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Standard Practices for
Infrared Multivariate Quantitative Analysis 1

This standard is issued under the fixed designation E 1655; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 These practices cover a guide for the multivariate calibration of infrared spectrometers used in determining the physical or
chemical characteristics of materials. These practices are applicable to analyses conducted in the near infrared (NIR) spectral
region (roughly 780 to 2500 nm) through the mid infrared (MIR) spectral region (roughly 4000 to 400 cm−1).

NOTE 1—While the practices described herein deal specifically with mid- and near-infrared analysis, much of the mathematical and procedural detail
contained herein is also applicable for multivariate quantitative analysis done using other forms of spectroscopy. The user is cautioned that typical and
best practices for multivariate quantitative analysis using other forms of spectroscopy may differ from practices described herein for mid- and
near-infrared spectroscopies.

1.2 Procedures for collecting and treating data for developing IR calibrations are outlined. Definitions, terms, and calibration
techniques are described. Criteria for validating the performance of the calibration model are described.

1.3 The implementation of these practices require that the IR spectrometer has been installed in compliance with the
manufacturer’s specifications. In addition, it assumes that, at the times of calibration and of validation, the analyzer is operating
at the conditions specified by the manufacturer.

1.4 These practices cover techniques that are routinely applied in the near and mid infrared spectral regions for quantitative
analysis. The practices outlined cover the general cases for coarse solids, fine ground solids, and liquids. All techniques covered
require the use of a computer for data collection and analysis.

1.5 These practices provide a questionnaire against which multivariate calibrations can be examined to determine if they
conform to the requirements defined herein.

1.6 For some multivariate spectroscopic analyses, interferences and matrix effects are sufficiently small that it is possible to
calibrate using mixtures that contain substantially fewer chemical components than the samples that will ultimately be analyzed.
While these surrogate methods generally make use of the multivariate mathematics described herein, they do not conform to
procedures described herein, specifically with respect to the handling of outliers. Surrogate methods may indicate that they make
use of the mathematics described herein, but they should not claim to follow the procedures described herein.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility
of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory
limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
D 1265 Practice for Sampling Liquified Petroleum (LP) Gases (Manual Method)2

1 These practices are under the jurisdiction of ASTM Committee E-13 on Molecular Spectroscopy and are the direct responsibility of Subcommittee E13.11 on
Chemometrics.
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D 4057 Practice for Manual Sampling of Petroleum and Petroleum Products3

D 4177 Practice for Automatic Sampling of Petroleum and Petroleum Products3

D 4855 Practices for Comparing Test Methods4

D 6300122 Practice for Determination Validation of Precision and Bias Data for Use in Test Methods for Petroleum Products
and Lubricants Multivariate Process Infrared Spectrophotometers5

D 6299 Practice for Applying Statistical Quality Assurance Techniques to Evaluate Analytical Measurement System
Performance5

D 6300 Practice for Determination of Precision and Bias Data for Use in Test Methods for Petroleum Products and Lubricants6

E 131 Terminology Relating to Molecular Spectroscopy7

E 168 Practices for General Techniques of Infrared Quantitative Analysis7

E 275 Practice for Describing and Measuring Performance of Ultraviolet, Visible, and Near Infrared Spectrophotometers7

E 334 Practice for General Techniques of Infrared Microanalysis7

E 456 Terminology Relating to Quality and Statistics8

E 691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method8

E 932 Practice for Describing and Measuring Performance of Dispersive Infrared Spectrometers7

E 1421 Practice for Describing and Measuring Performance of Fourier Transform Infrared (FT-IR) Spectrometers: Level Zero
and Level One Tests7

E 1866 Guide for Establishing Spectrophotometer Performance Tests7

E 1944 Practice for Describing and Measuring Performance of Fourier Transform Near-Infrared (FT-NIR) Spectrometers: Level
Zero and Level One Tests7

3. Terminology

3.1 Definitions—For terminology related to molecular spectroscopic methods, refer to Terminology E 131. For terminology
relating to quality and statistics, refer to Terminology E 456.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 analysis—in the context of this practice, the process of applying the calibration model to an absorption spectrum so as

to estimate a component concentration value or property.
3.2.2 calibration—a process used to create a model relating two types of measured data. In the context of this practice, a process

for creating a model that relates component concentrations or properties to absorbance spectra for a set of known reference
samples.

3.2.3 calibration model—the mathematical expression that relates component concentrations or properties to absorbances for
a set of reference samples.

3.2.4 calibration samples—the set of reference samples used for creating a calibration model. Reference component
concentration or property values are known (measured by reference method) for the calibration samples and correlated to the
absorbance spectra during the calibration.

3.2.5 estimate—the value for a component concentration or property obtained by applying the calibration model for the analysis
of an absorption spectrum.

3.2.6 model validation—the process of testing a calibration model to determine bias between the estimates from the model and
the reference method, and to test the expected agreement between estimates made with the model and the reference method.

3.2.7 multivariate calibration—a process for creating a model that relates component concentrations or properties to the
absorbances of a set of known reference samples at more than one wavelength or frequency.

3.2.8 reference method—the analytical method that is used to estimate the reference component concentration or property value
which is used in the calibration and validation procedures.

3.2.9 reference values—the component concentrations or property values for the calibration or validation samples which are
measured by the reference analytical method.

3.2.10 spectrometer/spectrophotometer qualification, n—the procedures by which a user demonstrates that the performance of
a specific spectrometer/spectrophotometer is adequate to conduct a multivariate analysis so as to obtain precision consistent with
that specified in the method.

3.2.11 surrogate calibration, n—a multivariate calibration that is developed using a calibration set which consists of mixtures
which contain substantially fewer chemical components than the samples which will ultimately be analyzed.

3.2.12 surrogate method, n—a standard test method that is based on a surrogate calibration.

2 Annual Book of ASTM Standards, Vol 05.01.
3 Annual Book of ASTM Standards, Vol 05.02.
4 Annual Book of ASTM Standards, Vol 07.02.
5 Annual Book of ASTM Standards, Vol 05.04.
6 Annual Book of ASTM Standards, Vol 03.06. 05.03.
7 Annual Book of ASTM Standards, Vol 14.02. 03.06.
8 The boldface numbers in parentheses refer to a list
8 Annual Book of references at the end of the text. ASTM Standards, Vol 14.02.
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3.2.13 validation samples—a set of samples used in validating the model. Validation samples are not part of the set of
calibration samples. Reference component concentration or property values are known (measured by reference method), and are
compared to those estimated using the model.

4. Summary of Practices

4.1 Multivariate mathematics is applied to correlate the absorbances measured for a set of calibration samples to reference
component concentrations or property values for the set of samples. The resultant multivariate calibration model is applied to the
analysis of spectra of unknown samples to provide an estimate of the component concentration or property values for the unknown
sample.

4.2 Multilinear regression (MLR), principal components regression (PCR), and partial least squares (PLS) are examples of
multivariate mathematical techniques that are commonly used for the development of the calibration model. Other mathematical
techniques are also used, but may not detect outliers, and may not be validated by the procedure described in these practices.

4.3 Statistical tests are applied to detect outliers during the development of the calibration model. Outliers include high leverage
samples (samples whose spectra contribute a statistically significant fraction of one or more of the spectral variables used in the
model), and samples whose reference values are inconsistent with the model.

4.4 Validation of the calibration model is performed by using the model to analyze a set of validation samples and statistically
comparing the estimates for the validation samples to reference values measured for these samples, so as to test for bias in the
model and for agreement of the model with the reference method.

4.5 Statistical tests are applied to detect when values estimated using the model represent extrapolation of the calibration.
4.6 Statistical expressions for calculating the repeatability of the infrared analysis and the expected agreement between the

infrared analysis and the reference method are given.

5. Significance and Use

5.1 These practices can be used to establish the validity of the results obtained by an infrared (IR) spectrometer at the time when
a the calibration is developed. The ongoing validation of estimates produced by analysis of unknown samples using the calibration
model should be covered separately (see for example, Practice D 6122).

5.2 These practices are intended for all users of infrared spectroscopy. Near-infrared spectroscopy is widely used for quantitative
analysis. Many of the general principles described in these practices relate to the common modern practices of near-infrared
spectroscopic analysis. While sampling methods and instrumentation may differ, the general calibration methodologies are equally
applicable to mid-infrared spectroscopy. New techniques are under study that may enhance those discussed within these practices.
Users will find these practices to be applicable to basic aspects of the technique, to include sample selection and preparation,
instrument operation, and data interpretation.

5.3 The calibration procedures define the range over which measurements are valid and demonstrate whether or not the
sensitivity and linearity of the analysis outputs are adequate for providing meaningful estimates of the specific physical or chemical
characteristics of the types of materials for which the calibration is developed.

6. Overview of Multivariate Calibration

6.1 The practice of infrared multivariate quantitative analysis involves the following steps:
6.1.1 Selecting the Calibration Set—This set is also termed the training set or spectral library set. This set is to represent all

of the chemical and physical variation normally encountered for routine analysis for the desired application. Selection of the
calibration set is discussed in Section 17, after the statistical terms necessary to define the selection criteria have been defined.

6.1.2 Determination of Concentrations or Properties, or Both, for Calibration Samples—The chemical or physical properties,
or both, of samples in the calibration set must be accurately and precisely measured by the reference method in order to accurately
calibrate the infrared model for prediction of the unknown samples. Reference measurements are discussed in Section 9.

6.1.3 The Collection of Infrared Spectra—The collection of optical data must be performed with care so as to present calibration
samples, validation samples, and prediction (unknown) samples for analysis in an alike manner. Variation in sample presentation
technique among calibration, validation, and prediction samples will introduce variation and error which has not been modeled
within the calibration. Infrared instrumentation is discussed in Section 7 and infrared spectral measurements in Section 8.

6.1.4 Calculating the Mathematical Model—The calculation of mathematical (calibration) models may involve a variety of data
treatments and calibration algorithms. The more common linear techniques are discussed in Section 12. A variety of statistical
techniques are used to evaluate and optimize the model. These techniques are described in Section 15. Statistics used to detect
outliers in the calibration set are covered in Section 16.

6.1.5 Validation of the Calibration Model—Validation of the efficacy of a specific calibration model (equation) requires that the
model be applied for the analysis of a separate set of test (validation) samples, and that the values predicted for these test samples
be statistically compared to values obtained by the reference method. The statistical tests to be applied for validation of the model
are discussed in Section 18.

6.1.6 Application of the Model for the Analysis of Unknowns—The mathematical model is applied to the spectra of unknown
samples to estimate component concentrations or property values, or both, (see Section 13). Outlier statistics are used to detect
when the analysis involves extrapolation of the model (see Section 16).
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6.1.7 Routine Analysis and Monitoring—Once the efficacy of calibration equations is established, the equations must be
monitored for continued accuracy and precision. Simultaneously, the instrument performance must be monitored so as to trace any
deterioration in performance to either the calibration model itself or to a failure in the instrumentation performance. Procedures
for verifying the performance of the analysis are only outlined in Section 22 but are covered in detail in Practice D 6122. The use
of this method requires that a model quality control material be established at the time the model is developed. The model QC
material is discussed in Section 22. For practices to compare reference methods and analyzer methods, refer to Practices D 4855.

6.1.8 Transfer of Calibrations—Transferable calibrations are equations that can be transferred from the original instrument,
where calibration data were collected, to other instruments where the calibrations are to be used to predict samples for routine
analysis. In order for a calibration to be transferable it must perform prediction after transfer without a significant decrease in
performance, as indicated by established statistical tests. In addition, statistical tests that are used to detect extrapolation of the
model must be preserved during the transfer. Bias or slope adjustments, or both, are to be made after transfer only when statistically
warranted. Calibration transfer, that is sometimes referred to as instrument standardization, is discussed in Section 21.

7. Infrared Instrumentation

7.1 A complete description of all applicable types of infrared instrumentation is beyond the scope of these practices. Only a
general outline is given here.

7.2 The IR instrumentation is comprised of two categories, including instruments that acquire continuous spectral data over
wavelength or frequency ranges (spectrophotometers), and those that only examine one or several discrete wavelengths or
frequencies (photometers).

7.2.1 Photometers may have one or a series of wavelength filters and a single detector. These filters are mounted on a turret
wheel so that the individual wavelengths are presented to a single detector sequentially. Continuously variable filters may also be
used in this fashion. These filters, either linear or circular, are moved past a slit to scan the wavelength being measured.
Alternatively, photometers may have several monochromatic light sources, such as light-emitting diodes, that sequentially turn on
and off.

7.3 Spectrophotometers can be classified, based upon the procedure by which light is separated into component wavelengths.
Dispersive instruments generally use a diffraction grating to spatially disperse light into a continuum of wavelengths. In
scanning-grating systems, the grating is rotated so that only a narrow band of wavelengths is transmitted to a single detector at
any given time. Dispersion can occur before the sample (pre-dispersed) or after the sample (post-dispersed).

7.3.1 Spectrophotometers are also available where the wavelength selection is accomplished without moving parts, using a
photodiode array detector. Post-dispersion is utilized. A grating can again provide this function, although other methods, such as
a linear variable filter (LVF) accomplish the same purpose (a LVF is a multilayer filter that has variable thickness along its length,
such that different wavelengths are transmitted at different positions). The photodiode array detector is used to acquire a continuous
spectrum over wavelength without mechanical motion. The array detector is a compact aggregate of up to several thousand
individual photodiode detectors. Each photodiode is located in a different spectral region of the dispersed light beam and detects
a unique range of wavelengths.

7.3.2 The acousto-optical tunable filter is a continuous variant of the fixed filter photometer with no moving optical parts for
wavelength selection. A birefrigent crystal (for example, tellurium oxide) is used, in which acoustic waves at a selected frequency
are applied to select the wavelength band of light transmitted through the crystal. Variations in the acoustic frequency cause the
crystal lattice spacing to change, that in turn, causes the crystal to act as a variable transmission diffraction grating for one
wavelength (that is, a Bragg diffractor). A single detector is used to analyze the signal.

7.3.3 An additional category of spectrophotometers uses mathematical transformations to convert modulated light signals into
spectral data. The most well-known example is the Fourier transform, that when applied to infrared (IR) is known as FT-IR. Light
is divided into two beams whose relative paths are varied by use of a moving optical element (for example, either a moving mirror,
or a moving wedge of a high refractive index material). The beams are recombined to produce an interference pattern that contains
all of the wavelengths of interest. The interference pattern is mathematically converted into spectral data using the Fourier
transform. The FT method can operate in the mid-IR and near-IR spectral regions. The FT instruments use a single detector.

7.3.4 A second type of transformation spectrophotometer uses the Hadamard transformation. Light is initially dispersed with a
grating. Light then passes through a mask mounted on or adjacent to a single detector. The mask generates a series of patterns.
For example, these patterns may be formed by electronically opening and shutting various locations, such as in a liquid crystal
display, or by moving an aperture or slit through the beam. These modulations alter the energy distribution incident upon the
detector. A mathematical transformation is then used to convert the signal into spectral information.

7.4 Infrared instruments used in multivariate calibrations should be installed and operated in accordance with the instructions
of the instrument manufacturer. Where applicable, the performance of the instrument should be tested at the time the calibration
is conducted using procedures defined in the appropriate ASTM practice (see 2.1). The performance of the instrument should be
monitored on a periodic basis using the same procedures. The monitoring procedure should detect changes in the performance of
the instrument (relative to that seen during collection of the calibration spectra) that would affect the estimation made with the
calibration model.

7.5 For most infrared quantitative applications involving complex matrices, it is a general consensus that scanning-type
instruments (either dispersive or interferometer based) provide the greatest performance, due to the stability and reproducibility
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of modern instrumentation and to the greater amount of spectral data provided for computer interpretation. These data allow for
greater calibration flexibility and additional options for selections of spectral areas less sensitive to band shifts and extraneous noise
within the spectral signal. Scanning/interferometer-based systems also allow greater wavelength/frequency precision between
instruments due to internal wavelength/frequency standardization techniques, and the possibilities of computer-generated spectral
corrections. For example, scanning instruments have received approval for complex matrices, such as animal feed and forages(1,
2).9

7.6 Descriptions of instrumentation designs related to Refs(1) and (2) are found in Refs(3) and (4). Other instrumentation
similar in performance to that described in these references is acceptable for all near-infrared techniques described in these
practices.

7.7 For information describing the measurement of performance of ultraviolet, visible, and near infrared spectrophotometers,
refer to Practice E 275. For information describing the measurement of performance of dispersive infrared spectrophotometers,
refer to Practice E 932. For information describing the measurement performance of Fourier Transform mid-infrared spectropho-
tometers, refer to Practice E 1421. For information describing the measurement performance of Fourier Transform near-infrared
spectrophotometers, refer to Practice E 1944. For spectrophotometers to which these practice do not apply, refer to Guide E 1866.

8. Infrared Spectral Measurements

8.1 Multivariate calibrations are based on Beer’s Law, namely, the absorbance of a homogeneous sample containing an
absorbing substance is linearly proportional to the concentration of the absorbing species. The absorbance of a sample is defined
as the logarithm to the base ten of the reciprocal of the transmittance, (T).

A 5 log10~1/T!

The transmittance,T, is defined as the ratio of radiant power transmitted by the sample to the radiant power incident on the sample.

8.1.1 For measurements conducted by reflectance, the reflectance,R, is sometimes substituted for the transmittanceT. The
reflectance is defined as the ratio of the radiant power reflected by the sample to the radiant power incident on the sample.

NOTE 2—The relationshipA = log10(1/R) is not a definition, but rather an approximation designed to linearize the relationship between the measured
reflectance,R, and the concentration of the absorbing species. For some applications, other linearization functions (for example, Kubelka-Munk) may be
more appropriate(5).

8.1.2 For most types of instrumentation, the radiant power incident on the sample cannot be measured directly. Instead, a
reference (background) measurement of the radiant power is made without the sample being present in the light beam.

NOTE 3—To avoid confusion, the reference measurement of the radiant power will be referred to as a background measurement, and the word reference
will only be used to refer to measurements made by the reference method against which the infrared is to be calibrated. (See Section 9.)

8.1.3 A measurement is then conducted with the sample present, and the ratio,T, is calculated. The background measurement
may be conducted in a variety of ways depending on the application and the instrumentation. The sample and its holder may be
physically removed from the light beam and a background measurement made on the “empty beam”. The sample holder (cell) may
be emptied, and a background measurement may be taken through the “empty cell”.

NOTE 4—For optically thin cells, care may be necessary to avoid optical interferences resulting from multiple internal reflections within the cell. For
very thick cells, differences in the refractive index between the sample and the empty cell may change properties of the optical system, for example, shift
focal points.

8.1.4 The sample holder (cell) may be filled with a liquid that has minimal absorption in the spectral range of interest, and the
background measurement may be taken through the “background liquid.” Alternatively, the light beam may be split or alternately
passed through the sample and through an “empty beam,” an “empty cell,” or a “background liquid.” For reflectance
measurements, the reflectance of a material having minimal absorbance in the region of interest is generally used as the background
measurement.

8.1.5 The particular background referencing scheme that is used may vary among instruments, and among applications. The
same background referencing scheme must be employed for the measurement of all spectra of calibration samples, validation
samples, and unknown samples to be analyzed.

8.2 Traditionally, a sample is manually brought to the instrument and placed in a suitable optical container (a cell or cuvette
with windows that transmit in the region of interest). Alternatively, transfer pipes can continuously flow liquid through an optical
cell in the instrument for continuous analysis. With optical fibers, the sample can be analyzed remotely from the instrument. Light
is sent to the sample through an optical fiber or fibers and returned to the instrument by means of another fiber or group of fibers.
Instruments have been developed that use single fibers to transmit and receive the light, as well as those using bundles of fibers
for this purpose. Detectors and light sources external to the instrument can also be used, in which case only one fiber or bundle

Manual on Determining Precision Data for ASTM Methods on Petroleum Products and Lubricants,
Available from ASTM Headquarters. Request Research Report RR: D02-1007.

9 The boldface numbers in parentheses refer to a list of references at the end of the text.
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is needed. For spectral regions where transmitting fibers do not exist, the same function can be performed over limited distances
using appropriate optical transfer optics.

NOTE 5—If the instrument uses predispersion of the light, some caution must be exercised to avoid introducing ambient light into the system at the
sample position, since such light may be detected, giving rise to erroneous absorbance measurements.

8.3 Although most multivariate calibrations for liquids involve the direct measurement of transmitted light, alternative sampling
technologies (for example, attenuated total reflectance) can also be employed. Transmittance measurements can be employed for
some types of solids (for example, polymer films), whereas other solids (for example, powdered solids) are more commonly
measured by diffuse reflectance techniques.

8.4 For most infrared instrumentation, a variety of adjustable parameters are available to control the collection and computation
of the spectral data. These parameters control, for instance, the optical and digital resolution, and the rate of data acquisition (scan
speed). A detailed description of the spectral acquisition parameters and their effect on multivariate calibrations is beyond the scope
of these practices. However, it is essential that all adjustable parameters that control the collection and computation of spectral data
be maintained constant for the collection of spectra of calibration samples, validation samples, and unknown samples for which
estimates are to be made.

8.5 For definitions and further description of general infrared quantitative measurement techniques, refer to Practice E 168. For
a description of general techniques of infrared microanalysis, refer to Practice E 334.

9. Reference Method and Reference Values

9.1 Infrared spectroscopy requires calibration to determine the proportionality relationship between the signals measured and
the component concentrations or properties that are to be estimated. During the calibration, spectra are measured for samples for
which these reference values are known, and the relationship between the sample absorbances and the reference values is
determined. The proportionality relationship is then applied to the spectra of unknown samples to estimate the concentration or
property values for the sample.

9.2 For simple mixtures containing only a few chemical components, it is generally possible to prepare mixtures that can serve
as standards for the multivariate calibration of an infrared analysis. Because of potential interferences among the absorbances of
the components, it is not sufficient to vary the concentration of only some of the mixture components, even when analyses for only
one component are being developed. Instead, all components should be varied over a range representative of that expected for
future unknown samples that are to be analyzed. Since infrared measurements are conducted on a fixed volume of sample (for
example, a fixed cell pathlength), it is preferable that concentration reference values be expressed in volumetric terms, for example,
in volume percentage, grams per millilitre, moles per cubic centimetre, and so forth. Developing multivariate calibrations for
reference concentrations expressed in other terms (for example, weight percentage) can lead to models that are linear
approximations to what is really a nonlinear relationship and can lead to less accurate estimates of the concentrations.

9.3 For complex mixtures, such as those obtained from petrochemical processes, preparation of reference standards is generally
impractical, and the multivariate calibration of an infrared analysis must typically be performed on actual process samples. In this
case, the reference values used to calibrate the infrared analysis are obtained by a reference analytical method. The accuracy of
a component concentration or property value estimated by a multivariate infrared analysis is highly dependent on the accuracy and
precision of the reference values used in the calibration. The expected agreement between the infrared estimated values and those
obtained from a single reference measurement can never exceed the repeatability of the reference method, since, even if the
infrared estimated the true value, the measurement of agreement is limited by the precision of the reference values. Knowledge
of the precision (repeatability) of the reference method is critical in the development of an infrared multivariate calibration. The
precision of the reference data used in developing a model, and the accuracy of the model can be improved by averaging repeated
reference measurements.

NOTE 6—If the reference values used to calibrate a multivariate infrared analysis are generated in a single laboratory, it is essential that the
measurement process used to generate these values be monitored for bias and precision using suitable quality assurance procedures (see for example,
Practice D 6299. If primary standards are not available to allow the bias of the reference measurement process to be established, it is recommended that
the laboratory participate in an interlaboratory crosscheck program as a means of demonstrating accuracy.

NOTE 7—Samples like hydrocarbons from petrochemical process streams can degrade with time unless careful sampling and sample storage procedures
are followed. It is critical that the composition of samples taken for laboratory or at-line infrared analysis, or for laboratory measurement of the reference
data be representative of the process at the time the samples are taken, and that composition is maintained during storage and transport of the samples
either to the analyzer or to the laboratory. Sampling should be done in accordance with methods like Practices D 1265 and D 4057, or Practice D 4177,
whichever are applicable. Whenever possible, sample storage for extended time periods is not recommended because of the likelihood of samples
degrading with time in spite of sampling precautions taken. Degradation of samples can cause changes in the spectra measured by the analyzer and thus
in the values estimated, and in the property or quality measured by the reference method.

9.4 If the reference method used to obtain reference values for the multivariate calibration is an established ASTM method, then
repeatability and reproducibility data are included in the method. In this case, it is only necessary to demonstrate that the reference
measurement is being practiced in accordance with the procedure described in the method, and that the repeatability obtained is
statistically comparable to that published in the method. Data from established quality control procedures can be used to
demonstrate that the repeatability of the reference method is within ASTM specifications. If such data is not available, then
repeatability data should be collected on at least three of the samples that are to be used in the calibration. These samples should
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be chosen to span the range of values over which the calibration is to be developed, one sample having a reference value in the
bottom third of the range, one sample having a value in the middle third of the range, and one sample having a value in the upper
third of the range. At least six reference measurements should be made on each sample. The standard deviation among the
measurements should be calculated and compared to that expected based on the published repeatability.10

9.5 If the reference method to be used for the multivariate calibration is an established ASTM method, and the samples to be
used in the calibration have been analyzed by a cooperative testing program (for example, octane values obtained from recognized
exchange groups), then the reference values obtained by the cooperative testing program can be used directly, and the standard
deviations established by the cooperative testing program can be used as the estimate of the precision of the reference data.

9.6 Reference methods that are not ASTM methods can be used for the multivariate calibration of infrared analyses, but in this
case, it is the responsibility of the method developer to establish the precision of the reference method using procedures similar
to those detailed in Practice E 691, in theManual for Determining Precision for ASTM Methods on Petroleum Products and
Lubricants10 and in Practice D 6300.

9.7 When multiple reference measurements are made on an individual calibration or validation sample, a Dixon’s Test (see
A1.1) should be applied to the values to determine if all of the reference values came from the same population, or if one or more
of the values is suspect and should be rejected.

10. Simple Procedure to Develop a Feasibility Calibration

10.1 For new applications, it is generally not known whether an adequate IR multivariate model can be developed. In this case,
feasibility studies can be performed to determine if there is a relationship between the IR spectra and the component/property of
interest, and whether a model of adequate precision could possibly be built. If the feasibility calibration is successful, then it can
be expanded and validated. A feasibility calibration involves the following steps:

10.1.1 Approximately 30 to 50 samples are collected covering the entire range for the constituent/property of interest. Care
should be exercised to avoid intercorrelations among major constituents unless such intercorrelations always exist in the materials
being analyzed. The range in the concentration/property should be preferably five times, but not less than three times, the standard
deviation of the reproducibility (reproducibility/2.77) of the reference analysis.

10.1.2 When collecting spectral data on these samples, variations in particle size, sample presentation, and process conditions
which are expected during analysis must be reproduced. Multiple spectra of the same sample under different conditions can be
employed if such variations in conditions are anticipated during analysis.

10.1.3 Reference analyses on these samples are conducted using the accepted reference method. If the range for the
component/property is not at least five times the standard deviation of the reproducibility for the reference analysis, thenr replicate
analyses should be conducted on each sample such that the=r times the range is preferably greater than five times, but at least
three times, the standard deviation of the reference analysis.

10.1.4 A calibration model is developed using one or more of the mathematical techniques described in Sections 11 and 12. The
calibration model is preferably tested using cross-validation methods such as SECV or PRESS (see 15.3.6). Other statistics can
also be used to judge the overall quality of the calibration.

10.1.5 If the SECV value obtained from the cross validation suggests that a model of adequate precision can be built, then
additional samples are collected to round out the calibration set, and to serve as a validation set, spectra of these samples are
collected, a final model is developed, and validated as described in Sections 13, 14, and 15.

11. Data Preprocessing

11.1 Various types of data preprocessing algorithms can be applied to the spectral data prior to the development of a multivariate
calibration model. For example, numerical derivatives of the spectra may be calculated using digital filtering algorithms to remove
varying baselines. Such filtering generally causes a significant decrease in the spectral signal-to-noise. Digital filters may also be
employed to smooth data, improving signal to noise at the expense of resolution. A complete description of all possible
preprocessing methods is beyond the scope of these practices. For the purpose of these practices, preprocessing of the spectral data
can be used if it produces a model which has acceptable precision and which passes the validation test described in Section 21.
In addition, any spectral preprocessing method must be automated so as to provide an exactly reproducible result, and must be
applied consistently to all calibration spectra, validation spectra, and to spectra of unknowns which are to be analyzed.

11.2 One type of preprocessing requires special mention. Mean-centering refers to a procedure in which the average of the
calibration spectra (average absorption over the calibration spectra as a function of wavelength or frequency) is calculated and
subtracted from the spectra of the individual calibration samples prior to the development of the model. The average reference
value among the calibration samples is also calculated, and subtracted from the individual reference values for the calibration
samples. The model is then built on the mean-centered data. If the spectral and reference value data are mean-centered prior to
the development of the model, then:

11.2.1 When an unknown sample is analyzed, the average spectrum for the calibration site must be subtracted from the spectrum
of the unknown prior to applying the mean-centered model, and the average reference value for the calibration set must be added

10 Manual on Determining Precision Data for ASTM Methods on Petroleum Products and Lubricants, Available from ASTM Headquarters. Request Research Report RR:
D02-1007.
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to the estimate from the mean-centered model to obtain the final estimate; and
11.2.2 The degrees of freedom used in calculating the standard error of calibration must be diminished by one to account for

the degree of freedom used in calculating the average (see 15.2).

12. Multivariate Calibration Mathematics

12.1 Multivariate mathematical techniques are used to relate the absorbances measured for a set ofcalibration samplesto the
reference values (property or component concentration values) obtained for this set of samples from a reference test. The object
is to establish a multivariatecalibration modelthat can be applied to the spectra of future, unknown, samples to estimate values
(property or component concentration values). Only linear multivariate techniques are described in these practices; that is, it is
assumed that the property or component concentration values can be modeled as a linear function of the sample absorptions.
Various nonlinear multivariate techniques have been developed, but have generally not been as widely used as the following linear
techniques. These practices are not intended to compare or contrast among these techniques. For the purpose of these practices,
the suitability of any specific mathematical technique should be judged only on the following two criteria:

12.1.1 The technique should be capable of producing a calibration model that can be validated as described in Section 18; and
12.1.2 The technique should be capable of providing statistics suitable for identifying if samples being analyzed are outside the

range for which the model was developed; that is, when the estimated values represent extrapolation of the model (see 16.3).

NOTE 78—In the following derivations, matrices are indicated using boldface capital letters, vectors are indicated using boldface lowercase letters, and
scalars are indicated using lowercase letters. Vectors are column vectors, and their transposes are row vectors. Italicized lowercase letters indicate matrix
or vector dimensions.

12.1.3 All linear, multivariate techniques are designed to solve the same generic problem. Ifn calibration spectra are measured
at f discrete wavelengths (or frequencies), thenX, the spectral data matrix, is defined as anf by n matrix containing the spectra
(or some function of the spectra produced by preprocessing, as described in Section 9) as columns. Similarlyy is a vector of
dimensionn by 1 containing the reference values for the calibration samples. The object of the linear, multivariate modeling is to
calculate a prediction vectorp of dimensionf by 1 that solves Eq 1:

y 5 Xtp 1 e (1)

whereXt is the transpose of the matrixX obtained by interchanging the rows and columns ofX. The error vector,e, is a vector
of dimensionn by 1, that is the difference between the reference valuesy and their estimates,ŷ,
where:

ŷ 5 Xtp (2)

12.1.4 The estimation of the prediction vectorp is generally calculated so as to minimize the sum of squares of the errors,

ete5 ?? e2 ?? 5 ~y – Xtp!t~y – Xtp! (3)

SinceX is generally not a square matrix, it cannot be directly inverted to solve Eq 3. Instead, the pseudo or generalized inverse
of X, X+, is calculated as:

X1y 5 ~XXt!21Xy 5 p (4)

wherep is the least square estimate of the prediction vectorp. It should be noted that, in applying Eq 1-4, it is assumed that the
errors in the spectral data inX are negligible compared to the errors in the reference data, and that there is a linear relationship
between the component concentration or property and the spectral data. If either of these assumptions is incorrect, then the linear
models derived here will not yield an optimal estimate ofp.

12.1.5 In calculating the least square solution in Eq 4, it is assumed that the individual error values ine (see Eq 1) are normally
distributed with common variance. This will be true if each of the individual reference values iny represents the result of a single
reference measurement, and if the repeatability of the reference method is constant over the range of values iny. If the values in
y represent averages of more than one reference method determination, then the least square expression in Eq 4 is not applicable.
If ri reference valuesyi1, yi2, yi3, . . . yir are measured for calibration samplei, then a weighted regression can be employed. IfR
is a diagonal matrix of dimensionn by n containing therivalues for each of the calibration samples, then the weighted regression
is given by:

=R ȳ 5 =RXtp 1 e (5)

~XRXt!21XRȳ 5 p (6)

where=R indicates the diagonal matrix containing the square roots of therivalues, andȳ is the vector containing the averages
of theri reference values for each sample. If averages of multiple reference values are used iny and a weighted regression is used,
special care must be taken to add back the variance removed by calculating the average reference values (see Section 11) so that
the statistics for the model can be compared to those for a single reference value determination. The specific method in which the
weighting is applied depends on the specific multivariate mathematics that are employed.

12.1.6 For most cases, if the calibration spectra are collected over an extended wavelength (or frequency) range, the number
of individual absorption values per spectrum,f, will exceed the number of calibration spectra,n. In this case, the matrices(XXt)
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and(XRXt) are rank deficient and cannot be directly inverted. Even in cases wheref < n, colinearity among the calibration spectra
can cause(XXt) and(XRXt) to be nearly singular (to have a determinant that is near zero), and the direct use of Eq 4 and Eq 6
can produce an unstable model, that is, a model for which changes on the order of the spectral noise level produce significant
changes in the estimated values. In order to solve Eq 4 and Eq 6, it is therefore necessary to reduce the dimensionality ofX so
that a stable inverse can be calculated. The various linear, mathematical techniques used for multivariate calibration are different
means of reducing the dimensionality ofX so as to be able to calculate stable inverses of(XXt) and(XRXt) and the estimatep.

12.2 Multilinear Regression Analysis:
12.2.1 In multilinear regression (MLR), a specific number of wavelengths (or frequencies),k, are chosen such thatk << n. A

new matrix M of dimensionk by n is obtained fromX by extracting the columns fromX that correspond to the selected
wavelengths (or frequencies). The calibration equation then becomes:

y 5 Mtb 1 e (7)

whereb is a vector of dimensionk by 1 containing the set of regression coefficients defined at each of the chosen wavelengths
(or frequencies). The solution for the regression coefficients is obtained as:

~MM t!21My 5 b̂ (8)

~MM t!21My 5 b (8)

The estimate of the full prediction vector,p, is obtained fromb by substituting the values frombinto the corresponding positions
in p(corresponding to the selected wavelengths or frequencies), and setting all other elements ofp (corresponding to the
wavelengths or frequencies that were eliminated in going fromX to M ) to zero.

12.2.2 If a weighted regression is used, the corresponding form for Eq 8 becomes:

~MRM t!21MRy 5 b (9)

12.2.3 Not all commercial software packages that implement MLR include options for weighted regressions. If MLR models
are developed with such packages, averages of multiple reference values should still be included in they vector if they are
available. The use of the average values will lead to better estimates of the regression coefficients, but the model produced will
not be the least squares minimum. Standard errors of calibration calculated by the software will generally not be meaningful in
these cases since they are not expressed relative to a single reference measurement. Standard errors of calibration should be
recalculated using the procedure described in Section 11.

12.2.4 The choice of the number of wavelengths (or frequencies),k, to use in multilinear regression is a critical factor in the
model development. If too few wavelengths are used, a less precise model will be developed. If too many wavelengths are used,
colinearity among the absorption values at these wavelengths may lead to an unstable model. The optimum number of wavelengths
(or frequencies) for a model is related to the number of spectrally distinguishable components in the calibration spectra (see Section
15) and can generally only be determined by trial and error. As a rule, the number of wavelengths (or frequencies) used must be
large enough to produce a model with the desired precision, but small enough to produce a stable model that passes validation.

12.2.5 The choice of specific wavelengths (or frequencies) to include in a multilinear regression model is also a critical factor
in the model development. Several mathematical algorithms have been suggested for making this selection(6, 7, 8, 9).
Alternatively, selection may be based on prior knowledge of a relationship between the absorptions measured and the property or
component being modeled. It is beyond the scope of these practices to compare alternative selection methods. An adequate set of
wavelengths (or frequencies) will, for the purpose of these practices, be defined as a set that produces a model with the desired
precision that passes the validation test procedure described in Section 18.

12.3 Principal Components Regression (PCR):
12.3.1 Principal components regression (PCR) is based on the singular value decomposition of the spectral data matrix. The

singular value decomposition takes the form:

X 5 L(St (10)

12.3.1.1 The scores matrix,S, is an by n matrix that satisfies the relationship:

StS5 I (11)

St~XtX!S5 L (12)

whereI is an by n identity matrix, andL is the matrix of eigenvalues ofXtX. Then by n matrix( is the matrix of singular values,
that are the square roots of the eigenvalues, that is:

(2 5 L (13)

12.3.1.2 The loadings matrix,L , is a f by n matrix that satisfies the relationships:

LtL 5 I (14)

Lt ~XXt!L 5 L (15)
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12.3.1.3 The row vectors that make up the matricesS andL are orthonormal, that is, the dot product of the vector with itself
is 1, and the dot product with any other vector in the matrix is 0.

NOTE 89—In some implementations of PCR, the data matrixX may be decomposed as the product of only two matrices,S andL . EitherS or L is
then orthogonal but not orthonormal, and eitherStS = L or LtL = L.

12.3.1.4 Using the singular value decomposition, the pseudo inverse of the matrixX can be calculated as:

X1 5 S(21L t (16)

12.3.1.5 Using the pseudo inverse relationship in Eq 16, it is then possible to solve for the prediction vectorp. In practice,
however, the full inverse ofX as given in Eq 16 is not used, since it contains information relating to the spectral noise in the
calibration spectra.

12.3.2 When a principal components analysis is conducted on a matrixX containing the calibration spectra, the signals arising
from the absorbances of the calibration sample components generally account for the majority of the variance inX, and are
concentrated into the firstk loading vectors, that correspond to the larger eigenvalues. While the separation of signal and noise is
seldom perfect, it is preferable to use only the firstk vectors in building a model. The singular value decomposition ofX is then
written as:

X 5 La(aSa
t 1 Ln(nSn

t (17)

whereSa is a n by k matrix containing the firstk columns ofS, La is a f by k matrix containing the firstk columns ofL, Sa is a
k by k diagonal matrix containing the firstk singular values, andSn, Sn, andLn are the corresponding matrices containing the last
n-k elements ofS, L, andS. The pseudo inverse ofX is then approximated as:

X1 5 Sa(a
21La

t (18)

12.3.2.1 The estimate for the prediction vector,p, is then given as:

p 5 La(a
21Sa

t y (19)

12.3.2.2 Alternatively, the scores,S, may be regressed against the reference values,y, to obtain a set of regression coefficients,
b:

y 5 Sab 1 e (20)

b 5 ~Sa
t Sa!

21Sa
t y 5 Sa

t y (21)

12.3.2.3 Various stepwise regression algorithms(10, 11, 12)may be used to test which of the principal components (which
columns in the scores matrix,S) show a statistically significant correlation to the reference values iny. Coefficients (elements of
b) for principal components that do not show a statistically significant correlation may be set to zero. The estimate for the
prediction vector then becomes:

p 5 LaSa
21 b (22)

12.3.3 If the average of multiple reference measurements is used in they vector, then a weighted regression should be used in
calculating the prediction vector. The weighting is preferably applied to the scores in Eq 20 and Eq 21, and the spectra inX are
not weighted prior to the singular value decomposition.

12.3.3.1 Ifri individual reference values are measured for the ith calibration sample, then enteringri copies of the spectrumxi

into the X matrix, or weighting the spectrumxi by =ri will alter the loadings that are calculated. If the spectrumxi is only
measured once, the uncertainty in the spectral variables contributed byxi is no different from that for the othern − 1 spectra.
Weighting the spectrumxi prior to the singular value decomposition will tend to force noise characteristics ofxi into the loadings,
adversely affecting the model. Weighting the scores during the calculation of the regression coefficients will properly account for
the differences in the variance among the components of theȳ vector. The weighted regression equations become:

=R ȳ 5 =RSab 1 e (23)

b 5 ~Sa
t RSa!

21RSa
t ȳ (24)

12.3.4 Not all commercial software packages that implement PCR include options for weighted regressions. If PCR models are
developed with such packages, averages of multiple reference values should still be included in they vector if they are available.
The use of the average values will lead to better estimates of the regression coefficients, but the model produced will not be the
least squares minimum. Standard errors of calibration calculated by the software will generally not be meaningful in these cases
since they are not expressed relative to a single reference measurement. Standard errors of calibration should be recalculated using
the procedure described in 15.1.

12.3.5 As with wavelengths in multilinear regression, the choice of the number of principal components,k, to use in the
regression is a critical factor in the model development. If too few principal components are used, a less precise model will be
developed. If too many principal components are used, noise characteristics of the calibration samples will be incorporated into
the model leading to unstable estimations. The optimum number of principal components for a model is related to the number of
spectrally distinguishable components in the calibration spectra (see Section 15), and can generally only be determined by trial and
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error. As a rule, the number of principal components used must be large enough to produce a model with the desired precision,
but small enough to produce a stable model that passes validation.

12.4 Partial Least Squares (PLS):

NOTE 910—The term PLS has been used to describe various mathematical algorithms. The version described here is a specific representation of the
PLS-1 algorithm, and deals with only one set of reference values at a time. PLS-2 or multiblock PLS algorithms exist that can be used for the simultaneous
calibration of multiple components or concentrations, or both, but these algorithms are less well established than PLS-1 and are not included in these
practices. Various descriptions of the PLS-1 algorithm have been published(13, 14, 15, 16, 17, 18, 19, 20)many of which differ slightly in the actual
computational steps. In implementing the PLS-1 algorithm, a choice must be made as to which, if either, of the scores or loadings vectors are to be
normalized. In the following derivation, the scores vectors were normalized. If neither vector is normalized, or if the loadings vector is normalized instead
of the scores vector, a different expression will be obtained for the prediction vector. Differences in the derivations should not result in differences in the
numerical values obtained for the prediction vector, nor in estimates based on it.

12.4.1 Like PCR, PLS involves the decomposition of the spectral data matrix,X, into the product of matrices. Unlike PCR
where X is first decomposed, and then regressed versus the reference values, in PLS, they vector is used in obtaining the
decomposition ofX. The PLS proceeds by means of a series of steps, which are repeated in a loop. Each time the steps are repeated,
a weighting vectorwi (of dimensionf by 1), a scores vectorsi (of dimensionn by 1), a regression coefficientbi (a scalar), and a
loadings vectorli (of dimensionf by 1) are calculated. The subscripti indicates the number of times the entire loop has been
executed, and is initially 1.

12.4.1.1Step 1—Calculation of a weighting vector of dimensionf by 1, wi:

Xt 5 ywi
t 1 Z (25)

ŵi 5 Xy (26)

12.4.1.2Step 2—Scaling the weight vectorŵi and calculation of a normalized scores vector,si, of dimensionn by 1:

Xt 5 si ŵi
t 1 Z (27)

ŝ5 Xt ŵi (28)

ŵi 5 ŵi/~ ŝt ŝ! (29)

ŝi 5 ŝ/~ ŝt ŝ! (30)

12.4.1.3Step 3—Regressing the scores vector against the reference values to obtain a regression coefficient,bi:

y 5 ŝibi 1 e (31)

bi 5 ŝi
ty (32)

12.4.1.4Step 4—Calculation of a loading vector,l i of dimensionf by 1:

X 5 l i ŝi
t 1 Z (33)

l i 5 Xŝi (34)

12.4.1.5Step 5—Calculation of the residuals:

Zi 5 X 2 l iŝi
t (35)

ei 5 y 2 biŝi (36)

12.4.1.6 For subsequent times through the loop, the matrixX is replaced with the residuals matrixZ i–1 from the previous loop,
and they vector is replaced with the residuals vectorei–1. The loop is repeatedk times to obtaink weighting, scores, and loading
vectors, andk regression coefficients. The overall expression for the results is then:

X 5 LSt 1 Z (37)

y 5 Sb1 e (38)

whereS is then by k matrix containing theŝi as rows,L is thef by k matrix containing thel i as individual rows,Z is the residual
from the spectral data matrix, ande is the residual from the estimation of the reference values. The estimate of the prediction vector
is then given by:

p 5 L ~LtL !21b (39)

12.4.2 If the values in the vectorȳ contain the average of multiple reference measurements, then a weighted regression should
be employed in developing the model. Unfortunately, for PLS, development of an appropriate weighting scheme is complicated
by the use ofy in the decomposition ofX. If the spectrum xi corresponds to a sample for which xi reference values are measured,
then weighting bothX andy by =R in Step 1 of the PLS algorithm will over emphasize the spectral variables contributed by
xi. Preferably, weighting is done only in the calculation of the regression coefficients in Step 3. Eq 31and Eq 32 then become:

=R ȳ 5 =Rŝibi 1 e (40)

bi 5 ~ŝi
tRŝi!

21ŝi
tR ȳ (41)
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12.4.2.1 The other steps in the algorithm proceed unchanged.
12.4.3 Not all commercial software packages that implement PLS include options for weighted regressions. If PLS models are

developed with such packages, averages of multiple reference values should still be included in theȳ vector if they are available.
The use of the average values will lead to better estimates of the regression coefficients, but the model produced will not be the
least squares minimum. Standard errors of calibration calculated by the software will generally not be meaningful in these cases
since they are not expressed relative to a single reference measurement. Standard errors of calibration should be recalculated using
the procedure described in 15.2.

13. Estimation of Values from Spectra

13.1 If x (an f by 1 vector) is the spectrum of a sample, then yˆ (a scalar), the estimated component concentration or property
value, is given by:

ŷ 5 xt p (42)

wherep is the prediction vector obtained from the multivariate calibration. The expression in Eq 42 involves only the dot product
of two vectors to obtain the estimated value; it has the advantage of being computationally simple. However, alternative
computations are often employed in obtaining yˆ, since they provide additional parameters required to calculate the uncertainty in
the estimation as well as whether or not the estimation is being made by interpolation or extrapolation of the calibration model.

13.2 Estimations by MLR—For MLR, the absorbance values inx that correspond to the wavelengths (or frequencies) chosen
in the calibration are extracted to form a vectorm (of dimensionk by 1). The estimate yˆ is then obtained as the dot product of
the vectorm with the vector of regression coefficients,b:

ŷ 5 mt b (43)

13.3 Estimations by PCR:
13.3.1 For PCR, the vectorx is first decomposed:

xt 5 st(Lt (44)

ŝt 5 xtL(21 (45)

13.3.2 The estimated scores,ŝ (a k by 1 vector), are then multiplied by the regression coefficients obtained from the calibration
to obtain ŷ:

ŷ 5 ŝt b (46)

13.4 Estimations by PLS:
13.4.1 For PLS, the vectorx is first decomposed in steps. Eq 47 and Eq 48 are repeated for each latent variablei in the PLS

model. After the first cycle through Eq 47and Eq 48,xt andx are replaced withzi-1
t andz-i-1 from the previous cycle.

ŝi
t 5 xtwi (47)

zi 5 x 2 l i ŝi
t (48)

13.4.2 The estimated scores,ŝ (a k by 1 vector), are then multiplied by the regression coefficients obtained from the calibration
to obtain ŷ

ŷ 5 ŝt b (49)

14. Post Processing

14.1 Several multivariate methods involve some post processing of the estimates from the multivariate model. The most
common example is for mean-centered models (see Section 11), where the average reference value for the calibration set must be
added to the initial estimate from the model to obtain the final estimate. A model can be developed to estimate changes in the
pathlength of the cell used to contain the sample for analysis, and the estimated concentrations or property values can be scaled
based on the results of the pathlength estimate.

14.2 A complete description of possible post-processing algorithms is beyond the scope of these practices. Post-processing can
be employed if it provides a model with adequate precision, passes the validation test described in Section 18, and provided that
the post-processing algorithm is automated, so as to provide exactly reproducible results, and is applied uniformly to the results
from calibration, validation, and analyses.

15. Statistics Used in Evaluating and Optimizing Calibration Models

15.1 Various statistics are used to evaluate and optimize the performance of multivariate calibration models. These statistics are
generally applied only to data in the calibration set; they should not be confused with the statistics that are used to validate the
model (Section 18), that are calculated based on a separately analyzed validation set.

15.2 Standard Error of Calibration:
15.2.1 If ŷ are the values estimated for the calibration samples, andy are the corresponding reference values, thene is the

calibration error vector defined by:
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e5 ŷ 2 y (50)

The prediction errors include contributions from errors in the reference values for the calibration set, spectral errors in the spectra
of the calibration set, and model errors (using wrong number of variables, nonlinear relationships, and so forth).

15.2.2 The standard error of calibration (SEC), is defined as:

SEC5Œete
d (51)

d is the number of degrees of freedom in the calibration model.d is typically equal ton − k, wheren is the number of calibration samples, andk is the
number of variables (wavelengths in MLR, principal components, or PLS latent variables) used in the model. If the spectral data and reference values
are mean centered prior to the development of the calibration model (see Section 11), thend = n − k − l , since one degree of freedom is removed in
calculating the averages. The standard error of calibration is sometimes referred to as the standard error of estimate (SEE).

NOTE 101—If a constant term is included in a MLR regression, or in the regression of PCR scores against concentrations or properties, then
d = n − k − l , since one degree of freedom is associated with the constant. Care must be exercised in using a constant. In the case where neat samples
are analyzed and the samples are run in fixed pathlength cells, the volume fractions of all components are constrained to sum to unity. Inclusion of a
constant under these conditions can result in near singular matrices, and unstable models.

NOTE 112—For surrogate calibrations, there is no a priori relationship between the SEC calculated based on the simple gravimetric mixtures and the
error level expected for application of the model for analysis of actual samples. It is recommended that such standard errors be subscripted as SECsurrogate.

15.2.3 The standard error of calibration is used in estimating the expected agreement between values estimated using the
calibration models and values that would be measured by the reference method (see Section 9). Some care must be applied in
interpreting SEC if the values used iny are not single determinations by the reference method. If the values inȳ for individual
samples represent the average of multiple reference measurements, then the SEC calculated from Eq 51 is not on a per reference
measurement basis. For example, if all values inȳ are the average of three reference measurements, then the SEC calculated using
Eq 51 can only be used to estimate the expected agreement between the infrared estimate and the average of three reference
measurements.

15.2.3.1 If multiple reference values are used for some or all of the calibration samples, it is possible to calculate an SEC value
that is on a per reference measurement basis. Ifxi is the spectrum of theith calibration sample, andyi1, yi2. . . yir areri independently
measured reference values for that sample, then the weighted regression Eq 9 for MLR, 23 and 24 for PCR, and 40 and 41 for
PLS are preferably used in calculating the prediction vectors. Whether or not a weighted regression is employed, the variance
removed by calculating the averages must be calculated as:

s 2
avg 5 (

i 5 1

n

(
j 5 1

ri

~yij 2 ȳi!
2 (52)

where the first summation runs over all thei = 1 ton calibration samples, the second summation runs over thej = 1 to ri reference
values for theith sample, andȳi is the average of theri reference values for theith sample. In this case, the standard error of
calibration is calculated as:

SEC5ŒetRe 1 s 2
avg

dw
(53)

15.2.3.2 The degrees of freedom for the weighted regression,dw, are the total number of individual reference values measured
for all the samples, minus the number of variables in the model:

dw 5 @ (
i 5 1

n

ri# 2 k (54)

15.2.3.3 If the spectral and reference data are mean centered prior to the development of the calibration, then:

dw 5 @ (
i 5 1

n

ri# 2 k 2 1 (55)

The SEC calculated in this fashion will be on a per reference measurement basis.

15.2.3.4 An alternative expression for SEC in the case where multiple reference values per sample are used is given by:

SEC5Œ(
i 5 1

n

(
j 5 1

ri

~yij 2 ŷi!
2

dw
(56)

NOTE 123—In Eq 53, thee vector represents the difference between the estimated value and the reference value, where the reference value may be
the average of more than one reference measurement. The matrix notation implies the sum of the weighted squares of the differences, where the square
of the difference is weighted by the number of reference values that were included in the average. Alternatively, the square of the difference betweenthe
estimated value and each individual reference value can be computed and summed as in Eq 56, in which case the variance term is zero since the average
reference values are not used in the calculation.

15.2.4 The standard error of calibration (SEC) is the standard deviation for the differences between reference and IR estimated
values for samples within the calibration set. It is an indication of the total residual error due to the particular regression equation
to which it applies. The SEC will generally decrease when the number of independent variables used in the model increases,
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indicating that increasing the number of terms will allow more variation in the data to be explained, or “fitted”. The SEC statistic
is a useful estimate of the theoretical “best” accuracy obtainable for a specified set of variables used to develop a calibration model.

15.3 Optimizing the Number of Variables in a Model:
15.3.1 Determining how many variables (wavelengths in MLR, principal components, or PLS latent variables) to use in a model

is a critical step in the model development. Unfortunately, there are no hard and fast rules upon which to make this determination.
In general, if too few variables are used, a less precise model will result. If too many variables are used, the estimates from the
model may be unstable, that is, small changes in the spectrum on the order of the spectral noise may produce statistically significant
changes in the estimates.

15.3.2 The maximum number of variables that should be used in developing a multivariate calibration model,k, is related to
the number of detectable, spectrally distinguishable components (or functionalities) that are present in the calibration set.
Components (or functionalities) are spectrally distinguishable if they give rise to absorptions which are not linearly correlated
among the calibration samples, and if the change in the absorptions among the calibration spectra is larger than the spectral noise.
If, within a calibration set, the concentrations of components are linearly correlated, then the absorptions due to these components
will also be linearly correlated. Even if these components have isolated absorption features, they will not be spectrally
distinguishable to the multivariate mathematics, and will contribute at most one variable to the multivariate model. If the
concentrations of the components are nearly correlated, such that the absorptions due to the components are colinear to within the
spectral noise, then the components are not spectrally distinguishable. If components are present at sufficiently low levels so that
the component absorption is below the spectral noise, then the component is not spectrally detectable and cannot contribute a
variable to the multivariate model. Clearly, for complex mixtures, the number of detectable, spectrally distinguishable components
(or functionalities) is often less than the number of real chemical components.

15.3.3 Estimating the maximum number of detectable, spectrally distinguishable components among a set of calibration spectra
requires knowledge of the spectral noise level. The spectral noise level can be estimated from replicate measurements conducted
on a single sample. For instance, if replicate spectra are conducted on one sample, a PCR analysis of the spectra can be conducted.
Since the spectra all represent the same material, only one principal component should be present in the spectral data. The
percentage of the variance due to the first principal component (the first eigenvalue divided by the sum of all the eigenvalues) can
be calculated. This percentage of the variance can be used to estimate a cutoff point for determining how many principal
components to include in a model, namely, the sum of the firstk eigenvalues divided by the sum of all the eigenvalues should be
of the same order as the cutoff. Similar calculations can be performed using PLS. For MLR, tests for colinearity among the
absorbances at candidate wavelengths are generally conducted as part of the wavelength selection procedure. For instance, if a
model is built usingk wavelengths for which the absorbances are linearly independent, the linear dependence of all candidate
wavelengths for inclusion in a model based onk + 1 wavelengths can be checked. If the absorbances at all candidate wavelengths
can be fit as a linear combination of thek wavelengths already selected to within the spectral noise level, thenk is the maximum
number of linearly independent wavelengths upon which a model can be based.

15.3.4 Models can be built using fewer thank variables, provided that such models exhibit adequate precision and pass
validation.

15.3.5 Knowledge of the precision of the reference method is also useful in determining how many variables to include in a
multivariate model. As discussed, the agreement between infrared estimated values and reference values can never exceed the
repeatability of the reference method, since, even if the infrared estimated the true value, the measure of the agreement would be
limited by the repeatability of the reference method. Comparison of the standard error of calibration (calculated on the basis of
a single reference measurement) against the standard deviation calculated from the reference method repeatability provides an
indication of the maximum number of variables to include in a model. Standard errors of calibration that are lower than the
standard deviation for the reference method indicate overfitting of the data.

15.3.6 Cross validation procedures are also used to estimate the optimum number of variables that should be included in a
model. In cross validation, one or more sample spectra are removed from the data matrix, their corresponding reference values are
removed from the reference value vector, and a model is built on the remaining samples. The model is then used to estimate the
value for the samples that were left out. This process is repeated until each sample has been left out once. The error from the cross
validation,ecv, is then calculated as

ecv 5 ŷcv 2 y (57)

whereŷcv is the vector containing the cross validation estimates. A PRESS value can then be calculated as:

PRESS5 ecv
t ecv 5 (

i 5 1

n

~ ŷcvi
2 yi!

2 (58)

15.3.6.1 A standard error of cross validation (SECV) is calculated as:

SECV5ŒPRESS
n (59)

15.3.6.2 PRESS or SECV values can be calculated as a function of the number of variables used in the model. The procedure
would normally start by using one variable as a model while leaving a single sample out of the calibration set. After a calibration
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is developed using the remaining samples, the algorithm predicts the excluded sample and records the difference between the
reference and estimated values. This procedure is iterated (repeated) for the entire sample set, and the PRESS (or SECV) value
for the one variable model is reported. The procedure then adds another variable and repeats the process. The PRESS procedure
will stop when the predesignated number of factors is reached (say 10 to 20 maximum). The calibration model with the smallest
PRESS (SECV) can be selected as the optimum model for the calibration set used. If more than one model have similar PRESS
values, the one with fewer variables will generally be chosen.

15.3.6.3 A plot of PRESS (SECV) values (y-axis) versus the number of variables (x-axis) is often used to determine the
minimum PRESS corresponding with the optimum number of variables in the calibration model. A minimum in the function can
be taken as an indication of the maximum number of variables to be used. If no minimum occurs, the first point at which the PRESS
or SECV reaches a more or less constant level can provide an indication of the maximum number of variables to include.
Comparisons of SECV against the standard deviation for the reference method repeatability are again useful, SECVs significantly
lower than the standard deviation suggesting overfitting of the data.

15.3.6.4 An excellent description of the cross validation procedure (algorithm) is found in page 325 of Ref(21). Calculation
of PRESS and SECV can be computationally intensive and can result in the use of substantial computer time.

NOTE 134—The exact values of PRESS and SECV calculated will depend on how many samples are left out during each cycle of the cross validation.
If more than one sample is left out during a cycle, then the PRESS and SECV will depend on the combination of samples left out. Cross validation routines
that leave out multiple spectra during each cycle require less computation time than routines that leave out one spectrum at a time. However, the results
of such routines are less comparable and reproducible than those which leave out one spectrum at a time.

15.3.7 The above-mentioned methods for estimating the number of variables to use in a model are intended only as guidelines.
None of the methods can be relied upon to always produce a stable model. The ultimate test for the number of variables is whether
or not the model can be validated as described below. The number of variables used in a model must ultimately be chosen to
produce a model with the desired precision that can be validated.

15.4 Confidence Limits for an Estimated Value:
15.4.1 The confidence limits for a value estimated by a multivariate model is given by:

t 3 SEC3 1 1 D2 (60)

t · SEC ·=1 1 h (60)

where t is the student’s t value for the number of degrees of freedom in the model, and D2 h is the Mahalanobis distance leverage
statistic defined in 16.2. If t values are chosen from Table A1.3 for the 95 % probability level, then for a validated model, a single
value measured by the reference method is expected to fall within a range from yˆ − t 3 SEC3 of ŷ − t · SEC ·=1 1 D2=1 1 h
to ŷ + t · SEC · f to y + t3 SEC3 =1 1 D2=1 1 h for 95 % of samples analyzed, provided that the analysis is an
interpolation of the model. The confidence limits for an estimated value in Eq 60 are sometimes referred to as the confidence bands
or confidence intervals for the estimate.

15.4.2 The use of Eq 60 to estimate the confidence limits is only an approximation since it ignores any uncertainty inx, the
spectral data. The confidence limits in Eq 60 derive from the assumption that the errors inx are negligible compared to the errors
in y, and that the spectrumx can be completely described by the variables used in the model. If the errors in the spectral data are
not negligible, or if the spectrumx contains absorptions due to components that were not present in the calibration set, the
confidence limits in Eq 60 underestimate the potential error in the estimate. Eq 60 is expected to give a reasonable approximation
for the confidence limits on an estimated value for samples that are interpolations of the model (see 16.4).

15.5 Additional Statistics for Evaluating the Mathematical Models:
15.5.1 A variety of statistical tests are in use for evaluating calibration models. Some tests that are in common use include:
15.5.1.1 Coefficient of multiple determination,
15.5.1.2 Correlation coefficient,
15.5.1.3 F-test statistic (F for regression),
15.5.1.4 Partial F or t2 test for a regression coefficient,
15.5.1.5 Standard error of calibration (standard error of estimate), and
15.5.1.6 Bias corrected standard error.
15.5.2 Although many of these tests have been more commonly applied to MLR models, some are equally applicable to PCR

and PLS models. Details on these tests and related statistical terms are included in Annex A2. Further explanations for these
statistical tests can be found in Annex A2 and several references(22, 23).

16. Outlier Statistics

16.1 During calibration, outlier statistics are applied to identify samples that have unusually high leverage on the multivariate
regression. During analysis, outlier statistics are employed to detect samples which represent an extrapolation of the model.

16.2 Mahalanobis Distance:
16.2.1 The Mahalanobis distance statistic (or more correctly the square of the Mahalanobis distance), D2Leverage Statistic—

The leverage statistic,h, is a scalar measure of where the spectral vectorx lies within the multivariate parameter space used in the
model. The Mahalanobis distance leverage statistic is used in detecting outliers during the calibration, in detecting extrapolation

E 1655 – 9900

15



of the model during analyses, and in estimating the uncertainty on an estimated value.

NOTE 14—Various commercial 15—Commercial software packages may use D instead of D2, or may use other related statistics as an indication of
high numerous variations on the leverage ou statistic. The leverage statistic is sometimes referred to as the hat matrix(24), or may call as the Mahalanobis
d Distance by,D2 (anlthough it is actually the square of the distance). Various comme.rcial software packages may useD instead ofD2 is preferred here
since it is more easily related to the number of samples and variables. Model developers should attempt to verify exactly what is being calculated. Both
mean-centered and not mean-centered definitions for Mahalanobis distance exist, with the mean-centered approach preferred. Regardless of whethermean
centering of data is performed, the statistic designated by D. Some software packages may scaleh (or D2) by n (or n − 1 if mean-centered), to obtain
a statistic that is independent of the number of calibration samples. If this scaled statistic is further multiplied by (n−k−1)/nk, a statistic that has anF
distribution is obtained(25). The leverage statistic,h, is preferred here since it is easily related to the number of samples and variables. Model developers
should attempt to verify exactly what is being calculated. Both mean-centered and not mean centered definitions forh exist, with the mean-centered
approach preferred. Regardless of whether mean centering of data is performed, the statistic designatedh has valid utility for outlier detection.

16.2.1.1 Ifx is a spectral vector (dimensionf by 1) andX is the matrix of calibration spectra (of dimensionn by f), then the
Mahalanobis distance leverage statistic is defined as:

D2 5 xt ~XXt!1x

h 5 xt ~XXt!1x (61)

16.2.1.2 For a mean-centered calibration,x andX in Eq 61 are replaced byx − x̄ andX − X̄ respectively.
16.2.23 If a weighted regression is used, the expression for the Mahalanobis distance leverage statistic becomes:

D2 5 xt ~XRXt!1x

h 5 xt ~XRXt!1x (62)

16.2.34 In MLR, ifm is the vector (dimensionk by 1) of the selected absorbance values obtained from a spectral vectorx, and
M is the matrix of selected absorbance values for the calibration samples, then the Mahalanobis distance leverage statistic is
defined as:

D2 5 mt ~MM t!21m

h 5 mt ~MM t!21m (63)

16.2.45 Similarly, if a weighted regression is used, the expression for the Mahalanobis distance leverage statistic becomes:

D2 5 mt ~MRM t!21m

h 5 mt ~MRM t!21m (64)

16.2.56 In PCR and PLS, the Mahalanobis distance leverage statistic for a sample with spectrumx is obtained by substituting
the decompositions for PCR, or for PLS, into Eq 61. The statistic is expressed as:

D2 5 sts

h 5 sts (65)

NOTE 156—If the scores from a the PCR or PLS model are not normalized, then the form of Eq 65 becomesD2= st(S (StS)−1s.

16.2.67 If a weighted PCR or PLS regression is used, the expression for the Mahalanobis distance leverage statistic becomes

D2 5 st ~StRS!21s

h 5 st ~StRS!21s (66)

16.3 Outlier Detection During Calibration:
16.3.1 Two types of outliers can be identified during the calibration procedures. The first type of outlier is a sample that

represents an extreme composition relative to the remainder of the calibration set. These samples have very high leverage on the
regression results; that is, they are largely responsible for the determination of at least one of the regression coefficient values.
Generally, there is insufficient data in the calibration set to statistically determine the accuracy of reference values associated with
these high leverage samples. Their inclusion in the calibration may lead to erroneous estimations of similar samples if the reference
value for the high leverage sample is in error. The second type of outlier is one for which the estimated value differs from the
reference value by a statistically significant amount. Such outliers indicate either an error in the reference measurement or a failure
of the model.

16.3.2 High-leverage samples are identified based on the Mahalanobis distance statistic. leverage statistic,h. For all types of
linear calibrations described in Section 12, above, the average Mahalanobis distance leverage statistic for all of the calibration
sample spectra has a value ofk/n wherek is the number of variables in the regression (the number of wavelengths in MLR, the
number of principal components, or the number of PLS latent variables), andn is the number of calibration samples. On average,
each sample contributesk/n of the spectral variables. For samples that have a Mahalanobis distanceh > 3k/n, the sample spectrum
is contributing a significant fraction to the definition of one of the spectral variables and to the regression coefficient associated
with this variable. Samples with Mahalanobis distancesh > 3k/n should be eliminated from the calibration set in the development
of the model.
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NOTE 17—If the leverage statistic is scaled as described in(25), an f test can be employed for outlier detection.

16.3.3 If calibration spectra with Mahalanobis distancesh >3k/nare eliminated from the calibration set, and the model is rebuilt,
it is not uncommon for additional spectra with Mahalanobis distancesh >3k/n to be identified for the new model. This occurrence
is most likely if removal of samples reducesk, but can also be caused merely by scaling changes to the multivariate space induced
by changes inn. When repetitive application of the 3k/n rule continues to identify outliers, the outlier test is said to “snowball.”
If “snowballing” occurs, it may indicate some problem with the structure of the spectral data set. The variable space of the model
should be examined for unusual distributions or clusterings.

16.3.3.1 If the following sequence occurs during the development of a model, the 3k/n outlier test can be relaxed: (1) a first
model is built on an initial calibration set, (2) calibration spectra with Mahalanobis distancesh >3k/n are eliminated from the
calibration set, (3) a second model using the same number,k, variables is built on the subset of calibration spectra, and (4)
calibration spectra with Mahalanobis distancesh >3k/n are identified for the second model. The second model should be used
providing that no calibration samples have Mahalanobis distancesh greater than 0.5.

16.3.3.2 If (1) a first model is built on an initial calibration set, (2) calibration spectra with Mahalanobis distancesh >3k/n are
eliminated from the calibration set, and (3) a second model using fewer variables is built on the subset of calibration spectra, the
3k/n outlier test should not automatically be relaxed. Instead, the first model should be rebuilt using the lower number of variables
and the sequence in 16.3.3.1 should be applied to the new model.

16.3.4 A second type of outlier is one for which the estimated value y yˆ differs by a statistically significant amount from the
value from the reference method, y. Such outliers can be detected based on studentized residuals. Ifei is the difference between
the estimated value yˆ i and the reference value yi for the ith sample in the calibration set, and Dhi

2 is the Mahalanobis distance
leverage statistic for that sample, the studentized residuals for theith sample are given by:

ti 5
ei

SEC=1 2 Di
2

(67)

ti 5
ei

SEC=1 2 h
(67)

16.3.4.1 The studentized residuals should be uniformly normally distributed with common variance. The studentized residuals
value can be compared to a t distribution value forn − k (or n − k − 1 if mean centered) degrees of freedom, to determine the
probability that the error in the estimate fits the expected distribution. If not, the sample should be considered an outlier. A more
detailed discussion of studentized residuals can be found in Refs24and2526–27. Note 16—Some commercial software packages
calculate other statistical values that are related to the studentized residuals, or call the studentized residuals by another name.
Other statistics can be used to detect outliers. Studentized residuals is only an example of one type of calculation. Model developers
should attempt to verify exactly what software packages are calculating before using them for outlier detection.

16.3.5 If a sample is identified as an outlier based on studentized residuals or other similar tests, then the reference value may
be in error. When possible, the reference test should be repeated to determine a correct value for the sample (multiple tests are
recommended). If the reference value is not in error, then the large studentized residuals may indicate a basic failure in the model.
For estimation of component concentrations, there may be sufficient spectral interferences to preclude accurate estimation of the
component for this class of samples. For property estimation, some component that has a significant effect on the property may
not be detected. Removing outliers of this type without evidence of error in the reference value should be avoided whenever
possible, since these samples may provide the only indication that the model is not applicable to a certain class of materials.

16.4 Interpolation and Extrapolation of the Model During Analysis:
16.4.1 The spectra of the calibration samples define a set of variables that are used in the calibration of the multivariate model.

If, when unknown samples are analyzed, the variables calculated from the spectrum of the unknown sample lie within the range
of the variables for the calibration, the estimated value for the unknown sample is obtained by interpolation of the model. If the
variables for the unknown sample are outside the range of the variables in the calibration model, the estimate represents an
extrapolation of the model.

16.4.2 Two types of extrapolation are possible. First, the sample may contain the same components as the calibration samples,
but at concentration ranges that are outside the ranges in the calibration set. Second, the sample may contain components that were
not present in the calibration samples.

16.4.3 The Mahalanobis distance statistic leverage statistic,h, provides a useful indication of the first type of extrapolation. For
the calibration set, one sample will have a maximum Mahalanobis distance, D2 leverage statistic,hmax. This is the most extreme
sample in the calibration set, in that, it is the farthest from the center of the space defined by the spectral variables. If the
Mahalanobis distance leverage statistic for an unknown sample is greater than D2 hmax, then the estimate for the sample clearly
represents an extrapolation of the model. Provideding that outliers have been eliminated during the calibration, the distribution of
Mahalanobis distancesh should be representative of the calibration model, and D2 hmax can be used as an indication of
extrapolation.

NOTE 178—Comparison of the spectral variables for an unknown against the range of each spectral variable in the calibration model could be done,
and extrapolation of any single variable could be taken as extrapolation of the model. The use of Mahalanobis distance the leverage statistic as an indicator
of extrapolation may not detect certain spectra which are slight extrapolations on one or more spectral variables. H; however, significant extrapolation
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of any one variable will result in a high Mahalanobis distance, leverage statistic, and thus detection of extrapolation. Use of individual variablesin tests
for extrapolation is not recommended since it can unduly restrict the range of samples to which the model is applicable.

16.4.4 The second type of extrapolation of the model, namely, the presence of a new component, can be detected by comparing
an estimate of the unknown spectrum derived from the model to the measured spectrum of the unknown.

16.4.4.1 For PCR, an estimate of the spectrum of the unknown can be calculated as:

xt 5 ŝt(Lt (68)

where theŝ is the vector of scores. Similarly for PLS:

xt 5 ŝtL t (69)

where theŝ is the vector of scores. The difference between the estimated spectrum and the actual spectrum can be calculated as:

r 5 x 2 x (70)

16.4.4.2 The root mean square spectral residuals (RMSSR) for the spectrum can then be calculated as:

RMSSR5Œr tr
f (71)

NOTE 189—Some commercial software packages may calculate other statistics related to RMSSR, or may call RMSSR by some other name. The model
developer should verify what statistics are used in the software to indicate how well the model fits a spectrum being analyzed. The RMSSR is intended
as an example of how such a calculation can be done. Other similar statistics can be used.

16.4.5 The RMSSR values can be calculated for each of the calibration samples. One of the calibration samples will exhibit a
maximum RMSSR, RMSSRmax. Assuming that outliers have been removed prior to the development of the calibration model,
RMSSRmax can be used to calculate a cutoff above which RMSSR values for unknown spectra are to be taken as evidence of
extrapolation of the model.

16.4.6 In general, the RMSSRmaxcannot be used directly to set the cutoff for indicating extrapolation. For PCR and PLS models,
some of the spectral noise characteristics of the calibration spectra are always incorporated into the spectral variables. The RMSSR
values calculated for spectra used in the calibration will thus generally be lower than corresponding values calculated for spectra
of the same samples which are not used in the model development. For estimating a suitable cutoff RMSSR value to serve as an
indication of extrapolation, the following procedure is recommended.

16.4.6.1 Replicate spectral measurements (at least seven) of several (at least three) of the calibration samples should be made.
The replicate measurements should include all steps in the measurement procedure (for example, background spectrum collection,
loading of the sample, and measurement of the spectrum).

16.4.6.2 One spectrum from the set is to be used in the development of the calibration model. The RMSSR values for the spectra
used in the calibration are calculated. The RMSSRcal (i) is the value for the spectrum of Samplei.

16.4.6.3 The remaining replicate spectra are analyzed using the calibration model, and RMSSR values are calculated and
averaged for each sample. The RMSSRanal (i) is the average RMSSR for the replicate spectrum of Samplei.

16.4.6.4 The ratios of the RMSSR values from the analyses to those from the calibration are calculated and averaged, and
RMSSRmax is multiplied by the average ratio to obtain the cutoff:

RMSSRlimit 5 F(
RMSSRanal~i!
RMSSRcal~i!

G RMSSRmax (72)

16.4.6.5 If the RMSSR value for an unknown sample being analyzed exceeds RMSSRlimit , then the analysis of the sample
represents an extrapolation of the model.

16.4.7 Statistics comparable to RMSSR cannot be calculated for multiple linear regression. The MLR is thus incapable of
detecting the second type of extrapolation, namely, the presence of a new component that was not in the calibration samples. Care
should be exercised when applying MLR in systems where the calibration set used in the development of the MLR model may
not represent the total range of sample compositions that will be encountered during analyses. In such cases, MLR should be
supplemented with other techniques to determine if the sample being analyzed falls within the scope of the calibration. For
example, outlier statistics from PCR models developed on the same calibration set could be used for this purpose.

NOTE 19—For 20—For PLS models, residuals calculations such as RMSSR are not always a useful indicator of outliers. If, during calibration, a
significant percentage of the spectral(X-block) variance due to signal is not used in the model, then the model residuals used to calculate RMSSRcal may
contain significant contributions due to calibration sample component absorptions. In such cases, RMSSRlimit values calculated on the basis of such
RMSSRcal values may be too large to detect model extrapolation due to new chemical components in samples being analyzed.

The procedure described in 15.3.3 can be used to estimate the percentage of the totalX-block variance that is due to signal. If the variance included
in the model is significantly less than the signal variance, then the modeler may wish to supplement the PLS model with a PCR model built on the same
data. RMSSR statistics from the PCR model are then used for outlier detection. The number of variables used in the PCR model should be sufficient to
account for the signal variance.

16.4.8 Nearest Neighbor Distance—If the calibration sample spectra form multiple clusters within the variable space, the
spectrum of the unknown being analyzed can have aD2 less thanD2

max yet fall into a relatively unpopulated portion of the
calibration space. In this case, the sample being analyzed contains the same components as the calibration samples (since the
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sample is not a RMSSR outlier), but at combinations that are not represented in the calibration set. The spectrum of the unknown
does not belong to any of the calibration sample spectra clusters, and the results produced by application of the model may be
invalid. Under these circumstances, it is desirable to employ a Nearest Neighbor Distance test to detect unknown samples that fall
within voids in the calibration space.

16.4.8.1 Nearest Neighbor Distance, NND, measures the distance between the spectrum being analyzed,x, and individual
spectra in the calibration set,xi.

NND 5 min[~x 2 xi!
t ~XXt!21 ~x 2 xi!# (73)

16.4.8.2 For MLR, NND is calculated as

NND 5 min[~m 2 mi!
t ~MM t!21~m 2 mi!# (74)

16.4.8.3 For PCR and PLS (with orthogonal scores), NND is calculated as

NND 5 min[~s2 si!
t ~s2 si!# (75)

16.4.8.4 NND values are calculated for all the calibration sample spectra. A maximum NND value is determined. This value
represents the largest distance between calibration sample spectra.

16.4.8.5 During analysis, the NND value is calculated for the unknown sample spectrum relative to the calibration spectra. If
the calculated value is greater than the maximum NND from 16.5.3, then the minimum distance between the process sample
spectrum and the calibration spectra is greater than the largest distance between calibration sample spectra, the unknown sample
spectrum falls within a sparsely populated region of the calibration space. Such samples are referred to as Nearest Neighbor
Outliers.

17. Selection of Calibration Samples

17.1 For the development of a multivariate model, an ideal calibration sample set will:
17.1.1 Contain samples which provide examples of all chemical components which are expected to be present in the samples

which are to be analyzed using the model, thereby ensuring that analyses involve interpolation of the model;
17.1.2 Contain samples for which the range of variation in the concentrations of the chemical components exceeds the range

of variation expected for samples which are to be analyzed using the model, thereby ensuring that analyses involve interpolation
of the model;

17.1.3 Contain samples for which the concentrations of chemical components are uniformly distributed over their total range
of variation;

17.1.4 Contain a sufficient number of samples to statistically define the relationships between the spectral variables and the
component concentrations or properties to be modeled.

17.2 For simple mixtures, calibration samples can generally be prepared to meet the criteria in 17.1.1 to 17.1.4. above. For
complex mixtures, obtaining an ideal calibration set is difficult, if not impossible. The statistical tests that are used to detect outliers
guard against non-ideal calibration sets. The RMSSR values detect when samples being analyzed contain components that are not
represented in the calibration set (violation of 17.1.1). Mahalanobis distance criterion 1 above). Leverage statistics detect when
samples being analyzed are outside the concentration ranges represented in the calibration set (violation of 17.1.2). criterion 2).
Outlier detection during model development identifies components for which the range of concentrations in the calibration set is
not uniform (violation of 17.1.3). criterion 3).

17.3 The number of samples that are required to calibrate an infrared multivariate model (see 17.1.4) depends on the complexity
of the samples being analyzed. If the samples to be analyzed contain only a few components that vary in concentration, then there
will be a small number of spectral variables, and a relatively small calibration set is adequate to define the relationship between
the variables and the concentrations or properties. If a larger number of components vary in the samples to be analyzed, then a
larger number of calibration samples is required for the model development. Determining whether or not a set of calibration
samples is adequate can only be done after a model is developed and an estimate of the number of spectral variables required for
the model is made.

17.4 If a multivariate model is developed using three or fewer variables, then the calibration set should contain a minimum of
24 samples after elimination of outliers.

17.5 If a multivariate model is developed usingk (>3) variables, then the calibration set should contain a minimum of 6k spectra
after elimination of outliers. If the model is mean centered, a minimum of 6(k + 1) spectra should remain.

NOTE 201—6k is chosen to ensure at least 20 df in the model for statistical testing, and to ensure that there is an adequate number of samples to define
the relationship between the spectral variables and the concentration or property values.

17.6 For some spectroscopic analyses, it is possible to calibrate using gravimetrically or volumetrically prepared mixtures which
contain significantly fewer components than the samples which will ultimately be analyzed. For these surrogate methods, the
outlier statistics described herein are not strictly appropriate since all actual samples are by definition outliers relative to the
simplified calibrations. Thus, surrogate methods cannot strictly fulfill the requirements of this practice. Surrogate methods should,
however, follow the requirements described herein for the number and range of calibration samples.
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18. Validation of a Multivariate Model

18.1 Validation of an infrared multivariate model is accomplished by applying the model for the analysis of a set ofv validation
samples, and statistically comparing the estimates for these samples to known reference values. Validation requires thorough
testing of the model to ensure that it performs up to the expectations derived from the calibration set statistics.

18.2 Validation Sample Set:
18.2.1 For the validation of a multivariate model, an ideal validation sample set will:
18.2.1.1 Contain samples that provide examples of all chemical components which are expected to be present in the samples

which are to be analyzed using the model;
18.2.1.2 Contain samples for which the range of variation in the concentrations of the chemical components is comparable to

the range of variation expected for samples that are to be analyzed using the model:
18.2.1.3 Contain samples for which the concentrations of chemical components are uniformly distributed over their total range

of variation; and
18.2.1.4 Contain a sufficient number of samples to statistically test the relationships between the spectral variables and the

component concentrations or properties that were modeled.
18.2.2 For simple mixtures, validation samples can generally be prepared to meet the criteria in 18.2.1.1-18.2.1.4. For complex

mixtures, obtaining an ideal validation set is difficult if not impossible.
18.2.3 The number of samples needed to validate an infrared multivariate model depends on the complexity of the model. Only

samples whose analyses are found to be interpolations of the model should be used in the validation procedure. If five or fewer
spectral variables are used in the model, then a minimum of 20 interpolation samples is recommended. Ifk > 5 spectral variables
are used in the model, then a minimum of 4k interpolation samples should be used in the validation. In addition, the validation
samples should:

18.2.3.1 Span the range of concentrations or property values for which the model was developed; that is, the span and the
standard deviation of the range of concentrations or property values for the validation samples should be at least 95 % of the span
and the standard deviation of the range of concentrations or property values in the model, and the concentration or property values
for the validation samples should be distributed as uniformly as possible across the range; and

18.2.3.2 Span the range of spectral variables for which the model was developed; that is, if the range of a spectral variable in
the calibration model is froma to b, and the standard deviation of the spectral variable isc, then the spectral variables estimated
for the validation samples should cover at least 95 % of the range froma to b, and should be distributed as uniformly as possible
across the range such that the standard deviation in the spectral variables estimated for the validation samples will be at least 95 %
of c.

18.2.4 Determination of whether a validation set is adequate will generally require that the set be analyzed so that the spectral
variables for the set can be determined. Samples whose analyses are extrapolations of the model should not be included in the
validation set. If the validation set does not meet the criteria in 18.2.3.1 and 18.2.3.2, additional validation samples should be taken.

18.3 Validation Spectra Measurement and Analysis—Spectra of validation samples should be collected using exactly the same
procedures as were used to collect spectra of the calibration samples. Reference values for the validation samples should be
obtained using the same reference method as was used for the calibration samples. Spectra should be analyzed using the
multivariate model to produce estimates of the component concentrations or properties, and the statistics described in Sections 18
and 19 should be calculated.

18.4 Validation Error:
18.4.1 Ifv (a vector of dimensionsv by one) are the estimates obtained by analysis of the spectra of thev validation samples,

andv are the corresponding values measured by the reference method, then the validation error,e is given by:

e5 v 2 v (76)

18.4.2 If multiple reference values are available for some of the validation samples, then the average of the individual reference
measurements can be used inv, and the variance removed by calculating the averages should be calculated using Eq 52.

18.5 Variance of the Validation Error—The variance of the error of the validation measurements is calculated as:

VARv 5 etRe1 savg
2 5 (

i 5 1

v

(
j 5 1

ri

~vij 2 vi!
2 (77)

wheres2
avg is zero andR is an identity matrix if individual reference measurements are used inv.

18.6 Standard Error of Validation:
18.6.1 The standard error of validation (SEV) is given by:

SEV5ŒVARv

dv
5 !(

i 5 1

v

(
j 5 1

ri

~vij 2 vi!
2

(
i 5 1

v

ri

(78)

dv is the total number of reference values available for allv validation samples. SEV is the standard deviation in the differences
between reference and IR estimated values for samples in the validation set. The standard error of validation is sometimes referred
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to as a standard error of prediction. A bias corrected version of this statistic has also been defined as the standard error of
performance. To avoid confusion between two terms that are both abbreviated SEP, the use of SEV is preferred in these practices.

18.6.2 Studentized residuals testing can be applied to the estimates of the validation set to detect possible errors in the reference
values.

18.7 Validation Bias—The average bias for the estimation of the validation set, ev̄, is calculated as:
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whereri is 1 if individual reference values were used, or is the number of reference values that were averaged for theith validation
sample if averages are used.dv is the total number of reference values used in the calculation.

18.8 Standard Deviation of Validation Errors—The standard deviation of the validation errors, SDV, is calculated as
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2 1 savg
2

dv 2 1 5 !(
i 5 1

v

(
j 5 1

ri
@~vij 2 vi! 2 ēv#
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whereri is 1 ands2
avg is 0 if individual reference measurements are used in calculatingŷ.

18.9 Significance of Validation Bias:
18.9.1 At test is used to determine if the validation estimates show a statistically significant bias. At value is calculated as:

t 5
ēv =dv

SDV (81)

t 5
| ēv| =dv

SDV (81)

The t value is compared to criticalt values from Table A1.3 fordv degrees of freedom.

18.9.2 If thet value is less than the criticalt value, then analyses based on the multivariate model are expected to give essentially
the same average result as measurements conducted by the reference method, provided that the analysis represents an interpolation
of the model.

18.9.3 If thet value calculated is greater than the tabulatedt value, there is a 95 % probability that the estimate from the
multivariate model will not give the same average results as the reference method. Validity of the multivariate model is then
suspect. Further investigation of the model is required to resolve the probable bias that is indicated.

18.10 Validation of Agreement Between Model and Reference Method:
18.10.1 The confidence limits on the estimates for the validation samples should be calculated, and a determination should be

made as to whether the individual reference values for the validation samples lie within the range from yˆ − t3 SEC3 =1 1 D2

to ŷ + t 3 SEC3 =1 1 D2 . If more than 5 % of the reference values fall outside this range, then the confidence limit estimates
based on SEC are questionable, and further testing is required to demonstrate the agreement between the model and the reference
method.

18.10.2 An alternative method can be used to demonstrate agreement between the model and the reference method. This
alternative method is preferred when the precision of the reference method is not constant across the range of reference values used
in the calibration, but can be applied even when the precision is constant. If R(yi) is the reproducibility of the reference method
at level yi, then the percentage of reference values for which:

ŷi 2 R ~ ŷi! , yij , ŷi 1 R ~ ŷi! (82)

is calculated. If 95 % or more of the reference values fall within this interval, then estimates produced with the multivariate IR
model agree with those produced by the reference method as well as a second laboratory repeating the reference measurement
would agree.

18.11 For multivariate analyses employing surrogate calibrations, a procedure similar to that described here for validation is
often performed for the purpose of verifying that the instrument is properly calibrated. This instrument qualification procedure
typically involves the analysis of gravimetrically or volumetrically prepared mixtures that contain significantly fewer components
than the samples which will ultimately be analyzed. There is no a priori relationship between the standard error that is calculated
from this procedure and the error expected during application of the model to actual samples. To avoid confusion, it is
recommended that the procedure be referred to as a spectrometer/spectrophotometer qualification, not validation. Additionally, it
is recommended that the standard error calculated from this procedure be referred to as a Standard Error of Qualification
(SEQsurrogate), not as a Standard Error of Validation.
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19. Precision of Infrared Estimated Values

19.1 The precision of values estimated from an infrared multivariate model is calculated from repeated spectral measurements.
The number of samples for which repeat measurements is made should be at least equal to the number of variables used in the
model, and never less than three. The samples used for repeat spectral measurements should span at least 95 % of the range of
concentration or property values used in the model. When possible, samples should be selected to ensure that some variation on
each spectral variable is exhibited among the samples. At least six spectra should be collected for each sample. The spectra should
be analyzed and values estimated. The average estimate for each sample should be calculated, and the standard deviation among
the estimates should be obtained. Ifyij is the estimate for thejth spectrum ofri total spectra for theith sample, then the average
estimate for this sample is:

ŷi 5
(

j 5 1

ri
ŷij

ri
(83)

19.1.1 The standard deviation of the replicate estimates is calculated as:
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19.2 Ax2 value is calculated using the standard deviation values calculated in Eq 81:
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and tz is the number of samples for which replicate measurements were made.

19.3 Thex2 value calculated in Eq 85 is compared with a critical value from a chi-squared table (see Table A1.4) fort − 1
degrees of freedom. If the calculatedx2 value is less than the critical value, then all of the variances for the replicated
measurements belong to the same population, and the average variance calculated in Eq 87 can be used as a measure of the
repeatability of the infrared measurement. The infrared analysis is expected to have a repeatability on the order of t3 =2 s̄ .

19.4 If the calculatedx2 value is greater than the critical chi-squared value, then the repeatability of the infrared estimate may
vary with sample composition. In this case, the infrared analysis is expected to have a repeatability that is no worse than t3 =2
3 smax, wheresmax is the maximumsi value for the replicate measurements.

20. Major Sources of Calibration and Analysis Error

20.1 General Sources of Error in Spectral Measurements—Table 1 list some possible sources of error that can occur during the
spectral measurement and potential solutions for these problems.

20.2 Sampling Related Errors—Table 2 lists errors arising from sampling problems and possible solutions to these problems
(268).

20.3 Sources of Calibration Error—Table 3 lists sources of error in the development of the calibration model and possible ways
to minimize these errors.

20.4 Analysis Errors—Table 4 lists factors that can contribute to errors in the estimated values for unknown samples and
possible ways to minimize such errors.

21. Wavelength (Frequency) Sensitivity of a Multivariate Model

21.1 Wavelength stability of spectrometers is often a critical factor in the performance of a multivariate calibration. The
estimation of the sensitivity of a multivariate model to changes in the wavelength scale provides a useful parameter against which
instrument performance can be judged. The wavelength sensitivity of a model can be roughly estimated by the following
procedure:

21.1.1 Identify the samples in the calibration set that represent the extreme values of each of the spectral variables;
21.1.2 If the spectra are collected with a digital resolution ofD, then shift each spectrum by +D and by −D.
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21.1.3 Analyze the shifted spectra, using the calibration model, and calculate the change in the estimates between the +D and
−D spectra, and

21.1.4 Identify the spectrum showing the largest change upon shifting. If the estimates areŷ+D and ŷ−D respectively, then the
wavelength (frequency) sensitivity of the model can be estimated as:

0.13 D 3 SEC/~ ŷ1D 2 ŷ2D! (89)

21.2 The value calculated in Eq 89 is the wavelength shift that, in the worst case (the most sensitive spectrum) will produce
a change in the estimate that is on the order of 5 % of the standard error of calibration.

NOTE 212—The wavelength sensitivity of a model calculated in Section 12 will depend on a variety of factors, including the optical and digital
resolution of the instrument relative to the bandwidths of the sample being measured. Calculation of a wavelength sensitivity is done to provide a useful
diagnostic for analyses conducted on the same type of analyzer. The wavelength stability of the analyzer can be compared to the value in Eq 83 as a means
of monitoring the performance of the analyzer. Because the value in Eq 83 is dependent on specific instrumental parameters, it should generally not be
used to compare the suitability of analyzers for a particular application.

22. Calibration Transfer and Instrument Standardization

22.1 Calibration transfer refers to a process by which a calibration model is developed using data from one spectrometer, is
possibly modified, and is applied for the analysis of spectra collected on a second spectrometer. The calibration transfer may
require that spectral data for a common sample or samples be collected on both instruments, and that some transfer function be
developed and applied to the spectra or the model. A complete description of calibration transfer methodologies is beyond the scope
of these practices.

22.2 Instrument standardization is a process where the spectra collected on a second instrument are mathematically adjusted in
an attempt to match the spectra that would have been collected on the instrument on which the calibration was developed.

TABLE 1 General Sources of Error in Spectral Measurements

Source of Spectral Error Possible Solution

Poor instrument performance Conduct instrument performance tests
regularly to monitor changes in instrument
performance
Analyze QC (Quality Check) sample to
determine if instrument performance
changes affect analysis

Absorbance exceeds linear
response range

Determine linear response range for
instrument
Choose pathlengths to keep bands of
interest in range

Optical polarization effects Use depolarizing elements
Variable sample presentation Improve sample presentation methods

Investigate commercially available sample
presentation equipment

Optical component
contamination

Inspect windows, etc., for contamination
and clean as necessary

TABLE 2 Sampling Related Errors

Sampling Error Possible Solution

Nonhomogeneity of
sample

Improve mixing guidelines or grinding procedures,
or both
For solids, average replicate repacks
For solids, rotate sample cups
Measure multiple aliquots from large sample
volume

Physical variation in solid
samples

Improved sample mixing during sample
preparation
Diffuse light before it strikes the sample using a
light diffusing plate
Pulverize sample to particle size of less than 40
µm (NIR) or 2 µm (MIR)
Average multiple repacks of each sample
Rotate sample or average five sample
measurements

Chemical variation in Freeze-dry sample for storage and measurement
sample with time Immediate data collection and analysis following

sample preparation
Identification of kinetics of chemical change and
avoidance of rapidly changing spectral regions

Bubbles in liquid
samples

Check pressure requirements for single-phase
sample
Check flow properties of cell for sample
introduction

E 1655 – 9900

23



Instrument standardization can also involve actual adjustment of the instrument hardware to achieve such agreement. Instrument
standardization is one means of achieving calibration transfer.

22.3 Calibration transfer or instrument standardization may be required when maintenance is done to an instrument if such
maintenance produces a change in the spectral response large enough to change the values estimated by the calibration model. The
calibration can be thought of as being transferred from one instrument (before maintenance) to a second instrument (after
maintenance).

22.4 When a calibration transfer or instrument standardization procedure is developed, it is necessary to demonstrate that the
performance of the model is not degraded during the transfer. To demonstrate that a calibration transfer or instrument
standardization procedure preserves the performance of a model, it is necessary to validate the model as described in Section 18.
Each calibration transfer or instrument standardization procedure must be tested at least once by performing a full validation of
the transferred model. Once the success of a particular calibration transfer or instrument standardization procedure has been
demonstrated for a particular type of instrument, then quality control samples can be used to evaluate additional transfers and
standardizations.

23. Calibration Quality Control

23.1 When an IR, multivariate, analysis is used to estimate component concentrations or properties, or both, it is desirable to
periodically test the analysis (instrument and model) to ensure that the performance of the analysis is unchanged. To perform such
tests, it is sometimes necessary to choose one or more quality control samples that will be used for this purpose. A complete
discussion of methods used to validate the performance of an IR analyzer is beyond the scope of these practices. The user is

TABLE 3 Sources of Calibration Error

Source of Calibration Error Possible Solution

Spectroscopy insensitive to
component/property being
modeled

Try alternative spectral region
Redefine requirement in terms of
measurable components/properties

Inadequate sampling of
population in calibration set

Review criteria for calibration set selection
Use sample selection techniques for
selecting calibration set (27)

Inadequate sampling of
population in calibration set

Review criteria for calibration set selection
Use sample selection techniques for
selecting calibration set (29)

Outlier samples within
calibration set

Employ outlier detection algorithms
Eliminate spectral outliers or find additional
examples
Eliminate reference data outliers or
remeasure

Reference data errors Analyze blind replicates to test precision
Correct procedural errors, improve analytical
procedures
Check and recalibrate reagents, equipment,
etc. (28)
Check and recalibrate reagents, equipment,
etc. (30)

Non-Beer’s Law relationship
(Nonlinearity due to
component interactions)

Develop multiple calibrations over smaller
concentration ranges

(Nonlinearity due to instrument
response)

Check dynamic range of instrument, Try
shorter pathlengths

Sensitivity to baseline shifts,
etc.

Preprocessing of data to minimize effects of
baseline

Transcription errors Two people cross-check or one person
triple- check all handscribed data

TABLE 4 Analysis Errors

Sources of Analysis Error Possible Solution

Poor calibration model Validate calibration model on representative
validation set

Poor instrument performance Check performance of instrument/model with
QC samples
Diagnose instrument problems with instrument
performance tests

Poor calibration transfer Validate calibration transfer and instrument
standardization procedures
Select calibrations with lowest noise, wave
length shift sensitivity, and offset sensitivity

Sample outside model range Employ outlier statistics to test that sample is
interpolation of model
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referred to Practice D 6122 which discusses validation of IR analyzers for hydrocarbon analysis, and to Refs2830 and 2931that
which discuss methods that have gained acceptance within the agricultural community.

23.2 Control samples (materials for which reference values have been measured using the reference method) can be employed
to monitor the performance of the analysis, provided that the analyses of the control samples involve interpolation of the model.
The IR estimated values for the control samples are compared to the reference values using established ASTM procedures or
alternative statistical tests(28, 30)(30, 32). These tests will generally require that the IR estimated values and the reference values
agree to within the confidence intervals defined in 15.3. Since the confidence limits are based on SEC, and since SEC is often
dominated by the error in the reference measurement, these procedures may not provide the most sensitive indication of changes
in the performance of the analysis. Alternatively, quality control (QC) samples can be employed.

23.3 Quality control (QC) samples are used to monitor changes in the performance of an analysis (instrument and model), after
the analysis has been validated. Quality control materials should be identified at the time the model is developed based on the
following criteria:

23.3.1 QC materials must be chemically and physically compatible with materials being analyzed, so as to not introduce
contaminants into the samples being analyzed, and not to cause safety problems.

23.3.2 QC materials must be chemically stable when stored and sampled. If mixtures are used, the composition of the mixture
must be known and methods for reproducing the mixture must be established.

23.3.3 The spectra of the QC material must be compatible with the model. Absorption bands for the QC material should not
exceed the linear response range of the instrument in regions used in the calibration model. The spectra of the QC material should
be as similar as possible to spectra of the calibration samples. However, analysis of the QC sample can be an extrapolation of the
model.

23.4 Spectral data on the QC material is collected during the same time period that spectra of the calibration and validation
samples are collected. The QC material should be treated in exactly the same fashion as other samples so that variations in the
spectra are representative of the variations which will occur during the collection of spectra for unknowns. Separate samples should
be used for each measurement. A minimum of 20 spectra should be collected.

NOTE 223—If the QC spectra are collected over too short a time interval, the variation seen in the spectra will be smaller than that typically encountered
in application of the model to unknowns, and QC limits set based on these spectra will be excessively tight.

23.4.1 The spectra for the QC material are analyzed using the calibration model, and the average value, yq̄c is calculated:

ȳqc 5
(

i 5 1

q
ŷi

q (90)

whereq is the number of spectra collected for the QC material. The standard deviation in the estimated values,sqc, is calculated
as

sqc 5Œ(
i 5 1

q

~ ŷi 2 ȳqc!
2

q 2 1 (91)

23.4.1.1 Dixon’s test can be applied to the individual estimated values to identify outliers in the calculations in Eq 90 and Eq
91.

23.5 The QC material is analyzed periodically when the analysis (instrument and model) is in use for analyzing unknowns. The
QC material is treated exactly the same as an unknown sample being estimated. The estimated value for the QC material is
compared to yqc. The estimated value is expected to be within the range from yqc − t 3 sqc to yqc + t 3 sqc 95 % of the time, where
t is the studentizedt value for q − 1 df and the 95 % confidence level.

23.5.1 If the analysis of the QC material is an interpolation of the model, thensqc should be consistent with the repeatability
of the IR analysis as defined in Section 19. If the analysis of the QC material is an extrapolation of the model, thensqc may be
somewhat higher than thesi calculated in Section 19. However, since the control limits are still based on the repeatability of the
spectral measurement and do not depend on the reference method, they are expected generally to be tighter than those derived from
control samples.

23.6 The use of bias and slope adjustments to improve calibration or prediction statistics for IR multivariate models is generally
not recommended. Prediction errors requiring continued bias and slope corrections indicate drift in reference method or changes
in the instrument photometric or wavelength stability. If a calibration model fails during the QC monitoring step, the performance
of the instrument should be evaluated using the appropriate ASTM instrument performance test, and any instrument problem that
is identified should be corrected. If control samples are used, checks should be performed on the reference method to ensure that
reference values are correct. If instrument maintenance is performed, calibration transfer or instrument standardization procedures,
or both, should be followed to reestablish the calibration.

24. Model Updating

24.1 It may sometimes be desirable to add additional calibration samples to an existing model to increase the range of
applicability of the model. The new calibration samples may contain the same components as the original calibration samples but
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at more extreme concentrations, or new components not present in the original calibration samples. The new calibration samples
may fill voids in the original calibration space.

24.1.1 When a model is updated, the matrixX containing the original calibration spectra is augmented with the spectra of the
additional calibration samples, and the vectory containing the property or composition values for the calibration samples is
augmented with the values for the additional calibration samples.

24.1.2 Outlier procedures described in 16.3 must be applied to updated models in the same way they are applied to new models.
Thus, if additional samples are being added to increase the span of the calibration, it may be necessary to add several samples of
each new type to avoid the added samples being rejected as outliers.

24.2 When a calibration model is updated, it must be revalidated. The requirements for validation samples for an updated model
are the same as for the original model (see Section 18). The spectra used to validate the original model can be used to validate
the updated model, but they must be supplemented to cover an adequate range as described in 18.2. The percentage of new samples
added to the validation set for the updated model must be at least as large as the percentage of new samples added to the calibration
set.

25. Multivariate Calibration Questionnaire

25.1 The following questionnaire is designed to assist the user in determining if a multivariate calibration conforms to the
requirements set forth in these practices.

25.1.1 If all of the following questions in 25.1.3-25.1.7 are answered in the affirmative, then the calibration can be said to have
been developed and validated according to E 1655.

25.1.2 If any of the following questions in 25.1.3-25.1.7 are answered in the negative, then the calibration can not be said to
have been developed and validated according to E 1655. If the calibration method is MLR, PCR or PLS-1, the calibration may
be said to have been developed using mathematical techniques described in E 1655. ASTM methods that reference E 1655 should
not claim calibration or validation via E 1655 unless all of the following questions would have been answered in the affirmative
for the procedures followed during the collection of round robin data on which the method is based.

25.1.3 The following questions apply to the mathematical methodology used in the calibration:
25.1.3.1 Was the mathematical technique used in the calibration MLR, PCR or PLS-1? (Sections 12 and 13)
25.1.3.2 Did the calibration methodology include the capability of detecting high leverage outliers using a statistic such as

Mahalanobis Distance, D2 the leverage statistic,h? (16.2)
25.1.3.3 Did the analysis methodology include the capability to detect outliers via a statistic such as those based on spectral

residuals? (16.4.4-16.4.7)
25.1.4 The following questions apply to the calibration model wheren is the number of samples in the calibration set, andk

is the number of variables (MLR wavelengths, Principal Components, or PLS latent variables) in the model.
25.1.4.1 Wasn>6k if the model is not mean centered, orn > 6(k + 1) if the model is mean centered? (17.5)
25.1.4.2 Was the number of samples in the calibration set at least 24? (17.4)
25.1.5 The following questions apply to the validation of the model:
25.1.5.1 Was a separate set of validation samples used to test the calibration? (18.2)
25.1.5.2 Were validation spectra which were outliers based on either leverage (Mahalanobis Distance) or spectral residuals

excluded from the validation set? (18.2.3)
25.1.5.3 Was the number of validation samples greater than 4k if the model was not mean centered, or greater than 4(k + 1) if

the model was mean centered? (18.2.3)
25.1.5.4 Was the number of validation samples at least 20? (18.2.3)
25.1.5.5 Did the validation samples span 95 % of the range of the calibration samples? (18.2.3.1)
25.1.5.6 If SEC is the Standard Error of Calibration, do 95 % of the results for the validation samples fall within

6 t·SEC·t·SEC·=1 1 D2=1 1 h of the reference values wheret is t is the Studentizedt value forn−k degrees of freedom
(n−k−1 for mean centered models), and D2 is h is the Mahalanobis Distance? leverage statistic? (18.10.1)

25.1.5.7 Do the validation results show a statistically insignificant bias? (18.9.1)
25.1.6 Was the precision of the model determined usingt$ k $ 3 test samples andr $ 6 replicate measurements per sample?

(Section 19)
25.1.7 If the calibration and analysis methodology includes preprocessing or postprocessing, are these calculations performed

automatically? (Sections 11 and 14)

26. Keywords

26.1 infrared analysis; molecular spectroscopy; multivariate analysis; quantitative analysis
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ANNEXES

(Mandatory Information)

A1. STATISTICAL TREATMENT

A1.1 Dixon’s Test Functions for Rejection of Outliers

A1.1.1 This test provides a simple and highly efficient method for determining whether all data obtained came from the same
population (with unknown mean and standard deviation) and if one or more of the data points are suspect and should be rejected.

A1.1.2 In applying this test the number of determinations (N) are tabulated in increasing order of magnitude and designated as
X1, X2, X3, . . . Xn.

A1.1.3 The values at the extremes of the tabulationX1 andXn are tested in turn in accordance with the number of values in the
tabulation.

A1.2 Select the proper expression shown as follows in accordance with the number (N) of the values in the tabulation and the
upper or lower limit to be tested:

Outliers Under
Test

X1 Xn

For N =
3 to 7 r 5

~X2 2 X1!

~Xn 2 X1! r 5
~Xn 2 X~n 2 1!!

~Xn 2 X1!

8 to 10

r 5
~X2 2 X1!

~X ~n 2 1! 2 X1!

r 5
~Xn 2 X~n 2 1!!

~Xn 2 X2!

11 to 13

r 5
~X3 2 X1!

~X ~n 2 1! 2 X1!

r 5
~Xn 2 X~n 2 2!!

~Xn 2 X1!

14 to 30 r 5
~X3 2 X1!

~X ~n 2 2! 2 X1!
r 5

~Xn 2 X~n 2 2!!

~Xn 2 X3!

A1.3 Substitute the appropriate values in the equation selected, calculate “r” and compare the value obtained to ther value
in Table A1.1 for the appropriate sample size (N).

A1.4 Reject the value if the calculated “r”is greater than the tabulated value.

TABLE A1.1 Critical Values for Rejection of a Discordant
Measurement (31)

Statistic N a = 0.05 a = 0.01

r10 3 0.941 0.988
4 0.765 0.889
5 0.642 0.780
6 0.560 0.698
7 0.507 0.637

r11 8 0.554 0.683
9 0.512 0.635

10 0.477 0.597
r21 11 0.576 0.679

12 0.546 0.642
13 0.521 0.615

r22 14 0.546 0.641
15 0.525 0.616
16 0.507 0.595
17 0.490 0.577
18 0.475 0.561
19 0.462 0.547
20 0.450 0.535
21 0.440 0.524
22 0.430 0.514
23 0.421 0.505
24 0.413 0.497
25 0.406 0.489
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A1.5 Historical standard deviation as used in Fig. A1.1 means the standard deviation of a test method. It is established by
averaging the standard deviations of many samples tested by many laboratories. The samples should cover the range of usefulness
of the test method and should include materials of diverse composition if the latter has any effect on the reproducibility of results.

A1.6 Sample Standard Deviationis merely the standard deviation computed from the data obtained by a group of laboratories
testing the same sample using the same test method. Obviously it may be much lower or much higher than the historical standard
deviation of the test method. Therefore thesamplestandard deviation may be less reliable (because of these random fluctuations)
than thehistorical standard deviation in determining the confidence limits of an average of results of several determinations.

A1.6.1 If the historical standard deviation is unknown, the sample standard deviation may be substituted for it in using the
nomograph and then multiplying the value found on the 95 % CL scale by the factor given as follows for the number of results

TABLE A1.2 F-Distribution: Degrees of Freedom for Numerator

1 2 3 4 5 6 7 8 9 10 12 15 20

1 161 200 216 225 230 234 237 239 241 242 244 246 248
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4
3 10.1 9.55 9.28 9.12 9.01 8.94 8.87 8.85 8.81 8.79 8.74 8.70 8.66
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80
5 6.61 5.79 5.41 5.19 5.06 4.95 4.88 4.81 4.77 4.74 4.68 4.62 4.56
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44
8 5.32 4.46 4.07 3.54 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94

10 4.96 4.10 3.70 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.55
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12
` 3.84 3.00 2.50 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57

TABLE A1.3 Table of t at 5 % Probability Level

Degrees of Freedom t

1 12.706
2 4.303
3 3.182
4 2.776
5 2.571
6 2.447
7 2.365
8 2.306
9 2.262

10 2.228
11 2.201
12 2.179
13 2.160
14 2.145
15 2.131
16 2.120
17 2.110
18 2.101
19 2.093
20 2.086

TABLE A1.4 Critical x2 Values

NOTE 1— x2 values for (t − 1) degrees of freedom and 95 % confidence
level.

(t − 1) x2 (t − 1) x2 (t − 1) x2 (t − 1) x2

1 3.84 6 12.59 11 19.68 16 26.30
2 5.99 7 14.07 12 21.03 17 27.59
3 7.81 8 15.51 13 22.36 18 28.87
4 9.49 9 16.92 14 23.68 19 30.14
5 11.07 10 18.31 15 25.00 20 31.41
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in the average to obtain reliable 95 % confidence limits.
No. of Results 3 4 5 6 7
Factor 2.20 1.62 1.42 1.31 1.25
No. of Results 8 10 15 25 35
Factor 1.21 1.15 1.09 1.05 1.04

A1.7 To Find the Number of Determinations Needed in an Average to Give Specific Confidence Limits—Lay a straightedge
across the nomograph so that its edge passes through the point on the right scale corresponding to the standard deviation for the
test and through the desired point on the confidence limit scale. Read the number of determinations required from the left scale.

A1.8 To Find the Confidence Limits of an Average—Using the number of determinations in the average, lay a straightedge from

FIG. A1.1 Nomograph for Number of Determinations to Obtain Desired Confidence Limits
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this point on the left scale through the point on the right scale corresponding to the standard deviation. Read the confidence limits
from the intermediate scale.

A2. STATISTICAL TESTS COMMON TO NIRS METHODS (18, 19) (SUPPLEMENTAL INFORMATION)

A2.1 Common Symbols

A2.1.1 Throughout these practices, lowercase letters are used to represent scalar quantities. Lower casebold letters are used
to represent vectors, and upper caseBOLD letters are used to represent matrices. Italicized letters are used to represent dimensions
of vectors and matrices. Italicized subscripts are sample, wavelength indices. For example:

yi = Scalar reference value for theith sample.
ŷi = The estimated y-value forith sample based on a regression model.
ȳ = The mean y value for all samples.
y = Vector of reference values forn samples.
xi = Spectral vector of lengthf for the ith sample.
X = Matrix of spectra, then rows of X contain the spectra of lengthf for n samples.
n = Number of samples used in a calibration model.
f = Number of frequencies or wavelengths used in a calibration model.
k = Number of variables used in a calibration model.
r = Number of replicate measurements on a sample.
( = Capital sigma represents summation of all values within parentheses.
R2 = Coefficient of multiple determination (R-squared).
R = The simple correlation coefficient for a linear regression for any set of data points; this is equal to the square root of the

R-squared value.
b0 = The bias or y-intercept value for any calibration function fit to x, y data. For bias-corrected standard error calculations

the bias is equal to the difference between the average reference analytical values and the IR predicted values.

A2.2 Statistical Terms

A2.2.1 Sum of squares for regression:

SSreg 5 (
i 5 1

n

~ ŷi 2 ȳ! 2 (A2.1)

A2.2.2 Sum of squares for residual:

SSres5 (
i 5 1

n

~ ŷi 2 yi!
2 (A2.2)

A2.2.3 Mean square for regression:

MSreg 5
(

i 5 1

n

~ ŷi 2 ȳ! 2

k 2 1 (A2.3)

A2.2.4 Mean square for residual:

MSreg 5
(

i 5 1

n

~ ŷi 2 yi!
2

n 2 k 2 1 (A2.4)

A2.2.5 Total sum of squares:

SStot 5 (
i 5 1

n

~yi 2 ȳ! 2 (A2.5)

A2.3 Test Statistics

A2.3.1 The statistics discussed as follows have most commonly been applied to MLR models. The statistics assume that the data
has been mean centered in developing the model. Similar statistics can be derived for PCR and PLS models, and for models that
are not mean centered.

A2.3.2 Coeffıcient of Multiple Determination
The coefficient of multiple determination is also termed the R-squared statistic, or total explained variation. This statistic allows

determination of the amount of variation in the data that is adequately modeled by the calibration equation as a total fraction of
1.0. Thus R2 = 1.00 indicates the calibration equation models 100 % of the variation within the data. An R2 = 0.50 indicates that
50 % of the variation in the differences between the actual values for the data points and the predicted or estimated values for these
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points are explained by the calibration equation (mathematical model), and 50 % is not explained. Squared values approaching 1.0
are attempted when developing calibrations. R-squared can be estimated using a simple method as outlined as follows.

A2.3.2.1 The R2 is determined using the equation:

R 2 5 1 2
(

i 5 1

n

~yi 2 ŷi!/~n 2 k 2 1!

(
i 5 1

n

~yi 2 ȳ! 2/~n 2 1!

5
SSreg

SStot
(A2.6)

A2.3.2.2 If sR is the standard deviation of the errors in the reference method measurement, andsY is the standard deviation
in the reference values used in the calibration (a measure of the range spanned by the reference data), then R2 values that exceed
1 − sR

2/sY
2 are probable indications of overfitting of the data.

A2.3.3 F-Test Statistic for the Regression:
A2.3.3.1 This statistic is also termed F for regression, or t-squared. F increases as the equation begins to model, or fit, more of

the variation within the data. With R-squared held constant, the F value increases as the number of samples increases. As the
number wavelengths used within the regression equation decreases, F tends to increase. Deleting an unimportant wavelength from
an equation will cause the F for regression to increase.

A2.3.3.2 The F-statistic can also be useful in recognizing suspected outliers within a calibration sample set; if the F-value
decreases when a sample is deleted, the sample was not an outlier. This situation is the result of the sample not affecting the overall
fit of the calibration line to the data while at the same time decreasing the number of sample (n). Conversely, if deleting a single
sample increases the overall F for regression, the sample is considered a suspected outlier. F is defined as the mean square for
regression divided by the mean square for residual (see statistical terms in A1.2).

A2.3.3.3 The F for the regression is determined by the equation:

F 5
R2~n 2 k 2 1!

~1 2 R2!k
5

MSreg

MSres
(A2.7)

A2.3.4 Student’s t-Value (For a Regression):
A2.3.4.1 This statistic is equivalent to the F statistic in the determination of the correlation betweenX andy data. It can be used

to determine whether there is a true correlation between an IR estimated value and the primary chemical analysis for that sample.
It is used to test the hypothesis that the correlation really exists and has not happened only by chance. A large t value (generally
greater than ten) indicates a real (statistically significant) correlation betweenX andy.

A2.3.4.2 The t for regression is calculated as:

t 5
R=n 2 k 2 1

=1 2 R2
(A2.8)

A2.3.5 Partial F or t-Squared Test for a Regression Coeffıcient:
A2.3.5.1 This test indicates whether the addition of a particular wavelength (independent variable) and its corresponding

regression coefficient (multiplier) adds any significant improvement to an equation’s ability to model the data (including the
remaining unexplained variation). Small F or t values indicate no real improvement is given by adding the wavelength into the
equation.

A2.3.5.2 If several wavelengths (variables) have low t or F values (less than 10 or 100, respectively), it may be necessary to
delete each of the suspect wavelengths, singly or in combination, to determine which wavelengths are the most critical for
predicting constituent values. In the case where an important wavelength is masked by intercorrelation with another wavelength,
a sharp increase in the partial F will occur when an unimportant wavelength is deleted and where there is no longer high
intercorrelation between the variables still within the regression equation.

A2.3.5.3 The t-statistic is sometimes referred to as the ratio of the actual regression coefficient for a particular wavelength to
the standard deviation of that coefficient. The partial F value described is equal to this t value squared; note that the t value
calculated this way retains the sign of the coefficient, whereas all F values are positive.

A2.3.5.4 The partial F for a regression coefficient is calculated as:

SSres~all variables except one! 2 SSres~all variables!
MSres~all variables! (A2.9)

A2.3.6 The Bias Corrected Standard Error:
A2.3.6.1 Bias corrected standard error measurements allow the characterization of the variance attributable to random

unexplained error within. The bias value, b0, is calculated as the mean difference between reference and IR estimated values:

b0 5
1
n (

i 5 1

n

~yi 2 ŷi! (A2.10)

A2.3.6.2 The bias corrected standard error is calculated as:
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SEc 5Œ(
i 5 1

n

~yi 2 ŷi! 2 b0!
2

n 2 1 (A2.11)

Similar bias corrected values can be calculated for SECV.
A2.3.7 Standard Deviation of Repeatability (SDR):
A2.3.7.1 SDR is also referred to as the standard deviation of difference (SDD) or standard error of difference for replicate

measurements (SD replicates). The SDR is calculated to allow accurate estimation of the variation in an analytical method due to
both sampling, sample presentation, and analysis errors. The SDR can be used as a measure of precision for the reference analytical
method.

A2.3.7.2 The SDR is calculated using:

SDR5Œ(
j 5 1

r

~yj 2 ȳj!
2

r 2 1 (A2.12)

A2.3.8 Offset Sensitivity:
A2.3.8.1 Also termed systematic variation or index of systematic variation (ISV), offset sensitivity is equal to the sum of all

regression coefficients. The larger the value, the greater is the sensitivity to particle size differences between samples or to the
isotropic (mirror-like) scattering properties of samples. The offset sensitivity is used to compare two or more equations for their
“blindness” to offset variation between samples. Equations with large offset sensitivities indicate that particle size variations within
a data set may cause wide variations in the analytical result.

A2.3.8.2 The ISV is calculated as:

ISV 5 (
i 5 1

k

bi (A2.13)

A2.3.9 Random Variation Sensitivity:
A2.3.9.1 This statistic is also termed the index of random variation (IRV). Random variation sensitivity is calculated as the sum

of the squares of the values of all regression coefficients. The larger the value, the greater the sensitivity to factors such as: poor
wavelength precision, temperature variations within samples and instrument, and electronic noise. The higher the value, the less
likely the equation can be transferred successfully to other instruments.

A2.3.9.2 The IRV is calculated using the expression:

IRV 5 (
i 5 1

k

=bi
2 (A2.14)

A2.3.10 Standard Error of the Laboratory (SEL) for Reference Chemical Methods:
A2.3.10.1 The SEL can be determined by using one or more samples properly aliquoted and analyzed in replicate by one or

more laboratories. The average analytical value for the replicates on a single sample is determined as:

ȳi 5 (
j 5 1

r

yij (A2.15)

A2.3.10.2 SEL is given by:

SEL5 Œ(
i 5 1

n

(
j 5 1

ni

~yij 2 ȳi!
2

n~ri 2 1!
(A2.16)

where thei index represents different samples and thej index different measurements on the same sample.

A2.3.10.3 This can apply whether the replicates were performed in a single laboratory or whether a collaborative study was
undertaken at multiple laboratories. Additional techniques for planning collaborative tests can be found in Ref20. Some care must
be taken in applying Eq. 2.3.16. If all of the analytical results are from a single analyst in a single laboratory, then the repeatability
of the analysis is defined as
=2 t(n (r − 1), 95 %) SEL, where t(n (r − 1), 95 %) is the Student’st value for the 95 % confidence level andn (r − 1) degrees
of freedom. If the analytical results are from multiple analysts and laboratories, the same calculation yields the reproducibility of
the analysis. For many analytical tests, SEL may vary with the magnitude of y. SEL values calculated for samples having different
ȳi can be compared by an F-test to determine if the SEL values show a statistically significant variation as a function of yī.
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