

Designation: B 209 – 02^{€1}

Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate¹

This standard is issued under the fixed designation B 209; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

 ϵ^1 Note—The Summary of Changes was updated editorially September 2002.

1. Scope *

- 1.1 This specification² covers aluminum and aluminumalloy flat sheet, coiled sheet, and plate, in the alloys (Note 1) and tempers shown in Tables 2 and 3, and in the following finishes:
- 1.1.1 Plate in all alloys and sheet in heat-treatable alloys: mill finish.
- 1.1.2 Sheet in nonheat-treatable alloys: mill finish, one-side bright mill finish, standard one-side bright finish, and standard two-sides bright finish.
- Note 1—Throughout this specification use of the term *alloy* in the general sense includes aluminum as well as aluminum alloy.
 - Note 2—See Specification B 632/B 632M for Tread Plate.
- 1.2 Alloy and temper designations are in accordance with ANSI H35.1. The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E 527.
- 1.3 A complete metric companion to Specification B 209 has been developed—B 209M; therefore, no metric equivalents are presented in this specification.
- 1.4 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on the date of material purchase, unless otherwise noted, form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:
 - B 548 Method for Ultrasonic Inspection of Aluminum-Alloy Plate for Pressure Vessels³
 - B 557 Test Methods of Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products³
- ¹ This specification is under the jurisdiction of ASTM Committee B07 on Light Metals and Alloys and is the direct responsibility of Subcommittee B07.03 on Aluminum Alloy Wrought Products.
- Current edition approved Apr. 10, 2002. Published June 2002. Originally published as B 209 46T. Last previous edition B 209 01.
- ² For ASME Boiler and Pressure Vessel Code applications see related Specification SB-209 in Section II of that Code.
 - ³ Annual Book of ASTM Standards, Vol 02.02.

- B 594 Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products for Aerospace Applications³
- B 632/B 632M Specification for Aluminum-Alloy Rolled Tread Plate⁴
- B 660 Practices for Packaging/Packing of Aluminum and Magnesium Products³
- B 666/B 666M Practice for Identification Marking of Aluminum and Magnesium Products³
- B 918 Practice for Heat Treatment of Wrought Aluminum Alloys³
- E 3 Methods of Preparation of Metallographic Specimens⁴
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications⁵
- E 34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys⁶
- E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition⁶
- E 290 Test Method for Semi-Guided Bend Test for Ductility of Metallic Materials⁴
- E 407 Test Methods for Microetching Metals and Alloys⁴
- E 527 Practice for Numbering Metals and Alloys (UNS)⁷
- E 607 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Point-to-Plane Technique, Nitrogen Atmosphere⁸
- E 716 Practices for Sampling Aluminum and Aluminum Alloys for Spectrochemical Analysis⁸
- E 1004 Test Method for Electromagnetic (Eddy-Current) Measurements of Electrical Conductivity⁹
- E 1251 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Argon Atmosphere, Point-to-Plane, Unipolar Self-Initiating Capacitor Discharge⁸
- G 34 Test Method for Exfoliation Corrosion Susceptibility

⁴ Annual Book of ASTM Standards, Vol 03.01.

⁵ Annual Book of ASTM Standards, Vol 14.02.

⁶ Annual Book of ASTM Standards, Vol 03.05.

 $^{^{7}}$ Annual Book of ASTM Standards, Vol 01.01.

⁸ Annual Book of ASTM Standards, Vol 03.06.

⁹ Annual Book of ASTM Standards, Vol 03.03.

NOTICE: This standard has either been superseded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

- in 2XXX and 7XXX Series Aluminum Alloys (EXCO Test)^{10,11}
- G 47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking of High Strength Aluminum Alloy Products¹¹
- G 66 Test Method for Visual Assessment of Exfoliation Corrosion Susceptibility of 5XXX Series Aluminum Alloys (ASSET Test)¹¹
- 2.3 ANSI Standards:
- H35.1 Alloy and Temper Designation Systems for Aluminum¹²
- H35.2 Dimensional Tolerances for Aluminum Mill Products¹²
- 2.4 AMS Specification:
- AMS 2772 Heat Treatment of Aluminum Alloy Raw Materials 13

3. Terminology

- 3.1 Definitions:
- 3.1.1 *sheet*—a rolled product that is rectangular in cross section with thickness less than 0.250 in. but not less than 0.006 in. and with slit, sheared, or sawed edges.
- 3.1.2 *alclad sheet*—composite sheet comprised of an aluminum-alloy core having on both surfaces (if on one side only, alclad one-side sheet) a metallurgically bonded aluminum or aluminum-alloy coating that is anodic to the core, thus electrolytically protecting the core against corrosion.
 - 3.1.3 coiled sheet—sheet in coils with slit edges.
- 3.1.4 *flat sheet*—sheet with sheared, slit, or sawed edges, which has been flattened or leveled.
- 3.1.5 *mill finish sheet*—sheet having a nonuniform finish which may vary from sheet to sheet and within a sheet, and may not be entirely free from stains or oil.
- 3.1.6 *one-side bright mill finish sheet*—sheet having a moderate degree of brightness on one side, and a mill finish on the other.
- 3.1.7 *standard one-side bright finish sheet*—sheet having a uniform bright finish on one side, and a mill finish on the other.
- 3.1.8 *standard two-sides bright finish sheet*—sheet having a uniform bright finish on both sides.
- 3.1.9 *plate*—a rolled product that is rectangular in cross section with thickness not less than 0.250 in., and with sheared or sawed edges.
- 3.1.10 *alclad plate*—composite plate comprised of an aluminum-alloy core having on both surfaces (if on one side only, alclad one-side plate) a metallurgically bonded aluminum or aluminum alloy coating that is anodic to the core, thus electrolytically protecting the core against corrosion.
- 3.1.11 parent coil or plate—a coil of sheet or a plate that has been processed to final temper as a single unit and subsequently cut into two or more smaller coils or individual sheets

- or into smaller plates to provide the required width or length, or both.
 - 3.1.12 *producer*—the primary manufacturer of the material.
- 3.1.13 *supplier*—includes only the category of jobbers and distributors as distinct from producers.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 capable of—The term capable of as used in this specification means that the test need not be performed by the producer of the material. However, should testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),
 - 4.1.2 Quantity in pieces or pounds,
 - 4.1.3 Alloy (7.1),
 - 4.1.4 Temper (9.1),
- 4.1.5 Finish for sheet in nonheat-treatable alloys (Section 1),
 - 4.1.6 For sheet, whether flat or coiled,
 - 4.1.7 Dimensions (thickness, width, and length or coil size),
- 4.1.8 Tensile property limits and dimensional tolerances for sizes not covered in Table 2 or Table 3 of this specification and in ANSI H35.2, respectively.
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether supply of one of the pairs of tempers where shown in Table 2, H14 or H24, H34 or H24 is specifically excluded (Table 2, footnote D),
- 4.2.2 Whether heat treatment in accordance with Practice B 918 is required (8.2),
 - 4.2.3 Whether bend tests are required (12.1),
- 4.2.4 Whether testing for stress-corrosion cracking resistance of alloy 2124-T851 is required (13.1),
- 4.2.5 Whether ultrasonic inspection for aerospace or pressure vessel applications is required (Section 17),
- 4.2.6 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (18.1),
 - 4.2.7 Whether certification is required (Section 22),
- 4.2.8 Whether marking for identification is required (20.1), and
- 4.2.9 Whether Practices B 660 applies and, if so, the levels of preservation, packaging, and packing required (23.121.1).

5. Responsibility for Quality Assurance

5.1 Responsibility for Inspection and Tests—Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. The producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where

 $^{^{10}}$ The applicable edition in the use of this specification is G 34-72—available in the gray pages of the *Annual Book of ASTM Standards*, Vol 02.02.

¹¹ Annual Book of ASTM Standards, Vol 03.02.

¹² Available in the Related Materials section (gray pages) of the Annual Book of ASTM Standards, Vol 02.02.

¹³ Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001.

TABLE 1 Chemical Composition Limits^{A,B,C}

1230 ^H 2014 0.50- Alclad 2014 2024 0.5 Alclad 2024 2124 0.2 2219 0.2 Alclad 2219 3003 0.4 Alclad 3003 3004 0.3 Alclad 3004 3105 0.4 5005 0.3 5010 0.4 5050 0.4 5052 0.2 5083 0.4 5154 0.2 5252 0.0	6 0.95 Si + 0.70 Si + 11.2		0.05 0.05–0.20 0.10 3.9–5.0 3.8–4.9 3.8–4.9 5.8–6.8	0.03 0.05 0.05 0.40–1.2 0.30–0.9	1.2–1.8 202	 0.10 4 clad with 60 0.10	0.05 0.10 0.10 0.25 03 0.25	0.03 0.03 0.15	0.03 ^F 0.05 0.03 ^F 0.05	Total ^E 0.15 0.15	99.60 min ^G 99.00 min ^G 99.30 min ^G remainder
1060 0.2 1100 1230 ^H 2014 0.50- Alclad 2014 2024 0.5 Alclad 2024 2124 0.2 2219 0.2 Alclad 3003 0.4 Alclad 3004 0.3 Alclad 3004 0.3 Alclad 3004 0.3 5005 0.3 5010 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4	0.95 Si + 0.70 Si + 1.2)	+ Fe + Fe 0.7 0.50 0.30 0.30	0.05-0.20 0.10 3.9-5.0 3.8-4.9	0.05 0.05 0.40–1.2 0.30–0.9	 0.05 0.20–0.8 2014 1.2–1.8 2024	 0.10 4 clad with 60 0.10	0.10 0.10 0.25	0.03	0.03 ^F 0.05 0.03 ^F 0.05	 0.15 	99.00 min ^G 99.30 min ^G
1100 1230 ^H 2014 2014 0.50- Alclad 2014 2024 2124 0.2 219 0.2 Alclad 2219 3003 0.1 Alclad 3003 3004 3005 0.3 105 0.0 5005 0.3 5010 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 5054 5454 5754 0.4	0.95 Si + 0.70 Si + 1.2)	+ Fe + Fe 0.7 0.50 0.30 0.30	0.05-0.20 0.10 3.9-5.0 3.8-4.9	0.05 0.05 0.40–1.2 0.30–0.9	 0.05 0.20–0.8 2014 1.2–1.8 2024	 0.10 4 clad with 60 0.10	0.10 0.10 0.25	0.03	0.05 0.03 ^F 0.05	0.15 	99.00 min ^G 99.30 min ^G
1230 ^H 2014 0.50- Alclad 2014 2024 0.5 Alclad 2024 2124 0.2 2219 0.2 Alclad 2219 3003 0.4 Alclad 3003 3004 0.3 Alclad 3004 3005 0.4 3005 0.4 5050 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4).70 Si + 1.2))	0.50 0.30 0.30	0.10 3.9–5.0 3.8–4.9 3.8–4.9	0.05 0.40–1.2 0.30–0.9 0.30–0.9	0.05 0.20-0.8 2014 1.2-1.8 2024	 0.10 4 clad with 60 0.10	0.10 0.25 03	0.03	0.03 ^F 0.05		99.00 min ^G 99.30 min ^G
2014 0.50- Alclad 2014 2024 0.5 Alclad 2024 2124 0.2 2219 0.2 Alclad 2219 3003 0.4 Alclad 3003 3004 0.3 Alclad 3004 3005 0.4 3005 0.4 5050 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4	1.2	0.7 0.50 0.30 0.30	3.9–5.0 3.8–4.9 3.8–4.9	0.40–1.2 0.30–0.9 0.30–0.9	0.05 0.20-0.8 2014 1.2-1.8 2024	0.10 4 clad with 60 0.10	0.25 03	0.03	0.05		99.30 min ^G
Alclad 2014 2024 0.5 Alclad 2024 2124 0.2 2219 0.2 Alclad 2219 3003 0.1 Alclad 3003 3004 0.3 Alclad 3004 3005 0.0 3105 0.0 5005 0.0 5010 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754)	0.50 0.30 0.30	3.8–4.9 3.8–4.9	0.30-0.9 0.30-0.9	2014 1.2–1.8 2024	1 clad with 60 0.10	03	0.15		0.15	remainder
2024 0.5 Alclad 2024 2124 0.2 2219 0.2 Alclad 2219 3003 0.4 Alclad 3003 3004 0.3 Alclad 3004 3005 0.4 5050 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4)	0.30 0.30	3.8-4.9	0.30-0.9	1.2–1.8 202	0.10					
Alclad 2024 2124 0.2 2219 0.2 Alclad 2219 3003 0.4 Alclad 3003 3004 0.3 Alclad 3004 3005 0.4 5005 0.3 5010 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4)	0.30 0.30	3.8-4.9	0.30-0.9	2024		0.05				
2124 0.2 2219 0.2 Alclad 2219 3003 0.1 Alclad 3003 3004 0.3 Alclad 3004 3005 0.1 5005 0.3 5010 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4)	0.30					0.25	0.15	0.05	0.15	remainder
2219 0.2 Alclad 2219 3003 0.4 Alclad 3003 3004 0.3 Alclad 3004 3005 0.1 3105 0.4 5005 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4)	0.30				1 clad with 12	30				
Alclad 2219 3003			5.8–6.8		1.2-1.8	0.10	0.25	0.15	0.05	0.15	remainder
3003 0.1 0.1 Alclad 3003 3004 0.3 Alclad 3004 0.3 Alclad 3004 3005 0.1 3105 0.1 5005 0.3 5010 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4	ı	0.7		0.20 - 0.40	0.02		0.10	0.02-0.10	0.05	0.15	remainder
3003 0.1 0.1 Alcilad 3003 3004 0.3 Alcilad 3004 3005 0.1 3105 0.1 5005 0.3 5010 0.4 5050 0.4 5050 0.4 5052 0.2 5083 0.4 5154 0.2 5252 5054 5454 0.2 5754 0.4	ı	0.7			2219	clad with 70	72				
3004 0.3 Alclad 3004 3005 0.4 3105 0.5 5005 0.3 5010 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4	1	0.1	0.05-0.20	1.0-1.5			0.10		0.05	0.15	remainder
Alclad 3004 3005 0.0 3105 0.0 5005 0.3 5010 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4)				300	3 clad with 70	72				
3005 0.1 3105 0.3 5005 0.3 5010 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4		0.7	0.25	1.0-1.5	0.8-1.3		0.25		0.05	0.15	remainder
3105 0.0 5005 0.3 5010 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4					3004	1 clad with 70	72				
3105 0.0 5005 0.3 5010 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4		0.7	0.30	1.0-1.5	0.20-0.6	0.10	0.25	0.10	0.05	0.15	remainder
5010 0.4 5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 0.2 5454 0.2 5754 0.4		0.7	0.30	0.30-0.8	0.20-0.8	0.20	0.40	0.10	0.05	0.15	remainder
5050 0.4 5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 0.2 5454 0.2 5754 0.4	j	0.7	0.20	0.20	0.50-1.1	0.10	0.25		0.05	0.15	remainder
5052 0.2 5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 0.2 5454 0.2 5754 0.4)	0.7	0.25	0.10-0.30	0.20-0.6	0.15	0.30	0.10	0.05	0.15	remainder
5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 0.2 5454 0.2 5754 0.4)	0.7	0.20	0.10	1.1-1.8	0.10	0.25		0.05	0.15	remainder
5083 0.4 5086 0.4 5154 0.2 5252 0.0 5254 0.2 5454 0.2 5754 0.4	j	0.40	0.10	0.10	2.2-2.8	0.15-0.35	0.10		0.05	0.15	remainder
5154 0.2 5252 0.0 5254 5454 0.2 5754 0.4		0.40	0.10	0.40-1.0	4.0-4.9	0.05-0.25	0.25	0.15	0.05	0.15	remainder
5252 0.0 5254 5454 0.2 5754 0.4		0.50	0.10	0.20-0.7	3.5-4.5	0.05-0.25	0.25	0.15	0.05	0.15	remainder
5254 5454 0.2 5754 0.4	j	0.40	0.10	0.10	3.1-3.9	0.15-0.35	0.20	0.20	0.05	0.15	remainder
5254 5454 0.2 5754 0.4	\$	0.10	0.10	0.10	2.2-2.8		0.05		0.03^{F}	0.10 ^F	remainder
5454 0.2 5754 0.4).45 Si +		0.05	0.01	3.1-3.9	0.15-0.35	0.20	0.05	0.05	0.15	remainder
5754 0.4		0.40	0.10	0.50-1.0	2.4-3.0	0.05-0.20	0.25	0.20	0.05	0.15	remainder
		0.40	0.10	0.50^{J}	2.6-3.6	0.30^{J}	0.20	0.15	0.05	0.15	remainder
	j	0.40	0.10	0.50-1.0	4.7-5.5	0.05-0.20	0.25	0.20	0.05	0.15	remainder
5457 0.0	\$	0.10	0.20	0.15-0.45	0.8-1.2		0.05		0.03^{F}	0.10 ^F	remainder
5652).40 Si +	+ Fe	0.04	0.01	2.2-2.8	0.15-0.35	0.10		0.05	0.15	remainder
5657 0.0		0.10	0.10	0.03	0.6-1.0		0.05		0.02^{K}	0.05^{K}	remainder
6003 ^H 0.35-		0.6	0.10	0.8	0.8–1.5	0.35	0.20	0.10	0.05	0.15	remainder
6013 0.6–	.0	0.50	0.6-1.1	0.20-0.8	0.8-1.2	0.10	0.25	0.10	0.05	0.15	remainder
6061 0.40-		0.7	0.15-0.40	0.15	0.8–1.2	0.04-0.35	0.25	0.15	0.05	0.15	remainder
Alclad 6061						I clad with 70					
7008 ^H 0.1)	0.10	0.05	0.05	0.7–1.4	0.12-0.25	4.5-5.5	0.05	0.05	0.10	remainder
7072 ^H	0.7 Si +		0.10	0.10	0.10		0.8–1.3		0.05	0.15	remainder
7075 0.4		0.50	1.2–2.0	0.30	2.1–2.9	0.18-0.28	5.1–6.1	0.20	0.05	0.15	remainder
Alclad 7075						5 clad with 70					
7008 Alclad 7075						clad with 70					
7178 0.4		0.50	1.6-2.4	0.30	2.4–3.1	0.18–0.28	6.3–7.3	0.20	0.05	0.15	remainder
Alclad 7178	4	5.00	1.0 2.4	0.00		3 clad with 70		0.20	0.00	5.10	· Jilialiaoi

^A Limits are in weight percent maximum unless shown as a range or stated otherwise.

such inspections are deemed necessary to ensure that material conforms to prescribed requirements.

- 5.2 Lot Definition—An inspection lot shall be defined as follows:
- 5.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and thickness traceable to a heat-treat lot or lots, and subjected to inspection at one time.
- 5.2.2 For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill

form, alloy, temper, and thickness subjected to inspection at one time.

6. General Quality

- 6.1 Unless otherwise specified, the material shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Any requirement not so covered is subject to negotiation between producer and purchaser.
 - 6.2 Each sheet and plate shall be examined to determine

 $^{^{\}it B}$ Analysis shall be made for the elements for which limits are shown in this table.

^C For purposes of determining conformance to these limits, an observed value or a calculated value attained from analysis shall be rounded to the nearest unit in the last righthand place of figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E 29.

^D Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered nonconforming.

E Other Elements—Total shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.

 $^{^{\}it F}$ Vanadium 0.05 max. The total for other elements does not include vanadium.

^G The aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

H Composition of cladding alloy as applied during the course of manufacture. Samples from finished sheet or plate shall not be required to conform to these limits.

Vanadium 0.05-0.15, zirconium 0.10-0.25. The total for other elements does not include vanadium and zirconium.

^J 0.10-0.6 Mn + Cr.

^K Gallium 0.03 max, vanadium 0.05 max. The total for other elements does not include vanadium or gallium.

conformance to this specification with respect to general quality and identification marking. On approval of the purchaser, however, the producer may use a system of statistical quality control for such examinations.

7. Chemical Composition

7.1 Limits—The sheet and plate shall conform to the chemical composition limits specified in Table 1. Conformance shall be determined by the producer by analyzing samples taken at the time the ingots are cast, or samples taken from the finished or semifinished product. If the producer has determined the chemical composition of the material during the course of manufacture, additional sampling and analysis of the finished product shall not be required.

Note 3—It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

- 7.2 Number of Samples—The number of samples taken for determination of chemical composition shall be as follows:
- 7.2.1 When samples are taken at the time the ingots are cast, at least one sample shall be taken for each group of ingots cast simultaneously from the same source of molten metal.
- 7.2.2 When samples are taken from the finished or semifinished product, a sample shall be taken to represent each 4000 lb, or fraction thereof, of material in the lot, except that not more than one sample shall be required per piece.
- 7.3 Methods of Sampling—Samples for determination of chemical composition shall be taken in accordance with one of the following methods:
- 7.3.1 Samples for chemical analysis shall be taken by drilling, sawing, milling, turning, or clipping a representative piece or pieces to obtain a prepared sample of not less than 75 g. Sampling shall be in accordance with Practice E 55.
- 7.3.2 Sampling for spectrochemical analysis shall be in accordance with Practices E 716. Samples for other methods of analysis shall be suitable for the form of material being analyzed and the type of analytical method used.

Note 4—It is difficult to obtain a reliable analysis of each of the components of clad materials using material in its finished state. A reasonably accurate determination of the core composition can be made if the cladding is substantially removed prior to analysis. The cladding composition is more difficult to determine because of the relatively thin layer and because of diffusion of core elements to the cladding. The correctness of cladding alloy used can usually be verified by a combination of metallographic examination and spectrochemical analysis of the surface at several widely separated points.

7.4 Methods of Analysis—The determination of chemical composition shall be made in accordance with suitable chemical (Test Methods E 34), or spectrochemical (Test Methods E 607 and E 1251) methods. Other methods may be used only when no published ASTM method is available. In case of dispute, the methods of analysis shall be agreed upon between the producer and purchaser.

8. Heat Treatment

8.1 Unless specified in 8.2, producer or supplier heat treatment for the applicable tempers in Table 3 shall be in accordance with AMS 2772.

8.2 When specified, heat treatment of applicable tempers in Table 3 shall be in accordance with Practice B 918.

9. Tensile Properties of Material as Supplied

- 9.1 *Limits*—The sheet and plate shall conform to the requirements for tensile properties as specified in Table 2 and Table 3 for nonheat-treatable and heat-treatable alloys, respectively.
- 9.1.1 Tensile property limits for sizes not covered in Table 2 or Table 3 shall be as agreed upon between the producer and purchaser and shall be so specified in the contract or purchase order.
- 9.2 Number of Samples—One sample shall be taken from each end of each parent coil, or parent plate, but no more than one sample per 2000 lb of sheet or 4000 lb of plate, or part thereof, in a lot shall be required. Other procedures for selecting samples may be employed if agreed upon between the producer and purchaser.
- 9.3 *Test Specimens*—Geometry of test specimens and the location in the product from which they are taken shall be as specified in Test Methods B 557.
- 9.4 *Test Methods*—The tension test shall be made in accordance with Test Methods B 557.

10. Producer Confirmation of Heat-Treat Response

10.1 In addition to the requirements of 9.1, material in the O or F temper of alloys 2014, Alclad 2014, 2024, Alclad 2024, 1½% Alclad 2024, Alclad one-side 2024, 1½% Alclad one-side 2024, 6061, and Alclad 6061 shall, upon proper solution heat treatment and natural aging at room temperature, develop the properties specified in Table 3 for T42 temper material. The natural aging period at room temperature shall be not less than 4 days, but samples of material may be tested prior to 4 days aging, and if the material fails to conform to the requirements of T42 temper material, the tests may be repeated after completion of 4 days aging without prejudice.

10.2 Also, material in the O or F temper of alloys 2219, Alclad 2219, 6061, 7075, Alclad 7075, Alclad one-side 7075, 7008 Alclad 7075, 7178, and Alclad 7178 shall, upon proper solution heat treatment and precipitation heat treatment, develop the properties specified in Table 3 for T62 temper material

10.3 Mill-produced material in the O or F tempers of 7008 Alclad 7075 shall, upon proper solution heat treatment and stabilizing, be capable of attaining the properties specified in Table 3 for the T76 temper.

10.4 *Number of Specimens*—The number of specimens from each lot of O temper material and F temper material to be tested to verify conformance with 10.1-10.3 shall be as specified in 9.2.

11. Heat Treatment and Reheat-Treatment Capability

11.1 Mill-produced material in the O or F temper of alloys 2014, Alclad 2014, 2024, Alclad 2024, 1½ % Alclad 2024, Alclad one-side 2024, 1½ % Alclad one-side 2024, 6061, and Alclad 6061 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and natural aging at room temperature, develop the properties specified in Table 3 for T42 temper material. The

NOTICE: This standard has either been superseded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

natural aging period at room temperature shall be not less than 4 days, but samples of material may be tested prior to 4 days aging, and if the material fails to conform to the requirements of T42 temper material, the tests may be repeated after completion of 4 days aging without prejudice.

11.2 Mill-produced material in the O or F temper of alloys 2219, Alclad 2219, 6061, 7075, Alclad 7075, Alclad one-side 7075, 7008 Alclad 7075, 7178, and Alclad 7178 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and precipitation heat treatment, develop the properties specified in Table 3 for T62 temper material.

11.3 Mill-produced material in the O or F temper of 7008 Alclad 7075 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and stabilizing, be capable of attaining the properties specified in Table 3 for the T76 temper.

11.4 Mill-produced material in the following alloys and tempers shall, after proper resolution heat treatment and natural aging for four days at room temperature, be capable of attaining the properties specified in Table 3 for the T42 temper.

Alloys	Tempers

2014 and Alclad 2014	T3, T4, T451, T6, T6
2024 and Alclad 2024	T3, T4, T351, T81,
	T851
11/2 % Alclad 2024, Alclad One-side 2024 and	T3, T351, T81, T851
11/2 % Alclad One-side 2024	

Note 5—Beginning with the 1974 revision 6061 and Alclad 6061 T4, T451, T6, and T651 were deleted from this paragraph because experience has shown that reheat-treated material may develop large recrystallized grains and may fail to develop the tensile properties shown in Table 3.

11.5 Mill-produced material in the following alloys and tempers shall, after proper resolution heat treatment and precipitation heat treatment, be capable of attaining the properties specified in Table 3 for the T62 temper.

Alloys Tempers

2240 and Malad 2240	T24 T254 T04 T054
2219 and Alclad 2219	T31, T351, T81, T851
7075	T6, T651, T73, T7351, T76, T7651
Alclad 7075, 7008 Alclad 7075,	T6, T651, T76, T7651
7178, and Alclad 7178	
Alclad One-side 7075	T6, T651

11.6 Mill-produced material in the following alloys and tempers and T42 temper material shall, after proper precipitation heat treatment, be capable of attaining the properties specified in Table 3 for the aged tempers listed below.

Alloy and Temper Temper after Aging

2014 and Alclad 2014-T3, T4, T42, T451	T6, T6, T respectively
2024, Alclad 2024, 11/2 % Alclad 2024, Alclad	T81, T851, T861, T62 or T72,
One-side 2024 and 11/2 % Alclad One-side	e respectively
2024-T3, T351, T361, T42	
2219 and Alclad 2219-T31, T351, T37	T81, T851, T87, respectively
6061 and Alclad 6061-T4 T451 T42	T6 T651 T62 respectively

12. Bend Properties

12.1 Limits—Sheet and plate shall be capable of being bent cold through an angle of 180° around a pin having a diameter equal to N times the thickness of the sheet or plate without cracking, the value of N being as prescribed in Table 2 for the different alloys, tempers, and thicknesses. The test need not be conducted unless specified on the purchase order.

12.2 Test Specimens—When bend tests are made, the specimens for sheet shall be the full thickness of the material, approximately ¾ in. in width, and when practical, at least 6 in. in length. Such specimens may be taken in any direction and their edges may be rounded to a radius of approximately ¼ in. if desired. For sheet less than ¾ in. in width, the specimens should be the full width of the material.

12.3 *Test Methods*—The bend tests shall be made in accordance with Test Method E 290 except as stated otherwise in 12.2.

13. Stress-Corrosion Resistance

13.1 When specified on the purchase order or contract, alloy 2124-T851, 2219-T851, and 2219-T87 plate shall be subjected to the test specified in 13.3 and shall exhibit no evidence of stress-corrosion cracking. One sample shall be taken from each parent plate in each lot and a minimum of three adjacent replicate specimens from this sample shall be tested. The producer shall maintain records of all lot acceptance test results and make them available for examination at the producer's facility.

13.2 Alloy 7075 in the T73-type and T76-type tempers, and alloys Alclad 7075, 7008 Alclad 7075, 7178, and Alclad 7178 in the T76-type tempers, shall be capable of exhibiting no evidence of stress-corrosion cracking when subjected to the test specified in 13.3.

13.2.1 For lot-acceptance purposes, resistance to stress-corrosion cracking for each lot of material shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.

13.2.2 For surveillance purposes, each month the producer shall perform at least one test for stress-corrosion resistance in accordance with 13.3 on each applicable alloy-temper for each thickness range 0.750 in. and over listed in Table 3, produced that month. Each sample shall be taken from material considered acceptable in accordance with lot-acceptance criteria of Table 4. A minimum of three adjacent replicate specimens shall be taken from each sample and tested. The producer shall maintain records of all lots so tested and make them available for examination at the producer's facility.

13.3 The stress-corrosion cracking test shall be performed on plate 0.750 in. and over in thickness as follows:

13.3.1 Specimens shall be stressed in tension in the short transverse direction with respect to grain flow and held at constant strain. For alloy 2124-T851, the stress levels shall be 50 % of the specified minimum long transverse yield strength. For alloy 2219-T851 and T87, the stress levels shall be 75 % of the specified minimum long transverse yield strength. For T73-type tempers, the stress level shall be 75 % of the specified minimum yield strength and for T76-type it shall be 25 ksi.

13.3.2 The stress-corrosion test shall be made in accordance with Test Method G 47.

13.3.3 There shall be no visual evidence of stress-corrosion cracking in any specimen, except that the retest provisions of 19.2 shall apply.

14. Exfoliation-Corrosion Resistance

14.1 Alloys 5083, 5086, and 5456 in the H116 temper shall be capable of exhibiting no evidence of exfoliation corrosion

when subjected to the test described in Test Method G 66.

Note 6—Alloys 5083, 5086, and 5456 should not be used for continuous service at temperatures exceeding 150°F because of susceptibility to stress corrosion cracking. In addition, stress corrosion susceptibility is increased by cold forming.

14.1.1 For lot-acceptance purposes, the acceptability of each lot of material in the alloys and temper listed in 14.1 shall be determined by the producer by metallographic examination of one sample per lot selected from midsection at one end of a random sheet or plate. The microstructure of the sample from each production lot shall be compared to that of a producerestablished reference photomicrograph of acceptable material in the same thickness range which is characterized by being predominantly free of a continuous grain boundary network of aluminum-magnesium (Mg 2Al3) precipitate. A reference photomicrograph taken at 500× shall be established for each of the thickness ranges shown in Table 2 in which materials are produced and shall be taken from a sample within that thickness range. A longitudinal section perpendicular to the rolled surface shall be prepared for metallographic examination (see Methods E 3, symbol E in Fig. 1) and shall be microetched for metallographic examination using 40 % phosphoric acid etch for 3 min at 95°F or using etchant No. 6 in accordance with Test Methods E 407, Table 2, for 2 min. The metallographic examination shall be conducted at 500× magnification. If the microstructure shows evidence of aluminummagnesium precipitate in excess of the producer-established reference photomicrograph of acceptable material, the lot is either rejected or tested for exfoliation-corrosion resistance in accordance with 14.1. The sample for corrosion test should be selected in the same manner specified for metallographic tests and shall be taken from the same sheet or plate used for metallographic test. Specimens prepared from the sample shall be full section thickness, except that for material 0.101 in. or more in thickness, 10 % of the thickness shall be removed, by machining, from one as-rolled surface. Both the machined surface and the remaining as-rolled surface shall be evaluated after exposure to the test solution. Production practices shall not be changed after establishment of the reference micrograph except as provided in 14.1.3.

- 14.1.2 The producer shall maintain at the producing facility all records relating to the establishment of reference photomicrographs and production practices.
- 14.1.3 Significant changes in production practices that alter the microstructures of the alloy shall require qualification of the practice in accordance with 14.1.1.
- 14.2 Alloys 7075, Alclad 7075, 7008 Alclad 7075, 7178, and Alclad 7178, in the T76-type tempers, shall be capable of exhibiting no evidence of exfoliation corrosion equivalent to or in excess of that illustrated by Category B in Fig. 2 of Method of Test for Exfoliation Corrosion Susceptibility in 7XXX Series Copper Containing Aluminum Alloys (EXCO Test) (G34-72)¹³ when subjected to the test in 14.3.
- 14.2.1 For lot-acceptance purposes, resistance to exfoliation corrosion for each lot of material in the alloys and tempers listed in 14.2 shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.
 - 14.2.2 For surveillance purposes, each month the producer

shall perform at least one test for exfoliation-corrosion resistance for each alloy for each thickness range listed in Table 3, produced that month. The samples for test shall be selected at random from material considered acceptable in accordance with the lot-acceptance criteria of Table 4. The producer shall maintain records of all surveillance test results and make them available for examination.

- 14.3 The test for exfoliation-corrosion resistance shall be made in accordance with Method of Test for Exfoliation Corrosion Susceptibility in 7XXX Series Copper Containing Aluminum Alloys (EXCO Test) (G34-72)¹³ and the following:
- 14.3.1 The specimens shall be a minimum of 2 in. by 4 in. with the 4-in. dimension in a plane parallel to the direction of final rolling. They shall be full-section thickness specimens of the material except that for material 0.101 in. or more in thickness, 10 % of the thickness shall be removed by machining one surface. The cladding of alclad sheet of any thickness shall be removed by machining the test surface; the cladding on the back side (nontest surface) of the specimen for any thickness of alclad material shall also either be removed or masked off. For machined specimens, the machined surface shall be evaluated by exposure to the test solution.

15. Cladding

- 15.1 Preparatory to rolling alclad sheet and plate to the specified thickness, the aluminum or aluminum-alloy plates which are bonded to the alloy ingot or slab shall be of the composition shown in Table 1 and shall each have a thickness not less than that shown in Table 5 for the alloy specified.
- 15.2 When the thickness of the cladding is to be determined on finished material, not less than one transverse sample approximately ¾ in. in length shall be taken from each edge and from the center width of the material. Samples shall be mounted to expose a transverse cross section and shall be polished for examination with a metallurgical microscope. Using 100× magnification, the maximum and minimum cladding thickness on each surface shall be measured in each of five fields approximately 0.1 in. apart for each sample. The average of the ten values (five minima plus five maxima) on each sample surface is the average cladding thickness and shall meet the minimum average and, when applicable, the maximum average specified in Table 5.

16. Dimensional Tolerances

- 16.1 *Thickness*—The thickness of flat sheet, coiled sheet, and plate shall not vary from that specified by more than the respective permissible variations prescribed in Tables 3.1 and Tables 3.13 of ANSI H35.2. Permissible variations in thickness of plate specified in thicknesses exceeding 6 in. shall be the subject of agreement between the purchaser and the producer or the supplier at the time the order is placed.
- 16.2 Length, Width, Lateral Bow, Squareness, and Flatness—Coiled sheet shall not vary in width or in lateral bow from that specified by more than the permissible variations prescribed in Tables 3.5 and Tables 3.6, respectively, of ANSI H35.2. Flat sheet and plate shall not vary in width, length, lateral bow, squareness, or flatness by more than the permissible variations prescribed in the following tables of ANSI H35.2 except that where the tolerances for sizes ordered are not

covered by this standard the permissible variations shall be the subject of agreement between the purchaser and the producer or the supplier at the time the order is placed:

Table No.	Title
3.2	width, sheared flat sheet and plate
3.3	width and length, sawed flat sheet and plate
3.4	length, sheared flat sheet and plate
3.7	lateral bow, flat sheet and plate
3.8	squareness, flat sheet and plate
3.11	flatness, flat sheet
3.12	flatness, sawed or sheared plate

- 16.3 Dimensional tolerances for sizes not covered in ANSI H35.2 shall be as agreed upon between the producer and purchaser and shall be so specified in the contract or purchase order.
- 16.4 Sampling for Inspection—Examination for dimensional conformance shall be made to ensure conformance to the tolerance specified.

17. Internal Quality

- 17.1 When specified by the purchaser at the time of placing the order, plate 0.500 in. to 4.500 in. in thickness and up to 2000 lb in maximum weight in alloys 2014, 2024, 2124, 2219, 7075, and 7178, both bare and Alclad where applicable, shall be tested in accordance with Practice B 594 to the discontinuity acceptance limits of Table 6.
- 17.2 When specified by the purchaser at the time of placing the order, plate 0.500 in. in thickness and greater for ASME pressure vessel applications in alloys 1060, 1100, 3003, Alclad 3003, 3004, Alclad 3004, 5052, 5083, 5086, 5154, 5254, 5454, 5456, 5652, 6061, and Alclad 6061 shall be tested in accordance with Method B 548. In such cases the material will be subject to rejection if the following limits are exceeded unless it is determined by the purchaser that the area of the plate containing significant discontinuities will be removed during the subsequent fabrication process or that the plate may be repaired by welding:
- 17.2.1 If the longest dimension of the marked area representing a discontinuity causing a complete loss of back reflection (95 % or greater) exceeds 1.0 in.
- 17.2.2 If the length of the marked area representing a discontinuity causing an isolated ultrasonic indication without a complete loss of back reflection (95 % or greater) exceeds 3.0 in
- 17.2.3 If each of two marked areas representing two adjacent discontinuities causing isolated ultrasonic indications without a complete loss of back reflection (95 % or greater) is longer than 1.0 in., and if they are located within 3.0 in. of each other.

18. Source Inspection

- 18.1 If the purchaser desires that his representative inspect or witness the inspection and testing of the material prior to shipment, such agreement shall be made by the purchaser and producer as part of the purchase contract.
- 18.2 When such inspection or witness of inspection and testing is agreed upon, the producer shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary

interference with the producer's operations.

19. Retest and Rejection

- 19.1 If any material fails to conform to all of the applicable requirements of this specification, the inspection lot shall be rejected.
- 19.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All specimens so selected for retest shall meet the requirements of the specification or the lot shall be subject to rejection.
- 19.3 Material in which defects are discovered subsequent to inspection may be rejected.
- 19.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of material to the purchaser. As much as possible of the rejected material shall be returned to the producer or supplier by the purchaser.

20. Identification Marking of Product

- 20.1 When specified on the purchase order or contract, all sheet and plate shall be marked in accordance with Practice B 666.
- 20.2 In addition, alloys in the 2000 and 7000 series in the T3-, T4-, T6-, T7-, and T8-type tempers and, when specified, 6061-T6 and T651 shall be marked with the lot number in at least one location on each piece.
- 20.3 The requirements specified in 20.1 and 20.2 are minimum; marking systems that involve added information, larger characters, and greater frequencies are acceptable under this specification.

21. Packaging and Package Marking

- 21.1 The material shall be packaged to provide adequate protection during normal handling and transportation and each package shall contain only one size, alloy, and temper of material unless otherwise agreed. The type of packaging and gross weight of containers shall, unless otherwise agreed, be at the producer's or supplier's discretion, provided that they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.
- 21.2 Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.
- 21.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practices B 660. The applicable levels shall be as specified in the contract or order.

22. Certification

22.1 The producer or supplier shall, on request, furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification, and has met the requirements.

23. Keywords

23.1 aluminum alloy aluminum-alloy plate; aluminum-alloy sheet

∰ B 209 – 02^{€1}

TABLE 2 Mechanical Property Limits for Nonheat-Treatable Alloy $^{\!A\!,\!B}$

Temper	Specified Thickness, in.		rength, ksi	Yield Strength (0		Elongation in 2 in. or 4 × Diameter,	Bend Diameter Factor, <i>N</i>
		min	max	min	max	min, %	1 40101, 74
			Aluminum				
0	0.006-0.019	8.0	14.0	2.5		15 22	•••
	0.020-0.050 0.051-3.000	8.0 8.0	14.0 14.0	2.5 2.5		25	
112 ^C	0.017-0.050	11.0	16.0	9.0		6	
or ⊣22 ^C	0.051–2.000	11.0	16.0	9.0	•••	12	
		40.0	4= 0	40.0			
H14 ^C or	0.009-0.019 0.020-0.050	12.0 12.0	17.0 17.0	10.0 10.0		1 5	
124 [€]	0.051-1.000	12.0	17.0	10.0		10	
MCC.	0.000.0.040	440	40.0	44.0		4	
H16 ^C or	0.006-0.019 0.020-0.050	14.0 14.0	19.0 19.0	11.0 11.0		1 4	
126 ^C	0.051-0.162	14.0	19.0	11.0		5	
0							
H18 ^C	0.006-0.019	16.0		12.0		1	
or ⊣28 ^C	0.020-0.050 0.051-0.128	16.0 16.0		12.0 12.0		3 4	•••
	0.001-0.120	10.0	•••	12.0		-7	•••
H112	0.250-0.499	11.0	•••	7.0		10	
	0.500-1.000 1.001-3.000	10.0 9.0		5.0 4.0		20 25	
	1.001 0.000	0.0	•••	4.0		20	
F	0.250–3.000						
			Aluminum	1100			
)	0.006-0.019	11.0	15.5	3.5		15	0
	0.020-0.031 0.032-0.050	11.0 11.0	15.5 15.5	3.5		20 25	0
	0.052-0.050	11.0	15.5	3.5 3.5		30	0
	0.250–3.000	11.0	15.5	3.5		28	0
-112 [℃]	0.017–0.019	14.0	19.0	11.0		3	0
or	0.020-0.031	14.0	19.0	11.0		4	0
H22 ^C	0.032-0.050	14.0	19.0	11.0		6	0
	0.051-0.113	14.0	19.0	11.0		8	Ö
	0.114-0.499	14.0	19.0	11.0		9	0
	0.500-2.000	14.0	19.0	11.0		12	0
-114 [℃]	0.009-0.012	16.0	21.0	14.0		1	0
or	0.013-0.019	16.0	21.0	14.0		2	0
124 ^C	0.020-0.031	16.0	21.0	14.0		3	0
	0.032-0.050	16.0	21.0	14.0		4	0
	0.051-0.113	16.0	21.0	14.0		5	0
	0.114-0.499	16.0	21.0	14.0		6	0
	0.500-1.000	16.0	21.0	14.0		10	0
H16 ^C	0.006-0.019	19.0	24.0	17.0		1	4
or	0.020-0.031	19.0	24.0	17.0		2	4
H26 ^C	0.032-0.050	19.0	24.0	17.0		3	4
	0.051–0.162	19.0	24.0	17.0		4	4
118 ^C	0.006-0.019	22.0	•••			1	***
or	0.020-0.031	22.0				2	
∃28 ^{<i>C</i>}	0.032-0.050	22.0				3	
	0.051-0.128	22.0	•••			4	•••
H112	0.250-0.499	13.0	•••	7.0		9	***
	0.500-2.000	12.0		5.0		14	
-D	2.001–3.000	11.5		4.0		20	
_D	0.250-3.000		 All 20				
	0.000.000=		Alloy 30				
0	0.006-0.007	14.0	19.0	5.0		14	0
	0.008-0.012	14.0	19.0	5.0 5.0		18	0
	0.013-0.031	14.0	19.0	5.0		20	0
	0.032-0.050	14.0	19.0	5.0		23	0

TABLE 2 Continued

				Continued				
Temper	Specified Thickness, in.	Tensile Strength, ksi		Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter	
тотпрог	opeomed Thomeso, in:	min	max	min	max	Diameter, min, %	Factor, N	
	0.250-3.000	14.0	19.0	5.0		23		
112 ^C	0.017-0.019	17.0	23.0	12.0		3	0	
or	0.020-0.031	17.0	23.0	12.0		4	0	
122 ^C	0.032-0.050	17.0	23.0	12.0		5	0	
	0.051–0.113	17.0	23.0	12.0		6	0	
	0.114–0.161	17.0	23.0	12.0		7	0	
	0.162-0.249	17.0	23.0	12.0		8	0	
	0.250-0.499	17.0	23.0	12.0		9		
	0.500-2.000	17.0	23.0	12.0		10		
114 ^C	0.009-0.012	20.0	26.0	17.0		1	0	
or	0.013-0.019	20.0	26.0	17.0		2	0	
124 ^C	0.020-0.031	20.0	26.0	17.0		3	0	
	0.032-0.050	20.0	26.0	17.0		4	0	
	0.051-0.113	20.0	26.0	17.0		5	0	
	0.114-0.161	20.0	26.0	17.0		6	2	
	0.162-0.249	20.0	26.0	17.0		7	2	
	0.250-0.499	20.0	26.0	17.0		8		
	0.500-1.000	20.0	26.0	17.0		10		
116 ^C	0.006-0.019	24.0	30.0	21.0		1	4	
or	0.020-0.031	24.0	30.0	21.0		2	4	
126 ^C	0.032-0.050	24.0	30.0	21.0		3	4	
	0.051-0.162	24.0	30.0	21.0		4	6	
118 ^C	0.006-0.019	27.0		24.0		1		
or	0.020-0.031	27.0		24.0		2		
H28 ^C	0.032-0.050	27.0		24.0		3		
	0.051-0.128	27.0		24.0		4		
1112	0.250-0.499	17.0		10.0		8		
	0.500-2.000	15.0		6.0		12		
	2.001-3.000	14.5		6.0		18		
_ D	0.250-3.000							
			Alclad Alloy	/ 3003				
)	0.006-0.007	13.0	18.0	4.5		14		
	0.008-0.012							
		13.0	18.0	4.5	•••	18		
	0.013-0.031	13.0 13.0	18.0	4.5 4.5		18 20		
	0.013–0.031 0.032–0.050	13.0 13.0	18.0 18.0	4.5 4.5		20 23		
	0.013–0.031 0.032–0.050 0.051–0.249	13.0 13.0 13.0	18.0 18.0 18.0	4.5 4.5 4.5		20 23 25		
	0.013–0.031 0.032–0.050 0.051–0.249 0.250–0.499	13.0 13.0 13.0 13.0	18.0 18.0 18.0 18.0	4.5 4.5 4.5 4.5		20 23 25 23		
	0.013–0.031 0.032–0.050 0.051–0.249	13.0 13.0 13.0	18.0 18.0 18.0	4.5 4.5 4.5	 	20 23 25	 	
112 ^C	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000	13.0 13.0 13.0 13.0 14.0 [©] 16.0	18.0 18.0 18.0 18.0 19.0 ^E	4.5 4.5 4.5 4.5 5.0 ^E	 	20 23 25 23 23	 	
or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050	13.0 13.0 13.0 13.0 14.0 [©] 16.0 16.0	18.0 18.0 18.0 18.0 19.0 ^E 22.0 22.0	4.5 4.5 4.5 4.5 5.0 [€] 11.0 11.0	 	20 23 25 23 23 4 5	 	
or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000	13.0 13.0 13.0 13.0 14.0 [©] 16.0	18.0 18.0 18.0 18.0 19.0 ^E	4.5 4.5 4.5 4.5 5.0 ^E		20 23 25 23 23 23 4 5 6	 	
or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050	13.0 13.0 13.0 13.0 14.0 ^E 16.0 16.0 16.0	18.0 18.0 18.0 18.0 19.0 ^E 22.0 22.0	4.5 4.5 4.5 4.5 5.0 [€] 11.0 11.0		20 23 25 23 23 4 5 6 7		
or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249	13.0 13.0 13.0 13.0 14.0 ^E 16.0 16.0 16.0 16.0	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0	4.5 4.5 4.5 4.5 5.0 ^E 11.0 11.0 11.0 11.0	 	20 23 25 23 23 4 5 6 7		
or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499	13.0 13.0 13.0 14.0 [©] 16.0 16.0 16.0 16.0 16.0	18.0 18.0 18.0 19.0 [£] 22.0 22.0 22.0 22.0 22.0 22.0	4.5 4.5 4.5 5.0 [£] 11.0 11.0 11.0 11.0 11.0	 	20 23 25 23 23 4 5 6 7 8		
or 122 ^C	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000	13.0 13.0 13.0 14.0 [€] 16.0 16.0 16.0 16.0 16.0 17.0 [€]	18.0 18.0 18.0 19.0 [€] 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	4.5 4.5 4.5 5.0 ^E 11.0 11.0 11.0 11.0 11.0 11.0		20 23 25 23 23 4 5 6 7 8 9		
or 122 ^C 114 ^C	0.013–0.031 0.032–0.050 0.051–0.249 0.250–0.499 0.500–3.000 0.017–0.031 0.032–0.050 0.051–0.113 0.114–0.161 0.162–0.249 0.250–0.499 0.500–2.000 0.009–0.012	13.0 13.0 13.0 14.0 [€] 16.0 16.0 16.0 16.0 16.0 17.0 [€] 19.0	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	4.5 4.5 4.5 5.0 [€] 11.0 11.0 11.0 11.0 11.0 11.0 12.0 [€] 16.0		20 23 25 23 23 4 5 6 7 8 9		
or 122 ^C 114 ^C or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019	13.0 13.0 13.0 14.0 [£] 16.0 16.0 16.0 16.0 16.0 17.0 [£] 19.0	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 25.0 25.0	4.5 4.5 4.5 4.5 5.0 [£] 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0		20 23 25 23 23 4 5 6 7 8 9 10 1		
or 122 [©] 114 [©] or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031	13.0 13.0 13.0 13.0 14.0 [£] 16.0 16.0 16.0 16.0 17.0 [£] 19.0 19.0	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 25.0 25.0 25.0	4.5 4.5 4.5 4.5 5.0 ^E 11.0 11.0 11.0 11.0 11.0 11.0 12.0 ^E 16.0 16.0		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3		
or 122 [©] 114 [©] or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031 0.032-0.050	13.0 13.0 13.0 13.0 14.0 ^E 16.0 16.0 16.0 16.0 17.0 ^E 19.0 19.0 19.0	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0 22.0 22.0 25.0 25.0 25.0 25.0	4.5 4.5 4.5 4.5 5.0 ^E 11.0 11.0 11.0 11.0 11.0 11.0 11.0 16.0 16.0 16.0 16.0		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3 4		
or 122 ^C 114 ^C or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031 0.032-0.050 0.051-0.113	13.0 13.0 13.0 14.0 [€] 16.0 16.0 16.0 16.0 16.0 19.0 19.0 19.0 19.0 19.0	18.0 18.0 18.0 19.0 [€] 22.0 22.0 22.0 22.0 22.0 22.0 25.0 25.0 25.0 25.0 25.0	4.5 4.5 4.5 5.0 ^E 11.0 11.0 11.0 11.0 11.0 12.0 ^E 16.0 16.0 16.0 16.0 16.0		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3 4 5		
or 122 [©] 114 [©] or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-0.161	13.0 13.0 13.0 14.0 [€] 16.0 16.0 16.0 16.0 17.0 [€] 19.0 19.0 19.0 19.0 19.0	18.0 18.0 18.0 19.0 [€] 22.0 22.0 22.0 22.0 22.0 22.0 25.0 25.0 25.0 25.0 25.0 25.0	4.5 4.5 4.5 5.0 ^E 11.0 11.0 11.0 11.0 11.0 11.0 16.0 16.0 16.0 16.0 16.0 16.0		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3 4 5 6		
or 122 ^C 114 ^C or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249	13.0 13.0 13.0 14.0 [€] 16.0 16.0 16.0 16.0 16.0 17.0 [€] 19.0 19.0 19.0 19.0 19.0 19.0	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0 22.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	4.5 4.5 4.5 4.5 5.0 [€] 11.0 11.0 11.0 11.0 11.0 11.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3 4 5 6 7		
or 122 ^C 114 ^C or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499	13.0 13.0 13.0 13.0 14.0 [£] 16.0 16.0 16.0 16.0 16.0 17.0 [£] 19.0 19.0 19.0 19.0 19.0 19.0 19.0	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0 22.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	4.5 4.5 4.5 4.5 5.0 [€] 11.0 11.0 11.0 11.0 11.0 11.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3 4 5 6 7		
or H22 ^C H14 ^C or H24 ^C	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249	13.0 13.0 13.0 14.0 [€] 16.0 16.0 16.0 16.0 16.0 17.0 [€] 19.0 19.0 19.0 19.0 19.0 19.0	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0 22.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	4.5 4.5 4.5 4.5 5.0 [€] 11.0 11.0 11.0 11.0 11.0 11.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3 4 5 6 7		
or H22 ^C H14 ^C or H24 ^C	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-1.000	13.0 13.0 13.0 14.0 [€] 16.0 16.0 16.0 16.0 17.0 [€] 19.0 19.0 19.0 19.0 19.0 19.0 20.0 [€]	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0 23.0 ^E 25.0 25.0 25.0 25.0 25.0 25.0 26.0 ^E 29.0	4.5 4.5 4.5 4.5 5.0 ^E 11.0 11.0 11.0 11.0 11.0 12.0 ^E 16.0 16.0 16.0 16.0 16.0 16.0 17.0 ^E 20.0		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8		
or H14 ^C or H24 ^C or H24 ^C	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-1.000	13.0 13.0 13.0 14.0 [€] 16.0 16.0 16.0 16.0 17.0 [€] 19.0 19.0 19.0 19.0 19.0 20.0 [€] 23.0 23.0	18.0 18.0 18.0 19.0 [€] 22.0 22.0 22.0 22.0 22.0 22.0 25.0 26	4.5 4.5 4.5 4.5 5.0 ^E 11.0 11.0 11.0 11.0 11.0 12.0 ^E 16.0 16.0 16.0 16.0 16.0 17.0 ^E 20.0 20.0		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8		
H22 ^C H14 ^C or H24 ^C	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-1.000	13.0 13.0 13.0 14.0 [€] 16.0 16.0 16.0 16.0 16.0 17.0 [€] 19.0 19.0 19.0 19.0 19.0 20.0 [€] 23.0 23.0 23.0	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0 23.0 ^E 25.0 25.0 25.0 25.0 25.0 25.0 26.0 ^E 29.0	4.5 4.5 4.5 4.5 5.0 ^E 11.0 11.0 11.0 11.0 11.0 12.0 ^E 16.0 16.0 16.0 16.0 16.0 16.0 17.0 ^E 20.0		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8		
or 122 ^C 114 ^C or 124 ^C or 126 ^C	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-1.000 0.006-0.019 0.020-0.031 0.032-0.050 0.051-0.162	13.0 13.0 13.0 13.0 13.0 14.0 [£] 16.0 16.0 16.0 16.0 16.0 17.0 [£] 19.0 19.0 19.0 19.0 20.0 [£] 23.0 23.0 23.0 23.0	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0 22.0 23.0 ^E 25.0 26.0	4.5 4.5 4.5 4.5 4.5 5.0 ^E 11.0 11.0 11.0 11.0 11.0 11.0 11.0 16.0 16		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 10		
or H22 ^C H14 ^C or H24 ^C or	0.013-0.031 0.032-0.050 0.051-0.249 0.250-0.499 0.500-3.000 0.017-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-2.000 0.009-0.012 0.013-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-0.161 0.162-0.249 0.250-0.499 0.500-1.000 0.006-0.019 0.020-0.031 0.032-0.050	13.0 13.0 13.0 14.0 [€] 16.0 16.0 16.0 16.0 16.0 17.0 [€] 19.0 19.0 19.0 19.0 19.0 20.0 [€] 23.0 23.0 23.0	18.0 18.0 18.0 19.0 ^E 22.0 22.0 22.0 22.0 22.0 22.0 23.0 ^E 25.0 26.0	4.5 4.5 4.5 4.5 4.5 5.0 ^E 11.0 11.0 11.0 11.0 11.0 11.0 11.0 16.0 16		20 23 25 23 23 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8		

TABLE 2 Continued

Temper	Specified Thickness, in.	Tensile St	trength, ksi	Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
remper	Specified Trilokness, In.	min	max	min	max	Diameter, min, %	Factor, N
	0.051-0.128	26.0				4	
H112	0.250-0.499	16.0		9.0		8	
2	0.500–2.000	15.0 ^E	•••	6.0 ^E		12	
	2.001–3.000	14.5 ^E		6.0 [€]		18	
F ^D	0.250-3.000						
	0.200 0.000		Alloy 30				
	0.006-0.007	22.0	29.0	8.5			
	0.008-0.019	22.0	29.0	8.5		10	0
	0.020-0.031	22.0	29.0	8.5		14	0
	0.032-0.050	22.0	29.0	8.5		16	0
	0.051-0.249	22.0	29.0	8.5		18	0
	0.250–3.000	22.0	29.0	8.5		16	
Н32 ^С	0.017–0.019	28.0	35.0	21.0		1	0
or	0.020-0.031	28.0	35.0	21.0	•••	3	1
H22 ^C	0.032-0.051	28.0	35.0	21.0		4	1
	0.052-0.050	28.0	35.0	21.0	•••	5	2
	0.051-0.113	28.0	35.0	21.0		6	
110.40							
H34 ^C	0.009-0.019	32.0	38.0	25.0		1	2
or	0.020-0.050	32.0	38.0	25.0		3	3
H24 ^C	0.051-0.113	32.0	38.0	25.0		4	4
	0.114–1.000	32.0	38.0	25.0		5	
H36 ^C	0.006-0.007	35.0	41.0	28.0			
or	0.008-0.019	35.0	41.0	28.0		1	6
H26 ^C	0.020-0.031	35.0	41.0	28.0		2	6
	0.032-0.050	35.0	41.0	28.0		3	6
	0.051–0.162	35.0	41.0	28.0		4	8
H38 ^C	0.006-0.007	38.0		31.0			***
or	0.008-0.019	38.0		31.0		1	
H28 ^C	0.020-0.031	38.0		31.0		2	
	0.032-0.050	38.0		31.0		3	
	0.051-0.128	38.0	•••	31.0		4	
H112	0.250-3.000	23.0		9.0		7	•••
F ^D	0.250-3.000						
			Alclad Alloy	/ 3004			
0	0.006-0.007	21.0	28.0	8.0	•••		
	0.008-0.019	21.0	28.0	8.0		10	
	0.020-0.031	21.0	28.0	8.0		14	
	0.032-0.050	21.0	28.0	8.0		16	
	0.051-0.249	21.0	28.0	8.0		18	
	0.250-0.499	21.0_	28.0	8.0_		16	
	0.500-3.000	22.0 ^E	29.0 ^E	8.5 ^{<i>E</i>}		16	
Н32 ^С	0.017–0.019	27.0	34.0	20.0		1	
or	0.020-0.031	27.0	34.0	20.0		3	
H22 ^C	0.032-0.050	27.0	34.0	20.0		4	
	0.051-0.113	27.0	34.0	20.0		5	
	0.114-0.249	27.0	34.0	20.0		6	
	0.250-0.499	27.0	34.0	20.0		6	
	0.500-2.000	28.0 ^E	35.0 ^E	21.0 ^E		6	
Н34 ^С	0.009-0.019	31.0	37.0	24.0		1	
or	0.020-0.050	31.0	37.0	24.0	•••	3	***
H24 ^C	0.051-0.113	31.0	37.0	24.0	•••	4	•••
	0.114-0.249	31.0	37.0	24.0	•••	5	•••
	0.250-0.499	31.0	37.0	24.0		5	
	0.500-1.000	32.0 ^E	38.0 ^E	25.0 ^E		5	
LIOCC.	0.000.007	04.0	40.0	67.0			
H36 ^C or	0.006–0.007 0.008–0.019	34.0 34.0	40.0 40.0	27.0 27.0		 1	
H26 ^C	0.020-0.019	34.0	40.0	27.0	•••	2	
						_	

TABLE 2 Continued

		Tensile Strength, ksi		Yield Strength (0	.2 % offset), ksi	Elongation in	Bend	
Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4 × Diameter, min, %	Diameter Factor, <i>N</i>	
	0.051-0.162	34.0	40.0	27.0		4		
H38	0.006-0.007	37.0						
	0.008-0.019	37.0				1		
	0.020-0.031	37.0				2		
	0.032-0.050	37.0				3		
	0.051–0.128	37.0				4		
H112	0.250-0.499	22.0		8.5		7		
	0.500-3.000	23.0 ^E		9.0 ^E		7		
= D	0.250-3.000							
	0.200 0.000		Alloy 30				•••	
	0.006-0.007	17.0	24.0			10		
J		17.0		6.5 6.5		12		
	0.008-0.012		24.0					
	0.013-0.019	17.0	24.0	6.5	•••	14		
	0.020-0.031	17.0	24.0	6.5		16		
	0.032-0.050	17.0	24.0	6.5		18		
	0.051-0.249	17.0	24.0	6.5		20	•••	
H12	0.017-0.019	20.0	27.0	17.0		1		
	0.020-0.050	20.0	27.0	17.0		2		
	0.051-0.113	20.0	27.0	17.0		3		
	0.114-0.161	20.0	27.0	17.0		4		
	0.162-0.249	20.0	27.0	17.0	•••	5		
- 114	0.009-0.031	24.0	31.0	21.0		1		
	0.032-0.050	24.0	31.0	21.0		2		
	0.051-0.113	24.0	31.0	21.0		3		
	0.114–0.249	24.0	31.0	21.0		4		
- 116	0.006-0.031	28.0	35.0	25.0		1		
110	0.032-0.113	28.0	35.0	25.0	•••	2	•••	
	0.114–0.162	28.0	35.0	25.0		3		
H18	0.006-0.031	32.0		29.0		1		
110	0.032-0.128	32.0		29.0		2		
H19	0.006-0.012 0.013-0.063	34.0 34.0				 1		
	0.013-0.003	34.0	•••	•••	•••	'		
H25	0.016-0.019	26.0	34.0	22.0		1		
	0.020-0.031	26.0	34.0	22.0		2		
	0.032-0.050	26.0	34.0	22.0		3		
	0.051-0.080	26.0	34.0	22.0		4		
H27	0.016-0.019	29.5	37.5	25.5		1		
	0.020-0.031	29.5	37.5	25.5		2		
	0.032-0.050	29.5	37.5	25.5		3		
	0.051-0.080	29.5	37.5	25.5		4		
H28	0.016-0.019	31.0		27.0		1		
0	0.020-0.031	31.0		27.0	•••	2		
	0.032-0.050	31.0		27.0	•••	3	***	
	0.051-0.080	31.0		27.0		4		
120	0.005.0004	20.0		00.0		,		
129	0.025-0.031	33.0		28.0		1		
	0.032-0.050	33.0	•••	28.0	•••	2		
	0.051–0.071	33.0	 All 04	28.0	•••	3		
			Alloy 31					
)	0.013-0.019	14.0	21.0	5.0		16		
	0.020-0.031 0.032-0.080	14.0 14.0	21.0 21.0	5.0 5.0		18 20		
	0.002 0.000	14.0	21.0	5.0		20	***	
H12	0.017–0.019	19.0	26.0	15.0		1		
	0.020-0.031	19.0	26.0	15.0	•••	1		
	0.032-0.050	19.0	26.0	15.0		2		
	0.051-0.080	19.0	26.0	15.0		3		
114	0.013-0.019	22.0	29.0	18.0		1		

TABLE 2 Continued

Temper	Specified Thickness, in.	Tensile Strength, ksi		Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter	
Tompor	opeomed Photology III.	min	max	min	max	Diameter, min, %	Factor, N	
	0.020-0.031	22.0	29.0	18.0		1		
	0.032-0.050	22.0	29.0	18.0		2		
	0.051-0.080	22.0	29.0	18.0		2	•••	
116	0.013-0.031	25.0	32.0	21.0		1		
	0.032-0.050	25.0	32.0	21.0		2		
	0.051-0.080	25.0	32.0	21.0		2	***	
118	0.013–0.031 0.032–0.050	28.0 28.0		24.0 24.0		1 1		
	0.051-0.080	28.0		24.0		2		
125	0.013-0.019	23.0 23.0		19.0 19.0		2 3		
	0.020-0.031 0.032-0.050	23.0		19.0	•••	4	•••	
	0.051-0.080	23.0		19.0		6		
			Alloy 50	05				
)	0.006–0.007	15.0	21.0	5.0		12		
•	0.008-0.012	15.0	21.0	5.0		14		
	0.013–0.019	15.0	21.0	5.0		16		
	0.020-0.031	15.0	21.0	5.0		18		
	0.032-0.050	15.0	21.0	5.0		20		
	0.051-0.113	15.0	21.0	5.0		21		
	0.114-0.249	15.0	21.0	5.0		22		
	0.250–3.000	15.0	21.0	5.0	•••	22	•••	
112	0.017–0.019	18.0	24.0	14.0		2		
	0.020-0.031	18.0	24.0	14.0		3		
	0.032-0.050	18.0	24.0	14.0		4		
	0.051–0.113	18.0	24.0	14.0		6		
	0.114-0.161	18.0	24.0	14.0		7		
	0.162-0.249	18.0	24.0	14.0		8		
	0.250-0.499 0.500-2.000	18.0 18.0	24.0 24.0	14.0 14.0		9 10		
114	0.009-0.031	21.0	27.0	17.0		1		
	0.032-0.050 0.051-0.113	21.0 21.0	27.0 27.0	17.0 17.0		2 3		
	0.114–0.161	21.0	27.0	17.0		5		
	0.162-0.249	21.0	27.0	17.0	•••	6	***	
	0.250-0.499	21.0	27.0	17.0		8		
	0.500-1.000	21.0	27.0	17.0		10		
14.0	0.000.0.004	04.0	20.0	00.0		4		
l16	0.006–0.031 0.032–0.050	24.0 24.0	30.0 30.0	20.0 20.0		1 2		
	0.051-0.162	24.0	30.0	20.0		3		
14.0	0.000.0.004	07.0				4		
118	0.006-0.031 0.032-0.050	27.0 27.0	•••			1 2		
	0.051-0.128	27.0				3		
laaC	0.04= 0.040	4= 0		40.0				
132 ^C	0.017-0.019	17.0	23.0	12.0	•••	3		
or 122 ^C	0.020-0.031	17.0 17.0	23.0	12.0		4		
144	0.032-0.050 0.051-0.113	17.0	23.0 23.0	12.0 12.0	•••	5 7	***	
	0.114–0.161	17.0	23.0	12.0		8		
	0.162–0.249	17.0	23.0	12.0		9		
	0.250–2.000	17.0	23.0	12.0		10		
134 ^C	0.009–0.012	20.0	26.0	15.0		2		
134 ° Or	0.009-0.012	20.0 20.0	26.0 26.0	15.0 15.0		2 3		
or 1 24 ^{<i>C</i>}	0.013-0.031	20.0	26.0 26.0	15.0		3 4		
	0.051-0.113	20.0	26.0	15.0		5		
	0.114–0.161	20.0	26.0	15.0		6		
	0.162–0.249	20.0	26.0	15.0		7		
	0.250-0.499	20.0	26.0	15.0		8		
	0.500-1.000	20.0	26.0	15.0		10	***	
	0.500-1.000							
136 ^C	0.006-0.007	23.0	29.0	18.0		1		

TABLE 2 Continued

				ontinueu			
Temper	Specified Thickness, in.	Tensile Strength, ksi		Yield Strength (0		Elongation in 2 in. or 4 × Diameter,	Bend Diameter Factor, N
		min	max	min	max	min, %	r actor, 7
H26 ^C	0.020-0.031	23.0	29.0	18.0		3	
	0.032-0.162	23.0	29.0	18.0		4	
	0.000.0.010	00.0				4	
H38	0.006-0.012	26.0 26.0				1	
	0.013–0.019 0.020–0.031	26.0 26.0				2 3	
	0.032-0.031	26.0	•••		•••	4	•••
	0.032-0.128	20.0	•••	•••	•••	4	
H112	0.250-0.499	17.0				8	
	0.500-2.000	15.0				12	
	2.001-3.000	14.5				18	
F^D	0.350.3.000						
r-	0.250-3.000	***	•••		•••	***	***
			Alloy 50	10			
0	0.010-0.070	15.0	21.0	5.0		3	
H22	0.010-0.070	17.0	23.0	14.0		2	
1 144	0.010-0.070	17.0	23.0	14.0	•••	2	
H24	0.010-0.070	20.0	26.0	17.0		1	
H26	0.010–0.070	23.0	29.0	21.0		1	
H28	0.010-0.070	26.0					
-			Alloy 50		***	<u> </u>	
0	0.006-0.007	18.0	24.0	6.0			0
	0.008-0.019	18.0	24.0	6.0		16	0
	0.020-0.031	18.0	24.0	6.0		18	0
	0.032-0.050	18.0	24.0	6.0		20	0
	0.051–0.113	18.0	24.0	6.0		20	0
	0.114-0.249	18.0	24.0	6.0		22	0
	0.250-3.000	18.0	24.0	6.0		20	2
H32 ^C	0.047.0.050	22.0	20.0	16.0		4	4
	0.017-0.050	22.0	28.0			4	1
or H22 ^C	0.051-0.249	22.0	28.0	16.0	•••	6	2
H34 ^C	0.009-0.031	25.0	31.0	20.0		3	1
or	0.032-0.050	25.0	31.0	20.0		4	1
H24 ^C	0.051-0.249	25.0	31.0	20.0		5	3
H36 ^C	0.006.0.040	27.0	22.0	22.0		0	3
	0.006-0.019	27.0	33.0	22.0		2	
or LIGGG	0.020-0.050	27.0	33.0	22.0	•••	3	3
H26 ^C	0.051–0.162	27.0	33.0	22.0		4	4
H38	0.006-0.007	29.0					
	0.008-0.031	29.0				2	
	0.032-0.050	29.0				3	
	0.051-0.128	29.0				4	
11440	0.050.0.000	00.0		0.0		40	
H112	0.250-3.000	20.0		8.0		12	•••
F^D	0.250-3.000						
			Alloy 50				
<u> </u>	0.006.0.007	25.0					0
0	0.006-0.007	25.0 25.0	31.0	9.5			
	0.008-0.012	25.0	31.0	9.5	•••	14	0
	0.013-0.019	25.0	31.0	9.5	•••	15	0
	0.020-0.031	25.0	31.0	9.5		16	0
	0.032-0.050	25.0	31.0	9.5		18	0
	0.051-0.113	25.0	31.0	9.5		19	0
		25.0	31.0	9.5 9.5		20	0
	0.114-0.249	05.0		u s		18	
	0.114-0.249 0.250-3.000	25.0	31.0	3.5	***		
Н32 ^С	0.250–3.000						
	0.250–3.000 0.017–0.019	31.0	38.0	23.0		4	0
or	0.250–3.000 0.017–0.019 0.020–0.050	31.0 31.0	38.0 38.0	23.0 23.0		4 5	0 1
or	0.250–3.000 0.017–0.019 0.020–0.050 0.051–0.113	31.0 31.0 31.0	38.0 38.0 38.0	23.0 23.0 23.0	 	4 5 7	0 1 2
H32 ^C or H22 ^C	0.250–3.000 0.017–0.019 0.020–0.050	31.0 31.0	38.0 38.0	23.0 23.0		4 5	0 1

TABLE 2 Continued

_		Tensile St	rength, ksi	Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or $4 \times$	Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
H34 ^C	0.009–0.019	34.0	41.0	26.0		3	1
or	0.020-0.050	34.0	41.0	26.0		4	2
H24 ^C	0.051-0.113	34.0	41.0	26.0		6	3
	0.114-0.249	34.0	41.0	26.0		7	4
	0.250-1.000	34.0	41.0	26.0		10	
13 ^C	0.006-0.007	37.0	44.0	29.0		2	4
or	0.008-0.031	37.0	44.0	29.0		3	4
H26 ^C	0.032-0.162	37.0	44.0	29.0		4	5
∃38 ^C	0.006-0.007	39.0		32.0		2	
or	0.008-0.031	39.0		32.0		3	
H28 ^C	0.032-0.128	39.0		32.0		4	
H112	0.250-0.499	28.0		16.0		7	
	0.500-2.000	25.0		9.5		12	
	2.001–3.000	25.0		9.5		16	
-D	0.250-3.000						
	1.200 0.000		Alloy 508				
	0.051–1.500	40.0	51.0	18.0	29.0	16	
-	1.501–3.000	39.0	50.0	17.0	29.0	16	
	3.001–4.000	38.0		16.0	23.0	16	
	4.001–5.000	38.0		16.0		14	
	5.001–7.000	37.0		15.0		14	
	7.001–8.000	36.0		14.0		12	
H321	0.188–1.500	44.0	56.0	31.0	43.0	12	
1321	1.501–3.000	41.0	56.0	29.0	43.0	12	
1440	0.050 4.500	40.0		40.0		40	
H112	0.250–1.500 1.501–3.000	40.0 39.0		18.0 17.0		12 12	
H116 ^F	0.063-0.499	44.0		31.0		10	
	0.500-1.250	44.0		31.0		12	
	1.251–1.500	44.0		31.0		12	
	1.501-3.000	41.0		29.0		12	
F ^D	0.250-8.000						
'	0.200 0.000		Alloy 508				
0	0.020-0.050	35.0	44.0	14.0		15	
0	0.051-0.249	35.0	44.0	14.0		18	
	0.250-2.000	35.0	44.0	14.0		16	
Н32 ^С	0.020-0.050	40.0	47.0	28.0		6	
or	0.020-0.050	40.0	47.0 47.0	28.0		6 8	•••
ог H22 ^С	0.051-0.249	40.0	47.0 47.0	28.0		12	
∃34 ^C	0.009-0.019	44.0	51.0	34.0		4	•••
or H24 ^C	0.020-0.050	44.0	51.0 51.0	34.0		5	
1124	0.051-0.249 0.250-1.000	44.0 44.0	51.0 51.0	34.0 34.0		6 10	
Н36 ^С	0.006–0.019	47.0	54.0	38.0		2	
			54.0 54.0			3 4	
or H26 ^C	0.020-0.050 0.051-0.162	47.0 47.0	54.0 54.0	38.0 38.0		6	
		77.0	J4.U				
H38 ^C	0.006-0.020	50.0		41.0		3	
or H28 ^C							
H112	0.188–0.499	36.0		18.0		8	
11112		35.0 35.0		16.0			
	0.500-1.000		•••			10	
	1.001–2.000 2.001–3.000	35.0 34.0		14.0 14.0		14 14	
_			•••				
1 116 ^{<i>F</i>}	0.063-0.249	40.0		28.0		8	
	0.250-0.499	40.0		28.0		10	

TABLE 2 Continued

_		Tensile St	rength, ksi	Yield Strength (0.	.2 % offset), ksi	Elongation in 2 in. or $4 \times$	Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
	0.500-1.250	40.0		28.0		10	
	1.251–2.000	40.0		28.0		10	
F ^D	0.250-3.000			•••		•••	
			Alloy 51	54			
0	0.020-0.031	30.0	41.0	11.0		12	
	0.032-0.050	30.0	41.0	11.0		14	
	0.051-0.113	30.0	41.0	11.0		16	
	0.114–3.000	30.0	41.0	11.0		18	
H32 ^C	0.020-0.050	36.0	43.0	26.0		5	
or	0.051-0.249	36.0	43.0	26.0		8	
H22 ^C	0.250-2.000	36.0	43.0	26.0		12	
H34 ^C	0.009-0.050	39.0	46.0	29.0		4	
or	0.051-0.161	39.0	46.0	29.0		6	
H24 ^C	0.162-0.249	39.0	46.0	29.0		7	
	0.250-1.000	39.0	46.0	29.0		10	
Н36 ^С	0.006- 0.050	42.0	49.0	32.0		2	
	0.006-0.050					3	
or H26 ^C	0.051-0.113	42.0	49.0	32.0		4	
⊓∠0~	0.114–0.162	42.0	49.0	32.0		5	•••
H38 ^C	0.006-0.050	45.0		35.0		3	
or	0.051-0.113	45.0		35.0		4	
H28 ^C	0.114-0.128	45.0		35.0		5	
	0.050.0.400			40.0			
H112	0.250-0.499	32.0		18.0		8	
	0.500–2.000	30.0	•••	11.0		11 15	
	2.001–3.000	30.0		11.0		15	•••
F ^D	0.250-3.000						
			Alloy 52				
H24	0.030-0.090	30.0	38.0			10	
1124	0.030-0.090	30.0	36.0	•••		10	•••
H25	0.030-0.090	31.0	39.0			9	
H28	0.030-0.090	38.0		•••		3	
			Alloy 52			-	
0	0.054.0.442	20.0				46	
O	0.051–0.113 0.114–3.000	30.0 30.0	41.0 41.0	11.0 11.0		16 18	***
	0.114 0.000	50.0	41.0	11.0		10	•••
H32 ^C	0.051-0.249	36.0	43.0	26.0		8	
or	0.250-2.000	36.0	43.0	26.0		12	
H22 ^C							
C						_	
Н34 ^С	0.051-0.161	39.0	46.0	29.0		6	
or	0.162-0.249	39.0	46.0	29.0		7	
H24 ^C	0.250-1.000	39.0	46.0	29.0		10	
H36 ^C	0.051-0.113	42.0	49.0	32.0		4	
or	0.031-0.113	42.0	49.0	32.0		5	
H26 ^C	0.114 -0.102	74.0	73.0	32.0		3	•••
Н38 ^С	0.051-0.113	45.0		35.0		4	
or	0.114–0.128	45.0	•••	35.0		5	
H28 ^C							
H112	0.250-0.499	32.0		18.0		8	
	0.500-2.000	30.0		11.0		11	
	2.001–3.000	30.0		11.0		15	
	2.55. 0.000	55.0	•••	11.0	•••	.5	•••
_ D	0.250-3.000						
F ^D			Alloy 54	54			
F ^D							
	0.020-0.031	31.0	41.0	12.0		12	
Б ^{<i>D</i>}	0.020-0.031 0.032-0.050	31.0 31.0	41.0 41.0	12.0 12.0		12 14	
	0.020-0.031 0.032-0.050 0.051-0.113	31.0 31.0 31.0	41.0 41.0 41.0	12.0 12.0 12.0		12 14 16	

TABLE 2 Continued

		Tensile S	trength, ksi	Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or $4 \times$	Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
H32 ^C	0.020-0.050	36.0	44.0	26.0		5	
or	0.051-0.249	36.0	44.0	26.0		8	
H22 ^C	0.250-2.000	36.0	44.0	26.0		12	
H34 ^C	0.020-0.050	39.0	47.0	29.0		4	
or	0.051-0.161	39.0	47.0	29.0		6	
H24 ^C	0.162-0.249	39.0	47.0	29.0		7	
	0.250-1.000	39.0	47.0	29.0		10	
H112	0.250-0.499	32.0		18.0		8	
	0.500-2.000	31.0		12.0		11	
	2.001-3.000	31.0		12.0		15	
FC	0.250-3.000			···			
•	0.200 0.000		Alloy 57		···	···	
0	0.030-0.055	29.0	39.0	12.0		17	
_	0.056-0.087	29.0	39.0	12.0	•••	18	
	0.088-0.138	29.0	39.0	12.0		19	
			Alloy 54		***	. •	
0	0.051–1.500	42.0	53.0	19.0	30.0	16	
•	1.501–3.000	41.0	52.0	18.0	30.0	16	
	3.001–3.000	40.0		17.0		14	
	5.001–5.000	39.0		16.0	•••	14	•••
	7.001–7.000	38.0	•••	15.0		12	•••
	7.001-8.000	36.0		13.0	•••	12	
H321	0.188-0.499	46.0	59.0	33.0	46.0	12	
	0.500-1.500	44.0	56.0	31.0	44.0	12	
	1.501–3.000	41.0	54.0	29.0	43.0	12	
H112	0.250-1.500	42.0		19.0		12	
	1.501–3.000	41.0		18.0		12	
H116 ^{<i>F</i>}	0.063-0.499	46.0		33.0		10	
11110	0.500-1.250	46.0		33.0	•••	12	
	1.251–1.500	44.0		31.0	•••	12	
	1.501–3.000	41.0		29.0		12	
	3.001–4.000	40.0		25.0		12	
F ^C	0.250.0.000						
F	0.250-8.000	•••	 All 5.4		•••	•••	
	0.000.0000	40.0	Alloy 54				
0	0.030-0.090	16.0	22.0		•••	20	
			Alloy 56				
0	0.051–0.113	25.0	31.0	9.5		19	0
	0.114-0.249	25.0	31.0	9.5		20	0
	0.250-3.000	25.0	31.0	9.5		18	
H32 ^D	0.051-0.113	31.0	38.0	23.0		7	2
or	0.114–0.249	31.0	38.0	23.0		9	3
H22 ^D	0.250-0.499	31.0	38.0	23.0		11	
	0.500-2.000	31.0	38.0	23.0		12	
H34 ^D	0.051-0.113	34.0	41.0	26.0		6	3
or	0.114–0.249	34.0	41.0	26.0		7	4
H24 ^D	0.250–1.000	34.0	41.0	26.0		10	
⊔112	0.250.0.400	20.0		16.0		7	
H112	0.250-0.499	28.0		16.0			
	0.500-2.000 2.001-3.000	25.0 25.0		9.5 9.5	···	12 16	
- C			***		····	-	
F ^C	0.250-3.000					•••	
			Alloy 56	57			
H241 ^{<i>G</i>}	0.030-0.090	18.0	26.0			13	
H25	0.030-0.090	20.0	28.0			8	
				•••	***		
H26	0.030-0.090	22.0	30.0			7	

TABLE 2 Continued

		Tensile Strength, ksi		Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 ×	Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
H28	0.030-0.090	25.0				5	

^A To determine conformance to this specification each value for tensile strength and for yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E 29.

TABLE 3 Tensile Property Limits for Heat-Treatable Alloys^{A,B}

T	Oifd Third	Tensile St	rength, ksi	Yield Strength (Yield Strength (0.2 % offset), ksi		Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4 × Diameter, min, %	Factor, N
			Alloy 20	14			
0	0.020-0.124		32.0	•••	16.0	16	0
	0.125-0.249		32.0		16.0	16	1
	0.250-0.499		32.0		16.0	16	2
T3	0.020-0.039	59.0		35.0		14	3
	0.040-0.124	59.0		36.0		14	3
	0.125-0.249	59.0		36.0		14	4
T4 ^C	0.020-0.124	59.0		35.0		14	3
	0.125-0.249	59.0		35.0		14	4
	0.120 0.240	55.0		30.0		, +	
T42 ^D	0.020-0.124	58.0		34.0		14	3
	0.125-0.249	58.0		34.0		14	4
	0.250-0.499	58.0		34.0		14	5
	0.500-1.000	58.0		34.0		14	
T451 ^E	0.250-1.000	58.0		36.0		14	
	1.001–2.000	58.0		36.0		12	
	2.001–3.000	57.0		36.0		8	
T6, T62 ^D	0.020-0.039	64.0		57.0		6	4
10, 102	0.040-0.050	66.0		58.0		7	5
						7	
	0.051-0.124	66.0	•••	58.0			6
	0.125–0.249	66.0	•••	58.0		7	8
T62 ^D , T651 ^E	0.250-0.499	67.0		59.0		7	10
	0.500-1.000	67.0		59.0		6	
	1.001-2.000	67.0		59.0		4	
	2.001-2.500	65.0		58.0		2	
	2.501-3.000	63.0		57.0		2	
	3.001-4.000	59.0		55.0		1	
F ^F	0.250-1.000			***			
			Alclad Alloy				
0	0.020–0.499		30.0		14.0	16	
~	0.500-1.000		32.0 ^G			10	
To	0.020.0.020	E4.0		22.0		1.4	
Т3	0.020-0.039	54.0		33.0		14	
	0.040-0.124	55.0	•••	34.0		14	
	0.125-0.249	57.0	•••	35.0		15	•••
T4 ^C	0.020-0.124	54.0	•••	31.0		14	
	0.125-0.249	55.0		32.0		14	
	0.040-0.249	57.0		34.0		15	
T42 ^D	0.020-0.124	54.0		31.0		14	
144	0.020-0.124	54.0	•••	31.0	•••	14	•••

^B The basis for establishment of mechanical property limits is shown in Annex A1.

^C Material in either of these tempers (H32 or H22), (H34 or H24), (H36 or H26), (H38 or H28), (H12 or H22), (H14 or H24), (H16 or H26), (H18 or H28), may be supplied at the option of the supplier, unless one is specifically excluded by the contract or purchase order. When ordered as H2x tempers, the maximum tensile strength and minimum yield strength do not apply. When H2x tempers are supplied instead of ordered H1x or H3x tempers, the supplied H2x temper material shall meet the respective H1x or H3x temper tensile property limits.

 $^{^{\}it D}$ Tests of F temper plate for tensile properties are not required.

E The tension test specimen from plate 0.500 in. and thicker is machined from the core and does not include the cladding alloy.

^F The -H116 temper designation now also applies to products previously designated -H117.

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Str	ength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in 2 in. or 4 \times	Bend Diameter
remper	Specified Thickness, III.	min	max	min	max	Diameter, min, %	Factor, N
	0.125-0.249	55.0		32.0		14	
	0.250-0.499	57.0		34.0		15	
	0.500-1.000	58.0 ^{<i>G</i>}		34.0 ^{<i>G</i>}		14	•••
T451 ^E	0.250-0.499	57.0		36.0		15	
1431	0.500-1.000	58.0 ^G	•••	36.0 ^G		14	•••
	1.001–2.000	58.0 ^{<i>G</i>}	•••	36.0 ^G		12	•••
	2.001–3.000	57.0 ^G		36.0 ^G		8	•••
T6, T62 ^D	0.020-0.039	62.0		54.0		7	
	0.040-0.050	63.0	•••	55.0		7	•••
	0.051-0.124 0.125-0.249	64.0		57.0		8	
	0.125-0.249						
T62 ^D ,_	0.250-0.499	64.0		57.0		8	
T651 ^E	0.500.4.000	07.0G		50.0G		0	
	0.500-1.000	67.0 ^{<i>G</i>} 67.0 ^{<i>G</i>}	•••	59.0 ^{<i>G</i>} 59.0 ^{<i>G</i>}	•••	6	•••
	1.001–2.000					4	
	2.001–2.500	65.0 ^G		58.0 ^G		2	•••
	2.501–3.000	63.0 ^G	•••	57.0 ^G	•••	2	•••
	3.001–4.000	59.0 ^{<i>G</i>}		55.0 ^{<i>G</i>}		1	•••
F ^F	0.250-1.000						
			Alloy 202	24			
0	0.010-0.032		32.0		14.0	12	0
	0.033-0.063		32.0		14.0	12	1
	0.064-0.128		32.0		14.0	12	4
	0.129-0.499		32.0		14.0	12	6
	0.000					4.5	
T3	0.008-0.009	63.0	•••	42.0		10	4
	0.010-0.020	63.0		42.0		12	4
	0.021-0.051	63.0		42.0		15	5
	0.052-0.128	63.0		42.0		15	6
	0.129-0.249	64.0		42.0		15	8
T351 ^E	0.250-0.499	64.0		42.0		12	
	0.500-1.000	63.0		42.0		8	
	1.001–1.500	62.0		42.0		7	
	1.501–2.000	62.0	•••	42.0	•••	6	•••
	2.001–3.000	60.0		42.0		4	
	3.001–4.000	57.0		41.0		4	•••
T361 ^H	0.020-0.051	67.0	•••	50.0		8	4
	0.052-0.062	67.0		50.0		8	8
	0.063-0.249	68.0		51.0		9	8
	0.250-0.499	66.0		49.0		9	
	0.500	66.0		49.0		10	
T4 ^C	0.010-0.020	62.0		40.0		12	4
	0.021–0.051	62.0		40.0		15	5
	0.052-0.128	62.0		40.0		15	6
	0.129-0.249	62.0		40.0		15	8
T42 ^D	0.040, 0.020	62.0		20.0		40	4
142-	0.010-0.020	62.0		38.0		12	4
	0.021-0.051	62.0	•••	38.0	•••	15	5
	0.052-0.128	62.0		38.0		15	6
	0.129-0.249	62.0	•••	38.0		15	8
	0.250-0.499	62.0		38.0		12	10
	0.500-1.000	61.0		38.0		8	
	1.001-1.500	60.0		38.0		7	
	1.501-2.000	60.0		38.0		6	
	2.001-3.000	58.0		38.0		4	•••
T62 ^D	0.010-0.499	64.0		50.0		5	
. 52	0.500-2.000	63.0		50.0		5	
T=0.D/						_	
T72 ^{DI}	0.010-0.249	60.0		46.0		5	

TABLE 3 Continued

Teample Specimen Incorrects File Fil			Tensile St	rength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in	Bend
0.500-1.000	emper	Specified Thickness, in.	min	max	min	max	Diameter,	Diameter Factor, N
1,001-1,409	351 ^E	0.250-0.499	67.0		58.0		5	
1861		0.500-1.000	66.0		58.0			
0.083-0.249 71.0 66.0 4 0.250-0.499 70.0 64.0 4 0.250-0.499 70.0 64.0 4 0.250-0.499 70.0 64.0 4 0.250-0.000 70.0 64.0 4 0.250-0.000		1.001–1.499	66.0		57.0		5	
0.083-0.249 71.0 66.0 4 0.250-0.499 70.0 64.0 4 0.250-0.499 70.0 64.0 4 0.250-0.499 70.0 64.0 4 0.250-0.000 70.0 64.0 4 0.250-0.000	361 ^H	0.020-0.062	70.0		62.0		3	
0.250-0.499 70.0 64.0 4 0.500 70.0 64.0 4 0.500 70.0 64.0 4 0.250-3.000			71.0					
0.500 70.0 64.0 4 0.250-3.000								
Alciad Alloy 2024		0.500						
Alciad Alloy 2024	=	0.250–3.000						
0 0.000-0.000								
0.010-0.032		0.008–0.009				14.0	10	0
0.033-0.062								0
0.063-0.249								1
0.250-0.499								
T33								2
13								3
0.010-0.020		0.000-1.700		J2.U			12	
0.021-0.040 59.0 39.0 15 0.041-0.062 59.0 39.0 16 0.063-0.128 61.0 40.0 15 0.129-0.249 62.0 40.0 15 0.500-1.000 63.0° 42.0° 8 1.001-1.500 62.0° 42.0° 7 1.501-2.000 62.0° 42.0° 7 1.501-2.000 62.0° 42.0° 7 1.501-2.000 60.0° 42.0° 7 1.501-2.000 60.0° 42.0° 4 3.001-4.000 57.0° 41.0° 4 3611" 0.022-0.062 61.0 47.0 8 0.063-0.187 64.0 48.0 9 0.055-0.197 64.0 48.0 9 0.188-0.249 64.0 48.0 9 0.250-0.499 64.0 48.0 9 0.250-0.499 64.0 48.0 9 0.250-0.499 64.0 48.0 9 0.021-0.040 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.041-0.062 57.0 34.0 15 0.041-0.062 57.0 34.0 16 0.011-0.020 57.0 34.0 16 0.011-0.020 57.0 34.0 16 0.011-0.020 57.0 34.0 16 0.011-0.020 57.0 34.0 16 0.011-0.020 57.0 34.0 16 0.021-0.040 58.0 36.0 15 0.031-0.128 60.0 36.0 15 0.041-0.062 57.0 34.0 16 0.041-0.062 57.0 34.0 16 0.041-0.062 57.0 34.0 16 0.041-0.062 57.0 34.0 16 0.041-0.062 57.0 34.0 16 0.041-0.062 57.0 34.0 16 0.041-0.062 57.0 34.0 16 0.050-0.128 60.0 36.0 16 0.050-0.128 60.0 36.0 16 0.050-0.128 60.0 36.0 16 0.050-0.128 60.0 36.0 16 0.050-0.128 60.0 36.0 16 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.128 60.0 36.0 15 0.050-0.12	3							4
0.041-0.062 59.0 39.0 15 0.065-0.128 61.0 40.0 15 0.129-0.249 62.0 40.0 15 0.250-0.499 62.0 40.0 12 0.500-1.000 63.0° 42.0° 7 1.501-2.000 62.0° 42.0° 7 1.501-2.000 62.0° 42.0° 7 1.501-2.000 62.0° 42.0° 42.0° 6 2.001-3.000 50.0° 42.0° 42.0° 6 2.001-3.000 50.0° 42.0° 9 2.001-3.000 50.0° 42.0° 9 3.001-4.000 57.0° 41.0° 8 0.063-0.187 64.0 48.0 9 0.063-0.187 64.0 48.0 9 0.250-0.499 64.0 48.0 9 0.500 66.0° 49.0° 10 44° 0.010-0.020 58.0 36.0 36.0 12 0.021-0.040 58.0 36.0 36.0 15 0.063-0.128 61.0 38.0 36.0 15 0.063-0.128 61.0 38.0 36.0 15 0.063-0.128 61.0 38.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.061-0.000 57.0 34.0 116 0.011-0.002 57.0 34.0 116 0.011-0.002 57.0 34.0 115 0.011-0.002 57.0 57.0 57.0 57.0 57.0 57.0 57.0 57.0		0.010-0.020	59.0		39.0		12	4
0.041-0.062 59.0 39.0 16 0.063-0.128 61.0 40.0 15 0.129-0.249 62.0 40.0 15 0.250-0.499 62.0 40.0 12 0.500-1.000 63.0° 42.0° 42.0° 8 1.001-1.500 62.0° 42.0° 7 1.501-2.000 62.0° 42.0° 42.0° 6 2.201-3.000 60.0° 42.0° 42.0° 4 3.001-4.000 57.0° 41.0° 4 3.001-4.000 57.0° 41.0° 8 0.063-0.187 64.0 45.0 9 0.083-0.187 64.0 45.0 9 0.250-0.499 64.0 45.0 9 0.500 100-0.020 58.0 36.0 12 0.021-0.040 58.0 36.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 61.0 34.0 10 0.010-0.020 55.0 34.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.061-0.009 57.0 34.0 12 0.021-0.040 57.0 34.0 12 0.021-0.040 57.0 34.0 12 0.021-0.040 57.0 34.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.18-0.249 60.0 36.0 15 0.18-0.249 60.0 36.0 15 0.18-0.249 60.0 36.0 15 0.19-0.1000 60.0° 38.0° 15 0.19-0.1000 60.0° 38.0° 15 0.19-0.1000 60.0° 38.0° 15 0.19-0.1000 60.0° 38.0° 15 0.19-0.1000 60.0° 38.0° 15 0.19-0.1000 60.0° 38.0° 15 0.19-0.1000 60.0° 38.0° 15 0.19-0.1000 60.0° 38.0° 15 0.19-0.1000 60.0° 38.0° 15 0.19-0.1000 60.0° 38.0° 15 0.19-0.1000 60.0° 38.0° 15 0.100-0.002 50.0° 38.0° 15 0.100-0.002 50.0° 38.0° 15 0.100-0.002 50.0° 38.0° 55 0.100-0.002 50.0° 38.0° 55 0.100-0.002 50.0° 38.0° 55 0.100-0.002 50.0° 38.0° 55 0.100-0.002 50.0° 55.0° 55 0.100-0.002 50.0° 55.0° 55 0.100-0.002 50.0° 55.0° 55 0.100-0.002 50.0° 55.0° 55.0° 55		0.021-0.040	59.0		39.0		15	4
0.663-0.128 61.0 40.0 15 0.129-0.249 62.0 40.0 15 0.250-0.499 62.0 40.0 15 0.500-1.000 63.0° 42.0° 8 1.001-1.500 62.0° 42.0° 8 1.001-1.500 62.0° 42.0° 6 1.501-2.000 62.0° 42.0° 6 2.001-3.000 60.0° 42.0° 6 2.001-3.000 57.0° 42.0° 4 3.001-4.000 57.0° 41.0° 4 3.001-4.000 57.0° 41.0° 8 0.063-0.187 64.0 48.0 9 0.250-0.499 64.0 48.0 9 0.021-0.040 58.0 36.0 12 0.021-0.040 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.063-0.128 61.0 34.0 15 0.063-0.128 61.0 34.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.129-0.167 60.0 36.0 15 0.129-0.167 60.0 36.0 15 0.129-0.167 60.0 36.0 15 0.129-0.167 60.0 36.0 15 0.129-0.167 60.0 36.0 15 0.129-0.169 60.0 36.0 15 0.129-0.170 60.0 36.0 15 0.120-0.1300 60.0° 38.0° 15 0.120-0.1000 60.0° 38.0° 15 0.120-0.1000 60.0° 38.0° 15 0.120-0.1000 60.0° 38.0° 15 0.120-0.1000 60.0° 38.0° 15 0.120-0.0000 50.0° 38.0° 15 0.120-0.0000 50.0° 38.0° 15 0.120-0.0000 50.0° 38.0° 15 0.120-0.0000 50.0° 38.0° 15 0.120-0.0000 50.0° 38.0° 15 0.120-0.0000 50.0° 38.0° 15 0.120-0.0000 50.0° 38.0° 55 0.063-0.299 60.0 38.0° 55 0.063-0.299 60.0 47.0 55 0.063-0.299 60.0 47.0 55 0.063-0.299 60.0 47.0 55 0.063-0.299 60.0 55.0 55.0 55 0.063-0.299 60.0 55.0 55.0 55 0.063-0.299 60.0 55.0 55.0								5
0.129-0.249 62.0 40.0 15 0.250-0.499 62.0 40.0 12 0.500-1.000 63.0° 42.0° 7 1.501-2.000 62.0° 42.0° 7 1.501-2.000 62.0° 42.0° 6 2.001-3.000 60.0° 42.0° 6 2.001-3.000 60.0° 42.0° 6 2.001-3.000 60.0° 42.0° 6 3.001-4.000 57.0° 41.0° 4 3601 ¹⁴ 0.020-0.062 61.0 47.0 8 0.063-0.187 64.0 48.0 9 0.250-0.499 64.0 48.0 9 0.500-0.500 66.0° 49.0° 10 4° 0.010-0.020 58.0 36.0 12 0.021-0.040 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.041-0.062 57.0 34.0 15 0.010-0.020 57								5
351 ^E 0.250-0.499 62.0 40.0 12 0.500-1.000 63.0° 42.0° 8 1.001-1.500 62.0° 42.0° 7 1.501-2.000 62.0° 42.0° 6 2.001-3.000 60.0° 42.0° 4 3.001-4.000 57.0° 41.0° 4 301 ^H 0.020-0.062 61.0 47.0 8 0.063-0.187 64.0 48.0 9 0.750-0.499 64.0 48.0 9 0.500 66.0° 49.0° 10 4° 0.010-0.020 58.0 36.0 12 0.021-0.040 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.063-0.128 61.0 38.0 15 0.041-0.062 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.088-0.249 60.0 36.0 15 0.088-0.249 60.0 36.0 15 0.188-0.249 60.0 36.0 15 0.188-0.249 60.0 36.0 15 0.189-0.189 60.0 36.0 15 0.180-0.190-0.18 60.0 36.0 15 0.180-0.190-0.180 60.0° 36.0 15 0.180-0.190-0.180 60.0° 36.0 15 0.180-0.190-0.180 60.0° 36.0 15 0.180-0.190-0.180 60.0° 36.0 15 0.180-0.190-0.180 60.0° 36.0 15 0.180-0.190-0.180 60.0° 36.0 15 0.180-0.190-0.180 60.0° 36.0 15 0.180-0.190-0.180 60.0° 36.0 15 0.180-0.190-0.180 60.0° 36.0 15 0.180-0.190-0.180 60.0° 36.0 15 0.180-0.190-0.180 60.0° 36.0 15 0.180-0.190-0.180 60.0° 38.0° 8 1.501-2.000 60.0° 38.0° 7 1.501-2.000 60.0° 38.0° 7 1.501-2.000 60.0° 38.0° 7 1.501-2.000 60.0° 38.0° 7 1.501-2.000 60.0° 38.0° 7 1.501-2.000 60.0° 38.0° 5 811 0.010-0.062 60.0 47.0 5 0.063-0.249 65.0 45.0 5 0.050-1.000 66.0° 56.0 5 0.050-1.000 66.0° 56.0 5 0.050-1.000 66.0° 56.0 5 0.050-1.000 66.0° 56.0 5 0.050-1.000 66.0° 56.0 5 0.050-1.000 66.0° 56.0 5 0.050-1.000 66.0° 56.0 5 0.050-1.000 66.0° 56.0 5 0.050-1.000 66.0° 50.0 5 0.050-1.000 66.0° 50.0 5 0.050-1.000 66.0° 56.0 5 0.050-1.000 66.0° 50.0 5 0.050-1.000 66.0° .								8
0.500-1.000	351 ^E							
1.001-1.500 62.0° 42.0° 7 1.501-2.000 62.0° 42.0° 6 2.001-3.000 60.0° 42.0° 4 3.001-4.000 57.0° 41.0° 4 3.001-4.000 57.0° 41.0° 4 361" 0.020-0.062 61.0 47.0 8 0.063-0.187 64.0 48.0 9 0.188-0.249 64.0 48.0 9 0.250-0.499 64.0 48.0 9 0.500 66.0° 49.0° 10 4° 0.010-0.020 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.063-0.128 61.0 38.0 15 0.010-0.020 57.0 34.0 15 0.010-0.020 57.0 34.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 60.0 36.0 15 0.041-0.062 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.189-0.187 60.0 36.0 15 0.189-0.249 60.0 36.0 15 0.189-0.249 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.250-0.499 60.0 36.0 5 0.063-0.249 58.0 47.0 5 0.063-0.249 58.0 45.0 45.0 5 0.063-0.249 58.0 45.0 5 0.063-0.249 58.0 45.0 5 0.050-1.000 60.0° 47.0 5 0.063-0.249 58.0 45.0 5 0.500-1.000 60.0° 47.0 5 0.063-0.249 58.0 45.0 5 0.500-1.000 60.0° 47.0 5 0.063-0.249 58.0 45.0 5 0.500-1.000 60.0° 47.0 5 0.063-0.249 65.0 45.0 5 0.500-1.000 60.0° 56.0 5 0.500-1.000 60.0° 56.0 5 0.500-1.000 60.0° 56.0 5 0.500-1.000 60.0° 56.0 5 0.500-1.000 60.0° 56.0 5 0.500-1.000 60.0° 56.0 5 0.500-1.000 60.0° 56.0 5 0.500-1.000 60.0° 56.0 5	501							
1.501-2.000 62.0° 42.0° 6 2.001-3.000 60.0° 42.0° 4 3.001-4.000 57.0° 41.0° 4 3.001-4.000 57.0° 41.0° 4 3.001-4.000 57.0° 41.0° 4 3.001-4.000 57.0° 41.0° 8 3.001-4.000 57.0° 41.0° 8 3.001-4.000			63.0 63.0		42.0			
2.001-3.000					42.0°			•••
3.001-4.000 57.0°				•••				•••
361 ^H 0.020-0.062 61.0 47.0 8 0.063-0.187 64.0 48.0 9 0.188-0.249 64.0 48.0 9 0.188-0.249 64.0 48.0 9 0.250-0.499 64.0 48.0 9 0.500 66.0 ^G 49.0 ^G 10 10 46.0 10 10 47 10 10 48.0 10 10 49.0 ^G 10 10 44 10 10 49.0 ^G 11 10 44 11 10 49.0 ^G 15 0.063-0.128 61.0 36.0 15 0.063-0.128 61.0 36.0 15 0.063-0.128 61.0 38.0 36.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 60.0 15 0.063-0.128 60.0 15 0.063-0.128 60.0 34.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.129-0.0 36.0 15 0.129-0.0 36.0								
0.083-0.187		3.001-4.000	57.0 ^G		41.0 ^G	•••	4	
0.188-0.249 64.0 48.0 9 0.250-0.499 64.0 48.0 9 0.500 66.0° 49.0° 10 4° 0.010-0.020 58.0 36.0 12 0.021-0.040 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.003-0.128 61.0 34.0 15 0.001-0.020 57.0 34.0 15 0.010-0.020 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.063-0.128 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.250-0.499 60.0 36.0 12 0.500-1.000 61.0° 38.0° 8 1.001-1.500 60.0° 38.0° 8 1.001-1.500 60.0° 38.0° 8 1.001-1.500 60.0° 38.0° 4 62° 0.010-0.062 60.0 47.0 5 0.063-0.249 58.0 49.0 5 0.063-0.249 58.0 49.0 5 0.063-0.249 58.0 49.0 5 0.063-0.249 58.0 49.0 5 0.063-0.249 58.0 45.0 5 0.063-0.249 58.0 45.0 5 0.063-0.249 58.0 45.0 5 0.063-0.249 58.0 45.0 5 0.063-0.249 58.0 56.0 5 0.063-0.249 65.0 56.0 5 0.063-0.249 65.0 56.0 5 0.063-0.249 65.0 56.0 5	361 ^H	0.020-0.062	61.0		47.0		8	4
$\begin{array}{c} 0.250-0.499 \\ 0.500 \\ 0.500 \\ \end{array} \begin{array}{c} 64.0 \\ 66.0^{\circ} \\ \end{array} \begin{array}{c} \\ 49.0^{\circ} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ 9 \\ 0.010-0.020 \\ 0.021-0.040 \\ 0.021-0.040 \\ 0.063-0.128 \\ \end{array} \begin{array}{c} 58.0 \\ 0.036.0 \\ 0.063-0.128 \\ \end{array} \begin{array}{c} \\ 61.0 \\ 0.063-0.128 \\ \end{array} \begin{array}{c} \\ 61.0 \\ 0.010-0.020 \\ 0.010-0.020 \\ 0.010-0.020 \\ 0.021-0.040 \\ 0.021-0.040 \\ 0.021-0.040 \\ 0.021-0.040 \\ 0.036.0 \\ 0.03$		0.063-0.187	64.0		48.0		9	6
0.500 66.0° 49.0° 10 4° 0.010-0.020 58.0 36.0 12 0.021-0.040 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.063-0.128 61.0 38.0 15 42° 0.008-0.009 55.0 34.0 10 0.010-0.020 57.0 34.0 12 0.021-0.040 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.063-0.128 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.188-0.249 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.250-0.499 60.0 38.0° 8 1.001-1.500 60.0° 38.0° 8 1.001-3.000 58.0° 38.0° 6 2.001-3.000 58.0° 38.0° 6 2.001-3.000 58.0° 38.0° 6 2.001-3.000 58.0° 38.0° 6 162° 0.010-0.062 60.0 47.0 5 0.063-0.249 58.0 47.0 5 0.063-0.249 58.0 47.0 5 0.063-0.249 58.0 45.0 5 0.063-0.249 65.0 56.0 5 0.063-0.249 65.0 56.0 5 0.063-0.249 65.0 56.0 5 0.063-0.249 65.0 56.0 5 0.050-1.000 60.0° 56.0 5 0.050-1.000 60.0° 56.0 5 0.063-0.249 65.0 56.0 5		0.188-0.249	64.0		48.0		9	8
4 ^C 0.010-0.020 58.0 36.0 36.0 12 0.021-0.040 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.063-0.128 61.0 38.0 15 42 ^D 0.008-0.009 55.0 34.0 10 0.010-0.020 57.0 34.0 12 0.021-0.040 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.063-0.128 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.188-0.249 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.500-1.000 61.0 ^G 38.0 ^G 38.0 ^G 88 1.001-1.500 60.0 ^G 38.0 ^G 38.0 ^G 4 62 ^D 0.010-0.062 60.0 0.063-0.499 62.0 47.0 0.50 0.63-0.249 58.0 43.0 5 0.063-0.249 58.0 45.0 5 81 0.010-0.062 62.0 43.0 5 0.063-0.249 58.0 45.0 5 851 ^E 0.250-0.499 65.0 56.0 56.0 5 851 ^E 0.250-0.499 65.0 56.0 56.0		0.250-0.499	64.0		48.0		9	
0.021-0.040 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 61.0 38.0 15 0.008-0.009 55.0 34.0 10 0.010-0.020 57.0 34.0 12 0.021-0.040 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.063-0.128 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.128-0.249 60.0 36.0 15 0.250-0.499 60.0 36.0 12 0.500-1.000 61.0 ² 38.0 ² 8 1.001-1.500 60.0 ² 38.0 ² 8 1.001-3.000 58.0 ² 38.0 ² 6 2.001-3.000 58.0 ² 38.0 ² 6 2.001-3.000 58.0 ² 38.0 ² 4 162 ^D 0.010-0.062 60.0 47.0 5 0.063-0.499 62.0 49.0 5 181 0.010-0.062 56.0 43.0 5 181 0.010-0.062 62.0 45.0 5 0.063-0.249 65.0 56.0 5 0.050-1.000 66.0 ² 58.0 ² 5		0.500	66.0 ^{<i>G</i>}		49.0 ^{<i>G</i>}		10	
0.021-0.040 58.0 36.0 15 0.041-0.062 58.0 36.0 15 0.063-0.128 61.0 38.0 15 0.003-0.128 61.0 38.0 15 0.001-0.009 55.0 34.0 10 0.010-0.020 57.0 34.0 12 0.021-0.040 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.063-0.128 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.250-0.499 60.0 38.0 12 0.500-1.000 61.0 38.0 12 0.500-1.000 60.0 38.0 12 0.500-1.000 60.0 38.0 12 0.500-1.000 58.0 38.0 16 1.501-2.000 60.0 38.0 16 2.001-3.000 58.0 38.0 5 0.063-0.499 62.0 47.0 5 0.063-0.499 62.0 49.0 5 0.063-0.249 58.0 45.0 5 0.063-0.249 58.0 45.0 5 0.063-0.249 58.0 45.0 5 0.063-0.249 58.0 45.0 5 0.063-0.249 65.0 56.0 5 0.063-0.249 65.0 56.0 5 0.0500-1.000 66.0 56.0 5 0.0500-1.000 66.0 56.0 5 0.0500-1.000 66.0 56.0 5	1 ^C	0.010-0.020	58.0		36.0		12	4
0.041-0.062 58.0 36.0 15 0.063-0.128 61.0 38.0 15 0.063-0.128 61.0 38.0 15 0.008-0.009 55.0 34.0 10 0.010-0.020 57.0 34.0 12 0.021-0.040 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.188-0.249 60.0 36.0 15 0.188-0.249 60.0 36.0 15 0.250-0.499 60.0 36.0 15 0.500-1.000 61.06 36.0 12 0.500-1.000 60.06 38.06 12 0.500-1.000 58.06 38.06 7 1.501-2.000 60.06 38.06 6 2.001-3.000 58.06 38.06 5 0.063-0.499 62.0 47.0 5 0.063-0.499 62.0 49.0 5 0.063-0.499 65.0 45.0 5 0.063-0.249 58.0 45.0 5 0.063-0.249 65.0 56.0 5 0.063-0.249 65.0 56.0 5 0.063-0.249 65.0 56.0 5 0.0500-1.000 60.06 56.0 5 0.0500-1.000 55.06 56.0 5 0.0500-1.000 55.06 56.0 5 0.0500-1.000 55.00 56.0 5								4
0.063-0.128 61.0 38.0 15 742 ^D 0.008-0.009 55.0 34.0 10 0.010-0.020 57.0 34.0 12 0.021-0.040 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.129-0.187 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.188-0.249 60.0 36.0 15 0.250-0.499 60.0 36.0 12 0.500-1.000 61.0 ^G 38.0 ^G 8 1.001-1.500 60.0 ^G 38.0 ^G 8 1.001-1.500 60.0 ^G 38.0 ^G 4 762 ^D 0.010-0.062 60.0 47.0 5 0.063-0.249 58.0 49.0 5 772 ^{DI} 0.010-0.062 56.0 43.0 5 0.063-0.249 65.0 45.0 55 0.063-0.249 65.0 56.0 5 0.063-0.249 65.0 56.0 5 0.063-0.249 65.0 56.0 5 0.050-1.000 66.0 ^G 58.0 ^G 5								5
0.010-0.020 57.0 34.0 12 0.021-0.040 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.063-0.128 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.188-0.249 60.0 36.0 15 0.250-0.499 60.0 36.0 12 0.500-1.000 61.0 ^G 38.0 ^G 8 1.001-1.500 60.0 ^G 38.0 ^G 7 1.501-2.000 60.0 ^G 38.0 ^G 6 2.001-3.000 58.0 ^G 38.0 ^G 4 162 ^D 0.010-0.062 60.0 47.0 5 0.063-0.499 58.0 43.0 5 172 ^{D1} 0.010-0.062 56.0 43.0 5 181 0.010-0.062 62.0 54.0 5 181 0.010-0.062 65.0 56.0 5 1851 ^E 0.250-0.499 65.0 56.0 5 1851 ^E 0.250-0.499 65.0 56.0 5 180 0.500-1.000 66.0 ^G 56.0 5 181 0.050-1.000 66.0 ^G 56.0 5 1851 ^E 0.250-0.499 65.0 56.0 56.0 5								5
0.010-0.020 57.0 34.0 12 0.021-0.040 57.0 34.0 15 0.041-0.062 57.0 34.0 15 0.063-0.128 60.0 36.0 15 0.129-0.187 60.0 36.0 15 0.188-0.249 60.0 36.0 15 0.250-0.499 60.0 36.0 12 0.500-1.000 61.0 ^G 38.0 ^G 8 1.001-1.500 60.0 ^G 38.0 ^G 7 1.501-2.000 60.0 ^G 38.0 ^G 6 2.001-3.000 58.0 ^G 38.0 ^G 4 162 ^D 0.010-0.062 60.0 47.0 5 0.063-0.499 58.0 43.0 5 172 ^{D1} 0.010-0.062 56.0 43.0 5 181 0.010-0.062 62.0 54.0 5 181 0.010-0.062 65.0 56.0 5 1851 ^E 0.250-0.499 65.0 56.0 5 1851 ^E 0.250-0.499 65.0 56.0 5 180 0.500-1.000 66.0 ^G 56.0 5 181 0.050-1.000 66.0 ^G 56.0 5 1851 ^E 0.250-0.499 65.0 56.0 56.0 5	12D	0.008.0.000	55.0		34.0		10	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T ∠							4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•••				5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.501-2.000					6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.001-3.000	58.0 ^{<i>G</i>}		38.0 ^{<i>G</i>}	•••	4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62 ^D	0.010-0.062	60.0		47.0		5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72 ^{DI}	0.010–0.062	56.0		43.0	_	5	
0.063-0.249 65.0 56.0 5 0.250-0.499 65.0 56.0 5 0.500-1.000 66.0 ^G 58.0 ^G 5	•							
0.063-0.249 65.0 56.0 5 851 ^E 0.250-0.499 65.0 56.0 5 0.500-1.000 66.0 ^G 58.0 ^G 5	31	0.010–0.062	62.0		54.0		5	
$0.500-1.000$ 66.0^G 58.0^G 5								
0.500–1.000 66.0 ^G 58.0 ^G 5	251 <i>E</i>	0.250-0.400	65.0		56 O		5	
T861 ^H 0.020−0.062 64.0 58.0 3	JO 1							
100 U.UZU-U.U0Z 04.U 58.U 3	064H		64.0		E0.0			
0.000.0407	ו טכ							
0.063-0.187 69.0 64.0 4 0.188-0.249 69.0 64.0 4								•••

TABLE 3 Continue	d
------------------	---

Temper	Specified Thickness, in.	Tensile Str	ength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
Temper	Opecined Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
	0.250-0.499	68.0		62.0		4	
	0.500	70.0^{G}		64.0 ^G		4	
F ^F	0.250-3.000						
			1½ % Alclad Allo				
0	0.188–0.499		32.0		14.0	12	
	0.500–1.750		32.0 ^G			12	
T3	0.188-0.249	63.0		41.0		15	
13	0.100-0.249	05.0		41.0	•••	15	
T361	0.188-0.249	65.0		49.0		9	
	0.250-0.499	65.0		48.0		9	
F	0.500	66.0 ^{<i>G</i>}	•••	49.0 ^{<i>G</i>}		10	•••
T351 ^E	0.250-0.499	63.0		41.0		12	
	0.500-1.000	63.0 ^G		42.0 ^{<i>G</i>}		8	
	1.001–1.500	62.0 ^G	•••	42.0 ^G		7	•••
	1.501-2.000	62.0 ^{<i>G</i>}		42.0 ^{<i>G</i>}		6	
	2.001-3.000	60.0 ^G		42.0 ^{<i>G</i>}		4	
	3.001-4.000	57.0 ^{<i>G</i>}		41.0 ^{<i>G</i>}		4	
T42 ^D	0.188 0.240	61.0		27.0		15	
142-	0.188-0.249	61.0		37.0		15	
	0.250-0.499	61.0	•••	37.0		12	•••
	0.500-1.000	61.0 ^G		38.0 ^{<i>G</i>}		8	
	1.001-1.500	60.0 ^{<i>G</i>}		38.0 ^{<i>G</i>}		7	
	1.501-2.000	60.0 ^{<i>G</i>}		38.0 ^{<i>G</i>}		6	
	2.001-3.000	58.0 ^{<i>G</i>}	•••	38.0 ^{<i>G</i>}		4	
T62 ^D	0.188-0.499	62.0		49.0		5	
T72 ^{DI}	0.188-0.249	59.0		45.0		5	
T81	0.188–0.249	66.0		57.0		5	
T851 ^{<i>E</i>}	0.250-0.499	66.0		57.0		5	
	0.500-1.000	66.0 ^{<i>G</i>}		58.0 ^{<i>G</i>}		5	
T861	0.188-0.249	70.0		65.0		4	
	0.250-0.499	69.0		63.0		4	
	0.500	70.0 ^G		64.0 ^{<i>G</i>}		4	
F ^F							
F'	0.250-3.000						
		Ald	clad One-Side A	lloy 2024			
0	0.008-0.009		31.0		14.0	10	
	0.010-0.062		31.0		14.0	12	
	0.063-0.499		32.0		14.0	12	
T3	0.010-0.020	61.0		40.0		12	
	0.021-0.062	61.0		40.0		15	
	0.063-0.128	62.0	•••	41.0		15	•••
	0.129–0.249	63.0		41.0		15	
T351 ^E	0.250-0.499	63.0		41.0		12	
T361	0.020-0.062	64.0		48.0		8	
	0.063-0.249	66.0		49.0		9	
	0.250-0.499	65.0		48.0	•••	9	
	0.040, 0.000	50.0		05.0		40	
T40P	0.010-0.020	59.0		35.0		12	
T42 ^D		59.0		36.0		15	
T42 ^D	0.021-0.062			37.0		15	
T42 ^D	0.021–0.062 0.063–0.249	61.0					•••
T42 ^D	0.021-0.062			37.0		12	
	0.021–0.062 0.063–0.249 0.250–0.499	61.0 61.0		37.0		12	
T42 ^D T62 ^D	0.021–0.062 0.063–0.249	61.0					
T62 ^D	0.021-0.062 0.063-0.249 0.250-0.499 0.010-0.062 0.063-0.249	61.0 61.0 62.0 63.0		37.0 48.0 49.0		12 5 5	
	0.021-0.062 0.063-0.249 0.250-0.499 0.010-0.062	61.0 61.0		37.0 48.0		12 5	

TABI	E 2	Continued

			17	ABLE 3 Co	ontinued			
Temper	Specified	Thickness, in.	Tensile Stre	ength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
·	·		min	max	min	max	Diameter, min, %	Factor, N
Γ81	0.01	0-0.062	64.0		56.0	•••	5	
	0.06	3-0.249	66.0		57.0		5	
851 ^E	0.25	0-0.499	66.0		57.0		5	
861	0.02	0-0.062	67.0		60.0		3	
		3-0.249	70.0		65.0		4	
	0.25	0-0.499	69.0		63.0	•••	4	
F	0.25	0-0.499		•••				
			11/2 %	Alclad One-Sid	de Alloy 2024			
)	0.18	8-0.499		32.0	•••	14.0	12	
Г3	0.18	8-0.249	63.0		41.0		15	
Г351 ^{<i>E</i>}	0.25	0-0.499	63.0		41.0		12	
F004								
Г361		8-0.249	66.0	•••	49.0		9	
	0.25	0-0.499	65.0		48.0	•••	9	•••
Γ42 ^D	0.18	8-0.249	61.0		37.0	•••	15	
		0-0.499	61.0		37.0		12	
Г62 ^D	0.18	8-0.499	63.0		49.0		5	
Г72 ^{DI}	0.18	8-0.249	59.0		45.0		5	
				•••		•••		
T81	0.18	8–0.249	66.0		57.0	•••	5	
Г851 ^{<i>E</i>}	0.25	0-0.499	66.0	***	57.0	•••	5	
T861		8-0.249	70.0		65.0		4	
	0.25	0-0.499	69.0		63.0	•••	4	
F ^F	0.25	0-0.499						
	Tensile Strength, ks Specified Axis of		gth, ksi	Yield S	Elongation in 2 in. or 4 ×	Bend		
Temper	Specified				0	ffset), ksi		Diamete
Temper	Specified Thickness, in.	Axis of Test Specimen	min	max	min	max	— Diameter, min, %	Diamete Factor, I
Temper			min	max Alloy 212	min		Diameter,	
-			min 66.0		min		Diameter,	
-	Thickness, in.	Test Specimen Longitudinal Long Transverse	66.0 66.0	Alloy 212	min 24 57.0 57.0	max	Diameter, min, %	Factor, I
	Thickness, in. 1.000–2.000 ^J	Longitudinal Long Transverse Short Transverse	66.0 66.0 64.0	Alloy 212	min 24 57.0 57.0 55.0	max 	Diameter, min, % 6 5 1.5	Factor, i
-	Thickness, in.	Longitudinal Long Transverse Short Transverse Longitudinal	66.0 66.0 64.0 65.0	Alloy 212 	min 57.0 57.0 55.0 57.0	max 	Diameter, min, % 6 5 1.5 5	Factor, i
	Thickness, in. 1.000–2.000 ^J	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse	66.0 66.0 64.0 65.0 65.0	Alloy 212 	57.0 57.0 55.0 57.0 57.0	 	Diameter, min, % 6 5 1.5 5 4	Factor,
	1.000–2.000 ^J 2.001–3.000	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Short Transverse	66.0 66.0 64.0 65.0 65.0 63.0	Alloy 212	57.0 57.0 55.0 57.0 57.0 57.0 57.0	 	Diameter, min, % 6 5 1.5 5 4 1.5	
	Thickness, in. 1.000–2.000 ^J	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Short Transverse Longitudinal	66.0 66.0 64.0 65.0 65.0 63.0 65.0	Alloy 212	57.0 57.0 55.0 57.0 55.0 57.0 55.0 56.0	 	Diameter, min, % 6 5 1.5 5 4 1.5 5	Factor,
	1.000–2.000 ^J 2.001–3.000	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse	66.0 66.0 64.0 65.0 65.0 63.0 65.0	Alloy 212	57.0 57.0 55.0 57.0 57.0 57.0 56.0 56.0	 	Diameter, min, % 6 5 1.5 5 4 1.5 5 4	
	1.000–2.000 ^J 2.001–3.000 3.001–4.000	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Short Transverse	66.0 66.0 64.0 65.0 65.0 65.0 65.0 65.0	Alloy 212	74 57.0 57.0 55.0 57.0 55.0 56.0 56.0 54.0	 	Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5	
	1.000–2.000 ^J 2.001–3.000	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Longitudinal	66.0 66.0 64.0 65.0 65.0 63.0 65.0 65.0 62.0 64.0	Alloy 212	min 57.0 57.0 55.0 57.0 57.0 56.0 56.0 56.0 54.0 55.0		Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 5	Factor,
	1.000–2.000 ^J 2.001–3.000 3.001–4.000	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse	66.0 66.0 64.0 65.0 65.0 65.0 65.0 65.0 62.0 64.0	Alloy 212	57.0 57.0 55.0 57.0 55.0 56.0 56.0 54.0 55.0 55.0		Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 4	Factor,
	1.000–2.000 ^J 2.001–3.000 3.001–4.000 4.001–5.000	Longitudinal Long Transverse Short Transverse Short Transverse Short Transverse Short Transverse	66.0 66.0 64.0 65.0 65.0 65.0 65.0 62.0 64.0 64.0	Alloy 212	57.0 57.0 55.0 57.0 55.0 56.0 56.0 54.0 55.0 55.0 53.0		Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5	
	1.000–2.000 ^J 2.001–3.000 3.001–4.000	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Longitudinal	66.0 66.0 64.0 65.0 65.0 65.0 65.0 62.0 64.0 64.0 61.0	Alloy 212	57.0 57.0 55.0 57.0 55.0 56.0 56.0 54.0 55.0 53.0 54.0	max	Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 5 4 1.5 5	Factor,
	1.000–2.000 ^J 2.001–3.000 3.001–4.000 4.001–5.000	Longitudinal Long Transverse Short Transverse Short Transverse Short Transverse Short Transverse	66.0 66.0 64.0 65.0 65.0 65.0 65.0 62.0 64.0 64.0	Alloy 212	57.0 57.0 55.0 57.0 55.0 56.0 56.0 54.0 55.0 55.0 53.0		Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5	
	1.000–2.000 ^J 2.001–3.000 3.001–4.000 4.001–5.000	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse	66.0 66.0 64.0 65.0 65.0 65.0 65.0 62.0 64.0 64.0 63.0 63.0	Alloy 212	min 57.0 57.0 55.0 57.0 55.0 56.0 56.0 56.0 55.0 55.0 55.0 55	max	Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4	
T851 ^E	Thickness, in. 1.000–2.000 ^J 2.001–3.000 3.001–4.000 4.001–5.000 5.001–6.000	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Longitudinal Long Transverse Short Transverse	66.0 66.0 64.0 65.0 65.0 65.0 65.0 62.0 64.0 64.0 63.0 63.0	Alloy 212	min 57.0 57.0 55.0 57.0 57.0 55.0 56.0 56.0 56.0 55.0 55.0 55.0 55	max	Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 Elongation in	Factor,
T851 [€]	Thickness, in. 1.000–2.000 ^J 2.001–3.000 3.001–4.000 4.001–5.000 5.001–6.000	Longitudinal Long Transverse Short Transverse Short Transverse Short Transverse Short Transverse Longitudinal Long Transverse Short Transverse	66.0 66.0 64.0 65.0 65.0 65.0 65.0 62.0 64.0 64.0 63.0 63.0 58.0	Alloy 212	min 57.0 57.0 55.0 57.0 57.0 55.0 56.0 56.0 56.0 55.0 55.0 55.0 55	max	Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 Diameter,	Factor,
T851 [€]	Thickness, in. 1.000–2.000 ^J 2.001–3.000 3.001–4.000 4.001–5.000 5.001–6.000	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Longitudinal Long Transverse Short Transverse	66.0 66.0 64.0 65.0 65.0 65.0 65.0 62.0 64.0 61.0 63.0 63.0 58.0	Alloy 212	min 57.0 57.0 57.0 55.0 57.0 55.0 56.0 56.0 54.0 55.0 53.0 54.0 51.0 Yield Strength		Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 Elongation in 2 in. or 4 ×	Factor,
Γ851 ^E Temper	Thickness, in. 1.000–2.000 ^J 2.001–3.000 3.001–4.000 4.001–5.000 5.001–6.000	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Longitudinal Long Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Longitudinal Long Transverse Longitudinal Long Transverse Longitudinal Long Transverse Short Transverse	66.0 66.0 64.0 65.0 65.0 65.0 65.0 62.0 64.0 61.0 63.0 58.0	Alloy 212	min 57.0 57.0 55.0 57.0 55.0 56.0 56.0 54.0 55.0 53.0 54.0 51.0 Yield Strength min	max	Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 Union of 4 × Diameter, min, %	Factor,
Temper T851 [£] Femper	Thickness, in. 1.000–2.000 ^J 2.001–3.000 3.001–4.000 4.001–5.000 5.001–6.000	Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Longitudinal Long Transverse Short Transverse	66.0 66.0 64.0 65.0 65.0 65.0 65.0 62.0 64.0 61.0 63.0 63.0 58.0	Alloy 212	min 57.0 57.0 57.0 55.0 57.0 55.0 56.0 56.0 54.0 55.0 53.0 54.0 51.0 Yield Strength		Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 Diameter,	Factor, I
T851 ^E Femper	Thickness, in. 1.000–2.000 ^{-J} 2.001–3.000 3.001–4.000 4.001–5.000 5.001–6.000 Springle Control of the contro	Test Specimen Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Longitudinal Long Transverse Short Transverse Short Transverse Longitudinal Long Transverse Short Transverse Short Transverse Short Transverse Short Transverse Decified kness, in.	66.0 66.0 64.0 65.0 65.0 65.0 65.0 62.0 64.0 61.0 63.0 58.0	Alloy 212	min 57.0 57.0 55.0 57.0 55.0 56.0 56.0 56.0 55.0 55.0 51.0 7ield Strength min 9	max	Diameter, min, % 6 5 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 4 1.5 5 Union of 4 × Diameter, min, %	Factor, I

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength	, ksi	Yield Strength	(0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
	0.020-0.039	46.0		29.0		8	
31 ^K (flat heet)	0.040–0.249	46.0		28.0		10	
351 ^{E,K} plate formerly T31	0.250-2.000	46.0		28.0		10	
plate)	2.001-3.000	44.0		28.0		10	
	3.001-4.000	42.0		27.0		9	
	4.001-5.000	40.0		26.0		9	
	5.001-6.000	39.0		25.0		8	
Г37 ^К	0.020-0.039	49.0		38.0		6	
	0.040-2.500	49.0		37.0		6	
	2.501–3.000	47.0		36.0		6	
	3.001-4.000	45.0		35.0		5	
	4.001–5.000	43.0		34.0		4	
6							
T62 ^D	0.020-0.039	54.0		36.0		6	
	0.040-0.249	54.0		36.0		7	
	0.250-1.000	54.0	•••	36.0	•••	8	
	1.001-2.000	54.0		36.0		7	
「81 sheet	0.020-0.039	62.0		46.0		6	
0.0000	0.040-0.249	62.0		46.0		7	
⁻ 851 [€] plate formerly T81	0.250-1.000	62.0		46.0		8	
plate)	1.001-2.000	62.0		46.0		7	
	2.001-3.000	62.0		45.0		6	
	3.001-4.000	60.0		44.0		5	
	4.001-5.000	59.0		43.0		5	
	5.001-6.000	57.0	•••	42.0		4	
87	0.020-0.039	64.0		52.0		5	
	0.040-0.249	64.0		52.0		6	
	0.250-1.000	64.0		51.0		7	
	1.001-2.000	64.0		51.0		6	
	2.001-3.000	64.0		51.0		6	
	3.001-4.000	62.0		50.0		4	
	4.001-5.000	61.0		49.0		3	
- F	0.250-2.000						
	0.200 2.000		Alclad Alloy 2				
)	0.020-0.499		32.0		16.0	12	
	0.500-2.000		32.0 ^{<i>G</i>}		16.0 ^{<i>G</i>}		
FO4 (fl-t	0.040.0000	40.0		05.0		40	
Γ31 (flat sheet) ^κ	0.040-0.099 0.100-0.249	42.0		25.0	•••	10 10	
sneet)	0.100-0.249	44.0		26.0	•••	10	
Г351 ^{<i>E,K</i>} plate formerly Т31 plate)	0.250-0.499	44.0		26.0		10	
Г37 ^К	0.040, 0.000	4F 0		24.0		6	
131	0.040-0.099 0.100-0.499	45.0 47.0		34.0 35.0		6 6	
roo <i>D</i>	0.000 0.000	4.0		22.2		2	
Г62 ^D	0.020-0.039	44.0		29.0		6	
	0.040-0.099	49.0		32.0		7	
	0.100-0.249	51.0		34.0	•••	7	
	0.250-0.499	51.0	•••	34.0	•••	8	•••
	0.500-1.000	54.0 ^G		36.0 ^G		8	
01 /flot	1.001–2.000	54.0 ^G	•••	36.0 ^G	•••	7	•••
81 (flat	0.020-0.039	49.0	•••	37.0	•••	6	•••
heet)	0.040-0.099	55.0	•••	41.0	•••	7	•••
	0.100-0.249	58.0	•••	43.0		7	•••
「851 ^E plate formerly T81 plate)	0.250-0.499	58.0		42.0		8	

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength, ksi		Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 ×	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
T87	0.040-0.099	57.0		46.0		6	
	0.100-0.249	60.0		48.0		6	
	0.250-0.499	60.0		48.0		7	
=F	0.250-2.000						
			Alloy 601	3			
T4	0.020-0.249	40.0		21.0		20	
Т6	0.020-0.249	52.0		46.0		8	
T651	0.250-1.500	53.0		44.0		5	
	1.501-3.000	54.0		47.0		5	
	3.001-6.000	55.0		47.0		4	
			Alloy 606			<u> </u>	
)	0.006-0.007		22.0	·	12.0	10	0
-	0.008-0.009		22.0		12.0	12	0
	0.010-0.020	***	22.0		12.0	14	0
	0.021-0.128		22.0		12.0	16	1
	0.129-0.249		22.0		12.0	18	2
	0.250-0.499		22.0		12.0	18	3
	0.500-1.000		22.0			18	
	1.001–3.000	···	22.0			16	
- .							
T4	0.006-0.007	30.0		16.0		10	2
	0.008-0.009	30.0		16.0		12	2
	0.010-0.020	30.0		16.0		14	2
	0.021-0.249	30.0		16.0	***	16	3
T451 ^E	0.250-0.499	30.0		16.0		18	4
	0.500-1.000	30.0		16.0		18	
	1.001–3.000	30.0		16.0		16	
T42 ^D	0.006-0.007	30.0		14.0		10	2
	0.008-0.009	30.0		14.0		12	2
	0.010-0.020	30.0		14.0		14	2
	0.021-0.249	30.0		14.0		16	3
	0.250-0.499	30.0		14.0		18	4
	0.500-1.000	30.0		14.0		18	
	1.001-3.000	30.0		14.0	•••	16	
T6, T62 ^D	0.006-0.007	42.0		35.0		4	2
	0.008-0.009	42.0		35.0		6	2
	0.010-0.020	42.0		35.0		8	2
					•••		2
	0.021-0.036	42.0		35.0	***	10	3
	0.037-0.064	42.0		35.0		10	4
	0.065-0.128	42.0		35.0		10	5
	0.129-0.249	42.0		35.0		10	6
T62 ^D , T651 ^E	0.250-0.499	42.0		35.0		10	7
•	0.500-1.000	42.0	•••	35.0		9	
	1.001-2.000	42.0		35.0		8	
	2.001-4.000	42.0		35.0		6	
	4.001–6.000 ^L	40.0		35.0		6	
F F	0.250-3.000						
			Alclad Alloy 6	6061			
0	0.010-0.020	***	20.0		12.0	14	
	0.021-0.128		20.0		12.0	16	
	0.129-0.499		20.0		12.0	18	
	0.500-1.000		22.0 ^G			18	
	1.001–3.000	···	22.0 ^G			16	
T.4							
T4	0.010-0.020	27.0	•••	14.0	•••	14	
	0.021-0.249	27.0		14.0		16	
T451 ^{<i>E</i>}	0.250-0.499	27.0		14.0		18	
	0.500-1.000	30.0 ^{<i>G</i>}		16.0 ^{<i>G</i>}		18	
		30.0 ^G		16.0 ^{<i>G</i>}		16	
	1.001-3.000				***		

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength, ksi		Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 ×	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
-42 ^D	0.010-0.020	27.0		12.0		14	
	0.021-0.249	27.0		12.0		16	
	0.250-0.499	27.0		12.0		18	
	0.500-1.000	30.0 ^G		14.0 ^{<i>G</i>}		18	
	1.001-3.000	30.0 ^G		14.0 ^{<i>G</i>}		16	
Г6, Т62 ^D	0.010-0.020	38.0		32.0		8	
0, . 02	0.021-0.249	38.0		32.0		10	
Г62 ^{<i>D</i>} , Т651 ^{<i>E</i>}	0.250-0.499	38.0		32.0		10	
02 , 1001	0.500-1.000	42.0 ^G		35.0 ^G		9	
	1.001-2.000	42.0 ^G		35.0 ^G		8	
	2.001-4.000	42.0 ^G	•••	35.0 ^G		6	
	4.001–5.000	40.0 ^G	•••	35.0 ^G		6	
: F	0.250-3.000						
	0.200 0.000		 Alloy 707				***
)	0.015–0.020		40.0		21.0	10	1
•	0.021-0.062		40.0		21.0	10	2
	0.063-0.091	•••	40.0	•••	21.0	10	3
	0.092-0.125	***	40.0		21.0	10	4
				•••			5
	0.126-0.249		40.0		21.0	10	
	0.250-0.499 0.500-2.000	···	40.0 40.0	···	21.0	10 10	6
Г6, Т62 ^D	0.008-0.011	74.0		63.0		5	7
	0.012-0.020	76.0		67.0		7	7
	0.021-0.039	76.0		67.0		7	8
	0.040-0.062	78.0		68.0		8	8
	0.063-0.091	78.0		68.0		8	9
	0.092-0.125	78.0		68.0		8	10
	0.126-0.249	78.0		69.0		8	11
Г62 ^{<i>D</i>} , Т651 ^{<i>E</i>}	0.250-0.499	78.0		67.0		9	14
- ,	0.500-1.000	78.0		68.0		7	
	1.001–2.000	77.0		67.0		6	
	2.001-2.500	76.0		64.0		5	•••
	2.501-3.000	72.0		61.0		5	
	3.001–3.500	71.0		58.0	***	5	•••
	3.501–4.000	67.0		54.0		3	
Γ73 sheet	0.040-0.249	67.0		56.0		8	
	0.040-0.249	07.0		30.0	•••	O	
Γ7351 ^E plate	0.250-1.000	69.0		57.0		7	
	1.001-2.000	69.0		57.0		6	
	2.001-2.500	66.0		52.0		6	
	2.501-3.000	64.0		49.0		6	
	3.001-4.000	61.0		48.0		6	
76 sheet	0.063-0.124	73.0		62.0		8	
	0.125-0.249	73.0		62.0		8	
Г7651 plate ^E	0.250-0.499	72.0		61.0		8	
	0.500-1.000	71.0		60.0		6	
	1.001–2.000	71.0		60.0		5	
-F	0.250-4.000						
			Alclad Alloy				
)	0.008-0.014		36.0		20.0	9	1
-	0.015-0.032	***	36.0	***	20.0	10	1
	0.013-0.052	***	36.0	***	20.0	10	2
		•••		•••			3
	0.063-0.125		38.0	•••	20.0	10	
	0.126-0.187		38.0		20.0	10	4
	0.188-0.249		39.0		21.0	10	4
	0.250-0.499		39.0	•••	21.0	10	6
	0.500-1.000		40.0 ^{<i>G</i>}			10	
[−] 6, T62 ^D	0.008-0.011	68.0		58.0		5	6
		70.0		00.0		7	_
	0.012-0.020	70.0	•••	60.0		7 7	6 7

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength	, ksi	Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 ×	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
	0.040-0.062	72.0		62.0		8	7
	0.063-0.091	73.0		63.0		8	8
	0.092-0.125	73.0	•••	63.0		8	9
	0.126-0.187	73.0		63.0	•••	8	10
					•••		
	0.188–0.249	75.0	•••	64.0	***	8	10
T62 ^D , T651 ^E	0.250-0.499	75.0		65.0		9	12
	0.500-1.000	78.0 ^{<i>G</i>}		68.0 ^{<i>G</i>}		7	
	1.001-2.000	77.0 ^{<i>G</i>}		67.0 ^{<i>G</i>}		6	
	2.001-2.500	76.0^{G}		64.0 ^{<i>G</i>}		5	
	2.501-3.000	72.0 ^{<i>G</i>}		61.0 ^{<i>G</i>}		5	
	3.001–3.500	71.0 ^G		58.0 ^G		5	
		67.0 ^G		54.0 ^G	•••		
	3.501-4.000	67.0	•••	54.0	•••	3	
T76 sheet	0.040-0.062	67.0		56.0	•••	8	
	0.063-0.124	68.0		57.0		8	
	0.125-0.187	68.0		57.0		8	
	0.188-0.249	70.0		59.0		8	
	0.050.0.400						
T7651 ^E plate	0.250-0.499 0.500-1.000	69.0 71.0 ^{<i>G</i>}		58.0 60.0 ^{<i>G</i>}		8 6	
	0.000 1.000	71.0		50.0	•••	J	
F ^F	0.250-4.000					•••	
		A	Iclad One Side A	lloy 7075			
0	0.015-0.032		38.0	•••	21.0	10	1
	0.033-0.062		38.0		21.0	10	2
	0.063-0.091		39.0		21.0	10	3
	0.092-0.125		39.0		21.0	10	4
	0.126-0.187		39.0	•••	21.0	10	5
	0.188-0.249		39.0		21.0	10	5
	0.250-0.499		39.0		21.0	10	6
	0.500-1.000		40.0 ^{<i>G</i>}			10	
T6, T62 ^D	0.008-0.011	71.0		60.0		5	
,	0.012-0.014	74.0		64.0		8	
						8	7
	0.015-0.032	74.0		64.0	***		
	0.033-0.039	74.0		64.0		8	8
	0.040-0.062	75.0		65.0		9	8
	0.063-0.091	76.0		66.0		9	9
	0.092-0.125	76.0		66.0		9	10
			•••		•••		
	0.126-0.187	77.0		67.0	***	9	11
	0.188-0.249	78.0	•••	67.0	•••	9	11
T62 ^D , T651 ^E	0.250-0.499	76.0		66.0		9	13
•	0.500-1.000	78.0 ^{<i>G</i>}	•••	68.0 ^G		7	
	1.001–2.000	77.0 ^G		67.0 ^G		6	
F ^F	0.050.0000						
-	0.250-2.000	•••					
_			7008 Alclad Allo	y 7075			
0	0.015-0.499 0.500-2.000		40.0 40.0 ^{<i>G</i>}		21.0	10 10	
	0.500-2.000	•••	40.0		•••	10	•••
T6, T62 ^D	0.015-0.039	73.0		63.0		7	
	0.040-0.187	75.0		65.0		8	
	0.188-0.249	76.0		66.0		8	
T62 ^D , T651 ^E	0.250-0.499	76.0		66.0		9	
	0.500-1.000	78.0 ^{<i>G</i>}		68.0 ^G	···	7	
	1.001–2.000	77.0 ^{<i>G</i>}		67.0 ^G		6	
	2.001-2.500	76.0 ^{<i>G</i>}		64.0 ^G		5	
	2.501-3.000	72.0 ^{<i>G</i>}		61.0 ^{<i>G</i>}		5	
	3.001-3.500	71.0 ^{<i>G</i>}		58.0 ^{<i>G</i>}		5	
	3.501-4.000	67.0 ^{<i>G</i>}		54.0 ^G		3	
Γ76 sheet	0.040-0.062	70.0		59.0		8	
T76 sheet			•••				•••
	0.063-0.187	71.0	•••	60.0		8 8	
	0.188-0.249	72 N		บ.เต		0	
	0.188-0.249	72.0		61.0			•••
Г7651 ^Е plate	0.188-0.249 0.250-0.499 0.500-1.000	72.0 71.0 71.0 ^{<i>G</i>}		60.0 60.0 ^G		8 6	

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength, ksi		Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 ×	Bend Diameter
	· 	min	max	min	max	Diameter, min, %	Factor, N
F ^F	0.250-4.000						
			Alloy 717	8			
0	0.015-0.499		40.0		21.0	10	
	0.500		40.0			10	
T6, T62 ^D	0.015-0.044	83.0		72.0		7	
. 0, . 02	0.045-0.249	84.0		73.0		8	
T62 ^D ,T651 ^E	0.250-0.499	84.0		73.0		8	
102 ,1031	0.500-1.000	84.0		73.0		6	
	1.001–1.500	84.0		73.0		4	
	1.501–1.500	80.0		70.0	•••	3	•••
	1.301-2.000	80.0		70.0	•••	3	
T76	0.045-0.249	75.0		64.0		8	
T7651 ^E	0.250-0.499	74.0		63.0		8	
	0.500-1.000	73.0		62.0		6	
F ^F	0.250-2.000						
			Alclad Alloy 7	7178			
0	0.015-0.062		36.0		20.0	10	
	0.063-0.187		38.0		20.0	10	
	0.188-0.499		40.0		21.0	10	
	0.500		40.0 ^G			10	
T6, T62 ^D	0.015-0.044	76.0		66.0		7	
-, -	0.045-0.062	78.0		68.0		8	
	0.063-0.187	80.0		70.0		8	
	0.188-0.249	82.0		71.0		8	
T62 ^D , T651 ^E	0.250-0.499	82.0		71.0		8	
102 , 1001	0.500-1.000	84.0 ^{<i>G</i>}		73.0 ^G		6	
	1.001-1.500	84.0 ^{<i>G</i>}		73.0 ^{<i>G</i>}		4	
	1.501–2.000	80.0 ^G	•••	70.0 ^G		3	
	1.001 2.000	00.0	•••	70.0	•••	· ·	
T76	0.045-0.062	71.0		60.0		8	
	0.063-0.187	71.0		60.0		8	
	0.188-0.249	73.0		61.0		8	
T7651 ^E	0.250-0.499	72.0		60.0		8	
	0.500-1.000	73.0 ^{<i>G</i>}		62.0 ^{<i>G</i>}	•••	6	

^A To determine conformance to this specification, each value for tensile strength and for yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E 29.

^B The basis for establishment of mechanical property limits is shown in Annex A1.

^C Coiled sheet.

^D Material in the T42, T62, and T72 tempers is not available from the material producer.

^E For stress-relieved tempers (T351, T451, T651, T7351, T7651, and T851), characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic temper.

F Test for tensile properties in the F temper are not required.

^G The tension test specimen from plate 0.500 in. and thicker is machined from the core and does not include the cladding.

^H Applicable to flat sheet and plate only.

¹ The T72 temper is applicable only to Alloys 2024 and Alclad 2024 sheet solution heat treated and artificially overaged by the user to develop increased resistance to stress-corrosion cracking.

^J Short transverse tensile property limits are not applicable to material less than 1.500 in. in thickness.

K Use of Alloys 2219 and Alclad 2219 in the T31, T351, and T37 tempers for finished products is not recommended.

^L The properties for this thickness apply only to the T651 temper.

NOTICE: This standard has either been superseded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

TABLE 4 Lot Acceptance Criteria for Resistance to Stress Corrosion and Exfoliation Corrosion

Alloy and Temper	Electrical Conductivity, ^A %, IACS	Level of Mechanical Properties	 Lot Acceptance Status 	
7075-T73 and T7351	40.0 or greater	per specified requirements	acceptable	
	38.0 through 39.9	per specified requirements yield strength does not exceed minimum by more than 11.9 ksi	acceptable	
	38.0 through 39.9	per specified requirements but yield strength exceeds minimum by 12.0 ksi or more	unacceptable ^B	
	less than 38.0	any level	unacceptable ^B	
7075-T76 and T7651 Alclad 7075-T76 and T7651	38.0 or greater 36.0 through 37.9	per specified requirements per specified requirements	acceptable unacceptable ^B	
and 7008 Alclad 7075 – T76 and – T7651	less than 36.0	any level	unacceptable ^B	
7178-T76 and T7651 Alclad 7178-T76 and T7651	38.0 or greater 35.0 through 37.9	per specified requirements per specified requirements	acceptable unacceptable B	

A The electrical conductivity shall be determined in accordance with Test Method E 1004 in the following locations:

Alloy-Temper Thickness, in. Location 7075-T73 and T7351 surface of tension-test sample

7075-T76 and T7651 up through 0.100 surface of tension-test sample

7178-T76 and T7651 0.101 and over sub-surface after removal of approximately

10 % of the thickness

For alcad products, the cladding must be removed and the electrical conductivity determined on the core alloy.

TABLE 5 Components of Clad Products

	Component Alloys ^A		Total Composite Thickness		Cladding Thickness per Side, percent of Composite Thickness		
Alloy	Core	Cladding	of Finished Sheet and Plate, in.	Sides Clad	Nominal -	Ave	erage ^B
						min	max
Alclad 2014	2014	6003	up through 0.024	both	10	8	
			0.025-0.039	both	7.5	6	
			0.040-0.099	both	5	4	
			0.100 and over	both	2.5	2	
Alclad 2024	2024	1230	up through 0.062	both	5	4	
			0.063 and over	both	2.5	2	
11/2 % Alclad 2024	2024	1230	0.188 and over	both	1.5	1.2	3 ^C
Alclad one-side 2024	2024	1230	up through 0.062	one	5	4	
			0.063 and over	one	2.5	2	
1½ % Alclad one-side 2024	2024	1230	0.188 and over	one	1.5	1.2	3 ^c
Alclad 2219	2219	7072	up through 0.039	both	10	8	
			0.040-0.099	both	5	4	
			0.100 and over	both	2.5	2	
Alclad 3003	3003	7072	all	both	5	4	6^D
Alclad 3004	3004	7072	all	both	5	4	6^D
Alclad 6061	6061	7072	all	both	5	4	6^D
Alclad 7075 and	7075	7072	(up through 0.062	both	4	3.2	
7008 Alclad 7075	7075	7008	0.063-0.187	both	2.5	2	
			0.188 and over	both	1.5	1.2	3 ^C
Alclad one-side 7075	7075	7072	up through 0.062	one	4	3.2	
			0.063-0.187	one	2.5	2	
			0.188 and over	one	1.5	1.2	3 ^C
Alclad 7178	7178	7072	Cup through 0.062	both	4	3.2	
			up through 0.062 0.063–0.187	both	2.5	2	
			0.003–0.167 0.188 and over	both	1.5	1.2	3 ^C

A Cladding composition is applicable only to the aluminum alloy bonded to the alloy ingot or slab preparatory to rolling to the specified composite product. The composition of the cladding may be altered subsequently by diffusion between the core and cladding due to thermal treatment.

^B When material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment or re-solution heat treatment, stress relieving and precipitation heat treatment, when applicable)..

^B Average thickness per side as determined by averaging cladding thickness measurements when determined in accordance with the procedure specified in 15.2.

^C For thicknesses of 0.500 in. and over with 1.5 % of nominal cladding thickness, the average maximum thickness of cladding per side after rolling to the specified thickness of plate shall be 3 % of the thickness of the plate as determined by averaging cladding thickness measurements taken at a magnification of 100 diameters on the cross section of a transverse sample polished and etched for examination with a metallurgical microscope.

^D Applicable for thicknesses of 0.500 in. and greater.

Alloy	Thickness, in.	Maximum Weight Per Piece, Ib ^B	Discontinuity Class ^C
2014 ^D	0.500-1.499	2000	В
2124 2219 ^D	1.500–3.000	2000	А
7075 ^D 7178 ^D	3.001–6.000	2000	В

A Discontinuities in excess of those listed in this table shall be allowed if it is established that they will be removed by machining or that they are in noncritical areas.

B The maximum weight is either the ordered weight of a plate of rectangular shape or the planned weight of a rectangular plate prior to removing metal to produce a part or plate shape to a drawing.

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

A1.1 Limits are established at a level at which a statistical evaluation of the data indicates that 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits for the respective size ranges are based on the analyses of at least 100 data from standard production material with no

more than ten data from a given lot. All tests are performed in accordance with the appropriate ASTM test methods. For informational purposes, refer to "Statistical Aspects of Mechanical Property Assurance" in the Related Material section of the *Annual Book of ASTM Standards*, Vol 02.02.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1. The Aluminum Association¹⁴ holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1. A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- A2.2.4 The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.

- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.
- A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

Less than 0.001 %	0.000X
0.001 to but less than 0.01 %	0.00X
0.01 to but less than 0.10 %	
Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a refining process	0.0X
0.10 through 0.55 %	0.XX
(It is customary to express limits of 0.30 through 0.55 % as	
0.X0 or 0.X5.)	
Over 0.55 %	0.X, X.X, etc.
(except that combined Si + Fe limits for 99.00 % minimum	
aluminum must be expressed as 0.XX or 1.XX)	

A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc (Note A2.1); Titanium; Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).

Note A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between zinc and titanium, or are specified in footnotes.

Note A2.2—Aluminum is specified as *minimum* for unalloyed aluminum and as a *remainder* for aluminum alloys.

^C The discontinuity class limits are defined in Section 11 of Practice B 594.

^D Also applies for alclad plate.

¹⁴ The Aluminum Association, 900 19th Street, NW, Washington, DC 20006.

SUMMARY OF CHANGES

Committee B07 has identified the location of selected changes to this standard since the last issue $(B\ 209-01)$ that may impact the use of this standard.

- (1) Updated Referenced Documents in Section 2 by deleting Practice B 597 and replacing with Practice B 918.
- (2) In Section 4, replaced reference to Practice B 597 with reference to Practice B 918.
- (3) In Section 8, replaced reference to Practice B 597 with

reference to Practice B 918.

- (4) In Table 1, added chemical composition limits for 5754 alloy.
- (5) In Table 2, added tensile properties for 5754-O sheet.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).