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Standard Guide for
Background Subtraction Techniques in Auger Electron and
X-ray Photoelectron Spectroscopy *

This standard is issued under the fixed designation E 995; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilonej indicates an editorial change since the last revision or reapproval.

1. Scope tion of surfaces may be grouped into two categories—

1.1 The purpose of this guide is to familiarize the analystPhotoemission of electrons and the production of Auger
with the principal background subtraction techniques presenti§/ectrons from the decay of the resultant core hole states. The
in use together with the nature of their application to dataSource of the background signal observed in the XPS spectrum
acquisition and manipulation. includes a contrlbutlon from inelastic scattering processes, a_lnd

1.2 This guide is intended to apply to background subtracf_or non-monochromatic X-ray sources, Bremsstrahlung radia-
tion in electron, X-ray, and ion-excited Auger electron spec-ion- _ . _
troscopy (AES), and X-ray photoelectron spectroscopy (XPS). 4-2 Various background subtraction techniques have been

1.3 This standard does not purport to address all of the€mployed to diminish or remove the influence of these back-
safety concerns, if any, associated with its use. It is th@round electrons from the shape and intensity of Auger
responsibility of the user of this standard to establish appro-€lectron and photoelectron features. Relevance to a particular
priate Safety and health practices and determine the app”caanalytlcal teChanue (AES or XPS) will be indicated in the title

bility of regulatory limitations prior to use. of the procedure. .
4.3 Implementation of any of the various background tech-
2. Referenced Documents nigues that are described in this guide may depend on available
2.1 ASTM Standards: instrumentation as well as the method of acquisition of the
E 673 Terminology Relating to Surface Analysis original signal. These subtraction methods fall into two general
E 996 Practice for Reporting Data in Auger Electron Spec-categories: 1) real-time background subtraction; ar) post-
troscopy and X-ray Photoelectron Spectroséopy acquisition background subtraction.
3. Terminology 5. Significance and Use
3.1 Definitions—For definitions of terms used in this guide, 5.1 Background subtraction techniques in AES were origi-
refer to Terminology E 673. nally employed as a method of enhancement of weak Auger
signals to distinguish them from the slowly varying back-
4. Summary of Guide ground of secondary and backscattered electrons. Interest in
4.1 Relevance to AES and XPS obtaining useful information from the Auger peak line shape,

4.1.1 AES—The production of Auger electron excitation by concern for greater quantitative accuracy from Auger spectra,
bombardment of surfaces with electron beams is also acconnd improvements in data gathering techniques, have led to the
panied by emission of secondary and backscattered electrorf#evelopment of various background subtraction techniques.
These electrons range in energy from a maximum (near 10 eV 5.2 Slmllarly, the use of background subtraction techniques
for true secondaries), through the Auger spectrum, to a secorld XPS has evolved mainly from the interest in the determina-
maximum for backscattered electrons at the energy of th&on of chemical states (binding energy values), greater quan-
incident electron beam. An additional source of background iditative accuracy from the XPS spectra, and improvements in
associated with Auger electrons, which are inelastically scatdata acquisition. Post-acquisition background subtraction is
tered while traveling through the specimen. Auger electroormally applied to XPS data.
excitation may also occur by ion bombardment of surfaces. 5.3 The procedures outlined are popular in XPS and AES.

4.1.2 XPS—The production of electrons from X-ray excita- General reviews of background subtraction techniques have
been publishedl and 2 )3
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6. Apparatus commonly used is that of the cubic/quadratic differential as

6.1 Most AES and XPS instruments either already use, oP"Posed by Savitzky and Golgg4) _
may be modified to use, one or more of the techniques that are /-2 X-ray Satellite Subtractior(15) (XPS)—In this method
described. a fixed satellite structure associated with any given channel

6.2 Background subtraction techniques may require a digitd"t€NSity such a.a K X-ray line so that, starting at low kinetic

acquisition and digital data handling capability or the attachEN€rdies, intensity is removed from higher kinetic energy
ment of analog instrumentation to existing equipment. channels at the spacing of thex,, KB, ete. satell!te positions
from the Ko, , main peak to remove their contribution to the

spectrum. This subtraction proceeds through the spectrum and

7. Common Procedures g ! ;
. . , removes the satellite peaks associated with the photoelectron
7.1 Linear Background Subtraction (AES and XPSj this peaks. It may also erroneously remove an equivalent intensity

method, two arbitrarily chosen points in the spectrum arg, ., any Auger peaks present in the spectrum.
selected and joined by a straight li(®). This straight line is

used to approximate the true background and is subtracte®l Less Common Procedures

from the original spectrum. F(_)r Auger spectra, the two points g 1 peconvolution (AES and XP8)6-19)—Deconvolution
may be chosen either on the high-energy side of the Auger peafay pe used to reduce the effects due to inelastic scattering of
to result in an extrapolated linear background or such that thgjectrons traveling through the specimen. This background is
peak is positioned between the two points. For XPS spectra, th@ moved by deconvoluting the spectrum with elastically back-
two points are generally chosen such that the peak is positioneg attered electrons (set at the energy of the main peak) and its
between the two points. The intensity values at the choseggsociated loss spectrum. The intensity of the loss spectrum,
points may be the values at those energies or the average ov@iative to that of the backscattered primary, is sometimes
a defined number of channels or energy interval. adjusted to optimize the background subtraction. Deconvolu-
7.2 Integral Background Subtraction (AES and XPS)his  tion is usually accomplished using Fourier transforms or
method, proposed by Shirle{8), employs a mathematical iterative techniques.
algorithm to approximate the inelastic scattering of electrons as g 2 Linearized Secondary Electron Cascades (AEB)this
they escape from the solid. The algorithm is based on thenethod, proposed by Sickaf(®0 and 21)the logarithm of the
assumption that the background is proportional to the area Qfjectron energy distribution is plotted as a function of the
the peak above the background at higher kinetic energy. Thiggarithm of the electron energy. Such plots consist of linear
basic method has been modified to optimize the requiredegments corresponding to either surface or subsurface sources
iterations(4), to provide for a sloping inelastic backgrou(®),  of Auger electrons and are appropriate for removing the

to provide for a background based upon the shape of the lossackground formed by the low energy cascade electrons.
spectrum from an elastically backscattered elec{)nand to

include a band gap for insulatofs). 9. Rarely Used Procedures
7.3 Inelastic Electron Scattering Correction (AES and 9.1 Secondary Electron Analog (AE&?2 and 23)—In this
XPS)—This method, proposed by Tougaa(d), uses an method, a signal that is an electronic analog of the secondary
algorithm which is based on a description of the inelasticelectron cascade is combined with the analyzer signal output so
scattering processes as the electrons leave the specimen. Taeto neutralize the secondary emission function. It is particu-
scattering cross section which enters in the algorithm is takerarly useful in retarding field systems in which low-energy
either from a simple universal formula which is approximatelysecondary emission is prominent.
valid for some solids, or is determined from the energy 9.2 Dynamic Background Subtraction (DBS) (AE34 and
spectrum of a backscattered primary electron beam by anoth@g)—Dynamic background subtraction may be used either in
algorithm(8). Alternatively, the parameters used in the univer-real time or post acquisition. It involves multiple differentiation
sal formula may also be permitted to vary in an algorithm so asf an Auger spectrum to effect background removal, followed
to produce an estimate of the backgro@yl This background by an appropriate number of iterations to reestablish a
subtraction method also gives direct information on the inbackground-free Auger spectrum. The amount of background
depth concentration profil€l0 and 11) removal depends on the number of derivatives taken, although
7.4 Signal Differentiation, dN(E)/dE or dEN(E)/dE (AES) two are usually sufficient. In real-time analysis, a first deriva-
(12 and 13)}-Signal differentiation is among the earliest tive of the Auger electron energy distribution obtained using a
methods employed to remove the background from an Augephase-sensitive detector is fed into an analog integrator,
spectrum and to enhance the Auger features. It may bthereby obtaining the Auger electron energy distribution with
employed in real time or in post acquisition. In real time,the background removed.
differentiation is usually accomplished by superposition of a 9.3 Tailored Modulation Techniques (TMT) (AE&6 and
small (1 to 6-eV peak-to-peak) sinusoidal modulation on the27)}—This is a real-time method of background subtraction that
analyzer used to obtain the Auger spectrum. The output signaises special modulation waveforms tailored to the analyzer and
is then processed by a lock-in amplifier and displayed as thphase sensitive detection to measure the Auger signalNThe
derivative of the original energy distributids (E) or EN (E).  (E) distribution, EN (E) distribution, or areas under Auger
In post-acquisition background subtraction, the already acpeaks over specified energy ranges may be obtained directly
quiredN (E) or EN (E) signal may be mathematically differ- using these techniques.
entiated by digital or other methods. The digital method 9.4 Spline Technique (AES and XR8B)—In this method,
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a structureless background is calculated from a measurezlippress the slowly varying background continuum, while the
spectrum using a smoothing spline algorithm. This backgroundnore rapidly varying Auger peaks remain unaffected.
is then subtracted from the original spectrum.

9.5 Digital Filtration (AES) (29 and 30)—In a method 10. Keywords
borrowed from energy-dispersive X-ray spectroscopy, a “top- 10.1 Auger electron spectroscopy; surface analysis; X-ray
hat” digital frequency filter is applied to an Auger spectrum tophotoelectron spectroscopy; background subtraction

APPENDIX
(Nonmandatory Information)

X1. COMPARISONS AVAILABLE IN THE LITERATURE

X1.1 At the present time, the most popular methods fortioned here have been offered in the literature. In the case of 7.1
AES are analog and digital differentiation (see 7.4). Populaand 7.2, the effect on the peak area calculated in terms of the
methods for XPS include the straight line (see 7.1), modifiecchoice of end points is examing€d and 5). Further compari-
Shirley (see 7.2), or variations of the Tougaard method (sesons of these procedures and that in 7.2 on a number of
7.3). Comparisons of background subtraction methods menmaterials are also offerg@1-38)
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