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1. Scope 3.1.1 dependent variable-the fatigue lifeN (or the loga-

1.1 This practice pertains only ®Nande-N relationships ~ "ithm of the fatigue life). _ _
that may be reasonably approximated by a straight line (on 3-1.1.1 Discussion—tog ( N) is denotedy herein.
appropriate coordinates) for a specific interval of stress or 3.1.2 independent variablethe selected and controlled
strain. It presents elementary procedures that presently refle¢griable (namely, stress or strain). It is denoederein when
good practice in modeling and analysis. However, because tHéotted on appropriate coordinates.
actualS-Nor e-N relationship is approximated by a straight line ~ 3:1.3 log-normal distribution—the distribution ofN when
only within a specific interval of stress or strain, and becausé?d (N) is normally distributed. (Accordingly, it is convenient
the actual fatigue life distribution is unknown, it isot 0 analyze log N) using methods based on the normal
recommendedhat () the S-Nor e-N curve be extrapolated distribution.) _ o
outside the interval of testing, or If) the fatigue life at a  3.1.4 replicate (repeat) testsreminally identical tests on
specific stress or strain amplitude be estimated below approxflifferent randomly selected test specimens conducted at the
mately the fifth percentile P = 0.05). As alternative fatigue Same nominal value of the independent variable Such
models and statistical analyses are continually being devel€plicate or repeat tests should be conducted independently; for
oped, later revisions of this practice may subsequently presef@mple, each replicate test should involve a separate set of the
analyses that permit more complete interpretatioéiand  t€St machine and its settings.

e-N data. 3.1.5run out—no failure at a specified number of load
cycles (Practice E 468).

2. Referenced Documents 3.1.5.1 Discussion—Fhe analyses illustrated herein do not
2.1 ASTM Standards: apply when the data include either run-outs (or suspended
E 206 Definitions of Terms Relating to Fatigue Testing andtests). Moreover, the straight-line approximation of 8x&lor

the Statistical Analysis of Fatigue D&ta e-N relationship may not be appropriate at long lives when

E 467 Practice for Verification of Constant Amplitude Dy- run-outs are likely. o _
namic Loads on Displacements in an Axial Load Fatigue 3-1.5.2 Discussion—-or purposes of statistical analysis, a

Testing Systerh run-out may be viewed as a test specimen that has either been
E 468 Practice for Presentation of Constant Amplitude Faremoved from the test or is still running at the time of the data
tigue Test Results for Metallic Materidls analysis.

E 513 Definitions of Terms Relating to Constant-

Amplitude, Low-Cycle Fatigue Testidg 4. Significance and Use

E 606 Practice for Strain-Controlled Fatigue Testing 4.1 Materials scientists and engineers are making increased
use of statistical analyses in interpretiS8gN and e-N fatigue
3. Terminology data. Statistical analysis applies when the given data can be

3.1 The terms used in this practice shall be used as defindgasonably assumed to be a random sample of (or representa-

in Definitions E 206 and E 513. In addition, the following tion of) some specific defined population or universe of
terminology is used: material of interest (under specific test conditions), and it is
desired either to characterize the material or to predict the
. oo is under the urisdiction of ASTM Committee E-8 on Fati dperformance of future random samples of the material (under
is practice is under the jurisdiction o ommittee E-8 on Fatigue and _; - .
Fracture and is the direct responsibility of Subcommittee E08.04 on Structura?lmIlar test COﬂdItIOﬂS), or both.
Applications.
Current edition approved April 15, 1991. Published June 1991. Originally
published as E 739 — 80. Last previous edition E 739 — 80 (1986)
2 Discontinued, se4986 Annual Book of ASTM Standardél 03.01.
2 Annual Book of ASTM Standardgol 03.01.
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5. Types ofS-N and e-N Curves Considered
5.1 It is well known that the shape &N ande-N curves

5.1.1 The fatigue lifeN is the dependent (random) variable
in S-N and e-N tests, whereass or e is the independent

can depend markedly on the material and test conditions. Thigontrolled) variable.

practice is restricted to linear or linearizeftN and e- N
relationships, for example,

log N=A+B(S) or 1)
log N=A+ B (e), or
log N=A+B(log S or (2)

log N=A+ B(log ¢€)
in which S and e may refer to & the maximum value of

Note 2—In certain cases the independent variable used in analysis is
not literally the variable controlled during testing. For example, it is
common practice to analyze low-cycle fatigue data treating the range of
plastic strain as the controlled variable, when in fact the range of total
strain was actually controlled during testing. Although there may be some
question regarding the exact nature of the controlled variable in certain
S-Nand e-N tests, there is never any doubt that the fatigue life is the
dependent variable.

Note 3—In plotting S-Nande- N curves, the independent variablgs

constant-amplitude cyclic stress or strain, given a specifi@nde are plotted along the ordinate, with life (the (_jependent variable)
value of the stress or strain ratio, or of the minimum cyclicPlotted along the abscissa. Refer, for example, to Fig. 1.
stress or strain,b) the amplitude or the range of the constan- 5.1.2 The distribution of fatigue life (in any test) is unknown
tamplitude cyclic stress or strain, given a specific value of th€and indeed may be quite complex in certain situations). For
mean stress or strain oc)(analogous information stated in the purposes of simplifying the analysis (while maintaining
terms of some appropriate independent (controlled) variablesound statistical procedures), it is assumed herein that the
Note 1—In certain cases the amplitude of the stress or strain is nolOga”th_ms of _the fatlgue lives are n(.)rm.a"y distributed, that is,
constant during the entire test for a given specimen. In such cases sorHe€ fatigue life is log-normally distributed, and that the
effective (equivalent) value oS or e must be established for use in Variance of log life is constant over the entire range of the
analysis. independent variable used in testing (that is, the scatter in log
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Note 1—The 95 % confidence band for theN curve as a whole is based on Eq 9. (Note that the dependent variable, fatigue life, is plotted here along

the abscissa to conform to engineering convention.)

FIG. 1 Fitted Relationship Between the Fatigue Life N (Y') and the Plastic Strain Amplitude  Ae /2 (X) for the Example Data Given
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N is assumed to be the same at I&@ande levels as at high 7.1.2 Replicatior—The replication guidelines given in
levels of Sor €). Accordingly, logN is used as the dependent Chapter 3 of Ref1) are based on the following definition:
(random) variable in analysis. It is denotédThe independent % replication = 100 [1 - (total number of different stress or strain levels used
variable is denoteX. It may be eitheiSor €, or log Sor log  in testing/total number of specimens tested)]

€, respectively, depending on which appears to produce a

. . N h Type of Test Percent Replication®
straight line plot for the interval o6 or € of interest. Thus Eq
1 and Eq 2 may be re-expressed as Preliminary and exploratory (research and development 17 to 33 min
tests)
Y=A+ BX 3) Research and development testing of components and 33 to 50 min
. . . specimens
Eq3is used in subsequent anaIyS|§. It may be stated MO{Rqign allowables data 50 to 75 min
precisely as |, x = A+ BX where py,y is the expected value Reliability data 75 to 88 min
of Y given X. A Note that percent replication indicates the portion of the total number of
. . specimens tested that may be used for obtaining an estimate of the variability of
Note 4—For testing the adequacy of the linear model see 8.2. replicate tests.

Note 5—_The expec_t(_ad value is the mean _of the conceptual _popu_lation 7.1.2.1 Replication Examples-Good replication: Suppose
of all Y's given a specific level oK. (The median and mean are identical {5t 10 specimens are used in research and development for the
for the symmetrical normal distribution assumed herein¥fgr testing of a component. If two specimens are tested at each of
6. Test Planning five stress or strain amplitudes, the test program involves 50 %
replications. This percent replication is considered adequate for
in Chapter 3 of Ref(1)# Planned grouping (blocking) and most research and development applications. Poor replication:

randomization are essential features of a well-planned tes‘qup.pose (_aight differer)t stress or strain amplitudes are useq in
program. In particular, good test methodology involves use o esting, with two rephcates_ at each of two stress or strain
planned grouping toa) balance potentially spurious effects of ampl!tudes (anq no replication 'at the other six stress or s_traln
nuisance variables (for example, laboratory humidity) and ( am_plltL_Jdes). This test program involves only 20 % replication,
allow for possible test equipment malfunction during the teslwh'Ch is not generally considered adequate.

6.1 Test planning foB-Nande-N test programs is discussed

program. 8. Statistical Analysis (Linear Model Y = A + BX, Log-
. Normal Fatigue Life Distribution with Constant
7. Sampling Variance Along the Entire Interval of X Used in

7.1 It is vital that sampling procedures be adopted which Testing, No Runouts or Suspended Tests or Both,
assure a random sample of the material being tested. Arandom Completely Randomized Design Test Program)
sample is required to state that the test specimens are repre-g 1 For the case where)(the fatigue life data pertain to a
sentative of the conceptual universe about which both statistiandom sample (al, are independent), If) there are neither
cal and engineering inference will be made. run-outs nor suspended tests and where, for the entire interval
Note 6—A random sampling procedure provides each specimen tha®f X used in testing, () the S-Nor e- N relationship is
conceivably could be selected (tested) an equal (or known) opportunity alescribed by the linear mod&l = A + BX (more precisely by
actually being selected at each stage of the sampling process. Thus, itjis,,, = A + BX), (d) the (two parameter) log-normal distribu-
poor practice to use specimens from a single source (plate, heat, suppligipn describes the fatigue lifdl, and (e) the variance of the
when seeking a random sample of the material being tested unless thl"i'th-normaI distribution is constant, the maximum likelihood

particular source is of specific interest. estimators ofA andB are as follows-
Note 7—Procedures for using random numbers to obtain random : WS-

samples and to assign stress or strain amplitudes to specimens (and to A= Y- BX (4
establish the time order of testing) are given in Chapter 4 of(Ref .
7.1.1 Sample Size-The minimum number of specimens L2 K- X (Y=Y
required inS-N (ande- N) testing depends on the type of test B= X - (5)
program conducted. The following guidelines given in Chapter _El X — X?
=

3 of Ref (1) appear reasonable. . i
Mini where the symbol “caré{ * ) denotes estimate (estimator),
inimum Number =

of Specimens”® the symbol “overbar”(') denotes average (for exampleé,=
K_, Yi/kandX = 3K, X/K),Y,=logN, X;=S,ore;, or

Type of Test

Preliminary and exploratory (exploratory research and 6to 12 Iog S or Iog c (refer to Eq 1 and Eq 2) ankl is the total
development tests) i ) ) i
Research and development testing of components and 6 to 12 number of test specimens (the total sample size). The recom-
DSPEC"“I*?“S bles dat 121024 mended expression for estimating the variance of the normal
esign allowables data 0 - . .
Reliability data 12 to 24 distribution for logN is
k
Alf the variability is large, a wide confidence band will be obtained unless a large E (Y, — ?i)Z
number of specimens are tested (See 8.1.1). 2= i=1 ©)
N k-2

in which ,=A +B X and the k - 2) term in the
. . . ,\2 .
4 The boldface numbers in parentheses refer to the list of references appended‘;(;':'nomlnator is used instead k.ftO mgkeo an unbiased
this standard. estimator of the normal population varianee.
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Note 8—An assumption of constant variance is usually reasonable fothe valueB. If in each instance we were to assert tBalies
notched and joint specimens up to about dykles to failure. The variance within the interval computed, we should expect to be correct 95
of unnotched specimens generally increases with decreasing stress (Strafﬁ)(]es in 100 and in error 5 times in 100: that is. the statement
level (see Section 9). If the assumption of constant variance appears to beB lies within the computed interval” hés a 95’% probability

dubious the reader is referred to R&j for the appropriate statistical test. . . L2
i of being correct. But there would be no operational meaning in
8.1.1 Confidence Intervals for Parameters A and-8he e following statement made in any one instance: “The

estimatorsA and B are normally distributed with expected  opability is 95 % thaB falls within the computed interval in
valuesA andB, respectively, (regardless of total sample $ire  this case” sinceB either does or does not fall within the

when conditions @) through €) in 8.1 are met. Accordingly, - jnterval. It should also be emphasized that even in independent
confidence intervals for parameteksandB can be established samples from the same universe, the intervals given by Eq 8

using thet_djstribution, Table 1. The confidence interval #or i vary both in width and position from sample to sample.

is given byA = t, G5, or (This variation will be particularly noticeable for small
R 1 X2 & samples.) It is this series of (random) intervals “fluctuating” in
Ashol gt | (M) size and position that will include, ideally, the valB®5 times
2 %=X out of 100 for P=95%. Similar interpretations hold for

confidence intervals associated with other confidence levels.
For a given total sample side it is evident that the width of
the confidence interval foB will be a minimum whenever

and forB is given by B+ t G g, or
k -_—
Brt,6 T (X=X ®)

K

in which the value ot  is read from Table 1 for the desired 2 %5 X)? ©

value of P, the confidence level associated with the confidence

interval. This table has one entry parameter (the statisticat a maximum. Since th¥; levels are selected by the investigator, the

degrees of freedomm, for t ). For Eq 7 and Eq 8p= k- 2. width of confidence interval foB may be reduced by appropriate test

planning. For example, the width of the interval will be minimized when,

Note 9—The confidence intervals féx andB are exact if conditions  for a fixed number of available test specimewshalf are tested at each

(a) through €) in 8.1 are met exactly. However, these intervals are still of the extreme levelX,,, ,, andX,,.. However, this allocation should be

reasonably accurate when the actual life distribution differs slightly fromused only when there is stroraypriori knowledge that the&S-Nor e-N

the (two-parameter) log-normal distribution, that is, when only conditioncurve is indeed linear—because this allocation precludes a statistical test

(d) is not met exactly, due to the robustness of tistatistic. for linearity (8.2). See Chapter 3 of Réf) for a further discussion of

Note 10—Because the actual medi&aNor e -N relationship is only  efficient selection of stress (or strain) levels and the related specimen
approximated by a straight line within a specific interval of stress or strainallocations to these stress (or strain) levels.

confidence intervals foA andB that pertain to confidence levels greater
than approximately 0.95 are not recommended. Note 11—This explanation is similar to that of STP 3(8.

The meaning of the confidence interval associated with, say, 8.1.2 Confidence Band for the Entire Median S-N oN
Eq 8 is as follows (Note 14). If the values tfgiven in Table  Curve (that is, for the Median S-N @fN Curve as a Whole}
1 for, say,P = 95 % are used in a series of analyses involving|f conditions @) through €) in 8.1 are met, an exact confidence
the estimation oB from independent data sets, then in the longhand for the entire media®-Nor e-N curve (that is, all points
run we may expect 95 % of the computed intervals to includeyn the linear or linearized medi@Nor e-N curve considered
simultaneously) may be computed using the following equa-

tion:
TABLE 1 Values of 1, (Abstracted from STP 313 (4)) B
P, %P A a 1. x=x* 1"
m ! A + BX=+ \/ﬁo‘ K + T E— (10)
. I
4 2.1318 2.7764 =1
° 2.0150 2.5706 in which F, is given in Table 2. This table involves two entry
6 1.9432 2.4469 P .
7 1.8946 23646 parameters (the statistical degrees of freedgmandn, for F).
8 1.8595 2.3060 For Eq 9,n, =2 andn, = ( k- 2). For example, whek =7,
9 1.8331 2.2622 -
10 1.8125 2.2281 Fo95=5.7861.
E i;ggg g-i%g A 95 % confidence band computed using Eq 9 is plotted in
13 17709 51604 Fig. 1_ for_ th_e example data of _8.3.1. T_he interpretation of this
14 1.7613 2.1448 band is similar to that for a confidence interval (8.1.1). Namely,
12 i-;igg 212’33 if conditions @) through €) are met, and if the values &,
17 17396 21008 given in Table 2 for, sayP =95 % are used in a series of
18 1.7341 2.1009 analyses involving the construction of confidence bands using
19 17291 2.0930 Eq 9 for the entire range of used in testing; then in the long
2 e o t 95 % of th ted hyperbolic bands t
21 17207 20796 run we may expect 95 % of the computed hyperbolic bands to
22 17171 2.0739 include the straight line |,y = A+ BXeverywhere along the
“nis not sample size, but the degrees of freedom of ¢, that is, n= k- 2. entire range oiX used in testing.
Bp is the probability in percent that the random variable t lies in the interval
from = t,to +t,. Note 12—Because the actual medi&N or e-N relationship is only
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TABLE 2 Values of F,* (Abstracted from STP 313 (4))

Degrees of Freedom, n,

1 2 3 4
1 { 161.45 199.50 215.71 224.58
4052.2 4999.5 5403.3 5624.6
2 { 18.513 19.000 19.164 19.247
8.503 99.000 99.166 99.249
3 { 10.128 9.5521 9.2766 9.1172
34.116 30.817 29.457 28.710
4 { 7.7086 6.9443 6.5914 6.3883
21.198 18.000 16.694 15.977
5 { 6.6079 5.7861 5.4095 5.1922
16.258 13.274 12.060 11.392
6 { 5.9874 5.1433 4.7571 4.5337
13.745 10.925 9.7795 9.1483
7 { 5.5914 4.7374 4.3468 4.1203
12.246 9.5466 8.4513 7.8467
8 { 5.3177 4.4590 4.0662 3.8378
Degrees of Freedom, n, 11.259 8.6491 7.5910 7.0060
9 { 5.1174 4.2565 3.8626 3.6331
10.561 8.0215 6.9919 6.4221
10 { 4.9646 4.1028 3.7083 3.4780
10.044 7.5594 6.5523 5.9943
11 { 4.8443 3.9823 3.5874 3.3567
9.6460 7.2057 6.2167 5.6683
12 { 4.7472 3.8853 3.4903 3.2592
9.3302 6.9266 5.9526 5.4119
13 { 4.6672 3.8056 3.4105 3.1791
9.0738 6.7010 5.7394 5.2053
14 { 4.6001 3.7389 3.3439 3.1122
8.8616 6.5149 5.5639 5.0354
4.5431 3.6823 3.2874 3.0556
15 { 8.6831 6.3589 5.4170 4.8932

A In each row, the top figures are values of F corresponding to P — 95 %, the bottom figures correspond to P = 99 %. Thus, the top figures pertain to the 5 % significance
level, whereas the bottom figures pertain to the 1 % significance level. (The bottom figures are not recommended for use in Eq 9.)

approximated by a straight line within a specific interval of stress of strainship betweenX and Wy, .) The total number of specimens
confidence bands which pertain to confidence levels greater than approdiested k, is computed using

mately 0.95 are not recommended. \

While the hyperbolic confidence bands generated by Eq 9 k= _Zlm (12)
and plotted in Fig. 1 are statistically correct, straight-line -
confidence and tolerance bands parallel to the fittedfling,
=A + Bare sometimes used. These bands are described
Chapter 5 of Ref2).

Table 2 involves two entry parameters (the statistical degrees
freedomn, andn, for F). For Eq 10,n, = (I = 2), andn, = (
—1). For exampleF, 5= 6.9443 wherk = 8 andl = 4.

8.2 Tesing the Adequacy ofthe Linear Moddh s.Litwes. 20 8 0t ) R e ean square
assumed that a linear model is valid, namely thag-”kl éNote 15) (the numerator in Eq 10) to the variability among
replicates, as measured by their mean square (the denominator
in Eq 10). The latter mean square is independent of the form of
the model assumed for th®-N or e-N relationship. If the
relationship between y 4 andXis indeed linear, Eq 10 follows
the F distribution with degrees of freedom,« 2) and k- 1).
Otherwise Eq 10 is larger on the average than would be
expected by random sampling from ttisdistribution. Thus
the hypothesis of a linear model is rejected if the observed
value ofF (Eq 10) exceeds the tabulated vakyg If the linear
| model is rejected, it is recommended that a nonlinear model be
i21m  — YU - 2) considered, for example:

(11) Wy x A + BX + CX? (13)

than one observed value ¥fat some of theX; levels where

= 3, then a statistical test for linearity can be made based o
the F distribution, Table 2. The log life of th@h replicate
specimen tested in thi¢h level of X is subsequently denoted
Y;.
JSuppose that fatigue tests are conducteldditerent levels
of X and thatm, replicate values o¥ are observed at eachy.
Then the hypothesis of linearity (that g4y =A+BX) is

rejected when the computed value of

| m _
2 2 (Y- Y)Ak=1)
i=1j=1

Note 13—Some readers may be tempted to use existing digital

. computer software which calculates a value ahe so-called correlation
exceedst, where the value OFP is read from Table 2 for oefficient, or r?, the coefficient of determination, to ascertain the

the desired Sign.if'icar.lce level. (The sjgnificance Ieyel i§ defineauitability of the linear model. This approach is not recommended. (For
as the p_r()bab”'ty n percent of _'n_CorreC“y !’eJeCtmg t_he example,r = 0.993 with F =3.62 for the example of 8.3.1, whereas
hypothesis of linearity when there is indeed a linear relation+ = 0.988 andF = 21.5 for similar data set generated during the 1976



E09.08 low-cycle fatigue round robin.)

Note 14—A mean square value is a specific sum of squares divided by

its statistical degrees of freedom.

8.3 Numerical Examples

8.3.1 Example 1:Consider the following low-cycle fatigue
data (taken from a 1976 E09.08 round-robin test program

(laboratory 43):
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Nf —0.68897
Ae 2= 0.67823<T> 17)

Ae,/2 = 0.67823(1 / 2)-0.68897(2N,)~ 08897
Ae,J2 = 1.09340(2N;) 06887

The above alternative equation is shown on Fig. 1.
Ancillary Calculations:

A2 N X=-253172 Y =3.42990 (18)
Plastic Strain Amplitude— Fatigue Life
Unitless Cycles 0
0.01636 168
0.01609 200 2 (% = X)* = 2.63892 (19)
0.00675 1000
0.00682 1180
0.00179 4730 9 _ _
0.00160 8035 > %=X (Y, —Y) = —3.83023 (20)
0.00165 5254 =1
0.00053 28617
0.00054 32650 ) [1 . (_2.531722>% - on
(a) Estimate parameters and B and the respective 95 % TATT|97 263892 ) -
confidence intervals. cg = 0'[2.638937% = 0.06513 (22)

First, restate (transform) the data in terms of logarithms (b) Test for linearity at the 5
(base 10 used herein due to its wide use in practice).

% significance level.
We shall ignore the slight differences among the amplitudes

X;=10g (Aep;/2) Y;=log N; of plastic strain and assume that 4 andk = 9. Then, at each
(Independent Variable) (Dependent Variable) of the four X levels. we shall comput ? .
-1.78622 2.22531 0 i 1S, wWe shall_ putey; using
-1.79344 2.30103 Y, =-0.24414 - 1.4514%; andY; usingY; = XY, ;/m. Accord-
~2.17070 3.00000 ingly, Fo g5=5.79, wherea§& computed (using Eq 10) = 3.62.
-2.16622 3.07188 - ; ; L9 =
_574715 3.67486 Hence, we do not reject the linear model in this example.
-2.79588 3.90499 Ancillary Calculations:
-2.78252 3.72049
-3.27572 4.45662 Numerator(F) = 0.0532/2 (23)
~3.26761 451388 DenominatolF) = 0.0368/5
Then, from Eq 4 and Eq 5: 8.3.2 Example 2:Consider the following low-cycle fatigue
A=-0.24474 B=-1.45144 data (also taken from a 1976 E09.08 round-robin test program

Or, as expressed in the form of Eq 2b:

(laboratory 34)):

Ae, /2 N
logN =-0.24474 - 1.45144 |OgA(€p/2) Plastic Strainp/AmpIitude— Fatigue Life
. Unitless Cycles
Also, from Eq 6: 0.0164 o
~2_ _ 0.0164 153
6% =0.07837/7= 0.011195 (14) 0.0069 5o3
or 0.0069 694
' 0.00185 3515
6 = 0.1058 (15) 0.00175 3860
) . ] ] 0.00054 17500
Accordingly, using Eq 7, the 95 % confidence interval for 0.00058 20330
is (t, = 2.3646) [-0.6435, 0.1540], and, using Eq 8, the 95 % P oy

confidence interval foB is [-1.6054, — 1.2974]. o s _
The fitted lineY = log N = —0.24474 — 1.45144 loge,/ TheF test (Eq 10) in this case indicates that the linear model
2) = -0.24474 - 1.45144 is displayed in Fig. 1, where the should be rejected at the 5% significance level (thatFis,

95 % confidence band computed using Eq 9is also plotted. (Fé@iculated = 9.08, wherkg 5 g o5= 5.41). Hence estimation of
example, wheme,/2 = 0.01,X = ~2.000,Y = 2.65814,Yoer A and B for the linear model is not recommended. Rather, a

band= 2.65814 — 0.15215 = 2.50599 and V. nonlinear model should be considered in analysis.
band= 2.65814 + 0.15215 = 281029) 9. Other Statistical Ana|yses

The fitted line can be transformed to the form given in g 1 \when the Weibull distribution is assumed to describe
Appendix X1 of Practice E 606 as follows: the distribution of fatigue life at a given stress or strain
log N = —0.24474— 1.45144 log A€,/2) (16)  amplitude, or when the fatigue data include either run-outs or
log (Ae,/2) = —0.16862— 0.68897 logN suspended tests (or when the variance of log life increases
068807 noticeably as life increases), the appropriate statistical analyses
Ae/2 = 0.67823(N) are more complicated than illustrated herein. The reader is
referred to Re{5) for an example of relevant digital computer
software.

upper

Substituting cycles (N) to reversals (ZNgives
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Note 15—It is not good practice either to ignore run-outs or to treat
them as if they were failures. Rather, maximum likelihood analyses of the
type illustrated in Ref5) are recommended.

REFERENCES
(1) Manual on Statistical Planning and Analysis for Fatigue Experiments,(4) ASTM Manual on Fitting Straight Lines, STP 3¥8TM, 1962.
STP 588ASTM, 1975. (5) Nelson, W. B., etal., “STATPAC Simplified—A Short Introduction To
(2) Little, R. E., and Jebe, E. HStatistical Design of Fatigue Experi- How To Run STATPAC, A General Statistical Package for Data
ments Applied Science Publishers, London, 1975. Analysis,” Technical Information Series Report 73CRD 04aly,
(3) Brownlee, K. A.,Statistical Theory and Methodology in Science and 1973, General Electric Co., Corporate Research and Development,
Engineering John Wiley and Sons, New York, NY, 2nd Ed. 1965. Schenectady, NY.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website
(www.astm.org).



