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Standard Practice for
Evaluating Allowable Properties for Grades of Structural
Lumber 1

This standard is issued under the fixed designation D 2915; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

INTRODUCTION

The mechanical properties of structural lumber depend upon natural growth characteristics and
manufacturing practices. Several procedures can be used to sort lumber into property classes or stress
grades, the most widely used being the visual methods outlined in Practice D 245. With each, a
modulus of elasticity and a set of from one to five allowable stresses may be associated with each
stress grade. The allowable stresses are extreme fiber stress in bending, tension parallel to the grain,
compression parallel to the grain, shear, and compression perpendicular to the grain. This test method
for evaluation of the properties of structural lumber defines an allowable property as the value of the
property that would normally be published with the grade description.

This practice is useful in assessing the appropriateness of the assigned properties and for checking
the effectiveness of grading procedures.

For situations where a manufactured product is sampled repeatedly or lot sizes are small, alternative
test methods as described in Ref(1)2 may be more applicable.

1. Scope

1.1 This practice covers sampling and analysis procedures
for the investigation of specified populations of stress-graded
structural lumber. Depending on the interest of the user, the
population from which samples are taken may range from the
lumber from a specific mill to all the lumber produced in a
particular grade from a particular geographic area, during some
specified interval of time. This practice generally assumes that
the population is sufficiently large so that, for sampling
purposes, it may be considered infinite. Where this assumption
is inadequate, that is, the population is assumed finite, many of
the provisions of this practice may be employed but the
sampling and analysis procedure must be designed to reflect a
finite population. The statistical techniques embodied in this
practice provide procedures to summarize data so that logical
judgments can be made. This practice does not specify the
action to be taken after the results have been analyzed. The
action to be taken depends on the particular requirements of the
user of the product.

1.2 The values stated in inch-pound units are to be regarded
as the standard.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
D 198 Test Methods of Static Tests of Timber in Structural

Sizes3

D 245 Practice for Establishing Structural Grades and Re-
lated Allowable Properties for Visually Graded Lumber3

D 1990 Practice for Establishing Allowable Properties for
Visually-Graded Dimension Lumber from In-Grade Tests
of Full-Size Specimens3

E 105 Practice for Probability Sampling of Materials4

3. Statistical Methodology

3.1 Two general analysis procedures are described under
this practice, parametric and nonparametric. The parametric
approach assumes a known distribution of the underlying
population, an assumption which, if incorrect, may lead to

1 This practice is under the jurisdiction of ASTM Committee D07 on Wood and
is the direct responsibility of Subcommittee D07.02 on Lumber and Engineered
Wood Products.

Current edition approved April 10, 2003. Published June 2003. Originally
approved in 1970 as D 2915 – 70 T. Last previous edition approved in 2002 as
D 2915 – 02.

2 The boldface numbers in parentheses refer to the list of references at the end of
this practice.

3 Annual Book of ASTM Standards, Vol 04.10.
4 Annual Book of ASTM Standards, Vol 14.02.
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inaccurate results. Therefore, if a parametric approach is used,
appropriate statistical tests shall be employed to substantiate
this choice along with measures of test adequacy(2, 3, 4, 5, 6,
7). Alternatively a nonparametric approach requires fewer
assumptions, and is generally more conservative than a para-
metric procedure.

3.2 Population:
3.2.1 It is imperative that the population to be evaluated be

clearly defined, as inferences made pertain only to that popu-
lation. In order to define the population, it may be necessary to
specify (1) grade name and description, (2) geographical area
over which sampling will take place (nation, state, mill, etc.),
(3) species or species group, (4) time span for sampling (a
day’s production, a month, a year, etc.), (5) lumber size, and
(6) moisture content.

3.2.2 Where possible, the sampling program should con-
sider the location and type of log source from which the pieces
originated, including types of processing methods or marketing
practices with respect to any influence they may have on the
representative nature of the sample. Samples may be collected
from stock at mills, centers of distribution, at points of end use
or directly from current production at the grading chains of
manufacturing facilities.

3.3 Sampling Procedure:
3.3.1 Random Sampling— The sampling unit is commonly

the individual piece of lumber. When this is not the case, see
3.3.3. The sampling shall assure random selection of sampling
units from the population described in 3.2 with all members of
the population sharing equal probability of selection. The
principles of Practice E 105 shall be maintained. When sam-
pling current production, refer to Practice E 105 for a recom-
mended sampling procedure (see Appendix X3 of this practice
for an example of this procedure). If samples are selected from
inventory, random number tables may be used to determine
which pieces will be taken for the sample.

3.3.2 Sampling with Unequal Probabilities—Under some
circumstances, it may be advisable to sample with unequal but
known probabilities. Where this is done, the general principles
of Practice E 105 shall be maintained, and the sampling
method shall be completely reported.

3.3.3 Sequential Sampling—When trying to characterize
how a certain population of lumber may perform in a structure,
it may be deemed more appropriate to choose a sampling unit,
such as a package, that is more representative of how the
lumber will be selected for use. Such a composite sampling
unit might consist of a sequential series of pieces chosen to
permit estimation of the properties of the unit as well as the
pieces. Where this is done, the principles in 3.3.1 and 3.3.2
apply to these composite sampling units and the sampling
method shall be completely reported.

3.4 Sample Size:
3.4.1 Selection of a sample size depends upon the property

or properties to be estimated, the actual variation in properties
occurring in the population, and the precision with which the
property is to be estimated. For the five allowable stresses and
the modulus of elasticity various percentiles of the population

may be estimated. For all properties, nonparametric or para-
metric techniques are applicable. Commonly the mean modu-
lus of elasticity and the mean compression perpendicular to the
grain stress for the grade are estimated. For the four other
allowable stresses, a near-minimum property is generally the
objective.

3.4.2 Determine sample size sufficient for estimating the
mean by a two-stage method, with the use of the following
equation. This equation assumes the data is normally distrib-
uted and the mean is to be estimated to within 5 % with
specified confidence:

n 5 ~ts/0.05X̄! 2 5 S t
0.05CVD 2

(1)

where:
n = sample size,
s = standard deviation of specimen values,
X̄ = specimen mean value,
CV = coefficient of variation,s/ X̄,
0.05 = precision of estimate, and
t = value of the t statistic from Table 1.

Often the values ofs, X̄, and t or CV andt are not known
before the testing program begins. However,s and X̄, or CV,
may be approximated by using the results of some other test
program, or they may simply be guessed (see example, Note
1).

NOTE 1—An example of initial sample size calculation is:
Sampling a grade of lumber for modulus of elasticity (E). Assuming a

95 % confidence level, thet statistic can be approximated by 2.
s = 300 000 psi (2067 MPa)
X̄ = assignedE of the grade = 1 800 000 psi (12 402 MPa)
CV = (300 000/1 800 000) = 0.167
t = 2

n = S 2
0.05 3 0.167D2

5 44.622~45 pieces!

Calculate the sample mean and standard deviation and use them to
estimate a new sample size from Eq 1, where the value oft is taken from
Table 1. If the second sample size exceeds the first, the first sample was
insufficient; obtain and test the additional specimens.

NOTE 2—More details of this two-stage method are given in Ref(8).

3.4.3 To determine sample size based on a tolerance limit
(TL), the desired content (C) (Note 3) and associated confi-
dence level must be selected. The choice of a specified content
and confidence is dependent upon the end-use of the material,
economic considerations, current design practices, code re-
quirements, etc. For example, a content of 95 % and a
confidence level of 75 % may be appropriate for a specific
property of structural lumber. Different confidence levels may
be suitable for different products or specific end uses. Appro-
priate content and confidence levels shall be selected before the
sampling plan is designed.

NOTE 3—The content,C, is an estimate of the proportion of the
population that lies above the tolerance limit. For example, a tolerance
limit with a content of 95 % describes a level at which 95 % of the
population lies above the tolerance limit. The confidence with which this
inference is to be made is a separate statement.

3.4.3.1 To determine the sample size for near-minimum
properties, the nonparametric tolerance limit concept of Ref(8)
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may be used (Table 2). This will provide the sample size
suitable for several options in subsequent near-minimum
analyses. Although the frequency with which the tolerance
limit will fall above (or below) the population value, corre-
sponding to the required content, is controlled by the confi-
dence level selected, the larger the sample size the more likely
the tolerance limit will be close to the population value. It is,
therefore, desirable to select a sample size as large as possible
commensurate with the cost of sampling and testing (see also
4.7).

3.4.3.2 If a parametric approach is used, then a tolerance
limit with stated content and confidence can be obtained for
any sample size; however, the limitation expressed in 3.4.3.1
applies. That is, although the frequency that the tolerance limit
falls above (or below) the population value, corresponding to
the required content is controlled, the probability that the
tolerance limit will be close to the population value depends on
the sample size. For example, if normality is assumed, the
parametric tolerance limit (PTL) will be of the form PTL =X̄
− Ks, (see Ref(8)), and the standard error (SE) of this statistic
may be approximated by the following equation:

SE5 sŒ1
n 1

K2

2~n 2 1!
(2)

where:
s = standard deviation of specimen values,
n = sample size, and
K = confidence level factor.

The sample size,n, may be chosen to make this quantity
sufficiently small for the intended end use of the material (Note
4).

NOTE 4—An example of sample size calculation where the purpose is
to estimate a near minimum property is shown in the following calcula-
tion:

Estimate the sample size,n, for a compression parallel strength test in
which normality will be assumed. A CV of 22 % and a mean C11 of 4600
psi are assumed based on other tests. The target PTL of the lumber grade
is 2700 psi. The PTL is to be estimated with a content of 95 % (5 % PTL)
and a confidence of 75 %.
CV = 0.22
X̄ = 4600 psi (31.7 MPa)
s = (0.22) (4600) = 1012 psi (7.0 MPa)
K = ( X̄ − PTL)/s = 1.877

From Table 3:
K = 1.869 forn = 30

Thereforen ' 30 specimens.

SE5 1012Œ 1
301

1.8772

2~302 1!
(3)

5 310.5 psi~2.1 MPa!

Consequently, although 30 specimens is sufficient to estimate the 5 %
PTL with 75 % confidence, the standard error (approximately 12 % of the
PTL) illustrates that, with this size sample, the PTL estimated by test may
not be as close to the true population fifth percentile as desired. A larger
n may be desirable.

TABLE 1 Values of the t Statistics Used in Calculating
Confidence Intervals A

df
n − 1

CI = 75 % CI = 95 % CI = 99 %

1 2.414 12.706 63.657
2 1.604 4.303 9.925
3 1.423 3.182 5.841
4 1.344 2.776 4.604
5 1.301 2.571 4.032

6 1.273 2.447 3.707
7 1.254 2.365 3.499
8 1.240 2.306 3.355
9 1.230 2.262 3.250

10 1.221 2.228 3.169

11 1.214 2.201 3.106
12 1.209 2.179 3.055
13 1.204 2.160 3.012
14 1.200 2.145 2.977
15 1.197 2.131 2.947

16 1.194 2.120 2.921
17 1.191 2.110 2.898
18 1.189 2.101 2.878
19 1.187 2.093 2.861
20 1.185 2.086 2.845

21 1.183 2.080 2.831
22 1.182 2.074 2.891
23 1.180 2.069 2.807
24 1.179 2.064 2.797
25 1.178 2.060 2.787

26 1.177 2.056 2.779
27 1.176 2.052 2.771
28 1.175 2.048 2.763
29 1.174 2.045 2.756
30 1.173 2.042 2.750

40 1.167 2.021 2.704
60 1.162 2.000 2.660

120 1.156 1.980 2.617
` 1.150 1.960 2.576

A Adapted from Ref (8). For calculating other confidence levels, see Ref (8).

TABLE 2 Sample Size and Order Statistic for Estimating the 5 %
Nonparametric Tolerance Limit, NTL A

75 % Confidence 95 % Confidence 99 % confidence

Sample
SizeB

Order
StatisticC

Sample
Size

Order
Statistic

Sample
Size

Order
Statistic

28 1 59 1 90 1
53 2 93 2 130 2
78 3 124 3 165 3

102 4 153 4 198 4
125 5 181 5 229 5
148 6 208 6 259 6
170 7 234 7 288 7
193 8 260 8 316 8
215 9 286 9 344 9
237 10 311 10 371 10
259 11 336 11 398 11
281 12 361 12 425 12
303 13 386 13 451 13
325 14 410 14 478 14
347 15 434 15 504 15
455 20 554 20 631 20
562 25 671 25 755 25
668 30 786 30 877 30
879 40 1013 40 1115 40

1089 50 1237 50 1349 50
A Adapted from Ref (12). For other tolerance limits or confidence levels, see Ref

(12) or (8).
B Where the sample size falls between two order statistics (for example, 27 and

28 for the first order statistic at 75 confidence), the larger of the two is shown in the
table, and the confidence is greater than the nominal value.

C The rank of the ordered observations, beginning with the smallest.
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TABLE 3 K Factors for One-Sided Tolerance Limits for Normal Distributions A

75 % Confidence (g = 0.25) 95 % Confidence (g = 0.05) 99 % Confidence (g = 0.01)

1 − p 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99

n
3 1.464 2.501 3.152 4.397 3.805 6.156 7.657 10.555 8.726 13.997 17.374 23.900
4 1.255 2.134 2.681 3.726 2.617 4.162 5.145 7.044 4.714 7.381 9.085 12.389
5 1.151 1.962 2.464 3.422 2.149 3.407 4.203 5.742 3.453 5.362 6.580 8.941

6 1.087 1.859 2.336 3.244 1.895 3.007 3.708 5.063 2.847 4.412 5.407 7.336
7 1.043 1.790 2.251 3.127 1.732 2.756 3.400 4.643 2.490 3.860 4.729 6.413
8 1.010 1.740 2.189 3.042 1.617 2.582 3.188 4.355 2.253 3.498 4.286 5.813
9 0.984 1.702 2.142 2.978 1.532 2.454 3.032 4.144 2.083 3.241 3.973 5.390

10 0.964 1.671 2.104 2.927 1.465 2.355 2.912 3.982 1.954 3.048 3.739 5.075

11 0.946 1.646 2.074 2.886 1.411 2.276 2.816 3.853 1.852 2.898 3.557 4.830
12 0.932 1.625 2.048 2.852 1.366 2.210 2.737 3.748 1.770 2.777 3.411 4.634
13 0.919 1.607 2.026 2.823 1.328 2.156 2.671 3.660 1.702 2.677 3.290 4.473
14 0.908 1.591 2.008 2.797 1.296 2.109 2.615 3.585 1.644 2.593 3.189 4.338
15 0.899 1.577 1.991 2.776 1.267 2.069 2.566 3.521 1.595 2.522 3.103 4.223

16 0.890 1.565 1.977 2.756 1.242 2.033 2.524 3.465 1.552 2.460 3.028 4.124
17 0.883 1.555 1.964 2.739 1.220 2.002 2.487 3.415 1.514 2.405 2.963 4.037
18 0.876 1.545 1.952 2.724 1.200 1.974 2.453 3.371 1.480 2.357 2.906 3.961
19 0.869 1.536 1.942 2.710 1.182 1.949 2.424 3.331 1.450 2.314 2.854 3.893
20 0.864 1.528 1.932 2.697 1.166 1.926 2.396 3.296 1.423 2.276 2.808 3.832

21 0.858 1.521 1.924 2.686 1.151 1.906 2.372 3.263 1.398 2.241 2.767 3.777
22 0.854 1.514 1.916 2.675 1.138 1.887 2.349 3.234 1.376 2.209 2.729 3.727
23 0.849 1.508 1.908 2.666 1.125 1.869 2.329 3.207 1.355 2.180 2.695 3.682
24 0.845 1.502 1.901 2.657 1.113 1.853 2.310 3.182 1.336 2.154 2.663 3.640
25 0.841 1.497 1.895 2.648 1.103 1.838 2.292 3.159 1.319 2.129 2.634 3.602

30 0.825 1.475 1.869 2.614 1.058 1.778 2.220 3.064 1.247 2.030 2.516 3.447
35 0.812 1.458 1.849 2.588 1.025 1.732 2.167 2.995 1.194 1.958 2.430 3.335
40 0.802 1.445 1.834 2.568 0.999 1.697 2.126 2.941 1.154 1.902 2.365 3.249
45 0.794 1.434 1.822 2.552 0.978 1.669 2.093 2.898 1.121 1.857 2.312 3.181
50 0.788 1.426 1.811 2.539 0.960 1.646 2.065 2.863 1.094 1.821 2.269 3.125

60 0.777 1.412 1.795 2.518 0.932 1.609 2.023 2.808 1.051 1.764 2.203 3.039
70 0.769 1.401 1.783 2.502 0.911 1.581 1.990 2.766 1.019 1.722 2.153 2.974
80 0.762 1.393 1.773 2.489 0.894 1.560 1.965 2.733 0.994 1.689 2.114 2.924
90 0.757 1.386 1.765 2.479 0.881 1.542 1.944 2.707 0.974 1.662 2.083 2.884

100 0.753 1.380 1.758 2.470 0.869 1.527 1.927 2.684 0.957 1.639 2.057 2.850

120 0.745 1.371 1.747 2.456 0.851 1.503 1.900 2.650 0.930 1.604 2.016 2.797
140 0.740 1.364 1.739 2.446 0.837 1.485 1.879 2.623 0.909 1.577 1.985 2.758
160 0.736 1.358 1.733 2.438 0.826 1.471 1.862 2.602 0.893 1.556 1.960 2.726
180 0.732 1.353 1.727 2.431 0.817 1.460 1.849 2.585 0.879 1.539 1.940 2.700
200 0.729 1.350 1.723 2.425 0.809 1.450 1.838 2.570 0.868 1.524 1.923 2.679

250 0.723 1.342 1.714 2.414 0.794 1.431 1.816 2.542 0.846 1.496 1.891 2.638
300 0.719 1.337 1.708 2.406 0.783 1.417 1.800 2.522 0.830 1.476 1.868 2.609
350 0.715 1.332 1.703 2.400 0.775 1.407 1.788 2.507 0.818 1.461 1.850 2.586
400 0.712 1.329 1.699 2.395 0.768 1.398 1.778 2.495 0.809 1.449 1.836 2.568
450 0.710 1.326 1.696 2.391 0.763 1.391 1.770 2.484 0.801 1.438 1.824 2.553

500 0.708 1.324 1.693 2.387 0.758 1.385 1.763 2.476 0.794 1.430 1.815 2.541
600 0.705 1.320 1.689 2.382 0.750 1.376 1.753 2.462 0.783 1.416 1.799 2.521
700 0.703 1.317 1.686 2.378 0.745 1.369 1.744 2.452 0.775 1.406 1.787 2.506
800 0.701 1.315 1.683 2.374 0.740 1.363 1.738 2.443 0.768 1.398 1.777 2.493
900 0.699 1.313 1.681 2.371 0.736 1.358 1.732 2.436 0.762 1.391 1.769 2.483

1000 0.698 1.311 1.679 2.369 0.733 1.354 1.728 2.431 0.758 1.385 1.763 2.475
1500 0.694 1.306 1.672 2.361 0.722 1.340 1.712 2.411 0.742 1.365 1.741 2.447
2000 0.691 1.302 1.669 2.356B 0.715 1.332 1.703 2.400B 0.733 1.354 1.727 2.431B

2500 0.689 1.300B 1.666B 2.353B 0.711 1.326 1.697B 2.392B 0.727 1.346 1.719B 2.419B

3000 0.688 1.299B 1.664B 2.351B 0.708 1.323B 1.692B 2.386B 0.722 1.340B 1.712B 2.411B

inf 0.674 1.282 1.645 2.326 0.674 1.282 1.645 2.326 0.674 1.282 1.645 2.326
A Obtained from a noncentral t inverse approach; see Ref (15).
B Computed using formula X5.2.
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3.4.4 Often the objective of the evaluation program will be
to estimate mean and near-minimum properties simultaneously.
When this is the case, only one sample size need be used. It
should be the greater of the two obtained in accordance with
3.4.2 and 3.4.3.

3.4.5 If a sampling unit other than an individual piece of
lumber is to be used, as provided for in 3.3.3, then the required
sample size must be determined by procedures that are
statistically appropriate for the sampling method chosen. In the
case of multisource data, as in the sampling of some or all mills
in a defined region, special procedures may be required, for
example, those based on the methodology introduced in Ref
(9). In all cases, the procedures shall be fully described.

4. Analysis and Presentation of Results

4.1 The results of the tests performed in accordance with
Test Methods D 198 or other standard testing procedures shall
be analyzed and presented as (1) a set of summarizing
statistics, and (2) an appendix of unadjusted individual test
specimen results. If parametric procedures are to be used, a
description of the selection procedures and a tabulation of
distribution parameters shall be provided. Any “best-fit” judg-
ment (Note 5) between competing distributions shall be docu-
mented.

NOTE 5—A best-fit procedure should recognize the low power of some
published procedures. To check the fit, the series of tests outlined in Ref
(10) represents several alternatives. Also, tests based on the Anderson-
Darling statistic(2, 3, 4)have been shown to be among the more powerful
tests(6, 7). It should be noted, however, that not all tests are valid for all
distributions and that these procedures are effective for checking central
tendency. For instance, revised standard tables of the Kolmogorov-
Smirnov statistic are presently available only for the normal, logistic, and
exponential distributions(5).

4.2 Properties shall be adjusted to a single moisture content
appropriate for the objective of the testing program. Although
test results can be adjusted for moisture content, these adjust-
ments decrease in accuracy with increasing change in moisture
content. For this reason, it is suggested that the specimens be
conditioned as closely as possible to the target moisture content
prior to test, and that adjustments for more than five percentage
points of moisture content are to be avoided. When adjust-
ments are required, the procedures given in Practice D 1990
shall be used for dimensions, bending strength, modulus of
elasticity, tensile strength, and compressive strength parallel to
the grain. When adjusting shear strength and compressive
strength perpendicular to the grain the procedures of Practice
D 245 shall be used.

4.3 Modulus of elasticity values of primary concern are
apparent values,Eai, used in deflection equations that attribute
all deflection to moment. These apparent moduli may be
standardized for a specific span-depth ratio and load configu-
ration. Standardization should reflect, as far as possible,
conditions of anticipated end use.5,6 When tests at standardized
conditions of load and span are not possible, to adjustEai to
standardized conditions, it is necessary to account for the effect

of shear deflection on beam deflection. Factors to adjustEai for
span-depth ratio and load configuration may be derived from
Eq 4, (Ref (11)). To determine the apparent modulus of
elasticity, Eai2, based on any set of conditions of span-depth
ratio and load configuration, when the modulus,E ai, based on
some other set of conditions is known, solve the equation:

Eai2 5
1 1 K1 Sh1

L1
D2SE

GD
1 1 K2 Sh2

L2
D 2SE

GD
Eai (4)

where:
h = depth of the beam,
L = total beam span between supports,
E = shear free modulus of elasticity,
G = modulus of rigidity, and
Ki = values are given in Table 4.

The equations were derived using simple beam theory for a
simply supported beam composed of isotropic, homogeneous
material. Experimental evidence suggests that these equations
produce reasonable results with solid wood when converting
between load conditions at a fixed span-depth ratio. Care must
be exercised when converting between different span-depth
ratios to assure that the adjustments are appropriate for the end
use.

4.3.1 Often, lumber is not homogeneous within a piece with
respect to modulus of elasticity. The apparent modulus, there-
fore, may be affected by the location of growth characteristics,
such as knots, with respect to loads and supports. It is further
cautioned that conversions may be less appropriate when
converting between edgewise and flatwise specimen orienta-
tions.

4.3.2 If modulus of elasticity results are not measured at
standardized conditions, separate justification shall be provided
for factors used to adjust test values to standardized conditions.

4.3.3 In calculations using Eq 4 and that involve mean
trends of large populations, a singleE/G ratio is usually
assumed.7 If this assumption is critical for the intended

5 Spans, which customarily serve as a basis for design range, go from 17 to 21
times the depth of the specimen.

6 A uniform load distribution is commonly encountered in use. This load
configuration is difficult to apply in testing, but may be closely approximated by
applying the load at the one-third points of the span, if the span-to-depth ratio is the
same.

7 When using these conversion equations with solid wood, historically it has been
assumed that the modulus of rigidity (G) is one sixteenth the shear free modulus of
elasticity (E). Limited data indicate the ratio ofE/G for individual pieces of lumber
can vary significantly from this value depending upon the number, size, and location
of knots present, the slope of grain in the piece, and the spans over which deflections
are measured(13).

TABLE 4 K Factors for Adjusting Apparent Modulus of Elasticity
of Simply Supported Beams A

Loading Deflection measured at Ki

Concentrated at midspan midspan 1.200
Concentrated at third points midspan 0.939
Concentrated at third points load points 1.080
Concentrated at outer quarter-points midspan 0.873
Concentrated at outer quarter-points load points 1.20
Uniformly distributed midspan 0.960

A See Appendix X4 for an example of use of Table 4.
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application, it is recommended that the moduli of elasticity and
rigidity of the individual pieces be measured (see Methods
D 198).

4.4 The adjustment factors used to reduce the test statistics
to the level of allowable properties depend on the property and
are shown in Table 5. They are taken from Practice D 245,
which includes a safety factor and a 10-year cumulative
duration of load effect (normal loading).

4.5 Statistics shall be shown with three significant digits.
Adequate significant digits shall be maintained in all interme-
diate calculations to avoid rounding errors in the statistics.

4.5.1 The sample mean is calculated as follows:

X̄ 5 (
i 5 1

n

xi/n (5)

where:
xi = individual observations, and
n = sample size.

The sample mean is an unbiased estimator of the true
population mean.

4.5.2 The sample standard deviation is calculated as fol-
lows:

s5Œ(
i51

n

~xi
2 2 @~( xi!

2/n#

n – 1 or (6)

5Œ(
i51

n

~xi – X̄!2

n – 1

4.5.3 The confidence interval (CI) for the mean is calculated
as follows:

CI 5 X̄ 6 ~ts/= n! (7)

wheret depends on the sample size and confidence level, and
is given in Table 1. A CI of this type provides that, if the
population is normally distributed, a given percent of all
intervals found in this manner are expected to contain the true
population mean.

4.5.4 The sample nonparametric percent point estimate
(NPE) may be interpolated from the sample. To perform the
interpolation, arrange the test values in ascending order.
Symbolically, call themx1, x2, x3, ...xn. Beginning with the
lowest value (that is, first order statistic, see Note 6), calculate
i/(n + 1), wherei is the order of the value, for each successively
higher value untili/(n + 1) $ k/100, call it thejth value, equals
or exceeds the samplek percentile point estimate. Interpolate
the nonparametrick percentage point estimate by:

NPE5 F k
100 ~n 1 1! 2 ~j 2 1!G @x j 2 x ~j 2 1!# 1 x ~j 2 1! (8)

wherek is the desired percentile point estimate sought.

NOTE 6—Order statistics are ranked test values from the lowest to the
highest. For example, the first order statistic is the lowest test value or the
weakest piece in the sample, the second order statistic is the second
weakest piece, etc.

4.5.5 The nonparametric lower tolerance limit (NTL) of a
specified content is themth order statistic, wherem depends
upon the sample size and confidence level. Table 2 depicts the
order statistic required to determine the lower-5 % NTL at a
given sample size and three confidence levels. For example, if
the sample size was 93 and the confidence level was chosen to
be 95 %,m = 2. That is, the lower-5 % NTL with at least 95 %
confidence would be the second order statistic. If other lower
percentiles are estimated, the corresponding NTLs can be
determined(8, 12).

4.5.6 If parametric methods are used, the parametric point
estimate (PPE) and lower parametric tolerance limit (PTL)
shall be estimated by procedures documented as adequate for
the method adopted(1, 8, 12).

4.5.7 A histogram, or an empirical cumulative distribution
function, or both, shall be presented. The class widths for a
histogram depend on the property; maximum widths are given
in Table 6. If parametric procedures are used for analysis,
either a cumulative distribution function or a probability
density function can be shown superimposed on the empirical
cumulative distribution function or the histogram respectively.

NOTE 7—Two examples of typical test data and a summary of the
results that meet the requirements of 4.1-4.5 are given in Appendix X1 and
Appendix X2.

4.5.8 If a sampling unit other than an individual piece of
lumber is used, then the calculation of sample means, standard
deviations, confidence intervals, tolerance limits, and exclusion
limits must be made in a manner statistically consistent with
the sampling procedure chosen.

4.6 If the purpose of the testing program is to evaluate the
accuracy of existing allowable properties for the population
sampled, this is done using the results of 4.5.3, 4.5.5, 4.5.6, or
4.5.8. If an allowable mean property for a population falls
within the confidence interval obtained in accordance with
4.5.3, the testing program bears out the value allowed for the
population with the associated confidence. The accuracy of
existing near-minimum properties may be assessed using the
results of 4.5.4, or 4.5.5, 4.5.6, and 4.5.8, or combination
thereof. If the existing property falls at or below the point
estimate as calculated in 4.5.4, the testing program may bear
out the existing values, but no confidence statement may be

TABLE 5 Reduction Factors to Relate Test Statistics to Allowable
Properties

Property Factor

Modulus of elasticity 1
Bending strength 1/2.1
Tensile strength 1/2.1
Compressive strength parallel to grain 1/1.9
Shear strength 1/2.1
Compressive strength perpendicular to grain 1/1.67

TABLE 6 Maximum Class Width to Be Used in Histogram Plots

Property
Class Width, psi

(MPa)

Modulus of elasticity 100 000 (690)
Bending strength 500 (3.4)
Tensile strength 500 (3.4)
Compressive strength parallel to grain 500 (3.4)
Shear strength
Compressive strength perpendicular to grain

50 (0.34)
50 (0.34)
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associated with this conclusion. In order to associate a confi-
dence statement, the existing value must fall below the
tolerance limit as calculated in 4.5.5, 4.5.6, or 4.5.8.

4.7 If the purpose of the testing program is to establish
allowable properties for the population, this is done using the
results of 4.5.1, 4.5.4, 4.5.5, 4.5.6, or 4.5.8. The allowable
value of modulus of elasticity shall be the sample mean of
4.5.1, if the width of the confidence interval is a sufficiently
small fraction of the mean (for example, ifts/( X̄ = n ) # l ,
wherel, predetermined by the user will normally be in the
range from 0.01 to 0.10). If this condition is not satisfied,
additional samples must be taken as described in 3.3 until the
condition holds. Generally, the allowable value of any near-
minimum allowable stress shall be the sample 5 % NPE of
Section 4.5.4, if the relative difference between the NPE and
the NTL is sufficiently small, (that is, if (NPE − NTL)/NPE <
d, whered will normally be in the range from 0.01 to 0.10).
This condition is essentially that of having sufficiently narrow
confidence interval for the NPE. If this condition is not
satisfied, additional samples may be taken until the condition
holds, or the NTL may be used for the allowable value. If the
latter course is chosen, one should be cognizant of the
imprecision in the NTL consequent on the sample size (see
3.4.3.1). Alternatively, the PPE and PTL of the parametric
procedures provided for in 4.5.6 may be employed in a parallel
manner.

5. Applications

5.1 The results, reduced to the level of allowable properties,
may be used to evaluate the accuracy of existing allowable
properties or to establish allowable properties.

5.2 Where properties have been previously assigned to a
lumber population, one purpose of this practice is to provide a
format for evaluation of this assignment through full-size
lumber tests. Provisions are made for estimating both the mean
and near-minimum property values.

5.3 Results obtained following the procedures and analyses
of this practice may also be used to characterize the population
sampled for establishing design values. The specific character-
ization with respect to the population, such as the mean or a
near-minimum property, depends on the objective, the content,
and confidence associated with the test sample. The represen-
tativeness and size of the sample influence how the character-
ization can be made. Contemporary practice is reflected in 4.7,
however, other interpretations may be appropriate.

5.4 The end use of a specific product will dictate the
specification requirement. Indeed this practice addresses itself
to the procedures for sampling specified populations and
procedures for interpreting the results. It cannot be imple-
mented without the selection of values for the confidence levels
and degree of precision needed at various stages of the
procedures. These values should be given careful consideration
so that they are compatible with the anticipated end use, the
risks that surround imprecise estimates, or incorrect decisions,
and the costs of sampling, testing, and analysis.

6. Keywords

6.1 lumber; structural lumber; wood

APPENDIXES

(Nonmandatory Information)

X1. TYPICAL EXAMPLE—COMMODITY LUMBER

X1.1 Population Description—Selected at random, from
one mill, were 80 No. 2 grade Hem-Fir two-by-fours (current
lumber agency grade rules). The 80 test specimens were
equilibrated to an average of 15 % moisture content (see Note
4 and Practice D 245).

X1.2 The purpose of the test was to evaluate the bending
modulus of elasticity,E, and tensile strength,F t, of a one-mill
sample relative to present design values. Consequently the fifth
percentile estimate will be considered for strength and the
mean value forE (see 4.7).

X1.3 The design value for the grade and species sampled is
given in Table X1.1. A table of test statistics is given in Table
X1.2.

X1.4 Histograms and fitted normal, lognormal, and Weibull
distributions of edgewise bendingE and tensile strength are
shown in Fig. X1.1 and Fig. X1.2.

X1.5 Several of the individual test results are shown, only

as an example of data that is typically recorded (Table X1.3).
It may be desirable to tabulate additional information, such as
specific gravity, knot location, etc., depending on purpose.
Note that tensile strength data is ordered in ascending order.

X1.6 If appropriate best fit tests have been carried out and
documented, only the best fit distribution need be illustrated;
however, illustration of other options is instructive (see Table
X1.4). Note that the nonparametric estimates in Table X1.4 for
tensile strength can be estimated directly from Table X1.3, but
the estimates for modulus of elasticity are based on data, most
of which, is not shown in Table X1.3.

X1.7 Using 4.3, 4.5.1, 4.5.2, 4.5.3, and 4.6, the confidence
interval for the meanE value (Table X1.2) did not contain the
value as printed in Table X1.1. Consequently, it was decided
this sampleE did not verify the designE. Analysis of the
tension strength values was conducted in accordance with 4.5.4
and 4.5.5. After adjusting the nonparametric lower -5 %
tolerance limit to an allowable design value (that is, 1152/
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2.1 = 548.6 psi (3.8 MPa)), it can be seen that this value is
below the value shown in Table X1.1 (Ft = 675 psi (4.6 MPa));
therefore, the sample tension values do not verify the design
tension value.

X1.8 Similar analyses could be performed using parametric
procedures and employing the values shown in Table X1.4.

FIG. X1.1 Static Edgewise Modulus of Elasticity (10 6 psi)

FIG. X1.2 Tensile Strength (1000 psi)

TABLE X1.1 Design Values for No. 2 Grade Hem-Fir Two-by-
Fours A

Species/Grade
Design Values

Ft, psi (MPa) E, psi (MPa)
Hem-Fir No. 2 675 (4.6) 1 400 000 (9 646)

A National Design Specification for Wood Construction.
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X2. TYPICAL EXAMPLE—LADDER RAIL STOCK

X2.1 Population Description—(Species) ladder rail stock
graded in accordance with the (Grading Rules) as “V.G. Ladder
Rails.” Two hundred pieces of 13⁄8 by 23⁄4-in. by 8 ft were
selected randomly from stock at a ladder manufacturer in
(location). Specimens were equilibrated in a conditioning
room. Actual average moisture content of specimens equaled
11.2 %. The standard deviation was 1.4 %. The purpose of the
sampling, testing, and analysis was to obtain the bending
modulus of rupture (MOR) and modulus of elasticity (E) of
typical ladder rails for use in a research study on ladder rail

properties. Only mean and lower tail properties estimated by
nonparametric procedures were of interest. The 95 % confi-
dence level was deemed appropriate for bothE and MOR in
this study.

X2.2 Data reduced to summary statistics are shown in Table
X2.1. Examples of individual specimen data are shown in
Table X2.2; Table X2.3 contains estimates of near-minimum
values. Histograms of test results are shown in Fig. X2.1 and
Fig. X2.2. Empirical cumulative distribution functions are

TABLE X1.2 Example Test Results for No. 2 Grade Hem-Fir Two-by Fours A

Property Mean, psi (MPa) Confidence Interval for Mean, psi (MPa)B Standard Deviation, psi (MPa) Sample Size
Static edgewise modulus of elasticityC 1 201 600(8 279) 1 148 500(7 113)–1 254 700(8 645) 238 500(1 643) 80
Tensile strength 1 250(8.6) 1 100(7.6)–1 350(9.3) 547(3.8) 80

A All statistics in psi; all adjusted to 15 % moisture content in accordance with 4.2; reductions in accordance with 4.4 (not rounded).
B 95 % confidence.
C Adjusted to ,/d of 21 and uniform load.

TABLE X1.3 Example of Test Results Ordered by Tensile Strength—Two-by-Four Sample

Specimen Number
Moisture Content

at Test, %
Tensile Strength,

psi (MPa)

Edgewise Modulus of
Elasticity 102, psi

(MPa)A
Width, in. (mm)B Thickness, in. (mm)B

Bending
Strength

Ratio, %C

1 P 43 15.0 1004 (6.9) 994 (6849) 3.47 (88) 1.47 (37) 13
1 P 1 15.0 1092 (7.5) 959 (6607) 3.47 (88) 1.51 (38) 13
1 P 15 13.0 1152 (7.9) 1061 (7310) 3.42 (87) 1.50 (38) 52
1 P 28 15.0 1169 (8.0) 667 (4596) 3.45 (88) 1.46 (37) 47
1 P 22 16.0 1257 (8.7) 950 (6545) 3.46 (88) 1.49 (38) 52

A Test ,/d of 44, quarter-point load, corrected to ,/d of 21 and a uniform load.
B At test moisture content.
C Obtained by 5.3.4.1 of Practice D 245.

TABLE X1.4 Estimates of Population Parameters for Two-by-Four
Sample

Parameter
Static Edgewise

Modulus Elasticity 106,
psi (MPa)

Tensile StrengthA, psi
(MPa)

Weibull:
5 % point estimate 0.8255 (5688) 1.230 (8.5)

Lognormal:
5 % point estimate
5 % TL (75 %)

0.8549 (5890)
0.8340 (5746)

1.270 (8.7)
1.208 (8.3)

Normal:
Mean 1.2016 (8279) 2.616 (18.0)
Standard deviation 0.2385 (1643) 1.149 (7.9)
5 % point estimate 0.8091 (5575) 0.726 (5.0)
5 % TL (75 %) 0.7790 (5367) 0.580 (4.0)

Nonparametric:
5 % point estimate
5 % TL (75 %)

0.8745 (6025)
0.8490 (5850)

1.169 (8.0)
1.152 (7.9)

A Not reduced to allowable property.

TABLE X2.1 Ladder Rail Test Statistics A

Property Mean, psi (MPa)
Confidence Interval

for Mean, psi (MPa)B
Standard Deviation,

psi (MPa)
Sample

Size
Static edgewise modulus

of elasticityC
1 755 300 (12 094) 1 713 200 (11 804)–1 797 400 (12 384) 301 500 (2077) 200

Modulus of ruptureD 9 758 (67) 9 520 (66)–10 014 (69) 1 836 (12.6) 200
A All statistics in psi.
B 95 % confidence.
C Adjusted to ,/d of 21, uniform load, and 12 % moisture content.
D Adjusted to 12 % moisture content.
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shown in Fig. X2.3 and Fig. X2.4.

X2.3 Following the procedures of 4.7 it was determined
that the dispersion of E (static edgewise) measurements met the
5 % requirement (that is,ts/ X̄ = n = 0.024# 0.05) with 95 %
confidence. Consequently, the research suggested an edgewise
E of 1.73 106 psi could be used as a design value (Practice
D 245 rounding rule would round the test value to 1.8 but this
would be out of the confidence interval for the mean, thus 1.7
was chosen).

X2.4 Continuing the procedures of 4.7 for the MOR,

comparisons between the NPE and several NTL’s can be made
(Table X2.3). Maintaining the 10 % relative difference criterion
(NPE-NTL/NPE < 0.10) the relative difference for the NTL at
a 95 % confidence level does not meet the criterion (6518-
5364/6518 = 0.17 > 0.10). Therefore, the 95 % confidence
level goal of X2.1 for MOR is not met. Either more sampling
(see 4.7) is required or the NTL (5364 psi (37 MPa)) may be
used as the best estimate of the population MOR.

TABLE X2.2 Sample Test Results—Ladder Rail

Specimen
Moisture Content at

Test, %
Modulus of Rupture,

psi (MPa)A
Edgewise Static E,
106psi (MPa) A,B

Width at Test,
in. (mm)

Thickness at Test,
in. (mm)

103 12.8 14 343 (99) 2.51 (17 294) 2.753 (70) 1.366 (35)
111 11.0 11 423 (79) 1.80 (12 402) 2.760 (70) 1.381 (35)
114 8.6 6 505 (45) 1.37 (9 439) 2.784 (71) 1.406 (36)
121 11.6 9 708 (69) 2.17 (14 951) 2.762 (70) 1.386 (35)

A Statistics adjusted to 12 % moisture content in accordance with 4.2; not adjusted to allowable properties.
B Adjusted to ,/d of 21 and uniform load; actual conditions were ,/d of 33 and center point load.

TABLE X2.3 Estimates of Near-Minimum Population Parameters of Ladder Rail

Property 5 % Point Estimates
5 % Tolerance Limits

75 % Confidence
5 % Tolerance Limits

95 % Confidence
5 % Tolerance Limits

99 % Confidence

Edgewise modulus of 1.30 (8957) 1.29 (8888) 1.23 (8475) 1.16 (7992)
elasticityA

Modulus of ruptureB 6518 (45) 6072 (42) 5364 (37) 5353 (37)
A 106 psi (MPa); adjusted to ,/d of 21 and uniform load in accordance with 4.5.1; adjusted to 12 % moisture content in accordance with 4.2; not reduced to allowable

property.
B psi (MPa); adjusted to 12 % in accordance with 4.2; not reduced to allowable property.

FIG. X2.1 Edgewise E (10 6 psi) FIG. X2.2 Bending Strength MOR (1000 psi)
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X3. EXAMPLE—SAMPLING PROCEDURE

X3.1 When sampling from current production (that is, from
the green chain) at a manufacturing facility, the following
procedure allows the estimation of a standard error (SE) of the
estimate as well as some information about the within-and-
between sample variance.

X3.2 Following the procedure outlined in Practice E 105
(A1.6) k is generally chosen to be five or greater. Letk = 5,

therefore, 10k = 50. Select ten random numbers between 1 and
50. These are the ten random start points; 3, 9, 14, 29, 31, 36,
40, 42, 47, and 50 (Table X3.1). Systemically select test
specimens using an interval length of 10k beginning at each of
the random start points (that is, random startx + 10k).

FIG. X2.3 Empirical Cumulative Distribution Function
for E

FIG. X2.4 Empirical Cumulative Distribution Function
for R
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X4. EXAMPLE OF USE OF TABLE 5 TO ADJUST MODULUS OF ELASTICITY (MOE) TO STANDARD
CONDITIONS

X4.1 An average apparent modulus of elasticity was
obtained by testing simply supported beams loaded at the
center and having a span-depth (L /h) ratio of 14:1. The MOE
value obtained was 1.60 million psi. Assuming anE /G ratio of
16:1, what would be the apparent MOE for loads applied at the
one-third points of the span with a span-depth ratio of 21:1?
Deflections were measured at the center of the span.
From Table 4:

h1/L1 5 1:14 (X4.1)

h2/L2 5 1:21

E 1 5 1.60 million psi

E/G 5 16

K1 5 1.20

K2 5 0.939

Therefore,

E2 5 ~1.09796/1.034070!*1.60 million psi (X4.2)

E2 5 1.70 million psi

X5. ONE-SIDED TOLERANCE LIMITS FOR A NORMAL DISTRIBUTION

X5.1 A one-sided tolerance limit,PTL, is a value about
which it may be said with confidence 1-g, that at least a
proportion, 1-p, of the population is greater thanPTL. The
formula is as follows:

PTL5 X̄ – Ks (X5.1)

where X̄ and s are the mean and the standard deviation,
respectively, calculated from the sample data.K depends upon
sample sizen, as well as percentile 100-p and confidence 1-g.
K values are given in Table 3 or they may be calculated from
the following formula:

K 5
Zpg 1 =Zp

2g 2 2 @g 2 2 Z g
2/~2~n 2 1!!#~Zp

2 2 Zg
2/n!

g 2 2 Zg
2/~2~n 2 1!!

(X5.2)

where:

g = (4n − 5)/(4n − 4), and
Zp andZg are calculated with the following formula:

Z 5 T – ~b0 1 b1T 1 b2T
2!/~1 1 b3T 1 b 4T

2 1 b5T
3! (X5.3)

where:
T = =Ln~1/Q2! (Q = p for Zp andQ = g for Zg)
b0 = 2.515517
b1 = 0.802853
b2 = 0.010328
b3 = 1.432788
b4 = 0.189269
b5 = 0.001308

NOTE X5.1—K values computed using Eq X5.2 are approximations
(see Ref(15)). For small values, the formula can seriously overestimate
the K factors.
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