
Designation: E 739 – 91 (Reapproved 1998)

Standard Practice for
Statistical Analysis of Linear or Linearized Stress-Life ( S-N)
and Strain-Life ( e-N) Fatigue Data 1

This standard is issued under the fixed designation E 739; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice pertains only toS-Nande-N relationships
that may be reasonably approximated by a straight line (on
appropriate coordinates) for a specific interval of stress or
strain. It presents elementary procedures that presently reflect
good practice in modeling and analysis. However, because the
actualS-Nor e-N relationship is approximated by a straight line
only within a specific interval of stress or strain, and because
the actual fatigue life distribution is unknown, it isnot
recommendedthat ( a) the S-N or e-N curve be extrapolated
outside the interval of testing, or (b) the fatigue life at a
specific stress or strain amplitude be estimated below approxi-
mately the fifth percentile (P . 0.05). As alternative fatigue
models and statistical analyses are continually being devel-
oped, later revisions of this practice may subsequently present
analyses that permit more complete interpretation ofS-Nand
e-N data.

2. Referenced Documents

2.1 ASTM Standards:
E 206 Definitions of Terms Relating to Fatigue Testing and

the Statistical Analysis of Fatigue Data2

E 467 Practice for Verification of Constant Amplitude Dy-
namic Loads on Displacements in an Axial Load Fatigue
Testing System3

E 468 Practice for Presentation of Constant Amplitude Fa-
tigue Test Results for Metallic Materials3

E 513 Definitions of Terms Relating to Constant-
Amplitude, Low-Cycle Fatigue Testing2

E 606 Practice for Strain-Controlled Fatigue Testing3

3. Terminology

3.1 The terms used in this practice shall be used as defined
in Definitions E 206 and E 513. In addition, the following
terminology is used:

3.1.1 dependent variable—the fatigue lifeN (or the loga-
rithm of the fatigue life).

3.1.1.1 Discussion—Log ( N) is denotedY herein.
3.1.2 independent variable—the selected and controlled

variable (namely, stress or strain). It is denotedX herein when
plotted on appropriate coordinates.

3.1.3 log-normal distribution—the distribution ofN when
log ( N) is normally distributed. (Accordingly, it is convenient
to analyze log (N) using methods based on the normal
distribution.)

3.1.4 replicate (repeat) tests—nominally identical tests on
different randomly selected test specimens conducted at the
same nominal value of the independent variableX. Such
replicate or repeat tests should be conducted independently; for
example, each replicate test should involve a separate set of the
test machine and its settings.

3.1.5 run out—no failure at a specified number of load
cycles (Practice E 468).

3.1.5.1 Discussion—The analyses illustrated herein do not
apply when the data include either run-outs (or suspended
tests). Moreover, the straight-line approximation of theS-Nor
e-N relationship may not be appropriate at long lives when
run-outs are likely.

3.1.5.2 Discussion—For purposes of statistical analysis, a
run-out may be viewed as a test specimen that has either been
removed from the test or is still running at the time of the data
analysis.

4. Significance and Use

4.1 Materials scientists and engineers are making increased
use of statistical analyses in interpretingS-N and e-N fatigue
data. Statistical analysis applies when the given data can be
reasonably assumed to be a random sample of (or representa-
tion of) some specific defined population or universe of
material of interest (under specific test conditions), and it is
desired either to characterize the material or to predict the
performance of future random samples of the material (under
similar test conditions), or both.

1 This practice is under the jurisdiction of ASTM Committee E-8 on Fatigue and
Fracture and is the direct responsibility of Subcommittee E08.04 on Structural
Applications.
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5. Types ofS-N and e-N Curves Considered

5.1 It is well known that the shape ofS-Nand e-N curves
can depend markedly on the material and test conditions. This
practice is restricted to linear or linearizedS-N and e- N
relationships, for example,

log N 5 A 1 B ~S! or (1)

log N 5 A 1 B ~e!, or

log N 5 A 1 B ~log S! or (2)

log N 5 A 1 B ~ log e!

in which S and e may refer to (a) the maximum value of
constant-amplitude cyclic stress or strain, given a specific
value of the stress or strain ratio, or of the minimum cyclic
stress or strain, (b) the amplitude or the range of the constan-
tamplitude cyclic stress or strain, given a specific value of the
mean stress or strain or (c) analogous information stated in
terms of some appropriate independent (controlled) variable.

NOTE 1—In certain cases the amplitude of the stress or strain is not
constant during the entire test for a given specimen. In such cases some
effective (equivalent) value ofS or e must be established for use in
analysis.

5.1.1 The fatigue lifeN is the dependent (random) variable
in S-N and e-N tests, whereasS or e is the independent
(controlled) variable.

NOTE 2—In certain cases the independent variable used in analysis is
not literally the variable controlled during testing. For example, it is
common practice to analyze low-cycle fatigue data treating the range of
plastic strain as the controlled variable, when in fact the range of total
strain was actually controlled during testing. Although there may be some
question regarding the exact nature of the controlled variable in certain
S-N and e-N tests, there is never any doubt that the fatigue life is the
dependent variable.

NOTE 3—In plotting S-Nande- N curves, the independent variablesS
and e are plotted along the ordinate, with life (the dependent variable)
plotted along the abscissa. Refer, for example, to Fig. 1.

5.1.2 The distribution of fatigue life (in any test) is unknown
(and indeed may be quite complex in certain situations). For
the purposes of simplifying the analysis (while maintaining
sound statistical procedures), it is assumed herein that the
logarithms of the fatigue lives are normally distributed, that is,
the fatigue life is log-normally distributed, and that the
variance of log life is constant over the entire range of the
independent variable used in testing (that is, the scatter in log

NOTE 1—The 95 % confidence band for thee-N curve as a whole is based on Eq 9. (Note that the dependent variable, fatigue life, is plotted here along
the abscissa to conform to engineering convention.)

FIG. 1 Fitted Relationship Between the Fatigue Life N (Y ) and the Plastic Strain Amplitude De p/2 (X) for the Example Data Given
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N is assumed to be the same at lowS ande levels as at high
levels ofS or e). Accordingly, logN is used as the dependent
(random) variable in analysis. It is denotedY. The independent
variable is denotedX. It may be eitherS or e, or log S or log
e, respectively, depending on which appears to produce a
straight line plot for the interval ofSor e of interest. Thus Eq
1 and Eq 2 may be re-expressed as

Y5 A 1 BX (3)

Eq 3 is used in subsequent analysis. It may be stated more
precisely as µY? X = A + BX, where µY? X is the expected value
of Y given X.

NOTE 4—For testing the adequacy of the linear model see 8.2.
NOTE 5—The expected value is the mean of the conceptual population

of all Y’s given a specific level ofX. (The median and mean are identical
for the symmetrical normal distribution assumed herein forY.)

6. Test Planning

6.1 Test planning forS-Nande-N test programs is discussed
in Chapter 3 of Ref(1).4 Planned grouping (blocking) and
randomization are essential features of a well-planned test
program. In particular, good test methodology involves use of
planned grouping to (a) balance potentially spurious effects of
nuisance variables (for example, laboratory humidity) and (b)
allow for possible test equipment malfunction during the test
program.

7. Sampling

7.1 It is vital that sampling procedures be adopted which
assure a random sample of the material being tested. A random
sample is required to state that the test specimens are repre-
sentative of the conceptual universe about which both statisti-
cal and engineering inference will be made.

NOTE 6—A random sampling procedure provides each specimen that
conceivably could be selected (tested) an equal (or known) opportunity of
actually being selected at each stage of the sampling process. Thus, it is
poor practice to use specimens from a single source (plate, heat, supplier)
when seeking a random sample of the material being tested unless that
particular source is of specific interest.

NOTE 7—Procedures for using random numbers to obtain random
samples and to assign stress or strain amplitudes to specimens (and to
establish the time order of testing) are given in Chapter 4 of Ref(2).

7.1.1 Sample Size—The minimum number of specimens
required inS-N (ande- N) testing depends on the type of test
program conducted. The following guidelines given in Chapter
3 of Ref (1) appear reasonable.

Type of Test
Minimum Number

of SpecimensA

Preliminary and exploratory (exploratory research and
development tests)

6 to 12

Research and development testing of components and
specimens

6 to 12

Design allowables data 12 to 24
Reliability data 12 to 24

AIf the variability is large, a wide confidence band will be obtained unless a large
number of specimens are tested (See 8.1.1).

7.1.2 Replication—The replication guidelines given in
Chapter 3 of Ref(1) are based on the following definition:

% replication = 100 [1 − (total number of different stress or strain levels used
in testing/total number of specimens tested)]

Type of Test Percent ReplicationA

Preliminary and exploratory (research and development
tests)

17 to 33 min

Research and development testing of components and
specimens

33 to 50 min

Design allowables data 50 to 75 min
Reliability data 75 to 88 min

A Note that percent replication indicates the portion of the total number of
specimens tested that may be used for obtaining an estimate of the variability of
replicate tests.

7.1.2.1 Replication Examples—Good replication: Suppose
that 10 specimens are used in research and development for the
testing of a component. If two specimens are tested at each of
five stress or strain amplitudes, the test program involves 50 %
replications. This percent replication is considered adequate for
most research and development applications. Poor replication:
Suppose eight different stress or strain amplitudes are used in
testing, with two replicates at each of two stress or strain
amplitudes (and no replication at the other six stress or strain
amplitudes). This test program involves only 20 % replication,
which is not generally considered adequate.

8. Statistical Analysis (Linear Model Y = A + BX, Log-
Normal Fatigue Life Distribution with Constant
Variance Along the Entire Interval of X Used in
Testing, No Runouts or Suspended Tests or Both,
Completely Randomized Design Test Program)

8.1 For the case where (a) the fatigue life data pertain to a
random sample (allYi are independent), (b) there are neither
run-outs nor suspended tests and where, for the entire interval
of X used in testing, (c) the S-N or e- N relationship is
described by the linear modelY = A + BX (more precisely by
µ Y? X = A + BX), (d) the (two parameter) log-normal distribu-
tion describes the fatigue lifeN, and (e) the variance of the
log-normal distribution is constant, the maximum likelihood
estimators ofA andB are as follows:

Â 5 Ȳ2 B̂ X̄ (4)

B̂ 5
(

i 5 1

k

~Xi 2 X̄! ~Yi 2 Ȳ!

(
i 5 1

k

~Xi 2 X̄!2

(5)

where the symbol “caret” ( ^ ) denotes estimate (estimator),
the symbol “overbar”( ) denotes average (for example,Ȳ =
( i 5 1

k Yi/k andX̄ = (i 5 1
k X i/k), Yi = log Ni, X i = Si or ei, or

log Si or log ei (refer to Eq 1 and Eq 2), andk is the total
number of test specimens (the total sample size). The recom-
mended expression for estimating the variance of the normal
distribution for logN is

ŝ2 5
(

i 5 1

k

~Yi 2 Ŷi!
2

k 2 2 (6)

in which Ŷi = Â + B̂ Xi and the (k − 2) term in the
denominator is used instead ofk to make ŝ2 an unbiased
estimator of the normal population variances 2.

4 The boldface numbers in parentheses refer to the list of references appended to
this standard.
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NOTE 8—An assumption of constant variance is usually reasonable for
notched and joint specimens up to about 106 cycles to failure. The variance
of unnotched specimens generally increases with decreasing stress (strain)
level (see Section 9). If the assumption of constant variance appears to be
dubious the reader is referred to Ref(3) for the appropriate statistical test.

8.1.1 Confidence Intervals for Parameters A and B—The
estimatorsÂ and B̂ are normally distributed with expected
valuesA andB, respectively, (regardless of total sample sizek)
when conditions (a) through (e) in 8.1 are met. Accordingly,
confidence intervals for parametersA andB can be established
using thet distribution, Table 1. The confidence interval forA
is given byÂ 6 t p ŝÂ, or

Â 6 tp ŝF1
k 1

X 2

(
i 5 1

k

~Xi 2 X! 2G½

, (7)

and forB is given by B̂6 t pŝ B̂, or

B̂ 6 tp ŝ@ (
i 5 1

k

~Xi 2 X̄! 2#2½ (8)

in which the value oft p is read from Table 1 for the desired
value ofP, the confidence level associated with the confidence
interval. This table has one entry parameter (the statistical
degrees of freedom,n, for t ). For Eq 7 and Eq 8,n = k − 2.

NOTE 9—The confidence intervals forA andB are exact if conditions
(a) through (e) in 8.1 are met exactly. However, these intervals are still
reasonably accurate when the actual life distribution differs slightly from
the (two-parameter) log-normal distribution, that is, when only condition
(d) is not met exactly, due to the robustness of thet statistic.

NOTE 10—Because the actual medianS-Nor e -N relationship is only
approximated by a straight line within a specific interval of stress or strain,
confidence intervals forA andB that pertain to confidence levels greater
than approximately 0.95 are not recommended.

The meaning of the confidence interval associated with, say,
Eq 8 is as follows (Note 14). If the values oftp given in Table
1 for, say,P = 95 % are used in a series of analyses involving
the estimation ofB from independent data sets, then in the long
run we may expect 95 % of the computed intervals to include

the valueB. If in each instance we were to assert thatB lies
within the interval computed, we should expect to be correct 95
times in 100 and in error 5 times in 100: that is, the statement
“ B lies within the computed interval” has a 95 % probability
of being correct. But there would be no operational meaning in
the following statement made in any one instance: “The
probability is 95 % thatB falls within the computed interval in
this case” sinceB either does or does not fall within the
interval. It should also be emphasized that even in independent
samples from the same universe, the intervals given by Eq 8
will vary both in width and position from sample to sample.
(This variation will be particularly noticeable for small
samples.) It is this series of (random) intervals “fluctuating” in
size and position that will include, ideally, the valueB 95 times
out of 100 for P = 95 %. Similar interpretations hold for
confidence intervals associated with other confidence levels.
For a given total sample sizek, it is evident that the width of
the confidence interval forB will be a minimum whenever

(
i 5 1

k

~Xi 2 X!2 (9)

is a maximum. Since theXi levels are selected by the investigator, the
width of confidence interval forB may be reduced by appropriate test
planning. For example, the width of the interval will be minimized when,
for a fixed number of available test specimens,k, half are tested at each
of the extreme levelsXmi n andXmax. However, this allocation should be
used only when there is stronga priori knowledge that theS-N or e-N
curve is indeed linear—because this allocation precludes a statistical test
for linearity (8.2). See Chapter 3 of Ref(1) for a further discussion of
efficient selection of stress (or strain) levels and the related specimen
allocations to these stress (or strain) levels.

NOTE 11—This explanation is similar to that of STP 313(4).

8.1.2 Confidence Band for the Entire Median S-N ore-N
Curve (that is, for the Median S-N ore-N Curve as a Whole)—
If conditions (a) through (e) in 8.1 are met, an exact confidence
band for the entire medianS-Nor e-N curve (that is, all points
on the linear or linearized medianS-Nor e-N curve considered
simultaneously) may be computed using the following equa-
tion:

Â 1 B̂X6 =2F p s 3
1
k 1

~X 2 X̄! 2

(
i 5 1

k

~Xi 2 X̄! 24
½

(10)

in which Fp is given in Table 2. This table involves two entry
parameters (the statistical degrees of freedomn1 andn2 for F).
For Eq 9,n1 = 2 andn2 = ( k − 2). For example, whenk = 7,
F0.95= 5.7861.

A 95 % confidence band computed using Eq 9 is plotted in
Fig. 1 for the example data of 8.3.1. The interpretation of this
band is similar to that for a confidence interval (8.1.1). Namely,
if conditions (a) through (e) are met, and if the values ofFp

given in Table 2 for, say,P = 95 % are used in a series of
analyses involving the construction of confidence bands using
Eq 9 for the entire range ofX used in testing; then in the long
run we may expect 95 % of the computed hyperbolic bands to
include the straight line µY? X = A + BX everywhere along the
entire range ofX used in testing.

NOTE 12—Because the actual medianS-N or e-N relationship is only

TABLE 1 Values of tp (Abstracted from STP 313 (4))

nA
P, %B

90 95

4 2.1318 2.7764
5 2.0150 2.5706
6 1.9432 2.4469
7 1.8946 2.3646
8 1.8595 2.3060
9 1.8331 2.2622

10 1.8125 2.2281
11 1.7959 2.2010
12 1.7823 2.1788
13 1.7709 2.1604
14 1.7613 2.1448
15 1.7530 2.1315
16 1.7459 2.1199
17 1.7396 2.1098
18 1.7341 2.1009
19 1.7291 2.0930
20 1.7247 2.0860
21 1.7207 2.0796
22 1.7171 2.0739

An is not sample size, but the degrees of freedom of t, that is, n = k − 2.
BP is the probability in percent that the random variable t lies in the interval

from − tp to + tp.
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approximated by a straight line within a specific interval of stress of strain,
confidence bands which pertain to confidence levels greater than approxi-
mately 0.95 are not recommended.

While the hyperbolic confidence bands generated by Eq 9
and plotted in Fig. 1 are statistically correct, straight-line
confidence and tolerance bands parallel to the fitted lineµ̂ Y? X
= Â + B are sometimes used. These bands are described in
Chapter 5 of Ref(2).

8.2 Testing the Adequacy of the Linear Model—In 8.1 it was
assumed that a linear model is valid, namely that µY? X
= A + BX. If the test program is planned such that there is more
than one observed value ofY at some of theXi levels wherei
$ 3, then a statistical test for linearity can be made based on
the F distribution, Table 2. The log life of thejth replicate
specimen tested in theith level of X is subsequently denoted
Yij .

Suppose that fatigue tests are conducted atl different levels
of X and thatmi replicate values ofY are observed at eachXi.
Then the hypothesis of linearity (that µY? X = A + BX) is
rejected when the computed value of

(
i 5 1

l

mi ~Ŷi 2 Ȳi!
2/~l 2 2!

(
i 5 1

l

(
j 5 1

mi

~Yij 2 Ȳi!
2/~k 2 l!

(11)

exceedsFp, where the value ofFp is read from Table 2 for
the desired significance level. (The significance level is defined
as the probability in percent of incorrectly rejecting the
hypothesis of linearity when there is indeed a linear relation-

ship betweenX and µY? X .) The total number of specimens
tested,k, is computed using

k 5 (
i 5 1

l

mi (12)

Table 2 involves two entry parameters (the statistical degrees
of freedomn1 andn2 for F). For Eq 10,n1 = (l − 2), andn2 = (
k − l). For example,F0.95= 6.9443 whenk = 8 andl = 4.

TheF test (Eq 10) compares the variability of average value
about the fitted straight line, as measured by their mean square
(Note 15) (the numerator in Eq 10) to the variability among
replicates, as measured by their mean square (the denominator
in Eq 10). The latter mean square is independent of the form of
the model assumed for theS-N or e-N relationship. If the
relationship between µY? X andX is indeed linear, Eq 10 follows
the F distribution with degrees of freedom, (l − 2) and (k − l).
Otherwise Eq 10 is larger on the average than would be
expected by random sampling from thisF distribution. Thus
the hypothesis of a linear model is rejected if the observed
value ofF (Eq 10) exceeds the tabulated valueFp. If the linear
model is rejected, it is recommended that a nonlinear model be
considered, for example:

µY? X A 1 BX1 CX2 (13)

NOTE 13—Some readers may be tempted to use existing digital
computer software which calculates a value ofr, the so-called correlation
coefficient, or r2, the coefficient of determination, to ascertain the
suitability of the linear model. This approach is not recommended. (For
example, r = 0.993 with F = 3.62 for the example of 8.3.1, whereas
r = 0.988 andF = 21.5 for similar data set generated during the 1976

TABLE 2 Values of FP
A (Abstracted from STP 313 (4))

Degrees of Freedom, n1

1 2 3 4

1 $ 161.45 199.50 215.71 224.58
4052.2 4999.5 5403.3 5624.6

2 $ 18.513 19.000 19.164 19.247
8.503 99.000 99.166 99.249

3 $ 10.128 9.5521 9.2766 9.1172
34.116 30.817 29.457 28.710

4 $ 7.7086 6.9443 6.5914 6.3883
21.198 18.000 16.694 15.977

5 $ 6.6079 5.7861 5.4095 5.1922
16.258 13.274 12.060 11.392

6 $ 5.9874 5.1433 4.7571 4.5337
13.745 10.925 9.7795 9.1483

7 $ 5.5914 4.7374 4.3468 4.1203
12.246 9.5466 8.4513 7.8467

8 $ 5.3177 4.4590 4.0662 3.8378
Degrees of Freedom, n2 11.259 8.6491 7.5910 7.0060

9 $ 5.1174 4.2565 3.8626 3.6331
10.561 8.0215 6.9919 6.4221

10 $ 4.9646 4.1028 3.7083 3.4780
10.044 7.5594 6.5523 5.9943

11 $ 4.8443 3.9823 3.5874 3.3567
9.6460 7.2057 6.2167 5.6683

12 $ 4.7472 3.8853 3.4903 3.2592
9.3302 6.9266 5.9526 5.4119

13 $ 4.6672 3.8056 3.4105 3.1791
9.0738 6.7010 5.7394 5.2053

14 $ 4.6001 3.7389 3.3439 3.1122
8.8616 6.5149 5.5639 5.0354
4.5431 3.6823 3.2874 3.0556

15 $ 8.6831 6.3589 5.4170 4.8932

A In each row, the top figures are values of F corresponding to P − 95 %, the bottom figures correspond to P = 99 %. Thus, the top figures pertain to the 5 % significance
level, whereas the bottom figures pertain to the 1 % significance level. (The bottom figures are not recommended for use in Eq 9.)
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E09.08 low-cycle fatigue round robin.)

NOTE 14—A mean square value is a specific sum of squares divided by
its statistical degrees of freedom.

8.3 Numerical Examples:
8.3.1 Example 1:Consider the following low-cycle fatigue

data (taken from a 1976 E09.08 round-robin test program
(laboratory 43):

Dep/2 N
Plastic Strain Amplitude—

Unitless
Fatigue Life

Cycles
0.01636 168
0.01609 200
0.00675 1000
0.00682 1180
0.00179 4730
0.00160 8035
0.00165 5254
0.00053 28617
0.00054 32650

(a) Estimate parametersA andB and the respective 95 %
confidence intervals.

First, restate (transform) the data in terms of logarithms
(base 10 used herein due to its wide use in practice).

Xi = log (Depi /2) Yi = log Ni

(Independent Variable) (Dependent Variable)
−1.78622 2.22531
−1.79344 2.30103
−2.17070 3.00000
−2.16622 3.07188
−2.74715 3.67486
−2.79588 3.90499
−2.78252 3.72049
−3.27572 4.45662
−3.26761 4.51388

Then, from Eq 4 and Eq 5:
Â = −0.24474 B̂ = −1.45144

Or, as expressed in the form of Eq 2b:

loĝN = −0.24474 − 1.45144 log (Dep/2)
Also, from Eq 6:

ŝ 2 5 0.07837/75 0.011195 (14)

or,

ŝ 5 0.1058 (15)

Accordingly, using Eq 7, the 95 % confidence interval forA
is (tp = 2.3646) [−0.6435, 0.1540], and, using Eq 8, the 95 %
confidence interval forB is [−1.6054, − 1.2974].

The fitted lineŶ = log N = −0.24474 − 1.45144 log (Dep/
2) = −0.24474 − 1.45144X is displayed in Fig. 1, where the
95 % confidence band computed using Eq 9is also plotted. (For
example, whenDep/2 = 0.01,X = −2.000,Ŷ = 2.65814,Ŷlower

band= 2.65814 − 0.15215 = 2.50599 and Ŷupper

band= 2.65814 + 0.15215 = 2.81029.)
The fitted line can be transformed to the form given in

Appendix X1 of Practice E 606 as follows:

log N5 20.244742 1.45144 log~Dep/2! (16)

log ~Dep/2! 5 20.168622 0.68897 logN

Dep/2 5 0.67823 ~N!20.68897

Substituting cycles (N) to reversals (2Nf) gives

De p/2 5 0.67823S2 N̂f

2 D20.68897

(17)

Dep/2 5 0.67823~1 / 2!20.68897~2Nf!
20.68897

Dep/2 5 1.09340~2N̂f!
20.68897

The above alternative equation is shown on Fig. 1.
Ancillary Calculations:

X̄ 5 22.53172 Ȳ5 3.42990 (18)

(
i 5 1

9

~Xi 2 X!2 5 2.63892 (19)

(
i 5 1

9

~Xi 2 X̄! ~Yi 2 Ȳ! 5 23.83023 (20)

s Â 5 s F1
9 1

~22.53172! 2

2.63892 D½

5 0.1686 (21)

s B 5 s@2.63892#2½ 5 0.06513 (22)

(b) Test for linearity at the 5 % significance level.
We shall ignore the slight differences among the amplitudes

of plastic strain and assume thatl = 4 andk = 9. Then, at each
of the four X i levels, we shall computeŶi using
Ŷi = −0.24414 − 1.45144X̄i andȲi usingȲi = (Yi j /mi. Accord-
ingly, F0.95= 5.79, whereasF computed (using Eq 10) = 3.62.
Hence, we do not reject the linear model in this example.

Ancillary Calculations:

Numerator~F! 5 0.0532/2 (23)

Denominator~F! 5 0.0368/5

8.3.2 Example 2:Consider the following low-cycle fatigue
data (also taken from a 1976 E09.08 round-robin test program
(laboratory 34)):

Dep/2 N
Plastic Strain Amplitude—

Unitless
Fatigue Life

Cycles
0.0164 153
0.0164 153
0.0069 563
0.0069 694
0.00185 3515
0.00175 3860
0.00054 17500
0.00058 20330
0.000006 60350
0.000006 121500

TheF test (Eq 10) in this case indicates that the linear model
should be rejected at the 5 % significance level (that is,F
calculated = 9.08, whereF3,5,0.95= 5.41). Hence estimation of
A and B for the linear model is not recommended. Rather, a
nonlinear model should be considered in analysis.

9. Other Statistical Analyses

9.1 When the Weibull distribution is assumed to describe
the distribution of fatigue life at a given stress or strain
amplitude, or when the fatigue data include either run-outs or
suspended tests (or when the variance of log life increases
noticeably as life increases), the appropriate statistical analyses
are more complicated than illustrated herein. The reader is
referred to Ref(5) for an example of relevant digital computer
software.
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NOTE 15—It is not good practice either to ignore run-outs or to treat
them as if they were failures. Rather, maximum likelihood analyses of the
type illustrated in Ref(5) are recommended.
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