 〈N2(α2)〉
and 〈N1(α1)N2(α2)〉, for which, a knowledge of the pdfs pZ1Ż1

(·), pZ2Ż2
(·) and pZ1Z2Ż1Ż2

(·),
is essential. This, however, is seldom available, especially when Zj(t) are non-Gaussian. In the
following section, a methodology has been presented for developing approximate models for these
pdfs.

Approximation for Joint PDFs

Here, we first illustrate the development of the joint pdf, of the form, pZ1Ż1
(·). The method is based

on the formulation developed by Naess (1985). Next, based on an earlier study (Gupta and van
Gelder, 2005), we show the development of an approximation for pZ1Z2Ż1Ż2

(·).
Scalar Case

We rewrite pZ1Ż1
(·) in the form

pZ1Ż1
(z, ż; t, t) =

∫ ∞

−∞
. . .

∫ ∞

−∞
pX2...XnZ1Ż1

(x2, . . . , xn, z, ż; t, t)dx2 . . . dxn, (14)

where pX2...XnZ1Ż1
(·) is the joint pdf of random variablesX2,. . . ,Xn, Z1 and Ż1, at time t . Using the

standard technique of transformation of random variables, we seek the transformation between the
joint pdf pX2...XnZ1Ż1

(·) and pX1...XnŻ1
(·). In order to achieve this, we assume that at time t , Z1 in

Equation (7), is a function of X1 with all other random variables being fixed. We assume that there
are k solutions for X1 for the equation z1 = g[X1, x2 . . . , xn], for a given set of values for Z1 = z1,
X2 = x2,. . . ,Xn = xn. This leads to the expression

pX2...XnZ1Ż1
(x2, . . . , xn, z, ż) =

k∑
j=1

∣∣∣ ∂Z
∂X1

∣∣∣−1

j
pX1...XnŻ1

(x
(j)

1 , . . . , xn, ż). (15)

Here, k depends on the form of the function g[·]. The joint pdf pX1...XnŻ1
(·) can now be written as

pX1...XnŻ1
(x1, . . . , xn, ż) = pŻ1|X1...Xn

(ż|X1 = x1, . . . , Xn = xn)pX1...Xn(x1, . . . , xn). (16)

Here, pX1...Xn(x1, . . . , xn) is the n-dimensional joint Gaussian pdf and is completely specified if
the mean and the covariance matrix of the vector Gaussian process is known. To determine the
conditional pdf pŻ1|X1...Xn

(·), we first write the time derivative of Ż1(t) from Equation (7), and
when conditioned on {Xj = xj }nj=1, is given by

Ż1|X =
n∑
j=1

∣∣∣ ∂Z1

∂Xj

∣∣∣
X
Ẋj =

n∑
j=1

gj Ẋj = GẊ. (17)

Here, G = [g1, . . . , gn], Ẋ = [Ẋ1, . . . , Ẋn]′, the superscript (′) denoting transpose and gj =
∂Z1/∂Xj , and when conditioned on X, is a constant. Ẋj (t) are the time derivatives of Xj(t) and
are thus, zero-mean, stationary, Gaussian random process. Since Ż1|X is a linear sum of Gaussian
random variables, Ż1|X is Gaussian, with parameters

µZ1|X = G〈Ẋ〉 = 0,

σ 2
Ż1|X = G〈ẊẊ∗〉G′ = GCẊẊG′. (18)
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Here, ∗ denotes complex conjugation. Substituting Eqs. (14-16) to Equation (11), we get

〈N1(α1)〉 = T

k∑
j=1

∫
�̈j

∫ ∣∣g(j)1

∣∣−1

×
{∫ ∞

0
żpŻ1|X(ż; x(j), t)dż

}
pX1...Xn(x

(j)

1 , x2, . . . , xn)dx2 . . . dxn. (19)

Here,�j denotes the domain of integration determined by the permissible set of values x2,. . . ,xn for

each solution of x(j)1 . Since pŻ1|X(·) is Gaussian, it can be shown that (Naess, 1985)

∫ ∞

0
żpŻ1|X(ż; x, t)dż = σŻ1|X 

(
µŻ1|X
σŻ1|X

)
, (20)

where  (x) = φ(x) + x�(x), φ(x) and �(x) are respectively, the standard normal pdf and PDF.
Without loss of generality, X can be assumed to be a vector of mutually independent Gaussian
random variables. When X are correlated, appropriate linear transformations can be applied to make
X mutually independent. These linear transformations, however, result in a new definition for the
function g[·].

Equation (19) can now be expressed as

〈N1(α1)〉 = T

k∑
j=1

∫
�̈j

∫
f (x

(j)

1 , x2, . . . , xn)pX2...Xn(x2, . . . , xn)dx2 . . . dxn, (21)

where

f (x
(j)

1 , x2, . . . , xn) = |g(j)1 |−1σŻ1|X 
(
µŻ1|X
σŻ1|X

)
pX1(x

(j)

1 ).

The difficulties involved in evaluating Equation (21) are: (a) in determining the domain of integration
�j , defined by the possible set of solutions for X(j)1 , and (b) in evaluating the multidimensional
integral. A recently developed numerical algorithm is used to overcome these difficulties. This has
been discussed later in this paper.

Vector Case

We now focus on developing models for pZ1Z2Ż1Ż2
(·). As in the scalar case, we rewrite

pZ1Z2Ż1Ż2
(z1, z2, ż1, ż2)

=
∫ ∞

−∞
. . .

∫ ∞

−∞
pX3...XnZ1Z2Ż1Ż2

(x3, . . . , xn, z1, z2, ż1, ż2)dx3 . . . dxn, (22)

where the dimension of the integrals is (n− 2). The joint pdf pX3...XnZ1Z2Ż1Ż2
is rewritten as

pX3...XnZ1Z2Ż1Ż2
=

k∑
j=1

|J|−1
j pX1...XnŻ1Ż2

(x
(j)

1 , x
(j)

2 , x3, . . . , xn, ż1, ż2), (23)

where, for fixed values of X3,. . . ,Xn, Z1 and Z2, there exist k solutions for X1 and X2, and Jj
denotes the Jacobian matrix

Jj =
[
∂Z1/∂X1 ∂Z1/∂X2
∂Z2/∂X1 ∂Z2/∂X2

]
, (24)
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evaluated at (x(j)1 , x
(j)
2 ). As before, we now rewrite

pX1...XnŻ1Ż2
(x
(j)
1 , x

(j)
2 , x3, . . . , xn, ż1, ż2; t1, t2) = pŻ1Ż2|X(ż1, ż2|x; t1, t2)pX(x), (25)

where pX(x) is the n-dimensional Gaussian pdf. The time derivatives for Z1(t) and Z2(t), condi-
tioned on X, is expressed as

Ż1(t1) =
n∑
j=1

∣∣∣ ∂g
∂Xj

∣∣∣
X
Ẋj (t1) = GẊ(t1), (26)

Ż2(t2) =
n∑
j=1

∣∣∣ ∂h
∂Xj

∣∣∣
X
Ẋj (t2) = HẊ(t2). (27)

Here, gj = ∂g/∂Xj , hj = ∂h/∂Xj , evaluated at X = x and G = [g1, . . . , gn], H = [h1, . . . , hn].
Since G and H are constants and Ẋ(t) constitutes a vector of zero-mean stationary, Gaussian random
processes, Ż1(t) and Ż2(t), when conditioned on X, are zero-mean, stationary Gaussian processes.
The joint conditional pdf pŻ1Ż2|X(ż1, ż2|X; t1, t2) is therefore jointly Gaussian and is of the form

pŻ1,Ż2|X(ż1, ż2; t1, t2) = 1

4π2|�|0.5 exp

[
−1

2
w�−1w′

]
. (28)

Here, w = [ż1, ż2]′, � ≡ �(t1, t2) = TCẊ(t1, t2)T
′, the operator | · | denotes the determinant

of a matrix, T = [G,H]′ and CẊ(t1, t2) is the covariance matrix 〈Ẋ(t1)Ẋ(t2)∗〉. Without loss of
generality, it can be assumed that Ẋ(t) constitutes a vector of mutually independent, stationary,
Gaussian random processes. This leads to CẊ(t1, t2) = CẊ(τ ) being a diagonal matrix, where τ =
t2 − t1.

Substituting Equations (22–28) into Equation (12), and rearranging the order of integrations, we
get

〈N1(α1)N2(α2)〉 =
k∑
j=1

∫
�̈j

∫
|J|−1
j

{∫ T

−T
(T − |τ |)F (τ )dτ

}

× pX1(x
(j)

1 )pX2(x
(j)

2 )pX3...Xn(x3, . . . , xn)dx3 . . . dxn, (29)

where

F(τ) =
∫ ∞

0

∫ ∞

0
ż1ż2pŻ1Ż2|X(ż1, ż2; τ )dż1dż2. (30)

The above integral can be evaluated using symbolic software MAPLE or numerically evaluated.
Subsequently, the inner integral in Equation (29), with respect to τ , is carried out numerically. The
remaining (n − 2) dimensional integrals can be evaluated using the numerical algorithm described
later in this paper.

Multivariate Vector

As has been shown earlier (Gupta and Manohar, 2005), the construct for bivariate vector of Poisson
random variables can be easily generalized for the casem > 2. The number of mutually independent
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Poisson random variables can be generalized to be given by Cm1 + Cm2 , where Cmk denotes combin-
ation of m variables taken k at a time. Thus, for m = 3, consider six mutually independent Poisson
random variables, {Ui}6

i=1, with parameters {λi}6
i=1 and define

N1(α1) = U1 + U4 + U5

N2(α2) = U2 + U4 + U6

N3(α3) = U3 + U5 + U6 (31)

The equations relating {λi}6
i=1 to the moments of {Ni}3

i=1 can be shown to be given by⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ1
λ2
λ3
λ4
λ5
λ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈N1(α1)〉
〈N2(α2)〉
〈N3(α3)〉

Cov[N1(α1),N2(α2)]
Cov[N1(α1),N3(α3)]
Cov[N2(α2),N3(α3)]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
. (32)

It is to be noted that for m > 2, the formulation requires the evaluation of a set of integrals of the
form in Equation (12) and at no stage does the order of the integrals becomes greater than that of
Equation (12). In general, the number of such integrals that need to be evaluated is Cm2 .

Numerical Algorithm

A crucial step in the above formulation lies in evaluating integrals of the type as in Equation (21).
Closed form solutions for the integrals are possible only for a limited class of problems. Here, we
propose the use of Monte Carlo methods, in conjunction with importance sampling to increase the
efficiency, for evaluating these integrals. The integrals in Equation (21) can be recast as

Ij =
∫ ∞

−∞
I [q(X) ≤ 0]f (X)pX(x)

hX̃(x)
hX̃(x)dx

= 1

N

N∑
j=1

I [q(Xj ) ≤ 0]f (Xj )pX(xj )
hX̃(xj )

, (33)

where hX̃(·) is the importance sampling pdf and I [·] is an indicator function taking values of unity
if q(X) ≤ 0, indicating that the sample lies within the domain of integration�j , and zero otherwise.
Since the problem is formulated into the standard normal space X, hX̃(·) can be taken to be Gaussian
with unit standard deviation and shifted mean. The difficulty, however, lies in determining where
should hX̃(·) be centered. An inspection of Equation (33) reveals that the form of the integrals are
similar to reliability integrals which are of the form

Ij =
∫ ∞

−∞
I [q(X) ≤ 0]pX(x)dx. (34)

This implies that for efficient computation of the integrals, the importance sampling pdf hX̃(·) may
be centered around the design point for the function q(X) = 0. If q(X) is available in explicit form,
first order reliability methods can be used to determine the design point. If q(X) is not available
explicitly, an adaptive importance sampling strategy can be adopted to determine the design point.
In certain problems, the domain of integration, characterized by q(X) = 0, may consist of multiple
design points or multiple regions which contribute significantly to Ij . This is especially true when
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Fig. 1. Schematic diagram for numerical algorithm for evaluating multidimensional integrals; g(x1, x2) = 0 is the limit
surface ion the X1 − X2 random variable space; hY1 (y1) and hY2 (y2) are the two importance sampling pdfs; two design
points at distance β from the origin.

q(X) = 0 is highly nonlinear, irregular or consists of disjointed regions. In these situations, it is
necessary to construct a number of importance sampling functions, with each function centered at
the various design points.

The steps for implementing the algorithm for numerical evaluation of integrals of the type in
Equation (21), has been developed and discussed (Gupta and van Gelder, 2005). The sequential
steps for implementing the algorithm is detailed below, with reference to the schematic diagram in
Figure 1.
(1) Carry out pilot Monte Carlo simulations in the standard normal space. If there are too few

samples in the failure domain, we carry out Monte Carlo simulations with a Gaussian importance
sampling function with mean zero and a higher variance. On the other hand, if there are too few
samples in the safe region, the variance of the importance sampling function is taken to be smaller.
Repeat this step, till we have a reasonable number of samples in the failure and the safe regions.
(2) We sort the samples lying in the failure domain according to their distance from the origin. (3)
A Gaussian importance sampling pdf is constructed which is centered at the sample in the failure
domain lying closest to the origin. Let this point be denoted by d0 and its distance from the origin
be denoted by β0. (4) We check for samples in the failure domain, within a hyper-sphere of radius
β1, β1 − β0 = ε, where ε is a positive number. (5) For samples lying within this hyper-sphere,
we check for the sample d1, which lie closest to the origin but is not located in the vicinity of d0.
This is checked by comparing the direction cosines of d1 and d0. (6) By comparing the direction
cosines of all samples lying within the hyper-sphere of radius β1, we can identify the number of
design points. We construct importance sampling pdfs at each of these design points. If there exist no
samples with direction cosines distinctly different from d0, there is only one design point and a single
importance sampling pdf is sufficient. (7) During importance sampling procedure corresponding to
a design point, for each sample realization, we check if x1 and ẋ1 expressed in terms of the random
variables (Z1, . . . , Z2n−2) are real. The indicator function is assigned a value of unity if real, and
zero otherwise. (8) An estimate of Ij is obtained from Equation (33).

Numerical Example

For illustrating the proposed formulation, we consider a simple structural system consisting of two
components. The component responses, Z1(t) and Z2(t), are assumed to be lognormal random
processes. We assume that Z1(t) and Z2(t) arise from a common source of load effects, and are
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expressed as

Z1(t) = exp[X1(t)+X2(t)+X3(t)],
Z2(t) = exp[X1(t)−X2(t)−X3(t)], (35)

and hence, are mutually correlated. For the sake of simplicity, we assume that {Xj(t)}3
j=1 are mutu-

ally independent, zero-mean, stationary, Gaussian random processes, with auto-correlation function
given by

Rjj (τ ) = S2
j exp[−βjτ 2], j = 1, 2, 3, (36)

where Sj and βj are constants. The prescribed safety levels are assumed to be deterministic and
constant over time. The time duration considered is T = 10 s.

First, we develop the marginal extreme value distributions for Z1(t) and Z2(t). Following Equa-
tion (21), we get

〈Nj (αj )〉 = T

∫ ∞

−∞

∫ ∞

−∞
σŻj |X 

(
µŻj |X
σŻj |X

)
pX1(x̃1)

αj
pX2(x2)pX3(x3)dx2dx3, (37)

where, for zj = αj ,

x̃1 = ln[αj ] − x2 − x3, (38)

µżj |X = αj (〈Ẋ1〉 + 〈Ẋ2〉 + 〈Ẋ3〉) = 0, (39)

σ 2
ż|X = α2

j {σ 2
Ẋ1

+ σ 2
Ẋ2

+ σ 2
Ẋ3

} (40)

and {pXj (xj )}3
j=1 are Gaussian pdf with mean zero and standard deviation σj . It can be shown that

Equation (37) can be further simplified to the form

〈Nj (αj )〉 = T σŻj |X 
(µŻj |X
σŻj |X

) 1

αj
〈pX1(x̃1)〉. (41)

The analytical predictions for the failure probability for Z1(t) and Z2(t), given by Equation (41),
for various levels of α1 and α2 are compared with those obtained from full scale Monte Carlo
simulations in Figures 2 and 3. respectively. The accuracy of the analytical predictions are observed
to be acceptable.

Next, we construct the joint extreme value distribution for Z1(t) and Z2(t). For this example,
Equation (29) can be written as

〈N1(α1)N2(α2)〉 =
∫ ∞

−∞

[
|J|−1

{∫ T

−T
(T − |τ |)F (τ )dτ

}
pX1(x̃1)pX2(x̃2)

]
pX3(x3)dx3, (42)

where, for Z1 = α1 and Z2 = α2,

|J| =
[
g1 g2
h1 h2

]
=
[
α1 α1
α2 −α2

]
= −2α1α2, (43)

x̃1 = 1

2
ln[α1α2], (44)

x̃2 = 1

2
ln[α1

α2
] − x3, (45)
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Fig. 2. Probability of exceedance, Pf1 , for Z1(t) across threshold level α1.

Fig. 3. Probability of exceedance, Pf2 , for Z2(t) across threshold level α2.

and F(τ) = s0(τ ){s1(τ )+ s2(τ )+ s3(τ )+ s4(τ )}. Here,

s0(τ ) = 0.25(πc22)
−3/2,

s1(τ ) = πc12c
3/2
22 ,

s2(τ ) = 2(c2
22c11 − c2

12c22)

√
πc22/(c11c22 − c2

12), (46)

s3(τ ) = 2c2
12(c22 − c2

12/c11)

√
πc22/(c11c22 − c2

12),

s4(τ ) = 2c22c12
√
π{2c12/[

√
c22(c11c22 − c2

12)(2 + 2c2
12/(c11c22 − c2

12))]}
+ tan−1[c12/

√
c11c22 − c2

12],
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Fig. 4. Joint PDF for the extreme values of Z1(t) and Z2(t).

[
c11 c12
c12 c22

]
=
[
g1 g2 g3
h1 h2 h3

]⎡⎣ ρ11(τ ) 0 0
0 ρ22(τ ) 0
0 0 ρ33(τ )

⎤
⎦
⎡
⎣ g1 h1
g2 h2
g3 h3

⎤
⎦ , (47)

g1 = g2 = g3 = α1 and h1 = α2, h2 = h3 = −α2, and ρjj (τ ) = 〈Ẋj (t)Ẋj (t + τ )〉 =
−∂2Rjj (τ )/∂τ

2, (j = 1, 2, 3). The inner integral in Equation (42), given by

I =
∫ T

T

(T − |τ |)F (τ )dτ, (48)

can be evaluated numerically. This leads to the following simplified form for Equation (42):

〈N1(α1)N2(α2)〉 = − I

2α1α2
pX1(x̃1)〈pX2(x̃2)〉. (49)

The joint extreme value distribution function for Z1(t) and Z2(t) are computed analytically and is
shown in Figure 4.

The marginal distribution for the exceedance probability, for various threshold levels of α1, have
been shown in Figure 5. In the same figure, the corresponding conditional exceedance probability,
when conditioned on various threshold levels α2, have also been shown. The significant levels of
difference in the probability levels indicate the importance of the correlations that exist between
the extreme values of Z1(t) and Z2(t). The results obtained from Monte Carlo simulations are also
shown in the same figure and are observed to have close resemblance with the analytical predictions.
The corresponding results for Z2(t) are shown in Figure 6.

The analytical predictions are compared with those obtained from Monte Carlo simulations
carried out on an ensemble of 5000 samples of time histories for Z1(t) and Z2(t). These results
have been shown in Figure 6.
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Fig. 5. Probability of exceedance for Z1(t); the markers indicate the estimates obtained from Monte Carlo simulations.

Fig. 6. Probability of exceedance for Z2(t); the markers indicate the estimates obtained from Monte Carlo simulations.
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Concluding Remarks

A methodology has been developed for estimating the time variant reliability of a randomly vibrating
series system, when the component response processes constitute a vector of mutually correlated
log-normal random processes. A key feature in the development of the proposed method lies in
the assumption, that for high thresholds, the number of level crossings of a non-Gaussian process
can be modeled as a Poisson point process. The assumption of the outcrossings being Poisson dis-
tributed have been proved to be mathematically valid for Gaussian processes when the threshold
approaches infinity (Cramer, 1966). However, it has been pointed out that for threshold levels of
practical interest, this assumption results in errors whose size and effect depend on the bandwidth of
the processes (Vanmarcke, 1972). While it can be heuristically argued that for high thresholds, the
outcrossings of non-Gaussian processes can be viewed to be statistically independent and hence can
be modeled as a Poisson point process, to the best of the authors’ knowledge, studies on the validity
of this assumption for non-Gaussian processes, do not exist in structural engineering literature. The
multivariate extreme value distributions obtained by the proposed method, is thus expected to inherit
the associated inaccuracies and limitations due to this assumption.
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