

Designation: A 677/A 677M - 99

Standard Specification for Nonoriented Electrical Steel Fully Processed Types¹

This standard is issued under the fixed designation A 677/A 677M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This specification covers the detailed requirements to which flat-rolled nonoriented fully processed electrical steel shall conform.
- 1.2 This steel is produced to specified maximum core-loss values and is intended primarily for commercial power frequency (50- and 60-Hz) applications in magnetic devices. Desirable core-loss and permeability characteristics are developed during mill processing, so additional heat treatment by the purchaser is usually not necessary.
- 1.3 These nonoriented fully processed electrical steels are low-carbon, silicon-iron, or silicon-aluminum-iron alloys containing up to about 3.5 % silicon and a small amount of aluminum.
- 1.4 The values stated in either customary (cgs-emu and inch-pound) units or SI units are to be regarded separately as standard. The SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance to this specification.

2. Referenced Documents

- 2.1 ASTM Standards:
- A 34/A 34M Practice for Sampling and Procurement Testing of Magnetic Materials²
- A 340 Terminology of Symbols and Definitions Relating to Magnetic Testing 2
- A 343 Test Method for Alternating-Current Magnetic Properties of Materials at Power Frequencies Using Wattmeter-Ammeter-Voltmeter Method and 25-cm Epstein Test Frame²
- A 664 Practice for Identification of Standard Electrical Steel Grades in ASTM Specifications²
- A 700 Practices for Packaging, Marking, and Loading Methods for Steel Products for Domestic Shipment³

- A 717/A 717M Test Method for Surface Insulation Resistivity of Single-Strip Specimens²
- A 719 Test Method for Lamination Factor of Magnetic Materials²
- A 720 Test Method for Ductility of Nonoriented Electrical Steel²
- A 937 Test Method for Determining Interlaminar Resistance of Insulating Coatings Using Two Adjacent Test Surfaces²
- A 976 Classification of Insulating Coatings by Composition, Relative Insulating Ability and Application²
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials⁴

3. Terminology

3.1 *Definitions:* The terms and symbols used in this specification are defined in Terminology A 340.

4. Classification

4.1 The nonoriented electrical steel types described by this specification are as shown in Table 1.

5. Ordering Information

- 5.1 Orders for material under this specification shall include as much of the following information as necessary to describe the desired material adequately:
 - 5.1.1 ASTM specification number.
 - 5.1.2 Core-loss type number.
 - 5.1.3 Surface coating type.
- 5.1.4 Thickness, width, and length (if in cut lengths instead of coils).
 - 5.1.5 Total weight of ordered item.
 - 5.1.6 Limitations in coil size or lift weights.
- 5.1.7 End Use—The purchaser shall disclose as much pertinent information as possible about the intended application to enable the producer to provide material characteristics most suitable for specific fabricating practices.
- 5.1.8 Special requirements or exceptions to the provisions of this specification.

¹This specification is under the jurisdiction of ASTM Committee A06 on Magnetic Properties and is the direct responsibility of Subcommittee A06.02 on Material Specifications.

Current edition approved Dec. 10, 1999. Published April 2000. Originally published as A 677-73. Last previous edition A 677-98a.

² Annual Book of ASTM Standards, Vol 03.04.

³ Annual Book of ASTM Standards, Vol 01.05.

⁴ Annual Book of ASTM Standards, Vol 03.01.

TABLE 1 Core-Loss Types^A and Maximum Core Losses^B at 15 kG [1.5 T] and 60 Hz^C for As-Sheared Epstein Specimens^D

0.0140-in. [0.36-mm] Thickness			0.0185-in. [0.47-mm] Thickness			0.0250-in. [0.64-mm] Thickness		
Core-Loss Type Maximum Core Loss, W/lb [W/kg]		Core-Loss Type	Maximum Core Loss, W/lb [W/kg]		Core-Loss Type	Maximum Core Loss, W/lb [W/kg]		
36F145	1.45	[3.20]						
36F155	1.55	[3.42]	47F165	1.65	[3.64]	64F200	2.00	[4.41]
36F165	1.65	[3.64]	47F180	1.80	[3.97]	64F210	2.10	[4.63]
36F175	1.75	[3.86]	47F190	1.90	[4.19]	64F225	2.25	[4.96]
36F185	1.85	[4.08]	47F200	2.00	[4.41]	64F235	2.35	[5.18]
36F195	1.95	[4.30]	47F210	2.10	[4.63]	64F250	2.50	[5.51]
36F205	2.05	[4.52]	47F240	2.40	[5.29]	64F275	2.75	[6.06]
			47F280	2.80	[6.17]	64F320	3.20	[7.05]
			47F400	4.00	[8.82]	64F500	5.00	[11.02]
			47F450	4.50	[9.92]	64F550	5.50	[12.13]

^A See Practice A 664.

6. Manufacture

- 6.1 Typical Melting and Casting:
- 6.1.1 These fully processed electrical steels may be made by basic-oxygen, electric-furnace, or other steelmaking practice.
- 6.1.2 These electrical steels are characterized by low carbon, usually less than 0.020 %. The principal alloying element is commonly silicon, but aluminum up to about 0.8 % is sometimes used instead of or in addition to silicon, depending on mill-processing practice for the desired magnetic grade. Individual producers will often have different silicon or aluminum contents for a particular grade because of intrinsic mill-processing procedures.
- 6.1.3 Sulfur content is typically less than 0.025 % and is usually lowest in the numbered types representing lowest core loss. Manganese is typically present in amounts between 0.10 and 0.40 %. Phosphorus, copper, nickel, chromium, molybdenum, antimony, and tin are usually present only in residual amounts except in the higher numbered core-loss types in which phosphorus up to 0.15 % and tin or antimony up to 0.10 % may be present.
- 6.1.4 The producer is not required to report chemical composition of each lot except when a clear need for such information has been shown. In such cases, the analyses to be reported shall be negotiated between the producer and the purchaser.
- 6.2 Typical Rolling and Annealing—The processing sequence for fully processed, nonoriented electrical steel comprises hot-rolling, annealing, pickling, cold-rolling, and decarburizing annealing.
- 6.3 When changes in the manufacture of the material are believed to exert possible significant effects upon the purchaser's fabricating practices and upon the magnetic performance to be obtained in the specified end use, the producer shall notify the purchaser before shipment is made so the purchaser has an opportunity to evaluate the effects.

7. Magnetic Properties

- 7.1 Specific Core Loss—Each core-loss type of electrical steel is identified by a maximum core-loss limit as shown in Table 1.
- 7.2 *Permeability*—The permeability at all inductions shall be as high as possible, consistent with the required core-loss

limits that govern the grade. Typical relative peak permeability (μ_p) values are given in Appendix X1.

- 7.3 Specific Exciting Power—The rms exciting power required for the excitation of a particular type of electrical steel is frequently useful to the purchaser. Typical values of specific exciting power are given in Appendix X1.
- 7.4 Magnetic Aging—Although steel sold to this specification is considered non-aging, the maximum core-loss values of Table 1 are based on tests of freshly sheared specimens. The guarantee of magnetic properties after an aging treatment is subject to negotiation between the purchaser and the producer. The definition of aging coefficient and the aging treatments usually specified are given in Terminology A 340.

8. Surface Insulation Characteristics

- 8.1 Unless otherwise specified, fully processed nonoriented electrical steels are supplied with a smooth surface finish and a thin, tightly adherent surface oxide (Coating Type C-0 in Classification A 976) which has sufficient insulating ability for most small cores.
 - 8.2 *Applied Coatings*:
- 8.2.1 Several types of thin, tightly adherent applied coatings (Coating Types C-3, C-4, C-5, and C-6 in Classification A 976) with higher levels of insulating ability are available on fully processed nonoriented electrical steels. If an applied coating is needed, the purchaser shall specify the coating type.
- 8.2.2 If the insulating ability of the applied coating is unusually critical to the application, the purchaser shall specify not only the coating type, but also the test method (either Test Method A 717/A 717M or A 937) and test conditions to be used to evaluate the insulating ability of the coating, as well as the corresponding minimum value of insulating ability.
- 8.2.3 A thinner-than-usual applied coating may be preferred when the core-fabricating practice involves welding or die casting. In such cases, the coating type shall be suffixed by the letter "A."

9. Mechanical Requirements

9.1 Lamination Factor—The lamination factor shall be as high as practicable. It is greatest for thicker gages and when the surface is smooth, uncoated, and without significant amounts

^B The test density shall be the correct ASTM assumed density (in accordance with 14.2) for the chemistry used by the producer to meet the property requirements of the specification.

 $^{^{}C}$ Maximum core losses at 15 kG [1.5 T] and 50 Hz are 0.79 times maximum core losses at 60 Hz.

^D One half of strips cut parallel to the steel rolling direction, one half of strips cut perpendicular to the steel rolling direction.

of oxide. Lamination factors can be determined using Test Method A 719. Typical values of lamination factor are given in Appendix X1.

- 9.2 Ductility—The material shall be as ductile as possible. When required, the ductility can be determined by the bend test for ductility as described in Test Method A 720. Ductility is a function of microstructure and may differ between producers. The purchaser's anneal may also affect ductility. Typical values for ductility are given in Appendix X1.
- 9.3 *Hardness*—The hardness of these materials can be determined using Test Methods E 18. Hardness is affected by chemistry and by the grain size and microstructure of the final product. Typical values for the hardness of "as-produced" materials are given in Appendix X1.

10. Dimensions and Permissible Variations

10.1 *Thickness*—Specified thickness should be one of the common thicknesses as follows:

Thickness, in. [mm]

0.0140 [0.36]

0.0185 [0.47]

0.0250 [0.64]

- 10.2 Thickness Variations—The average thickness of the material supplied shall be as close as possible to the ordered thickness. Measurements made with a contacting micrometer at points no closer than 3/8 in. [10 mm] from the edge of a sheet or coil of specified width shall not differ from the specified thickness by more than the values (which include taper) shown in Table 2.
- 10.3 Taper—The rolling of flat-rolled sheets inherently produces an edge which is thinner than the rest of the sheet. This characteristic is termed "tapered edge," "feather," or gamma and occurs primarily within 1 to 2 in. [25 to 51 mm] from the as-rolled edge of the material. The thickness variation involved in edge taper sometimes is the major portion of the total overall thickness variation permitted by 10.2. It may be expected that the following limits on the differences in thickness measured along a straight line perpendicular to the mill edge within the first 3 in. [76 mm] or less from either edge of the ordered width will apply:

Ordered Thickness, in. [mm]	Maximum Taper, in. [mm]			
0.0140 [0.36]	0.0010 [0.025]			
0.0185 [0.47]	0.0012 [0.030]			
0.0250 [0.64]	0.0014 [0.036]			

- 10.4 Width Tolerances—Maximum deviations from the ordered width shall be as shown in Table 3.
- 10.5 *Length Tolerances*—The maximum deviations from the ordered length shall be as shown in Table 4.

TABLE 3 Width Tolerances

Ordered Width, in. [m]	Width Tolerances, in. [mm]			
Ordered Width, in. [iii]	Over	Under		
To 6 [0.15], incl	0.008 [0.20]	0.008 [0.20]		
Over 6 [0.15] to 10 [0.25], incl	0.016 [0.41]	0.016 [0.41]		
Over 10 [0.25] to 15 [0.38], incl	0.032 [0.81]	0.032 [0.81]		
Over 15 [0.38] to 20 [0.51], incl	0.125 [3.18]	0 [0]		
Over 20 [0.51] to 32 [0.81], incl	0.188 [4.76]	0 [0]		
Over 32 [0.81] to 48 [1.22], incl	0.25 [6.35]	0 [0]		

TABLE 4 Length Tolerances

Specified Length, in. [mm]	Length Tolerances, in. [mm]			
Specified Length, III. [IIIII]	Over	Under		
To 30 [0.76], incl	0.125 [3.2]	0 [0]		
Over 30 [0.76] to 60 [1.52], incl	0.25 [6.4]	0 [0]		
Over 60 [1.52] to 96 [2.44], incl	0.5 [12.7]	0 [0]		
Over 96 [2.44] to 120 [3.05], incl	0.75 [19.1]	0 [0]		
Over 120 [3.05] to 144 [3.66], incl	1.0 [25.4]	0 [0]		

10.6 *Camber*—Camber is the greatest deviation of a side edge from a straight line, the measurement being taken on the concave side with a straightedge. It is limited to ½ in. [6.4 mm] per 96 in. [2.4 m] of length.

10.7 Out of Square—This tolerance applies to cut lengths only and represents the deviation of an edge from a straight line placed at a right angle to the side, touching one corner and extending to the other side. It shall not exceed ½ in. [1.6 mm] per 6 in. [152 mm] of width or fraction thereof.

11. Workmanship, Finish and Appearance

- 11.1 Flatness—Adequately defining the degree of flatness necessary for the general application of fully processed electrical steel sheets is extremely difficult; therefore, no specific limits for flatness have been established.
- 11.1.1 It is intended that flatness shall be suitable for the intended application, and consequently, the purchaser should inform the producer of any requirements for a degree of flatness more critical than that obtained from usual commercial practices. Processes used to improve flatness may affect magnetic and mechanical properties.
- 11.1.2 Commercial practices recognize that sharp, short waves and buckles are objectionable.
- 11.1.3 Procedures for judging the degree of critical flatness necessary shall be subject to negotiation between purchaser and producer.
- 11.2 Surface Imperfections—The surface shall be reasonably clean and essentially free of manufacturing defects such as holes, blisters, slivers, indentations, and so forth, which would interfere with its effective use in the intended application.

TABLE 2 Thickness Tolerances

	Thickness Tolerances, Over or Under, in. [mm] for Specified Width, in. [mm]					
Specified Thickness, in. [mm]	C [0.15] and Under	Over 6 [0.15] to	Over 12 [0.30] to	Over 36 [0.91] to		
	6 [0.15] and Under	12 [0.30], incl.	36 [0.91], incl.	48 [1.22]. incl.		
0.014 [0.36] to 0.020 [0.51], incl	0.0015 [0.038]	0.002 [0.051]	0.002 [0.051]	0.003 [0.076]		
0.021 [0.53] to 0.031 [0.79], incl	0.002 [0.051]	0.002 [0.051]	0.003 [0.076]	0.003 [0.076]		

12. Sampling

- 12.1 The producer shall assign a number to each test lot for identification. The test lot shall not exceed 20 000 lbs [9100 kg] in weight.
- 12.2 Test samples shall be obtained after final mill heat treatment or other operation which is the final operation to have significant influence on the magnetic properties of fully processed electrical steel.
- 12.3 The full width coil identified as a test lot shall be sampled in accordance with Practice A 34/A 34M.

13. Specimen Preparation

- 13.1 The Epstein test specimen shall be in the as-sheared condition with one-half of the test strips sheared parallel to and one-half transverse to the rolling direction in accordance with Practice A 34/A 34M.
- 13.2 Care should be practiced to exclude any bent, twisted, dented, highly burred, or improperly sheared strips from the test specimen.

14. Test Methods

- 14.1 The required tests for core loss to determine the core-loss grade, and other magnetic tests when made, shall be in accordance with the procedure of Test Method A 343.
- 14.2 The assumed density of these materials for test purposes varies in accordance with the amounts of silicon and aluminum present in the steel as shown in Practice A 34/A 34M. The factor, percent silicon plus $1.7 \times$ percent aluminum, as determined for the median or aim silicon and aluminum of the melt, shall determine the assumed density to be used as follows:

(% Si + 1.7 \times % Al)	Assumed Test Density, g/cm ³ [kg/m ³]
0.00-0.65	7.85 [7850]
0.66-1.40	7.80 [7800]
1.41-2.15	7.75 [7750]
2.16-2.95	7.70 [7700]
2.96-3.70	7.65 [7650]
3.71-4.50	7.60 [7600]
4.51-5.25	7.55 [7550]

15. Certification

15.1 The producer shall submit to the purchaser, as promptly as possible after shipment, a certified report of the average core-loss values or any other required test values, for each test lot, to show that the material conforms to this specification.

- 15.2 The test methods and applicable test conditions, including the test density, shall be clearly stated.
- 15.3 The test report shall carry the lot identification, purchase order number, and other information that is deemed necessary to identify the test results with the proper shipment and shipping lot.

16. Marking

- 16.1 Each package of coils or lift of cut lengths shall have firmly attached to it, outside its wrappings, a tag showing the purchaser's order number, specification number, grade designation, coating or surface-type designation, thickness, width (and length if in sheet form), weight, and test lot number.
- 16.2 Each wide coil shall have the specification number, grade designation, coating or surface-type designation, thickness, width, weight, and test lot number marked on the outer surface of the coil itself.
- 16.3 In a lift of narrow coils, each narrow coil in the package shall be tagged with the specification number, grade designation, coating or surface-type designation, thickness, width, and test lot number.

17. Packaging

17.1 Methods of packaging, loading, and shipping, unless otherwise specified, shall correspond to the latest revision of the procedures recommended by Practices A 700.

18. Rejection

- 18.1 Unless otherwise specified, any rejection shall be reported to the producer within a reasonable time after receipt of material by the purchaser.
- 18.2 Material that is reported to be defective subsequent to the acceptance at the purchaser's works shall be set aside, adequately protected, and correctly identified. The producer shall be notified as soon as possible so that an investigation may be initiated.
- 18.3 Samples that are representative of the rejected material shall be made available to the producer so a mutually agreeable settlement can be reached.

19. Keywords

19.1 core loss; electrical steel; flat-rolled; fully processed; nonoriented

APPENDIX

(Nonmandatory Information)

X1. TYPICAL PROPERTIES

- X1.1 *Peak Permeability*—Typical values for relative peak permeability (μ_p) at an induction of 15 kG [1.5 T] determined in accordance with Test Method A 343 are given in Table X1.1.
- X1.2 Specific Exciting Power—Typical values for specific exciting power for these materials at 15 kG [1.5 T] and 60 Hz determined in accordance with Test Method A 343 are provided in Table X1.2.
- X1.3 Lamination Factor—The lamination factors for these materials as determined using Test Method A 719 at a test

pressure of 50 psi [340 kPa] typically range from 95 to 98 %, depending on gage, coating, and surface roughness.

- X1.4 *Ductility*—Typical values for the ductility of these materials as determined using Test Method A 720 are presented in Table X1.3.
- X1.5 *Hardness*—Typical values for hardness of these materials determined using Test Methods E 18 are presented in Table X1.3. The values given in Table X1.3 are based on Rockwell superficial hardness test results (30 T scale).

TABLE X1.1 Typical Relative Peak Permeability at 15 kG [1.5 T] and 60 Hz for As-Sheared Epstein Specimens^A

0.014-in. [0.3	0.014-in. [0.36-mm] Thickness		47-mm] Thickness	0.025-in. [0.64-mm] Thickness		
Core-Loss Type	Typical Relative Peak Permeability	Core-Loss Type	Typical Relative Peak Permeability	Core-Loss Type	Typical Relative Peak Permeability	
36F145	700–1100					
36F155	750–1150	47F165	800-1200	64F200	800-1250	
36F165	800-1200	47F180	800-1250	64F210	800-1300	
36F175	1000-1600	47F190	800-1650	64F225	800-1700	
36F185	1000-1650	47F200	800-1700	64F235	800-1750	
36F195	1000–1700	47F210	800-1750	64F250	800-1800	
36F205	1000–2000	47F240	900-2050	64F275	900-2100	
		47F280	900-2150	64F320	950-2200	
		47F400	1500-2250	64F500	1500-2300	
		47F450	1500-2400	64F550	1500-2500	

A One half of strips cut parallel to the steel rolling direction, one half of strips cut perpendicular to the steel rolling direction.

TABLE X1.2 Typical Specific Exciting Power at 15 kG [1.5 T] and 60 Hz for As-Sheared Epstein Specimens^A

0.0140-in. [0.36-mm] Thickness		0.0185-in. [0.47-mm] Thickness		0.0250-in. [0.64-mm] Thickness	
Core-Loss Typical Specific Exciting Power, Type Va/lb [VA/kg]		Core-Loss Type	Typical Specific Exciting Power, VA/lb [VA/kg]	Core-Loss Type	Typical Specific Exciting Power, VA/lb [VA/kg]
36F145	11.0-13.0 [24.3-28.7]				
36F155	10.5-12.5 [23.1-27.6]	47F165	10.0-12.0 [22.0-26.5]	64F200	9.5-12.0 [20.9-26.5]
36F165	10.0-12.0 [22.0-26.5]	47F180	9.5-12.0 [20.9-26.5]	64F210	9.0-12.0 [19.8-26.5]
36F175	8.0-10.0 [17.6-22.0]	47F190	7.5-12.0 [16.5-26.5]	64F225	7.5-12.0 [16.5-26.5]
36F185	7.5-10.0 [16.5-22.0]	47F200	7.0-12.0 [15.4-26.5]	64F235	7.0-12.0 [15.4-26.5]
36F195	7.5-10.0 [16.5-22.0]	47F210	7.0-12.0 [15.4-26.5]	64F250	7.0-12.0 [15.4-26.5]
36F205	6.5-10.0 [14.3-22.0]	47F240	6.0-11.0 [13.2-24.3]	64F275	6.0-11.0 [13.2-24.3]
		47F280	5.5-11.0 [12.1-24.3]	64F320	5.5-10.5 [12.1-23.1]
		47F400	5.5-7.0 [12.1-15.4]	64F500	5.5-7.0 [12.1-15.4]
		47F450	5.0-7.0 [11.0-15.4]	64F550	5.0-7.0 [11.0-15.4]

A One half of strips cut parallel to the steel rolling direction, one half of strips cut perpendicular to the steel rolling direction.

TABLE X1.3 Typical Ductility and Hardness^A

N	Туріс	Typical Hardness (HR30T)		
Nominal Alloy Content (Si + Al), %—	0.014 in. [0.36 mm]	0.0185 in. [0.47 mm]	0.025 in. [0.64 mm]	0.014 to 0.025 in. [0.36 to 0.64 mm]
3.50	19	10	8	67–75
3.20		18	16	66–74
2.80		22	20	64–72
2.35		25	23	61–69
1.85		25	24	59–67
1.05		25	25	56–63

A Ductility and hardness are also affected by the grain size and microstructure of the final product. The hardnesses presented are for "as-produced" material, not for material that has been stress relief annealed.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).