

Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate¹

This standard is issued under the fixed designation B 209; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

1.1 This specification² covers aluminum and aluminumalloy flat sheet, coiled sheet, and plate in the alloys (Note 1) and tempers shown in Tables 2 and 3, and in the following finishes:

1.1.1 Plate in all alloys and sheet in heat-treatable alloys: mill finish.

1.1.2 Sheet in nonheat-treatable alloys: mill finish, one-side bright mill finish, standard one-side bright finish, and standard two-sides bright finish.

NOTE 1—Throughout this specification, use of the term *alloy* in the general sense includes aluminum as well as aluminum alloy.

Note 2-See Specification B 632/B 632M for tread plate.

NOTE 3—See Specification B 928/B 928M for marine sheet and plate. Due to additional corrosion testing required, it is not intended that Specification B 209 be used for marine sheet and plate.

1.2 Alloy and temper designations are in accordance with ANSI H35.1. The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E 527.

1.3 A complete metric companion to Specification B 209 has been developed—Specification B 209M; therefore, no metric equivalents are presented in this specification.

1.4 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.

2. Referenced Documents

2.1 The following documents form a part of this specification to the extent referenced herein:

2.2 ASTM Standards: ³

B 548 Method for Ultrasonic Inspection of Aluminum-

Alloy Plate for Pressure Vessels

- B 557 Test Methods of Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products
- B 594 Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products for Aerospace Applications
- B 632/B 632M Specification for Aluminum-Alloy Rolled Tread Plate
- B 660 Practices for Packaging/Packing of Aluminum and Magnesium Products
- B 666/B 666M Practice for Identification Marking of Aluminum and Magnesium Products
- B 881 Terminology Relating to Aluminum- and Magnesium-Alloy Products
- B 918 Practice for Heat Treatment of Wrought Aluminum Alloys
- B 928/B 928M Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys
- E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition
- E 290 Test Methods for Bend Testing of Material for Ductility
- E 527 Practice for Numbering Metals and Alloys (UNS)
- E 607 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Point-to-Plane Technique, Nitrogen Atmosphere
- E 716 Practices for Sampling Aluminum and Aluminum Alloys for Spectrochemical Analysis
- E 1004 Practice for Determining Electrical Conductivity Using the Electromagnetic (Eddy-Current) Method
- E 1251 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Argon Atmosphere, Point-to-Plane, Unipolar Self-Initiating Capacitor Discharge

*A Summary of Changes section appears at the end of this standard.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This specification is under the jurisdiction of ASTM Committee B07 on Light Metals and Alloys and is the direct responsibility of Subcommittee B07.03 on Aluminum Alloy Wrought Products.

Current edition approved March 1, 2004. Published March 2004. Originally approved in 1946. Last previous edition approved in 2002 as B 209 - 02a.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SB-209 in Section II of that Code.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

- G 34 Test Method for Exfoliation Corrosion Susceptibility in 2xxx and 7xxx Series Aluminum Alloys (EXCO Test)⁴
- G 47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking of 2xxx and 7xxx Aluminum Alloy Products
- 2.3 ANSI Standards:⁵

H35.1 Alloy and Temper Designation Systems for Aluminum

H35.2 Dimensional Tolerances for Aluminum Mill Products 2.4 *AMS Specification:*⁶

AMS 2772 Heat Treatment of Aluminum Alloy Raw Materials

3. Terminology

3.1 *Definitions*—Refer to Terminology B 881 for definitions of product terms used in this specification.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *capable of*—The term *capable of*, as used in this specification, means that the test need not be performed by the producer of the material. However, should testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

4.1 Orders for material to this specification shall include the following information:

4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),

4.1.2 Quantity in pieces or pounds,

4.1.3 Alloy (7.1),

4.1.4 Temper (9.1),

4.1.5 Finish for sheet in nonheat-treatable alloys (Section 1),

4.1.6 For sheet, whether flat or coiled,

4.1.7 Dimensions (thickness, width, and length or coil size),

4.1.8 Tensile property limits and dimensional tolerances for sizes not covered in Table 2 or Table 3 of this specification and in ANSI H35.2, respectively.

4.2 Additionally, orders for material meeting the requirements of this specification shall include the following information when required by the purchaser:

4.2.1 Whether a supply of one of the pairs of tempers where shown in Table 2, (H14 or H24) or (H34 or H24), is specifically excluded (Table 2, Footnote D),

4.2.2 Whether heat treatment in accordance with Practice B 918 is required (8.2),

4.2.3 Whether bend tests are required (12.1),

4.2.4 Whether testing for stress-corrosion cracking resistance of alloy 2124-T851 is required (13.1),

4.2.5 Whether ultrasonic inspection for aerospace or pressure vessel applications is required (Section 17),

4.2.6 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (18.1),

4.2.7 Whether certification is required (Section 22),

4.2.8 Whether marking for identification is required (20.1), and

4.2.9 Whether Practices B 660 applies and, if so, the levels of preservation, packaging, and packing required (21.3).

5. Responsibility for Quality Assurance

5.1 *Responsibility for Inspection and Tests*—Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. The producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to ensure that material conforms to prescribed requirements.

5.2 Lot Definition—An inspection lot shall be defined as follows:

5.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and thickness traceable to a heat-treat lot or lots, and subjected to inspection at one time.

5.2.2 For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and thickness subjected to inspection at one time.

6. General Quality

6.1 Unless otherwise specified, the material shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Any requirement not covered is subject to negotiation between producer and purchaser.

6.2 Each sheet and plate shall be examined to determine conformance to this specification with respect to general quality and identification marking. On approval of the purchaser, however, the producer may use a system of statistical quality control for such examinations.

7. Chemical Composition

7.1 *Limits*—The sheet and plate shall conform to the chemical composition limits specified in Table 1. Conformance shall be determined by the producer by analyzing samples taken at the time the ingots are cast, or samples taken from the finished or semifinished product. If the producer has determined the chemical composition of the material during the course of manufacture, additional sampling and analysis of the finished product shall not be required.

⁴ The applicable edition in the use of this specification is G 34–72—formerly available in the gray pages of the *Annual Book of ASTM Standards*, Vol 02.02.

⁵ Available in the Related Materials section (gray pages) of the *Annual Book of ASTM Standards*, Vol 02.02.

⁶ Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001.

NOTE 4—It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

	В	209	_	04
--	---	-----	---	----

 TABLE 1 Chemical Composition Limits^{A,B,C}

Alley	Silicon	Iron	Copper	Manganese	Magnesium	Chromium	Zinc	Titanium	Other E	lements ^D	Aluminum
Alloy									Each	Total ^E	
1060	0.25	0.35	0.05	0.03	0.03		0.05	0.03	0.03 ^F		99.60 min ^G
1100	0.95 \$	Si + Fe	0.05-0.20	0.05			0.10		0.05	0.15	99.00 min ^{<i>G</i>}
1230 ^{<i>H</i>}	0.70 \$	Si + Fe	0.10	0.05	0.05		0.10	0.03	0.03 ^F		99.30 min ^{<i>G</i>}
2014	0.50-1.2	0.7	3.9-5.0	0.40-1.2	0.20-0.8	0.10	0.25	0.15	0.05	0.15	remainder
Alclad 2014					201	4 clad with 60	003				
2024	0.50	0.50	3.8-4.9	0.30-0.9	1.2-1.8	0.10	0.25	0.15	0.05	0.15	remainder
Alclad 2024					202	4 clad with 12	230				
2124	0.20	0.30	3.8-4.9	0.30-0.9	1.2-1.8	0.10	0.25	0.15	0.05	0.15	remainder
2219	0.20	0.30	5.8-6.8	0.20-0.40	0.02		0.10	0.02-0.10	0.05'	0.15'	remainder
Alclad 2219					221	9 clad with 70)72				
3003	0.6	0.7	0.05-0.20	1.0-1.5			0.10		0.05	0.15	remainder
Alclad 3003					300	3 clad with 70)72				
3004	0.30	0.7	0.25	1.0-1.5	0.8-1.3		0.25		0.05	0.15	remainder
Alclad 3004					300	4 clad with 70)72				
3005	0.6	0.7	0.30	1.0-1.5	0.20-0.6	0.10	0.25	0.10	0.05	0.15	remainder
3105	0.6	0.7	0.30	0.30-0.8	0.20-0.8	0.20	0.40	0.10	0.05	0.15	remainder
5005	0.30	0.7	0.20	0.20	0.50-1.1	0.10	0.25		0.05	0.15	remainder
5010	0.40	0.7	0.25	0.10-0.30	0.20-0.6	0.15	0.30	0.10	0.05	0.15	remainder
5050	0.40	0.7	0.20	0.10	1.1-1.8	0.10	0.25		0.05	0.15	remainder
5052	0.25	0.40	0.10	0.10	2.2-2.8	0.15-0.35	0.10		0.05	0.15	remainder
5059	0.45	0.50	0.25	0.6-1.2	5.0-6.0	0.25	0.40-0.9	0.20	0.05^{J}	0.15	remainder
5083	0.40	0.40	0.10	0.40-1.0	4.0-4.9	0.05-0.25	0.25	0.15	0.05	0.15	remainder
5086	0.40	0.50	0.10	0.20-0.7	3.5-4.5	0.05-0.25	0.25	0.15	0.05	0.15	remainder
5154	0.25	0.40	0.10	0.10	3.1-3.9	0.15-0.35	0.20	0.20	0.05	0.15	remainder
5252	0.08	0.10	0.10	0.10	2.2-2.8		0.05		0.03 ^F	0.10 ^F	remainder
5254	0.45 \$	Si + Fe	0.05	0.01	3.1-3.9	0.15-0.35	0.20	0.05	0.05	0.15	remainder
5454	0.25	0.40	0.10	0.50-1.0	2.4-3.0	0.05-0.20	0.25	0.20	0.05	0.15	remainder
5456	0.25	0.40	0.10	0.50-1.0	4.7-5.5	0.05-0.20	0.25	0.20	0.05	0.15	remainder
5457	0.08	0.10	0.20	0.15-0.45	0.8-1.2		0.05		0.03 ^F	0.10 ^F	remainder
5652	0.40 \$	Si + Fe	0.04	0.01	2.2-2.8	0.15-0.35	0.10		0.05	0.15	remainder
5657	0.08	0.10	0.10	0.03	0.6-1.0		0.05		0.02 ^K	0.05 ^K	remainder
5754	0.40	0.40	0.10	0.50 ^L	2.6-3.6	0.30 ^L	0.20	0.15	0.05	0.15	remainder
6003 ^{<i>H</i>}	0.35-1.0	0.6	0.10	0.8	0.8-1.5	0.35	0.20	0.10	0.05	0.15	remainder
6013	0.6-1.0	0.50	0.6-1.1	0.20-0.8	0.8-1.2	0.10	0.25	0.10	0.05	0.15	remainder
6061	0.40-0.8	0.7	0.15-0.40	0.15	0.8-1.2	0.04-0.35	0.25	0.15	0.05	0.15	remainder
Alclad 6061					606	1 clad with 70)72				
7008 ^{<i>H</i>}	0.10	0.10	0.05	0.05	0.7-1.4	0.12-0.25	4.5-5.5	0.05	0.05	0.10	remainder
7072 ^H	0.7 S	i + Fe	0.10	0.10	0.10		0.8–1.3		0.05	0.15	remainder
7075	0.40	0.50	1.2-2.0	0.30	2.1-2.9	0.18-0.28	5.1-6.1	0.20	0.05	0.15	remainder
Alclad 7075					707	5 clad with 70)72				
7008 Alclad 7075					707	5 clad with 70	800				
7178	0.40	0.50	1.6-2.4	0.30	2.4-3.1	0.18-0.28	6.3–7.3	0.20	0.05	0.15	remainder
Alclad 7178					717	B clad with 70)72				

^A Limits are in weight percent maximum unless shown as a range or stated otherwise.

^B Analysis shall be made for the elements for which limits are shown in this table.

^C For purposes of determining conformance to these limits, an observed value or a calculated value attained from analysis shall be rounded to the nearest unit in the last righthand place of figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E 29.

^D Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered nonconforming.

^E Other Elements—Total shall be the sum of unspecified metallic elements, 0.010 % or more, rounded to the second decimal before determining the sum.

^F Vanadium 0.05 max. The total for other elements does not include vanadium.

^G The aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

^{*H*} Composition of cladding alloy as applied during the course of manufacture. Samples from finished sheet or plate shall not be required to conform to these limits. ^{*I*} Vanadium 0.05–0.15, zirconium 0.10–0.25. The total for other elements does not include vanadium and zirconium.

^J0.05–0.25 Zr

^K Gallium 0.03 max, vanadium 0.05 max. The total for other elements does not include vanadium or gallium.

^L 0.10-0.6 Mn + Cr.

7.2 *Number of Samples*—The number of samples taken for the determination of chemical composition shall be as follows:

7.2.1 When samples are taken at the time the ingots are cast, at least one sample shall be taken for each group of ingots cast simultaneously from the same source of molten metal.

7.2.2 When samples are taken from the finished or semifinished product, a sample shall be taken to represent each 4000 lb, or fraction thereof, of material in the lot, except that not more than one sample shall be required per piece. 7.3 *Methods of Sampling*—Samples for determination of chemical composition shall be taken in accordance with one of the following methods:

7.3.1 Samples for chemical analysis shall be taken by drilling, sawing, milling, turning, or clipping a representative piece or pieces to obtain a prepared sample of not less than 75 g. Sampling shall be in accordance with Practice E 55.

7.3.2 Sampling for spectrochemical analysis shall be in accordance with Practices E 716. Samples for other methods of

analysis shall be suitable for the form of material being analyzed and the type of analytical method used.

NOTE 5—It is difficult to obtain a reliable analysis of each of the components of clad materials using material in its finished state. A reasonably accurate determination of the core composition can be made if the cladding is substantially removed prior to analysis. The cladding composition is more difficult to determine because of the relatively thin layer and because of diffusion of core elements to the cladding. The correctness of cladding alloy used can usually be verified by a combination of metallographic examination and spectrochemical analysis of the surface at several widely separated points.

7.4 *Methods of Analysis*—The determination of chemical composition shall be made in accordance with suitable chemical (Test Methods E 34), or spectrochemical (Test Methods E 607 and E 1251) methods. Other methods may be used only when no published ASTM method is available. In case of dispute, the methods of analysis shall be agreed upon between the producer and purchaser.

8. Heat Treatment

8.1 Unless specified in 8.2, producer or supplier heat treatment for the applicable tempers in Table 3 shall be in accordance with AMS 2772.

8.2 When specified, heat treatment of applicable tempers in Table 3 shall be in accordance with Practice B 918.

9. Tensile Properties of Material as Supplied

9.1 *Limits*—The sheet and plate shall conform to the requirements for tensile properties as specified in Table 2 and Table 3 for nonheat-treatable and heat-treatable alloys, respectively.

9.1.1 Tensile property limits for sizes not covered in Table 2 or Table 3 shall be as agreed upon between the producer and purchaser and shall be so specified in the contract or purchase order.

9.2 *Number of Samples*—One sample shall be taken from each end of each parent coil, or parent plate, but no more than one sample per 2000 lb of sheet or 4000 lb of plate, or part thereof, in a lot shall be required. Other procedures for selecting samples may be employed if agreed upon between the producer and purchaser.

9.3 *Test Specimens*—Geometry of test specimens and the location in the product from which they are taken shall be as specified in Test Methods B 557.

9.4 *Test Methods*—The tension test shall be made in accordance with Test Methods B 557.

10. Producer Confirmation of Heat-Treat Response

10.1 In addition to the requirements of 9.1, material in the O or F temper of alloys 2014, Alclad 2014, 2024, Alclad 2024, 1¹/₂ % Alclad 2024, Alclad one-side 2024, 1¹/₂ % Alclad one-side 2024, 6061, and Alclad 6061 shall, upon proper

solution heat treatment and natural aging at room temperature, develop the properties specified in Table 3 for T42 temper material. The natural aging period at room temperature shall be not less than 4 days, but samples of material may be tested prior to 4 days aging, and if the material fails to conform to the requirements of T42 temper material, the tests may be repeated after completion of 4 days aging without prejudice.

10.2 Also, material in the O or F temper of alloys 2219, Alclad 2219, 6061, 7075, Alclad 7075, Alclad one-side 7075, 7008 Alclad 7075, 7178, and Alclad 7178 shall, upon proper solution heat treatment and precipitation heat treatment, develop the properties specified in Table 3 for T62 temper material.

10.3 Mill-produced material in the O or F tempers of 7008 Alclad 7075 shall, upon proper solution heat treatment and stabilizing, be capable of attaining the properties specified in Table 3 for the T76 temper.

10.4 *Number of Specimens*—The number of specimens from each lot of O temper material and F temper material to be tested to verify conformance with 10.1-10.3 shall be as specified in 9.2.

11. Heat Treatment and Reheat-Treatment Capability

11.1 Mill-produced material in the O or F temper of alloys 2014, Alclad 2014, 2024, Alclad 2024, 1¹/₂ % Alclad 2024, Alclad 2024, Alclad one-side 2024, 6061, and Alclad 6061 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and natural aging at room temperature, develop the properties specified in Table 3 for T42 temper material. The natural aging period at room temperature shall be not less than 4 days, but samples of material may be tested prior to 4 days aging, and if the material fails to conform to the requirements of T42 temper material, the tests may be repeated after completion of 4 days aging without prejudice.

11.2 Mill-produced material in the O or F temper of alloys 2219, Alclad 2219, 6061, 7075, Alclad 7075, Alclad one-side 7075, 7008 Alclad 7075, 7178, and Alclad 7178 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and precipitation heat treatment, develop the properties specified in Table 3 for T62 temper material.

11.3 Mill-produced material in the O or F temper of 7008 Alclad 7075 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and stabilizing, be capable of attaining the properties specified in Table 3 for the T76 temper.

11.4 Mill-produced material in the following alloys and tempers shall, after proper resolution heat treatment and natural aging for four days at room temperature, be capable of attaining the properties specified in Table 3 for the T42 temper.

Alloys	Tempers
2014 and Alclad 2014 2024 and Alclad 2024	T3, T4, T451, T6, T651 T3, T4, T351, T81, T851
1½ % Alclad 2024, Alclad one-side 2024 and 1½ % Alclad one-side 2024	T3, T351, T81, T851

NOTE 6—Beginning with the 1974 revision, 6061 and Alclad 6061 T4, T451, T6, and T651 were deleted from this paragraph because experience has shown that reheat-treated material may develop large recrystallized grains and may fail to develop the tensile properties shown in Table 3.

11.5 Mill-produced material in the following alloys and tempers shall, after proper resolution heat treatment and precipitation heat treatment, be capable of attaining the properties specified in Table 3 for the T62 temper.

Alloys	Tempers
2219 and Alclad 2219 7075	T31, T351, T81, T851 T6, T651, T73, T7351, T76, T7651
Alclad 7075, 7008 Alclad 7075,	T6, T651, T76, T7651
7178, and Alclad 7178 Alclad one-side 7075	T6, T651

11.6 Mill-produced material in the following alloys and tempers and T42 temper material shall, after proper precipitation heat treatment, be capable of attaining the properties specified in Table 3 for the aged tempers listed below.

Alloy and Temper	Temper after Aging
2014 and Alclad 2014-T3, T4, T42, T451 2024, Alclad 2024, 1½ % Alclad 2024, Alclad one-side 2024 and 1½ % Alclad one-side 2024-T3, T351, T361, T42	
2219 and Alclad 2219-T31, T351, T37 6061 and Alclad 6061-T4, T451, T42	T81, T851, T87, respectively T6, T651, T62, respectively

12. Bend Properties

12.1 *Limits*—Sheet and plate shall be capable of being bent cold through an angle of 180° around a pin having a diameter equal to *N* times the thickness of the sheet or plate without cracking, the value of *N* being as prescribed in Table 2 for the different alloys, tempers, and thicknesses. The test need not be conducted unless specified on the purchase order.

12.2 *Test Specimens*—When bend tests are made, the specimens for sheet shall be the full thickness of the material, approximately $\frac{3}{4}$ in. in width, and when practical, at least 6 in. in length. Such specimens may be taken in any direction and their edges may be rounded to a radius of approximately $\frac{1}{16}$ in. if desired. For sheet less than $\frac{3}{4}$ in. in width, the specimens should be the full width of the material.

12.3 *Test Methods*—The bend tests shall be made in accordance with Test Method E 290 except as stated otherwise in 12.2.

13. Stress-Corrosion Resistance

13.1 When specified on the purchase order or contract, alloys 2124-T851, 2219-T851, and 2219-T87 plate shall be subjected to the test specified in 13.3 and shall exhibit no evidence of stress-corrosion cracking. One sample shall be taken from each parent plate in each lot and a minimum of three adjacent replicate specimens from this sample shall be tested. The producer shall maintain records of all lot acceptance test results and make them available for examination at the producer's facility.

13.2 Alloy 7075 in the T73-type and T76-type tempers, and alloys Alclad 7075, 7008 Alclad 7075, 7178, and Alclad 7178 in the T76-type tempers, shall be capable of exhibiting no evidence of stress-corrosion cracking when subjected to the test specified in 13.3.

13.2.1 For lot-acceptance purposes, resistance to stresscorrosion cracking for each lot of material shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.

13.2.2 For surveillance purposes, each month the producer shall perform at least one test for stress-corrosion resistance in accordance with 13.3 on each applicable alloy-temper for each thickness range 0.750 in. and over listed in Table 3, produced that month. Each sample shall be taken from material considered acceptable in accordance with lot-acceptance criteria of Table 4. A minimum of three adjacent replicate specimens shall be taken from each sample and tested. The producer shall maintain records of all lots so tested and make them available for examination at the producer's facility.

13.3 The stress-corrosion cracking test shall be performed on plate 0.750 in. and over in thickness as follows:

13.3.1 Specimens shall be stressed in tension in the short transverse direction with respect to grain flow and held at constant strain. For alloy 2124-T851, the stress levels shall be 50 % of the specified minimum long transverse yield strength. For alloy 2219-T851 and T87, the stress levels shall be 75 % of the specified minimum long transverse yield strength. For T73-type tempers, the stress level shall be 75 % of the specified minimum yield strength and for T76-type, it shall be 25 ksi.

13.3.2 The stress-corrosion test shall be made in accordance with Test Method G 47.

13.3.3 There shall be no visual evidence of stress-corrosion cracking in any specimen, except that the retest provisions of 19.2 shall apply.

14. Exfoliation-Corrosion Resistance

14.1 Alloys 7075, Alclad 7075, 7008 Alclad 7075, 7178, and Alclad 7178, in the T76-type tempers, shall be capable of exhibiting no evidence of exfoliation corrosion equivalent to or in excess of that illustrated by Photo EB in Fig. 2 of Test Method G 34 when subjected to the test in 14.2.

14.1.1 For lot-acceptance purposes, resistance to exfoliation corrosion for each lot of material in the alloys and tempers listed in 14.1 shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.

14.1.2 For surveillance purposes, each month the producer shall perform at least one test for exfoliation-corrosion resistance for each alloy for each thickness range listed in Table 3, produced that month. The samples for test shall be selected at random from material considered acceptable in accordance with the lot-acceptance criteria of Table 4. The producer shall maintain records of all surveillance test results and make them available for examination.

14.2 The test for exfoliation-corrosion resistance shall be made in accordance with Test Method G 34 and the following:

14.2.1 The specimens shall be a minimum of 2 in. by 4 in. with the 4-in. dimension in a plane parallel to the direction of final rolling. They shall be full-section thickness specimens of the material except that for material 0.101 in. or more in

thickness, 10 % of the thickness shall be removed by machining one surface. The cladding of alclad sheet of any thickness shall be removed by machining the test surface; the cladding on the back side (nontest surface) of the specimen for any thickness of alclad material shall also either be removed or masked off. For machined specimens, the machined surface shall be evaluated by exposure to the test solution.

15. Cladding

15.1 Preparatory to rolling alclad sheet and plate to the specified thickness, the aluminum or aluminum-alloy plates which are bonded to the alloy ingot or slab shall be of the composition shown in Table 1 and shall each have a thickness not less than that shown in Table 5 for the alloy specified.

15.2 When the thickness of the cladding is to be determined on finished material, not less than one transverse sample approximately $\frac{3}{4}$ in. in length shall be taken from each edge and from the center width of the material. Samples shall be mounted to expose a transverse cross section and shall be polished for examination with a metallurgical microscope. Using 100× magnification, the maximum and minimum cladding thickness on each surface shall be measured in each of five fields approximately 0.1 in. apart for each sample. The average of the ten values (five minima plus five maxima) on each sample surface is the average cladding thickness and shall meet the minimum average and, when applicable, the maximum average specified in Table 5.

16. Dimensional Tolerances

16.1 *Thickness*—The thickness of flat sheet, coiled sheet, and plate shall not vary from that specified by more than the respective permissible variations prescribed in Tables 7.7a, 7.7b, 7.26, 7.31, and 8.2 of ANSI H35.2. Permissible variations in thickness of plate specified in thicknesses exceeding 6 in. shall be the subject of agreement between the purchaser and the producer or the supplier at the time the order is placed.

16.2 Length, Width, Lateral Bow, Squareness, and Flatness—Coiled sheet shall not vary in width or in lateral bow from that specified by more than the permissible variations prescribed in Tables 7.11 and 7.12, respectively, of ANSI H35.2. Flat sheet and plate shall not vary in width, length, lateral bow, squareness, or flatness by more than the permissible variations prescribed in the following tables of ANSI H35.2 except that where the tolerances for sizes ordered are not covered by this specification, the permissible variations shall be the subject of agreement between the purchaser and the producer or the supplier at the time the order is placed:

Table No.	Title
7.8	Width, Sheared Flat Sheet and Plate
7.9	Length, Sheared Flat Sheet and Plate
7.10	Width and Length, Sawed Flat Sheet and Plate
7.13	Lateral Bow, Flat Sheet and Plate
7.14	Squareness, Flat Sheet and Plate
7.17	Flatness, Flat Sheet
7.18	Flatness, Sawed or Sheared Plate

16.3 Dimensional tolerances for sizes not covered in ANSI H35.2 shall be as agreed upon between the producer and purchaser and shall be specified in the contract or purchase order.

16.4 *Sampling for Inspection*—Examination for dimensional conformance shall be made to ensure conformance to the tolerance specified.

17. Internal Quality

17.1 When specified by the purchaser at the time of placing the order, plate 0.500 in. to 4.500 in. in thickness and up to 2000 lb in maximum weight in alloys 2014, 2024, 2124, 2219, 7075, and 7178, both bare and Alclad where applicable, shall be tested in accordance with Practice B 594 to the discontinuity acceptance limits of Table 6.

17.2 When specified by the purchaser at the time of placing the order, plate 0.500 in. in thickness and greater for ASME pressure vessel applications in alloys 1060, 1100, 3003, Alclad 3003, 3004, Alclad 3004, 5052, 5083, 5086, 5154, 5254, 5454, 5456, 5652, 6061, and Alclad 6061 shall be tested in accordance with Test Method B 548. In such cases, the material will be subject to rejection if the following limits are exceeded unless it is determined by the purchaser that the area of the plate containing significant discontinuities will be removed during the subsequent fabrication process or that the plate may be repaired by welding:

17.2.1 If the longest dimension of the marked area representing a discontinuity causing a complete loss of back reflection (95% or greater) exceeds 1.0 in.

17.2.2 If the length of the marked area representing a discontinuity causing an isolated ultrasonic indication without a complete loss of back reflection (95 % or greater) exceeds 3.0 in.

17.2.3 If each of two marked areas representing two adjacent discontinuities causing isolated ultrasonic indications without a complete loss of back reflection (95 % or greater) is longer than 1.0 in., and if they are located within 3.0 in. of each other.

18. Source Inspection

18.1 If the purchaser desires that his representative inspect or witness the inspection and testing of the material prior to shipment, such agreement shall be made by the purchaser and producer as part of the purchase contract.

18.2 When such inspection or witness of inspection and testing is agreed upon, the producer shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary interference with the producer's operations.

19. Retest and Rejection

19.1 If any material fails to conform to all of the applicable requirements of this specification, the inspection lot shall be rejected.

19.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All specimens so selected for retest shall meet the requirements of the specification or the lot shall be subject to rejection. 19.3 Material in which defects are discovered subsequent to inspection may be rejected.

19.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of material to the purchaser. As much as possible of the rejected material shall be returned to the producer or supplier by the purchaser.

20. Identification Marking of Product

20.1 When specified on the purchase order or contract, all sheet and plate shall be marked in accordance with Practice B 666/B 666M.

20.2 In addition, alloys in the 2xxx and 7xxx series in the T3-, T4-, T6-, T7-, and T8-type tempers and, when specified, 6061-T6 and T651 shall be marked with the lot number in at least one location on each piece.

20.3 The requirements specified in 20.1 and 20.2 are minimum; marking systems that involve added information, larger characters, and greater frequencies are acceptable under this specification.

21. Packaging and Package Marking

21.1 The material shall be packaged to provide adequate protection during normal handling and transportation and each package shall contain only one size, alloy, and temper of material unless otherwise agreed. The type of packaging and gross weight of containers shall, unless otherwise agreed, be at the producer's or supplier's discretion, provided that they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.

21.2 Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.

21.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practices B 660. The applicable levels shall be as specified in the contract or order.

22. Certification

22.1 The producer or supplier shall, on request, furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification, and has met the requirements.

23. Keywords

23.1 aluminum alloy; aluminum-alloy plate; aluminumalloy sheet

Temper	Specified Thickness, in.	Tensile Strength, ksi		Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter
	1 /	min	max	min	max	Diameter, min, %	Factor, N
			Aluminum	1060			
0	0.006-0.019	8.0	14.0	2.5		15	
	0.020-0.050	8.0	14.0	2.5		22	
	0.051–3.000	8.0	14.0	2.5		25	
H12 ^C	0.017-0.050	11.0	16.0	9.0		6	
or	0.051-2.000	11.0	16.0	9.0		12	
H22 ^C							
H14 ^C	0.009-0.019	12.0	17.0	10.0		1	
or	0.020-0.050	12.0	17.0	10.0		5	
H24 ^C	0.051-1.000	12.0	17.0	10.0		10	
H16 ^C	0.006-0.019	14.0	19.0	11.0		1	
or	0.020-0.050	14.0	19.0	11.0		4	
H26 ^C	0.051-0.162	14.0	19.0	11.0		5	
H18 ^C	0.006-0.019	16.0		12.0		1	
or	0.020-0.050	16.0		12.0		3	
H28 ^C	0.051-0.128	16.0		12.0		4	
H112	0.250-0.499	11.0		7.0		10	
	0.500-1.000	10.0		5.0		20	
	1.001–3.000	9.0		4.0		25	
F	0.250-3.000						
			Aluminum				
0	0.006-0.019	11.0	15.5	3.5		15	0
-	0.020-0.031	11.0	15.5	3.5		20	0
	0.032-0.050	11.0	15.5	3.5		25	0
	0.051-0.249	11.0	15.5	3.5		30	0
	0.250-3.000	11.0	15.5	3.5		28	0
H12 ^C	0.017-0.019	14.0	19.0	11.0		3	0
or	0.020-0.031	14.0	19.0	11.0		4	0
H22 ^C	0.032-0.050	14.0	19.0	11.0		6	0

∰ B 209 – 04

TABLE	2	Continued
-------	---	-----------

$ \begin{array}{ c c c c c c } \hline Tensile Strength, kill $ Vield Strength (k.2.% offset), kell $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $				TABLE 2 (Continued			
Image Image <th< th=""><th>Temper</th><th>Specified Thickness, in.</th><th colspan="2">-</th><th colspan="2">Yield Strength (0.2 % offset), ksi</th><th>2 in. or $4\times$</th><th>Bend Diameter</th></th<>	Temper	Specified Thickness, in.	-		Yield Strength (0.2 % offset), ksi		2 in. or $4\times$	Bend Diameter
0.11-0.499 14.0 19.0 11.0 9 H4 19.0 11.0 12 H4 0.00-0.012 16.0 21.0 14.0 1 H24 ^P 0.00-0.011 16.0 21.0 14.0 3 0.050-0.001 16.0 21.0 14.0 4 0.050-0.000 16.0 21.0 14.0 5 0.050-0.000 16.0 21.0 14.0 6 off 0.000-0.0019 10.0 24.0 17.0 1 of 0.000-0.0019 20.0 1 1 H26 ^C 0.000-0.0019 20.0 1 1 eff 0.000-0.0019 20.0 1 1 eff 0.000-0.0019 13.0 1 1 eff 0.000-0.007 <		•	min	max	min	max		Factor, N
0.000-2.000 14.0 19.0 11.0 12 H14 ^C 0.000-0.019 16.0 21.0 14.0 1 M2A ^C 0.033-0.030 16.0 21.0 14.0 3 M2A ^C 0.033-0.030 16.0 21.0 14.0 3 M100-0.011-0.013 16.0 21.0 14.0 6 M100-0.000 16.0 21.0 14.0 1 M100-0.000 16.0 21.0 14.0 1 M100-0.000 16.0 24.0 17.0 1 M12C-0.000 17.0 2 1 M142 0.000-0.001 12.0 1 1 M142 0.200-0.000 11.5 4.0 20 M142 0.200-0.000 11.5 4.0 14								0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								0
of scale 0.019-0.019 16.0 21.0 14.0 2 0.032-0.050 16.0 21.0 14.0 4 0.032-0.050 16.0 21.0 14.0 6 0.032-0.050 16.0 21.0 14.0 6 0.030-0.000 18.0 21.0 14.0 6 0.030-0.000 18.0 24.0 17.0 1 of 0.032-0.050 19.0 24.0 17.0 3 H18 ⁶ 0.066-0.019 22.0 3 0.050-0.128 22.0 3 3 P 0.032-0.050 12.0 14 0.032-0.050 12.0 14 14 120 2.001-3.000 11.5 4.0 20 20 0.000-0.012 14.0<		0.500–2.000	14.0	19.0	11.0		12	0
H2A ² 0.020-0.031 16.0 21.0 14.0 3 0.035-0.050 16.0 21.0 14.0 6 0.050-0.000 16.0 21.0 14.0 6 0.016-0.019 19.0 24.0 17.0 1 of 0.002-0.031 19.0 24.0 17.0 1426 ² 0.005-0.019 22.0 1426 ² 0.005-0.019 22.0 <td>114^C</td> <td>0.009-0.012</td> <td>16.0</td> <td>21.0</td> <td>14.0</td> <td></td> <td>1</td> <td>0</td>	114 ^C	0.009-0.012	16.0	21.0	14.0		1	0
0.022-0.050 16.0 21.0 14.0 4 0.114-0.499 16.0 21.0 14.0 6 0.006-0.019 19.0 24.0 17.0 1 0 0000-0.019 19.0 24.0 17.0 3 1286* 0.002-0.050 19.0 24.0 17.0 3 0.001-0.162 19.0 24.0 17.0 3 0.001-0.162 19.0 22.0 3 0.002-0.031 22.0		0.013-0.019	16.0	21.0	14.0		2	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	124 ^C	0.020-0.031	16.0	21.0	14.0		3	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			16.0	21.0	14.0			0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0
or 0.020-0.031 19.0 24.0 17.0 2 H26 ^C 0.032-0.050 19.0 24.0 17.0 3 or 0.020-0.031 22.0 1 1H2 ^C 0.022-0.060 22.0 3 0.020-0.031 22.0 3 0.032-0.060 22.0 3 0.032-0.060 12.0 5.0 14 0.030-0.000 12.0 4.0 20 0.040-0.007 14.0 19.0 5.0 18 0.032-0.050 14.0 19.0 5.0 23 0.032-0.050 14.0 19.0 5.0 23 0.032-0.050 14.0 19.0 5.0 23 0.032-0.050 17.0 23.0 12.0		0.500-1.000	16.0	21.0	14.0		10	0
H26 ^C 0.0320.050 19.0 24.0 17.0 3 H18 ^C 0.065-0.019 22.0 4 H26 ^C 0.032-0.031 22.0 2 H12 ^C 0.032-0.050 22.0 4 H112 0.250-0.499 13.0 7.0 4 0.051-0.128 22.0 4.0 4 0.055-0.000	H16 ^C							4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								4
$\begin{split} H16^{C} & 0.006-0.019 & 22.0 &$	126 ^{<i>C</i>}							4
or 0.020-0.031 22.0 2 H28 ^C 0.057-0.128 22.0		0.051-0.162	19.0	24.0	17.0		4	4
or 0.020-0.031 22.0 2 H286° 0.051-0.128 22.0 3 H112 0.250-0.499 13.0 7.0 9 2.001-3.000 11.5 4.0 20 F0 0.250-3.000 4.0 20 0.006-0.007 14.0 19.0 5.0 14 0.008-0.012 14.0 19.0 5.0 23 0.008-0.012 14.0 19.0 5.0 23 0.005-0.001 14.0 19.0 5.0 23 H126° 0.017-0.019 17.0 23.0 12.0 3 0.014-0.131 17.0 23.0 12.0 4 122° 0.050-2.000 17.0 23.0 12.0 5 0.050-2.000<		0.006-0.019	22.0				1	
H28 ^C 0.032-0.050 22.0 3 H112 0.250-0.499 13.0 7.0 9 2.001-3.000 12.0 5.0 14 2.001-3.000 1.5 4.0 20 F ² 0.250-3.000 20 F ² 0.250-3.000 1.5 20 F ² 0.250-3.000 14.0 19.0 5.0 14 0.008-0.017 14.0 19.0 5.0 220 0.017-0.019 17.0 23.0 12.0 225 0.250-3.000 14.0 19.0 5.0 24 12 ² C 0.017-0.019 17.0 23.0 12.0 4 12 ² C 0.022-0.031 17.0 23.0 12.0 14	or							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	128 ^C	0.032-0.050	22.0				3	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.051-0.128	22.0				4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1112	0.250-0.499	13.0		7.0		9	
F ⁰ 0.250-3.000 <								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2.001-3.000	11.5		4.0		20	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D	0.250-3.000						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Alloy 30	003			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C							0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1220							0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
or $0.013-0.019$ 20.0 26.0 17.0 2 H24 ^C 0.020-0.031 20.0 26.0 17.0 3 0.032-0.050 20.0 26.0 17.0 4 0.051-0.113 20.0 26.0 17.0 6 0.114-0.161 20.0 26.0 17.0 7 0.250-0.499 20.0 26.0 17.0 7 0.500-1.000 20.0 26.0 17.0 10 H16 ^C 0.006-0.019 24.0 30.0 21.0 10 H16 ^C 0.002-0.031 24.0 30.0 21.0 10 H16 ^C 0.002-0.031 24.0 30.0 21.0 10 H18 ^C 0.002-0.031 24.0 30.0 21.0 11 or 0.020-0.031 24.0 30.0 21.0 12 H18 ^C 0.006-0.019 27.0 24.0 11 or 0.020-0.031 27.0 24.0 14 H18 ^C 0.006-0.019 27.0 24.0 14 H18 ^C 0.006-0.019 17.0 10.0 14 H18 ^C 0.006-0.019 17.0 10.0 18 H112 0.250-0.499 17.0 6.0 18 H112 0.250-0.499 17.0 10.0 18 F ^D 0.250-3.000 11 10.0 18					17.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	724-							0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
or $0.020-0.031$ 24.0 30.0 21.0 2 426^{C} $0.032-0.050$ 24.0 30.0 21.0 3 $0.051-0.162$ 24.0 30.0 21.0 3 4 18^{C} $0.006-0.019$ 27.0 24.0 4 18^{C} $0.020-0.031$ 27.0 24.0 2 428^{C} $0.032-0.050$ 27.0 24.0 2 128^{C} $0.051-0.128$ 27.0 24.0 3 1112 $0.250-0.499$ 17.0 10.0 8 $0.500-2.000$ 15.0 6.0 12 $2.001-3.000$ 14.5 6.0 18 E^{D} $0.250-3.000$ $$								
or $0.020-0.031$ 24.0 30.0 21.0 2 426^{C} $0.032-0.050$ 24.0 30.0 21.0 3 $0.051-0.162$ 24.0 30.0 21.0 3 4 18^{C} $0.006-0.019$ 27.0 24.0 4 18^{C} $0.020-0.031$ 27.0 24.0 2 428^{C} $0.032-0.050$ 27.0 24.0 2 128^{C} $0.051-0.128$ 27.0 24.0 3 1112 $0.250-0.499$ 17.0 10.0 8 $0.500-2.000$ 15.0 6.0 12 $2.001-3.000$ 14.5 6.0 18 E^{D} $0.250-3.000$ $$	-16 ^C	0.006_0.010	24.0	30.0	21 0		1	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 126 ^C							4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-18 ^C	0.006-0.019	27 0		24.0		1	
H28 ^C $0.032-0.050$ 27.0 24.0 3 $0.051-0.128$ 27.0 24.0 4 H112 $0.250-0.499$ 17.0 10.0 8 $0.500-2.000$ 15.0 6.0 12 $2.001-3.000$ 14.5 6.0 18								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$0.500-2.000$ 15.0 6.0 12 $2.001-3.000$ 14.5 6.0 18 F^{D} $0.250-3.000$								
$0.500-2.000$ 15.0 6.0 12 $2.001-3.000$ 14.5 6.0 18 F^{D} $0.250-3.000$	-112	0.250_0.400	17.0		10.0		Q	
$2.001-3.000$ 14.5 \dots 6.0 \dots 18 F^D $0.250-3.000$ \dots \dots \dots \dots \dots \dots	1114							
F ^D 0.250–3.000								
	-0							
	-	0.250-3.000						
Alclad Alloy 3003				Alclad Allo	y 3003			

TABLE 2 Continued

			TABLE 2 C	Continued			
Temper	Specified Thickness, in.		trength, ksi	Yield Strength (0.		Elongation in 2 in. or $4 \times$ Diameter,	Bend Diameter Factor, N
		min	max	min	max	min, %	
0	0.006-0.007	13.0	18.0	4.5		14	
	0.008-0.012	13.0	18.0	4.5		18	
	0.013-0.031	13.0	18.0	4.5		20	
	0.032-0.050	13.0	18.0	4.5		23	
	0.051-0.249	13.0	18.0	4.5		25	
	0.250-0.499	13.0	18.0	4.5		23	
	0.500-3.000	14.0 ^E	19.0 ^E	4.5 5.0 ^E		23	
	0.300-3.000	14.0	19.0	5.0		25	
-112 ^C	0.017-0.031	16.0	22.0	11.0		4	
or	0.032-0.050	16.0	22.0	11.0		5	
H22 ^C	0.051–0.113	16.0	22.0	11.0		6	
	0.114-0.161	16.0	22.0	11.0		7	
	0.162-0.249	16.0	22.0	11.0		8	
	0.250-0.499	16.0	22.0	11.0_		9	
	0.500-2.000	17.0 ^E	23.0 ^E	12.0 ^E		10	
H14 ^C	0.009-0.012	19.0	25.0	16.0		1	
or	0.013-0.019	19.0	25.0	16.0		2	
H24 ^C	0.020-0.031	19.0	25.0	16.0		3	
	0.032-0.050	19.0	25.0	16.0		4	
	0.051-0.113	19.0	25.0	16.0		5	
	0.114-0.161	19.0	25.0	16.0		6	
	0.162–0.249	19.0	25.0	16.0		7	
	0.250-0.499	19.0	25.0	16.0		8	
	0.500-1.000	20.0 ^E	26.0 ^E	17.0 ^E		10	
1400	0.000.0.040	00.0	00.0	00.0			
H16 ^C	0.006-0.019	23.0	29.0	20.0		1	
or	0.020-0.031	23.0	29.0	20.0		2	
H26 ^C	0.032-0.050	23.0	29.0	20.0		3	
	0.051-0.162	23.0	29.0	20.0		4	
H18	0.006-0.019	26.0				1	
	0.020-0.031	26.0				2	
	0.032-0.050	26.0				3	
	0.051-0.128	26.0				4	
H112	0.250-0.499	16.0		9.0		8	
11112	0.500-2.000	15.0 ^E		6.0 ^E		12	
	2.001-3.000	14.5 ^E		6.0 ^E		18	
F ^D	0.050.0.000						
	0.250–3.000						
-			Alloy 30				
0	0.006-0.007	22.0	29.0	8.5			
	0.008-0.019	22.0	29.0	8.5		10	0
	0.020-0.031	22.0	29.0	8.5		14	0
	0.032-0.050	22.0	29.0	8.5		16	0
	0.051-0.249	22.0	29.0	8.5		18	0
	0.250-3.000	22.0	29.0	8.5		16	
H32 ^C	0.017-0.019	28.0	35.0	21.0		1	0
		28.0	35.0	21.0		3	1
or H22 ^C	0.020-0.031						
	0.032-0.050	28.0	35.0	21.0		4	1
	0.051–0.113 0.114–2.000	28.0 28.0	35.0 35.0	21.0 21.0		5 6	2
2							
H34 ^C	0.009–0.019	32.0	38.0	25.0		1	2
or	0.020-0.050	32.0	38.0	25.0		3	3
H24 ^C	0.051–0.113	32.0	38.0	25.0		4	4
	0.114–1.000	32.0	38.0	25.0		5	
H36 ^C	0.006-0.007	35.0	41.0	28.0			
or	0.008–0.019	35.0	41.0	28.0		1	6
H26 ^C	0.020-0.031	35.0	41.0	28.0		2	6
0	0.032-0.051	35.0	41.0	28.0		3	6
	0.051-0.162	35.0	41.0	28.0		4	8
1000							
H38 ^C	0.006-0.007	38.0		31.0			
or	0.008–0.019	38.0		31.0		1	
		38.0		31.0		2	
H28 ^C	0.020-0.031						
H28 ^C	0.020–0.031 0.032–0.050 0.051–0.128	38.0 38.0		31.0 31.0		3 4	

TABLE 2 Continued

Tempor	Specified Thickness, in.	Tensile S	trength, ksi	Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
1112	0.250-3.000	23.0		9.0		7	
D	0.250-3.000						
			Alclad Allo	y 3004			
)	0.006-0.007	21.0	28.0	8.0			
	0.008-0.019	21.0	28.0	8.0		10	
	0.020-0.031	21.0	28.0	8.0		14	
	0.032-0.050	21.0	28.0	8.0		16	
	0.051-0.249	21.0 21.0	28.0 28.0	8.0 8.0		18 16	
	0.250-0.499 0.500-3.000	22.0 ^E	20.0 ^E	8.5 ^E		16	
132 ^C	0.017.0.010	27.0	24.0			4	
132° 0r	0.017–0.019 0.020–0.031	27.0 27.0	34.0 34.0	20.0 20.0		1 3	
122 ^C	0.032-0.050	27.0	34.0	20.0		4	
	0.051-0.113	27.0	34.0	20.0		5	
	0.114-0.249	27.0	34.0	20.0		6	
	0.250-0.499	27.0	34.0	20.0		6	
	0.500-2.000	28.0 ^E	35.0 ^E	21.0 ^E		6	
134 ^{<i>c</i>}	0.009-0.019	31.0	37.0	24.0		1	
or	0.020-0.050	31.0	37.0	24.0		3	
124 ^{<i>C</i>}	0.051-0.113	31.0	37.0	24.0		4	
	0.114-0.249	31.0	37.0	24.0		5	
	0.250-0.499	31.0	37.0	24.0		5	
	0.500-1.000	32.0 ^E	38.0 ^E	25.0 ^E		5	
136 ^{<i>C</i>}	0.006-0.007	34.0	40.0	27.0			
or	0.008-0.019	34.0	40.0	27.0		1	
126 ^C	0.020-0.031	34.0	40.0	27.0		2	
	0.032–0.050 0.051–0.162	34.0 34.0	40.0 40.0	27.0 27.0		3 4	
	0.001 0.102	04.0	40.0	21.0		-	
138	0.006-0.007	37.0					
	0.008-0.019	37.0				1	
	0.020–0.031 0.032–0.050	37.0 37.0				2 3	
	0.051-0.128	37.0				4	
144.0	0.050, 0.400	22.0		0.5		7	
1112	0.250-0.499 0.500-3.000	22.0 23.0 ^E		8.5 9.0 ^E		7 7	
D							
	0.250-3.000						
	0.000.0.007	47.0	Alloy 30			40	
)	0.006-0.007 0.008-0.012	17.0 17.0	24.0 24.0	6.5 6.5		10 12	
	0.013-0.019	17.0	24.0	6.5		14	
	0.020-0.031	17.0	24.0	6.5		16	
	0.032-0.050	17.0	24.0	6.5		18	
	0.051-0.249	17.0	24.0	6.5		20	
112	0.017-0.019	20.0	27.0	17.0		1	
	0.020-0.050	20.0	27.0	17.0		2	
	0.051-0.113	20.0	27.0	17.0		3	
	0.114–0.161	20.0	27.0	17.0		4	
	0.162–0.249	20.0	27.0	17.0		5	
114	0.009–0.031	24.0	31.0	21.0		1	
	0.032-0.050	24.0	31.0	21.0		2	
	0.051-0.113	24.0	31.0	21.0		3	
	0.114–0.249	24.0	31.0	21.0		4	
116	0.006-0.031	28.0	35.0	25.0		1	
	0.032–0.113	28.0	35.0	25.0		2	
	0 111 0 100	28.0	35.0	25.0		3	
	0.114–0.162						
118	0.114-0.162	32.0		29.0		1	

TABLE 2 Continued

_		Tensile St	trength, ksi	Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter	
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N	
H19	0.006-0.012	34.0						
	0.013-0.063	34.0				1		
H25	0.016-0.019	26.0	34.0	22.0		1		
	0.020-0.031	26.0	34.0	22.0		2		
	0.032-0.050	26.0	34.0	22.0		3		
	0.051-0.080	26.0	34.0	22.0		4		
H27	0.016-0.019	29.5	37.5	25.5		1		
	0.020-0.031	29.5	37.5	25.5		2		
	0.032–0.050 0.051–0.080	29.5 29.5	37.5 37.5	25.5 25.5		3 4		
H28	0.016-0.019	31.0		27.0		1		
	0.020-0.031	31.0		27.0		2		
	0.032–0.050 0.051–0.080	31.0 31.0		27.0 27.0		3 4		
1100								
H29	0.025-0.031	33.0		28.0		1		
	0.032–0.050 0.051–0.071	33.0 33.0		28.0 28.0		2 3		
			Alloy 31					
0	0.013–0.019	14.0	21.0	5.0		16		
•	0.020-0.031	14.0	21.0	5.0		18		
	0.032-0.080	14.0	21.0	5.0		20		
H12	0.017-0.019	19.0	26.0	15.0		1		
=	0.020-0.031	19.0	26.0	15.0		1		
	0.032-0.050	19.0	26.0	15.0		2		
	0.051-0.080	19.0	26.0	15.0		3		
H14	0.013-0.019	22.0	29.0	18.0		1		
	0.020-0.031	22.0	29.0	18.0		1		
	0.032-0.050	22.0	29.0	18.0		2		
	0.051-0.080	22.0	29.0	18.0		2		
H16	0.013-0.031	25.0	32.0	21.0		1		
	0.032–0.050 0.051–0.080	25.0 25.0	32.0 32.0	21.0 21.0		2 2		
	0.031-0.080	25.0	32.0	21.0		2		
H18	0.013-0.031	28.0		24.0		1		
	0.032–0.050 0.051–0.080	28.0 28.0		24.0 24.0		1 2		
			•••			2		
H22	0.013-0.019	19.0		15.0		3		
	0.020-0.031	19.0		15.0		4		
	0.032–0.050 0.051–0.080	19.0 19.0		15.0 15.0		5 6		
H24	0.013-0.019	22.0		18.0		2		
	0.020–0.031 0.032–0.050	22.0 22.0		18.0 18.0		3 4		
	0.051-0.080	22.0		18.0		4 6		
H25	0.013-0.019	23.0		19.0		2		
1120	0.020-0.031	23.0		19.0		2 3		
	0.032-0.050	23.0		19.0		4		
	0.051-0.080	23.0		19.0		6		
	0.010.000	0 - 6		<u></u>		2		
H26	0.013-0.031	25.0		21.0		3		
	0.032–0.050 0.051–0.080	25.0 25.0		21.0 21.0		4 5		
		28.0		24.0		2		
H28	0.013-0.031	00.0		04.0		0		
H28	0.032-0.050 0.051-0.080	28.0 28.0		24.0 24.0		3 4		

TABLE 2 Continued

			TABLE 2 (continued			
Temper	Specified Thickness, in.		trength, ksi	Yield Strength (0		Elongation in 2 in. or $4 \times$ Diameter,	Bend Diameter Factor, N
		min	max	min	max	min, %	
0	0.006-0.007	15.0	21.0	5.0		12	····
	0.008-0.012	15.0	21.0	5.0		14	
	0.013-0.019	15.0	21.0	5.0		16	
	0.020-0.031	15.0	21.0	5.0		18	
	0.032-0.050	15.0	21.0	5.0		20	
	0.051-0.113	15.0	21.0	5.0		21	•••
	0.114-0.249	15.0	21.0	5.0		22	
	0.250-3.000	15.0	21.0	5.0		22	
140							
H12	0.017-0.019	18.0	24.0	14.0		2	
	0.020-0.031	18.0	24.0	14.0		3	
	0.032-0.050	18.0	24.0	14.0		4	
	0.051–0.113	18.0	24.0	14.0		6	
	0.114-0.161	18.0	24.0	14.0		7	
	0.162-0.249	18.0	24.0	14.0		8	
	0.250-0.499	18.0	24.0	14.0		9	
	0.500-2.000	18.0	24.0	14.0		10	
H14	0.009-0.031	21.0	27.0	17.0		1	
	0.032-0.050	21.0	27.0	17.0		2	
	0.051-0.113	21.0	27.0	17.0		3	
	0.114-0.161	21.0	27.0	17.0		5	
		21.0				5 6	
	0.162-0.249		27.0	17.0			
	0.250-0.499 0.500-1.000	21.0 21.0	27.0 27.0	17.0 17.0		8 10	
H16	0.006-0.031	24.0	30.0	20.0		1	
	0.032–0.050 0.051–0.162	24.0 24.0	30.0 30.0	20.0 20.0		2 3	
	0.001 0.102	2.110	0010	2010		Ũ	
H18	0.006-0.031	27.0				1	
	0.032-0.050	27.0				2	
	0.051–0.128	27.0				3	
H32 ^C	0.017-0.019	17.0	23.0	12.0		3	
or	0.020-0.031	17.0	23.0	12.0		4	
H22 ^C	0.032-0.050	17.0	23.0	12.0		5	
	0.051-0.113	17.0	23.0	12.0		7	
	0.114–0.161	17.0	23.0	12.0		8	
						9	
	0.162–0.249 0.250–2.000	17.0 17.0	23.0 23.0	12.0 12.0		9 10	
H34 ^C	0.009-0.012	20.0	26.0	15.0		2	
or	0.013-0.031	20.0	26.0	15.0		3	
H24 ^C	0.032-0.050	20.0	26.0	15.0		4	
	0.051-0.113	20.0	26.0	15.0		5	
	0.114-0.161	20.0	26.0	15.0		6	
	0.162-0.249	20.0	26.0	15.0		7	
	0.250-0.499	20.0	26.0	15.0		8	
	0.500-1.000	20.0	26.0	15.0		10	
136 ^{<i>C</i>}	0.006-0.007	23.0	29.0	18.0		1	
or	0.008-0.019	23.0	29.0	18.0		2	
126 ^C	0.020–0.031 0.032–0.162	23.0 23.0	29.0 29.0	18.0 18.0		3 4	
			20.0	10.0			
-138	0.006-0.012	26.0				1	
	0.013-0.019	26.0				2	
	0.020-0.031	26.0				3	
	0.032-0.128	26.0				4	
1112	0.250-0.499	17.0				8	
	0.500-2.000	15.0				12	
	2.001–3.000	14.5				12	
=D	0.050, 0.000						
	0.250-3.000						
		. = .	Alloy 50			-	
0	0.010-0.070	15.0	21.0	5.0		3	
H22	0.010-0.070	17.0	23.0	14.0		2	
-							

TABLE 2 Continued

			TABLE 2 C	Continued				
Tompor	Specified Thickness in	Tensile St	rength, ksi	Yield Strength (0.	2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter	
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N	
H24	0.010-0.070	20.0	26.0	17.0		1		
H26	0.010-0.070	23.0	29.0	21.0		1		
H28	0.010-0.070	26.0						
1120	0.010 0.010	20.0	Alloy 50					
	0.000.0.007	40.0						
0	0.006-0.007	18.0	24.0	6.0			0	
	0.008-0.019	18.0	24.0	6.0		16	0	
	0.020-0.031	18.0	24.0	6.0		18	0	
	0.032-0.050	18.0	24.0	6.0		20	0	
	0.051-0.113	18.0	24.0	6.0		20	0	
	0.114-0.249	18.0	24.0	6.0		22	0	
	0.250-3.000	18.0	24.0	6.0		20	2	
H32 ^C	0.017-0.050	22.0	28.0	16.0		4	1	
or	0.051-0.249	22.0	28.0	16.0		6	2	
H22 ^C								
H34 ^C	0.009–0.031	25.0	31.0	20.0		3	1	
or	0.032-0.050	25.0	31.0	20.0		4	1	
H24 ^C	0.051-0.249	25.0	31.0	20.0		5	3	
H36 ^C	0.006-0.019	27.0	33.0	22.0		2	3	
or	0.020-0.050	27.0	33.0	22.0		3	3	
H26 ^C	0.051–0.162	27.0	33.0	22.0		4	4	
H38	0.006-0.007	29.0						
1150	0.008–0.031	29.0				2		
	0.032-0.050	29.0				3		
	0.051-0.128	29.0				4		
H112	0.250-3.000	20.0		8.0		12		
		20.0		8.0		12		
F ^D	0.250–3.000							
			Alloy 50					
0	0.006-0.007	25.0	31.0	9.5			0	
	0.008-0.012	25.0	31.0	9.5		14	0	
	0.013-0.019	25.0	31.0	9.5		15	0	
	0.020-0.031	25.0	31.0	9.5		16	0	
	0.032-0.050	25.0	31.0	9.5		18	0	
	0.051-0.113	25.0	31.0	9.5		19	0	
	0.114-0.249	25.0	31.0	9.5		20	0	
	0.250-3.000	25.0	31.0	9.5		18		
H32 ^C	0.017-0.019	31.0	38.0	23.0		4	0	
or	0.020-0.050	31.0	38.0	23.0		5	1	
H22 ^C	0.051-0.113	31.0	38.0	23.0		7	2	
	0.114-0.249	31.0	38.0	23.0		9	3	
	0.250-0.499	31.0	38.0	23.0		11		
	0.500-2.000	31.0	38.0	23.0		12		
	0.009-0.019	34.0	41.0	26.0		3	1	
H34 ^C			41.0	26.0		4	2	
or	0.020-0.050	34.0						
or		34.0	41.0	26.0		6	3	
or	0.020-0.050			26.0 26.0		6 7	3 4	
or	0.020–0.050 0.051–0.113	34.0	41.0		··· ···			
or H24 ^C	0.020-0.050 0.051-0.113 0.114-0.249 0.250-1.000	34.0 34.0 34.0	41.0 41.0 41.0	26.0 26.0		7 10	4	
or H24 ^C H3 ^C	0.020-0.050 0.051-0.113 0.114-0.249 0.250-1.000 0.006-0.007	34.0 34.0 34.0 37.0	41.0 41.0 41.0 44.0	26.0 26.0 29.0	 	7 10 2	4 4	
or H24 ^C H3 ^C or	0.020-0.050 0.051-0.113 0.114-0.249 0.250-1.000	34.0 34.0 34.0	41.0 41.0 41.0	26.0 26.0		7 10	4	
or H24 ^C H3 ^C or H26 ^C	0.020-0.050 0.051-0.113 0.114-0.249 0.250-1.000 0.006-0.007 0.008-0.031 0.032-0.162	34.0 34.0 34.0 37.0 37.0 37.0 37.0	41.0 41.0 41.0 44.0 44.0 44.0	26.0 26.0 29.0 29.0 29.0	 	7 10 2 3 4	4 4 4 5	
or H24 ^C H3 ^C or H26 ^C H38 ^C	0.020-0.050 0.051-0.113 0.114-0.249 0.250-1.000 0.006-0.007 0.008-0.031 0.032-0.162 0.006-0.007	34.0 34.0 34.0 37.0 37.0 37.0 37.0 39.0	41.0 41.0 41.0 44.0 44.0 44.0	26.0 26.0 29.0 29.0 29.0 32.0	 	7 10 2 3 4 2	4 4 5 	
or H24 ^C H3 ^C	0.020-0.050 0.051-0.113 0.114-0.249 0.250-1.000 0.006-0.007 0.008-0.031 0.032-0.162	34.0 34.0 34.0 37.0 37.0 37.0 37.0	41.0 41.0 41.0 44.0 44.0 44.0	26.0 26.0 29.0 29.0 29.0	 	7 10 2 3 4	4 4 4 5	
or H24 ^C or H26 ^C H38 ^C or H28 ^C	0.020-0.050 0.051-0.113 0.114-0.249 0.250-1.000 0.006-0.007 0.008-0.031 0.032-0.162 0.006-0.007 0.008-0.031 0.032-0.128	34.0 34.0 34.0 37.0 37.0 37.0 39.0 39.0 39.0 39.0	41.0 41.0 41.0 44.0 44.0 44.0 	26.0 26.0 29.0 29.0 29.0 32.0 32.0 32.0	 	7 10 2 3 4 2 3 4	4 4 5 	
or H24 ^C H3 ^C or H26 ^C H38 ^C or	0.020-0.050 0.051-0.113 0.114-0.249 0.250-1.000 0.006-0.007 0.008-0.031 0.032-0.162 0.006-0.007 0.008-0.031	34.0 34.0 34.0 37.0 37.0 37.0 37.0 39.0 39.0	41.0 41.0 41.0 44.0 44.0 44.0 44.0	26.0 26.0 29.0 29.0 29.0 32.0 32.0	 	7 10 2 3 4 2 3	4 4 5 	

∰ B 209 – 04

			TABLE 2 (Jonunueu			
Temper	Specified Thickness, in.	Tensile St	trength, ksi	Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter
Temper		min	max	min	max	Diameter, min, %	Factor, N
H322	0.020–0.050	31.0	35.0	21.0		5	
11022	0.051-0.113	31.0	35.0	21.0	•••	7	
	0.114-0.125	31.0	35.0	21.0		9	
F ^D	0.250-3.000						
			Alloy 50)59			
0	0.078-0.249	48.0		23.0		24	
	0.250-0.787	48.0		23.0		24	
	0.788–1.575 1.576–7.000	48.0 44.0		23.0 21.0		20 17	
H111	0.078–0.249	48.0		23.0		24	
	0.250-0.787	48.0		23.0	•••	24	
	0.788–1.575	48.0		23.0		24	
	1.576-7.000	44.0		21.0		17	
			Alloy 50)83			
0	0.051-1.500	40.0	51.0	18.0	29.0	16	
	1.501-3.000	39.0	50.0	17.0	29.0	16	
	3.001-4.000	38.0		16.0		16	
	4.001-5.000	38.0		16.0		14	
	5.001–7.000 7.001–8.000	37.0 36.0		15.0 14.0		14 12	
1122	0 405 0 407	44.0		21.0	42.0	10	
H32	0.125-0.187	44.0 44.0	56.0 56.0	31.0 31.0	43.0 43.0	10 12	
	0.188–1.500 1.501–3.000	41.0	56.0	29.0	43.0	12	
H112	0.250-1.500	40.0		18.0		12	
Π11 2	1.501–3.000	39.0		17.0		12	
F ^D	0.250-8.000						
1	0.230-0.000		 Alloy 50				
0	0.020-0.050	35.0	44.0	14.0		15	
0	0.051-0.249	35.0	44.0	14.0		18	
	0.250–2.000	35.0	44.0	14.0		16	
H32 ^C	0.020-0.050	40.0	47.0	28.0		6	
or	0.051-0.249	40.0	47.0	28.0		8	
H22 ^C	0.250-2.000	40.0	47.0	28.0		12	
H34 ^{<i>C</i>}	0.009-0.019	44.0	51.0	34.0		4	
or	0.020-0.050	44.0	51.0	34.0		5	
H24 ^C	0.051-0.249	44.0	51.0	34.0		6	
	0.250-1.000	44.0	51.0	34.0		10	
H36 ^C	0.006-0.019	47.0	54.0	38.0		3	
or	0.020-0.050	47.0	54.0	38.0		4	
H26 ^C	0.051-0.162	47.0	54.0	38.0		6	
H38 ^C	0.006-0.020	50.0		41.0		3	
or H28 ^C							
H112	0.188-0.499	36.0		18.0		8	
	0.500-1.000	35.0		16.0		10	
	1.001-2.000	35.0		14.0		14	
	2.001-3.000	34.0		14.0		14	
F ^D	0.250-3.000						
			Alloy 51	54			
0	0.020-0.031	30.0	41.0	11.0		12	
	0.032-0.050	30.0	41.0	11.0		14	
	0.051–0.113 0.114–3.000	30.0 30.0	41.0 41.0	11.0 11.0		16 18	
_							
H32 ^C	0.020-0.050	36.0	43.0	26.0		5	

🕼 В 209 – 04

TABLE	2	Continued
-------	---	-----------

RemperSpecified Thickness, in: minTraile Storeght, kd minYeld Storeght, ic.2 wortset, kd minEurogeton fr planneter, minInd maxInd maxEurogeton fr planneter, minarge0.0851-0.249 0.280-0.00036.043.026.08.0arge0.0851-0.249 0.0851-0.24938.046.029.04.0arge0.006-0.050 0.250-1.00039.046.029.04.0H36 ⁵ 0.006-0.050 0.142-0.24942.049.032.03.0H38 ⁶ 0.006-0.050 0.144-0.16242.049.032.03.0H38 ⁶ 0.006-0.050 0.144-0.16242.049.032.03.0H38 ⁶ 0.006-0.050 0.144-0.16242.049.032.03.0H38 ⁶ 0.006-0.050 0.144-0.16242.049.032.03.0H38 ⁶ 0.006-0.050 0.144-0.16232.03.03.0H120.250-0.499 0.004-0.00030.011.01.0H240.030-0.00030.011.01.0H250.030-0.00030.011.01.0H240.030-0.00030.011.01.0H250.050-2.00030.011.01.0H260.051-0.1330.011.01.0H260.051	min max min max lim of action of ac	or H22 ^C H34 ^C or H24 ^C H36 ^C or H26 ^C H38 ^C or H28 ^C H112 F ^D H24 H25 H28 O	0.051-0.249 0.250-2.000 0.009-0.050 0.051-0.161 0.162-0.249 0.250-1.000 0.051-0.113 0.114-0.162 0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090	min 36.0 39.0 39.0 39.0 39.0 42.0 42.0 42.0 45.0 45.0 45.0 32.0 30.0 30.0 30.0 30.0 31.0 38.0	max 43.0 43.0 46.0 46.0 46.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 	min 26.0 29.0 29.0 29.0 29.0 32.0 32.0 32.0 35.0 35.0 35.0 18.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	max	2 in. or 4× Diameter, min, % 8 12 4 6 7 10 3 4 5 3 4 5 3 4 5 8 11 15 10	Diameter Factor, N
$\begin{array}{c c c c c c c c } \hline min & max & min & $	Max Max Max Max min, % 36.0 43.0 26.0 8 39.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0 46.0 29.0 7 42.0 49.0 32.0 3 42.0 49.0 32.0 4 42.0 49.0 32.0 4 45.0 35.0 3 45.0 35.0 5 30.0 11.0 11 30.0 11.0 10 30.0 3 30.0 11.0 10 30	or H22 ^C H34 ^C or H24 ^C H36 ^C or H26 ^C H38 ^C or H28 ^C H112 F ^D H24 H25 H28 O	0.051-0.249 0.250-2.000 0.009-0.050 0.051-0.161 0.162-0.249 0.250-1.000 0.051-0.113 0.114-0.162 0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090	36.0 36.0 39.0 39.0 39.0 42.0 42.0 42.0 42.0 45.0 45.0 45.0 32.0 30.0 30.0 30.0 31.0 38.0	43.0 43.0 46.0 46.0 46.0 49.0 49.0 49.0 49.0 49.0 	26.0 26.0 29.0 29.0 29.0 32.0 32.0 32.0 35.0 35.0 35.0 18.0 11.0 11.0 11.0 11.0 11.0 11.0		min, % 8 12 4 6 7 10 3 4 5 3 4 5 8 11 15 10 10	
H22 ^C 0.250-2.000 86.0 43.0 26.0 12 H34 ^C 0.009-0.050 39.0 46.0 29.0 4 0.051-0.161 39.0 46.0 29.0 7 0.250-1.000 39.0 46.0 29.0 7 0.250-1.000 39.0 46.0 29.0 7 H36 ^C 0.066-0.050 42.0 49.0 32.0 4 H36 ^C 0.066-0.050 45.0 35.0 3 H32 ^C 0.066-0.050 45.0 35.0 4 H32 ^C 0.066-0.050 45.0 35.0 4 H32 ^C 0.061-0.113 45.0 35.0 4 L262 ^C 0.250-0.499 32.0 11.0 15 F ^D 0.250-3.000 10 H24 0.030-0.090 38.0	36.0 43.0 26.0 12 39.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0 46.0 29.0 7 39.0 46.0 29.0 7 42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 3 45.0 35.0 4 30.0 11.0 15 30.0 11.0 16 31.0 39.0 10 33.0 10 33.0 10 34.0 10	H22 ^C H34 ^C or H24 ^C H36 ^C or H26 ^C H38 ^C or H28 ^C H112 F ^D H24 H25 H28 O	0.250-2.000 0.009-0.050 0.051-0.161 0.162-0.249 0.250-1.000 0.006-0.050 0.051-0.113 0.114-0.162 0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090 0.030-0.090	36.0 39.0 39.0 39.0 42.0 42.0 42.0 45.0 45.0 45.0 32.0 30.0 30.0 30.0 30.0 31.0 38.0	43.0 46.0 46.0 46.0 49.0 49.0 49.0 49.0 Alloy 52 38.0 39.0 	26.0 29.0 29.0 29.0 32.0 32.0 32.0 35.0 35.0 18.0 11.0 11.0 11.0 		12 4 6 7 10 3 4 5 3 4 5 8 11 15 10	
H22 ^C 0.250-2.000 86.0 43.0 26.0 12 H34 ^C 0.009-0.050 39.0 46.0 29.0 4 0.051-0.161 39.0 46.0 29.0 7 0.250-1.000 39.0 46.0 29.0 7 0.250-1.000 39.0 46.0 29.0 7 H36 ^C 0.066-0.050 42.0 49.0 32.0 4 H32 ^C 0.066-0.050 45.0 35.0 3 H32 ^C 0.066-0.050 45.0 35.0 4 H32 ^C 0.066-0.050 45.0 35.0 4 H32 ^C 0.061-0.113 45.0 35.0 4 L260 0.30.0 11.0 15 1 L262 0.30-0.090 30.0 10 H24 0.030-0.090 38.0 12 <td>36.0 43.0 26.0 12 39.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0 46.0 29.0 7 39.0 46.0 29.0 7 42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 3 45.0 35.0 4 30.0 11.0 15 30.0 11.0 16 31.0 39.0 10 33.0 10 33.0 10 34.0 12 35.0</td> <td>H22^C H34^C or H24^C H36^C or H26^C H38^C or H28^C H112 F^D H24 H25 H28 O</td> <td>0.250-2.000 0.009-0.050 0.051-0.161 0.162-0.249 0.250-1.000 0.006-0.050 0.051-0.113 0.114-0.162 0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090 0.030-0.090</td> <td>36.0 39.0 39.0 39.0 42.0 42.0 42.0 45.0 45.0 45.0 32.0 30.0 30.0 30.0 30.0 31.0 38.0</td> <td>43.0 46.0 46.0 46.0 49.0 49.0 49.0 49.0 Alloy 52 38.0 39.0 </td> <td>26.0 29.0 29.0 29.0 32.0 32.0 32.0 35.0 35.0 18.0 11.0 11.0 11.0 </td> <td></td> <td>12 4 6 7 10 3 4 5 3 4 5 8 11 15 10</td> <td></td>	36.0 43.0 26.0 12 39.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0 46.0 29.0 7 39.0 46.0 29.0 7 42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 3 45.0 35.0 4 30.0 11.0 15 30.0 11.0 16 31.0 39.0 10 33.0 10 33.0 10 34.0 12 35.0	H22 ^C H34 ^C or H24 ^C H36 ^C or H26 ^C H38 ^C or H28 ^C H112 F ^D H24 H25 H28 O	0.250-2.000 0.009-0.050 0.051-0.161 0.162-0.249 0.250-1.000 0.006-0.050 0.051-0.113 0.114-0.162 0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090 0.030-0.090	36.0 39.0 39.0 39.0 42.0 42.0 42.0 45.0 45.0 45.0 32.0 30.0 30.0 30.0 30.0 31.0 38.0	43.0 46.0 46.0 46.0 49.0 49.0 49.0 49.0 Alloy 52 38.0 39.0 	26.0 29.0 29.0 29.0 32.0 32.0 32.0 35.0 35.0 18.0 11.0 11.0 11.0 		12 4 6 7 10 3 4 5 3 4 5 8 11 15 10	
or H244 ^o 0.051-0.161 39.0 46.0 29.0 6 H244 ^o 0.052-0.1000 39.0 46.0 29.0 10 H35 ^c 0.006-0.050 42.0 49.0 32.0 3 or 0.051-0.113 42.0 49.0 32.0 5 H36 ^c 0.006-0.050 45.0 35.0 3 or 0.051-0.113 45.0 35.0 4 H26 ^c 0.114-0.128 45.0 35.0 11 $0.250-0.499$ 32.0 16.0 8 11 $0.250-0.000$ 30.0 1.0 11	39.0 46.0 29.0 f 39.0 46.0 29.0 10 42.0 49.0 32.0 3 42.0 49.0 32.0 4 42.0 49.0 32.0 4 42.0 49.0 32.0 4 45.0 35.0 4 45.0 35.0 4 30.0 18.0 11 30.0 11.0 10 31.0 39.0 10 30.0 41.0 11.0 16 30.0 41.0 11.0 16 30.0 41.0 26.0 7 38.0 46.0	or H24 ^C H38 ^C or H28 ^C H112 F ^D H24 H25 H28 O	0.051-0.161 0.162-0.249 0.250-1.000 0.006-0.050 0.051-0.113 0.114-0.162 0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090 0.030-0.090	39.0 39.0 39.0 42.0 42.0 42.0 45.0 45.0 45.0 32.0 30.0 30.0 30.0 30.0 31.0 38.0	46.0 46.0 49.0 49.0 49.0 49.0 Alloy 52 38.0 39.0 	29.0 29.0 29.0 32.0 32.0 35.0 35.0 35.0 18.0 11.0 11.0 11.0 11.0 252		6 7 10 3 4 5 3 4 5 8 11 15 10	··· ··· ··· ··· ··· ··· ··· ···
or H244° 0.051-0.161 39.0 46.0 29.0 6 H244° 0.052-0.100 39.0 46.0 29.0 10 H35° 0.006-0.050 42.0 49.0 32.0 3 or 0.051-0.113 42.0 49.0 32.0 3 H36° 0.006-0.050 45.0 35.0 3 or 0.051-0.113 45.0 35.0 4 H26° 0.006-0.050 45.0 35.0 11 or 0.051-0.13 45.0 35.0 11 120 0.050-0.00 30.0 11.0 11 0.050-0.00 30.0 10 H24 0.030-0.090 30.0 38.0 10 H25 0.030-0.090 30.0 41.0 11.0 12 H24 0.051-0.113 30.0 41.0	39.0 46.0 29.0 f 39.0 46.0 29.0 10 42.0 49.0 32.0 3 42.0 49.0 32.0 4 42.0 49.0 32.0 4 42.0 49.0 32.0 4 45.0 35.0 4 45.0 35.0 4 30.0 18.0 11 30.0 11.0 10 31.0 39.0 10 30.0 41.0 11.0 16 30.0 41.0 11.0 16 30.0 41.0 26.0 7 38.0 46.0	or H24 ^C H36 ^C or H26 ^C H38 ^C or H122 ^C H112 F ^D H24 H25 H28 O	0.051-0.161 0.162-0.249 0.250-1.000 0.006-0.050 0.051-0.113 0.114-0.162 0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090 0.030-0.090	39.0 39.0 39.0 42.0 42.0 42.0 45.0 45.0 45.0 32.0 30.0 30.0 30.0 30.0 31.0 38.0	46.0 46.0 49.0 49.0 49.0 49.0 Alloy 52 38.0 39.0 	29.0 29.0 29.0 32.0 32.0 35.0 35.0 35.0 18.0 11.0 11.0 11.0 11.0 252		6 7 10 3 4 5 3 4 5 8 11 15 10	··· ··· ··· ··· ··· ··· ··· ···
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.0 46.0 29.0 7 42.0 49.0 32.0 3 42.0 49.0 32.0 3 42.0 49.0 32.0 3 45.0 35.0 3 45.0 35.0 5 32.0 18.0 8 30.0 11.0 11 11 30.0 38.0 110 11 31.0 39.0 10 10 31.0 39.0 11.0 16 36.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	H24 ^C H36 ^C or H26 ^C H38 ^C or H28 ^C H112 F ^D H24 H25 H28 O	0.162-0.249 0.250-1.000 0.006-0.050 0.051-0.113 0.114-0.162 0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090	39.0 39.0 42.0 42.0 42.0 45.0 45.0 32.0 30.0 30.0 30.0 30.0 31.0 38.0	46.0 46.0 49.0 49.0 Alloy 52 38.0 39.0 	29.0 29.0 32.0 32.0 35.0 35.0 35.0 18.0 11.0 11.0 11.0 252 		7 10 3 4 5 3 4 5 8 11 15 10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42.0 49.0 32.0 3 42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 3 45.0 35.0 3 45.0 35.0 5 32.0 18.0 8 30.0 11.0 11 11 30.0 38.0 10 31.0 39.0 3 30.0 41.0 11.0 16 30.0 41.0 11.0 12 30.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0	H36 ^C or H26 ^C H38 ^C or H28 ^C H112 F ^D H24 H25 H28 O	0.006-0.050 0.051-0.113 0.114-0.162 0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090	42.0 42.0 45.0 45.0 45.0 32.0 30.0 30.0 30.0 30.0 31.0 38.0	49.0 49.0 49.0 Alloy 52 38.0 39.0 	32.0 32.0 32.0 35.0 35.0 35.0 18.0 11.0 11.0 11.0 11.0 	 	3 4 5 3 4 5 8 11 15 10	
or 0.051-0.113 42.0 49.0 32.0 4 H26 ⁶ 0.014-0.162 42.0 49.0 32.0 5 or 0.061-0.113 45.0 35.0 3 or 0.011-0.128 45.0 35.0 4 128° 0.114-0.128 45.0 35.0 4 0.500-2.000 30.0 11.0 8 0.500-2.000 30.0 11.0 11 2.001-3.000 30.0 H24 0.030-0.090 30.0 38.0 10 H25 0.030-0.090 36.0 18 H26 0.030-0.090 36.0 41.0 11.0 18 H27 0.051-0.113 30.0 41.0 11.0 18 H32 ⁶ 0.051-0.113 39.0 46.0 29.0	42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 3 45.0 35.0 3 45.0 35.0 5 32.0 18.0 8 30.0 11.0 11 11 30.0 38.0 10 10 31.0 39.0 11.0 1 16 1 30.0 41.0 11.0 1 16 1 30.0 41.0 11.0 1 16 1 30.0 41.0 11.0 1 16 1 30.0 41.0 11.0 1 16 1 39.0 46.0 29.0 10 1	or H26 ^C H38 ^C or H28 ^C H112 F ^D H24 H25 H28 O	0.051-0.113 0.114-0.162 0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090	42.0 42.0 45.0 45.0 32.0 30.0 30.0 30.0 30.0 31.0 38.0	49.0 49.0 Alloy 52 38.0 39.0 	32.0 32.0 35.0 35.0 35.0 18.0 11.0 11.0 11.0 11.0 252	··· ··· ··· ··· ··· ···	4 5 3 4 5 8 11 15 10	
or 0.051-0.113 42.0 49.0 32.0 4 H26 ⁶ 0.114-0.162 42.0 49.0 32.0 5 or 0.061-0.113 45.0 35.0 3 or 0.114-0.128 45.0 35.0 4 1200 0.050-0.000 30.0 11.0 8 0.500-2.000 30.0 11.0 11 2.001-3.000 30.0 11.0 15 P ⁰ 0.250-3.000 10 H24 0.030-0.090 30.0 38.0 10 10 H25 0.030-0.090 36.0 41.0 11.0 18 H32 ^o 0.051-0.113 30.0 41.0 11.0 12 H28 0.030-0.090 36.0 43.0 26.0 12 H27 0.051-0.113 30.0 46.0	42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 3 45.0 35.0 3 45.0 35.0 5 32.0 18.0 8 30.0 11.0 11 11 30.0 38.0 10 10 31.0 39.0 11.0 1 16 1 30.0 41.0 11.0 1 16 1 30.0 41.0 11.0 1 16 1 30.0 41.0 11.0 1 16 1 30.0 41.0 11.0 1 16 1 39.0 46.0 29.0 10 1	or H26 ^C H38 ^C or H28 ^C H112 F ^D H24 H25 H28 O	0.051-0.113 0.114-0.162 0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090	42.0 42.0 45.0 45.0 32.0 30.0 30.0 30.0 30.0 31.0 38.0	49.0 49.0 Alloy 52 38.0 39.0 	32.0 32.0 35.0 35.0 35.0 18.0 11.0 11.0 11.0 11.0 252	··· ··· ··· ··· ··· ···	4 5 3 4 5 8 11 15 10	
H26 ^c 0.114-0.162 42.0 49.0 32.0 5 H38 ^c 0.006-0.050 45.0 35.0 3 H38 ^c 0.114-0.128 45.0 35.0 3 H112 0.250-0.499 32.0 18.0 8 0.500-2.000 30.0 11.0 11 z^{00} 0.250-3.000 F ⁰ 0.250-3.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H26 ^C H38 ^C or H28 ^C H112 F ^D H24 H25 H28 O	0.006-0.050 0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090	45.0 45.0 32.0 30.0 30.0 30.0 31.0 38.0	 Alloy 52 38.0 39.0 	35.0 35.0 35.0 18.0 11.0 11.0 252 	 	3 4 5 8 11 15 10	··· ··· ··· ···
or 0.051-0.113 45.0 35.0 4 H128 0.250-0.499 30.0 18.0 8 5^{p} 0.250-0.409 30.0 11.0 11 F^{p} 0.250-3.000 16.0 8 F^{p} 0.250-3.000 15 H28 0.030-0.090 31.0 38.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	or H28 ^C H112 F ^D H24 H25 H28 O	0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090 0.030-0.090	45.0 45.0 30.0 30.0 30.0 30.0 31.0 38.0	 Alloy 52 38.0 39.0 	35.0 35.0 18.0 11.0 11.0 252 	 	4 5 8 11 15 10	··· ··· ··· ···
or H28 ^c 0.051-0.113 0.114-0.128 45.0 35.0 4 H112 0.250-2.000 2.001-3.000 30.0 18.0 8 F ^o 0.250-3.000 11.0 11 F ^o 0.250-3.000 15 H24 0.030-0.090 30.0 38.0 9 H25 0.030-0.090 31.0 38.0 35 V Noise-0.090 30.0 41.0 11.0 16 H28 0.030-0.090 36.0 43.0 26.0 12 O 0.051-0.113 30.0 41.0 11.0 16 H24 ^c 0.051-0.113 30.0 45.0 29.0 6 or 0.051-0.113 39.0 46.0 29.0 7 H24 ^c 0.051-0.113 42.0 49.0 32.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	or H28 ^C H112 F ^D H24 H25 H28 O	0.051-0.113 0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090 0.030-0.090	45.0 45.0 30.0 30.0 30.0 30.0 31.0 38.0	 Alloy 52 38.0 39.0 	35.0 35.0 18.0 11.0 11.0 252 	 	4 5 8 11 15 10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45.0 35.0 5 32.0 11.0 11 30.0 11.0 11 30.0 11.0 11 30.0 11.0 15 10 30.0 38.0 9 31.0 39.0 9 30.0 41.0 11.0 16 30.0 41.0 11.0 18 36.0 43.0 26.0 8 39.0 46.0 29.0 6 39.0 46.0 29.0 10 42.0 49.0 32.0 5 45.0 35.0	H28 ^C H112 F ^D H24 H25 H28 O	0.114-0.128 0.250-0.499 0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090 0.030-0.090 0.051-0.113	45.0 32.0 30.0 30.0 30.0 31.0 38.0	 Alloy 52 38.0 39.0 	35.0 18.0 11.0 11.0 252 	 	5 8 11 15 10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F ^D H24 H25 H28 O	0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090 0.030-0.090	30.0 30.0 30.0 31.0 38.0	 Alloy 52 38.0 39.0 	11.0 11.0 252 	··· ··· ···	11 15 10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F ^D H24 H25 H28 O	0.500-2.000 2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090 0.030-0.090	30.0 30.0 30.0 31.0 38.0	 Alloy 52 38.0 39.0 	11.0 11.0 252 	··· ··· ···	11 15 10	
P^0 0.250-3.000 11.0 15 F^0 0.250-3.000 H24 0.030-0.090 30.0 38.0 H25 0.030-0.090 31.0 39.0 <	30.0 11.0 15 $Alloy 5252$ 31.0 38.0 10 38.0 9 38.0 3 $Alloy 5254$ 30.0 41.0 11.0 16 30.0 41.0 11.0 16 30.0 41.0 11.0 18 36.0 43.0 26.0 8 36.0 3.0 46.0 29.0 7 39.0 46.0 29.0 7 7 42.0 49.0 32.0 5 35.0 5 <	H24 H25 H28 O	2.001-3.000 0.250-3.000 0.030-0.090 0.030-0.090 0.030-0.090 0.030-0.090	30.0 30.0 31.0 38.0	 Alloy 52 38.0 39.0 	11.0 252 	··· ···	15 10	
Alloy 5252 H24 0.030-0.090 30.0 38.0 10 H25 0.030-0.090 31.0 39.0 9 H28 0.030-0.090 38.0 3 O 0.051-0.113 30.0 41.0 11.0 18 H32 ^C 0.051-0.249 36.0 43.0 26.0 12 H32 ^C 0.051-0.161 39.0 46.0 29.0 6 or 0.162-0.249 36.0 43.0 26.0 12 H34 ^C 0.051-0.161 39.0 46.0 29.0 7 H26 ^C 0.051-0.161 39.0 46.0 29.0 7 H26 ^C 0.051-0.113 42.0 49.0 32.0 7 H26 ^C 0.051-0.113 42.0 49.0 32.0 5 H38 ^C 0.050-0.400	Alloy 5252 30.0 38.0 10 31.0 39.0 9 38.0 9 38.0 3 $Alloy 5254$ 16 30.0 41.0 11.0 18 36.0 43.0 26.0 8 36.0 43.0 26.0 12 39.0 46.0 29.0 6 39.0 46.0 29.0 10 42.0 49.0 32.0 4 45.0 35.0 5 45.0 35.0 8 30.0 11.0	H24 H25 H28 O	0.030-0.090 0.030-0.090 0.030-0.090 0.051-0.113	30.0 31.0 38.0	Alloy 52 38.0 39.0 			10	
Alloy 5252 H24 0.030-0.090 30.0 38.0 10 H25 0.030-0.090 31.0 39.0 9 H28 0.030-0.090 38.0 3 O 0.051-0.113 30.0 41.0 11.0 18 H32 ^C 0.051-0.249 36.0 43.0 26.0 12 H32 ^C 0.051-0.161 39.0 46.0 29.0 6 or 0.162-0.249 36.0 43.0 26.0 12 H34 ^C 0.051-0.161 39.0 46.0 29.0 7 H26 ^C 0.051-0.161 39.0 46.0 29.0 7 H26 ^C 0.051-0.113 42.0 49.0 32.0 7 H26 ^C 0.051-0.113 42.0 49.0 32.0 5 H38 ^C 0.050-0.400	Alloy 5252 30.0 38.0 10 31.0 39.0 9 38.0 9 38.0 3 $Alloy 5254$ 16 30.0 41.0 11.0 18 36.0 43.0 26.0 8 36.0 43.0 26.0 12 39.0 46.0 29.0 6 39.0 46.0 29.0 10 42.0 49.0 32.0 4 45.0 35.0 5 45.0 35.0 8 30.0 11.0	H24 H25 H28 O	0.030-0.090 0.030-0.090 0.030-0.090 0.051-0.113	30.0 31.0 38.0	Alloy 52 38.0 39.0 			10	
H24 0.030-0.090 30.0 38.0 10 H25 0.030-0.090 31.0 39.0 9 H28 0.030-0.090 38.0 3 Alloy 5254 O 0.051-0.113 30.0 41.0 11.0 18 H32 ^C 0.051-0.249 36.0 43.0 26.0 12 H22 ^C 0.051-0.161 39.0 46.0 29.0 6 or 0.162-0.249 39.0 46.0 29.0 7 H22 ^C 0.051-0.161 39.0 46.0 29.0 7 H24 ^C 0.250-1.000 39.0 46.0 29.0 7 H24 ^C 0.051-0.113 42.0 49.0 32.0 5 H36 ^C 0.051-0.113 42.0 49.0 32.0 4 or 0.142-0.162 42.0 49.0 32.0 5 H38 ^C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H25 H28 O	0.030-0.090 0.030-0.090 0.051-0.113	31.0 38.0	38.0 39.0 				
H25 $0.030-0.090$ 31.0 39.0 9 H28 $0.030-0.090$ 38.0 3 O $0.051-0.113$ 30.0 41.0 11.0 16 H32 ^C $0.051-0.249$ 36.0 43.0 26.0 8 or $0.250-2.000$ 36.0 43.0 26.0 12 H34 ^C $0.051-0.161$ 39.0 46.0 29.0 7 H34 ^C $0.051-0.113$ 42.0 49.0 32.0 4 0 $0.051-0.113$ 45.0 35.0 4 0 $0.051-0.113$ 45.0 35.0 <t< td=""><td>31.0 39.0 9 38.0 3 Alloy 5254 11.0 16 30.0 41.0 11.0 18 30.0 41.0 11.0 18 36.0 43.0 26.0 8 36.0 43.0 26.0 12 39.0 46.0 29.0 7 39.0 46.0 29.0 7 39.0 46.0 29.0 7 39.0 46.0 29.0 7 42.0 49.0 32.0 5 45.0 35.0 4 30.0 18.0 8 30.0 11.0 15 .</td><td>H25 H28 O</td><td>0.030-0.090 0.030-0.090 0.051-0.113</td><td>31.0 38.0</td><td>39.0 </td><td></td><td></td><td></td><td></td></t<>	31.0 39.0 9 38.0 3 Alloy 5254 11.0 16 30.0 41.0 11.0 18 30.0 41.0 11.0 18 36.0 43.0 26.0 8 36.0 43.0 26.0 12 39.0 46.0 29.0 7 39.0 46.0 29.0 7 39.0 46.0 29.0 7 39.0 46.0 29.0 7 42.0 49.0 32.0 5 45.0 35.0 4 30.0 18.0 8 30.0 11.0 15 .	H25 H28 O	0.030-0.090 0.030-0.090 0.051-0.113	31.0 38.0	39.0 				
H28 0.030-0.090 38.0 3 O 0.051-0.113 0.114-3.000 30.0 41.0 11.0 18 H32 ^C 0.051-0.249 36.0 43.0 26.0 8 or 0.250-2.000 36.0 43.0 26.0 12 H34 ^C 0.051-0.161 39.0 46.0 29.0 6 or 0.162-0.249 39.0 46.0 29.0 12 H34 ^C 0.051-0.161 39.0 46.0 29.0 6 or 0.162-0.249 39.0 46.0 29.0 10 H36 ^C 0.051-0.113 42.0 49.0 32.0 4 or 0.114-0.162 42.0 49.0 32.0 4 0 0.051-0.113 45.0 35.0 5 H126 ^C 0.051-0.113 45.0<	38.0 3 Alloy 5254 11.0 16 30.0 41.0 11.0 18 30.0 41.0 11.0 18 30.0 41.0 11.0 18 36.0 43.0 26.0 8 36.0 43.0 26.0 12 39.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0 46.0 29.0 10 42.0 49.0 32.0 4 45.0 35.0 4 32.0 18.0 8 30.0 11.0 15	H28 O	0.030-0.090	38.0					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Alloy 5254 30.0 41.0 11.0 16 30.0 41.0 11.0 18 36.0 43.0 26.0 8 36.0 43.0 26.0 12 39.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0 46.0 29.0 10 42.0 49.0 32.0 10 42.0 49.0 32.0 5 45.0 35.0 4 30.0 18.0 8 30.0 11.0 15 45.0 11.0	0	0.051–0.113					9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Alloy 5254 30.0 41.0 11.0 16 30.0 41.0 11.0 18 36.0 43.0 26.0 8 36.0 43.0 26.0 12 39.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0 46.0 29.0 10 42.0 49.0 32.0 10 42.0 49.0 32.0 5 45.0 35.0 4 30.0 18.0 8 30.0 11.0 15 45.0	0	0.051–0.113					3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.0 41.0 11.0 16 30.0 41.0 11.0 18 36.0 43.0 26.0 8 36.0 43.0 26.0 12 39.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0 46.0 29.0 10 42.0 49.0 32.0 10 45.0 35.0 4 45.0 35.0 5 30.0 11.0 11 30.0 11.0 15 45.0 11.0 11 30.0 11.0 15				Allov 52				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.0 41.0 11.0 18 36.0 43.0 26.0 8 36.0 43.0 26.0 12 39.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0 46.0 29.0 10 42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 4 30.0 11.0 5 32.0 18.0 8 30.0 11.0 15 32.0 11.0 15 <td></td> <td></td> <td>30.0</td> <td></td> <td></td> <td></td> <td>16</td> <td></td>			30.0				16	
or H22 ^C 0.250-2.000 36.0 43.0 26.0 12 H34 ^C 0.051-0.161 39.0 46.0 29.0 6 or 0.162-0.249 39.0 46.0 29.0 7 H24 ^C 0.250-1.000 39.0 46.0 29.0 7 H36 ^C 0.051-0.113 42.0 49.0 32.0 4 or 0.114-0.162 42.0 49.0 32.0 4 or 0.114-0.162 42.0 49.0 32.0 4 or 0.114-0.128 45.0 35.0 4 or 0.114-0.128 45.0 35.0 5 H112 0.250-0.499 32.0 18.0 11 2.001-3.000 30.0 11.0 15 F ^D 0.250-3.000 11.0 12 0.032-0.050 31.0 41.0 12.0 <	36.0 43.0 26.0 12 39.0 46.0 29.0 7 39.0 46.0 29.0 7 39.0 46.0 29.0 7 42.0 49.0 32.0 4 42.0 49.0 32.0 4 45.0 35.0 4 45.0 35.0 5 30.0 11.0 11 30.0 11.0 15 31.0 41.0 12.0 12	H32 ^C	0						
or H22 ^c 0.250-2.000 36.0 43.0 26.0 12 H34 ^c 0.051-0.161 39.0 46.0 29.0 6 or 0.162-0.249 39.0 46.0 29.0 7 H24 ^c 0.250-1.000 39.0 46.0 29.0 7 H36 ^c 0.051-0.113 42.0 49.0 32.0 4 or 0.114-0.162 42.0 49.0 32.0 4 or 0.114-0.162 42.0 49.0 32.0 4 or 0.114-0.128 45.0 35.0 4 or 0.114-0.128 45.0 35.0 5 H112 0.250-0.499 32.0 18.0 11 2.001-3.000 30.0 11.0 15 F ^p 0.250-3.000 11.0 12 0.032-0.050 31.0 41.0 12.0 <	36.0 43.0 26.0 12 39.0 46.0 29.0 7 39.0 46.0 29.0 7 39.0 46.0 29.0 7 42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 4 45.0 35.0 5 30.0 11.0 11 30.0 11.0 15 31.0 41.0 12.0 12	H32°	0.051.0.040	20.0	40.0	00.0		0	
H22 ^c H34 ^c 0.051-0.161 39.0 46.0 29.0 6 or 0.162-0.249 39.0 46.0 29.0 7 H24 ^c 0.250-1.000 39.0 46.0 29.0 10 H36 ^c 0.051-0.113 42.0 49.0 32.0 4 or 0.114-0.162 42.0 49.0 32.0 4 h26 ^c 0.051-0.113 45.0 35.0 4 or 0.114-0.128 45.0 35.0 4 h28 ^c 0.051-0.113 45.0 35.0 4 or 0.114-0.128 45.0 35.0 5 H112 0.250-0.499 32.0 18.0 8 0.500-2.000 30.0 11.0 15 F ^p 0.250-3.000 O 0.020-0.031 31.0 41.0 <td>39.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0 46.0 29.0 10 42.0 49.0 32.0 4 42.0 49.0 32.0 4 45.0 35.0 4 45.0 35.0 4 30.0 18.0 8 30.0 11.0 15 31.0 41.0 12.0 12 </td> <td>or</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	39.0 46.0 29.0 6 39.0 46.0 29.0 7 39.0 46.0 29.0 10 42.0 49.0 32.0 4 42.0 49.0 32.0 4 45.0 35.0 4 45.0 35.0 4 30.0 18.0 8 30.0 11.0 15 31.0 41.0 12.0 12	or							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.0 46.0 29.0 7 39.0 46.0 29.0 10 42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 4 45.0 35.0 4 32.0 18.0 8 30.0 11.0 11 30.0 11.0 15 31.0 41.0 12.0 12		0.230-2.000	30.0	43.0	20.0		12	•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.0 46.0 29.0 7 39.0 46.0 29.0 10 42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 4 45.0 35.0 4 32.0 18.0 8 30.0 11.0 11 30.0 11.0 15 31.0 41.0 12.0 12	11246	0.051.0.101	20.0	46.0	20.0		C	
H24 ^C 0.250-1.000 39.0 46.0 29.0 10 H36 ^C 0.051-0.113 42.0 49.0 32.0 4 or 0.114-0.162 42.0 49.0 32.0 5 H36 ^C 0.051-0.113 45.0 35.0 4 or 0.114-0.128 45.0 35.0 4 H112 0.250-0.499 32.0 18.0 8 0.500-2.000 30.0 11.0 15 F ^D 0.250-3.000 12.0 O 0.020-0.031 31.0 41.0 12.0 14 0.032-0.050 31.0 41.0 12.0 14 0.051-0.113 31.0 41.0 12.0 14	39.0 46.0 29.0 10 42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 4 45.0 35.0 4 32.0 18.0 5 30.0 11.0 11 30.0 11.0 15 31.0 41.0 12.0 12								
H36 ^C or H26 ^C 0.051-0.113 0.114-0.162 42.0 42.0 49.0 49.0 32.0 32.0 4 5 H38 ^C or 0.114-0.128 0.051-0.113 45.0 45.0 35.0 35.0 5 4 0.114-0.128 4 5 H112 0.250-0.499 0.500-2.000 30.0 30.0 18.0 11.0 8 11 F^p 0.250-3.000 30.0 11.0 11.0 12 12 F^p 0.250-3.000 10 11.0 12.0 12 12 0 0.020-0.031 31.0 41.0 12.0 14 14 0.051-0.113 31.0 41.0 12.0 16	42.0 49.0 32.0 4 42.0 49.0 32.0 5 45.0 35.0 4 45.0 35.0 5 32.0 18.0 5 32.0 18.0 8 30.0 11.0 11 30.0 11.0 15 31.0 41.0 12.0 12								
or H26 ^C 0.114-0.162 42.0 49.0 32.0 5 H38 ^C or H28 ^C 0.051-0.113 45.0 35.0 4 h112 0.250-0.499 32.0 18.0 8 h112 0.250-0.499 32.0 11.0 11 2.001-3.000 30.0 11.0 15 F ^D 0.250-3.000 V Alloy 5454 12.0 12 0.032-0.050 31.0 41.0 12.0 14 0.051-0.113 31.0 41.0 12.0 16	42.0 49.0 32.0 5 45.0 35.0 4 45.0 35.0 5 32.0 18.0 8 30.0 11.0 11 30.0 11.0 15 15 31.0 41.0 12.0 12								
H26 ^C H38 ^C 0.051-0.113 45.0 35.0 4 or 0.114-0.128 45.0 35.0 5 H112 0.250-0.499 32.0 18.0 8 0.500-2.000 30.0 11.0 11 2.001-3.000 30.0 11.0 15 F ^D 0.250-3.000 Mloy 5454 12 O 0.020-0.031 31.0 41.0 12.0 12 O 0.052-0.050 31.0 41.0 12.0 12 O 0.020-0.031 31.0 41.0 12.0 14 0.051-0.113 31.0 41.0 12.0 16	45.0 35.0 4 45.0 35.0 5 32.0 18.0 8 30.0 11.0 11 30.0 11.0 15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
H38 ^C or H28 ^C 0.051-0.113 0.114-0.128 45.0 45.0 35.0 35.0 44 H112 0.250-0.499 32.0 18.0 8 0.500-2.000 30.0 11.0 11 2.001-3.000 30.0 11.0 15 F ^p 0.250-3.000	45.0 35.0 5 32.0 18.0 8 30.0 11.0 11 30.0 11.0 15 11.0 15 <t< td=""><td></td><td>0.114–0.162</td><td>42.0</td><td>49.0</td><td>32.0</td><td></td><td>5</td><td></td></t<>		0.114–0.162	42.0	49.0	32.0		5	
or $H28^{C}$ 0.114-0.128 45.0 35.0 5 H112 0.250-0.499 32.0 18.0 8 0.500-2.000 30.0 11.0 11 2.001-3.000 30.0 11.0 15 F^{D} 0.250-3.000 .	45.0 35.0 5 32.0 18.0 8 30.0 11.0 11 30.0 11.0 15 11.0 15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
H28 ^C H112 $0.250-0.499$ 32.0 18.0 8 $0.500-2.000$ 30.0 11.0 11 $2.001-3.000$ 30.0 11.0 11 F^D $0.250-3.000$ 11.0 15 Alloy 5454 O $0.020-0.031$ 31.0 41.0 12.0 12 $0.032-0.050$ 31.0 41.0 12.0 14 $0.051-0.113$ 31.0 41.0 12.0 16	32.0 18.0 8 30.0 11.0 11 30.0 11.0 15 11.0 15 31.0 41.0 12.0 12								
H112 $0.250-0.499$ 32.0 18.0 8 $0.500-2.000$ 30.0 11.0 11 $2.001-3.000$ 30.0 11.0 11 F^D $0.250-3.000$ 11.0 15 F ^D $0.250-3.000$ F^D $0.250-3.000$ 11.0 15 F^D $0.250-3.000$ $O_{0.220-0.031$ 31.0 41.0 12.0 12 $0.032-0.050$ 31.0 41.0 12.0 14 $0.051-0.113$ 31.0 41.0 12.0 16	30.0 11.0 11 30.0 11.0 15 15 31.0 41.0 12.0 12	or H28 ^C	0.114–0.128	45.0		35.0		5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.0 11.0 11 30.0 11.0 15 15 31.0 41.0 12.0 12								
2.001-3.000 30.0 11.0 15 F ^D 0.250-3.000 Alloy 5454 O 0.020-0.031 31.0 41.0 12.0 12 0.032-0.050 31.0 41.0 12.0 14 0.051-0.113 31.0 41.0 12.0 16	30.0 11.0 15 Alloy 5454 12	H112							
F ^D 0.250–3.000 <t< td=""><td> Alloy 5454 31.0 41.0 12.0 12 </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Alloy 5454 31.0 41.0 12.0 12								
Alloy 5454 O 0.020-0.031 31.0 41.0 12.0 12 0.032-0.050 31.0 41.0 12.0 14 0.051-0.113 31.0 41.0 12.0 16	Alloy 5454 31.0 41.0 12.0 12	- 0							
O 0.020-0.031 31.0 41.0 12.0 12 0.032-0.050 31.0 41.0 12.0 14 0.051-0.113 31.0 41.0 12.0 16 0.041.0 12.0 16 12.0 16	31.0 41.0 12.0 12	F	0.250-3.000						
0.032-0.050 31.0 41.0 12.0 14 0.051-0.113 31.0 41.0 12.0 16 0.414 2.000 21.0 41.0 12.0 16									
0.051-0.113 31.0 41.0 12.0 16		0							
0.444.2.000 24.0 44.0 42.0 48									
0.111 0.000 01.0 41.0 12.0 10	31.0 41.0 12.0 16 31.0 41.0 12.0 18		0.051-0.113						
		11206	0.000 0.050	20.0	44.0	00.0		F	
H32 ^C 0.020–0.050 36.0 44.0 26.0 5	26.0 44.0 26.0 8								
or $0.051-0.249$ 36.0 44.0 26.0 8 $H22^C$ $0.250-2.000$ 36.0 44.0 26.0 12	26.0 44.0 26.0 42								
H22 ^C 0.250–2.000 36.0 44.0 26.0 12	36.0 44.0 26.0 12	1122	0.200-2.000	30.0	44.0	20.0		12	
H34 ^C 0.020-0.050 39.0 47.0 29.0 4		110.10							
					47.0			6	
$H24^{\circ}$ 0.162-0.249 39.0 47.0 29.0 7		or	0.051-0.161		47.0	00.0			
					47.0			6	
H24 ^C 0.162–0.249 39.0 47.0 29.0 7		or	0.051-0.161		1 - 0	<u> </u>			

₩ B 209 – 04

 TABLE 2
 Continued

			TABLE 2 C	Continued			
Temper	Specified Thickness, in.	Tensile St	rength, ksi	Yield Strength (0.	.2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter
Temper	opecineu mickness, m.	min	max	min	max	Diameter, min, %	Factor, N
H112	0.250-0.499	32.0		18.0		8	
	0.500-2.000	31.0		12.0		11	
	2.001-3.000	31.0		12.0		15	
F ^C	0.250-3.000						
			Alloy 57	54			
0	0.030-0.055	29.0	39.0	12.0		17	
	0.056-0.087	29.0	39.0	12.0		18	
	0.088–0.138	29.0	39.0	12.0		19	
			Alloy 54				
0	0.051-1.500	42.0	53.0	19.0	30.0	16	
	1.501-3.000	41.0	52.0	18.0	30.0	16	
	3.001-5.000	40.0		17.0		14	
	5.001-7.000	39.0		16.0		14	
	7.001-8.000	38.0		15.0		12	
H32	0.188-0.499	46.0	59.0	33.0	46.0	12	
	0.500-1.500	44.0	56.0	31.0	44.0	12	
	1.501-3.000	41.0	54.0	29.0	43.0	12	
H112	0.250-1.500	42.0		19.0		12	
11112	1.501–3.000	41.0		18.0		12	
F ^C	0.250-8.000						
Γ.	0.230-8.000						
			Alloy 54	.57			
0	0.030-0.090	16.0	22.0			20	
			Alloy 56				
0	0.051-0.113	25.0	31.0	9.5		19	0
	0.114-0.249	25.0	31.0	9.5		20	0
	0.250-3.000	25.0	31.0	9.5		18	
H32 ^{<i>D</i>}	0.051-0.113	31.0	38.0	23.0		7	2
or	0.114-0.249	31.0	38.0	23.0		9	3
H22 [⊅]	0.250-0.499	31.0	38.0	23.0		11	
	0.500-2.000	31.0	38.0	23.0		12	
H34 ^D	0.051–0.113	34.0	41.0	26.0		6	3
or	0.114-0.249	34.0	41.0	26.0		7	4
H24 ^D	0.250-1.000	34.0	41.0	26.0		10	
H112	0.250-0.499	28.0		16.0		7	
	0.500-2.000	25.0		9.5		12	•••
	2.001-3.000	25.0		9.5		16	
F ^C	0.250-3.000						
•	0.200-0.000		 Allov 56				
H241 ^G	0.020.0.000	10.0	Alloy 56			10	
nz41 ⁻	0.030-0.090	18.0	26.0			13	
H25	0.030-0.090	20.0	28.0			8	
H26	0.030-0.090	22.0	30.0			7	
H28	0 030-0 090	25.0				5	
H28	0.030-0.090	25.0				5	

^A To determine conformance to this specification each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E 29.

^B The basis for establishment of mechanical property limits is shown in Annex A1.

^C Material in either of these tempers (H32 or H22), (H34 or H24), (H36 or H26), (H38 or H28), (H12 or H22), (H14 or H24), (H16 or H26), (H18 or H28), may be supplied at the option of the supplier, unless one is specifically excluded by the contract or purchase order. When ordered as H2x tempers, the maximum tensile strength and minimum yield strength do not apply. When H2x tempers are supplied instead of ordered H1x or H3x tempers, the supplied H2x temper material shall meet the respective H1x or H3x temper tensile property limits.

^D Tests of F temper plate for tensile properties are not required.

^E The tension test specimen from plate 0.500 in. and thicker is machined from the core and does not include the cladding alloy.

🕼 В 209 – 04

TABLE 3 Tensile Property Limits for Heat-Treatable Alloys^{A,B}

-		Tensile Str	ength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter	
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N	
			Alloy 20	14				
0	0.020-0.124		32.0		16.0	16	0	
	0.125-0.249		32.0		16.0	16	1	
	0.250-0.499		32.0		16.0	16	2	
ГЗ	0.020-0.039	59.0		35.0		14	3	
15	0.040-0.124	59.0		36.0	•••	14	3	
	0.125-0.249	59.0		36.0		14	4	
T4 ^C	0.020–0.124 0.125–0.249	59.0 59.0		35.0 35.0		14 14	3 4	
	0.120 0.240	00.0		00.0		14	7	
T42 ^D	0.020-0.124	58.0		34.0		14	3	
	0.125-0.249	58.0		34.0		14	4	
	0.250-0.499	58.0		34.0		14	5	
	0.500-1.000	58.0		34.0		14		
T451 ^E	0.250-1.000	58.0		36.0		14		
1451-	1.001-2.000	58.0		36.0		14		
	2.001–2.000	57.0		36.0		8		
-								
T6, T62 ^D	0.020-0.039	64.0		57.0		6	4	
	0.040-0.050	66.0		58.0		7	5	
	0.051-0.124	66.0		58.0		7	6	
	0.125–0.249	66.0		58.0		7	8	
T62 ^D , T651 ^E	0.250-0.499	67.0		59.0		7	10	
	0.500-1.000	67.0		59.0		6		
	1.001-2.000	67.0		59.0		4		
	2.001-2.500	65.0		58.0		2		
	2.501-3.000	63.0		57.0		2		
	3.001-4.000	59.0		55.0		1		
=F	0.250-1.000							
			Alclad Alloy					
Э	0.020-0.499		30.0		14.0	16		
	0.500-1.000		32.0 ^G			10		
F2	0.020.0.020	54.0		22.0		14		
Т3	0.020-0.039	54.0		33.0		14		
	0.040–0.124 0.125–0.249	55.0 57.0		34.0 35.0		14 15		
	0.120 0.210	01.0		00.0		10		
Г4 ^С	0.020-0.124	54.0		31.0		14		
	0.125-0.249	55.0		32.0		14		
	0.040-0.249	57.0		34.0		15		
Г42 ^D	0.020-0.124	54.0		31.0		14		
	0.125–0.249	55.0		32.0		14		
	0.250-0.499	57.0		34.0		15		
	0.500-1.000	58.0 ^G		34.0 ^G		14		
۲451 ^{<i>E</i>}	0.250, 0.400	E7 0		26.0		15		
1401	0.250-0.499 0.500-1.000	57.0 58.0 ^G		36.0 36.0 ^G		15 14		
	1.001–2.000	58.0 ⁻⁶		36.0 ⁻⁶	•••			
	2.001-2.000	58.0 [°] 57.0 ^G		36.0 [°] 36.0 [°]		12 8		
_								
Г6, Т62 ^D	0.020-0.039	62.0		54.0		7		
	0.040-0.050	63.0		55.0		7		
	0.051–0.124 0.125–0.249	64.0		57.0		8		
	0.120-0.249							
T62 ^D , T651 ^E	0.250-0.499	64.0		57.0		8		
24.1	0.500-1.000	67.0 ^{<i>G</i>}		59.0 ^G		6		
	1.001-2.000	67.0 ^G		59.0 ^G		4		
				FO 0 <i>G</i>		0		
	2.001-2.500	65.0 ^G		58.0 ^G		2		
	2.001–2.500 2.501–3.000	65.0 ^G 63.0 ^G 59.0 ^G		58.0 ⁰ 57.0 ^G 55.0 ^G		2		

	B	209 – 04	
--	---	----------	--

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Sti min	rength, ksi max	Yield Strength (min	0.2 % offset), ksi max	Elongation in 2 in. or 4× Diameter,	Bend Diameter Factor, <i>N</i>
						min, %	
F	0.250-1.000						
			Alloy 202	4			
)	0.010-0.032		32.0		14.0	12	0
	0.033-0.063		32.0		14.0	12	1
	0.064–0.128		32.0		14.0	12	4
	0.129-0.499		32.0		14.0	12	6
3	0.008-0.009	63.0		42.0		10	4
	0.010-0.020	63.0		42.0		12	4
	0.021-0.051	63.0		42.0		15	5
	0.052-0.128	63.0		42.0		15	6
	0.129–0.249	64.0		42.0		15	8
T351 ^E	0.250-0.499	64.0		42.0		12	
	0.500-1.000	63.0		42.0		8	
	1.001-1.500	62.0		42.0		7	
	1.501-2.000	62.0		42.0		6	
	2.001-3.000	60.0		42.0		4	
	3.001-4.000	57.0		41.0		4	
361 ^{<i>H</i>}	0.020-0.051	67.0		50.0		8	4
	0.052-0.062	67.0		50.0		8	8
	0.063-0.249	68.0		51.0		9	8
	0.250-0.499	66.0		49.0		9	
	0.500	66.0		49.0		10	
T4 ^C	0.010-0.020	62.0		40.0		12	4
	0.021-0.051	62.0		40.0		15	5
	0.052-0.128	62.0		40.0		15	6
	0.129–0.249	62.0		40.0		15	8
42 ^D	0.010-0.020	62.0		38.0		12	4
	0.021-0.051	62.0		38.0		15	5
	0.052-0.128	62.0		38.0		15	6
	0.129-0.249	62.0		38.0		15	8
	0.250-0.499	62.0		38.0		12	10
	0.500-1.000	61.0		38.0		8	
	1.001-1.500	60.0		38.0		7	
	1.501-2.000	60.0		38.0		6	
	2.001-3.000	58.0		38.0		4	
62 ^D	0.010-0.499	64.0		50.0		5	
	0.500-2.000	63.0		50.0		5	
72 ^{DI}	0.010-0.249	60.0		46.0		5	
81	0.010-0.249	67.0		58.0		5	
851 ^E	0.250-0.499	67.0		58.0		5	
	0.500-1.000	66.0		58.0		5	
	1.001–1.499	66.0		57.0		5	
861 ^{<i>H</i>}	0.020-0.062	70.0		62.0		3	
	0.063-0.249	71.0		66.0		4	
	0.250-0.499	70.0		64.0		4	
	0.500	70.0		64.0		4	
F	0.250-3.000						
			Alclad Alloy	2024			
)	0.008-0.009		30.0		14.0	10	0
	0.010-0.032		30.0		14.0	12	0
	0.033-0.062		30.0		14.0	12	1
	0.063-0.249		32.0		14.0	12	2
	0.250-0.499		32.0		14.0	12	3
	0.500-1.750		32.0 ^G			12	
3	0.008-0.009	58.0		39.0		10	4
						12	4

🕼 В 209 – 04

TABLE 3 Continued

		T	ABLE 3 C	ontinued				
Temper	Specified Thickness, in.	Tensile St	rength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diamete	
Temper		min	max	min	max	Diameter, min, %	Factor, A	
	0.021-0.040	59.0		39.0		15	4	
	0.041-0.062	59.0		39.0		15	5	
	0.063-0.128	61.0		40.0		15	5	
	0.129-0.249	62.0		40.0		15	8	
۲351 ^{<i>E</i>}	0.250-0.499	62.0		40.0		12		
001	0.500-1.000	63.0 ^G		42.0 ^G		8		
	1.001–1.500	62.0 ^G		42.0 ^G		7		
	1.501–2.000	62.0 ^G		42.0 ^G		6		
		60.0 ^G		42.0 ^G				
	2.001-3.000					4		
	3.001-4.000	57.0 ^G		41.0 ^G		4		
361 ^{<i>H</i>}	0.020.0.063	61.0		47.0		0	4	
301	0.020-0.062	61.0		47.0		8 9	4	
	0.063-0.187	64.0		48.0			6	
	0.188-0.249	64.0		48.0		9	8	
	0.250-0.499	64.0		48.0		9		
	0.500	66.0 ^G		49.0 ^G		10		
46	0.010, 0.000	50.0		00.0		10		
4 ^C	0.010-0.020	58.0		36.0		12	4	
	0.021-0.040	58.0		36.0		15	4	
	0.041-0.062	58.0		36.0		15	5	
	0.063–0.128	61.0		38.0		15	5	
							-	
42 ^D	0.008-0.009	55.0		34.0		10	4	
	0.010-0.020	57.0		34.0		12	4	
	0.021-0.040	57.0		34.0		15	4	
	0.041-0.062	57.0		34.0		15	5	
	0.063-0.128	60.0		36.0		15	5	
	0.129-0.187	60.0		36.0		15	8	
	0.188-0.249	60.0		36.0		15	8	
	0.250-0.499	60.0		36.0		12	10	
	0.500-1.000	61.0 ^G		38.0 ^G	•••	8		
	1.001–1.500	60.0 ^G		38.0 ^G	•••	7		
		60.0 ^G		38.0 ^G		6		
	1.501-2.000	58.0 ^G		38.0 ⁻ 38.0 ^G				
	2.001-3.000	58.0-		38.0-		4		
Г62 ^D	0.010-0.062	60.0		47.0		5		
02	0.063-0.499	62.0		49.0		5		
	0.003-0.499	02.0		49.0		5		
[72 ^{<i>D</i>,<i>I</i>}	0.010-0.062	56.0		43.0		5		
12	0.063-0.249	58.0		45.0		5		
	0.003-0.249	50.0		45.0		5		
Г81	0.010, 0.062	62.0		E4 0		5		
01	0.010-0.062			54.0				
	0.063–0.249	65.0		56.0		5		
Г851 ^{<i>Е</i>}	0.250, 0.400	65.0		FC 0		F		
100	0.250-0.499	65.0 66.0 ^G		56.0 58.0 ^G		5 5		
	0.500-1.000	00.0		56.0		5		
	0.020.0.062	64.0		59.0		2		
001	0.020-0.062	64.0		58.0		3		
	0.063-0.187	69.0		64.0		4		
	0.188-0.249	69.0		64.0		4		
	0.250-0.499	68.0		62.0		4		
	0.500	70.0 ^G		64.0 ^G		4		
-F								
F	0.250-3.000							
		1	1/2 % Alclad A	lloy 2024				
)	0.188-0.499		32.0		14.0	12		
	0.500-1.750		32.0 ^G			12		
-3	0.188–0.249	63.0		41.0		15		
Г361	0.188–0.249	65.0		49.0		9		
	0.250-0.499	65.0		48.0		9		
	0.500	66.0 ^G		49.0 ^G		10		
351 ^E	0.250-0.499	63.0		41.0		12		
	0.500-1.000	63.0 ^G		42.0 ^G		8		
	1.001-1.500	62.0 ^G		42.0 ^G		7		
	1.501–2.000	62.0 ^G		42.0 ^G		6		
	2.001–3.000	60.0 ^G		42.0 ^G		4		
		00.0						
	3.001-4.000	57.0 ^G		41.0 ^G		4		

TABLE 3 Continued

		Т	ABLE 3 C	ontinued			
Temper	Specified Thickness, in.	Tensile Str	ength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter
Temper	Specified Trickness, in.	min	max	min	max	Diameter, min, %	Factor, N
T42 ^D	0.188–0.249	61.0		37.0		15	
	0.250-0.499	61.0		37.0		12	
	0.500-1.000	61.0 ^G		38.0 ^G		8	
	1.001-1.500	60.0 ^G		38.0 ^G		7	
	1.501-2.000	60.0 ^G		38.0 ^G		6	
	2.001-3.000	58.0 ^G		38.0 ^G		4	
T62 ^D	0.188–0.499	62.0		49.0		5	
T72 ^{D,1}	0.188-0.249	59.0		45.0		5	
T81	0.188–0.249	66.0		57.0		5	
T851 ^E	0.250-0.499	66.0		57.0		5	
	0.500-1.000	66.0 ^{<i>G</i>}		58.0 ^G		5	
T861	0.188-0.249	70.0		65.0		4	
	0.250-0.499	69.0		63.0		4	
	0.500	70.0 ^G		64.0 ^G		4	
F ^F							
F'	0.250-3.000	 ΔIc	 lad One-Side	 Allov 2024			
		Alt		,			
0	0.008-0.009		31.0		14.0	10	
	0.010-0.062		31.0		14.0	12	
	0.063–0.499		32.0		14.0	12	
Т3	0.010-0.020	61.0		40.0		12	
10	0.021-0.062	61.0		40.0		15	
	0.063-0.128	62.0		41.0		15	
	0.129–0.249	63.0		41.0		15	
T351 ^E	0.250-0.499	63.0		41.0		12	
T 004		04.0		40.0			
T361	0.020-0.062	64.0		48.0		8	
	0.063–0.249 0.250–0.499	66.0 65.0		49.0 48.0		9 9	
TIOD							
T42 ^D	0.010-0.020	59.0		35.0		12	
	0.021-0.062	59.0		36.0		15	
	0.063-0.249	61.0		37.0		15	
	0.250-0.499	61.0		37.0		12	
T62 [₽]	0.010-0.062	62.0		48.0		5	
	0.063-0.249	63.0		49.0		5	
T72 ^{DI}	0.010-0.062	58.0		44.0		5	
	0.063–0.499	59.0		45.0		5	
T81	0.010-0.062	64.0		56.0		5	
	0.063-0.249	66.0		57.0		5	
T851 ^{<i>E</i>}	0.250-0.499	66.0		57.0		5	
T861	0.020-0.062	67.0		60.0		3	
	0.063-0.249	70.0		65.0		4	
	0.250-0.499	69.0		63.0		4	
F ^F	0.250-0.499						
				ide Alloy 2024			
0	0.188–0.499		32.0		14.0	12	
Т3	0.188-0.249	63.0		41.0		15	
T351 ^E	0.250-0.499	63.0		41.0		12	
T361	0.188-0.249	66.0		49.0		9	
	0.250-0.499	65.0		48.0		9	
T42 ^D	0 199 0 240	61.0		27.0		15	
142-	0.188-0.249	61.0		37.0		15	
	0.250-0.499	61.0		37.0		12	

TABLE 3 Continued

		Tensile Str	Tensile Strength, ksi		Yield Strength (0.2 % offset), ksi		Bend
Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4× Diameter, min, %	Diameter Factor, <i>N</i>
T62 ^D	0.188–0.499	63.0		49.0		5	
T72 ^{DI}	0.188–0.249	59.0		45.0		5	
T81	0.188–0.249	66.0		57.0		5	
T851 ^E	0.250-0.499	66.0		57.0		5	
T861	0.188–0.249 0.250–0.499	70.0 69.0		65.0 63.0		4 4	
F ^F	0.250-0.499						

Temper Specified Thickness, in.		Axis of	Tensile Strength, ksi		Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or $4 \times$	Bend Diameter	
		Test Specimen	min	max	min	max	— Diameter, min, %	Factor, N	
				Alloy 2124					
T851 ^E	1.000–2.000 ^J	longitudinal	66.0		57.0		6		
		long transverse	66.0		57.0		5		
		short transverse	64.0		55.0		1.5		
	2.001-3.000	longitudinal	65.0		57.0		5		
		long transverse	65.0		57.0		4		
		short transverse	63.0		55.0		1.5		
	3.001-4.000	longitudinal	65.0		56.0		5		
		long transverse	65.0		56.0		4		
		short transverse	62.0		54.0		1.5		
	4.001-5.000	longitudinal	64.0		55.0		5		
		long transverse	64.0		55.0		4		
		short transverse	61.0		53.0		1.5		
	5.001-6.000	longitudinal	63.0		54.0		5		
		long transverse	63.0		54.0		4		
		short transverse	58.0		51.0		1.5		

Temper	Specified Thickness, in.	Tensile Strength, ksi		Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 $ imes$	Bend Diameter	
		min	max	min	max	Diameter, min, %	Factor, N	
			Alloy 221	9				
0	0.020-0.250		32.0		16.0	12	4	
	0.251-0.750		32.0		16.0	12	6	
	0.751-1.000		32.0		16.0	12	8	
	1.001-2.000		32.0		16.0	12		
	0.020-0.039	46.0		29.0		8		
T31 ^{<i>K</i>} (flat sheet)	0.040-0.249	46.0		28.0		10		
T351 ^{<i>E,K</i> plate (formerly T31}	0.250-2.000	46.0		28.0		10		
plate)	2.001-3.000	44.0		28.0		10		
. ,	3.001-4.000	42.0		27.0		9		
	4.001-5.000	40.0		26.0		9		
	5.001-6.000	39.0		25.0		8		
Т37 ^{<i>к</i>}	0.020-0.039	49.0		38.0		6		
	0.040-2.500	49.0		37.0		6		
	2.501-3.000	47.0		36.0		6		
	3.001-4.000	45.0		35.0		5		
	4.001-5.000	43.0		34.0		4		
T62 ^D	0.020-0.039	54.0		36.0		6		
	0.040-0.249	54.0		36.0		7		
	0.250-1.000	54.0		36.0		8		
	1.001-2.000	54.0		36.0		7		

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength	, ksi	Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 \times	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, A
F81 sheet	0.020-0.039	62.0		46.0		6	
	0.040-0.249	62.0		46.0		7	
Γ851 ^{<i>E</i>} plate formerly T81	0.250-1.000	62.0		46.0		8	
plate)	1.001-2.000	62.0		46.0		7	
platoj	2.001-3.000	62.0	•••	45.0		6	
	3.001-4.000	60.0	•••	44.0		5	
	4.001-5.000	59.0		43.0		5	
	5.001-6.000	57.0		42.0		4	
Т87	0.020-0.039	64.0		52.0		5	
	0.040-0.249	64.0		52.0		6	
	0.250-1.000	64.0		51.0		7	
	1.001-2.000	64.0		51.0		6	
	2.001-3.000	64.0		51.0		6	
	3.001-4.000	62.0		50.0		4	
	4.001-5.000	61.0		49.0		3	
-							
=F	0.250-2.000						
			Alclad Alloy 2	219			
0	0.020-0.499		32.0		16.0	12	
	0.500-2.000		32.0 ^G		16.0 ^G		
T31 (flat	0.040-0.099	42.0		25.0		10	
sheet) ^K							
sneet)	0.100-0.249	44.0		26.0		10	
T351 ^{<i>E,K</i> plate}	0.250-0.499	44.0		26.0		10	
formerly T31 plate)	0.230-0.433	44.0		20.0		10	
T37 ^{<i>K</i>}	0.040-0.099	45.0		34.0		6	
107	0.100-0.499	47.0		35.0		6	
	0.100-0.499	47.0		35.0		0	
Т62 ^{<i>D</i>}	0.020-0.039	44.0		29.0		6	
102	0.040-0.099	49.0		32.0	•••	7	
					•••	7	
	0.100-0.249	51.0		34.0			
	0.250-0.499	51.0		34.0		8	
	0.500-1.000	54.0 ^G		36.0 ^G		8	
To 4 /0 -	1.001-2.000	54.0 ^G		36.0 ^G		7	
T81 (flat	0.020-0.039	49.0		37.0		6	
sheet)	0.040-0.099	55.0		41.0		7	
	0.100-0.249	58.0		43.0		7	
F851 ^E plate	0.250-0.499	58.0		42.0		8	
(formerly T81 plate)	0.230-0.499	56.0		42.0		o	
Т87	0.040-0.099	57.0		46.0		6	
107							
	0.100-0.249	60.0		48.0		6	
	0.250-0.499	60.0		48.0		7	
=F	0.250-2.000						
			Alloy 6013	3			
Τ4	0.020-0.249	40.0		21.0		20	
Т6	0.020-0.249	52.0		46.0		8	
	0.020-0.243	52.0		-0.0		0	
T651	0.250-1.500	53.0		44.0		5	
	1.501-3.000	54.0		47.0		5	
	3.001-6.000	55.0		47.0		4	
			Alloy 606	1			
C	0.006-0.007		22.0		12.0	10	0
	0.008-0.009		22.0		12.0	12	0
	0.010-0.020		22.0		12.0	14	0
	0.021-0.128		22.0		12.0	16	1
			-2.0		12.0	10	
	0.129-0.249		22.0		12.0	18	2

₩ B 209 – 04

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength	i, ksi	Yield Strength	(0.2 % offset), ksi	Elongation in 2 in. or 4 \times	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
	0.500-1.000		22.0			18	
	1.001-3.000		22.0			16	
	0.000 0.007	00.0		40.0		10	0
4	0.006-0.007	30.0		16.0		10	2
	0.008-0.009	30.0		16.0		12	2
	0.010-0.020	30.0		16.0		14	2
	0.021-0.249	30.0		16.0		16	3
451 ^{<i>E</i>}	0.250-0.499	30.0		16.0		18	4
	0.500-1.000	30.0		16.0		18	
	1.001-3.000	30.0		16.0		16	
42 ^D	0.006-0.007	30.0		14.0		10	2
	0.008-0.009	30.0		14.0		12	2
	0.010-0.020	30.0		14.0		14	2
	0.021-0.249	30.0		14.0		16	3
	0.250-0.499	30.0		14.0		18	4
	0.500-1.000	30.0		14.0		18	
	1.001–3.000	30.0		14.0		16	
6, T62 ^D	0.006-0.007	42.0		35.0		4	2
S, 102	0.008-0.009	42.0		35.0		6	2
	0.010-0.020	42.0		35.0		8	2
	0.021-0.036	42.0		35.0		10	3
	0.037-0.064	42.0		35.0		10	4
	0.065-0.128	42.0		35.0		10	5
	0.129–0.249	42.0		35.0		10	6
62 ^{<i>D</i>} , T651 ^{<i>E</i>}	0.250-0.499	42.0		35.0		10	7
	0.500-1.000	42.0		35.0		9	
	1.001-2.000	42.0		35.0		8	
	2.001-4.000	42.0		35.0		6	
	4.001–6.000 ^L	40.0		35.0		6	
F	0.250-3.000						
			Alclad Alloy 6	6061			
)	0.010-0.020		20.0		12.0	14	
	0.021-0.128		20.0		12.0	16	
	0.129-0.499		20.0		12.0	18	
	0.500-1.000		22.0 ^G			18	
	1.001-3.000		22.0 ^G			16	
Γ4	0.010-0.020	27.0		14.0		14	
_	0.021-0.249	27.0		14.0		16	
[451 ^{<i>E</i>}	0.250-0.499	27.0		14.0		18	
	0.500-1.000	30.0 ^G		16.0 ^G		18	
	1.001-3.000	30.0 ^G		16.0 ^G		16	
42 ^D	0.010-0.020	27.0		12.0		14	
42	0.021-0.249	27.0		12.0		14	
	0.250-0.499	27.0		12.0	•••	18	
	0.500-1.000	30.0 ^G		14.0 ^G	•••	18	
	1.001–3.000	30.0 ^G		14.0 ^G		16	
		0010		1.110			
⁷ 6, T62 ^{<i>D</i>}	0.010-0.020	38.0		32.0		8	
	0.021-0.249	38.0		32.0		10	
	- · · ·						
62 ^{<i>D</i>} , T651 ^{<i>E</i>}	0.250-0.499	38.0		32.0		10	
	0.500-1.000	42.0 ^G		35.0 ^G		9	
	1.001-2.000	42.0 ^G		35.0 ^G		8	
	2.001–4.000 4.001–5.000	42.0 ^{<i>G</i>} 40.0 ^{<i>G</i>}		35.0 ^G 35.0 ^G		6 6	
	T.001-0.000	-0.0		00.0		0	
F	0.250-3.000						
			Alloy 707	5			
			10.0		21.0	10	1
)	0.015-0.020		40.0		21.0	10	
)	0.021-0.062		40.0		21.0	10	2
D							

🕼 В 209 – 04

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength	ı, ksi	Yield Strength	(0.2 % offset), ksi	Elongation in 2 in. or 4 \times	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
	0.126-0.249		40.0		21.0	10	5
	0.250-0.499		40.0		21.0	10	6
	0.500-2.000		40.0			10	
⊺6, T62 [⊅]	0.008-0.011	74.0		63.0		5	7
	0.012-0.020	76.0		67.0		7	7
	0.021-0.039	76.0		67.0		7	8
	0.040-0.062	78.0		68.0		8	8
	0.063-0.091	78.0		68.0		8	9
	0.092-0.125	78.0	•••	68.0		8	10
	0.126-0.249	78.0		69.0		8	10
		70.0					
「62 ^D , T651 ^E	0.250-0.499 0.500-1.000	78.0 78.0		67.0 68.0		9 7	14
	1.001-2.000	77.0		67.0		6	
	2.001-2.500	76.0		64.0		5	
	2.501-3.000	72.0		61.0		5	
	3.001–3.500 3.501–4.000	71.0 67.0		58.0 54.0		5 3	
	3.501-4.000	07.0		54.0		3	
T73 sheet	0.040-0.249	67.0		56.0		8	
T7351 ^E plate	0.250-1.000	69.0		57.0		7	
	1.001-2.000	69.0		57.0		6	
	2.001-2.500	66.0		52.0		6	
	2.501-3.000	64.0		49.0		6	
	3.001-4.000	61.0		48.0		6	
76 sheet	0.063-0.124	73.0		62.0		8	
ro sneet	0.125–0.249	73.0		62.0		8	
Γ7651 plate ^E	0.250-0.499	72.0		61.0		8	
17031 plate							
	0.500-1.000 1.001-2.000	71.0 71.0		60.0 60.0		6 5	
FF	0.250-4.000						
	0.230-4.000						
	0.000.0.014		Alclad Alloy	1075			
C	0.008-0.014		36.0		20.0	9	1
	0.015-0.032		36.0		20.0	10	1
	0.033-0.062		36.0		20.0	10	2
	0.063-0.125		38.0		20.0	10	3
	0.126-0.187		38.0		20.0	10	4
	0.188-0.249		39.0		21.0	10	4
	0.250-0.499		39.0		21.0	10	6
	0.500-1.000		40.0 ^G			10	
Г6, Т62 ^D	0.008-0.011	68.0		58.0		5	6
	0.012-0.020	70.0		60.0		7	6
	0.021-0.039	70.0		60.0		7	7
	0.040-0.062	72.0		62.0		8	7
	0.063-0.091	73.0		63.0		8	8
	0.092-0.125	73.0		63.0		8	9
	0.126–0.187 0.188–0.249	73.0 75.0		63.0 64.0		8 8	10 10
-							
Г62 ^{<i>D</i>} , Т651 ^{<i>E</i>}	0.250-0.499	75.0		65.0		9	12
	0.500-1.000	78.0 ^G		68.0 ^G		7	
	1.001-2.000	77.0 ^G		67.0 ^G		6	
	2.001-2.500	76.0 ^G		64.0 ^G		5	
	2.501-3.000	72.0 ^G		61.0 ^G		5	
	3.001-3.500	71.0 ^G		58.0 ^G		5	
	3.501-4.000	67.0 ^G		54.0 ^G		3	
T76 sheet	0.040-0.062	67.0		56.0		8	
	0.063-0.124	68.0		57.0		8	
	0.125-0.187	68.0		57.0		8	
	0.188–0.249	70.0		59.0		8	
	0.100 0.210						
TOFIE		60.0		E0 0		0	
Г7651 ^{<i>E</i>} plate	0.250-0.499 0.500-1.000	69.0 71.0 ^G		58.0 60.0 ^G		8 6	

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength	Tensile Strength, ksi		(0.2 % offset), ksi	Elongation in 2 in. or 4 \times	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, A
F	0.250-4.000						
		A	Iclad One Side A	lloy 7075			
)	0.015-0.032		38.0		21.0	10	1
	0.033-0.062		38.0		21.0	10	2
	0.063-0.091		39.0		21.0	10	3
	0.092-0.125		39.0		21.0	10	4
	0.126-0.187		39.0		21.0	10	5
	0.188-0.249		39.0		21.0	10	5
	0.250-0.499		39.0		21.0	10	6
	0.500-1.000		40.0 ^G			10	
	0.000.0.014	74.0		00.0		-	
6, T62 ^D	0.008-0.011	71.0		60.0		5	
	0.012-0.014	74.0		64.0	•••	8	
	0.015-0.032	74.0		64.0		8	7
	0.033–0.039	74.0		64.0		8	8
	0.040-0.062	75.0		65.0		9	8
	0.063-0.091	76.0		66.0		9	9
	0.092-0.125	76.0		66.0		9	10
	0.126-0.187	77.0		67.0		9	11
	0.188-0.249	78.0		67.0		9	11
COD TOFAE	0.050, 0.400	70.0		66.0		0	40
62 ^{<i>D</i>} , T651 ^{<i>E</i>}	0.250-0.499 0.500-1.000	76.0 78.0 ^{<i>G</i>}		66.0 68.0 ^G		9 7	13
	1.001-2.000	77.0 ^G		67.0 ^G		6	
_							
F	0.250-2.000						
			7008 Alclad Allo	y 7075			
)	0.015-0.499		40.0		21.0	10	
	0.500-2.000		40.0 ^G			10	
6, T62 ^D	0.015-0.039	73.0		63.0		7	
	0.040-0.187	75.0		65.0		8	
	0.188-0.249	76.0		66.0		8	
62 ^{<i>D</i>} , T651 ^{<i>E</i>}	0.250-0.499	76.0		66.0		9	
02,1001	0.500-1.000	78.0 ^G		68.0 ^G	•••	5 7	
	1.001-2.000	77.0 ^G		67.0 ^G	•••	6	
		76.0 ^G		64.0 ^G	•••		
	2.001-2.500			64.0 ⁻²		5	
	2.501-3.000	72.0 ^G		61.0 ^G		5	
	3.001-3.500	71.0 ^G		58.0 ^G		5	
	3.501-4.000	67.0 ^G		54.0 ^G		3	
76 sheet	0.040-0.062	70.0		59.0		8	
	0.063-0.187	71.0		60.0		8	
	0.188-0.249	72.0		61.0		8	
7651 ^{<i>E</i>} plate	0.250-0.499	71.0		60.0		8	
roo plate	0.500-1.000	71.0 ^G		60.0 ^G		6	
		1.110		0010		0	
F	0.250-4.000						
			Alloy 7178	3			
)	0.015-0.499		40.0		21.0	10	
	0.500		40.0			10	
e Teo ^D	0.015 0.044	00.0		72.0		7	
6, T62 ^D	0.015-0.044	83.0		72.0		7	
	0.045-0.249	84.0		73.0		8	
62 ^{<i>D</i>} ,T651 ^{<i>E</i>}	0.250-0.499	84.0		73.0		8	
,	0.500-1.000	84.0		73.0		6	
	1.001–1.500	84.0		73.0		4	
	1.501–2.000	80.0		70.0		3	
76	0.045–0.249	75.0		64.0		8	
7651 ^{<i>E</i>}	0.250-0.499	74.0		63.0		8	
1001	0.500-1.000	73.0		62.0		6	
_						-	
F	0.250-2.000						
	0.200 2.000						

🚯 B 209 – 04

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength,	ksi	Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or 4 $ imes$	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
0	0.015-0.062		36.0		20.0	10	
	0.063-0.187		38.0		20.0	10	
	0.188-0.499		40.0		21.0	10	
	0.500		40.0 ^G			10	
T6, T62 ^D	0.015-0.044	76.0		66.0		7	
,	0.045-0.062	78.0		68.0		8	
	0.063-0.187	80.0		70.0		8	
	0.188-0.249	82.0		71.0		8	
T62 ^D , T651 ^E	0.250-0.499	82.0		71.0		8	
- ,	0.500-1.000	84.0 ^G		73.0 ^G		6	
	1.001-1.500	84.0 ^G		73.0 ^G		4	
	1.501-2.000	80.0 ^G		70.0 ^G		3	
T76	0.045-0.062	71.0		60.0		8	
	0.063-0.187	71.0		60.0		8	
	0.188-0.249	73.0		61.0		8	
T7651 ^{<i>E</i>}	0.250-0.499	72.0		60.0		8	
	0.500-1.000	73.0 ^G		62.0 ^G		6	
F ^F	0.250-2.000						

^A To determine conformance to this specification, each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E 29.

^B The basis for establishment of mechanical property limits is shown in Annex A1.

^C Coiled sheet.

^D Material in the T42, T62, and T72 tempers is not available from the material producer.

^E For stress-relieved tempers (T351, T451, T651, T7351, T7651, and T851), characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic temper.

^F Test for tensile properties in the F temper are not required.

^G The tension test specimen from plate 0.500 in. and thicker is machined from the core and does not include the cladding.

^H Applicable to flat sheet and plate only.

⁷ The T72 temper is applicable only to Alloys 2024 and Alclad 2024 sheet solution heat treated and artificially overaged by the user to develop increased resistance to stress-corrosion cracking.

^JShort transverse tensile property limits are not applicable to material less than 1.500 in. in thickness.

^KUse of Alloys 2219 and Alclad 2219 in the T31, T351, and T37 tempers for finished products is not recommended.

^L The properties for this thickness apply only to the T651 temper.

TABLE 4 Lot Acceptance Criteria for Resistance to Stress Corrosion and Exfoliation Corrosion

		Lot Acceptance Criteria	
Alloy and Temper	Electrical Conductivity, ^A %, IACS	Level of Mechanical Properties	Lot Acceptance Status
7075–T73 and T7351	40.0 or greater	per specified requirements	acceptable
	38.0 through 39.9	per specified requirements but yield strength does n exceed minimum by more than 11.9 ksi	ot acceptable
	38.0 through 39.9	per specified requirements but yield strength exceed minimum by 12.0 ksi or more	ds unacceptable ^B
	less than 38.0	any level	unacceptable ^B
	38.0 or greater	per specified requirements	acceptable
7075–T76 and T7651 Alclad 7075–T76 and T7651	36.0 through 37.9	per specified requirements	unacceptable ^B
and 7008 Alclad 7075−T76 and −T7651	less than 36.0	any level	unacceptable ^B
7178–T76 and T7651 Alclad 7178–T76 and T7651	38.0 or greater 35.0 through 37.9	per specified requirements per specified requirements	acceptable unacceptable ^B
^A The electrical conductivity shall be	determined in accordance with Prac	tice E 1004 in the following locations:	
Alloy-Temper	Th	ickness, in.	Location
7075–T73 and T7351		all surface of	of tension-test sample
7075–T76 and T7651		5	of tension-test sample
7178–T76 and T7651∫	0.10	01 and over sub-surface aft	er removal of approximately

10 % of the thickness

For alcad products, the cladding must be removed and the electrical conductivity determined on the core alloy. ^B When material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment or re-solution heat treatment, stress relieving and precipitation heat treatment, when applicable).

TABLE 5 Components of Clad Products

	Component Alloys ^A		Total Composite Thickness		Cladding Thickness per Side, percent of Composite Thickness		
Alloy	Core Cladding	Cladding	of Finished Sheet and Plate, in.	Sides Clad	Nominal -	Average ^B	
					Nominai	min	max
Alclad 2014	2014	6003	up through 0.024	both	10	8	
			0.025-0.039	both	7.5	6	
			0.040-0.099	both	5	4	
			0.100 and over	both	2.5	2	
Alclad 2024	2024	1230	up through 0.062	both	5	4	
			0.063 and over	both	2.5	2	
11/2 % Alclad 2024	2024	1230	0.188 and over	both	1.5	1.2	3 ^C
Alclad one-side 2024	2024	1230	up through 0.062	one	5	4	
			0.063 and over	one	2.5	2	
11/2 % Alclad one-side 2024	2024	1230	0.188 and over	one	1.5	1.2	3 ^{<i>c</i>}
Alclad 2219	2219	7072	up through 0.039	both	10	8	
			0.040-0.099	both	5	4	
			0.100 and over	both	2.5	2	
Alclad 3003	3003	7072	all	both	5	4	6 ^D
Alclad 3004	3004	7072	all	both	5	4	6 ^D
Alclad 6061	6061	7072	all	both	5	4	6 ^D
Alclad 7075 and	7075	7072	(up through 0.062	both	4	3.2	
7008 Alclad 7075	7075	7008	0.063-0.187	both	2.5	2	
			0.188 and over	both	1.5	1.2	3 ^C
Iclad one-side 7075	7075	7072	up through 0.062	one	4	3.2	
			0.063-0.187	one	2.5	2	
			0.188 and over	one	1.5	1.2	3 ^{<i>C</i>}
Alclad 7178	7178	7072	(up through 0.062	both	4	3.2	
			0.063-0.187	both	2.5	2	
			0.188 and over	both	1.5	1.2	3 ^C

^A Cladding composition is applicable only to the aluminum alloy bonded to the alloy ingot or slab preparatory to rolling to the specified composite product. The composition of the cladding may be altered subsequently by diffusion between the core and cladding due to thermal treatment.

^B Average thickness per side as determined by averaging cladding thickness measurements when determined in accordance with the procedure specified in 15.2. ^C For thicknesses of 0.500 in. and over with 1.5 % of nominal cladding thickness, the average maximum thickness of cladding per side after rolling to the specified thickness of plate shall be 3 % of the thickness of the plate as determined by averaging cladding thickness measurements taken at a magnification of 100 diameters on

the cross section of a transverse sample polished and etched for examination with a metallurgical microscope. ^D Applicable for thicknesses of 0.500 in. and greater.

TABLE 6 Ultrasonic Discontinuity Limits for Plate^A

Alloy	Thickness, in.	Maximum Weight Per Piece, Ib ^B	Discontinuity Class ^C
2014 ^D 2024 ^D	0.500-1.499	2000	В
2124 2219 ^D	1.500–3.000	2000	A
7075 ^D 7178 ^D	3.001-6.000	2000	В

^A Discontinuities in excess of those listed in this table shall be allowed if it is established that they will be removed by machining or that they are in noncritical areas. ^B The maximum weight is either the ordered weight of a plate of rectangular shape or the planned weight of a rectangular plate prior to removing metal to produce a part or plate shape to a drawing.

^C The discontinuity class limits are defined in Section 11 of Practice B 594.

^D Also applies for alclad plate.

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

A1.1 Limits are established at a level at which a statistical evaluation of the data indicates that 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits for the respective size ranges are based on the analyses of at least 100 data from standard production material with no

more than ten data from a given lot. All tests are performed in accordance with the appropriate ASTM test methods. For informational purposes, refer to "Statistical Aspects of Mechanical Property Assurance" in the Related Material section of the *Annual Book of ASTM Standards*, Vol 02.02.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1. The Aluminum Association⁷ holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.

A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:

A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1. A designation not in conflict with other designation systems or a trade name is acceptable.

A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.

A2.2.3 The complete chemical composition limits are submitted.

A2.2.4 The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification. A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.

A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

Less than 0.001 %	0.000X
0.001 to but less than 0.01 %	0.00X
0.01 to but less than 0.10 %	
Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a refining process	0.0X
0.10 through 0.55 %	0.XX
(It is customary to express limits of 0.30 through 0.55 % as	
0.X0 or 0.X5.)	
Over 0.55 %	0.X, X.X, and so forth
(except that combined Si + Fe limits for 99.00 % minimum	

(except that combined Si + Fe limits for 99.00 % minimur aluminum must be expressed as 0.XX or 1.XX)

A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc (Note A2.1); Titanium; Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).

NOTE A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between zinc and titanium, or are specified in footnotes.

NOTE A2.2—Aluminum is specified as *minimum* for unalloyed aluminum and as a *remainder* for aluminum alloys.

⁷ The Aluminum Association, 900 19th Street, NW, Washington, DC 20006.

SUMMARY OF CHANGES

Committee B07 has identified the location of selected changes to this standard since the last issue $(B\ 209 - 02a)$ that may impact the use of this standard.

(1) Added Note 3, referring the reader to Specification B 928/B 928/M for marine sheet and plate and renumbered Notes 4 and 5.

(2) Updated Reference Documents in Section 2 by adding Specification B 928/B 928M and removing Test Method G 66. (3) Removed old sections 14.1, 14.1.1, 14.1.2, and 14.1.3 from Section 14 to remove exfoliation-corrosion testing requirements for 5083, 5086, and 5456, and renumbered the rest of the section.

(4) Removed Note 6 that discussed corrosion of 5083, 5086, and 5456.

(5) Added 5059 composition limits and Footnote L to Table 1.(6) Added properties for 5052-H322, 5059-O, and 5059-H111 to Table 2.

(7) Removed 5083-H321 and replaced with 5083-H32, removed 5083-H116, removed 5086-H116, removed 5456-H321 and replaced with 5456-H32, and removed 5456-H116 all from Table 2.

(8) Removed Footnote F from Table 2.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).