Designation: A 672 - 96 (Reapproved 2001) # Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures¹ This standard is issued under the fixed designation A 672; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval. # 1. Scope - 1.1 This specification² covers steel pipe: electric-fusion-welded with filler metal added, fabricated from pressure-vessel quality plate of any of several analyses and strength levels and suitable for high-pressure service at moderate temperatures. Heat treatment may or may not be required to attain the desired properties or to comply with applicable code requirements. Supplementary requirements are provided for use when additional testing or examination is desired. - 1.2 The specification nominally covers pipe 16 in. (405 mm) in outside diameter or larger with wall thicknesses up to 3 in. (75 mm), inclusive. Pipe having other dimensions may be furnished provided it complies with all other requirements of this specification. - 1.3 Several grades and classes of pipe are provided. - 1.3.1 *Grade* designates the type of plate used. - 1.3.2 *Class* designates the type of heat treatment performed during manufacture of the pipe, whether the weld is radiographically examined, and whether the pipe has been pressure tested as listed in 1.3.3. - 1.3.3 Class designations are as follows (Note 1): | Class | Heat Treatment on Pipe | Radiography, see Section | Pressure Test,
see Section | |-------|------------------------------------|--------------------------|-------------------------------| | 10 | none | none | none | | 11 | none | 9 | none | | 12 | none | 9 | 8.3 | | 13 | none | none | 8.3 | | 20 | stress relieved, see 5.3.1 | none | none | | 21 | stress relieved, see 5.3.1 | 9 | none | | 22 | stress relieved, see 5.3.1 | 9 | 8.3 | | 23 | stress relieved, see 5.3.1 | none | 8.3 | | 30 | normalized, see 5.3.2 | none | none | | 31 | normalized, see 5.3.2 | 9 | none | | 32 | normalized, see 5.3.2 | 9 | 8.3 | | 33 | normalized, see 5.3.2 | none | 8.3 | | 40 | normalized and tempered, see 5.3.3 | none | none | | 41 | normalized and tempered, see 5.3.3 | 9 | none | | 42 | normalized and tempered, see 5.3.3 | 9 | 8.3 | | 43 | normalized and tempered, see 5.3.3 | none | 8.3 | | | | | | ¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.09 on Carbon Steel Tubular Products. | 50 | quenched and tempered, see 5.3.4 | none | none | |----|----------------------------------|------|------| | 51 | quenched and tempered, see 5.3.4 | 9 | none | | 52 | quenched and tempered, see 5.3.4 | 9 | 8.3 | | 53 | quenched and tempered, see 5.3.4 | none | 8.3 | Note 1—Selection of materials should be made with attention to temperature of service. For such guidance, Specification A 20/A 20M may be consulted. 1.4 The values stated in inch-pound units are to be regarded as the standard. #### 2. Referenced Documents - 2.1 ASTM Standards: - A 20/A 20M Specification for General Requirements for Steel Plates for Pressure Vessels³ - A 370 Test Methods and Definitions for Mechanical Testing of Steel Products⁴ - A 435/A 435M Specification for Straight-Beam Ultrasonic Examination of Steel Plates³ - A 530/A 530M Specification for General Requirements for Specialized Carbon and Alloy Steel Pipe⁵ - A 577/A 577M Specification for Ultrasonic Angle-Beam Examination of Steel Plates³ - A 578/A 578M Specification for Straight-Beam Ultrasonic Examination of Plain and Clad Steel Plates for Special Applications³ - E 110 Test Method for Indentation Hardness of Metallic Materials by Portable Hardness Testers⁶ - E 165 Test Method for Liquid Penetrant Examination⁷ - E 350 Test Methods for Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron⁸ - E 709 Guide for Magnetic Particle Examination⁷ - 2.1.2 Plate Steel Specifications (Table 1): - A 202/A 202M Pressure Vessel Plates, Alloy Steel, Chromium-Manganese-Silicon³ - A 204/A 204M Pressure Vessel Plates, Alloy Steel, Molybdenum³ Current edition approved Oct. 10, 1996. Published October 1997. Originally published as A 672 – 72. Last previous edition A 672 – 94. ² For ASME Boiler and Pressure Vessel Code applications see related Specification SA-672 in Section II of that Code. ³ Annual Book of ASTM Standards, Vol 01.04. ⁴ Annual Book of ASTM Standards, Vol 01.03. ⁵ Annual Book of ASTM Standards, Vol 01.01. ⁶ Annual Book of ASTM Standards, Vol 03.01. ⁷ Annual Book of ASTM Standards, Vol 03.03. ⁸ Annual Book of ASTM Standards, Vol 03.05. **TABLE 1 Plate Specification** | TABLE 1 Trate opecinication | | | | | |-----------------------------|---------------------------------------|--------------------|-------------------|--| | Pipe Grade Type of Steel | | ASTM Specification | | | | | | No. | Grade | | | A 45 | plain carbon | A 285 | Α | | | A 50 | plain carbon | A 285 | В | | | A 55 | plain carbon | A 285 | С | | | B 55 | plain carbon, killed | A 515 | 55 | | | B 60 | plain carbon, killed | A 515 | 60 | | | B 65 | plain carbon, killed | A 515 | 65 | | | B 70 | plain carbon, killed | A 515 | 70 | | | C 55 | plain carbon, killed, fine grain | A 516 | 55 | | | C 60 | plain carbon, killed, fine grain | A 516 | 60 | | | C 65 | plain carbon, killed, fine grain | A 516 | 65 | | | C 70 | plain carbon, killed, fine grain | A 516 | 70 | | | D 70 | manganese-silicon—normalized | A 537 | 1 | | | D 80 | manganese-silicon—Q&T ^A | A 537 | 2 | | | E 55 | plain carbon | A 442 | 55 | | | E 60 | plain carbon | A 442 | 60 | | | H 75 | manganese-molybdenum—normalized | A 302 | Α | | | H 80 | manganese-molybdenum—normalized | A 302 | B, C or D | | | J 80 | manganese-molybdenum—Q&T ^A | A 533 | CI-1 ^B | | | J 90 | manganese-molybdenum—Q&TA | A 533 | CI-2 ^B | | | J 100 | manganese-molybdenum—Q&T ^A | A 533 | CI-3 ^B | | | K 75 | chromium-manganese-silicon | A 202 | Α | | | K 85 | chromium-manganese-silicon | A 202 | В | | | L 65 | molybdenum | A 204 | Α | | | L 70 | molybdenum | A 204 | В | | | L 75 | molybdenum | A 204 | С | | | N 75 | manganese-silicon | A 299 | | | $^{^{}A}$ Q&T = quenched and tempered. A 285/A 285M Pressure Vessel Plates, Carbon Steel, Lowand Intermediate-Tensile Strength³ A 299/A 299M Pressure Vessel Plates, Carbon Steel, Manganese-Silicon³ A 302/A 302M Pressure Vessel Plates, Alloy Steel, Manganese-Molybdenum and Manganese-Molybdenum Nickel³ A 442/A 442M Pressure Vessel Plates, Carbon Steel, Improved Transition Properties³ A 515/A 515M Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature Service³ A 516/A 516M Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service³ A 533/A 533M Pressure Vessel Plates, Alloy Steel, Quenched and Tempered, Manganese-Molybdenum and Manganese-Molybdenum-Nickel³ A 537/A 537M Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel³ 2.2 ASME Boiler and Pressure Vessel Code:9 Section II, Material Specifications Section III, Nuclear Vessels Section VIII, Unfired Pressure Vessels Section IX, Welding Qualifications # 3. Terminology - 3.1 Definitions of Terms Specific to This Standard: - 3.1.1 A *lot* shall consist of 200 ft (61 m) or fraction thereof of pipe from the same heat of steel. - 3.1.2 The description of a lot may be further restricted by use of Supplementary Requirement S14. #### 4. Ordering Information - 4.1 The inquiry and order for material under this specification should include the following information: - 4.1.1 Quantity (feet, metres, or number of lengths), - 4.1.2 Name of material (steel pipe, electric-fusionwelded), - 4.1.3 Specification number, - 4.1.4 Grade and class designations (see 1.3), - 4.1.5 Size (inside or outside diameter, nominal or minimum wall thickness). - 4.1.6 Length (specific or random), - 4.1.7 End finish (11.4), - 4.1.8 Purchase options, if any (see 5.2.3, 11.3, 14.1 and Sections 16, 20.1, 21, 22 of Specification A 530/A 530M), and - 4.1.9 Supplementary requirements, if any, (refer to S1 through S14). #### 5. Materials and Manufacture - 5.1 *Materials*—The steel plate material shall conform to the requirements of the applicable plate specification for pipe grade ordered as listed in Table 1. - 5.2 Welding: - 5.2.1 The joints shall be double-welded, full-penetration welds made in accordance with procedures and by welders or welding operators qualified in accordance with the ASME Boiler and Pressure Vessel Code, Section IX. - 5.2.2 The welds shall be made either manually or automatically by an electric process involving the deposition of filler metal. - 5.2.3 The welded joint shall have positive reinforcement at the center of each side of the weld, but not more than ½ in. (3.2 mm). This reinforcement may be removed at the manufacturer's option or by agreement between the manufacturer and purchaser. The contour of the reinforcement shall be smooth, and the deposited metal shall be fused smoothly and uniformly into the plate surface. - 5.2.4 When radiographic examination in accordance with 9.1 is to be used, the weld reinforcement shall be governed by the more restrictive provisions of UW–51 of Section VIII of the ASME Boiler and Pressure Vessel Code instead of 5.2.3 of this specification. - 5.3 Heat Treatment—All classes other than 10, 11, 12 and 13 shall be heat treated in furnace controlled to \pm 25°F (14°C) and equipped with a recording pyrometer so that heating records are available. Heat treating after forming and welding shall be to one of the following: - 5.3.1 Classes 20, 21, 22, and 23 pipe shall be uniformly heated within the post-weld heat-treatment temperature range indicated in Table 2 for a minimum of 1 h/in. of thickness or 1 h, whichever is greater. ^B Any grade may be furnished. ⁹ Available from ASME International, Three Park Avenue, New York, NY 10016-5990. **TABLE 2** Heat Treatment Parameters | Pipe Grade ^A | Specification and Grade ^B | Post-Weld Heat-Treat
Temperature Range, °F (°C) | Normalizing Tem-
perature, max,
°F (°C) | Quenching Tem-
perature, max,
°F (°C) | Tempering
Temperature, mir
°F (°C) | |-------------------------|--------------------------------------|----------------------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------| | A 45 | A 285A | 1100–1250 (590–680) | 1700 (925) | | | | A 50 | A 285B | 1100-1250 (590-680) | 1700 (925) | | | | A 55 | A 285C | 1100–1250 (590–680) | 1700 (925) | | | | B 55 | A 515-55 | 1100-1250 (590-680) | 1750 (950) | | | | B 60 | A 515-60 | 1100-1250 (590-680) | 1750 (950) | | | | B 65 | A 515-65 | 1100-1250 (590-680) | 1750 (950) | | | | B 70 | A 515-70 | 1100–1250 (590–680) | 1750 (950) | | | | C 55 | A 516-55 | 1100-1250 (590-680) | 1700 (925) | 1650 (900) | 1200 (650) | | C 60 | A 516-60 | 1100-1250 (590-680) | 1700 (925) | 1650 (900) | 1200 (650) | | C 65 | A 516-65 | 1100–1250 (590–680) | 1700 (925) | 1650 (900) | 1200 (650) | | C 70 | A 516-70 | 1100–1250 (590–680) | 1700 (925) | 1650 (900) | 1200 (650) | | D 70 | A 537-1 | 1100–1250 (590–680) | 1700 (925) | | | | D 80 | A 537-2 | 1100–1250 (590–680) | | 1650 (900) | 1200 (650) | | E 55 | A 442-55 | 1100–1250 (590–680) | 1700 (925) | 1650 (900) | 1200 (650) | | E 60 | A 442-60 | 1100–1250 (590–680) | 1700 (925) | 1650 (900) | 1200 (650) | | H 75 | A 302-A | 1100–1250 (590–680) | 1800 (980) | | 1100 (590) | | H 80 | A 302-B, C or D | 1100–1250 (590–680) | 1800 (980) | | 1100 (590) | | J 80 | A 533-C11 ^B | 1100–1250 (590–680) | | 1800 (980) | 1100 (590) | | J 90 | A 533-C12 ^B | 1100–1250 (590–680) | | 1800 (980) | 1100 (590) | | J 100 | A 533-C13 ^B | 1100–1250 (590–680) | | 1800 (980) | 1100 (590) | | K 75 | A 202A | 1100–1200 (590–650) | | | | | K 85 | A 202B | 1100–1200 (590–650) | | | | | L 65 | A 204A | 1100–1200 (590–650) | | | | | L 70 | A 204B | 1100–1200 (590–650) | | | | | L 75 | A 204C | 1100–1200 (590–650) | | | | | N 75 | A 299 | 1100–1200 (590–650) | 1700 (925) | | | ^A Numbers indicate minimum tensile strength in ksi. - 5.3.2 Classes 30, 31, 32, and 33 pipe shall be uniformly heated to a temperature in the austenitizing range and not exceeding the maximum normalizing temperature indicated in Table 2 and subsequently cooled in air at room temperature. - 5.3.3 Classes 40, 41, 42, and 43 pipe shall be normalized in accordance with 5.3.2. After normalizing, the pipe shall be reheated to the tempering temperature indicated in Table 2 as a minimum and held at temperature for a minimum of ½ h/in. of thickness or ½ h, whichever is greater, and air cooled. - 5.3.4 Classes 50, 51, 52, and 53 pipe shall be uniformly heated to a temperature in the austenitizing range, and not exceeding the maximum quenching temperature indicated in Table 2 and subsequently quenched in water or oil. After quenching the pipe shall be reheated to the tempering temperature indicated in Table 2 as a minimum and held at temperature for a minimum of ½ h/in. of thickness or ½ h, whichever is greater, and air cooled. #### 6. General Requirements 6.1 Material furnished to this specification shall conform to the applicable requirements of the current edition of Specification A 530/A 530M unless otherwise provided herein. # 7. Chemical Composition 7.1 Product Analysis of Plate—The pipe manufacturer shall make an analysis of each mill heat of plate material. The product analysis so determined shall meet the requirements of the plate specification to which the material was ordered. - 7.2 Product Analysis of Weld—The pipe manufacturer shall make an analysis of the finished deposited weld material from each 500 ft (152 m) or fraction thereof. Analysis shall conform to the welding procedure for deposited weld metal. - 7.3 Analysis may be taken from the mechanical test specimens. The results of the analyses shall be reported to the purchaser. - 7.4 If the analysis of one of the tests specified in 7.1 or 7.2 does not conform to the requirements specified, analyses shall be made on additional pipes of double the original number from the same lot, each of which shall conform to the requirements specified. Nonconforming pipe shall be rejected. # 8. Mechanical Properties - 8.1 Tension Test: - 8.1.1 Requirements—Transverse tensile properties of the welded joint shall meet the minimum requirements for ultimate tensile strength of the specified plate material. In addition for Grades Dxx, Hxx, Jxx, and Nxx in Classes 3x, 4x, and 5x transverse tensile properties of the base plate, shall be determined on specimens cut from the heat-treated pipe. These properties shall meet the mechanical test requirements of the plate specification. ^B Any grade may be used. - 8.1.2 *Number of Tests*—One test specimen shall be made to represent each lot of finished pipe. - 8.1.3 *Test Specimen Location and Orientation*—The test specimens shall be taken transverse to the weld at the end of the finished pipe and may be flattened cold before final machining to size. - 8.1.4 *Test Method*—The test specimen shall be made in accordance with QW-150 in Section IX of the ASME Boiler and Pressure Vessel Code. The test specimen shall be tested at room temperature in accordance with Test Methods and Definitions A 370. - 8.2 Transverse-Guided-Weld-Bend Tests: - 8.2.1 Requirements—The bend test shall be acceptable if no cracks or other defects exceeding ½ in. (3.2 mm) in any direction are present in the weld metal or between the weld and the base metal after bending. Cracks that originate along the edges of the specimen during testing, and that are less than ¼ in. (6.4 mm) measured in any direction shall not be considered. - 8.2.2 *Number of Tests*—One test (two specimens) shall be made to represent each lot of finished pipe. - 8.2.3 Test Specimen Location and Orientation—Two bend test specimens shall be taken transverse to the weld at the end of the finished pipe. As an alternative by agreement between the purchaser and the manufacturer, the test specimens may be taken from a test plate of the same material as the pipe, the test plate being attached to the end of the cylinder and welded as a prolongation of the pipe longitudinal seam. - 8.2.4 *Test Method*—The test requirements of Test Methods and Definitions A 370, paragraph A2.5.1.7 shall be met. For wall thickness over ³/₈ in. (9.5 mm) but less than ³/₄ in. (19.0 mm) side-bend tests may be made instead of the face and root-bend tests. For wall thicknesses ³/₄ in. and over both specimens shall be subjected to the side-bend test. - 8.3 *Pressure Test*—Classes X2 and X3 pipe shall be tested in accordance with Specification A 530/A 530M, Section 20. # 9. Radiographic Examination - 9.1 The full length of each weld of Classes X1 and X2 shall be radiographically examined in accordance with and meet the requirements of the ASME Boiler and Pressure Vessel Code, Section VIII, paragraph UW–51. - 9.2 Radiographic examination may be performed prior to heat treatment. #### 10. Rework - 10.1 Elimination of Surface Imperfections—Unacceptable surface imperfections shall be removed by grinding or machining. The remaining thickness of the section shall be no less than the minimum specified in Section 11. The depression after grinding or machining shall be blended uniformly into the surrounding surface. - 10.2 Repair of Base Metal Defects by Welding: - 10.2.1 The manufacturer may repair, by welding, base metal where defects have been removed, provided the depth of the repair cavity as prepared for welding does not exceed $\frac{1}{3}$ of the nominal thickness and the requirements of 10.2.2-10.2.6 are met. Base metal defects in excess of these may be repaired with proper approval of the customer. - 10.2.2 The defect shall be removed by suitable mechanical or thermal cutting or gouging methods and the cavity prepared for repair welding. - 10.2.3 The welding procedure and welders or welding operators are to be qualified in accordance with Section IX of the ASME Boiler and Pressure Vessel Code. - 10.2.4 The full length of the repaired pipe shall be heat treated after repair in accordance with the requirements of the pipe class specified. - 10.2.5 Each repair weld of a defect where the cavity, prepared for welding, has a depth exceeding the lesser of 3/8 in. (9.5 mm) or 10 % of the nominal thickness shall be examined by radiography in accordance with the methods and the acceptance standards of Section 9. - 10.2.6 The repair surface shall be blended uniformly into the surrounding base metal surface and examined and accepted in accordance with Section S6 or S8. - 10.3 Repair of Weld Metal Defects by Welding: - 10.3.1 The manufacturer may repair weld metal defects if he meets the requirements of 10.2.3, 10.2.4, 10.3.2, 10.3.3, and 10.4. - 10.3.2 The defects shall be removed by suitable mechanical or thermal cutting or gouging methods and the repair cavity examined and accepted in accordance with Sections S7 or S9. - 10.3.3 The weld repair shall be blended uniformly into the surrounding metal surfaces and examined and accepted in accordance with 9.1 and Sections S7 or S9. - 10.4 *Retest*—Each length of repaired pipe of a class requiring a pressure test shall be hydrostatically tested following repair. #### 11. Dimensions, Mass and Permissible Variations - 11.1 The wall thickness and weight for welded pipe furnished to this specification shall be governed by the requirements of the specification to which the manufacturer ordered the plate. - 11.2 Permissible variations in dimensions at any point in a length of pipe shall not exceed the following: - 11.2.1 *Outside Diameter*—Based on circumferential measurement \pm 0.5 % of the specified outside diameter. - 11.2.2 *Out-of-Roundness*—Difference between major and minor outside diameters, 1 %. - 11.2.3 *Alignment*—Using a 10-ft (3-m) straightedge placed so that both ends are in contact with the pipe, ½ in. (3.2 mm). - 11.2.4 *Thickness*—The minimum wall thickness at any point in the pipe shall not be more than 0.01 in. (0.3 mm) under the specified nominal thickness. - 11.3 Circumferential welded joints of the same quality as the longitudinal joints shall be permitted by agreement between the manufacturer and the purchaser. - 11.4 Lengths with unmachined ends shall be within -0, $+\frac{1}{2}$ in. (-0, +13 mm) of that specified. Lengths with machined ends shall be as agreed upon between the manufacturer and the purchaser. # 12. Workmanship, Finish, and Appearance 12.1 The finished pipe shall be free of injurious defects and shall have a workmanlike finish. This requirement is to mean the same as the identical requirement that appears in Specification A 20/A 20M with respect to steel plate surface finish. # 13. Product Marking 13.1 In addition to the marking provision of Specification A 530/A 530M, class marking in accordance with 1.3.3 shall follow the grade marking; for example, C 70–10. 13.2 Bar Coding—In addition to the requirements in 13.1, bar coding is acceptable as a supplemental identification method. The purchaser may specify in the order a specific bar coding system to be used. #### SUPPLEMENTARY REQUIREMENTS One or more of the following supplementary requirements shall be applied only when specified by the purchaser in the inquiry, contract, or order. Details of these supplementary requirements shall be agreed upon in writing by the manufacturer and purchaser. Supplementary requirements shall in no way negate any requirement of the specification itself. #### S1. Tension and Bend Tests S1.1 Tension tests in accordance with 8.1 and bend tests in accordance with 8.2 shall be made on specimens representing each length of pipe. # S2. Charpy V-Notch Test (For pipe with nominal wall thickness of ½ in. and greater) - S2.1 Requirements—The acceptable test energies shall be as shown in Table A1.15 of Specification A 20/A 20M for the applicable plate specification unless otherwise stated in the order. As an alternative, the test temperature may be 10° F (-12° C). - S2.2 *Number of Specimens*—Each test shall consist of at least three specimens. - S2.2.1 One base-metal test shall be made from one pipe length per heat, per heat-treat charge, and per nominal wall thickness. For pipe from Classes 10, 11, 12, and 13, one base metal test shall be made per heat per size and per wall thickness. - S2.2.2 One weld-metal and one heat-affected zone (HAZ) metal test shall be made in accordance with NB 4335 of Section III of the ASME Boiler and Pressure Vessel Code. - S2.3 Test Specimen Location and Orientation: - S2.3.1 Base-metal specimens of stress-relieved, normalized, and normalized and tempered pipe shall be taken in accordance with the provisions for tension specimens in the body of this specification. - S2.3.2 Base-metal specimens of quenched and tempered pipe shall be taken in accordance with the provisions of NB 2225 of Section III of the ASME Boiler and Pressure Vessel Code. # S3. Hardness Test S3.1 Hardness measurements in accordance with Test Methods and Definitions A 370 or Test Method E 110 shall be made across the welded joint at both ends of each length of pipe. The maximum acceptable hardness shall be as agreed upon between the manufacturer and the purchaser. ## S4. Product Analysis S4.1 Product analyses in accordance with 7.1 shall be made on each 500 ft (152 m) of pipe or fraction thereof or alternatively, on each length of pipe as designated in the order. # S5. Metallography S5.1 The manufacturer shall furnish one photomicrograph to show the microstructure of $100 \times$ magnification of the weld metal or base metal of the pipe in the as-finished condition. The purchaser shall state in the order: the material, base metal or weld, and the number and locations of tests to be made. This test is for information only. # S6. Magnetic Particle Examination of Base Metal - S6.1 All accessible surfaces of the pipe shall be examined in accordance with Methods E 109 or E 138. Accessible is defined as: All outside surfaces, all inside surfaces of pipe 24 in. (610 mm) in diameter and greater, and inside surfaces of pipe less than 24 in. in diameter for a distance of one pipe diameter from the ends. - S6.2 Acceptance Standards—The following relevant indications are unacceptable: - S6.2.1 Any linear indications greater than $\frac{1}{16}$ in. (1.6 mm) long for materials less than $\frac{5}{8}$ in. (15.9 mm) thick; greater than $\frac{1}{8}$ in. (3.2 mm) long for materials $\frac{5}{8}$ in. thick to under 2 in. (50.8 mm) thick; and greater than $\frac{3}{16}$ in. (4.8 mm) long for materials 2 in. thick or greater. - S6.2.2 Rounded indications with dimensions greater than $\frac{1}{8}$ in. (3.2 mm) for thicknesses less than $\frac{5}{8}$ in. (15.9 mm) and greater than $\frac{3}{16}$ in. (4.8 mm) for thicknesses $\frac{5}{8}$ in. and greater. - S6.2.3 Four or more indications in any line separated by $\frac{1}{16}$ in. (1.6 mm) or less edge-to-edge. - S6.2.4 Ten or more indications in any 6 in.² (39 cm²) of surface with the major dimension of this area not to exceed 6 in. (152 mm) when it is taken in the most unfavorable orientation relative to the indications being evaluated. # S7. Magnetic Particle Examination of Weld Metal S7.1 All accessible weld shall be examined in accordance with Practice E 709. Accessible is defined as: All outside surfaces, all inside surfaces of pipe less than 24 in. (610 mm) in diameter for a distance of one pipe diameter from the ends. - S7.2 Acceptance Criteria—The following relevant indications are unacceptable: - S7.2.1 Any cracks and linear indications. - S7.2.2 Rounded indications with dimensions greater than $\frac{3}{16}$ in. (4.8 mm). - S7.2.3 Four or more indications in any line separated $\frac{1}{16}$ in. (1.6 mm) or less edge-to-edge. - S7.2.4 Ten or more indications in any 6 in.² (39 cm²) of surface with the major dimension of this area not to exceed 6 in. (152 mm) when it is taken in the most unfavorable orientation relative to the indications being evaluated. # S8. Liquid Penetrant Examination of Base Metal - S8.1 All accessible surfaces of the pipe shall be examined in accordance with Test Method E 165. Accessible is as defined in S6.1. - S8.2 The acceptance criteria shall be in accordance with S6.2. ## S9. Liquid Penetrant Examination of Weld Metal - S9.1 All accessible surfaces of the pipe shall be examined in accordance with Test Method E 165. Accessible is as defined in S7.1 - S9.2 The acceptance criteria shall be in accordance with S7.2 # S10. Straight Beam Ultrasonic Examination of Flat Plate—UT 1 S10.1 The plate shall be examined and accepted in accordance with Specification A 435/A 435M except that 100 % of one surface shall be scanned by moving the search unit in parallel paths with not less than 10 % overlap. # S11. Straight Beam Ultrasonic Examination of Flat Plate—UT 2 S11.1 The plate shall be examined in accordance with Specification A 578/A 578M except that 100 % of one surface shall be scanned and the acceptance criteria shall be as follows: S11.2 Any area, where one or more discontinuities produce a continuous total loss of back reflection accompanied by continuous indications on the same plane that cannot be encompassed within a circle whose diameter is 3 in. (76.2 mm) or ½ of the plate thickness, whichever is greater, is unacceptable. In addition, two or more discontinuities on the same plane and having the same characteristics but smaller than described above shall be unacceptable unless separated by a minimum distance equal to the largest diameter of the larger discontinuity or unless they may be collectively encompassed by the circle described above. # S12. Angle-Beam Ultrasonic Examination (Plate Less than 2 in. (50.8 mm) Thick)—UT 3 S12.1 The plate shall be examined in accordance with Specification A 577/A 577M except that the calibration notch shall be V-shaped and the acceptance criteria shall be as follows: Any area showing one or more reflectors producing indications whose amplitude exceeds that of the calibration notch is unacceptable. #### S13. Repair Welding S13.1 Repair of base metal defects by welding shall be done only with customer approval. # S14. Description of Term S14.1 *lot*—all pipe of the same mill heat of plate material and wall thickness (within $\pm \frac{1}{4}$ in. (6.4 mm)) heat treated in one furnace charge. For pipe that is not heat treated or that is heat treated in a continuous furnace, a lot shall consist of each 200 ft (61 m) or fraction thereof of all pipe of the same mill heat of plate material and wall thickness (within $\pm \frac{1}{4}$ in. (6.4 mm)), subjected to the same heat treatment. For pipe heat treated in a batch-type furnace that is automatically controlled within a 50°F (28°C) range and is equipped with recording pyrometers so that heating records are available, a lot shall be defined the same as for continuous furnaces. ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility. This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below. This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).