

Designation: B 36/B 36M - 9501

Standard Specification for Brass Plate, Sheet, Strip, And Rolled Bar¹

This standard is issued under the fixed designation B 36/B 36M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

1.1 This specification-covers establishes the requirements for brass plate, sheet, strip, and rolled bar of the following alloys:²

¹ This specification is under the jurisdiction of ASTM Committee B-5 <u>B05</u> on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.01 on Plate, Sheet, and Strip.

Current edition approved Feb. 15, 1995. Published April 1995. 10, 2001. Published August 2001. Originally published as B 36 - 20 T. Last previous edition B $36 - 91a^{c1}$. B 36/36M - 95.

Nominal	Composition

Copper	_	_	_
——Alloy	Previously Used	-	_
— UNS No.3	Designation	Copper, %	Zinc, %
Copper Alloy	Previously Used		
UNS No.	Designation	Copper, %	Zinc, %
	4	95	-5
C21000	1	95	5
	$\frac{\overline{2}}{2}$	<u>95</u> 90	_ <u>5</u> 10
C22000	<u>2</u>	90	
C226 00	-	<u>90</u> 87.5	<u>10</u> 12.5
C22600		87.5	12.5
C230 00	<u></u>	87.5 85	12.5 15
C23000	<u>3</u>	<u>85</u> 80	
C240 00	$\frac{\overline{4}}{4}$	80	<u>15</u> 20
C24000	4	<u>80</u> 70	20
C26000	$\frac{4}{6}$	70	<u>20</u> 30
C26000	<u>6</u> 8	<u>70</u> 66	30 34
C26800	8	66	
C26800	<u>8</u> 9	<u>66</u> 63	34 37
C272 00	9	63	
C27200	<u>9</u>	<u>63</u> 60	37 40
C28000	-	60	40
C28000		60	40

1.2 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system—are may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from—the two systems may results in nonconformance with the—specification.³ standard.

2. Referenced Documents

- 2.1 The following documents-of in the <u>current</u> issue in effect on date of <u>material purchase</u> Book of Standards form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:
- B 248 Specification for General Requirements for Wrought Copper and Copper Alloy Plate, Sheet, Strip, and Rolled Bar³

² SAE Specifications CA210, CA220, CA230, CA240, CA260, CA268, and CA272 conform to the requirements for Copper Alloy UNS Nos. C21000, C22000, C23000, C24000, C26000, C26800, and C27200, respectively.

³ The UNS system for copper and copper alloys (see Practice E 527) is a simple expansion

³ Annual Book of the former standard designation system accomplished by the addition of a prefix "C" and a suffix "00." The suffix can be used to accommodate composition variations of the base alloy. ASTM Standards, Vol 02.01.

- B 248M Specification for—General Requirements for Wrought Copper and Copper—Alloy Plate, Sheet, Strip, and Rolled Bar [Metric]³
 - B 601 Practice for Temper Designations for Copper and Copper Alloys—Wrought and Cast²
 - B 846 Standard Terminology for Copper and Copper Alloys³
 - E 8 Test Methods-of for Tension Testing of Metallic Materials⁴
 - E 8M Test Methods-of for Tension Testing of Metallic Materials [Metric]⁴
 - E-527 Practice 112 Test Methods for Numbering Metals and Determining Grain Size⁴
 - E 478 Test Methods for Chemical Analysis of Copper Alloys (UNS)⁵⁶

3. Ordering Information

- 3.1 Orders for material under this specification should include the General Requirements
- 3.1 The following-information:
- 3.1.1 Quantity,
- 3.1.2 Name sections of material: brass,
- 3.1.3 Form Specification B 248 [B 248M] constitute a part of material: plate, sheet, strip, or rolled bar,
- 3.1.4 Alloy number (see 1.1),
- 3.1.5 Temper (see Section 5),
- 3.1.6 Dimensions: thickness this specification:
- 3.1.1 Terminology
- 3.1.2 Materials and width, Manufacture
- 3.1.3 Dimensions, Mass, and length if applicable.
- 3.1.7 How furnished: rolls, stock lengths with or without ends, specific lengths with or without ends (see 8.4),
- 3.1.8 Type permissible Variations
- 3.1.4 Workmanship, Finish, and Appearance
- 3.1.5 Sampling
- 3.1.6 Number of edge, if required: slit, sheared, sawed, square corners, rounded corners, rounded edges, or full-rounded edges (see 8.6),
- 3.1.9 Type of width tests and straightness tolerances, if required: slit-metal tolerances, square-sheared-metal tolerances, sawed-metal tolerances, straightened or edge-rolled metal tolerances (see 8.3 and 8.5).
 - 3.1.10 ASTM Specification B 36/B 36M, year Retests
 - 3.1.7 Specimen Preparation
 - 3.1.8 Test Methods
 - 3.1.9 Significance of issue, Numerical Limits
 - 3.1.10 Inspection
 - 3.1.11 Rejection and whether inch-pound or SI units are applicable (see 1.2).
 - 3.1.11 Special tests or exceptions, if any. Rehearing
 - 3.1.12 Certification
 - 3.1.13 Test Reports
 - 3.1.14 Packaging and Package Marking
- 3.2 In addition, when material is purchased for agencies of the U. S. Government, it shall conform a section with a title identical to the Supplementary Requirements as defined that referenced in 3.1, appears in this specification, it contains additional requirements which supplement those appearing in Specification B 248 when specified in the contract or purchase order. [B 248M].

4. Terminology

4.1 For definitions of terms related to copper and copper alloys, refer to Terminology B 846.

5. Ordering Information

- 5.1 Orders for products should include the following information:
- 5.1.1 ASTM designation and year of issue,
- 5.1.2 Copper alloy UNS No. designation,
- 5.1.3 Quantity,
- 5.1.4 Form of material: plate, sheet, strip, or rolled bar,
- 5.1.5 Temper (Section 7),
- 5.1.6 Dimensions: thickness, width, and length if applicable,
- 5.1.7 Tolerances (Section 10),

⁴ Annual Book of ASTM Standards, Vol 023.01.

⁶ Annual Book of ASTM Standards, Vol 03.046.

∰ B 36/B 36M – 9501

- 5.1.8 How furnished: rolls, stock lengths with or without ends, specific lengths with or without ends (Section 10),
- 5.1.9 Type of edge, if required (Section 10),
- 5.1.10 When the product is purchased for agencies of the U.S. Government.
- 5.2 The following options are available and should be specified at the time of placing the order when required:
- 5.2.1 Heat identification or traceability details,
- 5.2.2 Certification,
- 5.2.3 Mill test report,
- 5.2.4 Special tests or exceptions, if any.
- 5.2.5 Supplemental requirements for agencies of the U.S. Government as given in Specification B 248 [B 248M].

6. Chemical Composition

- 46.1 The materials shall conform to the compositions prescribed chemical compositional requirements in Table 1.
- 4.2 These specification for the copper alloy UNS No. designation specified in the ordering information.
- 6.2 These composition limits do not preclude the presence of other elements. Limits for unnamed elements may be established and analysis required for unnamed elements by agreement between the manufacturer or supplier and purchaser.
- 46.3 Either copper or zinc may be taken as the difference between the sum of all elements analyzed and 100 %. When all elements in Table 1 are analyzed, their the sum of the results shall be as shown in the in the table as follows:

_	Copper Plus Named Elements, % min
Copper Alloy UNS No. Copper Alloy UNS No.	Copper Plus Named Elements, % min
C21000	99.8
C22000	99.8
C22600	99.8
C23000	99.8
C24000	99.8
C26000	99.7
C26800	99.7
C27200	99.7
C28000	99.7

57. Temper

57.1 As Hot-Rolled (M20)-Material—The standard temper of sheet and plate and produced by hot rolling is as designated in Table 2.

TABLE 1 Chemical Requirements

	IABLE I CITE	nicai Requirements			
	Copper Alloy UNS No.	Copper, %	Lead, max, %	Iron, max, %	Zinc
	C21000 (95 Cu, 5 Zn)	94.0 to 96.0	0.03	0.05	remainder
<u>C21000</u>	C21000 (95 Cu, 5 Zn)	94.0 to 96.0	0.03	0.05	remainder
<u>C21000</u>	C22000 (90 Cu, 10 Zn)	89.0 to 91.0	0.05	0.05	remainder
	C22000 C22600 (87.5 Cu,	89.0 to 91.0 86.0 to 89.0	0.05 0.05	0.05 0.05	remainder remainder
	12.5 Zn) C22600	86.0 to 89.0			remainder
	<u>C22600</u> C23000 (85 Cu, 15 Zn)	84.0 to 86.0	<u>0.05</u> 0.05	0.05 0.05	remainder
	C23000 C24000 (80 Cu, 20	84.0 to 86.0 78.5 to 81.5	0.05 0.05	0.05 0.05	remainder remainder
	Zn) C24000 C26000 (70 Cu, 30	78.5 to 81.5 68.5 to 71.5	0.05 0.07	0.05 0.05	remainder remainder
	Zn)				
	<u>C26000</u> C26800^A (66 Cu, 34 Zn)	68.5 to 71.5 64.0 to 68.5	0.07 0.15	0.05 0.05	remainder remainder
	0.26800 ^A C27200 ^B (63 Cu, 37	64.0 to 68.5 62.0 to 65.0	<u>0.15</u> 0.07	0.05 0.07	remainder remainder
	Zn) C27200 ^B C28000 ^C (60 Cu, 40	62.0 to 65.0 59.0 to 63.0	0.07 0.30	0.07 0.07	remainder remainder
	Zn) <u>C28000^C</u>	59.0 to 63.0	0.30	0.07	remainder

^A-Material shall be free from beta constituent when examined at a magnification of 75 diameters.

^B-Small amounts of beta constituent, if present, may interfere in some instances with severe forming or drawing; therefore, suitability for forming or drawing should be established between manufacturer and purchaser.

^C-It is anticipated that this material will contain the beta constituent that may interfere with severe forming or drawing operations.

TABLE 2 Tensile Strength Requirements and Approximate Rockwell Hardness Values for Rolled Temper (H) Product

Note 1—Plate is generally available in only the as hot-rolled (M20) temper. Required properties for other tempers shall be agreed upon between the manufacturer and the purchaser at the time of placing the order.

<u>F</u>	Colled Temper	Tensile Streng	th, ksi [MPa ^A]			Appro	oximate Roo	kwell Har	dness ^B		
Tem	per Designation				B Sc	cale			Superfi	icial 30-T	
Standard	<u>Former</u>	<u>Min</u>	<u>Max</u>	to 0.0 (0.914	(0.508) 036 in. 4 mm) ncl		0.036 in. 4) mm	to 0. (0.71	(0.305) 028 in. 1 mm) ncl	Over 0. (0.711	
				<u>Min</u>	<u>Max</u>	Min	<u>Max</u>	Min	<u>Max</u>	<u>Min</u>	Max
			Copper A	lloy UNS N	o. C21000						
M20 H01 H02 H03 H04 H06 H08 H10	As hot-rolled Quarter hard Half-hard Three-quarter-hard Hard Extra hard Spring Extra spring	32 [220] 37 [255] 42 [290] 46 [315] 50 [345] 56 [385] 60 [415] 61 [420]	42 [290] 47 [325] 52 [355] 56 [385] 59 [405] 64 [440] 68 [470] 69 [475]	20 40 50 57 64 68 69	21. 48. 56. 61. 64. 70. 73. 74.	24 44 53 60 66 70 71	52 60 64 67 72 75 76	34 46 52 57 62 64 65	51 57 60 62 66 68 69	37 48 54 59 63 65 66	54 59 62 64 67 69 70
Copper Alloy UNS No. C22000											
M20 H01 H02 H03 H04 H06 H08 H10	As hot-rolled Quarter-hard Half-hard Three-quarter-hard Hard Extra hard Spring Extra spring	33 [230] 40 [275] 47 [325] 52 [355] 57 [395] 64 [440] 69 [475] 72 [495]	43 [295] 50 [345] 57 [395] 62 [425] 66 [455] 72 [495] 77 [530] 80 [550]	27 50 59 65 72 76 78	52 63 68 72 77 79 81	31 53 62 68 74 78 80	56 66 71 75 79 81 83	34 50 55 60 64 67 68	51 59 62 65 68 69 70	37 52 58 62 66 68 69	54 61 64 67 69 70 71
	•		Copper A	lloy UNS N	o. C22600	•	•	•	•	•	•
H01 H02 H03 H04 H06 H08 H10	Quarter-hard Half-hard Three-quarter-hard Hard Extra hard Spring Extra spring	42 [290] 48 [330] 53 [365] 58 [400] 65 [450] 70 [485] 74 [510]	52 [355] 58 [400] 63 [435] 67 [460] 73 [505] 78 [540] 82 [565]	29 52 61 67 74 78 81	58 68 73 77 81 83 86	29 52 61 67 74 78 81	58 68 73 77 81 83 86	39 54 59 64 68 71 73	58 64 68 70 73 74 76	39 54 59 64 68 71 73	58 64 68 70 73 74 76
			Copper A	lloy UNS N	o. C23000					•	
M20 H01 H02 H03 H04 H06 H08 H10	As hot-rolled Quarter-hard Half-hard Three-quarter-hard Hard Extra hard Spring Extra spring	37 [255] 44 [305] 51 [350] 57 [395] 63 [435] 72 [495] 78 [540] 82 [565]	47 [325] 54 [370] 61 [420] 67 [460] 72 [495] 80 [550] 86 [595] 90 [620]	33 56 66 72 78 82 84	58 68 73 78 83 85 87	::: 37 59 69 74 80 84 86	62 71 76 80 85 87 89	21. 42. 56. 63. 67. 70. 74. 75.	57 64 68 71 74 76 77	25 45 58 65 68 71 75 76	60 66 70 72 75 77 78
		1	Copper A	lloy UNS N	o. C24000						
M20 H01 H02 H03 H04 H06 H08 H10	As hot-rolled Quarter-hard Half-hard Three-quarter-hard Hard Extra hard Spring Extra spring	41 [285] 48 [330] 55 [380] 61 [420] 68 [470] 78 [540] 85 [585] 89 [615]	51 [350] 58 [400] 65 [450] 71 [490] 77 [530] 87 [600] 93 [640] 97 [670]	38 59 69 76 83 87 88	61 70 76 82 87 90 91	Here to the second seco	65 73 79 84 89 92 93	22 56 63 68 72 75 76	57 64 68 72 75 77 78	45 58 65 69 73 76 77	60 66 70 73 76 78 79
			Copper A	lloy UNS N	o. C26000						
M20 H01 H02 H03 H04 H06 H08	As hot-rolled Quarter-hard Half-hard Three-quarter-hard Hard Extra hard Spring	41 [285] 49 [340] 57 [395] 64 [440] 71 [490] 83 [570] 91 [625]	51 [350] 59 [405] 67 [460] 74 [510] 81 [560] 92 [635] 100 [690]	311 40 60 72 79 85 89	61 74 79 84 89 92	211 44 63 75 81 87 90	65 77 82 86 91 93	343 56 65 70 74 76	57 66 70 73 76 78	246 58 67 71 75 76	60 68 72 74 77 78

TABLE 2 Tensile Strength Requirements

^{7.2} Rolled (H)—The standard tempers of rolled material are as designated in Table 2 with the prefix "H". Former designations and the standard designations as defined in Practice B 601 are shown.

^{7.3} Annealed (OS)— The standard temppers oxf annealed material are as designated in Tables 3 and 4. Nominal grain size and

TABLE 2 Continued

	TABLE 2 CONTINUED											
Ro	olled Temper	Tensile Streng	th, ksi [MPa ^A]			Appro	ximate Roo	ckwell Har	dness ^B			
Temp	per Designation				B Sc	cale			Superfi	icial 30-T		
Standard	<u>Former</u>	<u>Min</u>	<u>Max</u>	0.020 to 0.0 (0.914 in	36 in. 1 mm)		0.036 in. 4) mm	to 0. (0.71	(0.305) 028 in. 1 mm) ncl	Over 0.0 (0.711		
<u> </u>				<u>Min</u>	Max	<u>Min</u>	<u>Max</u>	<u>Min</u>	<u>Max</u>	<u>Min</u>	<u>Max</u>	
<u>H10</u>	Extra spring	95 [655]	104 [715]	<u>91</u>	94	<u>92</u>	<u>95</u>	77	<u>79</u>	77		
	I		Copper A	 loy UNS No	o. C26800		l	l	l	l	<u>79</u>	
M20 H01 H02 H03 H04 H06 H08 H10	As hot-rolled Quarter-hard Half-hard Three-quarter-hard Hard Extra-hard Spring Extra spring	40 [275] 49 [340] 55 [380] 62 [425] 68 [470] 79 [545] 86 [595] 90 [620]	50 [345] 59 [405] 65 [450] 72 [495] 78 [540] 89 [615] 95 [655] 99 [685]	211 40 57 70 76 83 87 88	61 71 77 82 87 90 91	::: 44 60 73 78 85 89 90	65 74 80 84 89 92 93	3 54 65 68 73 75 76	57 64 69 72 75 77 78	46 56 67 69 74 76 77	60 66 71 73 76 78 79	
			Copper A	lloy UNS No	o. C27200							
M20 H01 H02 H03 H04 H06	As hot-rolled Quarter-hard Half-hard Three-quarter-hard Hard Extra hard	41 [285] 49 [340] 56 [385] 63 [435] 70 [485] 81 [560]	51 [350] 59 [405] 66 [455] 73 [505] 80 [550] 91 [625]	::: 40 57 71 76 82	51 61 74 78 82 87	::: 44 60 74 78 85	65 76 81 84 89	43 54 64 67 71	57 67 70 72 75	36 56 66 68 72	60 68 71 73 76	
			Copper A	lloy UNS N	o. C28000							
M20 H01 H02 H03 H04 H06	As hot-rolled Quarter-hard Half-hard Three-quarter-hard Hard Extra hard	40 [275] 50 [345] 58 [400] 60 [415] 70 [485] 82 [565]	55 [380] 62 [425] 70 [485] 75 [515] 85 [585] 95 [655]	:: ₁ 0 50 55 60 65	65 75 80 85 92	::: 45 52 55 60 65	70 80 82 87 90	50 52 55 60	65 70 78 80 85	55 55 60	70 75 80 82 85	

^AMPa (Mega Pascals) See Appendix X1.

^BRockwell hardness values apply as follows: the B scale values apply to metal 0.020 in. (0.508 mm) and over in thickness, and the 30-T scale values apply to metal 0.012 in. (0.305 mm) and over in thickness.

the-R standard designations are defined in Pracktice B 601 are shown.

- 7.4 Annealed-To-Temper (O)—The standard tempers of anneal—Hed-to-temper material are as designated in Table 5 with the prefix "O." Former designations—V and the standard designations as defined in Practice B 601 are shown.
 - 7.5 Special or nonstandard tempers are subject to negotiation between the manufacturer and purchaser (See 5.1.5).

8. Grain Size

- 8.1 Grain size shall be standard requirement for all products of the annealed (OS) tempers.
- 8.2 Acceptance or rejection based upon grain size shall depend only on the average grain size of the test specimens and shall be within the limits prescribed in Table 3 when determined in accordance with Test Methods E 112.
 - 8.3 The average grain size shall be determined on a plane parallel to the surface of the product.

9. Mechanical Properties

- 9.1 Tensile Strength Requirements of Rolled Tempers
- 9.1.1 Product furnished under this specification shall conform to the tensile strength requirements prescribed in Table 2 when tested in accordance with Test Methods E 8 [E 8M]. The test specimens shall be taken so the longitudinal axis of the specimen is parallel to the direction of rolling.

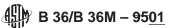


TABLE 3 Grain Size Requirements for Annealed Mate (OS)

Prialoduct

	<u>P</u> r ial o	auct		
Copper Alloy UNS	Standard Temper	(Grain Size	
No.	Designation (B 601)	Nominal	Min	Max
C21000	OS050 OS035 OS025 OS015	0.050 0.035 0.025 0.015	0.035 0.025 0.015 A	0.090 0.050 0.035 0.025
C22000	OS050 OS035 OS025 OS015	0.050 0.035 0.025 0.015	0.035 0.025 0.015	0.090 0.050 0.035 0.025
C22600	OS050 OS035 OS025 OS015	0.050 0.035 0.025 0.015	0.035 0.025 0.015	0.090 0.050 0.035 0.025
C23000	OS070 OS050 OS035 OS025 OS015	0.070 0.050 0.035 0.025 0.015	0.050 0.035 0.025 0.015	0.100 0.070 0.050 0.035 0.025
C24000	OS070 OS050 OS035 OS025 OS015	0.070 0.050 0.035 0.025 0.015	0.050 0.035 0.025 0.015	0.120 0.070 0.050 0.035 0.025
C26000 — and <u>and</u> C26800	OS120 OS070 <u>OS070</u> OS050 OS035 OS025 OS015	0.120 0.070 <u>0.070</u> 0.050 0.035 0.025 0.015	0.070 0.050 0.050 0.035 0.025 0.015	0.120 0.120 0.070 0.050 0.035 0.025
C27200	OS035 OS025 OS015	0.035	0.025 0.015	0.050
<u>C27200</u>	OS035 OS025 OS025 OS015	0.035 0.025 0.025 0.015	0.025 0.015 0.015 <u>A</u>	0.050 0.035 0.035 0.050 0.035
	<u>OS015</u>	0.015	Α	0.025 0.025
C28000	OS035 OS025 OS015	0.035	0.025 0.015	0.050
<u>C28000</u>	OS035 OS025 OS025 OS015	0.035 0.025 0.025 0.015	0.025 0.015 0.015 <u>A</u>	0.050 0.035 0.035 0.050 0.035 0.025
	<u>OS015</u>	<u>0.015</u>	Α	0.025

 $^{^{}A}\text{-}Although \ no \ minimum \ grain \ size \ is \ required, \ this \ material \ must \ be \ fully \ recrystallized.}$

^{9.1.2} Acceptance or rejection based upon mechanical properties shall depend only on tensile strength.
9.2 Tensile Strength Requirements of Annealed-to-Temper

TABLE 4 Approximate Rockwell Hardness of Annealed Mate (OS) Prialoduct

	<u> </u>	Pr ial oduc	<u>:t</u>									
Anneal Temper Standard Temper Posignation Posigna												
		Anneal	Standard	Approxim	ate Rockw	ell Hardness ^A						
mar Grain Gizo	(5 00 1)			F S	cale	Superficial 30-T						
Min	Max			Min	Max							
Nomenal Temper Nominal Grain Size Standard Temper Designation (B 601) Nominal Grain Size Nominal Grai												
0.050-mm	OS050	40 ^B	52 [₿]		-4]						
0.050-mm					4							
			-									
				<u>≕</u>								
	OS025	50 ^B										
0.015-mm	OS015	54 ^B	65 [₿]	-7	-23	_						
<u>0.015-mm</u>	OS015	<u>54^B</u>	65 ^B		_23							
	UN	S No. C22	000									
		ı										
0.015-mm	OS015	62	75	19	39]						
	UN	S No. C22	600									
	1	ı										
		ı										
	1	ı										
	UN	S No. C23	000									
0.070-mm	OS070	-53	-60	6								
		_										
	1											
	1											
	OS015		79	19	48							
	UN	NS No. 240	000			_						
]						
	1	63			42							
0.015-mm	OS015	66	83	25	50	J						
		C26000 ai	nd C26800			1						
						1						
0.070-mm 0.070-mm	OS070	-52 52	-67 67	-3 3	-27 27	1						
0.050-mm	OS050	61	73	20	35	1						
0.035-mm	OS035	65	76	25	38	1						
0.025-mm	OS025	67	79	27	42							
0.015-mm	OS015	72	85	33	50	J						
0.005	1	S No. C27		05		1						
0.035-mm 0.025-mm	OS035 OS025	65 67	76 79	25 27	38 42							
0.025-mm	OS025 OS015	72	85	33	50							
	UN	S No. C28	000		•	ı						
0.035-mm	OS035	65	80	26	44]						
0.025-mm	OS025	68	83	28	48	1						
0.015-mm	OS015	72	90	30	55							

 $[^]A$ Rockwell hardness values apply as follows: The F scale applies to metal 0.020 in. (0.508 mm) in thickness and over; the 30-T scale applies to metal 0.015 in. (0.3842 mm) in thickness and over.

^BThis alloy in these several annealed tempers is too soft for Rockwell F hardness tests below 0.030 in. (0.762 mm) in thickness.

9.2.1 Product furnished under this specification shall conform to the tensile strength requirements prescribed in Table 5 when

TABLE 5 Tensile Strength Requirements and Approximate Rockwell Hardness Values for Annealed-to-Tempers (O) Product

Note 1—Required properties for other tempers shall be agreed upon between the manufacturer and the purchaser at the time of placing the order.

Anne	aled-to-Temper	Tensile Strength,- Strer MP	ngth,		Approximate Rocky	vell Hardness ^e			
Temp	er Designation		i		l.,	B S	cale] Superfic	cial 30-T
Standard	Former	Min	Max	Min	Max	Min	Max	Min	Max
	•		Copper Alloy UN	IS No. C22000	•		•		
081	Quarter-hard	40	50	275	345		45	28	52
O81	Quarter-hard	40 [275]	50 [345]	275	345		45	28	52
			Copper Alloy UN	IS No. C22600	•				
081	Quarter-hard	42	52	290	355	20	50	30	54
O81	Quarter-hard	42 [290]	52 [355]	290	355	20	50	30	54
			Copper Alloy UN	IS No. C23000	•				
081	Quarter-hard	44	54	305	370	30	53	35	54
O81	Quarter-hard	44 [305]	54 [370]	305	370	30	53	35	54
			Copper Alloy UN	IS No. C24000					
081	Quarter-hard	48	58	330	400	33	53	38	54
O81	Quarter-hard	48 [330]	58 [400]	330	400	33	53	38	54
			Copper Alloy UN	IS No. C26000					
081	Quarter-hard	49	59	340	405	32	55	36	53
O81	Quarter-hard	49 [340]	59 [405]	340	405	<u>32</u> 52	<u>55</u> 72	36 50	<u>53</u> 66
081 082	Half-hard	57	67	395	460	52	72	50	66
O82	Half-hard	57 [395]	67 [460]	395	460	52	72	50	66
			Copper Alloy UN	IS No. C26800					
081	Quarter-hard	49	59	340	405	33	55	37	55
O81	Quarter-hard	49 [340]	59 [405]	340	405	33 52	<u>55</u> 72	37	<u>55</u> 67
082	Half-hard	55	65	380	450	52	72	51	67
<u>O82</u>	Half-hard	55 [380]	65 [450]	380	450	<u>52</u>	<u>72</u>	<u>51</u>	<u>67</u>

 $^{^{}A}$ ksi = 1000 psi.

tested in accordance with Test Methods E 8 [E 8M]. The test specimens shall be taken so the longitudinal axis of the specimen is parallel to the direction of rolling.

- 9.2.2 Acceptance or rejection based upon mechanical properties shall depend only on tensile strength.
- 9.3 Rockwell Hardness
- 9.3.1 The approximate Rockwell hardness values given in Table 2, Table 4, and Table 5 are for general information and assistance in testing and shall not be used as a basis for product rejection.

Note 1—Plate is generally available in only 1—The Rockwell hardness test offers a quick and convenient method of checking for general conformity to the as hot-rolled (M20) temper. Required properties specification requirements for temper, tensile strength and grain size.

10. Dimensions and Permissible Variations

- 10.1 The dimensions and tolerances for product described by this specification shall be agreed upon between as specified in Specification B 248 [B 248M] with particular reference to the manufacturer following related paragraphs in that specification.
 - 10.1.1 Thickness.
 - 10.1.2 Width:
 - 10.1.2.1 Slit Metal and Slit Metal With Rolle-pd Edges.
 - 10.1.2.2 Squareed-Shaseared Metal.
 - 10.1.2.3 Sawed Metal.
 - 10.1.3 Length:
 - 10.1.3.1 Specific and Stock Lengths Wimth and Without Ends.
 - 10.1.3.2 Schedule of Lengths (Specific and Stock) With Ends.
 - 10.1.3.3 Length Tolerances for Square-Sheared Metal.
 - 10.1.3.4 Length Tolerances for Sawed Metal.
 - 10.1.4 *Straightness:*
 - 10.1.4.1 Slit Metal or Slit Metal Either Straightened or Edge-Rolled.
 - 10.1.4.2 Squared-sheared Metal.
 - 10.1.4.3 Sawed metal.
 - 10.1.5 *Edges*:
 - 10.1.5.1 Square Edges.
 - 10.1.5.2 Rounded Corners.
 - 10.1.5.3 Rounded Edges.

^BMPa (Mega Pascals) See Appendix X1

EBRockwell hardness values apply as follows: The B scale applies to metal 0.020 (0.058 mm) in thickness and over; the 30T applies to metal 0.015 in. (0.381 mm) in thickness and over.

10.1.5.4 Full-Rounded Edges.

11. Test Methods

11.1 Chemical Analysis:

11.1.1 Composition shall be determined, in the order. case of disagreement, as follows:

-	Rolled Temper	Tensile ksi ^A	Strength,	Tensile MPa ^B	Strength,	Approx	kimate Roc	ckwell Ha	ardness ^C				
	mper Designation					B Scal	e			Super	ficial 30-T		
Standard	—Former	- Min	Max	Min	Max	to 0	0 (0.508) .036 in. 14 mm)	Ove (0.914	r 0.036 in. I mm)	to (2 (0.305) 0.028 in. 711 mm)	Over 0.028 in. (0.711 mm)	
Min	Max	Min	Max	Min	Max	— _{Min}	Max						
				Ce	pper Alloy U	NS No. C	21000	_					
	-As hot-rolled	32	-42	220	290								
M20	As hot-rolled Element	32	-42	220	290								Method
H01	-Quarter hard	37	-47	255	325	20	48	24	52	34	51	37	54
	-Quarter hard	37	-47	255	325	20	48	24	52	34	51	37	54
H02	-Half-hard	42	-52	290	355	40	56	44	60	46	57	48	59
H02	-Half-hardCopper	42	-52	290	355	40	56	44	60	46	57	48	<u>59-E 478</u>
H03	-Three-quarter-hard	46	-56	315	385	50	61	53	64	52	60	54	62
H03 H04	-Three-quarter-hard <u>lron</u> -Hard	46 50	-56 - 59	315 345	385 405	50 57	61 64	53 60	64 67	52 57	60 62	54 59	62 - <u>E 478</u> 64
H04	- Hard Lead	50 50	-59 - 59	345 345	405 405	57	64	60	67	57	62	59	64 -E 478 (AA)
H06	Extra hard	56	-64	385	440	64	70	66	72	62	66	63	67
H06	Extra hardZinc	56	-64	385	440	64	70	66	72	62	66	63	67
H08	-Spring	60	-68	415	470	68	73	70	75	64	68	65	69
H10	-Extra spring	61	-69	420	475	69	74	71	76	65	69	66	70
				Ce	pper Alloy U	NS No. C	22000						
M20	-As hot-rolled	33	-43	230	295								
H01	-Quarter-hard	40	-50	275	345	27	52	31	56	34	51	37	54
H02	-Half-hard	47	-57	325	395	50	63	53	66	50	59	52	61
H03	-Three-quarter-hard	52	-62	355	425	59	68	62	71	55	62	58	64
H04 H06	- Hard - Extra-hard	57 64	-66 -72	395 440	455 495	65 72	72 77	68 74	75 79	60 64	65	62 66	67 69
H08	-Spring	69	-72 - 77	440 475	530	72	77 79	74 78	79 81	67	68 69	68	70
H10	Extra spring	72	-80	495	550	78	81	80	83	68	70	69	70 71
				Ce	pper Alloy U	NS No. C	22600						
H01	-Quarter-hard	42	-52	290	355	29	58	29	58	39	58	39	58
H02	Half-hard	48	-58	330	400	52	68	52	68	54	64	54	64
H03	-Three-quarter-hard	53	-63	365	435	61	73	61	73	59	68	59	68
H04	-Hard	58	-67	400	460	67	77	67	77	64	70	64	70
H06	-Extra hard	65	-73	450	505	74	81	74	81	68	73	68	73
H08	-Spring	70	-78	485	540	78	83	78	83	71	74	71	74
H10	Extra spring	74	-82	510	565	81	86	81	86	73	76	73	76
					pper Alloy U	NS No. C	23000						
M20	-As hot-rolled	37	-47	255	325								
H01	-Quarter-hard -Half-hard	44 51	-54	305	370	33	58	37	62 71	42 56	57	45 58	60
H02 H03	- Hair-nard - Three-quarter-hard	51 57	-61 - 67	350 395	420 460	56 66	68 73	59 69	71 76	56 63	64 68	58 65	66 70
H04	Hard	57 63	-07 - 72	333 435	495	72	73 78	74	70 80	67	71	68	70 72
H06	-Extra hard	72	-80	495	550	78	83	80	85	70	74	71	7 5
H08	-Spring	78	-86	540	595	82	85	84	87	74	76	75	77
H10	-Extra spring	82	-90	565	620	84	87	86	89	75	77	76	78
				Ce	pper Alloy U	NS No. C	24000						
M20	-As hot-rolled	-41	51	285	350								
H01	-Quarter-hard	48	-58	330	400	38	61	42	65	42	57	45	60
H02	Half-hard	55	-65	380	450	59	70	62	73	56	64	58	66
H03 ⊌04	-Three-quarter-hard -Hard	61 68	-71 -77	420 4 7 0	490	69 76	76 82	72 78	79 84	63	68 72	65	70 73
H04 H06	- Hard - Extra hard	68 78	-77 - 87	470 540	530 600	76 83	82 87	78 85	84 89	68 72	72 75	69 73	73 76
H08	-Spring	85	-93	585	640	87	90	89	92	75	77	76	78
H10	Extra spring	89	-97	615	670	88	91	90	93	76	78	77	79
	. .			Ce	pper Alloy U	NS No. C	26000						
	-As hot-rolled	41	51	285	350								
H01	-Quarter-hard	49	-59	340	405	40		44		43	 57	46	60
. 10 1				5.10	.50		٠.			.5	٠.		

TABLE 2 Continued

	Rolled Temper	Tensile ksi ^A	Strength,	Tensile MPa ^B	Strength,	Approx	Approximate Rockwell Hardness ^C						_	
Te	mper Designation					B Scale	е			Super	ficial 30-T			
Standard	— Former	Min	Max	Min	Max	to 0.	(0.508) 036 in. 14 mm)	Over (0.914	- 0.036 in. mm)	to C	2 (0.305) 0.028 in. '11 mm)		Over 0.028 in. 11 mm)	_
							H02	-Half- hard	57	-67	395	460	60	74
H03	-Three-quarter-hard	64	-74	440	510	— 72	79	75	82	65	70	67	72	
H04	-Hard	71	-81	490	560	79	84	81	86	70	73	71	74	
H06	-Extra hard	83	-92	570	635	85	89	87	91	74	76	75	77	
H08	-Spring	91	100	625	690	89	92	90	93	76	78	76	78	
H10	-Extra spring	95	104	655	715	91	94	92	95	77	79	77	79	_
				Ce	pper Alloy U	INS No. C	26800							
M20	-As hot-rolled	40	50	275	345									
H01	-Quarter-hard	49	-59	340	405	40	61	44	65	43	57	46	60	
H02	-Half-hard	55	-65	380	450	57	71	60	74	54	64	56	66	
H03	-Three-quarter-hard	62	-72	425	495	70	77	73	80	65	69	67	71	
H04	- Hard	68	-78	470	540	76	82	78	84	68	72	69	73	
H06	Extra hard	79	-89	545	615	83	87	85	89	73	75	74	76	
H08	-Spring	86	-95	595	655	87	90	89	92	75	77	76	78	
H10	Extra spring	90	-99	620	685	88	91	90	93	76	78	77	79	_
				Co	pper Alloy U	INS No. C	27200							_
M20	-As hot-rolled	41	-51	285	350									
H01	-Quarter-hard	49	-59	340	405	40	61	44	65	43	57	46	60	
H02	Half-hard	56	-66	385	455	57	74	60	76	54	67	56	68	
H03	-Three-quarter-hard	63	-73	435	505	71	78	74	81	64	70	66	71	
H04	- Hard	70	-80	485	550	76	82	78	84	67	72	68	73	
H06	-Extra hard	81	-91	560	625	82	87	85	89	71	75	72	76	_
					pper Alloy U	INS No. C	28000							_
M20	-As hot-rolled	40	-55	275	380									
H01	-Quarter-hard	50	-62	345	425	40	65	45	70	45	65	45	70	
H02	Half-hard	58	-70	400	485	50	75	52	80	50	70	50	75	
H03	-Three-quarter-hard	60	-75	415	515	55	80	55	82	52	78	55	80	
H04	-Hard	70	-85	485	585	60	85	60	87	55	80	55	82	
H06	-Extra hard	82	-95	565	655	65	92	65	90	60	85	60	85	
<u>H06</u>	Extra hard	<u>82</u>	95	<u>565</u>	<u>655</u>	<u>65</u>	<u>92</u>	<u>65</u>	90	<u>60</u>	<u>85</u>	<u>60</u>	85E 478 (Tit-rametric)	

A ksi = 1000 psi.

6. Mechanical Properties

- 6.1 Tensile Strength of Rolled Tempers:
- 6.1.1 Products ordered to this specification in inch-pound units shall be tested in accordance with Test Methods E 8, and shall conform to tensile strength requirements prescribed in ksi units in Table 2.
- 6.1.2 Products ordered to this specification in SI units shall be tested in accordance with Test Methods E 8M, and shall conform to tensile strength requirements prescribed in MPa units in Table 2.
 - 6.1.3 Acceptance or rejection based on mechanical properties shall depend only on the tensile strength.
 - 6.1.4 Tension test specimens shall be taken so the longitudinal axis of the specimen is parallel to the direction of rolling.
 - 6.2 Tensile Strength of Annealed-to-Tempers:
 - 6.2.1 Products ordered to this specification in inch-pound units shall be tested in accordance with Test Methods E 8, and shall

B MPa (Mega Pascals) See Appendix X1.

^C Rockwell hardness values apply as follows: the B scale values apply

^{11.1.2} Test method(s) to metal 0.020 in. (0.508 mm) and over in thickness, and the 30-T scale values apply to metal 0.012 in. (0.305 mm) and over in thickness.

^{5.2} Rolled (H) Material—The standard tempers of rolled material are as designated in Table 2 with the prefix "H". Former designations and the standard designations as defined in Practice B 601 are shown. Special or nonstandard tempers are subject to negotiation between the manufacturer and the purchaser (See 3.1.5).

^{5.3} Annealed (OS) Material—The standard tempers of annealed material are as designated in Table 3 and Table 4. Nominal grain size and the standard designations as defined in Practice B 601 are shown. Special or nonstandard tempers are subject to negotiation between the manufacturer and the purchaser (see 3.1.5).

^{5.4} Annealed-To-Temper (O) Material— The standard tempers of annealed-to-temper material are as designated in Table 5 with the prefix "O". Former designations and the standard designations as defined in Practice B 601 are shown. Special or nonstandard tempers are subject to negotiation between the manufacturer and the purchaser (See 3.1.5).

conform to tensile strength requirements prescribed in ksi units in Table 5.

- 6.2.2 Products ordered to this specification in SI units shall be tested in accordance with Test Methods E 8M, and shall conform to tensile strength requirements prescribed in MPa units in Table 5.
 - 6.2.3 Acceptance or rejection based on mechanical properties shall depend only on the tensile strength.
 - 6.2.4 Tension test specimens shall be taken so the longitudinal axis of the specimen is parallel to the direction of rolling.
- 6.3 Rockwell Hardness—Since Rockwell hardness tests offer a quick and convenient method of checking brass of any temper followed for general conformity to the requirements for tensile strength or grain size, the approximate Rockwell hardness values for each temper are given in Table 2, Table 4, and Table 5 for general information and assistance in testing.

7. Grain Size determination of Annealed Tempers

7.1 Grain size shall be the standard test for material of all thicknesses in annealed tempers, and acceptance other element(s) resulting from contractual or rejection purchase order agreement shall depend on the grain sizes. The average grain size of each of two samples of annealed material as determined on a plane parallel to the surface of the material shall be within the limits prescribed in Table 3.

8. Dimensions and Permissible Variations

8.1 The inch-pound dimensions and tolerances for products covered by this specification shall be as prescribed in agreed upon between the current edition of Specification B 248, and the SI dimensions and tolerances covered by this specification shall be as prescribed in the current edition of Specification B 248M, with particular reference to Section 5 and the following tables of those specifications:

```
8.2 Thickness—See 4.2, Table 1.
8.3 Width:
8.3.1 Slit Metal and Slit Metal With Rolled Edges—See 4.3, Table 4.
8.3.2 Square-Sheared Metal—See 5.3, Table 5.
8.3.3 Sawed Metal—See 5.3, Table 6.
8.4 Length:
8.4.1 Specific and Stock Lengths With and Without Ends —See 5.4, Table 7.
8.4.2 Schedule of Lengths (Specific and Stock) With Ends—See 5.4, Table 8.
8.4.3 Length Tolerances for Square-Sheared Metal—Sec 5.4, Table 9.
8.4.4 Length Tolerances for Sawed Metal—See 5.4, Table 10.
8.5 Straightness:
8.5.1 Slit Metal manufacturer or Slit Metal Either Straightened or Edge-Rolled—See 5.5, Table 11.
8.5.2 Square-Sheared Metal—See 5.5, Table 12.
8.5.3 Sawed Metal—See 5.5, Table 13.
8.6 Edges—See 5.6.
8.6.1 Square Edges—See 5.6.1, Table 14.
8.6.2 Rounded Corners—See 5.6.2, Table 15.
8.6.3 Rounded Edges—See 5.6.3, Table 16.
```

9. General Requirements

- 9.1 Products furnished under this specification in inch-pound units shall conform to the applicable requirements of the current edition of Specification B 248.
- 9.2 Products furnished under this specification in the SI units shall conform to the applicable requirements of the current edition of Specification B 248M.

10. supplier and purchaser.

12. Keywords

1θ2.1 brass plate; brass rolled bar; brass sheet; brass strip

8.6.4 Full-Rounded Edges—Sec 5.6.4, Table 17.

APPENDIX

(Nonmandatory Information)

X1. METRIC EQUIVALENTS

X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared ($N = kg \cdot m/s^2$). The derived SI unit for pressure or stress is the newton per square metre (N/m^2), which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m^2 and N/mm^2 .

SUMMARY OF CHANGES

Committee B05 has identified the location of selected changes to this standard since the last issue (B36/36M-95) that may impact the use of this standard.

- (1) This revision has brought this specification in line with the Outline of Form (Fifth Edition).
- (2) This revision has brought this specification in line with Standardizing of the use of the "M" designation.
- (3) The addition of Section 11.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).