

# Standard Guide for Development of Standard Data Records for Computerization of Thermal Transmission Test Data for Thermal Insulation<sup>1</sup>

This standard is issued under the fixed designation C 1558; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon ( $\epsilon$ ) indicates an editorial change since the last revision or reapproval.

### 1. Scope

1.1 This guide provides recommended formats for the recording of thermal transmission test data for thermal insulation and similar materials for inclusion in computerized material property databases. From this information, the database designer should be able to construct the database dictionary preparatory for development of a database schema.

1.2 This guide is applicable to thermal transmission test data obtained from standard test methods that cover planar and radial specimen geometries.

1.3 This guide is not intended for thermal transmission data obtained for thermal insulation assemblies or systems (that is, heat transmission coefficients for walls, roofs, ceilings, and floors).

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

### 2. Referenced Documents

2.1 ASTM Standards:

- C 168 Terminology Relating to Thermal Insulating Materials  $^2$
- C 177 Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus<sup>2</sup>
- C 335 Test Method for Steady-State Heat Transfer Properties of Horizontal Pipe Insulation<sup>2</sup>
- C 518 Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus<sup>2</sup>
- C 745 Test Method for Heat Flux Through Evacuated Insulations Using a Guarded Flat Plate Boiloff Calorimeter<sup>2</sup>
- C 1033 Test Method for Steady-State Heat Transfer Properties of Pipe Insulation Installed Vertically<sup>2</sup>

C 1044 Practice for Using a Guarded-Hot-Plate Apparatus

or Thin-Heater Apparatus in the Single-Sided Mode<sup>2</sup>

- C 1045 Practice for Calculating Thermal Transmission Properties from Steady-State Heat Flux Measurements<sup>2</sup>
- C 1114 Test Method for Steady-State Thermal Transmission Properties by Means of the Thin-Heater Apparatus<sup>2</sup>
- C 1363 Test Method for the Thermal Performance of Building Assemblies by Means of a Hot Box Apparatus<sup>2</sup>
- 2.2 ISO Standards:
- ISO 8301 Thermal Insulation, Determination of Steady-State Thermal Resistance and Related Properties—Heat Flow Meter Apparatus<sup>3</sup>
- ISO 8302 Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties— Guarded Hot Plate Apparatus<sup>3</sup>
- ISO 8497 Thermal Insulation—Determination of Steady-State Thermal Transmission Properties of Thermal Insulation for Circular Pipes<sup>3</sup>
- ISO 8990 Thermal Insulation—Determination of Steady-State Thermal Transmission Properties—Calibrated and Guarded Hot Box<sup>3</sup>

### 3. Terminology

3.1 *Definitions*—For definitions of some terms applicable to this guide, see Terminology C 168

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *class*, *n*—a major material class, for example, ceramic, insulation, polymer, etc.

3.2.2 *data element*, *n*—an individual piece of information used to describe a material or to record test results; for example, a variable name or a test parameter.

3.2.2.1 Discussion—The term is synonymous with data item.

3.2.3 *essential field*, *n*—a field in a record that must be completed in order to make the record meaningful in accordance with the pertinent guidelines or standard.

3.2.3.1 *Discussion*—Fields are considered essential if required to make a comparison of property data from different sources meaningful. A comparison of data from different sources may still be possible if essential information is omitted, but the value of the comparison may be greatly reduced.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

 $<sup>^{\</sup>rm 1}$  This guide is under the jurisdiction of ASTM Committee C16 on Thermal Insulation and is the direct responsibility of Subcommittee C16.30 on Thermal Measurement.

Current edition approved April 10, 2003. Published May 2003.

<sup>&</sup>lt;sup>2</sup> Annual Book of ASTM Standards, Vol 04.06.

<sup>&</sup>lt;sup>3</sup> Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036.

3.2.4 *field*, *n*—an elementary unit of a record that may contain a data item, a data aggregate, a pointer, or a link.

3.2.5 *field name*, *n*—a name or code associated with a field and used for identification.

3.2.6 *form*, *n*—the material form, for example, blanket, board, or roll.

3.2.7 *value set*, *n*—an open listing of representative acceptable text which could be included in a particular field of a record.

### 4. Significance and Use

4.1 This guide defines the principal elements of information, which are considered important and worth recording and storing permanently in computerized databases. Sufficient information is provided in this guide to enable the user to construct a database structure suitable for the intended application involving thermal insulation.

4.2 Because of increased activity in building computerized materials databases and the desire to encourage uniformity and ease of data comparison and interchange, these recommended formats provide for the inclusion of specific elements of thermal transmission test data in databases.

4.3 This guide has no implication on data required for materials production or purchase. Reporting of actual test results shall be as described in the actual materials specification or as agreed upon between the vendor and purchaser.

4.4 The suggested set of units for the recommended standard format given in this guide is SI. This guide, however, does not preclude other sets of units, such as inch-pound (IP).

### 5. Recording of Test Data

5.1 Table 1 is a recommended standard format for the computerization of thermal transmission data for thermal insulation materials. The headings for each field are:

5.1.1 *Field Number*—A reference number assigned to an individual data field that has no permanent value and does not become part of the database.

5.1.2 *Field Name and Description*—The complete name of the field, descriptive of the data element of information of interest.

5.1.3 *Data Type*—Type of data to be included in the field, such as the type of number, character text, logical values (yes/no), and date.

5.1.4 *Value Sets or Units*—A listing of the types of information which would be included in the field or, in the case of properties or the numeric fields, the SI units in which the numbers are expressed.

5.2 The presentation of the recommended standard format does not require that every element of information be included in every database. There is, however, a minimum number of fields considered essential to any database and these fields are marked with an asterisk (\*).

NOTE 1—Many databases are prepared for specific applications and, therefore, some database builders may omit certain elements considered to be of no value for that specific application. Conversely, in some individual cases, additional data elements are needed and the database builder is encouraged to include these elements along with the elements in the recommended standard format. It is important to note that not all of the elements considered essential will be available for every test. Further, not

all of the fields included in the recommended standard format are appropriate for all tests.

5.3 The recommended standard format is divided into five sections as illustrated in Fig. 1: material identification; micro-structure; test method; specimen description; and test results and analysis.

5.4 Fields that indicate the accuracy of each measurement are beyond the scope of this guide. However, the entries in all fields should be given to the appropriate number of significant figures.

### 6. Material Identification

6.1 The fields in this section identify the material tested.

NOTE 2—The numbers given in parentheses after the field name refer to the field number in Table 1 and accompanying tables. Essential fields are identified by an asterisk (\*).

6.1.1 *Material Reference Number* (1\*)—Unique database identifier containing material and process information for the specimens. A typical value set may contain information from the material lot code (see Field 9).

6.1.2 *Material Class* (2\*)—A major material class, for example ceramic, insulation, metal, polymer, rubber, etc.

6.1.3 *Material Name* (3\*)—A (generic) name for the particular material. A value set of typical responses is given in Table 2.

6.1.4 *Material Description* (4\*)—Descriptive name of material tested, for example, E-type fibrous glass with phenolic binder.

6.1.5 *Material Specification* (5)—Specification and year of issue for material name in field (3). A value set of typical responses is given in Table 2.

6.1.6 *Material Designation* (6)—Trade name, trademark, brand name, etc., of material.

6.1.7 *Material Manufacturer* (7)—Manufacturer of material.

6.1.8 *Material Source* (8)—Source of material, if different from manufacturer.

6.1.9 *Material Lot Code* (9)—Manufacturer identification (date, plant, etc.).

6.1.10 Date of Manufacture (10)—Date of manufacture.

6.1.11 *Material Form* (11)—Functional form of material. A value set of typical responses is given in Table 2.

6.1.12 *Material Classification* (12)—ASTM Classification for material, see particular material specification (include year of issue).

#### 7. Microstructure

7.1 The fields in this section pertain to the microstructure of the material and provide information complementary to the test results and analysis given in 10. The information requested is basic to the characterization of the insulation and is not intended, in this condensed form, for prediction of thermal performance.

7.1.1 *Microstructure Type* (13\*)—Composition (cellular, fibrous, particle, etc.).

7.1.2 Cell Size (14)—Diameter of cells, if applicable.

7.1.3 Fiber Size (15)—Diameter of fibers, if applicable.

| Field No.               | Field Name and Description          | Data Type | Value Sets or Units     |
|-------------------------|-------------------------------------|-----------|-------------------------|
| Material Identification | on                                  |           |                         |
| 1*                      | Material reference number           | text      |                         |
| 2*                      | Material class                      | text      |                         |
| 3*                      | Material name                       | text      |                         |
| 4*                      | Material description                | text      |                         |
| 5                       | Material specification              | text      |                         |
| 6                       | Material designation                | text      |                         |
| 7                       | Material manufacturer               | text      |                         |
| 8                       | Material source                     | text      |                         |
| 9                       | Material lot code                   | text      |                         |
| 10                      | Date of manufacture                 | text      |                         |
| 11                      | Material form                       | text      |                         |
| 12                      | Material classification             | text      |                         |
| Microstructure          |                                     |           |                         |
| 13*                     | Microstructure type                 | text      |                         |
| 14                      | Cell size                           | real      | μm                      |
| 15                      | Fiber size                          | real      | μm                      |
| 16                      | Particle size                       | real      | μm                      |
| 17                      | Blowing agent                       | text      | -                       |
| 18                      | Closed-cell content                 | real      | %                       |
| 19                      | Binder content                      | real      | %                       |
| 20                      | Shot content                        | real      | %                       |
| Test Method             |                                     |           |                         |
| 21*                     | ASTM, ISO, or other designation     | text      |                         |
| 22*                     | Test facility—laboratory            | text      |                         |
| 23*                     | Test facility—city                  | text      |                         |
| 24*                     | Test facility—state                 | text      |                         |
| 25                      | Test facility—country               | text      |                         |
| 20                      | Test facility Site elevation        | real      | m                       |
| 20                      | Test operator                       | text      | 111                     |
| 20*                     |                                     | lexi      |                         |
| 20                      | Apparatus type                      | lexi      |                         |
| 29                      | Apparatus arrangement               | lexi      |                         |
| 30                      | Apparatus size—outer dimension      | real      | 111                     |
| 31"                     | Apparatus size—outer dimension      | real      | m                       |
| 32^                     | Apparatus meter area—dimension      | real      | m                       |
| 33*                     | Apparatus meter area—dimension      | real      | m                       |
| 34*                     | Apparatus identification            | text      |                         |
| 35*                     | Mode of operation                   | integer   |                         |
| 36*                     | Direction of heat flow              | text      |                         |
| 37                      | Emittance                           | real      | (dimensionless)         |
| 38                      | Plate flatness                      | real      | mm                      |
| 39                      | Method of plate separation          | text      |                         |
| 40                      | Data collection method              | text      |                         |
| 41                      | Sampling interval                   | real      | S                       |
| 42                      | Computer software                   | text      |                         |
| Specimen Descripti      | ion                                 |           |                         |
| 43                      | Specimen layout reference           | text      |                         |
| 44*                     | Conditioning temperature            | real      | К                       |
| 45*                     | Conditioning humidity               | real      | % RH                    |
| 46*                     | Conditioning time                   | real      | hours                   |
| 47                      | Conditioning environment            | text      |                         |
| 48*                     | Number of test specimens            | integer   |                         |
| 49*                     | Specimen identification             | integer   |                         |
| 50*                     | Specimen geometry                   | text      |                         |
| 51                      | Specimen width                      | real      | mm                      |
| 52                      | Specimen length                     | real      | mm                      |
| 53                      | Specimen diameter                   | real      | mm                      |
| 54                      | Specimen circumference              | real      | mm                      |
| 55*                     | Specimen thickness                  | real      | mm                      |
| 56*                     | Specimen mass                       | real      | ka                      |
| 57*                     | Bulk density                        | rool      | ny<br>ka/m <sup>3</sup> |
| 59                      | Duik uerisity<br>Dorosity           | real      | (dimensionless)         |
| 50                      | Fuluery<br>Sub components           | toxt      | (unnensionless)         |
| Toot Beaulte and A      | Sub-components                      | lexi      |                         |
| rest results and Al     | Indiyoio                            | data      |                         |
| 6U^                     | Date of test                        | date      | (year, month, day)      |
| 61*                     | Moisture content before testing     | real      | %                       |
| 62*                     | Moisture content after testing      | real      | %                       |
| 63*                     | Hot temperature—average             | real      | К                       |
| 64                      | Hot temperature—standard deviation  | real      | К                       |
| 65*                     | Cold temperature—average            | real      | К                       |
| 66                      | Cold temperature—standard deviation | real      | К                       |
| 67*                     | Heat flow—average                   | real      | W                       |
| 68                      | Heat flow-standard deviation        | real      | W                       |
| 69*                     | Meter area                          | real      | m <sup>2</sup>          |
|                         |                                     |           |                         |

# TABLE 1. Data Format for Computerization of Test Data for Thermal Insulation

| 🕼 C 1558 – 0 | 3 |
|--------------|---|
|--------------|---|

 TABLE 1
 Continued

| Field No. | Field Name and Description                         | Data Type | Value Sets or Units   |
|-----------|----------------------------------------------------|-----------|-----------------------|
| 70*       | Specimen test thickness                            | real      | mm                    |
| 71        | Clamping pressure                                  | real      | kPa                   |
| 72        | Mean temperature                                   | real      | К                     |
| 73        | Temperature difference                             | real      | К                     |
| 74*       | Ambient temperature—average                        | real      | К                     |
| 75        | Ambient temperature—standard<br>deviation          | real      | К                     |
| 76        | Ambient humidity—average                           | real      | %                     |
| 77        | Ambient humidity—standard deviation                | real      | %                     |
| 78        | Ambient barometric pressure—<br>average            | real      | kPa                   |
| 79        | Ambient barometric pressure—<br>standard deviation | real      | kPa                   |
| 80*       | Thermal conductance—average                        | real      | W/(m <sup>2</sup> ·K) |
| 81        | Thermal conductance—standard<br>deviation          | real      | W/(m²·K)              |
| 82*       | Thermal resistance—average                         | real      | m²⋅K/W                |
| 83        | Thermal resistance—standard<br>deviation           | real      | m <sup>2</sup> ·K/W   |
| 84        | Thermal conductivity—average                       | real      | W/(m·K)               |
| 85        | Thermal conductivity—standard<br>deviation         | real      | W/(m·K)               |
| 86        | Thermal resistivity—average                        | real      | m⋅K/W                 |
| 87        | Thermal resistivity—standard deviation             | real      | m·K/W                 |
| 88*       | Is the test valid?                                 | logical   |                       |
| 89*       | Standard uncertainty of test result                | real      | %                     |
| 90*       | Footnotes                                          | text      |                       |

\*Essential field

7.1.4 *Particle Size* (16)—Diameter of particles, if applicable.

7.1.5 *Blowing Agent* (17)—Name of blowing agent, if applicable.

7.1.6 *Closed-cell Content* (18)—Percentage of closed cells, if applicable.

7.1.7 Binder Content (19)—Binder content, if applicable.

7.1.8 Shot Content (20)—Shot content, if applicable.

### 8. Test Method

8.1 The fields in this section describe the test procedure, apparatus, and data collection for a particular test method.

8.1.1 *Test Method* (21\*)—ASTM, ISO, or other designation, for example, Test Method C 177 or ISO 8302 (include year of issue, if applicable). A value set of typical responses is included in Table 3.

8.1.2 *Test Facility* (22\*, 23\*, 24\*, 25, 26)—Laboratory, city, state, country, and site elevation where the tests were performed.

8.1.3 *Test Operator* (27)—Include as a minimum the operator responsible for the test report.

8.1.4 *Apparatus Type* (28\*)—Differentiate between planar or radial geometry. A value set of typical responses is included in Table 3 and Fig. 2.

8.1.5 *Apparatus Arrangement* (29\*)—Provide apparatus arrangement. A value set of typical responses is included in Table 3 and Fig. 2.

8.1.6 Apparatus Size (30\*, 31\*)—Outer dimensions of apparatus. A value set of typical responses is included in Table 3 and Fig. 2.

8.1.7 *Apparatus Meter Size* (32\*, 33\*)—Dimensions of meter area. A value set of typical responses is included in Table 3 and Fig. 2.

8.1.8 *Apparatus Identification* (34\*)—Documentation of apparatus including serial number, for example, line-heat-source guarded-hot-plate apparatus (SN NIST LHS/GHP02).

8.1.9 *Mode of Operation*  $(35^*)$ —Differentiate between double-sided (2) test or single-sided (1) test (for example, Practice C 1044). A value set of typical responses is included in Table 4.

8.1.10 *Direction of Heat Flow* (36\*)—Direction of heat flow through specimens. A value set of typical responses is included in Table 4.

8.1.11 *Emittance* (37)—Total hemispherical or normal emittance value of heat transfer surfaces of apparatus.

8.1.12 Plate Flatness (38)—Flatness of plates, if applicable.

8.1.13 *Method of Plate Separation* (39)—Technique used to maintain plate separation between the hot surfaces and cold surfaces, for example spacers.

8.1.14 *Data Collection Method* (40)—Method of data collection, for example manual or computer.

8.1.15 Sampling Interval (41)—Sampling interval for data collection.

8.1.16 *Computer Software* (42)—Software and version used for data collection, if applicable.

### 9. Specimen Description

9.1 The fields in this section describe the preparation, conditioning, and technical information for the test specimens. The fields in this section should be repeated for each test (including multiple temperature tests).

9.1.1 Specimen Layout Reference (43)—Reference to cutting plan and location for each specimen when cut from a production run.



FIG. 1 Sequence of Steps for Entering Data

9.1.2 Specimen Conditioning Data (44\*, 45\*, 46\*, 47)— Provide the conditioning temperature, humidity, elapsed time, and environment prior to test.

9.1.3 *Number of Specimens* (48\*)—Number of test specimen(s).

9.1.4 *Specimen Identification* (49\*)—Identification number(s) for specimens.

9.1.5 Specimen Geometry (50\*)—Indicate whether rectangular, pipe, round, or square, specimens.

9.1.6 Specimen Width, Length (51, 52)—If rectangular or square specimens, provide length and width.

9.1.7 Specimen Diameter (53)—If round specimens, provide diameter.

9.1.8 *Specimen Circumference* (54)—If pipe specimens, provide circumference.

9.1.9 Specimen Thickness (55\*)—Thickness of specimen.

9.1.10 Specimen Mass (56\*)-Mass of specimen.

# 🖽 C 1558 – 03

| IABLE 2 Typical Information for Material Name, Specification | on, and I | Form |
|--------------------------------------------------------------|-----------|------|
|--------------------------------------------------------------|-----------|------|

| Material Name                   | Material Specification <sup>A</sup>             | Material Form                               |
|---------------------------------|-------------------------------------------------|---------------------------------------------|
| Calcium Silicate                | C 533, C 656                                    | Block/Pipe, Board                           |
| Cellular Glass                  | C 552                                           | Block/Board/Pipe/Special                    |
| Cellular Elastomeric            | C 534                                           | Pipe/Sheet                                  |
| Cellular Melamine               | C 1410                                          | Slab/Pipe/Special                           |
| Cellular Phenolic               | C 1126                                          | Board/Pipe                                  |
| Cellular Polyisocyanurate       | C 1289                                          | Board                                       |
| Cellular Polyolefin             | C 1427                                          | Pipe/Sheet                                  |
| Cellular Polystyrene            | C 578                                           | Board                                       |
| Cellular Polyurethane, Spray    | C 1029                                          | Spray                                       |
| Cellulosic Fiber                | C 739                                           | Loose                                       |
| Cellulosic Fiberboard           | C 208                                           | Board                                       |
| Cellulosic, Spray               | C 1149                                          | Spray                                       |
| Fibrous Glass                   | C 991, C 1071, C 1290                           | Blanket, Blanket/Board, Blanket             |
| Glass Fiber Felt                | C 1086                                          | Mat                                         |
| Mineral Fiber                   | C 553, C 592, C 665, C 612, C 764, C 726, C 547 | Blanket, Block, Board, Loose, Pipe          |
| Mineral Fiber Insulating Cement | C 195                                           | Paste (dry after application), Flat/Special |
| Mineral Fiber Hydraulic Cement  | C 449                                           | Paste (dry after application), Flat/Special |
| Mineral Fiber, Spray            | C 1014                                          | Spray                                       |
| Perlite                         | C 549, C 610, C 728                             | Loose, Block/Pipe, Board                    |
| Vermiculite                     | C 516                                           | Loose                                       |
| Vermiculite Insulating Cement   | C 196                                           | Paste                                       |

<sup>A</sup> Include year of issue.

|  | TABLE 3 | Typical | Information | for | Test / | Apparatus | (see also | Fig. | 2) |
|--|---------|---------|-------------|-----|--------|-----------|-----------|------|----|
|--|---------|---------|-------------|-----|--------|-----------|-----------|------|----|

| Method <sup>A</sup> | Figure       | Туре             | Arrangement                                            | Out<br>Dim                       | er/Inner<br>ensions              | M<br>Dime                        | eter<br>nsions                   |
|---------------------|--------------|------------------|--------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| C 177               | (2a)<br>(2b) | Planar           | Square<br>Round                                        | A <sub>1</sub><br>D <sub>1</sub> | A <sub>1</sub>                   | B <sub>1</sub><br>D <sub>2</sub> | B <sub>1</sub>                   |
| C 335               | (2d)         | Radial           | Cylindrical, guarded end<br>Cylindrical, insulated end | A <sub>1</sub><br>A <sub>1</sub> | $D_1/D_2$<br>$D_1/D_2$           | B1<br>B₁                         | D <sub>1</sub><br>D <sub>1</sub> |
| C 518               | (2a)         | Planar           | Square                                                 | A <sub>1</sub>                   | A <sub>1</sub>                   | B <sub>1</sub>                   | B <sub>1</sub>                   |
| C 745               | (2a)<br>(2b) | Planar           | Square<br>Round                                        | A <sub>1</sub><br>D <sub>1</sub> | A <sub>1</sub>                   | B <sub>1</sub><br>D <sub>2</sub> | B <sub>1</sub>                   |
| C 1033              | (2e)         | Radial           | Cylindrical, guarded end                               | A <sub>1</sub>                   | $D_1/D_2$                        | B <sub>1</sub>                   | D <sub>1</sub>                   |
| C 1114<br>C 1363    | (2c)<br>(2c) | Planar<br>Planar | Rectangular<br>Rectangular                             | A <sub>1</sub><br>A <sub>1</sub> | A <sub>2</sub><br>A <sub>2</sub> | B <sub>1</sub><br>B <sub>1</sub> | B <sub>2</sub><br>B <sub>2</sub> |

<sup>A</sup> Include year of issue.

9.1.11 *Bulk Density* (57\*)—Determination of bulk density for specimen.

9.1.12 *Porosity* (58)—Determination of porosity for specimen.

9.1.13 *Sub-Components* (59)—Provide generic name(s) for sub-component materials, if present. For example, an all service (pipe) jacket.

### 10. Test Results and Analysis

10.1 The fields in this section describe the test results and analysis.

10.1.1 *Date of Test* (60\*)—Date specimen was tested using the format: year/month/day (YYYYMMDD).

10.1.2 *Moisture Content* (61\*, 62\*)—Moisture content of specimen before and after testing.

10.1.3 *Hot Temperature—Average* (63\*)—Time-averaged temperature of the hot surface in contact with the specimen.

10.1.4 *Hot Temperature—Standard Deviation* (64)— Standard deviation of time-averaged data of the hot surface temperature.

10.1.5 *Cold Temperature*—*Average* (65\*)—Time-averaged temperature of the cold surface in contact with the specimen.

10.1.6 *Cold Temperature—Standard Deviation* (66)— Standard deviation of time-averaged data of the cold surface temperature. 10.1.7 *Heat Flow—Average* (67\*)—Time-averaged heat flow through the meter area.

10.1.8 *Heat Flow—Standard Deviation* (68)—Standard deviation of the time-averaged data for the heat flow.

10.1.9 *Meter Area* (69\*)—Mathematical area corresponding to the one-dimensional heat flow through the specimen.

10.1.10 *Specimen Test Thickness* (70\*)—Dimensional separation between hot surface and cold surfaces.

10.1.11 *Clamping Pressure* (71)—Static load applied to clamp specimens between the plates divided by area of the plates.

10.1.12 *Mean Temperature* (72)—Average of hot and cold surfaces' temperatures.

10.1.13 *Temperature Difference* (73)—Difference of hot and cold surfaces temperatures.

10.1.14 Ambient Temperature—Average (74\*)—Timeaveraged ambient temperature during test.

10.1.15 Ambient Temperature—Standard Deviation (75)— Standard deviation of the time-averaged data for the ambient temperature.

10.1.16 *Ambient Humidity*—*Average* (76)—Time-averaged ambient relative humidity during test.

10.1.17 Ambient Humidity—Standard Deviation (77)— Standard deviation of the time-averaged data for the ambient humidity. 🖽 C 1558 – 03



FIG. 2 Schematic of Test Apparatus (see also Table 3)

| TABLE 4 Typical Informatio | n for Direction of | Heat Flow |
|----------------------------|--------------------|-----------|
|----------------------------|--------------------|-----------|

| Single-Sided (1)                                            | Double-Sided (2)       |
|-------------------------------------------------------------|------------------------|
| Mode of Operation                                           | Mode of Operation      |
| Up<br>Down<br>Horizontal<br>Radial inward<br>Radial outward | Vertical<br>Horizontal |

10.1.18 Ambient Barometric Pressure—Average (78)— Time-averaged ambient barometric pressure during test.

10.1.19 Ambient Barometric Pressure—Standard Deviation (79)—Standard deviation of the time-averaged data for the ambient barometric pressure.

10.1.20 *Thermal Conductance*—*Average* (80\*)—Timeaveraged determination of thermal conductance (power input to the meter area divided by the meter area and temperature difference).

10.1.21 *Thermal Conductance—Standard Deviation* (81)— Standard deviation of the time-averaged data for the thermal conductance).

10.1.22 *Thermal Resistance*—*Average* (82\*)—Timeaveraged determination of thermal resistance (meter area times temperature difference divided by the power input to the meter area). NOTE 3—For box method, this quantity is determined for the temperature difference from surface to surface.

10.1.23 *Thermal Resistance—Standard Deviation* (83)— Standard deviation of the time-averaged data for the thermal resistance.

10.1.24 *Thermal Conductivity*—*Average* (84)—Timeaveraged determination of thermal conductivity (power input to the meter area divided by the meter area, temperature difference, and specimen thickness).

10.1.25 *Thermal Conductivity—Standard Deviation* (85)— Standard deviation of the time-averaged data for the thermal conductivity.

10.1.26 *Thermal Resistivity*—*Average* (86)—Timeaveraged determination of thermal resistivity (meter area, temperature difference, and specimen thickness divided by the power input to the meter area).

10.1.27 *Thermal Resistivity—Standard Deviation* (87)— Standard deviation of the time-averaged data for the thermal resistivity.

10.1.28 *Is the Test Valid?* (88\*)—Are all the criteria for the test method met? (yes/no) If no, explain in footnote (90).

10.1.29 *Standard Uncertainty of Test Result* (89\*)— Combined standard uncertainty for the estimate given for thermal conductance, thermal conductivity, thermal resistance, or thermal resistivity. € 1558 – 03

## TABLE 5 Example Report of Data Format for Computerization of Steady-State Thermal Transmission Test Data for Thermal Insulation

| Field No.       | Field Name and Description          | Value                               |
|-----------------|-------------------------------------|-------------------------------------|
| Motorial        | Identification                      |                                     |
| 1*              | Material reference number           | to be assigned                      |
| 2*              | Material class                      | thermal insulation                  |
| 3*              | Material name                       | fibrous glass board                 |
| 4*              | Material description                | E-type glass fiber, phenolic binder |
| 5               | Material specification              | ,                                   |
| 6               | Material designation                |                                     |
| 7               | Material manufacturer               |                                     |
| 8               | Material source                     |                                     |
| 9               | Material lot code                   |                                     |
| 10              | Date of manufacture                 |                                     |
| 11              | Material form                       | board                               |
| 12              | Material classification             |                                     |
| Microstru       | cture                               |                                     |
| 13              |                                     | tidrous                             |
| 14              | Cell Size                           |                                     |
| 15              | Piper size                          |                                     |
| 10              | Right agent                         |                                     |
| 18              | Closed-cell content                 |                                     |
| 19              | Binder content                      |                                     |
| 20              | Shot content                        |                                     |
| Test Meth       | nod                                 |                                     |
| 21*             | ASTM, ISO, or other designation     | ASTM C 177-85 (1993), C 1043-96     |
| 22*             | Test facility—laboratory            | NIST                                |
| 23*             | Test facility—city                  | Gaithersburg                        |
| 24*             | Test facility—state                 | Maryland                            |
| 25              | Test facility—country               | USA                                 |
| 26              | Test facility—Site elevation        |                                     |
| 27              | Test operator                       |                                     |
| 28*             | Apparatus type                      | planar                              |
| 29*             | Apparatus arrangement               | round                               |
| 30              | Apparatus size—outer dimension      |                                     |
| 31              | Apparatus meter area dimension      | 11.d.<br>406 mm                     |
| 33*             | Apparatus meter area—dimension      | 400 1111                            |
| 34*             | Apparatus identification            | SN NIST I HS/GHP02                  |
| 35*             | Mode of operation                   | 2                                   |
| 36*             | Direction of heat flow              | vertical                            |
| 37              | Emittance                           | 0.89                                |
| 38              | Plate flatness                      |                                     |
| 39              | Method of plate separation          | specimen rigidity                   |
| 40              | Data collection method              | computer data acquisition           |
| 41              | Sampling interval                   | 30 s                                |
| 42              | Computer software                   | Basic (1996-007A)                   |
| Specimei        | n Description                       |                                     |
| 43              | Specimen layout reference           |                                     |
| 44              | Conditioning temperature            | 303 N                               |
| 45<br>46*       | Conditioning time                   | ~0<br>16 h                          |
| 47              | Conditioning environment            | air                                 |
| 48*             | Number of specimens                 | 2                                   |
| 49*             | Specimen identification             | 063, 077                            |
| 50*             | Specimen geometry                   | round                               |
| 51              | Specimen width                      | n.a.                                |
| 52              | Specimen length                     | n.a.                                |
| 53              | Specimen diameter                   | 1016 mm                             |
| 54              | Specimen circumference              | n.a.                                |
| 55*             | Specimen thickness                  | 25.46 mm                            |
| 56*             | Specimen mass                       | 3242.6 g                            |
| 57*             | Bulk density                        | 159.91 kg/m°                        |
| 58              | POIOSily<br>Sub components          | nono                                |
| Jy<br>Teet Peer | ults and Analysis                   |                                     |
| 60*             | Date of test                        | 1996 July 19                        |
| 61*             | Moisture content hefore testing     | ≈0 %                                |
| 62*             | Moisture content after testing      | 0.2 %                               |
| 63*             | Hot temperature—average             | 335.15 K                            |
| 64              | Hot temperature—standard deviation  | 0.002 K                             |
| 65*             | Cold temperature—average            | 315.15 K                            |
| 66              | Cold temperature—standard deviation | 0.002 K                             |
| 67*             | Heat flow—average                   | 3.712 W                             |
| 68              | Heat flow—standard deviation        | 0.006 W                             |
| 69*             | Meter area                          | 0.1297 m <sup>2</sup>               |

🕼 C 1558 – 03

 TABLE 5
 Continued

| Field No. | Field Name and Description                         | Value                                    |
|-----------|----------------------------------------------------|------------------------------------------|
| 70*       | Specimen test thickness                            | 25.46 mm                                 |
| 71        | Clamping pressure                                  |                                          |
| 72        | Mean temperature                                   | 325.15 K                                 |
| 73        | Temperature difference                             | 20.00 K                                  |
| 74*       | Ambient temperature—average                        | 325 K                                    |
| 75        | Ambient temperature—standard<br>deviation          | 0.02 K                                   |
| 76        | Ambient humidity—average                           | < 5 %                                    |
| 77        | Ambient humidity—standard deviation                |                                          |
| 78        | Ambient barometric pressure—<br>average            | 99.58 kPa                                |
| 79        | Ambient barometric pressure—<br>standard deviation | 0.10 kPa                                 |
| 80*       | Thermal conductance—average                        | 1.43 W/(m <sup>2</sup> ·K)               |
| 81        | Thermal conductance—standard<br>deviation          |                                          |
| 82*       | Thermal resistance—average                         | 0.699 m <sup>2</sup> ·K/W                |
| 83        | Thermal resistance—standard deviation              |                                          |
| 84        | Thermal conductivity—average                       | 0.0364 W/(m·K)                           |
| 85        | Thermal conductivity—standard<br>deviation         |                                          |
| 86        | Thermal resistivity—average                        | 27.5 m·K/W                               |
| 87        | Thermal resistivity—standard<br>deviation          |                                          |
| 88*       | Is the test valid?                                 | yes                                      |
| 89*       | Standard uncertainty of test result                | 1.1 %                                    |
| 90*       | Footnotes                                          | Expanded Uncertainty Coverage<br>(k = 2) |

\*Essential field

10.1.30 *Footnotes* (90\*)—A brief statement of any significant deviations from a standard test. The method for including this information in a database should be determined by the database builder.

### 11. Examples

11.1 Table 5 provides examples of this guide for results reported for an individual pair of specimens.

### 12. Keywords

12.1 building materials; computer; data; database; format; thermal conductance; thermal conductivity; thermal insulation; thermal resistance; thermal resistivity; thermal transmission

### APPENDIX

#### (Nonmandatory Information)

### **X1. COMMENTARY**

### X1.1 History

X1.1.1 In the 1990s, the National Institute of Standards and Technology (NIST) developed an Internet database of thermal conductivity measurements of insulating and building materials compiled from the NIST 200-mm guarded-hot-plate apparatus.<sup>4,5</sup> Recognizing that continued development in this area

required a standard recording format for steady-state thermal transmission test data, Sub-committee C16.30 formed a task group to examine the feasibility of developing a standard recording format. This guide is a direct result of the activities of the task group.

<sup>&</sup>lt;sup>4</sup> Zarr, R. R., Dalton, G. R., and Fioravante, S. M., "Development of a NIST Standard Reference Database for Thermal Conductivity of Building Materials," *Thermal Conductivity 25—Thermal Expansion 13*, June 13-16, 1999.

<sup>&</sup>lt;sup>5</sup> http://srdata.nist.gov/insulation/

# 🕼 C 1558 – 03

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).