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Standard Practice for

Near Infrared Qualitative Analysis *

This standard is issued under the fixed designation E 1790; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilonej indicates an editorial change since the last revision or reapproval.

1. Scope where the returning radiation exits the same portion of the
1.1 This practice covers the use of near-infrared (NIR)SUrface of the material as the illuminating radiation entered.

spectroscopy for the qualitative analysis of liquids and solids. 3-2-2 training sample (otherwise called a “reference
The practice is written under the assumption that most NIFf@mple” or “standard”), n—a quantity of material of known
qualitative analyses will be performed with instruments de-COMPosition or properties, or both, presented to an instrument
signed specifically for this region and equipped with comput-for measurement in order to fmq relat|onsh|ps_ between the
erized data handling algorithms. In principle, however, themeéasurements and the composition or properties, or both, of
practice also applies to work with liquid samples usingthe sample. _ _ _ . _ .
instruments designed for operation over the ultraviolet (UV), 3-2.2.1Discussior—This term is typically used in conjunc-
visible, and mid-infrared (IR) regions if suitable data handlingt'o_” with computerized methods for ascertaining the relation-
capabilities are available. Many Fourier Transform InfraredShiPs.
(FTIR) (normally considered mid-IR instruments) have NIR Training samples for quantitative analysis (also called “calibration
capability, or at least extended-range beamsplitters that allow samples,” as in Practices E 1655) have different requirements than
operation to 1.2 pm; this practice also applies to data from training samples used for qualitative analysis.
these instruments. _—

1.2 This standard does not purport to address all of the4' Significance and Use
safety concerns, if any, associated with its use. It is the 4.1 NIR spectroscopy is a widely used technique for quan-
responsibility of the user of this standard to establish appro-itative analysis, and it is also becoming more widely used for
priate safety and health practices and determine the app“cathe identification of organic materials, that is, qualitative

bility of regulatory limitations prior to use. analysis. In general, however, the concept of qualitative analy-
sis as used in the NIR spectral region differs from that used in
2. Referenced Documents the mid-IR spectral region in that NIR qualitative analysis
2.1 ASTM Standards: refers to the process of automated comparison of the spectra of

E 131 Terminology Relating to Molecular Spectroscopy unknown materials to the spectra of known materials in order
E 1252 Practice for General Techniques for Obtaining Into identify the unknown. This approach constitutes a library

frared Spectra for Qualitative Infrared Analysis search method in which each user generates his own library.
E 1655 Practices for Infrared, Multivariate, Quantitative 4.2 Historically, NIR spectroscopy as practiced with classi-
Analysig cal UV-VIS-NIR instruments using methods similar to those
_ described in Practice E 1252 was not considered to be a strong
3. Terminology technique for qualitative analysis. Although the positions and

3.1 Definitions—For definitions of general terms and sym- intensities of absorption bands in specific wavelength ranges
bols pertaining to NIR spectroscopy and statistical computawere used to confirm the presence of certain functional groups,
tions, refer to Terminology E 131. the spectra were not considered to be specific enough to allow

3.2 Definitions of Terms Specific to This Standard: unequivocal identification of unknown materials. A few impor-

3.2.1 interactance n—the phenomenon whereby radiant tant libraries of NIR spectra were developed for qualitative
energy entering the surface of a material is scattered by theurposes, but the lack of suitable data handling facilities
material back to the surface, but at a different portion of thdimited the scope of qualitative analysis severely. Furthermore,
surface. earlier work was limited almost entirely to liquid samples.

3.2.1.1 Discussion—This differs from diffuse reflectance, 4.3 Currently, the mid-IR procedure of deducing the struc-

ture of an unknown material via analysis of the locations,

* This practice is under the jurisdiction of ASTM Committee E-13 on Molecular ,Strengths’ and pOSItIODaI shifts of individual absorption bands
Spectroscopy and is the direct responsibility of Subcommittee E13.11 on ChemdS generally not used in the NIR.
metrics. 4.4 With the development of specialized NIR instruments

Current edition approved Sept. 10, 2000. Published November 2000. Originall)and mathematical algorithms for treating the data. it became
published as E 1790 — 96. Last previous edition E 1790 — 96. . . . . '
2 Annual Book of ASTM Standardéol 03.06. possible to obtain a wealth of information from NIR spectra
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that had hitherto gone unused. While the mathematical algo- 5.1.3 Measurements may be made via transmission, reflec-
rithms described in this practice can be applied to spectral datéon, or any other optical setup suitable for collecting NIR
in any region, this practice describes their application to thespectra. In practice, only transmission and diffuse reflection
NIR. have been in common use.

4.5 The application of NIR spectroscopy to qualitative 5.1.4 Determination of the relationships between absor-
analysis in the manner described is relatively new, and procesances at different wavelengths for a set of materials and
dures for this application are still evolving. The application of consolidation of these relationships into a set of criteria for
chemometric methods to spectroscopy has limitations, and thidentifying those materials requires the use of computerized
limitations are not all defined yet since the techniques arg¢earning algorithms. These algorithms can also take into
relatively new. One area of concern to some scientists is thaccount extraneous variations such as are found, for example,
effect of low-level contaminants. Any analytical methodology when measurements are made on powdered solids.
has its detection limits, and NIR is no different in this regard, 5.1.5 Instrumentation is commercially available for making
but neither would we expect it to be any worse. Since thesuitable measurements in the NIR spectral region. Manufac-
relatively broad character of NIR bands makes it unlikely thaturer's instructions should be followed to ensure correct
a contaminant would not overlap any of the measured wavepperation, optimum accuracy, and safety before collecting data.
lengths, the question would only be one of degree: whether a 5.1 6 NIR spectroscopy has, as one of its paradigms, that
given amount of contaminant could be detected. The user musitie or no sample preparation be required. In conformance
be aware of the prObable contaminants he is liable to run |nt9‘”th that paradigm, Samp|e preparation steps in other spectro-
and account for the possibility of this occurring, perhaps byscopic technologies are replaced with sample presentation
including deliberately contaminated samples in the training seinethodologies in NIR analysis. The most common sample
presentation methods are the following:

I . . 5.1.6.1 Diffuse Reflectanee-Solid materials are ground into
5.1 NIR qgahtatwe analysis is conducted.by comparison 0]]:powder (or used as-is, if already in suitably fine powder form)
NIR absorption spectra of unknown materials with those ofind packed into a cup, which allows the surface of the sample

known referenge materials. Sincg the a}bsqrption bands of_maqg be illuminated and the reflected radiant power measured.
substances of interest are less distinctive in the NIR than in the 5.1.6.2 “Transflectance’—Clear or scattering liquids are

mid-IR spectral region, the analytical capability of the tech-placed in a cup containing a transparent window with a

nigue relies heavily on 'Fhe accuracy of th? absarption m(':'adiffusely reflecting material behind the sample. Any radiant
surements and the relationship of the relative absorbances at

different wavelengths. Materials to be identified are measure§nergy passing through the sample is reflected difiusely by the

acking material, so the net measurement is just like the diffuse
by a NIR spectrometer, and the spectral data thus generated a8 o ctance measurement of powdered solids.

saved in an auxiliary computer attached to the spectrometer 51637 ission_Liquid lid laced i I
proper. One of the several algorithms described in Section 6is.~"" ransmissIoR-LIquIds or solids are placed in cells
th two transparent windows and measured by transmission.

then applied to the data in order to generate classificatio” . o o
criteria, which can then be applied to data from unknown 5.1.6.4 Fiber Probes—llluminating and collecting fibers are

samples in order to classify (or identify) them as being thebro.ught in parallel to the sample. Avariety of optical com‘igu—
same as one of the previously seen materials. Good chemic tions are used to couplg thga radlant'energy from the fibers to
laboratory practice should be followed to help ensure reprot€ Sample and back again, in an optical *head” of some sort.
ducible results for each material. The preparation and preseﬂ'_ransmlttance, reflectance,_and interactance have_ aI_I been used
tation of samples to the instrument should be consistent withifit the sample end of the fiber to couple the radiation to the

a library, and unknowns should be treated the same way th&gmple. Intera_ctance measurements are sometim(_as made by the
the training samples were. simple expedient of pressing the end of a fiber bundle

5.1.1 The technique is applicable to liquids, solids, andcontaining mixed illuminating and receiving fibers against the
gases. For analysis of gases, multipath vapor cells capable SRMPI€ surface. o
achieving up to 100-metre path lengths may be required. 5.2 To connect the mathematics Wlt_h the spectroscopy used,
Spectra of vapors and gases may be sensitive to the totfl® Procedure can be generally described as follows:
sample pressure, and this has to be determined for each type of(1) The spectral measurements define some multidimen-
sample. sional space. The axes in that space are the absorbances at the
5.1.2 Unknown samples to be identified may be prescreene‘@rious wavelengths, or some mathematical transformation
based on criteria other than their NIR spectra (for examplethereof.
visual inspection). The training samples (that is, the “knowns” (2) Groups of spectra for the same material define some
used to teach the algorithm what different materials look like)region in the multidimensional space.
may also be similarly prescreened and grouped into libraries of (3) The analysis involves determining which region the
similar materials (for example, liquids and solids). The un-unknown falls in.
known is then compared with only those materials in the 5.2.1 Problems with this type of analysis include the fol-
appropriate library. The prescreening will help reduce thdowing: insufficient separation of the groups in the multidimen-
chance of false identification, although care must be taken thaional space to allow for classification (indicating insufficient
an unknown material not in the library is not identified as adifferences among the spectra of the materials involved),
similar material that is in the library. inadequate representation of measurement variability within

5. General
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groups during training (indicating an insufficient number ortion (see, for example, Ref4-5)2 a useful starting point but
variety of training samples), or poor detection limits for minor far from exhaustive list); most of the algorithms used for NIR
contaminants. qualitative analysis are relatively straightforward applications
5.2.2 To optimize the methods against these potential protef these methods.
lem areas, generation of a method occurs in three stages. In the6.1.1 Implementations of these algorithms are available in
first, or training stage, known samples are presented to thgtandard generic statistical software packages (for example,
instrument. The data collected are then presented to one of tl®AS, BMDP, and SPSS). In addition, the manufacturers of
various algorithms and are thus used to “train” the algorithm tanodern NIR spectrometers include implementations of these
recognize the various different materials. algorithms in their proprietary software packages that run on
5.2.3 In the second, or validation stage, the ability of thethe auxiliary computers supplied with the spectrometers; this
algorithm to correctly recognize materials not in the trainingapproach has the advantage that the software matches the
set of samples is tested. format and nature of the data generated by the spectrometer. In
5.2.4 In the third, or use stage, unknown samples areither case, the details of the algorithms and their implemen-
presented to the instrument, which then compares the data sations are usually transparent to the user.
obtained to the data from the known samples and decides 6.2 Calculation of Mahalanobis distances has been de-
whether the data from the unknown agrees with the data frorscribed(5-9) in the literature directly for application to NIR
any of the known materials. The unknown material is classifiedpectra. The Mahalanobis distance is a way of measuring
as whichever material gives the closest agreement to the datahether a given sample falls within a given region of multi-
5.2.5 Optionally, the algorithm may provide for the case indimensional space, since a small distance indicates that the
which the data from the unknown does not agree with that fronsample is “close to” the center of the region, and thus within it.
any of the knowns sufficiently well to permit identification, and The training samples define a region of space so that a
refuse to identify the unknown sample. multidimensional ellipsoid includes a specified fraction of
5.3 Samples to be identified during the use stage must be ilhese samples; the distance from the center of the region to the
the same phase and physical condition as the known sampleflipsoid surface (that is, the equivalent of a “diameter”)
were during the training stage. defines the Mahalanobis distance. The Mahalanobis distance is
5.3.1 Liquids may be run neat or in solution. In either casegalculated from the matrix equation:
the optical pathlength of the sample cell should be fixed, be the

2 _ Zrint NTa
same for all liquids to be compared with a given unknown, and Dy = O = XM 0, = x(D) @)
be specified as part of the method. While an algorithm may bewhere:
trained on data incorporating variations in these characteristicsD; = Mahalanobis distance of the unknown sample from
greater accuracy will be achieved when extraneous variations the center of the ellipsoid for th& member (class
are reduced. The unknown, of course, should also be run in a of samples) of the library,
cell under the same conditions as the training samples. If &, = the vector of absorption readings for the unknown
solution is used, the amount of dilution should also be sample to be identified, taken at different wave-
specified. B lengths,

5.3.2 Some solids may be run as-is if they have one or morex (i) = the average of the readings for several different
suitably flat surfaces; others may need to be ground. If solid samples of the type of material representing the i
samples are ground, the same procedure should be used for all member of the library, and
materials in a given library, and that procedure should beM = matrix inverse of the pooled within-group variance-
specified as part of the method. covariance matrix (described in Appendix X1; see

5.3.3 The unknowns must also be treated in the same Refs(3, 7)for more details on this and Refs-5) for
manner as the training samples. It is particularly important that more general discussions of the mathematical back-
if the samples must be ground, the unknown samples should be ground).
ground to the same partide size as the known Samp|e3 included6.2.1 The confidence interval for the Mahalanobis distance
in the library. has been shown to be distributed such that D has anF

distribution withk andn-k-1 df (9), wherep=(n-k-1)/nk, n =
6. Algorithms Used number of spectra andk = number of wavelengths (or

6.1 This section describes some of the computerized algdreguencies) used. _

rithms that have been found effective for qualitative analysis in 6-2.2 To train the algorithm, the user should take many
the NIR Spectra] region_ This section is maimy for reference_spectra of each standard to introduce the inherent Varlablllty of
Descriptions of multivariate methods of statistical data analysigh® material into the training data. These readings then define
tend to be inherently abstract mathematically and resistant t&'€ region of multidimensional space that is characteristic of
reduction to words. A number of books exist in both thethat group of material; it is important to ensure that the training
statistical and chemometric literature that describe methods g@mples do in fact include all of the natural variability of the
multivariate analysis at varying levels of mathematical abstracthaterial.

2 The boldface numbers in parentheses refer to the list of references at the end of
this practice.
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6.2.3 A special case of this approach deals with the analysigyhere:
of clear (non-scattering) liquids. In this case, pure materialsD, distance along theth principal component axis
have no inherent variability, so the size of the group, which is from the mean of the scores for that group,
determined by the variability of the samples (and which score sample score for theh principal component,
becomes effectively zero for pure, non-scattering liquids), group mean of the group’s scores for thi iprincipal
collapses to a single point in multidimensional space, that is, component, and
the “diameter” collapses to practically zero. In this case, theS standard deviation of the scores of theprincipal
region of acceptance for unknowns is so small that instrument component for the corresponding group.
noise, or other minor and otherwise unimportant variations of Note that even though the principal components are calcu-
the measurement conditions, can cause valid samples to appéaied from the entire dataset, the standard deviations, as well as
outside the region defined for that material. the mean values, are calculated from each group individually.

6.2.3.1 There are two ways to deal with this situation. Thef the distance for all principal components is smaller than

first way is to replace the computation of Mahalanobis dis-SOMe cutoff value, then the sample is classified as part of the
oup. Whitfield, et a(9) treat the criteria for determining the

tances between the unknown samples and known materia$ ) | . S
with the computation of Euclidean distances. This is accomeutoff value in detail. Inspection of Whitfield's tables reveals
plished readily by replacing the matrix inverse of the pooledat g rulef-of-thU{nb value of 3 may be used for a large enough
within-group variance-covariance matrix by a unit matrix (one"UM€r o samples.

in which all elements are zero except for the elements on thg,s'?’l'2 Onz lpop;ulalr variatioln .Of this approach is called
main diagonal, which are unity). imple Model of Class Analogies (SIMCAJ15, 16) In

. . .. SIMCA, each group is resolved into its own principal compo-
i 6.'2't3.2thA sgctond Eﬁp r.ofllCh _|I_sh_to |rr:trodkl)1ce random V?”ﬁbghents. Steps 1 through 4 are performed as if each group was the
ity into the data artncially. IS has been accompiishe library. Multiple groups are tested by using multiple libraries of
successfully by creating several copies of the data and th

) . . incipal components.
adding a small random number to every absorption value in th X
. 6.4 Correlation
expanded data set. A careful compromise must be drawn

bet Il val f added noi hich will 1 6.4.1 The correlation coefficieril 7) has long been used as
etween small values ol added noise (which will leave eaci& measure of similarity between two sets of numbers. It is also
group still approximating a point too closely) and too large

: ) 4 _ ossible to use the correlation coefficient between two spectra
values, which will cause the data to have too high an equivale

. ; : - s a way of classifying samples.
noise and mask differences between different materials. 6.4.2 The correlation coefficientr] is generally defined as

6.3 Principal component analysis (PCA) has been recogme ratio of explained variance to total variance. It is applied to
nized as one method for compressing the information fromyajitative NIR analysis by calculating the correlation coeffi-

many wavelengths into a few independent compon€hiS,  cient between a known and unknown spectrum. (Eq 3) de-
10-14) Besides compressing the data, the principal composcripes this procedure:

nents tend to segregate the different sources of variability in a

set of spectra. By adding a group distance measurement, PCA SXY,

can be used to perform qualitative NIR analysis. r = % 3)
6.3.1 The basic steps to performing a PCA-based distance SRS Y2

measurement are as follows: 1 1

6.3.1.1 Step 1A training set, or library of samples, is
formed that represents the groups (materials) to be distinwhere:

guished and so identified. Each group should be represented by = number of wavelengths in the spectrum,
several samples. X; = absorbance of the unknown sample at ttik wave-
length, and
6.3.1.2 Step 2-The spectra of the samples or groups are _ ' , .
resolved into principal components. The number of principal ¥~ %t?]sg(i;]bance of the known’s spectrum at ttewave-

components necessary for adequate representation of the .
samples is determined by some measurement of the residual(Eq 3) assumes that borhandY have been previously mean
variation in the library spectra. centered (that is, the mean value of the data at each wavelength

6.3.1.3 Step 3—For each principal component of the PCA- has been computed and subtracted from each spectrum’s value

o at the corresponding wavelength).
space group, the mean values and standard deviations are P 9 gth)

calculated from the sample scores for each member of thaqtglGAB When the unknown and known spectra are identical,
f

roun. Because the princinal components are orthoaonal. ea r differ only by a constant multiplicative factor (normally due
group. u princip P 9 ’ phenomena such as pathlength or particle size), (Eq 3) will

standard deviation (distance) is in a.n orthogonal direction. yield an answer of 1. When the spectra difiewyill decrease
6.3.1.4Step 4-In order to classify future samples, the fom 1. An unknown sample is typically classified by calcu-
cross-products of the NIR spectrum of each sample with the,ting its correlation coefficient with all of the spectra in a
principal components obtained from the training library arejjprary. The library spectrum with the correlation coefficient
computed. The distance measure from any group is calculateqysest to 1 is identified as being the most similar to the sample.
using the following equation: 6.4.4 The advantage of the correlation technique is that only
D; = (scorg — group)/S; (20  one known sample is necessary in order to characterize a
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group. This makes it quite suitable for identification. However,agreement between two spectra or transformations thereof
it is more difficult to build a group of multiple samples and (19,20,21) By letting X stand for the multidimensional vector
perform qualification by correlation. Group distances are not aepresenting one (for example, the spectrum of the “unknown”)
linear function of the correlation coefficient and lettingY stand for the multidimensional vector represent-
6.4.5 Caution should be exercised in using the correlatiomg the other spectrum (for example, the “library spectrum”),
on untreated NIR spectra. The broad bands of many NIRhen the equation
spectra and baseline difference can lead to misidentification.
Spectra that differ by only one or two band positions (that is, cos(0) = XY IX| I¥] @)
homologous compounds) are typically difficult to classify by results in a value fob that varies from zero (for a completely
the correlation technique. The best results are obtained wheandom relationship) to unity (for a perfect match). Since the
the spectra are pretreated to maximize the difference betwee&mlue unity for cosinel) corresponds to a value 6fof zero,
the groups to be classified. The commonly used methods tgne way to consider this approach is as a measure of multidi-
pretreat the data are using the derivative of a spectrum angensional distance in polar coordinates, with the radius vector
limiting the wavelength range. The derivative approach im-gnored. This approach is particularly applicable to the com-
proves the contrast between spectra of similar compoundsy,rison of powdered solids, since the radius vector in this case
Limiting the wavelength range can restrict the comparison tq.,yespnonds to the repack variations of the spectra, which is
those spectral features that correspond to key function ften (although not always) ignored usefully when making

groups. .
6.4.6 The distribution of the correlation coefficient is aspectral comparisons.

rather complicated function (see Réf), p. 105) of the K d

measured value, but a graphical presentation is available (sge eyworads

Ref (18), p. 71). 7.1 molecular spectroscopy; near-infrared; qualitative
6.5 The use of multidimensional direction cosines has als@nalysis

been used effectively as a method of determining the degree of

APPENDIX
(Nonmandatory Information)

X1. CALCULATION OF MAHALANOBIS DISTANCES

X1.1 To computeM, the matrix inverse of the pooled o _
within-group variance-covariance matrix, requires the matrix X () = 2 %y (1) (X1.1)

inversion of the matrix formed as described below to be X1.4.2 The mean absorbance for the data from a given
performed. Matrix inversion routines can be found in virtually mate.rialll at each wavelength is subtracted from each gbsor-
any bQOk addressmg computational statistics or mathematlcbsance reading for that material at that wavelength. Wexuse
and will not be described here. ‘

indicate the mean-corrected absorbance:

X1.2 To form the matrix that is to be inverted, consider a X i (1) = X (1) = % (i) (X1.2)
dataset consisting of data frgodifferent materials, samples of
which were measured &twvavelengths (or frequencies). Use
to index over the different materials afjdo index over the
different wavelengths. Where convenient, also usedc to
index over the different wavelengths. For each material, wé
have spectra fromn; samples, with each spectrum, thus
consisting of readings at tHevavelengths; usmto index over
the n, samples corresponding to each of thenaterials. The
total number of spectra in the set of datanjsvhich =2, n;.

X1.4.3 The element in the™ row andc™ column of the
matrix V (call this V,;) is computed by adding together the
corresponding contribution from each of thenaterials (these
ontributions will be described in X1.4.4):

Vie =2 Vi (i) (X1.3)

X1.4.4 The contributionsy,.(i), are computed as the sum
over all the spectra corresponding to tm& material, of the
product of the mean-corrected absorbances at'thand c™"

X1.3 Use x.,.(i) to represent the individual absorbance
X1 ’ wavelengths:

values for each reading of a given sampi®f materiali at a

given wavelength; usex(i) to represent the mean absorbance _ R
for this i"" material. Vie () = 2% (e (1) X e (D)1 = ) (X1.4)

X1.4 The matrix to be inverted is of dimensibby f. Each X1.4.5 The matrixM is calculated by taking the inverse of
term of the matrix is formed from the following procedure; the matrixV.

X1.4.1 The mean absorban(i}(i), of each material at Note X1.1—The Mahalanobis distance defined above will be a factor
each wavelength is computed: of n-p larger than that defined in 16.2 of Practice E 1655. The matrix
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above is essentiallXX"/(n—p) in the notation of E 1655, which is the Note X1.2—If f > n, the matrix V cannot be directly inverted.
inverse ofV, will be a factor ofn—p larger than (X¥*. The scaling is  Mathematics similar to that described in Practice E 1655 can be used to
done here to ensure that the metric used for classification is not overlgstimate an inverse.

sensitive to the size of the library,
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