
Designation: D 5124 – 96

Standard Practice for
Testing and Use of a Random Number Generator in Lumber
and Wood Products Simulation 1

This standard is issued under the fixed designation D 5124; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice gives a minimum testing procedure of
computer generation routines for the standard uniform distri-
bution. Random observations from the standard uniform dis-
tribution,RU, range from zero to one with every value between
zero and one having an equal chance of occurrence.

1.2 The tests described in this practice only support the
basic use of random number generators, not their use in
complex or extremely precise simulations.

1.3 Simulation details for the normal, lognormal,
2-parameter Weibull and 3-parameter Weibull probability dis-
tributions are presented.

1.4 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.See specific
warning statement in 5.5.3.

2. Referenced Documents

2.1 ASTM Standards:
E 456 Terminology Relating to Quality and Statistics2

3. Terminology

3.1 Definitions:
3.1.1 period—the number ofRU deviates the computer

generates before the sequence is repeated.
3.1.2 seed value—a number required to start the computer

generation of random numbers. Depending upon the computer
system, the seed value is internally provided or it must be user
specified. Consult the documentation for the specific random
number generator used.

3.1.3 serial correlation—the statistical correlation between
ordered observations. See 5.2.2.

3.1.4 standard normal deviate, RN —a computer generated
random observation from the normal probability distribution
having a mean equal to zero and standard deviation equal to
one.

3.1.5 standard uniform deviate, RU —a random observation

from thestandard uniform distribution.
3.1.6 standard uniform distribution—the probability distri-

bution defined on the interval 0 to 1, with every value between
0 and 1 having an equal chance of occurrence.

3.1.7 trial—a computer experiment, and in this standard the
generation and statistical test of one set of random numbers.

4. Significance and Use

4.1 Computer simulation is known to be a very powerful
analytical tool for both practitioners and researchers in the area
of wood products and their applications in structural engineer-
ing. Complex structural systems can be analyzed by computer
with the computer generating the system components, given
the probability distribution of each component. Frequently the
components are single boards for which a compatible set of
strength and stiffness properties are needed. However, the
entire structural simulation process is dependent upon the
adequacy of the standard uniform number generator required to
generate random observations from prescribed probability
distribution functions.

4.2 The technological capabilities and wide availability of
microcomputers has encouraged their increased use for simu-
lation studies. Tests of random number generators in com-
monly available microcomputers have disclosed serious defi-
ciencies(1).3 Adequacy may be a function of intended end-use.
This practice is concerned with generation of sets of random
numbers, as may be required for simulations of large popula-
tions of material properties for simulation of complex struc-
tures. For more demanding applications, the use of packaged
and pretested random number generators is encouraged.

5. Uniformity of Generated Numbers

5.1 Test of the Mean—The mean of the standard uniform
distribution is1⁄2. Generate 100 sets of 1000 random uniform
numbers and conduct the following statistical test on each set.

Z 5
X̄ 2 0.50
0.009129 (1)

where:
Z 5 test statistic,

1 This practice is under the jurisdiction of ASTM Committee D-7 on Wood and
is the direct responsibility of Subcommittee D07.05 on Wood Assemblies.
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X̄ 5 (RU /1000,

the standard deviation is assumed to be=1 / 12 , and
the summation over 1000 values is implied.
If the absolute value ofZ exceeds 1.28 for more than 10 %

and less than 30 % of the trials, the random number generator
passes. If the random number generator fails the test using 100
sets, then the number of sets can be increased or the random
number generator can be rejected.

NOTE 1—The assumption of standard deviation being equal to
=1 / 12 may be examined with a Chi-Square test where

s 5Œ~(RU
2 2 1000X̄2!

999 (2)

where:
X̄ 5 estimated mean
s 5 estimated standard deviation of the 1000 RU values,

and
the summation over 1000 values is implied.

A significant difference betweensand=1 / 12, suggests a
non-random generator.

5.2 Test for Patterns in Pairs—The purpose of this visual
test is to evaluate the tendency of pairs of deviates to form
patterns when plotted. Generate 2000 pairs of standard uniform
deviates. Plot each pair of deviates on an x-y Cartesian
coordinate system. Inspect the resulting plot for signs of
patterns, such as “strips.” Fig. 1 is one example of “stripes”
generated by a BASIC function on a personal computer. In
more than two dimensions, all generated random numbers fall
mainly on parallel hyperplanes, a fact discovered by Marsaglia
(3).

5.2.1 The following shuffling technique is an effective
remedy for the general problem of “stripes” and random
numbers falling on planes. Fill a 100-element array with
standard uniform deviates. Select a deviate from the array
using the integer portion of the product of a random deviate
and 100. Replace the selected deviate with a new uniform
deviate. Repeat the process until the desired number of
deviates has been generated. The plot of Fig. 2 resulted from
using the shuffling technique on the random number generator
which produced Fig. 1.

5.2.2 Unless theRU generator is extensively tested by
stringent tests(4, 5, 6)a shuffling procedure comparable to that
described in 5.2.5 should be used.

5.3 Visual Test for Uniform Distribution Conformance:
5.3.1 The purpose of the visual test for distribution con-

formance is to detect some odd behavior of the random number
generator beyond what might be detected by the method in 5.4.
It is impossible to predict the various shapes of the histograms
which might indicate a problem with the generator. However,
a few examples given here may alert the user of the general
form of a problem.

5.3.2 Histogram Preparation—Fig. 3 is a histogram of 1000
generated standard uniform numbers. The theoretical density
function is a horizontal dashed line crossing the ordinate at 1.0.
The interval width is 0.1. The values of the ordinates for each
interval were calculated as follows:

FIG. 1 Plotted Pairs of Random Numbers Showing “Stripes”

NOTE 1—The plot resulted from using the shuffling technique on the
generator which produced Fig. 1.

FIG. 2 Plotted Pairs of Random Numbers with no Detectable
Patterns

FIG. 3 Histogram of Random Numbers with Theoretical Density
Function Superimposed
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fi 5
Ni

WI 3 T (3)

where:
fi 5 adjusted relative frequency,
Ni 5 number observed in interval i,
WI 5 interval width, and
T 5 total number generated.

Since the interval width,WI, in this case equalled 0.1 and
1000, values were generated as follows:

fi 5
Ni

0.13 1000 (4)

fi 5
Ni

100

NOTE 2—If different sample sizes are used, bias may exist in making
visual interpretations from histograms. One way to lessen this bias is to
apply the Sturgess Rule(7) to determine the number of cells for the
histograms.

Nc 5 1 1 3.3~log10Ng! (5)

where:
Nc 5 number of histogram cells, and
Ng 5 number of generated numbers.

5.3.3 Histogram Evaluation—The histogram of Fig. 3 has a
very typical appearance for a sample as large as 1000. If one
would increase the sample size, less variation infi is expected.
On the contrary, by decreasing the sample size to perhaps 50,
tremendous variation infi can be expected. A problem would be
evidenced, if for a sample size of 1000, one of the following
occurs: (1) if fi equalled zero or near zero for one class interval,
(2) if one class interval had anfi value 50 % greater than any
other interval, or (3) if there is any noticeable trend in thefi
value such as an increase infi from left to right, a decrease, or
whatever. Thefi values should vary about 1.0 in a random
fashion. The data must span the entire range from 0 to 1.

5.4 Formal Test of Distribution Conformance:
5.4.1 The Kolmogorov-Smirnov (KS) goodness-of-fit test

given in Ref(5) should be used to test the conformance of the
random numbers to the standard uniform distribution. The KS
test should be conducted on 100 sets of generated random
number data each containing 1000 observations.

5.4.2 Kolmogorov-Smirnov Test—Generate theRU numbers
and store in an array. Rank the data from smallest to largest.
Calculate the following:

Dn
1 5 maxF i

N 2 Xi G ~i 5 1, N! (6)

Dn
2 5 maxFXi 2

i 2 1
N G i 5 1, N

Dn 5 max@Dn
1, Dn

2 #

where:
N 5 sample size, (1000),
Xi 5 ith value of the ranked array, and
Dn 5 Kolmogorov-Smirnov (K-S) test statistic.

For the test in 5.4,N equals 1000.X1 is the smallest value of
the ranked array,X2 is the second smallest and so on.Dn as
calculated is the largest vertical distance between the sample
density function and the hypothesized distribution, in this case
the standard uniform distribution. IfDn is greater than (1.07/

=N ) for more than 10 % and less than 30 % of the trials, the
random number generator passes. If the generator fails the tests
using 100 sets, then the number of sets can be increased or the
generator can be rejected.

5.5 Correlations Among Generated Numbers:
5.5.1 The computer generated values ofRU must appear to

be random and independent. The word “appear” is used since
the numbers are actually being generated by a mathematical
algorithm and all such algorithms have a cycle. Provided the
numbers have the appropriate distribution function (as tested in
5.3 and 5.4) and the numbers are not serially correlated, then
the generated numbers are most useful for simulation purposes.
Since the generated numbers are not truly random they are
often called “pseudo random.”

5.5.2 Period—Some personal computer brands have a uni-
form number generator with an extremely short period depend-
ing upon the seed. Some machines repeat the same sequence of
numbers after approximately 200 numbers. Depending upon
the simulation application, the user must determine if the
period of the machine is adequate. Reference(1) is useful for
evaluating the period of various random number generators.

5.5.3 Test for Lag-1 Serial Correlation—Lag-1 serial corre-
lation is a measure of association between theXi observation
and the followingXi+1. Lag-2 serial correlation is a measure of
association betweenXi and Xi+2 or all pairs of observations
separated by one observation. In theory, it is possible to have
any lag-k serial correlation. For random number generators, it
is necessary for all lag-k to be zero for k less than the period.
For k equal the period, lag-k serial correlation equals 1.0. The
following statistical test from Ref.(2) is for lag-1 serial
correlation and it is recommended as a minimum test for
statistical independence.

NOTE 3—Warning: Random number generators that pass the tests in
this standard can display very bad behavior in more than two dimensions.
There are existing random number generators that can pass the tests in this
standard but whose values fall on a small number of hyperplanes.

5.5.3.1 LetXi be an array of generatedRU values.X1 being
the first generated,X2 the second and so on. Generate 1000
values ofXi. Calculate:

r~1! 5
(Xi Xi 1 1 2 ~(Xi!

2 /1000

(Xi
2 2 ~(Xi!

2 /1000
(7)

where:
r (1) 5 lag one serial correlation, and( denotes an implied

summation from 1 to 1000.
Xi+1 must be replaced byX1 when i equals 1000; takeX1001

5 X1. If the calculatedr (1) falls outside of the following
limits for − 0.042 <r (1) < 0.040 more than 10 % and less than
30 % of the trials, the random number generator passes. If the
random number generator fails the test using 100 sets, then the
number of sets can be increased or the random number
generator can be rejected. (Assuming there is no lag-1 serial
correlation, 20 % of the calculatedr (1) values would be
expected to fall outside of the specified range as the number
trials increased indefinitely.)

NOTE 4—Serial correlations greater than lag-1 may affect modeling
procedures. It is the responsibility of the investigator to assess, in an
appropriate manner, the significance of these correlations.
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5.6 Selection of RU Generator—Provided theRU generator
passes the tests and provisions in 5.1-5.4, it can be considered
useful for purposes of computer simulation. The tests in 5.1-5.4
are considered as minimum for qualification; an individual user
may want to increase the number of trials.

5.7 Rejection of RU Generator—In the tests of 5.1-5.4, there
is a chance of falsely rejecting a good generator. For this
reason, one may choose to repeat all tests (using different seed
values) if a given generator failed on the first series of tests.

5.8 Generation of RU —In BASIC programs the generator
may produce different results depending on whether the
program is compiled or interpreted. On some systems consid-
erable differences have been observed, between the modes,
because of differences in how the generator is seeded. In any
case, the results from both methods of program execution
should be checked when using BASIC. For a comprehensive
discussion on the various methods of generatingRU, Chapter 6
of Ref (5) is recommended.

6. Simulation from Selected Distributions

6.1 Random values from a prescribed distribution will be
noted byy8 which is often referred to as a random deviate. This
section assumes that the parameters of the various probability
distributions have been estimated by the various methods
available and are now known quantities.

6.2 Simulation from the Normal Distribution—In general,
when simulating lumber and wood product properties from the
normal distribution, truncation is required since the normal
distribution is defined from minus infinity to plus infinity. With
simulation it is possible to generate extremely small or
negative values. Therefore it is the responsibility of the user to
discard all values below a user specified minimum. The
definition of the minimum is a difficult problem. A normal
distribution is not usually preferred over other distributions
because of the truncation issue.

6.2.1 Normal Density Function—The normal density func-
tion is given by:

fx ~x! 5
1

s =2p
expF2

1
2 Sx 2 µ

s D 2G (8)

where:
µ 5 mean of x, and
s 5 standard deviation.

6.2.2 Simulation from Normal Distribution—Observations
from the normal distribution are given by:

y8 5 µ 1 s 3 RN (9)

where:
y8 5 values less than a specified truncation point are

discarded, a new value of y8 should be calculated.
RN 5 standard normal deviate which can be calculated

from generated RU observations. Using two values
of RU, denoted RU1 and RU2, then by the following
relationships:

RN1 5 cos~2pRU2! 3 =2 2Ln ~RU1! (10)

RN2 5 sin ~2pRU2! 3 =2 2Ln ~RU1!

A pair of statistically independent standard normal variates
R

N1
andRN2 result (8). Ln is the natural logarithm. While one

could be discarded, it would not be a wise use of computational
time. It is recommended that the two values ofRN be calculated
in one step, two more, and so on until the necessary number is
obtained.

6.3 Lognormal Distribution—The lognormal density func-
tion is given by:

fx ~x! 5
1

jx=2p
expF2

1
2 SLn ~x! 2 l

j D 2G (11)

where:
Ln 5 natural logarithm,
l 5 mean of the logarithms, and
j 5 standard deviation of the logarithms.

6.3.1 Simulation from the Lognormal Distribution—
Observations from lognormal distribution are given by:

y8 5 exp~l 1 RN * j! (12)

where:
RN is calculated as in 6.2.2.

6.4 The 2-Parameter Weibull—The 2-parameter Weibull
density function is given by:

fx ~x! 5
h
s S x

s Dh21

expS 2 S x
s Dh D (13)

where:
s 5 scale parameter and
h 5 shape parameter.

6.4.1 Simulation from the 2-Parameter Weibull—
Observations from the 2-parameter Weibull are given by:

y8 5 s~ 2 Ln ~RU!!1/h (14)

where:
Ln 5 natural logarithm.

6.5 The 3-Parameter Weibull—The 3-parameter Weibull
density function is given by:

fx ~x! 5
h
s Sx 2 µ

s Dh21

expS 2 Sx 2 µ
s Dh D (15)

where:
s 5 scale parameter,
h 5 shape parameter, and
µ 5 location parameter.

6.5.1 Simulation from the 3-Parameter Weibull—
Observations from the 3-parameter Weibull are given by:

y8 5 µ 1 s~ 2 Ln ~RU!!1/h (16)

where:
Ln 5 natural logarithm.

6.6 Random observations from other continuous probability
distributions can be generated by the methods of 5.2 in Ref(8)
or Chapter 7 of Ref(5).
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