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superscript epsilone] indicates an editorial change since the last revision or reapproval.

1. Scope 6. General Description of Electron Spectrometers

1.1 The purpose of this guide is to familiarize the analyst 6.1 An electron spectrometer is typically used to measure
with some of the relevant literature describing the physicathe energy and angular distributions of electrons emitted from
properties of modern electrostatic electron spectrometers. a specimen, typically for energies in the range 0 to 2500 eV. In

1.2 This guide is intended to apply to electron spectrometersurface analysis applications, the analyzed electrons are pro-
generally used in Auger electron spectroscopy (AES) andluced from the bombardment of a sample surface with
X-ray photoelectron spectroscopy (XPS). electrons, photons or ions. The entire spectrometer instrument

1.3 This standard does not purport to address all of themay include one or more of the followingl)( apertures to
safety concerns, if any, associated with its use. It is thalefine the specimen area and emission solid angle for the
responsibility of the user of this standard to establish appro-electrons accepted for analysi®?) (an electrostatic and/or
priate safety and health practices and determine the applicamagnetic lens system3) an electrostatic (dispersing) ana-

bility of regulatory limitations prior to use. lyzer; and 4) a detector. Methods to check the operating
characteristics of X-ray photoelectron spectrometers are re-
2. Referenced Documents ported in Practice E 902.
2.1 ASTM Standards: 6.2 Intensity Scale Calibration and Spectrometer Transmis-
E 673 Terminology Relating to Surface Analysis sion Functior—Quantitative analysis requires the determina-
E 902 Practice for Checking the Operating Characteristicsion of the ability of the spectrometer to transmit electrons, and
of X-Ray Photoelectron Spectrometérs the resultant detector signal, throughout the spectrometer

E 1217 Practice for Determination of the Specimen Areanstrument. This can be described by an overall electron
Contributing to the Detected Signal in Auger Electronenergy-dependent transmission funct@iE) and is given by
Spectrometers and Some X-Ray Photoelectron Spectronthe product(1,2),® as follows:

Slers Q(E) = H(E)-T(E)-D(E) F(E), (1)
3. Terminology where:
3.1 For definitions of terms used in this guide, refer to H(E) = the effect of mechanical imperfections (such as
Terminology E 673. aberrations, fringing fields, etc.),
T(E) electron-optical transmission function,

4. Summary of Guide D(E) = detector efficiency, and

4.1 This guide serves as a resource for relevant literaturé™(E) = efficiency of the counting systems. _
which describes the properties of electron spectrometers com- Knowledge of this transmission function permits the cali-

monly used in surface analysis. bration of the spectra intensity axi3). A detailed review of the
o experimental determination of the transmission function for
5. Significance and Use XPS (4) and AES(5) measurements has been published.

5.1 The analyst may use this document to obtain informa- 6.3 Energy Scale Calibratior-Quantitative analysis also
tion on the properties of electron spectrometers and instrumetriequires the absolute calibration of spectra energy scales in
tal aspects associated with quantitative surface analysis.  either XPS or AES. Suitable photon energy values for Al and

Mg anode X-ray sources often used in XPS measurements are
available(6) and reference binding energy values for Cu, Au,
and Ag have been publishéd). Binding energy scale calibra-

1 This guide is under the jurisdiction of ASTM Committee E42 on Surface tion procedures have been described in the literature for XPS
Analysis and is the direct responsibility of Subcommittee E42.03 on Auger Electron
Spectroscopy and XPS.
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(8,9) and kinetic energy scale calibrations for AES0-12)  exit slits and apertures, their associated fringing fields, as well
measurements. as the effect of the divergence of the incident electron trajec-
) tories on analyzer performance, particularly energy resolution,

7. Literature have also been review¢i3-17) A detailed examination of the

7.1 Electrostatic Analyzers-Spectrometers commonly used effects of unwanted internal scattering in CHA and CMA
on modern AES and XPS spectrometer instruments generallylectron spectrometers has been reported in the literature
employ electrostatic deflection analyzers. Auger electron speg19-21)
trometers often use cylindrical mirror analyzer (CMA) designs, 7.3 | ens SystemsInput lens systems are frequently em-
although concentric hemispherical analyzers (CHA) (a|5°ployed in CHA (and cylindrical sector) designs to vary the
known as spherical deflection (or sector) analyzers) are alsgface analysis arg22) and to permit a convenient location
used. The CHA design is the most common analyzer employegk the CHA so as to allow access of complementary surface
on modern XPS instruments, although double-pass CMAwnaracterization techniques to the sam(®8). The electro-
designs were also employed on earlier XPS instrumentsaiic lens design often consists of a coaxial series of electrodes
Retarding field analyzers (RFA) have historical interest in earlyfpat define the analysis area on the sample surface and
AES work, but are now commonly used on low energy electronyeermines the electron trajectories at the input to the analyzer.
diffraction apparatus. , _ The lens system also determines the angular resolution and

7.1.1 Electrostatic Deflection Analyzers A review of the  jifies the transmission characteristics of the spectrometer
general properties of deflection analyzers may be found iRy gieny1). A review of electrostatic lens systems incorporated
recent review$13,14) Amore detailed review is also available  ¢yrface analysis instruments is offerét3-17,24) Lens
where, in addition to the CMA and CHA designs, plane mirror, oy stems have also been introduced at the exit of analyzers for
spherical mirror, cylindrical sector, and toroidal deﬂeCt'onphotoelectron imaging14,25-27) Methods to determine the
analyzers are treate(15-17) As the width of typical Auger  cnecimen area examined are described in Practice E 1217.
spectral features are several electron volts, the use of a CMA 7.4 Detectors—Detection of the analyzed electrons is gen-

design in conventional AES has sufficed for routine analysiséra" accomplished through the use of an electron multiplier to
particularly for small area analysis where a compromise Y P g P

. . . roduce usable signals. Surface analysis instruments currentl
between signal-to-noise and energy resolution is |mportanp 9 y y

These are commonly used at a resolution defined by thase a variety of multipliers, but most are glass upon which a

full-width at half-maximum of the spectrometer energy reso-rQSis.tiVe counting 'is placed. The coating .is formulatgd to
lution, AE, divided by the electron energy, E, of 0.25 to 0.6 %, PrOVide a substantial secondary electron yield upon primary
The ability to incorporate an electron source concentric with?lemrOn impact. The multiplier has a potential placepl upon it so
the CMA axis has been extensively exploited in scanning—hat the secondary glgctrons are accelerat_ed FO adjacent coated
urfaces, thus providing the electron multiplying effect. Mul-

electron microscope instruments to give Auger data as Ipliers are available in various shapes for both analog and
function of beam position (that is, images). However, analysi P . e P : 1al0g
Bulse counting amplification modes of operati@3). Single-

morphologies may be enhanced by the use of a CHA Olesig(r:]hannel electron multipliers were common in early instru-

which can provide better energy resolution (but a Iowerments’ but multiple-channel (“multichannel”) electron multi-

o : . -~ pliers fabricated into thin plates are now available for use in
Fransm|35|on) and superior angular resoluupn. The CHA des'gﬁetectors See a general rgview of electron multiples31)
is most frequently employed on XPS instruments wher '

spectral features generally have narrow energy widths of 1 e he use of position-sensitive qletectors, such as resistive
. L . apodes, as well as wedge and strip anodes at the output of such
or less and higher angular resolution is desired for the detecte

electrons than is possible with a CMA. The relationshipe ectron multipliers, has afforded the ability to also record the

between the pass energy of various spectrometer designs %atial (angule_mr) characteristigs O.f the analyzed electro.n_s and
the potential between their electrodes is described in deta as thus permitted the determination of surface composition as
a function of position (“chemical maps”) in XPS instruments
(13)
7'1 2 Retarding Field AnalyzersThe use of a retarding (17,30) Recently, the detection efficiency of single channel
o s X - multipliers as a function of incident energy, angle of incidence,
field analyzer (RFA), consisting of concentric, spherical secto[,JIS well as count rate have been repor@t). In addition, the

grids, is currently used most commonly on electron difiraction, fluence of the detector electronics and counting systems have
instruments where the angular distribution of the detected! gsy

electrons is examined. See also a brief review of RFA design%ISO been examine(d2,33)
(13)and a substantial report on resolution and sensitivity issueg
(18). . Keywords

7.2 Apertures—The effects of the spectrometer entrance and 8.1 electron spectrometers
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