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1. Scope

1.1 This guide is an introduction to mathematical procedures for correction of interelement (matrix) effects in quantitative X-ray
spectrometric analysis.

1.1.1 The procedures described correct only for the interelement effect(s) arising from a homogeneous chemical composition
of the specimen. Effects related to either particle size, or mineralogical or metallurgical phases in a specimen are not treated.

1.1.2 These procedures apply to both wavelength and energy-dispersive X-ray spectrometry where the specimen is considerec
to be infinitely thick, flat, and homogeneous with respect to the depth of penetration of the exciting ({)fays

1.2 This document is not intended to be a comprehensive treatment of the many different techniques employed to compensate

]| for interelement effects. Consuit-Referenees2-through 4 Refy for descriptions of other commonly used techniques such as

standard addition, internal standardization, etc.

2. Referenced Documents

2.1 ASTM Standards:
E 135 Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials

3. Terminology

3.1 For definitions of terms used in this guide, refer to Terminology E 135.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 absorption edge-the maximum wavelength (minimum X-ray photon energy) that can expel an electron from a given
level in an atom of a given element.

3.2.2 analyte—an element in the specimen whose concentration is to be determined.

3.2.3 characteristic radiatior—X radiation produced by an element in the specimen as a result of electron transitions between
different atomic shells.

I 3.2.4 coherent (Rayleigh) scatterthe emission of energy from a loosely bound electrer-which that has undergone collision
with an incident X-ray photon and has been caused to vibrate. The vibration is at the same frequency as the incident photon and
the photon loses no energy. (See 3.2.7.)

3.2.5 dead-time—time interval during which the X-ray detection system, after having responded to an incident photon, cannot
respond properly to a successive incident photon.

3.2.6 fluorescence yield-a ratio of the number of photons of all X-ray lines in a particular series divided by the number of shell
vacancies originally produced.

I 3.2.7 incoherent (Compton) scatterthe emission of energy from a loosely bound electrer-which that has undergone collision
with an incident photon and the electron has recoiled under the impact, carrying away some of the energy of the photon.

3.2.8 influence coefficiert-designated by (B, v, d and other Greek letters are also used in certain mathematical models), a
matrix correction factor for converting apparent-eeneentrations mass fractions to—actuat-cencentrations mass fractions in a
specimen. Other terms commonly used are alpha coefficient and interelement effect coefficient.

3.2.9 mass absorption coefficiertdesignated by |, an atomic property of each element which expresses the X-ray absorption
per unit mass per unit area, &fy.

2 The boldface numbers in parentheses refer to the list of references at the end of this standard.
3 Annual Book of ASTM Standardéol 03.05.
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3.2.10 primary absorptior—absorption of incident X rays by the specimen. The extent of primary absorption depends on the
composition of the specimen and the X-ray source primary spectral distribution.

3.2.11 primary spectral distribution-the output X-ray spectral distribution usually from an X-ray tube. The X-ray continuum
is usually expressed in units of absolute intensity per unit wavelength per electron per unit solid angle.

3.2.12 relative intensity—the ratio of an analyte X-ray line intensity measured from the specimen to that of the pure analyte
element. It is sometimes expressed relative to the analyte element in a multi-compenent-standard reference material.

3.2.13 secondary absorptieathe absorption of the characteristic X radiation produced in the specimen-by all the elements in
the specimen.

3.2.14 secondary fluorescence (enhancemettble generation of X rays from the analyte caused by characteristic X rays from
other elements in the sample whose energies are greater than the absorption edge of the analyte.

3.2.15 weightmass fraction-a concentration unit expressed as a ratio of the mass of analyte to the total mass.

3.2.16 X-ray source—an excitation source which produces X rays such as an X-ray tube, radioactive isotope, or secondary target
emitter.

4. Significance and Use

4.1 Accuracy in quantitative X-ray spectrometric analysis depends upon adequate accounting for interelement effects eithe
through sample preparation or through mathematical correction procedures, or both. This guide is intended to serve as &
introduction to users of X-ray fluorescence correction methods. For this reason, only selected mathematical models for correctin
interelement effects are presented. The reader is referred to several texts for a more comprehensive treatment of (& gubject

5. Description of-Matrix Interelement Effects

5.1 Matrix effects in X-ray spectrometry are caused by absorption and enhancement of X rays in the specimen. Primary
absorption occurs as the specimen absorbs the X -rays from-the-setree-are-absorbed-by-the specimen. source. The extent of prim
absorption depends on the composition of the specimen, the output energy distribution of the exciting source, such as an X-ra
tube, and the geometry of the spectrometer. Secondary absorption occurs as the characteristic X radiation produced in the specin
is absorbed by the elements in the specimen. When matrix elements emit characteristic X-ray-tines which that lie on the
short-wavelength (high energy) side of the analyte absorption edge, the analyte can be excited to emit characteristic line radiatic
in addition to that excited directly by the X-ray source. This is called secondary fluorescence or enhancement.

5.2 These effects can be represented as shown in Fig. 1 using binary alloys as examples. When matrix effects are eithi
negligible or constant, Curve A in Fig. 1 would be obtained. That is, a plot of analyte relative intensity (corrected for background,
dead-time, etc.) versus analyte-cencentration mass fraction would yield a straight line over-a-wide-eoncentration mass fractio
range and would be independent of the other elements present in the specimen (Note 1). Linear relationships often exist in thi
specimens, or in cases where the matrix-effect composition is constant. Low alloy steels, for example, exhibit-censtant matri
interelement effects in that the-eeneentrations mass fractions of the minor constituents vary, but the major censtituent, that is, iror
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Curve A—Linear calibration curve.

Curve B—Absorption of analyte by matrix. For example, Ryversus Cy; in
Ni-Fe binary alloys where nickel is the analyte element and iron is the matrix
element.

Curve C—Negative absorption of analyte by matrix. For example, Ryversus
Cyi in Ni-Al alloys where nickel is the analyte element and aluminum is the
matrix element.

Curve D—Enhancement of analyte by matrix. For example, Recversus Cg, in
Fe-Ni alloys where iron is the analyte element and nickel is the matrix ele-
ment.

FIG. 1 Interelement Effects in X-Ray Fluorescence Analysis
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remains relatively constant. In general, Curve B is obtained when the absorption by the matrix elements in the specimen of either
the primary X rays or analyte characteristic X rays, or both, is greater than the absorption by the analyte alone. This secondary
absorption effect is often referred to simply as absorption. The magnitude of the displacement of Curve B from Curve A in Fig.
| 1, for example, is typical of the strong absorption of nickel nid¢kel , (K ) X rays in Fe-Ni alloys. Curve C represents the general
case where the matrix elements in the specimen absorb the primary X rays or characteristic X rays, or both, to a lesser degree thar
the analyte alone. This type of secondary absorption is often referred to as negative absorption. The magnitude of the displacement
of Curve C from Curve Ain Fig. 1, for example, is typical of alloys in which the atomic number of the matrix element (for example,
aluminum) is much lower than the analyte (for example, nickel). Curve D in Fig. 1 illustrates an enhancement effect as defined
| previously, and represents in this case the enhancement dfitop(K,) X rays by nickelK-L, o K,) X rays in Fe-Ni binaries.

Note 1—The relative intensity rather than absolute intensity of the analyte will be used in this document for purposes of convenience. It is not meant
to imply that measurement of the pure element is required, unless under special circumstances as described in 9.1.

6. General Comments Concerning Interelement Correction Procedures

6.1 Historically, the development of mathematical methods for correctien-ef-matrix interelement effects has evolved into two
approaches, which are currently employed in quantitative X-ray analysis. When the field of X-ray spectrometric analysis was new,
researchers proposed mathematical expressions, which required prior knowledge of corrective factors called influence coefficients
or alphas prior to analysis of the specimens. These factors were usually determined experimentally by regression analysis using
reference materials, and for this reason are typically referred to as empirical or semi-empirical procedures (see 7.1.3, 7.2, and 7.8).
During the late 1960s, another approach was introduced which involved the calculation of interelement corrections directly from

| first principles expressions such as those given in Section 8. First principles expressions are derived from basic physical principles,
and contain physical constants and parameters, for example, which include absorption coefficients, fluorescence yields, primary

| spectral distributions, and spectrometer geometry. Fundamental parameters-methods is a term commonly used to describe
interelement correction procedures based on first principle equations (see Section 8).

6.2 In recent years, several workers have proposed fundamental parameters methods to correct measured X-ray intensities
directly for-matrix interelement effects or, alternatively, proposed mathematical expressions in which influence coefficients are
calculated from first principles (see Sections 7 and 8). Such influence coefficient expressions are referred to as fundamental
influence coefficient methods.

7. Influence Coefficient Correction Procedures

7.1 The Lachance-Traill Equation
7.1.1 For the purposes of this guide, it is instructive to begin with one of the simplest, yet fundamental, correction models within
certain limits. Referring to Fig. 1, either Curve B or C (that is, absorption only) can be represented mathematically by a hyperbolic
| expression such as the Lachance-Traill equation (E8). For a binary specimen containing elemeingdj, the LT equation is:

C=R (1+q'C) (1)
where:
1 C = weightmass fraction of analyie
1 G = weight mass fraction of matrix elemept
RI = the analyte intensity in the specimen expressed as a ratio to the pure analyte element, and
j = the influence coefficient, a constant.

The subscript i denotes the analyte and the subscript ] denotes the matrix element. The suhs,;}erdiamotes the influence
of matrix elementj on the analyté in the binary specimen. The LT superscript denotes that the influence coefficient is that
coefficient in the LT equation. The magnitude of the displacement of Curves B and C from Curve Ais represenﬁéa Wwhich
takes on positive values for B type curves and negative values for C type curves.

7.1.2 The general form of the LT equation when extended to multicomponent specimens is:

C=R@1+=¢"C) 2

For a ternary system, for example, containing elemgntandk, three equations can be written wherein each of the elements
are considered analytes in turn:

C=R@1+0;"C+ey ' C 3
G=R (1+o' C+ay''CY (4)
Ce=Ri(1+ g C +ayC) (5)

Therefore, six alpha coefficients are required to solve for-the-eoneentrations mass fragtiGpsandC, (see Appendix X1).
Once the influence coefficients are determined, Eq 3-5 can be solved for the unkrewn-eeneentrations mass fractions with a
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computer using iterative techniques (see Appendix X2).

7.1.3 Determination of Influence (Alpha) Coefficients from Regression Anahisha coefficients can be obtained experi-
mentally using regression analysis of reference materials in which the elements to be measured are known and cover a bro
eencentration mass fraction range. An example of this method is given in X1.1.1 of Appendix X1. Eq 1 can be rewritten for a
binary specimen in the form:

(GR)—1= Olin Cj (6)

where a” = influence coefficient obtained by regression analysis. A plot@fR;) — 1 versusC; gives a straight line with slope
(see Fig. X1.1 of Appendix X1). Note that the superscript LT is replaced by R because alphas obtained by regression analysi
of multl -component reference materials do not generally have the same vallmquaSis determined from first principles
calculations). This does not present a problem generally in the results of analysis if the reference materials bracket each of tt
analyte elements over the-eeneentration mass fraction ranges that exist in the specimen(s). Best results are obtained only when
specimens and reference materials are of the same type. The weakness of the multiple-regression technique as applied in X-I
analysis is that the accuracy of the influence coefficients obtained is not known unless verified, for example, from first_principles
calculations. As the number of components in a specimen increases, this becomes more of a problem. Results of analysis shot
be checked for accuracy by incorporating reference materials in the analysis scheme and treating them as unknown specimel
Comparison of the known values with those found by analysis should give acceptable agreement, if the influence coefficients ar
sufficiently accurate. This test is valid only when reference materials analyzed as unknowns are not included in the set of referenc
materials from which the influence coefficients were obtained.

7.1.4 Determination of Influence Coefficients from First Principteafluence coefficients can be calculated from fundamental
parameters expressions (see X1.1.3 of Appendix X1). This is usually done by arbitrarily considering the composition of a complex
specimen to be made up of the analyte and one matrix element at a time (for example, a series of binary elements, or compoun
such as oxides). In this way, a series of influence coefficients are calculated assuming hypothetical compositions for the binar
series of elements or compourds-which that comprise the specimen(s). The hypothetical compositions can be selected at cert:
well-defined limits. Details of this procedure are given in 9.3.

7.1.5 Use of Relative Intensities in Correction MethodsAs stated in Note 1, relative intensities are used for purposes of
convenience in most correction methods. This does not mean that the pure element is required in the analysis unless it is the or
reference material available. In that case, only fundamental parameters methods would apply. If influence coefficients are obtaine
by regression methods from reference materials, Rean be expressed relative to a multi-component reference material. Eq 6
can be rewritten in the form for regression analysis as follows:

(GIR) —1= Oiin/ Cj (7
where:
R, = analyte intensity in the specimen expressed as a ratio to a reference material in whieh-the weight mass fiaction of
, is less than 1.0, and
« in = influence coefficient obtained by regression analysis.
The termsR’; and« in' can be related to the corresponding terms in Eq 6 by means of the following:
Rik =R ®)
R
, Qi
o = % 9)

TABLE 1 Alpha Coefficients for Analyte Iron in Binary Systems Computed Using Fundamental Parameters Equations

Apej

Cre 0(8) Mg(12) AI(13) Si(14) Ca(20) Ti(22) Cr(24) Mn(25) Co(27) Ni(28) Cu(29) Zn(30) As(33) Nb(41) Mo(42) Sn(50)

0.01 -0.841 -0.52 -0.39 -0.25 0.93 1.46 2.08 -0.10 -0.18 -0.44 -0.42 -0.36 -0.13 0.74 0.86 2.10
0.02 -0.840 -052 -039 -0.25 0.93 1.46 2.08 -010 -017 -044 -041 -035 -013 0.74 0.86 2.10
0.05 -0839 -051 -039 -0.25 0.93 1.46 2.09 -010 -015 -042 -041 -035 -0.12 0.74 0.86 2.10
0.10 -0838 -051 -039 -0.25 0.93 1.46 2.09 -010 -014 -040 -039 -034 -012 0.75 0.86 2.10
0.20 -083% -051 -038 -0.24 0.94 1.47 2.10 -010 -011 -036 -037 -032 -011 0.76 0.87 211
0.50 -0.832 -0.50 -0.37 -0.22 0.96 1.50 2.13 -0.10 -0.04 -0.27 -0.31 -0.28 -0.08 0.78 0.90 2.14
0.80 -0831 -049 -036 -021 1.01 1.55 2.19 -0.10 000 -020 -025 -024 -0.05 0.83 0.94 2.20
0.90 -0830 -048 -035 -0.20 1.03 1.58 2.23 -0.10 001 -0.18 -023 -0.23 -0.04 0.85 0.96 2.25
0.95 -0830 -048 -035 -0.20 1.05 1.60 2.26 -0.10 0.02 -0.17 -0.23 -0.22 -0.03 0.86 0.98 2.28
0.98 -083 -048 -035 -0.20 1.06 1.62 2.29 -0.10 002 -017 -022 -022 -0.03 0.87 0.98 2.30
0.99 -0.830 -0.48 -0.35 -0.20 1.06 1.62 2.29 -0.10 002 -016 -022 -021 -0.02 0.87 0.99 231

A Data used by permission from G. R. Lachance, Geological Survey of Canada.
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where:
k; = a constant.

7.1.6 Limitations of the Lachance-Traill Equation

7.1.6.1 For the purposes of this guide, it is convenient to classify the types of specimens most often analyzed by X-ray analysts
into three categories1) metals, (2) pressed minerals or powders, alii diluted samples such as aqueous solutions, fusions with
borate salts, and oils. When a sample is fused in a fixed sample-to-flux+ratio-(fer-example;-typicaty-1—+6-or 1 + 12) to produce
a glass disk, or when a powdered sample is mixed in a fixed sample-to-binder ratio and pressed to produce a briquette, physical
and chemical differences among materials are correspondingly decreased and the magnitudes-ef the matrix interelement effects ar
correspondingly-deereased reduced and stabilized. Since enhancement effects are usually negligible in these systems, the LT
equation is sufficiently accurate in many applications for making-matrix interelement corrections. It has also been shown that the
LT equation is in agreement with first principles calculations when applied to fused specimens (that is, at least 1 part sample + 6
parts flux dilutions or greater). For fused specimens, an equation can be written according to L&88nasdollows:

C =R, (1+u”c,)[1+[$”"cf] cj+...] (10)
where:
| C, = the analyte-weight mass fraction in the fused specimen,
C; = the-weight the mass fraction of the flux (for example,BJO -),
o = influence coefficient which describes the absorption effect of the flux on the amaytd
R; = the relative intensity of the analyte in the fused specimen to the intensity of the analyte in a fused reference material.

Various equations have been used in which the alpha correction defined above is modified by incorporating the effect of a
] constant term. For example, the alphas in fused systems-the-alphas can be modified by incluging-the weight mass fraction of flux
which remains essentially constant. That is, the te[(l + «;C ;) in Eq 10 can be referred to as a modified alpi'qﬁ" The loss
erHgnition-GH or gain in mass on fusiens can aIso be included in the alpha terms (Note 2). Modified alphas have also been used
I for non-fused-pelietized-speeimens, specimens in briguette form, such as minerals, to express the correction in terms of the metal
oxides rather than the metals themselves.

matter and reduced species it contains. Therefore, the terms loss on fusion (LOF) and gain on fusion (GOF) are used to describe this behavior. It is
common to see the term loss on ignition (LOI) used incorrectly to describe this behavior.

I Note 2—Under the action of heat and flux during fusion, the specimen will either lose or gain mass depending on the relative amounts of volatile

7.1.6.2 If the influence coefficient in the Lachance-Traill equation is calculated from first principles as a function of

eeneentration mass fraction assuming absorption only, it can be showraxi;ﬁraﬂs not a constant but varies with matrix
concentration mass fraction depending on the atomic numberof the each matrix elements. This is illustrated in Table 1, for

I example, for a selected series of binary specimens in which iron is the analyte. Note that in some cases (for@,zgg&@l,e,
the influence coefficient is nearly constant whereas, for others (for examplgs;), the influence coefficient exhibits a wide

J| variation and even changes sign. As long as the analyst is analyzing a specimens in which enhancement effects are absent, thi
variation inq; T does not present problems in practice when the specimen composition varies over a relatively small range. This
source of error is also minimized to some degree when type reference materials are used which reasonably bracket the compositior
of the specimen(s). However it should be recognized that for some types of samples, which have a broad range of concentration,
assumption of a constatsat1J T-ean could lead to inaccurate results. For example, in the cement industry, low dilutions (for example,
typically-+—+-3-sample-te-fiux+atio) 1 part sample + 2 parts flux) have been employed to analyze cement and geological materials.
Low dilutions-were are used to maximize the analyte-intensity,-especially intensity-for-elements-with-atemie-numbersfrom 11 to
26- trace constituents. At such low dilutions, it has been shown by M@d@ that a modified form of Eq 1 gives more accurate
results. This modified or exponential form of Eq 1 is also described in ASTM suggested methods (see E-2 SM 10-20, E-2 SM
10-26, and E-2 SM 10-34)In 7.2-7.7, several equations will be described which take into account the variabi&g;”iwrm
eeneentration, with mass fraction, and are fundamentally more accurate than Eq 1 because they also include correction for
enhancement effects.

I 7.2 The Rasberry-Heinrich Equatiea Rasberry and Heinrich (RH)181) proposed an empirical method to correct for both

strong absorption and strong enhancement effects present in alloys such as Fe-Ni-Cr. The general expression can be written a
follows:

C/=R [1+ZA”C+Z(1+C) ck] (11)

4 Suggested Methods for Anatytical Atomic Spectroscopy, ASTM, 8thred:, 1987, pp 923—930, 949-955, Analysis of Metals, Ores,and 992-996. Rédddedthate
ed., ASTM, Phila. PA, 1992, pp. 507-573.
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where:

A = aconstant used when the significant effect of elerrantl oni is absorption; in such cases the corresponé@ipyalues
are zero (and Eq 11 reduces to the Lachance-Traill equation), and

Bix = aconstant used when the predominant effect of elefnent is enhancement; then the correspondiigalues are zero.

Eq 11 has given good results for analyses of Fe-NiCr ternary alloys—Fhe-eoefficients were These authors obtained the coefficien
by-these-authers-by regression analysis of data from a series of Fe-Ni, and Fe-Cr, and Ni-Cr binaries, and a series of Fe-Ni-C
ternary reference materials, which covered a broad range-ef-ceneentrations mass fractions from essentially zero to 0.99. For Fe-

B.
binaries, the enhancement te(rt‘nat is,(l_’_—'ko) : Ck> gives values for the effect of N{( on Fe{)-whieh that are in reasonably
]

good agreement with those predicted from first principles calculations over a broad range-ef-eeneentration. mass fraction. Furthe
examination by several workers of the accuracy of the RH equatien-fer-matrix interelement effect correction in other ferrous as
well as non-ferrous binary alloys reveal wide discrepancies when these coefficients are compared to those obtained from fir:
principles calculations. Even modification of the enhancement term cannot overcome some of these limitations, as discussed |
Tertian(112). For these reasons, the RH equation is not considered to be generaly-applicable-buthewever, quite applicable, bt
it is satisfactory for making-matrix corrections in Fe-Ni-Cr alloys assuming availability of proper reference materials.

7.3 The Claisse-Quintin Equation

7.3.1 The Claisse-Quintin equation (CQ) can be described as an extension of the Lachance-Traill equation to include
enhancement effects and can be written for a binary according tolRefs313, 14as follows:

C=RI[L+ 3 (aj+cyC)C] (12)

wherea;; + a; C; = oy"" . The termey; + o C; allows for linear variation ofx ;" with composition. According to Claisse and

Quintin (123) and Tert|an(14) the mterelement effect correction for ternary and more complex-samples;—the-matrix-cerrection
samples is not strictly equal to a weighted sum of binary corrections. This phenomenon is referred to as a third element o

cross-effect. For a ternary, the total correction for the interelement effegtak on the analyte is given by Claisse and Quintin

(123) as:

1+ (o + oy C)Cj + (o + e C) G + e G G (13)

The binary correction terms for the effectjodni andk oni are @;; + o C;) C; and @ + i Cy) Cy,Fespeetively-while-the
respectively. The higher order ter),, C,C, is introduced to correct for the S|multane0us presence of patiik. The termay;,
is called a cross-product coefficient. Tertl(ilm_S) has discussed in detail the cross-effect and has introduced aetecrmculated
from first principles to correct for it. The contribution of the cross-effect or cross-product term to the total correction is relatively
small, however, compared to the binary coefficient terms, but it can be significant.

7.3.2 The general form of the Claisse-Quintin equation for a multicomponent specimen can be written accordiritasRef

Ci:Ri[l-ﬁ-j;l(aij + CM)CJ-+JZ%0LHK G Cyl (14)

where Cy, = sum of all elements in the specimen excepthe binary coefficientsq; and «;;, can be calculated from first
principles, usually at hypothetical compositions@f=0.20 and 0.80, an@; = 0.80 and 0.20, respectively. The cross-product
coefficient, ay, is calculated aC ; = 0.30,C; = 0.35, andC, = 0.35.

7.4 The Algorithm of Lachance (COLA)

7.4.1 The comprehensive Lachance algorithm (COLA) pro-
posed by Lachand@56) corrects for both absorption and enhancement effects over a broad range-ef-eeneentration. mass fraction
The general form of the COLA expression is given as follows:

C=R@A+ EJ oy G+ ; Ek‘, aii G C) (15)

The coefficienta’;; can be computed from the equation:
o, Cy

1Tt TE e, TGy

wherea,, a,, anda 5 are constants. The concept of cross-product coefficients as given by Claisse and Quintin (see Eq 14) is
retained and included in Eq 15. The three constantsa ,, andag) in Eq 16 are calculated from first principles using hypothetical
binary samples. For example, in alloy systemsg,is the value of the coefficient at th@, = 1.0 limit (in practice computed at
G =0.999; andC, = 0.001). The value for, is the range within whichw'; will vary when the concentration of the analyte
decreases to th€, = 0.0 limit (in practice, computed from two binaries whég = 0.001 and 0.999; an@ ; = 0.999 and 0.001,
respectively). The; term expresses the rate with whieh; is made to vary hyperbolically within the two limits stated. In practice,
it is generally computed from three binaries whe&e= 0.001, 0.5, and 0.999; ar@@ = 0.999, 0.5, and 0.001, respectively. Since
ag can take on positive, zero, or negative valug€g,can be computed for the entire composition range f@m 1.0 down to 0.0.
The cross-product coefficients;, are calculated at the same levels as in Eq 14.

7.4.2 For multi-element assay of alloys, all coefficients in Eq 15 are calculated. For oxide specimens such as cements an

o

(16)
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powdered rocksyg is very small and in practice is usually equated to zero. Eq 15 then reduces to the Claisse-Quintin Eq 14. For
J] fused specimens, another simplification can be made because-the-eeneentration mass fraction of the fluxing agent is the major
constituent and can be held relatively constant. In this agses, anday, are very small and in practice are also equated to zero,
so thato;; reduces t(nij”. Hypothetical binary standards are used to calcukg}téT whereC, is taken at the mid-range of the
analyte concentration (for examplg,; = 0.5 andC; = 0.5) in the specimen.
7.4.3 A significant improvement was obtained using COLA rather than the CQ equation for the analysis of iron in a series of
| Fe-Ni alloys(167).This is believed to be due to the tewq (1 - C)) in o’ in Eq 16 which allows for nonlinear variation
with composition rather than a linear variation described by the CQ relation. For this reason, the COLA equation is more accurate
in alloy analyses than the CQ equation when the contribution o&t{ie— C;) term becomes significant.
I 7.5 The Algorithm of RousseasThe algorithm of Rousseaid#—18;19)(18, 19, 20}s:

1+ X a5 C
Ci=R——— 17
SR ]2 0 C 17
where:
I «; = fundamental influence coefficient, which varies with composition and corrects for absorption, and
pj = fundamental influence coefficient which varies with composition and corrects for enhancement.

In this method a first estimate of the composition of the unknown specimen is calculated using the Claisse-Quintin relation (Eq
14) and fundamental coefﬁcien&g}.@ﬁem—ﬂﬂis—e&imafed—em%pesiﬁeﬁrmim% andp;; coefficients are computed from
this estimated composition. A refined estimate of composition is obtained finally by applying the iterative process to Eq 17. The
manner in which reference materials are used for purposes of calibration in this and in other fundamental coefficient algorithms
ferpurposes-ef-calibration is discussed in 9.3.
7.6 The Method of de Jongh
| 7.6.1 De Jongh's metho@81)is similar to that of Lachance-Traill but with-seme important differences. A series of equations

can be written wherein the end result is expressed fan aamponent system as follows:

Ci:(ao+ai|i)(l+zaijdjcj) (18)
where:
a, = intercept,
a = slope, and

l; net intensity measured in counts per unit time.
Th(da termsa,, a;, andl; are instrument-dependent parameters and considered separate from the physical parameters manifested
II’] Qi J.
7.%5.2 For a series of specimens contaimrglements in which the concentrations of each analyte vary over a range, de Jongh’s
| method requires that the influence coefficients be calcutatee-about at an average composition for each element (foCexample,
C,, ...C,wherej =1, 2, 3, ...n) in the specimens. Both absorption and enhancement effects are treated by this method. An
interesting feature of the method is that one element can be arbitrarily eliminated from the correction procedure so there is no need
to measure it. For example, in ferrous alloys, iron is often the major constituent and is usually determined by difference, and
therefore, can be eliminated from the correction procedure. For details on the mathematical procedure used to eliminate a
component from the analysis, refer to the original publication.
I 7.7 Method of Broll & Tertian— The expression of Broll and Tertiaf2+—22)(22, 23)allows for variation ofoqjLT in the
Lachance-Traill equation to account for both absorption and enhancement effects. Tlme]LtEnmthe LT equation is replaced

by effective influence coefficients as follows:
C
OLijLT = aijBT - hij [ﬁl ] (19)

where:
a ;" = influence coefficient which varies with composition and corrects for absorption, and

the termh; ( C/R) accounts for enhancement and third element effects. These so-called effective coefficients are calculated from
first-principles expressions.

7.8 Intensity Correction Equatica- This empirical procedure, developed by several work234, 245)js similar to the general
Lachance-Traill equation, except that X-ray intensity (count rate) is substituted—fer-eoneentration mass fraction to obtain the
following equation:

Ci
Rk T, (20)
where:
y

Ko

the X-ray intensity corrected for background of the matrix elenpent
a constant for the system, and
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kj = influence coefficient, a constant.

This procedure is limited in the sense that it applies to specimens in which absorption is the predemirant matrix interelemen
effect and is not severe. That is, the analyte X-ray intensity varies almost linearly with anatyte-concentration-forexample, metals
-eify- mass fraction. The constark,, and the coefficientsk ;, are determined only from regression analysis from reference
materials—Fhe However, the coefﬁ0|erk§—sheﬂld—hewever should be differentiated fram; 'T. Eq 20 has been applied
successfully in cases where the unknown specimen composition can be bracketed quite closely with reference materials of simil
composition. In general, this procedure applies over a smaltanalyte-coneentration range of analyte mass fractien-ane-te-obtain goc
acedracy requires-a-more careful selection of the composition range of reference materials to obtain good accuracy.

8. First Principle Equations

8.1 The relative intensity from an analyitéor a given X-ray spectral line in a specimen can be described according &6Ref
follows:

P +S 21)
R= P,
where:
P; = the primary fluorescence contribution as a result of the effect of the incident X-ray beam from the source on the analyte
iy
S, = secondary fluorescence or enhancement effect on ariatymai
P, = the primary fluorescence contribution from a pure specimen of the analyte.

8 2 For the case when the X-ray source is polychromatic (for example, an X-ray tube), an equallqrcéor be written as
follows:

i\) )\d)\
Pim ARG f [ Hoy A“m] #2)

where
o} = facter-whiech factor that depends on spectrometer geometry,
E = excitation factor of elemeritfor a given spectral line seriesK L, ...),
G = concentration of analytein specimen, usually expressed-as-weight mass fraction.
Koy = mass absorption coefficient of element i in the specimen for incident wavelength,
Hoy = mass absorption coefficient of the specimen for incident wavelength,
Hov, = mass absorption coefficient of the specimen for the characteristic wavelangth,
A = geometrical factor = sifi,/sin 6.,
0, = incident angle of primary>%-ray X radiation,
0, = emergence angle (take-off angle) of characteristic fluorescence radiation measured from the specimen surface,
I,dN» = spectral intensity distribution of the primary radiation from the X-ray source,
o = short-wavelength limit of the primary spectral distribution, and
\g = the wavelength of the absorption edge of analyte element

8.3 For the pure specimeR,,, Eq 22 takes the form:

_ Nai Hioy [Ne)N
Po = 0 f [ iy T Aoy ] (23)
8.4 The total secondary fluorescence contribui{@s6), S ;, when each characteristic X-ray lipefrom the specimen can
enhance the analyigis:

S=3§ (24)
where§; = sum of the contributions from severjatlements which can enhanceThe expression fo§; is:
B Naj KN AN
5, = 120G, [ EC 1) (W : (25)
where:
E; = excitation factor of enhancing elemgnfior a given spectral line series,
G = eoenecentrationmass fraction pin the specimen,
K(A) = mass absorption coefficient of analyten the specimen for characteristic wavelengftfrom element,
Ny = mass absorption coefficient of elemgrin the specimen for incident wavelengt, and
IN[1 + (e /M,)/sin6,] In [T+ (o) T jfsin® 5 ]
- T Icinﬁ 1 /siné (26)
Lavy) LAty
In 1+ Ih))/sin® IN[1 + (Ky) M i/SINO
[ (Mo |J(>\)) 1l N [ (P()\,)) Mo j 2] 26)

) /Sin 0, Ko, /Sin 6,
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where,; y = mass absorption coefficient of the specimen for the characteristic wavelength,
| 8.5 Substitution of Eq 22-26 in Eq 21 gives a first principles (fundamental parameters) expression from which relative
intensities can be calculated.

8.6 With an X-ray tube source from which the primary radiation is polychromatic, it is necessary to know the spectral
distribution, I, d\ (intensity versus wavelength), or approximations must be made. To simplify the integral form of the tube
spectrum, Crlss and Birk267) have replaced the integrals in Eq 22, Eq 23, and Eq 25 with summations over small wavelength
intervals such as—e—ez—,@ 2 nm. Gilfrich and Birkg278) have measured spectral distributions from several X-ray tubes (tungsten,
molybdenum, and chromium targets) ane-have tabulated valugdxfwhich have been used in several fundamental parameters
expressions. In addition;-an algorithms-hasve been proposed which can be used to calculate the spectral output ¢&28bution
30, 31).

8.7 Monochromatic Excitation-A relatively simple fundamental parameter equation can be derived when the specimen is

J| irradiated with X radiation of a single energy or wavelength(monochromatic excitation)829). For example, such excitation
sources are used in energy-dispersive spectrometers in the form of secondary target emitters or radioisotopes. In this case, Eq 2
can be rewritten for monochromatic excitation simply by replacing the integrals in Eq 22, Eq 23, and Eq 25, ladn teems
with the intensity of the incident radiatiox The relative intensity for analytein a binary specimen containing an enhancing
element then becomes:

R=C (ABS[1+1/2 E; “‘W(H.:)) L] 27)

where: _ ]
ABS = Wi Sind, + Ly, Sinb,
Hoy SINO, + [y, Sin
9. Computer Programs for Interelement Corrections

I 9.1 Acommon approach in fundamental parameters correction methods consists of the calculation by computer of relative X-ray
intensities from first principles (see Eq 21-26) assuming a hypothetical composition for the unknown specimen. These calculated
I intensities are compared with measured intensities, and successive adjustments of the unknown compositior-are-made making us

of using available pure elements, compounds, or multi-element reference materials until the calculated and measured intensities
are essentially the same. The final adjusted-eoneentrations mass fractions are then assumed to be equal to the actual concentratio
in the unknown specimen. Relative intensities calculated from first principles using hypothetical compositions can also generate

fundamental influence coefficients as mentioned in 7.1.4. A powerful feature of these methods is that even when pure elements or
compounds are the only reference materials available, analysis of complex specimens is still possible. However, in practice, the
best results are obtained when type reference materials are used in the analysis procedure.

9.2 The NRLXRF Correction Procedure NRLXRF, a widely used fundamental parameters computer program for quantitative
X-ray spectrometry, was developed at the Naval Research Laboratory by Birks, Gilfrich, an@388s#\nother version of this
program, XRF-11-hasbeen was developed by GB4¢) for operation with minicomputers.

9.2.1 With such programs, a multi-element analysis of an unknown specimen can be performeg-when eitherpure elements
andfer elements, chemical compounds, or multi-element reference materials are available. In this case, the measured jgtensities (
of the materials with known compositions are used to adjust or rescale the calculated intensities of the unknown sgicimen (
The rescaled, calculated intensities also are adjusted to match the measured intensities of the specimen in an iterative procedure
The final output compositien-of for the unknown is reached when the calculated and measured intensities converge, that is, they
agree within some predetermined-(eonvergence) limits. A schematic diagram which that illustrates this procedure is shown in Fig.

I 9.3 Fundamental Influence Coefficient Correction Procedur&€omputer programs have also been developed for the methods

of Claisse-Quintin, de Jongh, Lachance (COLA), Rousseau, and Brol-and-Tertian-computerprograms-have-alse-been developed.

SIMULATE MEASURE MEASURE
STANDARDS REFERENCE MATERIALS (I, UNKNOWNS (1,

—_— ADJUST ————
PREDICTED INTENSITIES

CALCULATE
UNKNOWN COMP

OUTPUT I

FIG. 2 NRLXRF Correction Scheme
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Tertian. One example of a computer program—which that employs the fundamental influence coefficient approach is callec
NBSGSC and is applicable to the analysis of minerals, both as pressed powders and as fused specimens, @&bakoys
schematic diagram of this program is given in Fig. 3. Reference materials also are used in these procedures. The calibration st
is performed, generally, as follows:

9.3.1 First, a calibration plot of calculated relative intensiR™3) (that is, corrected for interelement effects) versus the
corresponding measured X-ray intensity is obtained for each analyte from reference materials. Ideally, this should be a straight lin
with a zero intercept. Extrapolation of this straight lineR&® = 1.0 gives the expected measured intensity of the pure analyte (that
is, 100 %).

9.3.2 The measured intensities of the analytes in the specimens are used to obtain the calculated relative intensities of tf
analytes RY) from the above calibration plot.

9.3.3 From these values Bf", the composition of the unknown specimen is computed (using an influence coefficient equation)
in an iterative loop until some convergence criteria are met and the final results are obtained.

9.4 SAP3 Computer ProgramA—Nielson and Sander§36) developed a rather unique fundamental parameters computer
program (SAP3)-has-been-developed-by-Nielson-and-Saif@8ysising using monochromatic X-ray source excitation in an
energy-dispersive X-ray spectrometer. Their approach makes use of measured incoherent and coherent scattered primary X ré
from the specimen along with characteristic X-ray intensities. This method is applicable, for the most part, to the analysis of
samples in which the major constituents are of low atomic number such as botanical and geological materials. An important featur
of this approach is that additional information about the specimen matrix, such as the total mass of low atomic number element
in the specimen (for example, carbon, hydrogen, oxygen and nitrogen) can be obtained from the intensity-of primary scattere
primary X rays.

9.5 CORSET and QUAN Computer Programs

9.5.1 Polychromatic Excitation; Use of Equivalent Wavelengthé\s an alternative to using a measured or calculated X-ray
tube spectrum, an approximation can be made which involves the concept of equivalent wavelengths. In general, algorithms hay
been developed which consider only selected regions (wavelengths) of an X-ray tube spectrum which are most effective in excitin
a particular analyte X-ray lin€347),hence, the term equivalent or effective wavelengthSince, in a multi-component specimen,
different wavelengths must be selected, corrections based on this approach must employ a sliding scale of wavelengths. F
example, in situations where characteristic lines from the X-ray tube target contribute very little to the excitation of the analyte
in the specimen) . is taken to be equal to two-thirds the energy of the absorption edge value of the excited analyte(s). Such
corrections then work essentially like the monochromatic excitation model, but where a diffgrierised for each analyte in
place of a single monochromatie-wavelength-fer-any-particutaranalyte. wavelength. Although pure element reference materials ca
be used for analysis of unknown specimens with this model, it is recommended that reference materials similar in composition t
the unknown be measured whenever possible for best results.

9.5.2 The main advantage of using this approach, rather than the more rigorous polychromatic integrated tube spectrur
approach;has-been was that computer programs such as CQB=Hand QUAN(369)were developed to perform rapidly and
efficiently in minicomputers-which—had with limitee-memeory-size. memory. However—thisHimitation—has—-been-evereome by
advances in-digital-minicomputers, computer technology overcame this limitation so that the effectisve wavelength approach nt
longerpresents offers any significant advantages in multi-element analysis over the more rigorous-methoeds-previousty discusse
whieh that employ an integrated tube spectrum.

input Program QOutput
Step 1
{calculate coefficients)
Fundamegatal Parameters:
bAAg: A5 By i wy Sherman equation COLA A a,’,T’
Wi va Goiy (Calc. Ry} |

Hypothetical
standard
compositions

Step 2

{calibration)

Plot
coLA R
Solva for A* ‘2:
Step 3 COoLA
(calculation of ﬂ
concentration) Solve for G¥

Print
final

FIG. 3 Schematic Diagram of the NBSGSC Program
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I 9.6 Monte Carlo Correction Methods Gardner and Doste3#)(40) have developed Monte Carlo computer programs to
determine and correct for interelement effects. Although this technique is not widely used in X-ray fluorescence analysis, there
| appears to be several advantages in using this approach, especially in situations where a wide-angle specimen-source-detectc

geometry is used, or when specimens lack infinite thickness, or when dealing with heterogeneous (layered) specimens.

10. Conclusion

10.1 In principle, although fundamental parameter methods do not require the use of reference materials to correct for
interelement effects in specimens, they are, in fact, used in practice as described in Sections 8 and 9. For best accuracy, referenc
materials of the same type as the specimens should be used in the correction procedure. This will compensate considerably for
uncertainties in the fundamental parameters (for example, fluorescence yields, mass absorption coefficients, etc.). Also, differences
in specimen volume excited by X-rays as compared to that in the reference material carteae-to-inraccuracy, bias, especially when
wavelength-dispersive X-ray spectrometers are used. The use of type standards will eliminate this potential source of error.

10.2 Even though there has been only limited intercomparison of fundamental influence coefficient methods with other
fundamental parameters methods in the literature, comparable results can be expected when the same reference materials are us
(167).

10.3 To obtain satisfactory results when using empirical or semi-empirical correction procedures, appropriate reference
materials must be available over the analyte-eeneentration mass fraction range of interest. As the number of different types of
materials to be analyzed increases and the elemental composition varies considerably, then it becomes less likely that appropriate
reference materials will be available. In such situations, fundamental parameters correction methods are more attractive and
efficient to use, because these methods are applicable to a wide range of sample types and only a limited number of type reference
materials are required for good accuracy. It is also possible to perform analyses when only pure elements or compounds are
available, although the results obtained are less accurate. With increasing availability of computer programs, fundamental

| parameters correction procedures are now easier to use and are rapidly becoming the methods of choice in many laboratories
Nevertheless, both empirical and fundamental correction procedures have roles to play in quantitative X-ray analysis, and
ultimately, the analyst must decide which approach is best suited for the analytical problem at hand.

11. Keywords
| 11.1 fluendamental parametersc; influence coefficients; interelement effeets;-matrix-effects; X-ray fluorescence

APPENDIXES
(Nonmandatory Information)

X1. INFLUENCE COEFFICIENTS

X1.1 This section uses graphical methods for obtaining influence coefficients in the Lachance-Traill equation for purposes of
illustration only. In practice, these coefficients are calculated using computer programs.

X1.1.1 Regression Method For Obtaining Influence (Alpha) Coefficients from Reference MateCiafsider a series of binary
alloy reference materials consisting of nickel and iron. Assume nickel is the ariabel,iron is the matrix element,For various
weight mass fractions of nickel and iron, the following relative intensities for nickel were obtained on a commercial X-ray
spectromete{t6).

N €re R
8:0329 8:9549 8:0425
83599 0:6315 01720
8-4820 05360 8:2553
©8:6552 03431 84673
8:693% 0:3067 04515
O+ 0:2263 0:5483
6:8964 0-1018 87595

(1)
The Lachance-Traill equation can be applied to-the-above data in Table X1.1 to correct for the X-ray absorption of the nickel
K-L, y(Ka) radiation by iron. Accordingly, Eq 1 is as follows:
Cni = Ry (1 + o ire Cre) (X1.1)

and rearranging:

12
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TABLE X1.1 XRF Data for Ni and Fe in Binary Fe-Ni Alloys

Cui Cee Rui

0.0329 0.9549 0.0125

0.3599 0.6315 0.1720

0.4820 0.5100 0.2553

0.6552 0.3431 0.4073

0.6931 0.3067 0.4515

0.7711 0.2263 0.5483

0.8964 0.1018 0.7595

0.9322 0.0659 0.8321

0.9516 0.0462 0.8782
S c X1.2
Ry |~ — 7 Onire-Fe (X1.2)

Aplot of (Ci/Ry;i) — 1 versuC will give a straight line the slope of which i ;e.. AS shown in Fig. X1.1, the value obtained
for a \ipe IS 1.71.

X1.1.2 Solving Simultaneous Equations to Obtain Influence (Alpha) Coefficients

X1.1.2.1 For more complex systems, simultaneous equations may be solved to obtain the influence coefficients. This approac
isrecommended;hoewever, recommended only if the relative intensities are calculated from first principles. The procedure can b
illustrated for a simple system as follows: For example, in the Fe-Ni-Cr alloy system the Lachance-Traill correction can be applied
in the following form:

Cni = Ry (1 + anieCor + anireCre) (X1.3)

where:

i = anahyte;niekel, analyte, Ni, and
j andk = matrix elements;-Hron Fe and-chromium—respectively. Cr, respectively.
X1.1.2.2 The data from two reference materials that will be used to illustrate this procedure are-given below:

€N € €rs (entRm—%
in Table X1.2.
Writing two simultaneous equations following the form of Eq X1oRyc, and ayiee Can be obtained as follows:
1.4532= 0.252%uyc, + 0.6838¢ yire (X1.4)
0.4722= 0.1688yc, + 0.150%vr, (X1.5)

160 |—

140 —

120 }—

100 {—

(L Ry

so SLOPE= 0 = 171

60 [—

FIG. X1.1 Determination of the Alpha Coefficient for the Effect of
Iron on the Analyte Nickel from Fe-Ni Binary Alloys Using the
Lachance-Traill Correction Procedure
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1 TABLE X1.2 XRF Data for Example of Simultaneous Equations
Cu Ca Cee (Cu/Ry) — 1
0.0498 0.2525 0.6838 1.4532
0.6429 0.1688 0.1501 0.4722
[ |

0.2525
Eliminating theoyc, term by multiplying Eq 4 bWS = 1.4959 and subtracting it from Eq X1.3 giveS,=. as follows:

1.4532= 0.2525c, + 0.6838 yre (X1.6)
0.7063= 0.252%uyc, + 0.2245 e

0.7468= 0.4593yre
o ipe = 1.63

Substitution ofayiee = 1.63 in Eq X1.4 and solving fokyc, Yields a e, = 1.34.

X1.1.2.3 Note that the values af Obtained in X1.1.1 and X1.1.2 differ. This difference is due primarily to the use of fewer
reference materials in the X1.1.2.2 example. It is not uncommon, however, to see relative differences in alpha coefficients on the
order of 5 to 10 %-—+elative in the literature.

X1.1.3 Determination ofoqjLT from First Principles—If the excitation source is monochromatic and enhancement effects are
absent (that is, absorption only); can be calculated from first principles yielding a simple expression involving mass absorption
coefficients and is:

o T = 1) + A ) — 1 (X1.7)
where:
o = monochromatic wavelength of the source,
N = wavelength of the characteristic line for analyte
K (Ao) = mass absorption coefficient of matrix elemgrior wavelengthn,,
Kk (\,) = mass absorption coefficient of analyte element i for waveleigth
Hj(\) = mass absorption coefficient of matrix elemgrior wavelengthy;,
i (\;) = mass absorption coefficient of analyte elemiefdr wavelength\;, and
1 A = geometric constantwhich that includes the incident and takeoff angles of the particular spectrometer used (see 8.2).

Note X1.1—Even when the excitation sourcenst monochromatic (for example, X-ray tube), it is often useful to approximate the spectral output
distribution of the X-ray source by a single wavelength for each analyte in the specimen to allow simple calculatjoiifaé concept of a single
wavelength most efficient for exciting a particular analyte in the specimen is referred to as an equivalent or effective wavelength and is miscussed i
Ref (37) and 9.5. For multicomponent specimens irradiated by polychromatic X-rays, influence coefficients can be obtained from first principles using
relative intensities calculated from Eq 21.

X2. CALCULATION OF THE UNKNOWN SPECIMEN COMPOSITION WHEN THE INFLUENCE
(ALPHA) COEFFICIENTS ARE KNOWN

X2.1 Considering a ternary system composed of elemieijts andk, three simultaneous equations can be solved for the
| respective-eeneentrations mass fractions as follows:

CG=R@Q+q; G+ axCy (X2.1)
G =R (1+05C +0yCp (X2.2)
G=R1l+ oy G+ayl) (X2.3)

These linear equations can be solved for the unkrewn-eeneentrations mass fractions when the alpha coefficients have been
previously determined from reference materials or calculated from fundamental parameters expressions. Sets of linear equations
can be solved by: 1) elimination, @) determinants, 8) matrix inversion, or 4) iteration. Iteration is a more common approach

] and involves making successively closer estimates of-each-eeneentration. mass fraction.

X2.2 The iterative procedure can be illustrated for the Fe-Ni-Cr alloy system using the following data:

14
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Ree A Fecr QEeni
0.4699 1.46 —0.459

RCr Acrre QA Crnj
0.3391 -0.352 —0.370

X2.2.1 For the first iteration, th€'s inside the brackets can be equated toRtse The calculated’s are then used in the next
iteration to calculate a different set 6fs. The procedure can be repeated indefinitely; but generally, when a comparison of results
indicates no appreciable change from those of the preceding iteration, convergence has been met, and the results from the |
iteration may be considered the finralweight mass fractions. These calcutatiens may can be performed by a computer utilizing, fo
example, the “DO LOOP” in Fortran language. The computer program may be written so that when succeeding iterations produc
results-whieh that do not differ by more than 0.001 in-the-weight mass fraction, the results are printed out as final values. Fol
example:

X2.2.1.1 First Iteration:

Cre = 0.4699 [1+ 0.0549—0.459 + 0.33911.46)] = 0.6907 (X2.4)
Cy = 0.0549 [1+ 0.46991.21) + 0.33910.80] = 0.1010
Cc, = 0.3391 [1+ 0.4699—0.352 + 0.0549—0.370] = 0.2761
X2.2.1.2 Second lteration
Cr.= 0.4699 [1+ 0.101G—0.459 + 0.27611.46)] = 0.6381 (X2.5)
Cy; = 0.0549 [1+ 0.69071.21) + 0.27610.80] = 0.1132
Ce, = 0.3391 [1+ 0.6907—0.352 + 0.101G—.370] = 0.2439

X2.2.1.3 Third Iteration gives: G,= 0.6133,C,; = 0.1081,C -, = 0.2488, and
X2.2.1.4 Fourth lIteration gives: G.= 0.6178,Cy; = 0.1067,C ., = 0.2523, etc.
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