This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequetely depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: B 505/B 505M - 9602

Standard Specification for Copper-Base Copper Alloy Continuous Castings¹

This standard is issued under the fixed designation B 505/<u>B 505M</u>; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

¹ This specification is under the jurisdiction of ASTM Committee <u>B-5</u><u>B05</u> on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.05 on Castings and Ingots for Remelting.

Current edition approved Sept. Oct. 10, 1996. 2002. Published November 1996. 2002. Originally published as B 505 - 70. Last previous edition B 505 - 956.

1. Scope *

1.1 This specification establishes requirements for continuously cast rod, bar, tube, and shapes produced from-copperbase copper alloys with nominal compositions as listed in Table $1.^2$

1.2 <u>Castings produced to this specification may be manufactured for and supplied from stock. In such cases the manufacturer shall maintain heat traceability to specific manufacturing date and chemical analysis.</u>

<u>1.3</u> The values stated in inch-/pound or SI units are the to be regarded separately as standard. SI The values given stated in perch system may not be exact equivalents; therefore, each system sharll be used independently of the other. Covmbidning valueds from the two systems may result in nonconformance with the specification.

<u>1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.</u>

2. Referenced Documents

2.1 The following documents in the current issue of the Book of Standards form a part of this specification to the extent referenced herein:

2.2 ASTM Standards:

B 208 Practice for Preparing Tension Test Specimens for <u>Copper-Base Copper</u> Alloys for Sand, Permanent Mold, Centrifugal and Continuous Castings³

B 824 Specification for General Requirements for Copper Alloy Castings³

<u>B 846 Terminology for Copper and Copper Alloys³</u>

E 8 Test Methods for Tension Testing of Metallic Materials⁴

E 8M Test Methods for Tension Testing of Metallic Materials (Metric)⁴

E 10 Test Method for Brinell Hardness of Metallic Materials⁴

E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials⁴

E 255 Practice for Sampling of Copper and Copper Alloys for the Determination of Chemical Composition⁵

<u>E 527</u> Practice for Numbering Metals and Alloys $(UNS)^6$

3. Terminology

3.1 For definitions of terms related to copper and copper alloys, refer to Terminology B 846.

4. General Requirements

4.1 The following sections of Specification B 824 form a part of this specification. The definition of a casting lot as defined in Section 12, Sampling, takes precedence over Specification B 824.

*A Summary of Changes section appears at the end of this standard.

 $^{^{2}}$ The UNS system for copper and copper alloys (see Practice E 527) is a simple expansion of the former standard designation system accomplished by the addition of a prefix "C" and a suffix "00". The suffix can be used to accommodate composition variations of the base alloy.

³ Annual Book of ASTM Standards, Vol 02.01.

⁴ Annual Book of ASTM Standards, Vol 03.01.

⁵ Annual Book of ASTM Standards, Vol-01.01. 03.05.

⁶ Available from the American Society

⁶ Annual Book of Mechanical Engineers, United Engineering Center, 345 East 47th St., New York, NY 10017. ASTM Standards, Vol 01.01.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

€₽)	B 505 <u>/B</u> <u>505M</u> -	- 96<u>02</u>
-----	-------------------------------	--------------------------

TABLE 1 Nominal Composition

Copper Alloy UNS	Designation				Compositi	on, %			
No.	Designation -	Copper	Tin	Lead	Zinc	Nickel	Aluminum	Iron	Manganese
C83600	leaded red brass	85	5	5	5				
C83800 C83800	leaded red brass leaded red brass	83 82.9	-4 3.8	6 6	-7 6.5				
C83800	leaded semi-red brass	80	<u>5.0</u>	2	<u>0.5</u> 13	 	 	 	
C84200	leaded semi-red brass	80	5 -3	2.5	13	<u></u>	<u></u>	<u></u>	<u></u>
C84400	leaded semi-red brass	81		7	-9				
C84400 C84800	leaded semi-red brass leaded semi-red brass	80 76	<u>2.9</u> -3	<u>7</u> 6	<u>8.5</u> 15	<u></u>	<u></u>	<u></u>	<u></u>
C84800	leaded semi-red brass	76	2.5	6.2	15		 		
C85700	leaded naval brass	61	1	4	37				
<u>C85700</u>	leaded naval brass	<u>61</u>	<u>1</u>	1.2	36	<u></u>		<u></u> ə	<u></u> 3
C86200 C86200	high-strength yellow brass	66 63			23 25		-5	3	3 3.8
C86300	high-strength yellow brass high-strength yellow brass	<u>63</u> 62	 	 	$\frac{23}{26}$	 	$\frac{4}{6}$	3 3	<u>3.0</u> 3
C86300	high-strength yellow brass	63	<u></u>	<u></u>	25	<u></u>	6.2	3 4	3.8
C86500	high-strength yellow brass	58			39		4		-1
<u>C86500</u>	high-strength yellow brass	57.5	<u></u>	<u></u>	<u>39</u>	<u></u>	<u>1</u>	<u>1.2</u>	0.8
C89320 ^A C90300	bismuth tin bronze tin bronze	89 88	6 8	 	 4		 	··· 	
C90300	tin bronze	87.5	8.2	 					
C90500	tin bronze	88	10		$\frac{4}{2}$				
<u>C90500</u>	tin bronze	87.5	<u>10</u>	<u></u>	2	<u></u>	<u></u>	<u></u>	<u></u>
C90700	tin bronze	89 85	11						
C91000 C91300	tin bronze tin bronze	85 81	15 19	 	 		 	 	
C91300	tin bronze	80.5	19						
C92200	leaded tin bronze	88	6	 - 2	4		 		
<u>C92200</u>	leaded tin bronze	88	<u>6</u> 8	<u>1.5</u> - 1	<u>4</u>	<u></u>	<u></u>	<u></u>	<u></u>
C92300	leaded tin bronze	87			-4				
C92300 C92500	leaded tin bronze nickel-phosphor bronze	<u>87</u> 86.5	<u>8.2</u> 11	<u>0.6</u> +	<u>3.8</u> 	 1.5	 	<u></u>	<u></u>
C92500	nickel-phosphor bronze	86.5	11	+ <u>1.2</u>		1.2			
C92700	leaded tin bronze	88	10	-2					
<u>C92700</u>	leaded tin bronze	87.5	<u>10</u>	1.8	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>
C92800	leaded tin bronze	79	16	5					
C92800 C92900	leaded tin bronze leaded nickel-tin bronze	80 84	<u>16</u> 10	5 2.5	 	 3.5	 	<u></u>	
C92900	leaded nickel-tin bronze	84	10	2.6		3.4			
C93200	high-leaded tin bronze	83	-7	7	<u></u>				
<u>C93200</u>	high-leaded tin bronze	83	6.9	<u>7</u> 8	<u>3</u>	<u></u>	<u></u>	<u></u>	<u></u>
C93400	high-leaded tin bronze	84	8						
C93400 C93500	high-leaded tin bronze high-leaded tin bronze	83.5 85	8	89	<u></u> 4	 	<u></u>	<u></u>	<u></u>
C93500	high-leaded tin bronze	84.5	5.2	9	<u>1</u>				
C93600	high-leaded tin bronze	81	7	12					
C93700	high-leaded tin bronze	80	10	10					
<u>C93700</u>	high-leaded tin bronze	80 78	$\frac{10}{7}$	<u>9.5</u> 15	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>
C93800 C93800	high-leaded tin bronze high-leaded tin bronze	78 77	<u>6.9</u>	<u>+5</u> 14.5					
C93900	high-leaded tin bronze	78	6	14.5	<u></u> 	<u></u>	<u></u> 	<u></u>	<u></u>
C94000	high-leaded tin bronze	72	13	15					
<u>C94000</u>	high-leaded tin bronze	70.5	<u>13</u>	<u>15</u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>
C94100	high-leaded tin bronze	75 75 -	-5	20					
C94100 C94300	high-leaded tin bronze high-leaded tin bronze	75.5 70	<u>5.5</u> 5	20 25	 	<u></u>	<u></u>	<u></u>	<u></u>
C94300	high-leaded tin bronze	69.5	5.2	<u>25</u>					
C94700	nickel-tin bronze	88	5	θ		 5			
<u>C94700</u>	nickel-tin bronze	87.5	5.2	<u>0</u>	1.8	5.2	<u></u>	<u></u>	<u></u>
C94800	leaded nickel tin bronze	87 86 F	5	-1	-2	5			
<u>C94800</u> C95200	leaded nickel-tin bronze aluminum bronze	86.5 88	<u>5.2</u> 	<u>0.6</u> 	<u>1.8</u> 	<u>5.2</u> 	<u></u>	 3	
C95200	aluminum bronze	87.8	 	 	 	 	9	3.2	 <u></u>
C95300	aluminum bronze	89					- 10	4	
<u>C95300</u>	aluminum bronze	88.8	<u></u>	<u></u>	<u></u>	<u></u>	<u>10</u>	1.2	<u></u>
C95400	aluminum bronze	85 85 2					11 10.8	4	
<u>C95400</u> C95410	<u>aluminum bronze</u> aluminum bronze	85.2 84	 	<u></u>	<u></u>	<u></u> 2	<u>10.8</u> 10	$\frac{4}{4}$	<u></u>
C95410	aluminum bronze	83.2				2	10.8	4	
C95500	nickel-aluminum bronze	81				4	11	4	
<u>C95500</u>	nickel-aluminum bronze	81	<u></u>	<u></u>	<u></u>	4.2	<u>10.8</u>	4	<u></u>
C95520	nickel-aluminum bronze	78.5				5.5	11	5.0	
<u>C95520</u> C95700	nickel-aluminum bronze manganese nickel aluminum	79.1 75	<u></u>	<u> </u>	<u></u>	<u>5.1</u> -2	<u>11</u> 8	$\frac{4.8}{3}$	 12
C95700 C95700	manganese nickel aluminum manganese nickel aluminum	75 74.8				2.2	-8 7.5	3	12.5
	bronze		<u></u>	<u></u>	<u></u>	<u></u>	1.0	<u>×</u>	12.0
C95800	nickel-aluminum bronze	81.3				4.5	9	4	1.2
C95900	aluminum bronze	82.5	 2				13	4.5	
<u>C95900</u> C96400	aluminum bronze	83.2 70	<u></u>	<u></u>	<u></u>	 30	12.8	4.0	<u></u>
C96400 C96400	copper-nickel copper-nickel	70 67				30 30		 0.90	
00000		51	<u></u>	<u></u>	<u></u>	50	<u></u>	0.30	<u></u>

∰ В 505<u>/В 505М</u>– 9602

- 4.1.1 Terminology (Section 3),
- 4.1.2 Other Requirements (Section 7),
- 4.1.3 Workmanship, Finish, and Appearance (Section 9),
- 4.1.4 Number of Tests and Retests (Section 11),
- 4.1.5 Specimen Preparation (Section 12),
- 4.1.6 Test Methods (Section 13),
- 4.1.7 Significance of Numerical Limits (Section 14),
- 4.1.8 Inspection (Section 15),
- 4.1.9 Rejection and Rehearing (Section 16),
- 4.1.10 Certification (Section 17),
- 4.1.11 Test Report (Section 18),
- 4.1.12 Product Marking (Section 19),
- 4.1.13 Packaging and Package Marking (Section 20),
- 4.1.14 Keywords (Section 21), and
- 4.1.15 Supplementary Requirements.

<u>5.</u> Ordering Information

- 3.1 Orders for continuous castings under this specification should include
- 5.1 Include the following information:
- 3.1.1 Specification title, number, information in orders for product:
- 5.1.1 ASTM designation and year of issue,
- 3.1.2 Quantity, dimensions, and temper,
- 3.1.3 Copper_issue (for example, B 505/B 505M-96),
- 5.1.2 Copper Alloy UNS Number,
- 3.1.4 Tolerances, No. (for example, C93200), including HT if different from Section 8 and Tables 2- heat treatment is required.
- 5.1.3 Condition (Table 9) and (as cast, heat treated, and so forth),
- 5.1.4 Dimensions: inside diameter, outside diameter, thickness and width,
- 5.1.5 Form: cross-section, such as tube, round, hexagon, octagon, square, or rectangle,
- 5.1.6 Tolerances, if different from Section 10 and Tables 2-8.
- 5.1.7 Length (including length tolerance if other than mill lengths),
- 35.1.8 Number of castings or total weight, for each size and form,
- 5.1.9 ASME Boiler and Pressure Vessel Code⁷ requirements (if required see Section-7.9),

<u>35.1.610</u> When castings are purchased for agencies of the U.S.-G_government, the Supplementary Requirements of Specification B 824 may be specified.

- 35.2 The following requirements are optional and should be specified in the purchase order when required-:
- 35.2.1 Chemical analysis of residual elements (Section-5 7 and Specification B 824),
- 35.2.2 Mechanical requirements, (Section-6 8 Test Methods E 8),
- 35.2.3 Witness inspection (Specification B 824),
- 35.2.4 Certification (Specification B 824),
- 35.2.5 Foundry test report (Specification B 824),
- 35.2.6 Product marking (Specification B 824),
- 35.2.7 Castings for seawater service (Section-4_6), and
- 35.2.8 Approval of weld repair and records of repair (Section-9).

4.<u>11).</u>

6. Materials and Manufacture

<u>46.1</u> For better corrosion resistance in seawater applications, castings in Copper Alloy<u>UNS No.</u> C95800 shall be given a temperature anneal heat treatment at $1250 \pm 50^{\circ}$ F (675 $\pm 10^{\circ}$ C) for 6 h minimum. Cooling shall be by the fastest means possible that will not cause excessive distortion or cracking. Propeller castings shall be exempt from this requirement.

46.2 Copper Alloy UNS Nos. C95300, C95400, C95410, and C95500 may be supplied in the heat-treated condition to obtain the higher mechanical properties shown in Table-9. 9. Suggested heat treatments for these alloys and Copper Alloy UNS No. C95520 are given in Table 2. Actual practice may vary by manufacturer.

46.3 Copper Alloy UNS No. C95520 is used only in the quench-hardened and tempered (TQ30) condition, see Table 2.

46.4 Copper Alloy UNS No. C96900 is normally supplied heat treated at $1520^{\circ}F$ ($825^{\circ}C$) for 1 h followed by a water quench, then aged at $800^{\circ}F$ ($425^{\circ}C$) for 4 h followed by a water quench.

⁷ Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Three Park Ave., New York, NY 10016-5990.

TABLE 10 2 ChSuggemical Rstequid Heat Treatments

Co m p osition, % max, except as indicated					
Coppe r Alloy	-		Major Elements		
UNS No.				Major Element	9
Copper	Copper Alloy UNS No.	<u>TinLea</u> d	Zi ne	Iro nNicke I Including Cobalt	<u>Alumi</u> num
Copper	Solution Tread	Z <u>itmen</u> e	Iret (not less than <u>1 h followed by water quench)</u> <u>°F(°C)</u>	Annealing Treatment	Mot less th followe
Nickel Includ-	<u>95300</u>	Sul-	<u>(860–890)</u>	Phos-	Alu- mi- (620–60
ing Cobalt		fur	95300	phorus	
num	C obalt	Man- ga-	Sili-		1585–16 fur
C83600	84.0-86.0	nese 4.0-6.0	con 4.0 6.0	4.0-6.0	
C83800	82.0-83.8	4.0 6.0 3.3 4.2 3.3 4.2	4.0 6.0 5.0 7.0 5.0 7.0	4.0 6.0 5.0 8.0 5.0 8.0	
	<u>4.0–6.02.0–3.0</u>				0.8
C8420078.0-82.	θ	<u>, C95410, C95500</u> –3	.0 <u>10.0–16</u> . 0		
	C95400 78.0-82.0	C84400		<u>78.0–82.0</u> 2.3–3.5	1600–1
<u>C84400</u>	<u></u>	<u>70–9102.3–3.5</u>	6.0-8.0	2	1000 1
C84800	75.0-77.0	2.0-3.0	5.5-7.0	13.0–17.0	
C85700	58.0-64.0	2.0-3.0 0.50-1.5	5.5–7.0 0.8–1.5	13.0–17.0 32.0–40.0	
C86200	60.0 66.0	0.50-1.5 -0.20	0.8 1.5 - 0.20	32.0 40.0 22.0 28.0	 2.0-4 .
		-0.20	-0.20	22.0–28.0	2.0-4 .
C86300 <u>C95520</u>	60.0-66.0 (2 h followed by water quench) 1600-1700 (870-925)	- 0.20 - 0.20	- 0.20 - 0.20	22.0–28.0 22.0–28.0	2.0-4 . 2.0-4 .
C86500	55.0-60.0	1.0	-0.40	36.0-42.0	0.40-2
- <u>C89320</u> A	87.0-91.0	<u>5.0–</u> 7.0	-0.09	<u>1.0</u>	<u>1.0</u>
<u>C8920^A</u>	87.0-91.0	<u>5-7.0</u>	-0.09	<u>10</u>	1.<u>0</u>
C90300	86.0 89.0	7.5 9.0	-0.30	3.0 5.0	
C90500 C90700	86.0-89.0 88.0-90.0	- 9.0-11.0 10.0-12.0	- 0.30 - 0.50	1.0-3.0 - 0.50	
C91000	8	14.0–12.0 14.0–16.0	-0.20	-0:50 1.5	
<u>C91000</u>	<u>4</u> :0-86:0 <u>8</u>	14.0–16.0	-0.20	1.5	
C91300	<u>(4</u> .0-86.0 79.0-82.0	18.0–20.0	0.25 0.25		-0.50
C92200	79.0-82.0 86.0_90.0	5 .5-6.5	- 0.25 -0.25 1.0-2.0	 3.0–5.0	-0.50
C92300	85.0-89.0	<u></u>	0.3–1.0	2.5–5.0	
C92500	85.0 88.0	10.0-12.0	1.0 1.5	-0.50	
C92700	86.0 89.0	-9.0-11.0	1.0–2.5	0.7	
C92800	78.0 82.0	15.0–17.0	<u>4.0</u> -6.0	0.8	
<u>C92800</u>	78.0-82.0	<u>15.0–17.0</u>	<u>40</u> -6.0	0.8 0.35	
C92900 C93200	82.0-86.0 81.0-85.0	9.0–11.0 6.3–7.5	2.0-3.2 6.0-8.0	- 0.25 2.0-4.0	
C93400	81.0 83.0 82.0 85.0	7.0-9.0	0.0-0.0 7.0-9.0	2.0 4.0 0.8	
C93500	83.0-86.0	4.3-6.0	- <u>8.0</u> -10.0	2.0	
C93600	79.0-83.0	6.0-8.0	11.0–13.0	1.0	
C93700	78.0-82.0	9.0–11.0	- 8.0-11.0	0.8	
C93800	75.0-79.0	6.3–7.5	13.0–16.0	0.8	
C93900	76.5 79.5	5.0-7.0	14.0 18.0	1.5	
C94000	69.0 72.0	12.0 14.0	14.0 16.0	- 0.50	
C94100	72.0-79.0	4.5 6.5	18.0-22.0	1.0	
C94300	67.0-72.0	4.5 6.0	23.0-27.0	0.8	
- C94700^B C94800	85.0-90.0 84.0-89.0	4.5-6.0	-0.10 0.3-1.0	1.0–2.5 1.0–2.5	
C95200	84.0-89.0 86.0 min	4.5-6.0	0.3–1.0 		 2.5-4 .
C95300	86.0 min	 		 	2.3-4. 0.8-1.
C95400	83.0 mjn				3.0-5.
C95410	83.0 min	 			3.0-5
C95500	78.0 min				3.0-5
- C95520^C	74.5 min	0.25	-0.03	0.30	4.0-5

TABLE 11_3 Sum of Finishing All Nowamnced Els for Tuberne

(Roun ts A	d On a ly zed)						
Copp Finished Outside Diameter Alloy ,	GFinish Alloppwance Nam Finishe EleDimentsions of t	d <u>or Print</u> he Part, %m in.					
UNS Noin. (mm)	CoppInside Diameter Alloy UNS No.	Connor DIOuto	-				
er			-				
	3600		99.3	C93700		99.0	
	3600		99.3	C93700	99.0 All Alloys	Except as Noted B	selow
C83800	99.3	C938 0098.9					
Up to 4 (102), excl	-0.031 (-0.79)	+ 0.031 (0.79)					
C84200	99.3	C939 0098.9					
4 (102)–5 (127), incl	<u>-0.063 (-1.6)</u>	+ 0.063 (1.6)					
<u>C84400</u>	99.3	C94 000	94 (2.4)	-			
Over 5 (127)	-0.094 (-2.4)	+ 0.00	94 (2.4)	-			
98.7			_				
C8480099.3 C9410098.7 Copper Alloy UNS Nos. C86200, C86300, C86500, C95200, C95300,	-						
<u>C95400,</u> C95500, C95800, C95900, and C96400							
C85700		C943 00	99 .0				
Up to 3 (76.2), incl	-0.125 (-3.2)	+ 00	99 .063 (1.6)				
C86200	99.0	C947 0099.3					
Over 3 (76.2)-4 (102), incl	-0.125 (-3.2)	+ 0.094 (2.4)					
C86300	99.0	C948 00	99 .3				
Over 4 (102)-51/2 (140), incl	-0.188 (-4.8)	<u>+ 0</u> 0	99 .125 (3.2)				
C86 5½00	99.0	C952 00	99 .0	_			
Over 51/2 (140)	-0.250 (-6.4)	<u>+ 0</u> 0	99 .0	_			
C90300	99.4	C95300	99.0	-			
C90500	99.7	C95400	99.5	-			
C90700	99.4	C954 10	99.5	_			
<u>C91000</u>	99.4	C95500	99.5	-			
C91300	99.4	C95520	99.5	-			
<u> </u>	99.3	C95700	99.5	-			
<u> </u>	99.3	<u>C95800</u>	99.5	-			
<u> </u>	99.3	C95900	99.5	-			
<u> </u>	99.3	C96400	99.5	-			
<u> </u>	99.3	<u>C96900</u>	99.5	-			
<u> </u>	99.3	C97300	99.0	-			
<u>C93200</u>	99.2 99.2	C97600	99.7	-			
<u>C93400</u> C93 (4 00	<u>99.2</u>	C97800 C97800	99.6 99.6	-			
<u> </u>	<u>99.2</u> 99.4	<u>C97800</u>	99.6 99.7	-			
<u> </u>	99.4	C99500	<u>99.7</u> 99.7)	-			
093300	39.4	<u>Caap00</u>	<u>99.7)</u>				

46.5 If test bar coupons representing castings made in Copper Alloy UNS Nos. C94700HT, C95300HT, C95400HT, C95410HT, C95500HT, C95500HT, C95500HT, C95800 temper annealed, C95900 annealed, and C96900 are removed from the continuous castings before heat treatment, the coupons shall be heat treated with the continuous castings.

57. Chemical Composition

57.1 The continuous castings shall conform to the requirements for major elements shown in Table 10.

57.2 These specification limits do not preclude the presence of other elements. Limits may be established and analysis required for unnamed elements agreed upon between the manufacturer or supplier and the purchaser. Copper or zinc may be given as remainder and may be taken as the difference between the sum of all elements analyzed and 100 %. When all named elements in Table 10 are analyzed, their sum shall be as specified in Table 11.

57.3 It is recognized that residual elements may be present in cast copper-base alloys. Analysis shall be made for residual elements only when specified in the purchase order.

68. Mechanical Property Requirements

68.1 Reference should be made to Table 9 for minimum mechanical requirements.

68.2 Mechanical tests are required only when specified by the purchaser in the purchase order.

68.3 Exceptions to mechanical property requirements may be taken in the case of small diameter solids or castings having section thicknesses less than the $\frac{1}{2}$ -in. (12.7-mm) diameter-nominal size of the standard tension test specimen. In these cases, mechanical property requirements shall be subject to agreement between the purchaser and the manufacturer. For suggested dimensions of <u>subsize</u> substandard test bars, see Test Methods E 8.

₩ B 505<u>/B 505M – 9602</u>

TABLE 9 4 MecFinishing Allowanical Requis foreme Rod antsd

CoppFinished Outside Diameter-			Yiceld Str Benath. a	at 0.5 % Extwensioen		
o y r UNS No.	TensDile Sstrea	an gth, min''		-Lofadces,-m inA	<u>. (</u> mm)	El <u>Rou</u> n g dsi
	C83600		-36	248	-19	- 131
	C83600		-36	248	<u>-19</u>	131
000000		007				101
C83800 Up to 4 (102), excl	- 30 30	207 207	15 15	- 97 - 97	16 16	
C84200	-32	221	16	110	13	
4 (102)-5 (127), incl	32	221	16	110	13	
C84400	-30	207	15	-		
Over 5 (127)	30	207		-		
103 C84800 30207	-1 510316		16			
Copper Alloy UNS Nos. C86200 C863007	<u>.</u> <u>-4, C86500,</u> <u>C95200, C95300,</u> <u>C95400, C95500,</u> <u>C95800, C95900,</u> <u>C96400</u>					
C85700	-40	276	14	-97	15	
Up to 3 (76.2), incl C86200	<u>40</u> -90	276 621	<u>14</u> 45	- 97 310	15 19	
Over 3 (76.2)–4 (102), incl		621 621	45 45	310 310	18 18	
C86300	<u></u> 110	758	62	427	14	
Over 4 (102)-5 ¹ / ₂ (140), incl	110	758	62	427	14	
C86500 C89320		483 241	-25 18	172 124	25 15	
Over 5½ (140)	35	241	18	124	15	
 C90300		303		152	18	
C90500	-44	303	-25	172	10	
C90700 C91000	40 30	276 207	- -25	172	10	160 (3000 kg)
C91300		207		 	 	100 (3000 Kg)
C92200	-38	262	- <u>19</u>	131	18	
C92300	-40	276	-19	131	16	
C92500	-40	276	-24	165	10	
C92700 C92800		252	- 20	138	-8	
C92900		 310	 25	 172		
C93200	-35	241	-20	138	10	
C93400	-34	234	-20	138	-8	
C93500	-30	207	- 16	110	12	
C93600 C93700	- 33 - 35	227 241	20 20	138 138	10 6	
C93800		241 172	- <u></u>	130 110	- 0 -5	
C93900	-25	172	- 16	110	-5	
C94000						80 (500 kg)
C94100	-25	172	-17	117	-7	
C94300 C94700	21 45	145 310	— 15 — 20	103 138	7 25	
	-75	517	-50	345	-5	
C94800	-40	276	-20	138	20	
C95200	-68	469	-26	179	20	
C95300	-70	483	- 26	179	25	
— C95300HT C95400	- 80 85	552 586	40 32	276 221	12 12	
	- 95	655	- <u>45</u>	310	10	
C95410	-85	586	-32	221	12	
	- 95	655	- 45	310	10	
C95500 — C95500HT	- 95	655 759	-42	290	10	
	110 125	758 862	- 62 <u>95^D</u>	4 27 655^{_D}	8 2	262 (3000 kg)
C95700	-90	620	-40	275	15	202 (0000 kg)
- C95800^E	- 85	586	-35	241	18	
C95900						241 (3000 kg)
	-65 110	448 758	- 35 105^D	241 724 D	25 4	
	110 30	758 207	<u>-105</u>	- <u>7245</u> 103	4 8	
C97600	-40	276	-20	138	10	
C97800	-45	310	-22	152	-8	
C99500	-70	483	-40	276	12	

A Minimum tensile strength and yield strength shall be reduced 10 % for cast bars having a cross section, thickness, diameter, or wall of 4 in. (102 mm) or more. The cross sections are the diameter of a round solid, the distance across the flats of a solid hexagon, the thickness of a regtangle, and the wall thickness of a tube.

^B ksi = 1000 psi.

^C See Appendix.

^D Yield strength at 0.2 % offset, min^A, ksi^B, MPa^C.

TABLE 2 5 SuggDiamested Heat Tr Toleratmentces for Rod and

	Bar			
	Solutioween T Pareatmllent (notl Surfaces s than , 1 h fin. (mm)	Tol lowed by w ratncer o	ą <u>s, Pl</u> ue <u>s^a a</u> ne h) d Minus, .°F^a in, (°G <u>mm</u>)	
CoppDiameterAll oyr Distance Be-	<u>e</u>	AnneSqualing Treatms, Renctangles		
UNS No.		(not IHess thxagon-2	2	
	Rounds	hs,		
		followed by		
		airOctag o ol),		
		°F(°C)	_	
ns	 C95300		1585–1635	116
	C95300			
	(860-890)	(620-660)		1100 1220/ /
Up to 4 (102), excl	0.005 (0.13)	0.016 (0.41)		
4 (102)–5 (127), incl	0.008 (0.20)	0.016 (0.41)		
C9 5400,		0.016 (0.41)	_	
Over 5 (127)	0.016 (0.41)	0.016 (0.41)	_	
	0, C95800, C95900, and		-	
Copper Alloy UNS Nos. C8620 C95500, C9	0, C86300, C86500, C95 95800, C95900, and C96			
Up to 3 (76.2), incl	1600–1675	-1150-1225	-	
Up to 3 (76.2), incl	0.010 (0.25)	0.020 (0.51)		
C95500	(870–910)	(620–660)		
Over 3 (76.2)-4 (102), incl	0.015 (0.38)	0.020 (0.51)		
Over 4 (102)-51/2 (140), incl	0.020 (0.51)	0.020 (0.51)		
C9 552½0	(2 h followed by wate			
	quench) 1600–1700 (870–925	(495–540)		
Over 51/2 (140)	0.025 (0.64)	0.025 (0.64)	-	
^A When tolerances are specifie	ed as all plus or all minus	double the values given		

^A When tolerances are specified as all plus or all minus, double the values given.

79. ASME Requirements

79.1 When specified in the purchase order to meet ASME Boiler and Pressure Vessel Code requirements, continuous castings shall comply with the following:

79.1.1 Certification requirements of Specification B 824.

79.1.2 Foundry test report requirements of Specification B 824.

79.1.3 Continuous castings shall be marked with the manufacturer's name, the Copper Alloy UNS No., and the casting quality factor. In addition, heat numbers, or serial numbers that are traceable to heat numbers, shall be marked on all pressure-containing castings individually weighing $50 \cdot 1b \cdot 1b (22.7 \text{ kg})$ or more. Pressure-containing castings weighing less than $50 \cdot 1b \cdot 1b (22.7 \text{ kg})$ shall be marked with either the heat number or a serial number that will identify the casting as to the month in which it was poured. Marking shall be in such a position as not to injure the usefulness of the casting.

79.1.4 When Copper Alloy UNS No. C95200 is specified to meet ASME Boiler and Pressure Vessel Code requirements, a sample from each 2000-lb interval or continuous casting shall be tested. Each continuous casting from which the test bar was taken shall be identified should retesting be required. If all of the test bars from the initial sampling meet the requirements, the lot shall be acceptable. The fractured bars shall be retained for chemical verification.

810. Dimensions and Permissible Variations

<u>810.1</u> Allowance for finishing over maximum outside dimension and under inside dimension of round tubes to be machined shall be as shown in Table 3. Allowances for finishing the outside diameter of rounds and distance between parallel surfaces of bars to be machined shall be as shown in Table 4. Table 3 and Table 4 are to be used in conjunction with Tolerance Table 6 and Table 5, respectively.

810.2 Concentricity:

<u>810.2.1</u> All Alloys Except as Noted in-8 10.2.2—The outside periphery of continuously cast tubing shall be concentric with the bore within a permissible variation of 2 % of the nominal wall thickness over $\frac{1}{4}$ in. (6.35 mm).—With If the wall thicknesse is $\frac{1}{4}$ in.—and or less, permissible variations in concentricity shall be subject to agreement between the purchaser and the manufacturer.

<u>810</u>.2.2 *Copper Alloy UNS Nos. C86200, C86300, C86400, C95200, C95300, C95400, C95410, C95500, C95520, C95800, C95900, and C96400*—The outside periphery of continuously cast tubing shall be concentric with the bore within a permissible variation of 4 % of the nominal wall thickness.

810.3 Diameter Tolerances for Continuously Cast Rod and Bar-See Table 5.

8.4 *Tolerances of Average Diameter*

10.4 Diameter Tolerances for Continuously Cast Tube (Round only)-See Table 6.

TABLE 5 6 Diameter Tolerances for <u>Tube (Rod aund Bar Only)</u>							
	Tol lel Su rfances, in. (mm)						
Di Averamge Outsider or	Outside Diameter	Tol Insider D)ia nc me s, ter				
Di stanc<u>m</u>e B te-r, tweein Para. (mm)	Plus ^A and or						
weent ara. (mm)	Minus , ^A in.						
	(mm)	_					
		Squares,					
	Rounds	Rectangles,					
	rtoundo	Hexagons,					
		Octagons					
		Minus ,					
	Plus ^B	Rectangles,					
	<u></u>	Hexagons,					
B		Octagons					
		ad Dalaw	-				
	s Except as Not 0.005 (0.13)		-0.033 (0.841)				
Up to 4 (102), excl Up to 4 (102), excl	0.005 (0.13)	0.016 (0.30) 0.012 (0.30)	0.033 (0.84)				
<u>4 (102)–5 (127), incl</u>	0.003 (0.13)	<u>0.012 (0.30)</u> 0.016 (0.41)	0.033 (0.64)				
4 (102)–5 (127), incl 4 (102)–5 (127), incl	0.008 (0.20)	0.016 (0.41)	0.046 (1.2)				
4 (102)-5 (127), Inci Over 5 (127)	<u>0.008 (0.20)</u> 0.016 (0.41)	0.016 (0.41) 0.016 (0.41)	0.046 (1.2)				
Over 5 (127)	0.016 (0.41)	0.032 (0.81)	0.064 (1.6)				
Copper Alloy UNS Nos. C8620							
	95800, C95900,						
Up to 3 (76.2), incl	0.010 (0.25)	0.020.32)	-0.033 (0.51)				
Up to 3 (76), incl	0.010 (0.25)	0.012 (0.32)	0.033 (0.84)				
Over 3 (76.2) 4 (102), incl	0.015 (0.38)	0.020 (0.38)	0.051)				
Over 3 (76)-4 (102), incl	0.015 (0.38)	0.015 (0.38)	<u>0.0</u> 50 (1.3)				
Over 4 (102)-51/2 (140), incl	0.020 (0.51)	0.020 (0.564)	0.070 (1)				
Over 4 (102)-51/2 (140), incl	0.020 (0.51)	0.025 (0.64)	<u>0.070 (</u> 1.8)				
Over 51/2 (140)	0.025 (0.64)	0.025 (0.64)	0.090 (2.3)				
Over 51/2 (140)	0.025 (0.64)	0.035 (0.86)	0.090 (2.3)				
A144							

Ҏ B 505/B 505M – 9602

^A When tolerances are specified as all plus or all minus, double the values given. ^B When tolerances are specified as all plus or all minus, total the values given.

810.5 Roundness—For continuously cast tubing in straight lengths, the roundness tolerances shall be as shown in Table 7. 810.6 Dimensional Tolerances for All Other Shapes (not Covered by 7.110.1 or 8.210.2)—See Table 8. 8.7 Straightness Tolerances for Continuously Cast Rod, Tube, Bars, and Shapes-See Table 12.

9. Casting Repair

9.1 Continuous castings shall not be mechanically repaired, plugged, or burned in.

9.2 Weld repair is permitted for Copper Alloy UNS Nos. C95200, C95300, C95400, C95410, C95500, C95800, and C95900.

9.3 Weld repairs may be made at the manufacturer's discretion provided each excavation does not exceed 20 % of the casting section or wall thickness or 4 % of the casting surface area.

9.4 Excavations that exceed those described in 8.2 may be made at the manufacturer's discretion except that when specified in the purchase order (4.1.12) the weld procedure shall be approved by the purchaser and the following records shall be maintained: 9.4.1 A sketch or drawing showing the dimensions, depth, and location of excavations,

9.4.2 Post-weld heat treatment, when applicable,

9.4.3 Weld repair inspection results,

9.4.4 Casting identification number,

9.4.5 Weld procedure identification number,

9.4.6 Welder identification, and

9.4.7 Name of inspector.

9.5 The castings shall not be impregnated without approval of the purchaser.

9.6 Weld repair of other alloys in this specification is not permitted without approval by the purchaser.

10. General Requirements

10.1 The following sections of Specification B 824 form a part of this specification.

10.1.1 Terminology (Section 3),

10.1.2 Other Requirements (Section 6),

10.1.3 Workmanship, Finish, and Appearance (Section 8),

10.1.4 Number of Tests and Retests (Section 10),

10.1.5 Specimen Preparation (Section 11),

10.1.6 Test Methods (Section 12),

10.1.7 Significance of Numerical Limits (Section 13),

10.1.8 Inspection (Section 14),

₩ B 505<u>/B 505M</u> – 9602

TABLE 6 7 DiamRoundneterss Tole	rances for Tube (Round C)nly)
AverageOutside Diameter, in. (mm)	Toler<u>M</u>ances, xi n. (mum)	
Out side Diameter Outside		
Outside Diameter Diameter		
Plus ^A		
<u>Minus^A.</u> (mm)		
Pluss, ^A		
i <u>n.</u> (mm)		
Plus ^B	Minus ^B	
<u>Up to0.005 (0.13)</u>	cept as Noted Below	
<u>4</u> (<u>102),</u>		
<u>excl</u> Up to0.020 (0.51)		
$\frac{4}{(102)}$,		
<u>excl</u> 0.012 (0.30)	0.033 (0.84)	
4 (102)-5 (127), incl	0.032 (0.81)	0.046 (4.2)
4 0.008 (0.20) (102)-5	0.016 (0.41)	0.046 (1.2)
(127), incl-		
_ 0.008 (0.20)	0.016 (0.41)	0.046 (1.2)
Over 0.016 (0.41)5		
(127) Over 0.064 (1.6)		
<u>(127)</u>		
.0.32 (0. Copper Alloy UNS Nos. C86200, C C95500, C9580		0.064 (1.6) 00, C95400,
Up to0.010 (0.25) 3	0.012 (0.32)	-0.033 (0.84)
(76),		
$\frac{\text{Up to 3 (76.2), incl}}{\text{Up to 3 (76.2), incl}}$	0.025 (0. 32)	-0.033 (0.8 <u>64)</u>
Over 0.015 (0.38) 3	0.015 (0.38) -	
(76) 4 (102),		
incl Over 3 (76.2)–4 (102), incl	0.040 (1.0)	
0.050 (1.3) Over 0.020 (0.51)		
4		
(102)–5½ (140),		
incl <u>Over</u> 0.060 (1.5)		
$\frac{(102)-5^{1/2}}{(140),}$		
<u>incl</u> 0.025 (0.64)	0.070 (1.8)	
Over 0.025 (0. 64) 5½	0.035 (0.86)	0.0 90 (2.3)
(140) Over 0.075 (1. 64)	0.035 (0.86)	0.0 9)
51/2	0.000 (0.00)	0.03/
(140) ^A W Then deviatiolen fraom rounednes are	s pec ifis me d as all pl u s o red a ll i	minus

	DiamPoundnotores	Tolorancos for	Tube (Round Only)
IADLE 0 /	Diamikoununeterss	Toter ances tor	Tube (Round Only)

^B Whrence betolween major aned minor diameters aresp deetermiffined ast all plusny or all minue cros; section of tal the val tubes given.

Outside	Di a me ter, i n . (mm)	Maxsimum Out-of- Roundness, ^A in. (mm)	Jp t Inside Dimensio-₄	4 <u>n,^B in.</u> (102 mm) , exc
	0.020 (0.51)All Alloys I	Except as Noted Belo	W	
	4 (102) -5 (127), incPlus	0.032 (0.81)		
-	Over 5 (127)	0.064 (1.6)		
Minus	Plus	0.064 (1.6)		
	JNS Nos. C86200, C8630 00, C95400, C95500, C9	, ,		
	JNS Nos. C86200, C8630 00, C95400, C95500, C9			
	Up to 3 (76.2), incl	0.025 (0.64)	Over 3 (76.2)–4 (102), incl	0.040 (1.0)
	0.016 (0.41)	0.016 (0.41)	0.032 (0.81)	<u>0.064 (1.6)</u> -
	Over 4 (102)	- - 5 (140), incl		d C96400
Copper Alloy	UNS Nos. C86200, C863	00, C86500, C95200	, C95300, C95400 <u>,</u>	d C96400
	C95500, C9580	0, C95900, an cl		
).060 (1.5) -				
	Over 51/2 (140)	0.075 (1.9)		
	OvDimensional	eances shall be		
	toler 51/2 (140)	subject to		
		agreement between		
		purchaser		
		and		
		manufacturer.		

TABLE 7 8 Roundness Tolerances for Shapes

AT Whe devian tion flerom rouandnces are specis mfied as all plus ored all

minus, double the-d values giffverene. plus one cro all minuss sec, tion oftal the t valubes given.

10.1.10 Certification (Section 16),

10.1.11 Test Report (Section 17),

10.1.12 Product Marking (Section 18),

10.1.13 Packaging and Package Marking (Section 19),

10.1.14 Supplementary Requirements.

11. Sampling

11.1 Unless otherwise specified, a lot shall consist of Casting Repair

11.1 Continuous castings of the same composition and same cross-sectional dimensions, produced during the continuous operation of one casting machine, and submitted for inspection at one time.

11.2 A sample for chemical analysis shall not be taken from each lot mechanically repaired, plugged, or burned in.

11.2 Weld repair is permitted for Copper Alloy UNS Nos. C95200, C95300, C95400, C95410, C95500, C95800, and C95900.

11.3 Weld repairs may be made at the manufacturer's discretion, provided each-interval excavation does not exceed 20 % of 2000 lb (910 kg) of continuous production of the lot. When castings are produced from alloy ingots casting section or wall thickness or 4 % of known composition, the sampling interval casting surface area.

11.4 Excavations that exceed those described in 11.3 may be raised to one sample for each 4000 lb (1810 kg) of continuous production of made at the lot.

11.3 When mechanical testing is manufacturer's discretion, except that when specified by the purchaser in the purchase order one sample for tension testing shall be taken from each lot. This sample may be taken before mechanical straightening. Test coupons shall be positively identified with (5.2), the castings they represent. Where castings are heat treated, test coupons weld procedure shall be heat treated with approved by the castings they represent.

11.4 When Copper Alloy UNS No. C95200 is specified for ASME boiler purchaser and pressure vessel requirement, a sample from each 2000-lb interval or continuous casting the following records shall be tested. Each continuous cast bar from which maintained:

11.4.1 A sketch or drawing showing the dimensions, depth, and location of excavations,

11.4.2 Post-b-weld heat treatment, when applicable,

11.4.3 Weld repair inspection results,

11.4.4 Caksting identification number,

11.4.5 Weld procedure identification number,

11.4.6 Welder identification, and

₩ B 505<u>/B</u> <u>505M</u> – 9602

TABLE 8 9 TotMerchanical Res foquir Shapements

OutsidCoppe-Dimr Alloy UNS No.	Tensiele Strengt	<u>h, min^a-in. (mm)</u>	InsYield Stre Dimr Extensi Under Load	ion	Elongation in 2 in. or 50 mm,	Brinell Hardness, min	Remarks
	<u>ksi</u> ^B	MPa ^C	ksi n. (mm)		— <u>min, %</u>		
				MPa ^C			
All Alloys Except as Noted BelowC83600	-36	248	19	131	15		
C83600	36	248	19	131	<u>15</u>		
Plus	Minus-	Plus	Minus 15	-97	16		
<u>C83800</u>	_30	207	_15	_97	<u>16</u>		
0.016 (0.41) C84200	0.016 (0.41) 32	0.03<mark>2 (0</mark>.81) 221	0.06<mark>4 (</mark> 1.6) _16)				
				<u>110</u>	<u>13</u> 16		
Copper Alloy UNS Nos. C86200, C86300, C86500, C95200, C95300, C95400, C95500, C95800, C95900, and C96400	Dimensi 30	207	-15	103	16		
<u>C84400</u>	_30	207	15	103	16		
C84800	30	207	15	103	16		
C85700	40	276	14	97	15		
C86200	90	621	45	310	18		
C86300	110	758	62	427	14		
C86500	70	483	25	172	25		
C89320	35	241	18	124	15		
C90300	44	303	22	152	18		
C90500	44	303	25	172	10		
C90700 C91000	40 30	276 207	25	172	10	160 (3000 kg)	
C91300						100 (3000 Kg)	
C92200	 38	262	 19	 131	 18		
C92300	40	276	19	131	16		
C92500	40	276	24	165	10		
C92700	- 38	252	-20	138	-8		Ronal toleran
C92700	38	252	_20	138	8		f or all ot Rockwell
C92800						<u></u>	B 72–82
C92900	45	<u></u> <u>310</u>	25 20 20	<u></u> 172	8		
C93200	35	241	20	138	10		
C93400	34	234	20	138	8		
C93500	30	207	16	110	12		
<u>C93600</u>	33	227	_20	138	<u>10</u>		
<u>C93700</u>	35	241	16 20 20 16	138	6		
<u>C93800</u>	25	172		110	_5		
<u>C93900</u> C94000	25	172	16	<u>110</u>	_5	00 (E00 km)	
<u>C94000</u> C94100	<u></u> 25	<u>172</u>	<u>17</u> 15 20	<u>117</u>	<u></u> 7	<u>80 (500 kg)</u>	
C94300	20	145	15	103			
C94700	45	310	20	138	$\frac{7}{25}$		
	 45 35 34 30 33 35 25 25 25 25 21 45 75	517	-50	345	8 :::8 10 8 12 10 6 5 5 :::7 7 25 5 -5		her shapes (r
C94700HT	75	517	50	345	5		cove red by heat treated
4.800	-40	276	-20	1 or38	<u>5</u> 20		nout trouto
C94800	40	276	_20		20		
C95200	-68	4.69	2) s6	1 <u>38</u> 179	20 20		
C95200	<u>68</u> 0	4 <u>69</u>	_2 <u>6</u> _26	179	$\frac{20}{25}$		
C95300		483		179	25		
	-80	552	-40	276	12		hall be subject to
							agreemd
C95300HT	80	552	40	276	12		heat treated
C95400	85	586	32	221	<u>12</u> 12		
		655	- <u>45</u>	310	10		hent b etwe
	-95						heat treate
	95 95	655	45	310	10		nout trouto
<u>C95400HT</u> C95410	<u>95</u> 85	<u>655</u> 586	<u>45</u> 32	<u>310</u> 221	<u>10</u> 12		<u>n</u> ear treate
<u>C95400HT</u> C95410 C95410HT	<u>95</u> 85 -95	<u>655</u> 586 655	32 45	221 310	12 10		-
<u>C95400HT</u> C95410 <u>C95410HT</u> C95410HT	<u>95</u> 85 -95 95	655 586 655 655	32 - 45 45	221 310 <u>310</u>	12 10		hen purchas
<u>C95400HT</u> C95410 C95410HT <u>C95410HT</u> C95500	<u>95</u> 85 95 95	655 586 655 655 655	32 - 45 45 42	221 310 <u>310</u> 290	12 10 <u>10</u> 10		hen purchas
<u>C95400HT</u> C95410 <u>C95410HT</u> <u>C95410HT</u> C95500 C95500HT	95 85 95 95 95 110	655 586 655 655 758	32 - 45 - <u>45</u> - <u>42</u> - 62	221 310 <u>310</u> 290 427	12 10 <u>10</u> 10 -8		hen purchas heat treate heat trand r
<u>C95400HT</u> C95410 <u>C95410HT</u> <u>C95410HT</u> C95500 <u>C95500HT</u> <u>C95500HT</u>	<u>95</u> 85 <u>95</u> 95 110 110	655 586 655 655 758 758	32 -45 <u>45</u> 42 - 62 62	221 310 <u>310</u> 290 427 427	12 10 <u>10</u> 10 -8	262 (2000 kata	hen purchas heat treate heat trand r heat treate
<u>C95400HT</u> C95410 <u>C95410HT</u> C95410HT C95500 C95500HT C95500HT <u>C95500HT</u>	95 85 - 95 95 110 125	655 586 655 655 758 758 862	32 45 -45 -42 -62 -62 -05 ^p	221 310 <u>290</u> 427 <u>427</u> <u>427</u> <u>655^D</u>	12 10 <u>10</u> 10 -8	262 (3000 kg)hc 262 (3000 kg)	hen purchas heat treate heat trand r heat trand r heat treate anufacturerat
<u>C95400HT</u> C95410 <u>C95410HT</u> C95410HT C95500 C95500HT C95500HT C95520HT C95520HT	<u>95</u> 85 <u>95</u> 95 <u>110</u> <u>110</u> <u>125</u>	655 586 655 655 758 758 862 862	32 -45 45 42 -62 -95 ^p 95 ^p	221 310 <u>310</u> 290 427 <u>427</u> <u>427</u> <u>655^p</u> 655 ^p	12 10 <u>10</u> 10 -8	262 (3000 kg)he 262 (3000 kg)	hen purchas heat treate heat trand r heat trand r heat treate anufacturerat
<u>C95400HT</u> C95410 <u>C95410HT</u> C95410HT C95500 C95500HT C95500HT C95500HT	95 85 - 95 95 110 125	655 586 655 655 758 758 862 862 862 620	$ \begin{array}{r} 32 \\ -45 \\ 45 \\ 42 \\ -62 \\ 62 \\ -95^{D} \\ 95^{D} \\ 40 \\ \end{array} $	221 310 <u>290</u> 427 <u>427</u> <u>427</u>	12 10 10 -8 -2 -2 2 15		hen purchas heat treate heat trand r heat trand r heat treate anufacturerat
<u>C95400HT</u> C95410 <u>C95410HT</u> C95410HT C95500 C95500HT <u>C95500HT</u> <u>C95500HT</u> <u>C95520HT</u> C95520HT C95700	95 85 95 95 110 110 125 90 85	655 586 655 655 758 862 862 620 586	$ \begin{array}{r} 32 \\ -46 \\ 45 \\ 42 \\ -62 \\ 62 \\ -96^{p} \\ 95^{p} \\ 40 \\ 35 \\ \end{array} $	$221 \\ 310 \\ 290 \\ 427 \\ 427 \\ 655^{p} \\ 655^{p} \\ 275 \\ 241 \\ 241 \\ 310 \\ 31$	12 10 10 10 -8 8 -2 2 15 18 18		hen purchas heat treated heat trand r heat trand r heat trand
<u>C95400HT</u> C95410 <u>C95410HT</u> C95500 <u>C95500HT</u> <u>C95500HT</u> <u>C95500HT</u> <u>C95520HT</u> <u>C95520HT</u> C95700 C95800 ^F C95800 C95800	95 85 -95 95 110 <u>125</u> 90 85 65	655 586 655 655 758 862 862 620 586	$ \begin{array}{r} 32 \\ -46 \\ 45 \\ 42 \\ -62 \\ 62 \\ 95^{D} \\ 40 \\ 35 \\ \underline{35} \\ \underline{35} \\ \end{array} $	$221 \\ 310 \\ 290 \\ 427 \\ 427 \\ 655^{D} \\ 655^{D} \\ 275 \\ 241 \\ \vdots \\ 241$	12 10 10 10 -8 8 -2 2 15 18 18	262 (3000 kg)	hen purchase heat treated heat treated heat treated heat treated heat treated
<u>C95400HT</u> C95410 <u>C95410HT</u> C95410HT C95500 C95500HT <u>C95500HT</u> <u>C95500HT</u> <u>C95520HT</u> C95520HT C95700 C95800 ^F C95900 <u>C96400</u> <u>C96900HT</u>	95 85 -95 95 110 125 90 85 <u>65</u> 110	655 586 655 655 758 862 862 620 586 448 758	$ \begin{array}{r} 32 \\ -46 \\ 45 \\ 42 \\ -62 \\ 62 \\ -95^{p} \\ 40 \\ 35 \\ \cdots \\ 35 \\ 105^{p} \end{array} $	$221 \\ 310 \\ 290 \\ 427 \\ 427 \\ 655^{D} \\ 655^{D} \\ 275 \\ 241 \\ \frac{1}{724^{D}}$	12 10 10 10 -8 8 -2 2 15 18 18	262 (3000 kg)	hen purchase heat treated heat trand n heat treated
<u>C95400HT</u> C95410 <u>C95410HT</u> C95410HT C95500 C95500HT C95500HT <u>C95500HT</u> C95500HT C95500F C95700 C95800 ^F C95900 <u>C96400</u> C96900HT <u>C97300</u>	95 85 -95 95 110 125 90 85 <u>65</u> 110	655 586 655 655 758 862 862 620 586 448 758 207	$ \begin{array}{r} 32 \\ -46 \\ 45 \\ 42 \\ -62 \\ 62 \\ -95^{p} \\ 40 \\ 35 \\ \cdots \\ 35 \\ 105^{p} \end{array} $	$221 \\ 310 \\ 290 \\ 427 \\ 427 \\ 655^{D} \\ 655^{D} \\ 275 \\ 241 \\ \frac{1}{724^{D}}$	12 10 10 10 -8 8 -2 2 15 18 18	262 (3000 kg)	hen purchase heat treated heat treated heat treated heat treated heat treated
C95400HT C95410 C95410HT C95410HT C95500 C95500HT C95500HT C95520HT C95520HT C95700 C95800F C95900 C95900 C96400 C96900HT	95 85 -95 95 110 110 125 90 85 65	655 586 655 655 758 862 862 620 586 448 758	$ \begin{array}{r} 32 \\ -46 \\ 45 \\ 42 \\ -62 \\ 62 \\ 95^{D} \\ 40 \\ 35 \\ \underline{35} \\ \underline{35} \\ \end{array} $	$221 \\ 310 \\ 290 \\ 427 \\ 427 \\ 655^{D} \\ 655^{D} \\ 275 \\ 241 \\ \vdots \\ 241$	12 10 10 -8 -2 -2 2 15	262 (3000 kg)	hen purchase heat treated heat treated heat treated heat treated heat treated

^AWhe Minimum teensile strength aned yield s-atrength sehall be reducified 10 % for cast ball of unstantiation a cross section, thickness, diameter, or wall of 4 in (102 mm)

∰ B 505<u>/B 505M</u> – 9602

	(IS Analy /2eu	
FinishCopped Outside Diameter, <u>Alloy</u> in <u>UNS No</u> (mm)			Finish AtlCowaneppes Added to Finished or Printlus BiNamed Elemensions ofthe Parts, <u>%min(mm)</u>
<u>s.</u>	Inside Diameter <u>Copper Alloy</u> <u>UNS No.</u>	Outsi d e Diamet er <u>Copper Plus</u> <u>Named</u> <u>Element</u> e r	
<u>%min</u> All Alloys Except as Noted BelowC83600	99.3	C93600	99.3
<u>C83600</u> <u>Up to 4 (102), excl</u> <u>C83800</u> <u>4 (102) 5 (127),</u> incl	<u>99.3</u> -0.031 (-0.79) <u>99.3</u> -0.063 (-1.6)	<u>C93600</u> + 0.031 (0.700 <u>C93700</u> + 0.063 (1	99.3 9) 99.0 .6)
<u>C84200</u> Over 5 (127) <u>C84400</u>	<u>-0.094 (-2.4)</u> <u>99.3</u>	<u>C93800</u> + 0.094 (2.4) <u>C93900</u> 94 (2.4)	<u>99.0</u>
Copper Alloy UNS Nos. C86200, C86300, C86500, G	95200, C95300,	C95400, C95500, C	<u>98.9</u> 95800, C95900, and C96400
<u>C84800</u> Up to <u>3 (76.2), incl</u> <u>C85700</u> Over <u>3 (76.2) 4</u> (102), incl	<u>99.3</u> -0.125 (-3.2) <u>98.7</u> -0.125 (-3.2)	<u>C94000</u> + 0.063 (1 <u>C94100</u> + 0.0	<u>98.7</u> <u>-6)</u> <u>98.7</u> 94 (2.4)
<u>C86200</u> Over 4 (102) 51/2 (140), incl	<u>99.0</u> -0.188 (-4.8)	<u>C94300</u> + 00	<u>99.0</u> 98.125 (3.2)
C86300 Over5 (140) C86500 C89320 C90300 C90500 C90700 C91000 C91300 C92200 C92200 C92200 C92500 C92500 C92700 C92200 C92200 C92200 C92200 C92200 C92200 C93200 C93200 C93500	99.0 -0.250 (-6.4) 99.5 99.4 99.7 99.4 99.4 99.4 99.4 99.3 99.3 99.3 99.3	C94700 +00 C94800 C95200 C95300 C95400 C95410 C95500 C95500 C95500 C95800 C95800 C95800 C95800 C95800 C95800 C95800 C95900 C95900 C95900 C96900 C97800 C97800 C97800 C97800 C97800 C99500	98.7 98.7 99.0 99.0 99.5 99.5 99.5 99.5 99.5 99.5

TABLE-3_11 FinishingSum of Allow Nancmes for Tubd Ele (Roumend Ots Analy)zed

11.4.7 Name of inspector.

<u>11.5 The castings shall not be identified should retesting be required. If all impregnated without approval</u> of the test bars from the initial sampling meet the requirements, the lot shall be acceptable.

11.4.1 The fractured bars shall be retained for chemical verification.

11.5 Tension test bar specimens shall be taken from continuous castings in accordance with Fig. 6 purchaser.

11.6 Weld repair of Practice B 208. other alloys in this specification is not permitted without approval by the purchaser.

12. Test Methods

12.1 AnalyticalSampling

		vances is Toler Rodand Barces							
Finished Outside Diameter or Distance Between Parallel Sodurfaces; in. (mm)t	<u> </u>	SqMaximum Curvatures ^B (Depth of <u>Arc)</u> , Rectaingles, Hexagons, Octagons							
All Alloys Except as Noted Below									
	All Alloys Except as N	Noted Below. (mm)							
Up to 4 (102),excl Round rod or tube 4 (102) 5 (127), incl	+ 0.03 1 (0.79) <u>up to 10 (3.05)</u> + 0.063 (1.6) 10 (3.05) and over	<u>+ 0¹/4.031 (0.79)</u> <u>¹/₄ (6.4) in any 5-ft (1.52-m) portion</u> <u>+ 0.063¹/₂ (1.6)</u> ¹ / ₂ (13) in any 10-ft (3.05-m) portion ^A							
Over 5 (127)	+ 0.094 (2.4)	+ 0.0941/2 (2.4)Copper Alloy UNS Nos. C86200, C86300, C86500 C95200, C95300, C95400, C95500, C95800, C95900, C96400							
Bar and shape	any length	<u>1/2 (13) in any 6-ft (1.83-m)</u> -C95400, C95500, C95800, C95900, C96400							
Up to 3 (76.2), incl	$\frac{+0.0625}{(1.6)} + 0.0625$								
Up to 3 (76.2), incl	+ 0.0625 (1.6) $+ 0.0625(1.6)$								
Over <u>3</u> (76.2) 4 (102)	+ 0.093 (2.4)	+ 0.0625 (1.6)							
Over 3 (76.2)-4 (102) ^A , incl	+ 0.093 (2.4)	+ 0.0625 (1.6)							
Over 4 (102) -51/2 (140), incl	+ 0.125 (3.2)								
Over 5½ (140) Over 5½ ^B (140)	- + 0.188 (4.8) - + 0.188 (4.8)	+ 0.0625 (1.6) + 0.0625 (1.6)							

TABLE 4 12 FStrainisghitng Allowances fs Toler Rodand Barces

🖽 🕅 B 505/B 505M – 9602

^A Of total length.

^B Applicable to any longitudinal surface or edge.

12.1 Sampling shall be accordance with the requirements of Practice E 255.

12.2 Unless otherwise specified, a lot shall consist of castings of the same composition and same cross-sectional dimensions, produced during the continuous operation of one casting machine, and submitted for inspection at one time.

12.3 A sample for chemical methods are given in Specification B 824 (Section 12).

<u>12.2 Brinell Hardness Reading analysis</u> shall be taken from each lot at each interval of 2000 lb (910 kg) of continuous production of the grip end lot. When castings are produced from alloy ingots of known composition, the sampling interval may be raised to one sample for each 4000 lb (1810 kg) of continuous production of the lot.

<u>12.4</u> When mechanical testing is specified by the purchaser in the purchase order one sample for tension testing shall be taken from each lot. This sample may be taken before mechanical straightening. Test bar specimens shall be positively identified with the castings they represent. Where castings are heat treated, test bar and specimens shall be made in accordance heat treated with Test Method E 10 with the exception that castings they represent.

12.5 When Copper Alloy UNS No. C95200 is specified for ASME boiler and pressure vessel application, a 3000-kg load sample from each 2000-lb interval or continuous casting shall be-used.

12.3 Rockwell Hardness Reading tested. Each continuous cast bar from which the test bar was taken shall be taken on the grip end identified should retesting be required. If all of the tension test bars from the initial sampling meet the requirements, the lot shall be acceptable.

12.5.1 The fractured bars shall be retained for chemical verification.

<u>12.6 Tension test</u> bar and specimens shall be made taken from continuous castings in accordance with Test Methods E 18. Fig. 6 of Practice B 208.

13. Test Methods

13.1 Analytical chemical methods are given in Specification B 824 (Section 12).

<u>13.2</u> Brinell Hardness Reading shall be taken on the grip end of the tension test bar and shall be made in accordance with Test Method E 10. If a Brinell hardness is required and a tension test is not required, testing shall be in accordance with Test Method E 10.

13.3 Rockwell Hardness Reading shall be taken on the grip end of the tension test bar and shall be made in accordance with Test Methods E 18. If a Rockwell hardness is required and a tension test is not required, testing shall be in accordance with Test Method E 18.

<u>14.</u> Product Marking

134.1 At the request of the purchaser castings shall be marked with the alloy number.

TABLE 120	StraigChtness	Tomical Re	quirancements

		PComposition, % max, except as indicated															
		Major Elements				•	Residueal Elements										
	Copper							Nickel									
	Alloy UNS No.	Copper	<u>Tin</u>	Lead	Zinc	Iron	<u>Nickel</u> Including <u>Cobal</u> t	<u>Alumi-</u> num	<u>Man-</u> ganese	Iron	<u>Anti-</u> mony	Includ- ing Cobalt	<u>Sul-</u> <u>fur</u>	<u>P</u> h , os- phorus	<u>Alu-</u> <u>mi-</u> num	<u>Man-</u> <u>ga-</u> nese	<u>Sili-</u> con
	C83600	84.0 86.0	4.0-6.0	4.0 6.0	4.0 6.0		1.0 ^A ft (m)	laximum	 ·	0.30	0.25	- <u></u>	0.08		0.005	- <u></u>	0.005
C	<u>C83600</u> rvature83800	84.0-86.0 82.0-83.8	<u>4.0–6.0</u> 3.3–4.2	<u>4.0–6.0</u> 5.0–7.0	<u>4.0–6.0</u> 5.0–8.0	 	1.0 ^A 1.0 ^B	<u></u> . (mm)	<u></u>	0.30	0.25 0.25	<u></u>	0.08 0.08		0.005 0.005	<u></u>	0.005 0.005
0	vature05000	02.0-03.0	5.5-4.2	5.0-7.0	5.0-0.0		(Depth of	. ()		0.50	0.25		0.00	1.5	0.000		0.005
							Arc),										
	C83800	82.0-83.8	3.3–4.2	5.0-7.0	5.0-8.0		in 1.0 ^A	· <u>··</u>	<u></u> .	0.30	0.25		0.08	1.5	0.005		0.005
	Round rod	up to 10	(6.0	2.0-3.0	1 0.0-16.0		0.8 <u>A</u>		 ·	,	1 0.25-ft(<u>1.5</u> 2-m)	0.005		0.005
	or tube C84200	(3.05) 78.0–82.0	4.0-6.0	2.0–3.0	10.0–16.0		0.8 ^A		<u></u> .	any0 0.40	0.25		porti 0.08		0.005		0.005
i		10 (3.05) and	(13) in	6.0-8.0	7.0–10-ft		1.0 ^A	 	<u> </u>	0.40	0.25	<u> </u>	0.08		0.005	<u></u>	0.005
		over	any-3.5		(3.05-m) portion												
	<u>C84400</u>	78.0-82.0	2.3-3.5	6.0-8.0	<u>7.0–</u> 10.0	<u></u>	<u>1.0</u> ^A	<u></u>	<u></u> .	0.40	0.25		0.08		0.005	<u></u>	0.005
	Bar and shape	any length	(2.0-3.0	5.5-7.0	13) in any.0–17.0		1.0 ^A		 ·	0.40	0.25		0.08	1.5	0.005		0.005
	<u>C84800</u>	75.0-77.0	2.0-3.0	5.5-7.0	13 <u>.0–17.0</u>	<u></u>	<u>1.0^A</u>	<u></u>	<u></u> .	0.40	0.25	<u></u> ,	0.08	1.5	0.005		0.005
	C85700	58.0-6-ft (4.0	0.50–1.5	0.8–1.5	3-m) 2.0–40.0				 ·	0.7		1.0 ^A			0.80		0.05
	<u>C85700</u>	<u>58.0–64.0</u>	<u>0.50–</u> 1. <u>5</u>	<u>0.8–1.5</u>	3 <u>2.0–40.0</u>	<u></u>	<u></u>	<u></u>	<u></u> .	0.7		<u>1.0</u> ^A			0.80	<u></u>	0.05
	C86200 C86300	60.0–66.0 60.0–66.0	portion 0.20	0.20	<u>22.0–28.0</u> 22.0–28.0	<u>2.0–4.0</u> 2.0–4.0	 	3.0-4.9 5.0-7.5	2.5-5.0 2.5-5.0		<u></u>	1.0 ^A 1.0 [·]		<u></u>	<u></u>	<u> </u>	<u></u>
	C86300	60.0-66.0	0.20	0.20	22.0-28.0	2.0-4.0		5.0-7.5	2.5-5.0			<u>1.0</u> ^A					
	C86500 C89320 ^B	55.0–60.0 87.0–91.0	1.0 5.0–7.0	0.40 0.09	36.0–42.0 1.0	0.40–2.0	 1.0	0.50–1.5		5 0.20	 0.35	1.0 <u>^</u>	<u></u> 0.08		 0.005	<u></u>	<u></u> 0.005
,	C90300	86.0-89.0	7.5-9.0	0.30	3.0-5.0	 	1.0 ^A	 	<u> </u>	0.20	0.33	 	0.05		0.005	<u></u>	0.005
	C90500 C90700	86.0-89.0 88.0-90.0	9.0-11.0 10.0-12.0	0.30 0.50 ^A	<u>1.0–3.0</u> 0.50	<u></u>	$\frac{1.0^{A}}{0.50^{A}}$	<u></u>	<u></u> .	0.20	0.20	<u></u>	$\frac{0.05}{0.05}$		0.005		0.005 0.005
	C91000	84.0-86.0	14.0–16.0	0.20	1.5	 	0.84	 	···· ·	0.15	0.20		0.05		0.005	 	0.005
	<u>C91300</u>	79.0-82.0	18.0-20.0	0.25	0.25	<u></u>	0.50 ^A 1.0 ^A	<u></u>	<u> </u>	0.25	0.20	<u></u>	0.05		0.005		0.005
	<u>C92200</u> C92300	86.0-90.0 85.0-89.0	5.5–6.5 7.5–9.0	<u>1.0–2.0</u> 0.3–1.0	$\frac{3.0-5.0}{2.5-5.0}$	 	$\overline{1.0^A}$	 	<u> </u>	0.25	0.25 0.25		0.05		$\frac{0.005}{0.005}$		0.005 0.005
j	<u>C92500</u>	85.0-88.0	10.0-12.0	1.0-1.5	0.50		$0.8 - 1.5^{A}$		<u> </u>	0.30	0.25		0.05		0.005		0.005
	<u>C92700</u> C92800	86.0-89.0 78.0-82.0	<u>9.0–11.0</u> 15.0–17.0	<u>1.0–2.5</u> 4.0–6.0	$\frac{0.7}{0.8}$	 	$\frac{1.0^{A}}{0.8^{A}}$	 	<u> </u>	0.20	<u>0.25</u> 0.25		0.05 0.05		0.005 0.005		0.005 0.005
	C92900	82.0-86.0	9.0-11.0	2.0-3.2	0.25		2.8-4.0			0.20	0.25		0.05	1.5	0.005		0.005
	C93200 C93400	81.0-85.0 82.0-85.0	<u>6.3–7.5</u> 7.0–9.0	<u>6.0–8.0</u> 7.0–9.0	<u>2.0–4.0</u> 0.8	<u></u>	$\frac{1.0^{A}}{1.0^{A}}$	 	···· ·	0.20	0.35 0.50	<u></u>	$\frac{0.05}{0.08}$		$\frac{0.005}{0.005}$	<u></u>	0.005 0.005
	C93500	83.0-86.0	4.3-6.0	8.0-10.0	2.0	 	1.0 ^A		·	0.20	0.30		0.08		0.005		0.005
	<u>C93600</u> C93700 ^C	79.0-83.0 78.0-82.0	<u>6.0–8.0</u> 9.0–11.0	<u>11.0–13.0</u> 8.0–11.0	$\frac{1.0}{0.8}$	<u></u>	<u>1.0</u> 0.50	<u></u>	<u></u> .	0.20	<u>0.55</u> 0.50		0.08 0.08		0.005 0.005	<u></u>	0.005 0.005
	C93800	75.0–79.0	6.3-7.5	13.0–16.0	0.8	 	1.0	 	···· ·	0.15	0.80		0.08	1.5	0.005		0.005
	<u>C93900</u> C94000	76.5–79.5 69.0–72.0	<u>5.0–7.0</u> 12.0–14.0	<u>14.0–18.0</u> 14.0–16.0	<u>1.5</u> 0.50	<u></u>	0. <u>8</u> 0.5–1.0	<u></u>	<u> </u>	0.40	0.50 0.50		0.08 0.08		$\frac{0.005}{0.005}$		0.005 0.005
	<u>C94100</u>	72.0-79.0	4.5-6.5	18.0-22.0	1.0	 	1.0	 	<u> </u>	0.25	0.8		0.08		0.005	<u></u>	0.005
	<u>C94300</u> C94700 ^D	67.0-72.0 85.0-90.0	<u>4.5–6.0</u> 4.5–6.0	<u>23.0–27.0</u> 0.10	<u>0.8</u> 1.0–2.5	<u></u>	<u>1.0</u> 4.5–6.0	<u></u>	<u> </u>	0.15	<u>0.8</u> 0.15	<u></u>	0.08 0.05		0.005 0.005	0.20	0.005 0.005
	<u>C94800</u>	84.0-89.0	4.5-6.0	0.3-1.0	1.0-2.5	 	4.5-6.0		···· ·	0.25	0.15		0.05		0.005	0.20	0.005
	<u>C95200</u> C95300	86.0 min 86.0 min	<u></u>	<u></u>	<u></u>	<u>2.5–4.0</u> 0.8–1.5	<u></u>	<u>8.5–9.5</u> 9.0–11.0	<u></u> .		<u></u>	<u></u>			<u></u>	<u></u>	<u></u>
	<u>C95400</u>	83.0 min	 	 	 	3.0-5.0	<u></u> 1.5	<u>10.0–11.5</u>	0.50		 						
	C95410 C95500	83.0 min 78.0 min	<u></u>	<u></u>	<u></u>	<u>3.0–5.0</u> 3.0–5.0		10.0–11.5 10.0–11.5	0.50 3.5		<u> </u>	<u></u>			<u></u>	<u></u>	<u></u>
	C95520 ^E	74.5 min	0.25	0.03	0.30	<u>3.0–5.0</u> <u>4.0–5.5</u>	4.2-6.0	10.5-11.5	1.5				<u></u>				
	C95700 C95800 ^F	71.0 min 79.0 min	<u> </u>	0.03	<u> </u>	2.0-4.0	<u>1.5–3.0</u> 4.0–5.0	7.0-8.0 8.5-9.5							<u></u>		0.10
	C95900	remainder	 	<u>0.03</u> <u></u>	<u></u>	3.5–4.5 3.0–5.0	0.5	<u>8.5–9.5</u> 12.0–13.5	1.5								<u>0.10</u>
	C96400 ^G	65.0-69.0	<u></u>	0.01	 0.50	0.25-1.50	28.0-32.0	<u></u>	1.5			<u></u>	0.02		<u></u>		0.50
	<u>C96900^H</u> C97300	remainder 53.0–58.0	<u>7.5-8.5</u> 1.5–3.0	<u>0.02</u> 8.0–11.0	<u>0.50</u> 17.0–25.0	 	<u>14.5-15.5</u> <u>11.0–14.0</u>	 	0.05-0.30 <u></u>	0 0.5 1.5	<u></u> 0.35		0.08	0.05	 0.005	<u></u> 0.50	<u></u> 0.15
	C97600	63.0-67.0	3.5-4.5	3.0-5.0	3.0-9.0		19.0-21.5			1.5	0.25	<u></u>	0.08	0.05	0.005	1.0	0.15
	C97800 C99500 ⁷	64.0–67.0 remainder	<u>4.0–5.5</u> <u></u>	<u>1.0–2.5</u> 0.25	<u>1.0–4.0</u> 0.5-2.0	<u></u> 3.0-5.0	<u>24.0–27.0</u> <u>3.5-5.5</u>	0.5-2.0	<u></u> 0.5	<u>1.5</u>	<u>0.20</u>	 	0.08	0.05	0.005	<u>1.0</u>	<u>0.15</u>

^A-Of In determining cotpper minimum, copper may be calculated as copper plus ngthickel.

^BA Bismuth 4.0–6.0 ^C Fe shall be 0.35 % max, when used for steel-backed bearings.

^D It is ppossible that the mechanicabl requirements of Copper Alloy UNS No. C94700 in the heat-treated convdition will not be attainged if the lead content exceeds 0.01 %.

F Chromium content shall be 0.05 max, cobalt 0.20 max, and silicon 0.15 max.
 F Iron content shall not exceed nickel content. Other major element chemical requirements: Silicon 0.10 % max.
 Chemical requirements for other elements: Sulfur 0.02 % max (major), cearbon 0.15 % max (residual), and niobium 0.5-1.5 (major).

^H Magnesium 0.15 max (major), silicon 0.30 max (residual), niobium 0.10 max (residual).

⁷ Silicon 0.5-2.0

∰ B 505<u>/B 505M</u> – 9602

145. Keywords

145.1 continuous castings; copper alloy-castings; copper-base alloy castings

APPENDIX

(Nonmandatory Information)

X1. METRIC EQUIVALENTS

X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared ($N = kg \cdot m/s^2$). The derived SI unit for pressure or stress is the newton per square metre (N/m²), which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m² and N/mm².

SUMMARY OF CHANGES

This section identifies principle

Committee B05 has identified the location of selected changes to this specification standard since the last issue.

-1. Section 10 was rewritten to list issue (B 505 – 96) that may impact the sections use of Specification B 824 which apply to this specification.

-2. Section 3 was rewritten.

-3. The second sentence of paragraph 5.2 was revised standard.

(1) Comprehensive 5-year review completed. Some sections were renumbered, and, in some cases reworded to provide conform

to the new Committee B05 Outline of Form for "analysis required."

-4. Paragraphs 6.2 Specifications (OFS) and 11.3 were revised to eliminate an existing conflict.

-5. New Section 7 was added combining paragraph 9.4 Form and Section 12 and adding other ASME requirements.

-6. Paragraph 12.1 Style for ASTM Standards (Blue Book).

(2) The safety caveat was added.

(3) 7The Terminology section was added.

(4) Table 1, Nominal Compposition was revised.

(5) Table 10, Chemical Requirements has been changed to reflect the current CDA Standard Designations. Some required chemicall coympositions have been changed.

(6) Added UNS Nos. -C69600 C89320 and C93600 to Table 11, Sum of All Named Elements Analyzed. These additions reflect the current CDA Standard Designations.

(7) UNS No. C953800 w has been changed to reflect the current CDA Standard Designations.

(8) Practice E 255 has been added to Section 2, Referenced Documents and Section 12, Sampling.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).