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Standard Practice for
Determination of Precision and Bias Data for Use in Test
Methods for Petroleum Products and Lubricants 1

This standard is issued under the fixed designation D 6300; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilonef indicates an editorial change since the last revision or reapproval.

INTRODUCTION

Both Research Report RR:D02-1001anual on Determining Precision Data for ASTM Methods
on Petroleum Products and Lubricarftand the ISO 4259, benefitted greatly from more than 50 years
of collaboration between ASTM and the Institute of Petroleum (IP) in the UK. The more recent work
was documented by the IP and has become ISO 4259.

ISO 4259 encompasses both the determination of precision and the application of such precision
data. In effect, it combines the type of information in RR:D02-f0@garding the determination of
the precision estimates and the type of information in Practice D 3244 for the utilization of test data.
The following practice, intended to replace RR:D02-18@iffers slightly from related portions of
the ISO standard. This new practice is consistent with the computer software, ADJD6300 D2PP,
Version 4.43, Determination of Precision and Bias Data for Use in Test Methods for Petroleum
Products.

1. Scope

1.1 This practice covers the necessary preparations and planning for the conduct of interlaboratory programs for the
development of estimates of precision (determinability, repeatability, and reproducibility) and of bias (absolute and relative), and
further presents the standard phraseology for incorporating such information into standard test methods.

1.2 This practice is generally limited to homogeneous products with which serious sampling problems do not normally arise.

1.3 This practice may not be suitable for solid or semisolid products such as petroleum coke, industrial pitches, paraffin waxes
greases, or solid lubricants when the heterogeneous properties of the substances create sampling problems. In such instances,
Practice E 691 or consult a trained statistician.

1.4 A software program (ADJD6300) performs the necessary computations prescribed by this practice.

* This practice is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcd@rfidtea Quality
Assurance and Statistics.

Current edition approvee-Juty-16,-20603. May 1, 2004. Published-September 2003. June 2004. Originally approved in 1998. Last previous edition app&s/as
D 6300-623.

2 Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02-1007.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
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2. Referenced Documents

2.1 ASTM Standards®

D 123 Terminology Relating to Textiles

D 3244 Practice for Utilization of Test Data to Determine Conformance with Specifications

E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E 456 Terminology Relating to Quality and Statistics

E 691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

2.2 1SO Standards:

ISO 4259 Petroleum Products-Determination and Application of Precision Data in Relation to Methods of Test

2.3 ASTM Adjuncts:

ADJD6300 D2PP, Version 4.43, Determination of Precision and Bias Data for Use in Test Methods for Petroleum®roducts

3. Terminology

3.1 Definitions:

3.1.1 analysis of variance (ANOVA)—a procedure for dividing the total variation of a set of data into two or more parts, one
of which estimates the error due to selecting and testing specimens and the other part(s) possible sources of added variation.

D 123

3.1.2 bias n—the difference between the population mean of the test results and an accepted reference valuds 456

3.1.3 bias, relative n—the difference between the population mean of the test results and an accepted reference value, which
is the agreed upon value obtained using an accepted reference method for measuring the same property.

3.1.4 degrees of freedonm—the divisor used in the calculation of variance.

3.1.4.1 Discussior—This definition applies strictly only in the simplest cases. Complete definitions are beyond the scope of this
practice. ISO 4259

3.1.5 determinability n—a quantitative measure of the variability associated with the same operator in a given laboratory
obtaining successive determined values using the same apparatus for a series of operations leading to a single result; it is define
as that difference between two such single determined values as would be exceeded in the long run in only one case in 20 in the
normal and correct operation of the test method.

3.1.5.1 Discussior—This definition implies that two determined values, obtained under determinability conditions, which differ
by more than the determinability value should be considered suspect. If an operator obtains more than two determinations, then
it would usually be satisfactory to check the most discordant determination against the mean of the remainder, using
determinability as the critical differend@).®

3.1.6 mean squaren— in analysis of variancea contraction of the expression “mean of the squared deviations from the

appropriate average(s)” where the divisor of each sum of squares is the appropriate degrees of freedom. D123
3.1.7 normal distribution n—the distribution that has the probability function:
f(x) = (Lor)(2m) exp [ (x— W %20] @
where:
X = arandom variate,
M = the mean distribution, and
o = the standard deviation of the distribution.

(Syn.Gaussian distribution, law of error) D123
3.1.8 outlier, n—a result far enough in magnitude from other results to be considered not a part of theR&&ID02—-1007
3.1.9 precision n—the degree of agreement between two or more results on the same property of identical test material. In this
practice, precision statements are framed in term®péatabilityand reproducibility of the test method.
3.1.9.1 Discussior—The testing conditions represented by repeatability and reproducibility should reflect the normal extremes
of variability under which the test is commonly used. Repeatability conditions are those showing the least variation;
reproducibility, the usual maximum degree of variability. Refer to the definitions of each of these terms for greater detail.
RR:D02-1007
3.1.10random error n—the chance variation encountered in all test work despite the closest control of variables.
RR:D02-1007

3 For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astArargaFBook of ASTM Standards
Vel-07-6%. volume information, refer to the standard’s Document Summary page on the ASTM website.

4 Available from International Organlzatron for Standardization, 1 rue de Varembé, Case postale 56, CH-1211 Geneva 20, Switzerland.

—Switzerland.

I 5Avarlable from ASTM—Standards—\:@H:‘l—OZ Internatlonal Headquarters Order Adjunct No ADJD6300

6The bold numbers in parentheses refer to a Irst of references at the end of thrs practrce
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3.1.11 repeatability n—the quantitative expression of the random error associated-with-a single the same operator in a given
laboratory obtaining repetitive results by applying the same test method with the same apparatus under constant operatir
conditions on identical test material within a short intervals-ef-time-on-the-same day. time. It is defined as the difference betweer
two such results at the 95 % confidence level. RR:D02-1007

3.1.11.1 Discussior—Interpret as the value equal to or below which the absolute difference between two single test results
obtained in the above conditions may expect to lie with a probability of 95 %. ISO 4259

3.1.11.2 Discussior—The difference is related to the repeatability standard deviation but it is not the standard deviation or its
estimate. RR:D02-1007

3.1.12 reproducibility, —a quantitative expression of the random error associated with different operators from different
laboratories using different apparatus, each obtaining a single result by applying the same test method on an identical test samp
It is defined as the 95 % confidence limit for the difference between two such single and independent results.

3.1.12.1 Discussior—Interpret as the value equal to or below which the absolute difference between two single test results on
identical material obtained by operators in different laboratories, using the standardized test, may be expected to lie with

probability of 95 %. ISO 4259
3.1.12.2 Discussior—The difference is related to the reproducibility standard deviation but is not the standard deviation or its
estimate. RR:D02-1007

3.1.12.3Discussior—In those cases where the normal use of the test method does not involve sending a sample to a testing
laboratory, either because it is an in-line test method or because of serious sample instabilities or similar reasons, the precision te
for obtaining reproducibility may allow for the use of apparatus from the participating laboratories at a common site (several
common sites, if feasible). The statistical analysis is not affected thereby. However, the interpretation of the reproducibility value
will be affected, and therefore, the precision statement shall, in this case, state the conditions to which the reproducibility value
applies.

3.1.13 standard deviationn—the most usual measure of the dispersion of observed values or results expressed as the positive
square root of the variance. E 456

3.1.14 sum of squares+— in analysis of variancea contraction of the expression “sum of the squared deviations from the
appropriate average(s)” where the average(s) of interest may be the average(s) of specific subset(s) of data or of the entire set
data. D 123

3.1.15 variance n—a measure of the dispersion of a series of accepted results about their average. It is equal to the sum of the
squares of the deviation of each result from the average, divided by the number of degrees of freedomRR:D02-1007

3.1.16 variance, between-laboratoryn—that component of the overall variance due to the difference in the mean values
obtained by different laboratories. ISO 4259

3.1.16.1 Discussior—When results obtained by more than one laboratory are compared, the scatter is usually wider than when
the same number of tests are carried out by a single laboratory, and there is some variation between means obtained by differe
laboratories. Differences in operator technique, instrumentation, environment, and sample “as received” are among the factors th
can affect the between laboratory variance. There is a corresponding definition for between-operator variance.

3.1.16.2 Discussior—The term “between-laboratory” is often shortened to “laboratory” when used to qualify representative
parameters of the dispersion of the population of results, for example as “laboratory variance.”

3.2 Definitions of Terms Specific to This Standard:

3.2.1 determination n—the process of carrying out a series of operations specified in the test method whereby a single value
is obtained.

3.2.2 operator, n—a person who carries out a particular test.

3.2.3 probability density functionn—function which yields the probability that the random variable takes on any one of its
admissible values; here, we are interested only in the normal probability.

3.2.4 result n—the final value obtained by following the complete set of instructions in the test method.

3.2.4.1 Discussior—It may be obtained from a single determination or from several determinations, depending on the
instructions in the method. When rounding off results, the procedures described in Practice E 29 shall be used.

4. Summary of Practice

4.1 Adraft of the test method is prepared and a pilot program can be conducted to verify details of the procedure and to estimat
roughly the precision of the test method.

4.2 Aplan is developed for the interlaboratory study using the number of participating laboratories to determine the number of
samples needed to provide the necessary degrees of freedom. Samples are acquired and distributed. The interlaboratory stud
then conducted on an agreed draft of the test method.

4.3 The data are summarized and analyzed. Any dependence of precision on the level of test result is removed b
transformation. The resulting data are inspected for uniformity and for outliers. Any missing and rejected data are estimated. Th
transformation is confirmed. Finally, an analysis of variance is performed, followed by calculation of repeatability, reproducibility,
and bias. When it forms a necessary part of the test procedure, the determinability is also calculated.
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5. Significance and Use

5.1 ASTM test methods are frequently intended for use in the manufacture, selling, and buying of materials in accordance with
specifications and therefore should provide such precision that when the test is properly performed by a competent operator, the
results will be found satisfactory for judging the compliance of the material with the specification. Statements addressing precision
and bias are required in ASTM test methods. These then give the user an idea of the precision of the resulting data and its
relationship to an accepted reference material or source (if available). Statements addressing determinability are sometimes
required as part of the test method procedure in order to provide early warning of a significant degradation of testing quality while
processing any series of samples.

5.2 Repeatability and reproducibility are defined in the precision section of every Committee D02 test method. Determinability
is defined above in Section 3. The relationship among the three measures of precision can be tabulated in terms of their different
sources of variation (see Table 1).

5.2.1 When used, determinability is a mandatory part of the Procedure section. It will allow operators to check their technique
for the sequence of operations specified. It also ensures that a result based on the set of determined values is not subject to excessi\
variability from that source.

5.3 Abias statement furnishes guidelines on the relationship between a set of test results and a related set of accepted referenc
values. When the bias of a test method is known, a compensating adjustment can be incorporated in the test method.

5.4 This practice is intended for use by D02 subcommittees in determining precision estimates and bias statements to be used
in D02 test methods. Its procedures correspond with 1ISO 4259 and are the basis for the Committee D02 computer software,
Calculation if Precision Data: Petroleum Test Methodisie use of this practice replaces that of Research Report RR:D0221007.

5.5 Standard practices for the calculation of precision have been written by many committees with emphasis on their particular
product area. One developed by Committee E11 on Statistics is Practice E 691. Practice E 691 and this practice differ as outlined
in Table 2.

6. Stages in Planning of an Interlaboratory Test Program for the Determination of the Precision of a Test Method

6.1 The stages in planning an interlaboratory test program are: preparing a draft method of test (see 6.2), planning and executing
a pilot program with at least two laboratories (optional but recommended for new test methods) (see 6.3), planning the
interlaboratory program (see 6.4), and executing the interlaboratory program (see 6.5). The four stages are described in turn.

6.2 Preparing a Draft Method of TestThis shall contain all the necessary details for carrying out the test and reporting the
results. Any condition which could alter the results shall be specified. The section on precision will be included at this stage only
as a heading.

6.3 Planning and Executing a Pilot Program with at Least Two Laboratories

6.3.1 A pilot program is recommended to be used with new test methods for the following red$dasudfrify the details in
the operation of the test2) to find out how well operators can follow the instructions of the test meth®)d{o( check the
precautions regarding sample handling and storage; 4ni stimate roughly the precision of the test.

6.3.2 At least two samples are required, covering the range of results to which the test is intended to apply; however, include
at least 12 laboratory-sample combinations. Test each sample twice by each laboratory under repeatability conditions. If any
omissions or inaccuracies in the draft method are revealed, they shall now be corrected. Analyze the results for precision, bias, and
determinability (if applicable) using this practice. If any are considered to be too large for the technical application, then consider
alterations to the test method.

6.4 Planning the Interlaboratory Program

6.4.1 There shall be at least five participating laboratories, but it is preferable to exceed this number in order to reduce the
number of samples required and to make the precision statement as representative as possible of the qualified user population.

6.4.2 The number of samples shall be sufficient to cover the range of the property measured, and to give reliability to the
precision estimates. If any variation of precision with level was observed in the results of the pilot program, then at least five
samples shall be used in the interlaboratory program. In any case, it is necessary to obtain at least 30 degrees of freedom in bott
repeatability and reproducibility. For repeatability, this means obtaining a total of at least 30 pairs of results in the program.

6.4.3 For reproducibility, Fig. 1 gives the minimum number of samples required in terim$qfandQ, whereL is the number
of participating laboratories, and and Q are the ratios of variance component estimates (see 8.3.1) obtained from the pilot
program. SpecificallyP is the ratio of the interaction component to the repeats component) asthe ratio of the laboratories
component to the repeats component.

TABLE 1 Sources of Variation

Method Apparatus Operator Laboratory Time
Reproducibility Complete Different Different Different Specified
(Result)
Repeatability Complete Same Same Same Almost same
(Result)
Determinability Incomplete Same Same Same Almost same
(Part result)
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TABLE 2 Differences in Calculation of Precision in Practices

D 6300 and E 691

Element

This Practice

Practice E 691

Applicability

Number of duplicates

Precision is written
for

Outlier tests:
Within laboratories
Between
laboratories

Outliers

Rejection limit

Analysis of variance

Precision multiplier

Variation of precision
with level

Limited in general to
homogeneous samples for
which serious sampling
problems do not normally
arise.

Two

Test method

Sequential
Cochran test
Hawkins test

Rejected, subject to
subcommittee approval.

Retesting not generally
permitted.

20 %

Two-way, applied globally
to all the remaining data
at once.

t~\/2, where tis the two-
tailed Student’s tfor 95 %
probability.

Increases with decreasing
laboratories X samples
particularly below 12.

Minimized by data
transformation. Equations
for repeatability and

Permits heterogeneous
samples.

Any number

Each sample

Simultaneous
k-value
h-value

Rejected if many
laboratories or for cause
such as blunder or not
following method.

Laboratory may retest
sample having rejected
data.

5%

One-way, applied to each

sample separately.

2.8=1.96 \/2

Constant.

User may assess from
individual sample
precisions.

reproducibility are generated
in the retransformation
process.

Note 1—Appendix X1 gives the derivation of the equation use® I§ much larger thaR, then 30 degrees of freedom cannot be achieved; the blank
entries in Fig. 1 correspond to this situation or the approach of it (that is, when more than 20 samples are required). For these cases, there is likely |
be a significant bias between laboratories. The program organizer shall be informed; further standardization of the test method may be necessary.

6.5 Executing the Interlaboratory Program

6.5.1 One person shall oversee the entire program, from the distribution of the texts and samples to the final appraisal of th
results. He or she shall be familiar with the test method, but should not personally take part in the actual running of the tests.

6.5.2 The text of the test method shall be distributed to all the laboratories in time to raise any queries before the tests begir
If any laboratory wants to practice the test method in advance, this shall be done with samples other than those used in the progra

6.5.3 The samples shall be accumulated, subdivided, and distributed by the organizer, who shall also keep a reserve of ea
sample for emergencies. It is most important that the individual laboratory portions be homogeneous. Instructions to eacl
laboratory shall include the following:

6.5.3.1 The agreed draft method of test;

6.5.3.2 Material Safety Data Sheets, where applicable, and the handling and storage requirements for the samples;

6.5.3.3 The order in which the samples are to be tested (a different random order for each laboratory);

6.5.3.4 The statement that two test results are to be obtained in the shortest practical period of time on each sample by the sal
operator with the same apparatus. For statistical reasons it is imperative that the two results are obtained independently of ea
other, that is, that the second result is not biased by knowledge of the first. If this is regarded as impossible to achieve with the
operator concerned, then the pairs of results shall be obtained in a blind fashion, but ensuring that they are carried out in a shc
period of time (preferably the same day). The tdslimd fashionmeans that the operator does not know that the sample is a
duplicate of any previous run.
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L = number of participating P = interaction variance component/ Q = laboratories variance compo-
laboratories repeats variance component nent/repeats variance
component
L=5 L=6 L=7
Q: 0 1 2 3 45 6 7 8 9 Q: 0 1 2 3 4 5 6 7 8 9 Q: 0 1 2 3 4 5 6 7 8 9
P: 0 4 P: 0 3 P: 0 4
1 5 1 41 1 5
2 61 2 57 2 61
3 69 3 5 714 3 6 9
4 7 816 4 5 610 4 7 816
5 7 812 5 6 6 815 5 7 812
6 7 81119 6 6 6 811 6 7 81119
7 7 81015 7 6 6 71015 7 7 81015
8 7 8 913 8 6 6 7 91 8 7 8 913
9 7 8 91117 9 6 6 7 81015 9 7 8 91117
L=8 L=9 L=10
Q: 0 1 2 3 4 5 6 7 8 9 Q: 0 1 2 3 45 6 7 8 9 Q: 0 1 2 3 4 5 6 7 8 9
P: 0 3 P: 0 2 P:1 2 8
1 3 5 1 3 4 13 41
2 4 5 9 2 3 4 7 2 3 4 512
3 4 5 71 33 459 33 3 4 613
4 4 & 6 920 4 4 4 5 611 4 3 4 4 5 714
5 4 4 5 7M1 5 4 45 6 712 5 3 4 4 5 6 814
6 4 4 5 6 813 6 4 4 4 5 6 9 1% 6 3 4 & 4 5 6 914
7 4 4 5 6 71016 7 4 4 4 5 6 71015 7 3 4 4 465 6 7 91
8 4 55 6 6 81118 8 4 4 4 5 5 6 81016 8 3 4 4 4 5 5 6 71014
9 4 5 5 5 6 7 913 9 4 4 4 5 5 6 7 81118 9 4 4 4 &4 4 5 6 6 810
L=11 L=12 L=13
@: 0 1 2 3 45 6 7 8 9 Q: 0 1 2 3 4 5 6 7 8 9 Q: 0 1 2 3 45 6 7 8 9
P: 0 2 4 P: 0 2 4 P: 0 2 3
12 35 12 35 1 2 3 412
2 3 3 37 2 2 3 4 614 2 2 3 3 4 8
333 45 8 3 33 3 4& 61 32 3 3 45 714
& 3 3 4 4 6 8 18 4 3 3 3 45 6 9 4 3 33 3 45 710
5 3 3 4 4 5 6 915 5 3 3 3 4 4 5 6 916 5 3 33 3 4 4 5 6 915
6 3 3 3 4 45 6 914 6 333 3 4 45 6 913 6 3 3 3 3 3 4 45 6 8
7 3 3 3 4 4557 913 7 33 3 3 4 455 6 8 73 3 3 3 3 4 4 4 56
8 33 3 4 4 45 6709 8 3 3 3 3 4 4 4 55 6 8 3 3 3 3 3 3 4 455
9 3 3 3 4 4 4 55 6 7 9 3 3 3 3 3 4 4 & 5 6 9 3 3 3 3 3 3 4 4 & 5
L=14 L=15 L=16
Q: 0 1 2 3 4 5 6 7 8 9 Q: 0 1 2 3 45 6 7 8 9 Q:0 1 2 3 45 6 7 8 9
P: 0 2 3 P: 0 2 213 P: 0 2 5
122 3 7 12 2 3 519 12 2 3 4 8
2 2 2 3 4 612 2 2 2 3 3 4 7 2 2 2 2 3 45 9
3 22 3 3 4 5 818 3 22 3 3 3 4 69 3 2223 3 4 4 69
4 2 3 3 3 3 45 7TN 4 2 2 3 3 4 & 5 710 & 2 2 23 3 3 4 4 5 6
5 2 3 3 3 3 4 45 6 8 5 2 2 3 33 3 4 45 6 5 2 2 2 3 3 3 3 4 45
6 3 3 3 3 3 3 4 4 5 6 6 2 2 3 3 3 3 3 4 45 6 2 2 2 2 3 3 3 3 4 4
73 333 33 3 4 45 7 2 2 3 3 3 33 3 404 7 2 22 2333334
8 3 3 3 3 3 3 3 4 4 4 8 223 3 333 3 34 8 2222333333
9 3 3 3 3 3 3 3 3 4L 4 9 2 2 3 3 3 3 3 3 3 3 9 2 2 2 2 3 33 3 33

FIG. 1 Determination of Number of Samples Required (see 6.4.3)

6.5.3.5 The period of time during which repeated results are to be obtained and the period of time during which all the samples
are to be tested;

6.5.3.6 A blank form for reporting the results. For each sample, there shall be space for the date of testing, the two results, and
any unusual occurrences. The unit of accuracy for reporting the results shall be specified. This should be, if possible, more digits
reported than will be used in the final test method, in order to avoid having rounding unduly affect the estimated precision values.

6.5.3.7 When it is required to estimate the determinability, the report form must include space for each of the determined values
as well as the test results.

6.5.3.8 A statement that the test shall be carried out under normal conditions, using operators with good experience but not
exceptional knowledge; and that the duration of the test shall be the same as normal.
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6.5.4 The pilot program operators may take part in the interlaboratory program. If their extra experience in testing a few more
samples produces a noticeable effect, it will serve as a warning that the test method is not satisfactory. They shall be identified i
the report of the results so that any such effect may be noted.

6.5.5 It can not be overemphasized that the statement of precision in the test method is to apply to test results obtained b
running the agreed procedure exactly as written. Therefore, the test method must not be significantly altered after its precisio
statement is written.

7. Inspection of Interlaboratory Results for Uniformity and for Outliers

7.1 Introduction

7.1.1 This section specifies procedures for examining the results reported in a statistically designed interlaboratory program (se
Section 6) to establish:

7.1.1.1 The independence or dependence of precision and the level of results;

7.1.1.2 The uniformity of precision from laboratory to laboratory, and to detect the presence of outliers.

Note 2—The procedures are described in mathematical terms based on the notation of Annex Al and illustrated with reference to the example dat
(calculation of bromine number) set out in Annex A2. Throughout this section (and Section 8), the procedures to be used are first specified and the
illustrated by a worked example using data given in Annex A2.

Note 3—It is assumed throughout this section that all the deviations are either from a single normal distribution or capable of being transformed into
such a distribution (see 7.2). Other cases (which are rare) would require different treatment that is beyond the scope of this p(@}ficeaSeaistical
test of normality.

Note 4—Although the procedures shown here are in a form suitable for hand calculation, it is strongly advised that an electronic computer be usec
to store and analyze interlaboratory test results, based on the procedures of this practice. ADJD6300 D2PP, Version 4.43, Determinatiom afidrecisio
Bias Data for Use in Test Methods for Petroleum Products, has been designed for this purpose.

7.2 Transformation of Data

7.2.1 In many test methods the precision depends on the level of the test result, and thus the variability of the reported resuli
is different from sample to sample. The method of analysis outlined in this practice requires that this shall not be so and the positio
is rectified, if necessary, by a transformation.

7.2.2 The laboratories’ standard deviati@)sand the repeats standard deviatidpee Annex Al) are calculated and plotted
separately against the sample meamslf the points so plotted may be considered as lying about a pair of lines parallel to the
mraxis, then no transformation is necessary. If, however, the plotted points describe non-horizontal straight lines or curves of th
form D = f,(m) andd = f,(m), then a transformation will be necessary.

7.2.3 The relationshipp = f ;(m) andd = f,(m) will not in general be identical. The statistical procedures of this practice
require, however, that the same transformation be applicable both for repeatability and for reproducibility. For this reason the twc
relationships are combined into a single dependency relatiom3higf (m) (whereD now includesd) by including a dummy
variableT. This will take account of the difference between the relationships, if one exists, and will provide a means of testing for
this difference (see A4.1).

7.2.4 The single relationship = f(m) is best estimated by weighted linear regression analysis. Strictly speaking, an iteratively
weighted regression should be used, but in most cases even an unweighted regression will give a satisfactory approximation. Tl
derivation of weights is described in A4.2, and the computational procedure for the regression analysis is described in A4.3. Typica
forms of dependencP = f(m) are given in A3.1. These are all expressed in terms of at most two (2) transformation parameters,
B and B,

7.2.5 The typical forms of dependence, the transformations they give rise to, and the regressions to be performed in order t
estimate the transformation parametBrsare all summarized in A3.2. This includes statistical tests for the significance of the
regression (that is, is the relationsHip = f(m) parallel to them-axis), and for the difference between the repeatability and
reproducibility relationships, based at the 5% significance level. If such a difference is found to exist, or if no suitable
transformation exists, then the alternative methods of Practice E 691 shall be used. In such an event it will not be possible to te:
for laboratory bias over all samples (see 7.6) or separately estimate the interaction component of variance (see 8.2).

7.2.6 If it has been shown at the 5 % significance level that there is a significant regression of thg fof¢m), then the
appropriate transformation = F(x), wherex is the reported result, is given by the equation

d
F(x) =K f % )

whereK = a constant. In that event, all results shall be transformed accordingly and the remainder of the analysis carried out ir
terms of the transformed results. Typical transformations are given in A3.1.

7.2.7 The choice of transformation is difficult to make the subject of formalized rules. Qualified statistical assistance may be
required in particular cases. The presence of outliers may affect judgement as to the type of transformation required, if any (se
7.7).

7.2.8 Worked Exampte

7.2.8.1 Table 3 lists the valuesmf, D, andd for the eight samples in the example given in Annex A2, correct to three significant
digits. Corresponding degrees of freedom are in parentheses. Inspection of the values in Table 3 showsataidubihcrease
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TABLE 3 Computed from Bromine Example Showing Dependence of Precision on Level

Sample Number 3 8 1 4 5 6 2 7
m 0.756 1.22 2.15 3.64 10.9 48.2 65.4 114
D 0.0669 (14) 0.159 (9) 0.729 (8) 0.211 (11) 0.291 (9) 1.50 (9) 2.22 (9) 2.93 (9)
d 0.0500 (9) 0.0572 (9) 0.127 (9) 0.116 (9) 0.0943 (9) 0.527 (9) 0.818 (9) 0.935 (9)

with m, the rate of increase diminishing asincreases. A plot of these figures on log-log paper (that is, a graph @ kxgdlog
d againstog m) shows that the points may reasonably be considered as lying about two straight lines (see Fig. A4.1 in Annex A4).
From the example calculations given in A4.4, the gradients of these lines are shown to be the same, with an estimated value of
0.638. Bearing in mind the errors in this estimated value, the gradient may for convenience be taken as 2/3.

f K5 dx = 36 @3)

7.2.8.2 Hence, the same transformation is appropriate both for repeatability and reproducibility, and is given by the equation.
Since the constant multiplier may be ignored, the transformation thus reduces to that of taking the cube roots of the reported
bromine numbers. This yields the transformed data shown in Table A1.3, in which the cube roots are quoted correct to three
decimal places.

7.3 Tests for Outliers

7.3.1 The reported data or, if it has been decided that a transformation is necessary, the transformed results shall be inspectec
for outliers. These are the values which are so different from the remainder that it can only be concluded that they have arisen from
some fault in the application of the test method or from testing a wrong sample. Many possible tests may be used and the associatec
significance levels varied, but those that are specified in the following subsections have been found to be appropriate in this
practice. These outlier tests all assume a normal distribution of errors.

7.3.2 Uniformity of Repeatability—The first outlier test is concerned with detecting a discordant result in a pair of repeat results.
This test(3) involves calculating the; 2 over all the laboratory/sample combinations. Cochran’s criterion at the 1 % significance
level is then used to test the ratio of the largest of these values over their sum (see A1.5). If its value exceeds the value given in
Table A2.2, corresponding to one degree of freedoreing the number of pairs available for comparison, then the member of
the pair farthest from the sample mean shall be rejected and the process repeated, rebycingntil no more rejections are
called for. In certain cases, specifically when the number of digits used in reporting results leads to a large number of repeat ties,
this test can lead to an unacceptably large proportion of rejections, for example, more than 10 %. If this is so, this rejection test
shall be abandoned and some or all of the rejected results shall be retained. A decision based on judgement will be necessary ir
this case.

7.3.3 Worked Example- In the case of the example given in Annex A2, the absolute differences (ranges) between transformed
repeat results, that is, of the pairs of numbers in Table A1.3, in units of the third decimal place, are shown in Table 4. The largest
range is 0.078 for Laboratory G on Sample 3. The sum of squares of all the ranges is

0.04Z + 0.02% + . . . +0.026 + 0% = 0.0439.
Thus, the ratio to be compared with Cochran’s criterion is

0.078
0.0439~ 0138 Q)

where 0.138 is the result obtained by electronic calculation of unrounded factors in the expression. There are 72 ranges and as,
from Table A2.2, the criterion for 80 ranges is 0.1709, this ratio is not significant.

7.3.4 Uniformity of Reproducibility.

7.3.4.1 The following outlier tests are concerned with establishing uniformity in the reproducibility estimate, and are designed
to detect either a discordant pair of results from a laboratory on a particular sample or a discordant set of results from a laboratory
on all samples. For both purposes, the Hawkins’ (¢§is appropriate.

TABLE 4 Absolute Differences Between Transformed Repeat
Results: Bromine Example

Laboratory Sample

1 2 3 4 5 6 7 8
A 42 21 7 13 7 10 8 0
B 23 12 12 0 7 9 3 0
Cc 0 6 0 0 7 8 4 0
D 14 6 0 13 0 8 9 32
E 65 4 0 0 14 5 7 28
F 23 20 34 29 20 30 43 0
G 62 4 78 0 0 16 18 56
H 44 20 29 44 0 27 4 32
J 0 59 0 40 0 30 26 0
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7.3.4.2 This involves forming for each sample, and finally for the overall laboratory averages (see 7.6), the ratio of the largest
absolute deviation of laboratory mean from sample (or overall) mean to the square root of certain sums of squares (Al.6).

7.3.4.3 The ratio corresponding to the largest absolute deviation shall be compared with the critical 1 % values given in Table
A1.5, wheren is the number of laboratory/sample cells in the sample (or the number of overall laboratory means) concerned anc
wherev is the degrees of freedom for the sum of squares which is additional to that corresponding to the sample in question. Ir
the test for laboratory/sample cellswill refer to other samples, but will be zero in the test for overall laboratory averages.

7.3.4.4 If a significant value is encountered for individual samples the corresponding extreme values shall be omitted and thi
process repeated. If any extreme values are found in the laboratory totals, then all the results from that laboratory shall be rejecte

7.3.4.5 If the test leads to an unacceptably large proportion of rejections, for example, more than 10 %, then this rejection tes
shall be abandoned and some or all of the rejected results shall be retained. A decision based on judgement will be necessary
this case.

7.3.5 Worked Exampte

7.3.5.1 The application of Hawkins’ test to cell means within samples is shown below.

7.3.5.2 The first step is to calculate the deviations of cell means from respective sample means over the whole array. These a
shown in Table 5, in units of the third decimal place. The sum of squares of the deviations are then calculated for each sample
These are also shown in Table 5 in units of the third decimal place.

7.3.5.3 The cell to be tested is the one with the most extreme deviation. This was obtained by Laboratory D from Sample 1
The appropriate Hawkins’ test ratio is therefore:

- 0.314 B
~ /0.117+ 0.015+ ...+ 0.017

7.3.5.4 The critical value, correspondingries 9 cells in sample 1 and= 56 extra degrees of freedom from the other samples
is interpolated from Table A1.5 as 0.3729. The test value is greater than the critical value, and so the results from Laboratory L
on Sample 1 are rejected.

7.3.5.5 As there has been a rejection, the mean value, deviations, and sum of squares are recalculated for Sample 1, and
procedure is repeated. The next cell to be tested will be that obtained by Laboratory F from Sample 2. The Hawkins’ test ratio fol
this cell is:

B* 0.7281 (5)

B 0.097
~ 4/0.006+ 0.015+ ...+ 0.017

7.3.5.6 The critical value correspondingric= 9 cells in Sample 2 and = 55 extra degrees of freedom is interpolated from
Table A1.5 as 0.3756. As the test ratio is less than the critical value there will be no further rejections.

7.4 Rejection of Complete Data from a Sample

7.4.1 The laboratories standard deviation and repeats standard deviation shall be examined for any outlying samples. If
transformation has been carried out or any rejection made, new standard deviations shall be calculated.

7.4.2 If the standard deviation for any sample is excessively large, it shall be examined with a view to rejecting the results from
that sample.

7.4.3 Cochran’s criterion at the 1 % level can be used when the standard deviations are based on the same number of degre
of freedom. This involves calculating the ratio of the largest of the corresponding sums of squares (laboratories or repeats, &
appropriate) to their total (see A1.5). If the ratio exceeds the critical value given in Table A2.2) agtthe number of samples
andv the degrees of freedom, then all the results from the sample in question shall be rejected. In such an event, care should |
taken that the extreme standard deviation is not due to the application of an inappropriate transformation (see 7.1), or undetect
outliers.

7.4.4 There is no optimal test when standard deviations are based on different degrees of freedom. However, the ratio of th
largest variance to that pooled from the remaining samples folloWsdiatribution withv, andv, degrees of freedom (see A1.7).

B = 0.3542 (6)

TABLE 5 Deviations of Cell Means from Respective Sample
Means: Transformed Bromine Example

Sample
Laboratory 1 2 3 4 5 6 7 8
A 20 8 14 15 10 48 6 3

I OGTMMmMOO
~
al
©
~
w
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N
=]
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=]
™
~
N
15
@

Sum of Squares 117 15 4 6 3 11 13 17
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Herev, is the degrees of freedom of the variance in questionvamglthe degrees of freedom from the remaining samples. If the
ratio is greater than the critical value given in A2.6, corresponding to a significance level o0& Béfe S is the number of
samples, then results from the sample in question shall be rejected.

7.4.5 Worked Exampte

7.4.5.1 The standard deviations of the transformed results, after the rejection of the pair of results by Laboratory D on Sample
1, are given in Table 6 in ascending order of sample mean, correct to three significant digits. Corresponding degrees of freedom
are in parentheses.

7.4.5.2 Inspection shows that there is no outlying sample among these. It will be noted that the standard deviations are now
independent of the sample means, which was the purpose of transforming the results.

7.4.5.3 The values in Table 7, taken from a test program on bromine numbers over 100, will illustrate the case of a sample
rejection.

7.4.5.4 ltis clear, by inspection, that the laboratories standard deviation of Sample 93 at 15.76 is far greater than the others. It
is noted that the repeats standard deviation in this sample is correspondingly large.

7.4.5.5 Since laboratory degrees of freedom are not the same over all samples, the variance ratio test is used. The variance
pooled from all samples, excluding Sample 93, is the sum of the sums of squares divided by the total degrees of freedom, that is

(8 X 5.10° +9x4.20° + ... + 8x 3.85) _

8+9+..+8) =19.96 ™
7.4.5.6 The variance ratio is then calculated as
15.26
1906~ 1166 ®)

where 11.66 is the result obtained by electronic calculation without rounding the factors in the expression.

7.4.5.7 From Table A1.8 the critical value corresponding to a significance level of 0.01/8 = 0.00125, on 8 and 63 degrees of
freedom, is approximately 4. The test ratio greatly exceeds this and results from Sample 93 shall therefore be rejected.

7.4.5.8 Turning to repeats standard deviations, it is noted that degrees of freedom are identical for each sample and that
Cochran’s test can therefore be applied. Cochran’s criterion will be the ratio of the largest sum of squares (Sample 93) to the sum
of all the sums of squares, that is

29—2111 44.0902‘-“. . 2 _ (9)

2.97/(1.13 + 0.99° +...+ 1.36%) = 0.510 9)

This is greater than the critical value of 0.352 corresponding+d8 andv = 8 (see Table A2.2), and confirms that results from
Sample 93 shall be rejected.

7.5 Estimating Missing or Rejected Values

7.5.1 One of the Two Repeat Values Missing or Rejeettcbne of a pair of repeats Yj; or Yj;,) is missing or rejected, this
shall be considered to have the same value as the other repeat in accordance with the least squares method.

7.5.2 Both Repeat Values Missing or Rejected

7.5.2.1 If both the repeat values are missing, estimatag Gf Y;;; + Y;,) shall be made by forming the laboratorigssamples
interaction sum of squares (see Eq 17), including the missing values of the totals of the laboratories/samples pairs of results as
unknown variables. Any laboratory or sample from which all the results were rejected shall be ignored and new \‘ahrm$ of
Sused. The estimates of the missing or rejected values shall be those that minimize the interaction sum of squares.

7.5.2.2 If the value of single pair sugj has to be estimated, the estimate is given by the equation:

% = =1 (51 (LL, + 8§ -Ty) (10)
where
L, = total of remaining pairs in thih laboratory,
S, = total of remaining pairs in thigh sample,
S = S- number of samples rejected in 7.4, and
T, = total of all pairs excepd;.

7.5.2.3 If more estimates are to be made, the technique of successive approximation can be used. In this, each pair sum is

TABLE 6 Standard Deviations of Transformed Results: Bromine Example

Sample number 3 8 1 4 5 6 2 7
m 0.9100 1.066 1.240 1.538 2.217 3.639 4.028 4.851
D 0.0278 0.0473 0.0354 0.0297 0.0197 0.0378 0.0450 0.0416
(14 (9) (13) (11) (9) 9) (9) (9)
d 0.0214 0.0182 0.028 0.0164 0.0063 0.0132 0.0166 0.0130
(9) (9) (8) 9) 9) (9 (9) (9)

10
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TABLE 7 Example Statistics Indicating Need to Reject an Entire Sample

Sample number 90 89 93 92 91 94 95 96
m 96.1 99.8 119.3 125.4 126.0 139.9 139.4 159.5
D 5.10 4.20 15.26 4.40 4.09 4.87 4.74 3.85
(8) 9) ® (11) (10) (®) 9 ®)
d 1.13 0.99 2.97 0.91 0.73 1.32 1.12 1.36
(8) (8) (8) (8) (8) (8) (8) (8)

estimated in turn from Eq 10, usifg,, S;, andT ,, values, which contain the latest estimates of the other missing pairs. Initial
values for estimates can be based on the appropriate sample mean, and the process usually converges to the required leve
accuracy within three complete iteratiof.

7.5.3 Worked Exampte

7.5.3.1 The two results from Laboratory D on Sample 1 were rejected (see 7.3.4) arad,thuss to be estimated.

Total of remaining results in Laboratory 4 = 36.354
Total of remaining results in Sample 1 = 19.845
Total of all the results except a,,= 348.358

Also S'=8and L = 9.

Hence, the estimate @i, is given by

1
% = 00 @D [(9 X 36.354 + (8 X 19.845 — 348.358] (11)
Therefore,
137.588
8y = —gg— = 2457 (12)

7.6 Rejection Test for Outlying Laboratories

7.6.1 At this stage, one further rejection test remains to be carried out. This determines whether it is necessary to reject th
complete set of results from any particular laboratory. It could not be carried out at an earlier stage, except in the case where n
individual results or pairs are missing or rejected. The procedure again consists of Hawkins’ test (see 7.3.4), applied to the
laboratory averages over all samples, with any estimated results included. If any laboratories are rejected on all samples, ne
estimates shall be calculated for any remaining missing values (see 7.5).

7.6.2 Worked Exampte

7.6.2.1 The procedure on the laboratory averages shown in Table 8 follows exactly that specified in 7.3.4. The deviations o
laboratory averages from the overall mean are given in Table 9 in units of the third decimal place, together with the sum of square:
Hawkins’ test ratio is therefore:

B* = 0.026A/0.00222= 0.5518 (13)

Comparison with the value tabulated in Table A1.5,icr 9 andv = 0, shows that this ratio is not significant and therefore no
complete laboratory rejections are necessary.

7.7 Confirmation of Selected Transformation

7.7.1 At this stage it is necessary to check that the rejections carried out have not invalidated the transformation used. |
necessary, the procedure from 7.2 shall be repeated with the outliers replaced, and if a new transformation is selected, outlier te:
shall be reapplied with the replacement values reestimated, based on the new transformation.

7.7.2 Worked Exampte

7.7.2.1 It was not considered necessary in this case to repeat the calculations from 7.2 with the outlying pair deleted.

8. Analysis of Variance and Calculation of Precision Estimates

8.1 After the data have been inspected for uniformity, a transformation has been performed, if necessary, and any outliers hax
been rejected (see Section 7), an analysis of variance shall be carried out. First an analysis of variance table shall be construct
and finally the precision estimates derived.

8.2 Analysis of Variance

8.2.1 Forming the Sums of Squares for the LaboratorieSamples Interaction Sum of Square3 he estimated values, if any,
shall be put in the array and an approximate analysis of variance performed.

M = mean correctior= T4/2L'S (14)

TABLE 8 Averages of All Transformed Results from Each Laboratory

Laboratory A B c D E F G H J Grand
Average
Average 2.437 2.439 2.424 2.4267 2.444 2.458 2.410 2.428 2.462 2.436

A Including estimated value.

11
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TABLE 9 Absolute Deviations of Laboratory Averages from Grand Average X 1000
Laboratory A B c D E F G H J Sum of
Squares
Deviation 1 3 12 10 8 22 26 8 26 2.22

where:

L" = L - number of laboratories rejected in 7.6 — number of laboratories with no remaining results after rejections in 7.3.4,
S = total of remaining pairs in thgh sample, and

T = the total of all duplicate test results.

S
Samples sum of squares [_El (gjz/2L’) 1-M (15)
=

whereg; is the sum of samplgtest results.
g
Laboratories sum of squares[_El (h%28)]-M (16)
=

whereh; is the sum of laboratory test results.

L s
Pairs sum of squares (1/2) [El El aj]-M (17)
i=1j=

Laboratories< samples interaction sum of squares

(pairs sum of squares) — (laboratories sum of squares)

— (sample sum of squares)

Ignoring any pairs in which there are estimated values, repeats sum of squares,

L' s
E=(1/2 gl j;l G (18)

The purpose of performing this approximate analysis of variance is to obtain the minimized labor&tegewles interaction

sum of squared, This is then used as indicated in 8.2.2, to obtain the laboratories sum of squares. If there were no estimated

values, the above analysis of variance is exact and paragraph 8.2.2 shall be disregarded.
8.2.1.1 Worked Exampte

_350.815
Mean correction= —1aa (29)

= 854.6605
where 854.6605 is the result obtained by electronic calculation without rounding the factors in the expression.

Samples sum of squares

~22.302 + 72512 + ...+ 19.192
- 18

= 293.5409

— 854.6605 (20)

Laboratories sum of squares

~38.992 +39.02G + ... + 39.387

16
— 854.6605 (21)
= 0.0356
Pairs sum of squares (1/2) (2.52G + 8.04F + ... + 2.238) — 854.6605 (22)
= 293.6908
Repeats sum of squares (1/2) (0.042 + 0.02F + ... + 0% (23)
=0.0219

Table 10 can then be derived.
8.2.2 Forming the Sum of Squares for the Exact Analysis of Variance
8.2.2.1 In this subsection, all the estimated pairs are disregarded and new vafjleseotalculated. The following sums of

12
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TABLE 10 Sums of Squares: Bromine Example

Sources of Variation Sum of Squares
Samples 293.5409
Laboratories 0.0356
Laboratories X samples interaction 0.1143
Pairs 293.6908
Repeats 0.0219

squares for the exact analysis of variari@gare formed.

S 2
Uncorrected sample sum of squares 1%’ (24)
=
where:
§ = 2(L' — number of missing pairs in that sample).
L s
Uncorrected pairs sum of squares1/2) El 21 a (25)
i=1j=

The laboratories sum of squares is equal to (pairs sum of squares) — (samples sum of squares) — (the minimized laboratories
samples interaction sum of squares)

L s ) S g]z
-z 54-| 54 29)

8.2.2.2 Worked Example
Uncorrected samples sum of squares

 19.845 72512 19.192

=1145.1834
_ 252G 8.047 2.238¢
Uncorrected pairs sum of squares—— + ——+ ... + — (28)
= 1145.3329
Therefore, laboratories sum of squares
= 1145.3329 — 1145.1834 0.1143 (29)

= 0.0352

8.2.3 Degrees of Freedom
8.2.3.1 The degrees of freedom for the laboratories larel). The degrees of freedom for laboratoriesamples interaction
are ('-1)(S—1) for a complete array and are reduced by one for each pair which is estimated. The degrees of freedom for repeat
are ('S) and are reduced by one for each pair in which one or both values are estimated.
8.2.3.2 Worked Example- There are eight samples and nine laboratories in this example. As no complete laboratories or
samples were rejected, th&h= 8 andL’ = 9.
Laboratories degrees of freedomlL= 1 = 8.

Laboratoriesx samples interaction degrees of freedom if there had been no estimates, would have been (9 — 1)(8 — 1) = 56. Bu
one pair was estimated, hence laboratokesamples interaction degrees of freedom = 55. Repeats degrees of freedom would have
been 72 if there had been no estimates. In this case one pair was estimated, hence repeats degrees of freedom = 71.

8.2.4 Mean Squares and Analysis of Variance

8.2.4.1 The mean square in each case is the sum of squares divided by the corresponding degrees of freedom. This leads to
analysis of variance shown in Table 11. The ra\iq/M, g is distributed a$- with the corresponding laboratories and interaction
degrees of freedom (see Al.7). If this ratio exceeds the 5 % critical value given in Table A1.6, then serious bias between the
laboratories is implied and the program organizer shall be informed (see 6.5); further standardization of the test method may b
necessary, for example, by using a certified reference material.

8.2.4.2 Worked Example- The analysis of variance is shown in Table 12. The r&tjdM, 5 = 0.0044/0.002078 has a value
2.117. This is greater than the 5 % critical value obtained from Table A1.6, indicating bias between laboratories.

8.3 Expectation of Mean Squares and Calculation of Precision Estimates

8.3.1 Expectation of Mean Squares with No Estimated Valdlesr a complete array with no estimated values, the expectations
of mean squares are

13
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TABLE 11 Analysis of Variance Table

Sources of Variation Degrees of Freedom Sum of Squares Mean
Square
Laboratories L'-1 Laboratories sum of M,
squares
Laboratories X (L" = 1) (S = 1) = number I} M, s
samples of estimated pairs
Repeats L'S" = number of pairs in E M,

which one or both values
are estimated

TABLE 12 Analysis of Variance Table: Transformed Benzene

Example
Source of Variation Sum of Degrees of Mean Square F
Squares Freedom
Laboratories 0.0352 8 0.004400 2.117
Laboratories X 0.1143 55 0.002078
samples
Repeats 0.0219 71 0.000308
Laboratories: 0,2 + 20,2 + 2S' 0,2
Laboratories X samples: 0,2+ 20,2
Repeats: 0,2
where:
o 322 = the component of variance due to interaction between laboratories and samples, and
o,~ = the component of variance due to differences between laboratories.

8.3.2 Expectation of Mean Squares with Estimated Values
8.3.2.1 The coefficients af,? ando,” in the expectation of mean squares are altered in the cases where there are estimated
values. The expectations of mean squares then become

Laboratories: ao,? + 20,2 + B 0,2
Laboratories X samples:yo o2 + 20,2
Repeats: 0,2

where:

K-8
B=2p—7 (30)

where:
K = the number of laboratorx sample cells containing at least one result, anghdy are computed as in 8.3.2.5
8.3.2.2 If there are no cells with only a single estimated result, theny = 1.
8.3.2.3 If there are no empty cells (that is, every lab has tested every sample at least otce, lail S'), thena andwy are
both one plus the proportion of cells with only a single result.
8.3.2.4 If there are both empty cells and cells with only one result, then, for each lab, compute the proportion of samples tested
for which there is only one resulp;, and the sum of these proportions over all laBsk-or each sample, compute the proportion
of labs that have tested the sample for which there is only one resultgnatd the sum of these proportions over samples,
Compute the total number of cells with only one res\Wt,and the proportion of these among all nonempty c8lI#( Then
P —WIK
a=1+ -1 (31)
and
W-P-Q + WK

KLU -S+1_ (32)

y=1+

Note 5—These subsections are based upon the assumptions that both samples and laboratories are random effects.
8.3.2.5 Worked Example- For the example, which has eight samples and nine laboratories, one cell is empty (Laboratory D
on Sample 1), s&k = 71 and
71-8

B = 29T_l) =15.75 (33)

14
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None of the nonempty cells has only one resulixsoy = 1. To make the example more interesting, assume that only one result

remains from Laboratory A on Sample 1. Thah=1,p, =¥, p,=p3= ... = p ¢= 0, andP = 0.125. We compute;= ¥s (we
don’t count Laboratory D in the denominator), €/q 5 =...= ¢ = 0, andQ = 0.125. Consequently,
0.125-1/71
a=1+ T =1.014 (34)
and

1-0.125-0.125 1/71
y=1+ EE =1.014 (35)

8.3.3 Calculation of Precision Estimates

8.3.3.1 Repeatability— The repeatability variance is twice the mean square for repeats. The repeatability estimate is the product
of the repeatability standard deviation and tievdlue” with appropriate degrees of freedom (see Table A2.3) corresponding to
a two-sided probability of 95 %. Round calculated estimates of repeatability in accordance with Practice E 29, specifically
paragraph 7.6 of that practice. Note that if a transformagienf(x) has been used, then

r(y) (36)

_|dx
0~ gy
wherer(x), r(y) are the corresponding repeatability functions (see). A similar relationship applies to the reproducibility functions
R(x), R(Y)
8.3.3.2 Worked Example
Repeatability variance= 20, (37)
= 0.000616
Repeatability o/ = t;;1,/0.000616
= 1.994x 0.0428
= 0.0495
Repeatability ofx = 3x*® x 0.0495
=0.1487

8.3.3.3 Reproducibility— Reproducibility variane = 2 ,>+ o, >+ ¢,?) and can be calculated using Eq 38.
Reproducibility variance (38)
2 2 2
=EML+ <1_E> Mg+ <2—y +E(y—a)M,

where the symbols are as set out in 8.2.4 and 8.3.2. The reproducibility estimate is the product of the reproducibility standar
deviation and thet*value” with appropriate degrees of freedom (see Table A2.3), corresponding to a two-sided probability of
95 %. An approximatior{7) to the degrees of freedom of the reproducibility variance is given by Eq 39.

(Reproducibility variancg
V= 2 2 2 (39)
M 2 I3

+ =+ =
L'-1" vs Vv

where:

r, r, andr; = the three successive terms in Eq 38,

Vis = the degrees of freedom for laboratorigssamples, and
Vv, = the degrees of freedom for repeats.

(1) Round calculated estimates of reproducibility in accordance with Practice E 29, specifically paragraph 7.6 of that practice.

(2) Substantial bias between laboratories will result in a loss of degrees of freedom estimated by Eq 39. If reproducibility degree:
of freedom are less than 30, then the program organizer shall be informed (see 6.5); further standardization of the test method m:
be necessary.

8.3.3.4 Worked Example- Recalling thatae =y = 1 (not 1.014, as shown in Eq 34 and 35):
Reproducibility variance (40)

(2 13.75
= (757 0.00440) + (755X 0.002078) + 0.000308

= 0.000559+ 0.001814+ 0.000308
= 0.002681
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- 0.00268% (41)
"~ 0.00055¢ 0.001814 0.000308
g T8 Tt 71
=72
Reproducibility ofy = t;,\/ 0.002681 (42)
=0.1034

Reproducibility of x = 0.310¢°

8.3.3.5 Determinability— When determinability is relevant, it shall be calculated by the same procedure as is used to calculate
repeatability except that pairs of determined values replace test results. This will as much as double the number of “laboratories”
for the purposes of this calculation.

8.3.4 Bias

8.3.4.1 Bias equals average sample test result minus its accepted reference value. In the ideal case, average 30 or more te:
results, measured independently by processes in a state of statistical control, for each of several relatively uniform materials, the
reference values for which have been established by one of the following alternatives, and subtract the reference values. In practice,
the bias of the test method, for a specific material, may be calculated by comparing the sample average with the accepted reference
value.

8.3.4.2 Accepted reference values may be one of the following: an assigned value for a Standard Reference Material, a
consensus value based on collaborative experimental work under the guidance of a scientific or engineering organization, an agreec
upon value obtained using an accepted reference method, or a theoretical value.

8.3.4.3 Where possible, one or more materials with accepted reference values shall be included in the interlaboratory program.
In this way sample averages free of outliers will become available for use in determining bias.

8.3.4.4 Because there will always be at least some bias because of the inherent variability of test results, it is recommended to
test the bias value by applying Studerittest using the number of laboratories degrees of freedom for the sample made available
during the calculation of precision. When the calculatedless than the critical value at the 5 % confidence level, the bias should
be reported as not significant.

8.4 Precision and Bias Section for a Test MetheWhen the precision of a test method has been determined, in accordance with
the procedures set out in this practice, it shall be included in the test method as illustrated in these examples:

8.4.1 Precision—The precision of this test method, which was determined by statistical examination of interlaboratory results
using Practice D 6300, is as follows.

8.4.1.1 Repeatability— The difference between-suecessive repetitive results obtained by the same operator in a given laboratory
applying the same test method with the same apparatus under constant operating conditions on identical test material within short
intervals of time would in the long run, in the normal and correct operation of the test method, exceed the following values only
in one case in 20.

Repeatability= 0.148x° (43)
wherex is the average of two results.

8.4.1.2 Reproducibility— The difference between two single and independent results obtained by different operaters- working
applying the same test method in different laboratories using different apparatus on identical test material would, in the long run,
in the normal and correct operation of the test method, exceed the following values only in one case in 20.

Reproducibility= 0.310x*® (44)

wherex is the average of two results.

8.4.1.3 If determinability is relevant, it shall precede repeatability in the statement above. The unit of measurement shall be
specified when it differs from that of the test result:

8.4.1.4 Determinability— The difference between the pair of determined values averaged to obtain a test result would, in the
long run, in the normal and correct operation of the test method, exceed the following value in only one case in 20. When this
occurs, the operator must take corrective action:

Determinability= 0.59\/m (45)
wherem is the mean of the two determined values in mL.
8.4.2 A graph or table may be used instead of, or in addition to, the equation format shown above. In any event, it is helpful
to include a table of typical values like Table 13.
8.4.3 The wording to be used for test methods where the statistical treatment applied is unknown is: “The precision of this test
is not known to have been obtained in accordance with currently accepted guidelines (for example, in Committee D02, Practice

D 6300).” The existing statement of precision would then follow.
8.5 Data Storage
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TABLE 13 Typical Precision Values: Bromine Example

Average Value Repeatability Reproducibility
Bromine Numbers Bromine Numbers Bromine Numbers
1.0 0.15 0.31
2.0 0.23 0.49
10.0 0.69 1.44
20.0 1.09 2.28
100.0 3.19 6.68

8.5.1 The interlaboratory program data should be preserved for general reference. Prepare a research report containing det:
of the test program, including description of the samples, the raw data, and the calculations described herein. Send the file to ASTI
Headquarters and request a File Reference Number.

8.5.2 Use the following footnote style in the precision section of the test method. “The results of the cooperative test program
from which these values have been derived, are filed at ASTM Headquarters as RR:D02—XXXX.”

9. Keywords
9.1 interlaboratory; precision; repeatability; reproducibility; round robin

ANNEXES
(Mandatory Information)

Al. NOTATION AND TESTS

Al.1 The Following Notation Is Used Throughout This Practice:

the sum of duplicate test results,

the difference between duplicate test results,
the sum of sample test results,

the sum of laboratory test results,

the suffix denoting laboratory number,

the suffix denoting sample number,

the number of samples,

the total of all duplicate test results,

the number of laboratories,

the mean of sample test results,

the mean of a pair of test results in repeatability and reproducibility statements,
an individual test result,

a transformed value of x..., and

the degrees of freedom.

SKXXgrHm— 7o oo

Al.2 Array of Duplicate Results from Each of L Laboratories on S Samples and Corresponding Meansn
Al.2.1 See Table Al1.1.

Note Al.1—lIf a transformatiory = F(x) of the reported data is necessary (see 7.2), then corresponding syjbafgly;, are used in place of;;
andx;;,.
Al1.3 Array of Sums of Duplicate Results, of Laboratory Totalsh; and Sample Totalsg;

Al1.3.1 See Table Al1.2.

A1.3.2 If any results are missing from the complete array, then the divisor in the expressiopvidr be correspondingly
reduced.

Al.4 Sums of Squares and Variances (7.2)
Al.4.1 Repeats Variance for Sample j

42 = (AL.1)
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TABLE Al.1 Typical Layout of Data from Round Robin

Sample

Laboratory 1 2 J S
1 X111 X121 X1j1 X1s1
X112 X122 X1j2 X152
2 X211 X221 Xoj1 Xos1
X212 X222 Xoj2 Xos2

U Xi11 Xi21 Xij1 Xis1
Xi12 Xiz2 Xij2 Xis2
L XL11 Xi21 Xij1 Xis1
XL12 XL 22 Xij2 XL s2

Total 0 9> g; Js
Mean m, m, m; my

TABLE A1.2 Typical Layout of Sums of Duplicate Results ~ #

Sample
Laboratory 1 2 j S Total
1 ap; ap a; as hy
2 sy sz ayj s hy,
i an ap a; an h;
L a; a; a; a s h,
Total 91 92 9 gs T

Aay =X+ Xp(Ora;=yu +y i If @ transformation has been used)
€= X ju — X jp (O @; = Y1 — ¥, if @ transformation has been used)

L s
g/=,:21all h’=1:21all
m; = g;/ 2L L S

=G T-Sh-3g

where:
L = the repeats degrees of freedom for Sanjplene degree of freedom for each laboratory pair. If either or both of a
laboratory/sample pair of results is missing, the corresponding term in the numerator is omitted and theisaeiduced
by one.
Al.4.2 Between Cells Variance for Sample j

2 2
2 _ & 9 |_
C = LEl n S ]/(L 1) (A1.2)
Al.4.3 Laboratories Variance for Sample |
D? = Ki; [CP+ (K -1 d] (AL1.3)
where:
L
K = (32-;1 n) /S (L-1)] (A1.4)
n; number of results obtained by Laboratarfrom Sample,

total number of results obtained from Samplend
number of cells in Samplgcontaining at least one result.
Al.4.4 Laboratories degrees of freedom for Sanjpegiven approximately6) by:

2\2
_ (KiD;

RNTeE , (K-
L-1 L

L

(A1.5)

(rounded to the nearest integer)
Al1.4.5 If either or both of a laboratory/sample pair of results is missing, the facit®reduced by one.
Al1.4.6 If both of a laboratory/sample pair of results is missing, the fatter {) is reduced by one.
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A1.5 Cochran’s Test

A1.5.1 The largest sum of squar&s3, out of a set ofn mutually independent sums of squares each baseddeyrees of
freedom, can be tested for conformity in accordance with:

ss
%59

A1.5.2 The test ratio is identical if sum of squares values are replaced by mean squares (variance estimates). If the calculate
ratio exceeds the critical value given in Table A1.3, then the sum of squares in qué&ios significantly greater than the others
with a probability of 99 %. Examples @$ includee; * andd*(Eq AL.1).

Cochraris criterion =

(A1.6)

Al.6 Hawkins’ Test

Al1.6.1 An extreme value in a data set can be tested as an outlier by comparing its deviation from the mean value of the dat
set to the square root of the sum of squares of all such deviations. This is done in the form of a ratio. Extra information on
variability can be provided by including independent sums of squares into the calculations. These will be badedrees of
freedom and will have the same population variance as the data set in question. Table Al1.4 shows the values that are required
apply Hawkins' test to individual samples. The test procedure is as follows:

A1.6.1.1 Identify the sampl& and cell mearg,/n,, which has the most extreme absolute deviatagn, —mJ . The cell
identified will be the candidate for the outlier test, be it high or low.

A1.6.1.2 Calculate the total sum of squares of deviations

S
SS= 3 S$ (AL1.7)
i=1
A1.6.1.3 Calculate the test ratio
. lay/my, —my
B* = RV (A1.8)
A1.6.1.4 Compare the test ratio with the critical value from Table Al.5nfern, and extra degrees of freedomwhere
S
v=2n-Dj#k (A1.9)
=
| Al1.6.1.5 IfB* exceeds the critical value, reject results from the cell in question (Sampkboratoryi), modify n,, m , and

S3 values accordingly, and repeat from A1.6.1.1.

Note Al.2—Hawkins’ test applies theoretically to the detection of only a single outlier laboratory in a sample. The technique of repeated tests for a
single outlier, in the order of maximum deviation from sample mean, implies that the critical values in Table A1.5 will not refer exactly to the 1 %

TABLE A1.3 Cube Root of Bromine Number for Low Boiling Samples

Sample
Laboratory 1 2 3 4 5 6 7 8
A 1.239 4.010 0.928 1.547 2.224 3.586 4.860 1.063
1.281 4.031 0.921 1.560 2.231 3.596 4.852 1.063
B 1.193 4.029 0.884 1.547 2.231 3.691 4.856 1.063
1.216 4.041 0.896 1.547 2.224 3.682 4.853 1.063
C 1.216 3.990 0.913 1.518 2.183 3.647 4.826 1.091
1.216 3.996 0.913 1.518 2.190 3.639 4.830 1.091
D 1.601 3.992 0.928 1.587 2.210 3.674 4.774 1.000
1.578 3.998 0.928 1.574 2.210 3.682 4.765 1.032
E 1.281 3.998 0.940 1.547 2.217 3.619 4.871 1.091
1.216 3.994 0.940 1.547 2.231 3.624 4.864 1.119
F 1.216 4.135 0.896 1.504 2.257 3.662 4.946 1.119
1.193 4.115 0.862 1.533 2.237 3.632 4.903 1.119
G 1.239 3.996 0.917 1.518 2.197 3.586 4.850 1.032
1.301 3.992 0.839 1.518 2.197 3.570 4.832 0.976
H 1.260 4.051 0.921 1.474 2.204 3.674 4.860 1.032
1.216 4.031 0.892 1.518 2.204 3.647 4.856 1.000
J 1.281 4.086 0.932 1.587 2.231 3.662 4.873 1.119
1.281 4.027 0.932 1.547 2.231 3.632 4.847 1.119
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TABLE Al.4 Calculations for Hawkins’ Test for Outliers 4

Sample
1 2 j S
No. of cells ny n, n; N
Sample mean my m, m mg
Sum of squares SS, SS, SS; SS,

A n; = the number of cells in Sample j which contains at least one result,
m; = the mean of Sample j, and
SS; = the sum of squares of deviations of cell means a ;/n; from sample mean
m j, and is given by
SS;=(L-1)C
(L-1) is the between cells (laboratories) degrees of freedom, and shall be
reduced by 1 for every cell in Sample j which does not contain a result.

TABLE A1.5 Critical Values of Hawkins’ 1 % Outlier Test for n =310 50 and v =0 to 200

Degrees of Freedom v

n 0 5 10 15 20 30 40 50 70 100 150 200
3 0.8165 0.7240 0.6100 0.5328 0.4781 0.4049 0.3574 0.3233 0.2769 0.2340 0.1926 0.1674
4 0.8639 0.7505 0.6405 0.5644 0.5094 0.4345 0.3850 0.3492 0.3000 0.2541 0.2096 0.1824
5 0.8818 0.7573 0.6530 0.5796 0.5258 0.4510 0.4012 0.3647 0.3142 0.2668 0.2204 0.1920
6 0.8823 0.7554 0.6571 0.5869 0.5347 0.4612 0.4115 0.3749 0.3238 0.2755 0.2280 0.1988
7 0.8733 0.7493 0.6567 0.5898 0.5394 0.4676 0.4184 0.3819 0.3307 0.2819 0.2337 0.2039
8 0.8596 0.7409 0.6538 0.5901 0.5415 0.4715 0.4231 0.3869 0.3358 0.2868 0.2381 0.2079
9 0.8439 0.7314 0.6493 0.5886 0.5418 0.4738 0.4262 0.3905 0.3396 0.2906 0.2416 0.2112
10 0.8274 0.7213 0.6439 0.5861 0.5411 0.4750 0.4283 0.3930 0.3426 0.2936 0.2445 0.2139
11 0.8108 0.7111 0.6380 0.5828 0.5394 0.4753 0.4295 0.3948 0.3448 0.2961 0.2469 0.2162
12 0.7947 0.7010 0.6318 0.5790 0.5373 0.4750 0.4302 0.3960 0.3466 0.2981 0.2489 0.2181
13 0.7791 0.6910 0.6254 0.5749 0.5347 0.4742 0.4304 0.3968 0.3479 0.2997 0.2507 0.2198
14 0.7642 0.6812 0.6189 0.5706 0.5319 0.4731 0.4302 0.3972 0.3489 0.3011 0.2521 0.2212
15 0.7500 0.6717 0.6125 0.5662 0.5288 0.4717 0.4298 0.3973 0.3496 0.3021 0.2534 0.2225
16 0.7364 0.6625 0.6061 0.5617 0.5256 0.4701 0.4291 0.3972 0.3501 0.3030 0.2544 0.2236
17 0.7235 0.6535 0.5998 0.5571 0.5223 0.4683 0.4282 0.3968 0.3504 0.3037 0.2554 0.2246
18 0.7112 0.6449 0.5936 0.5526 0.5189 0.4665 0.4272 0.3964 0.3505 0.3043 0.2562 0.2254
19 0.6996 0.6365 0.5876 0.5480 0.5155 0.4645 0.4260 0.3958 0.3506 0.3047 0.2569 0.2262
20 0.6884 0.6286 0.5816 0.5436 0.5120 0.4624 0.4248 0.3951 0.3505 0.3051 0.2575 0.2269
21 0.6778 0.6209 0.5758 0.5392 0.5086 0.4603 0.4235 0.3942 0.3503 0.3053 0.2580 0.2275
22 0.6677 0.6134 0.5702 0.5348 0.5052 0.4581 0.4221 0.3934 0.3500 0.3055 0.2584 0.2280
23 0.6581 0.6062 0.5647 0.5305 0.5018 0.4559 0.4206 0.3924 0.3496 0.3056 0.2588 0.2285
24 0.6488 0.5993 0.5593 0.5263 0.4984 0.4537 0.4191 0.3914 0.3492 0.3056 0.2591 0.2289
25 0.6400 0.5925 0.5540 0.5221 0.4951 0.4515 0.4176 0.3904 0.3488 0.3056 0.2594 0.2293
26 0.6315 0.5861 0.5490 0.5180 0.4918 0.4492 0.4160 0.3893 0.3482 0.3054 0.2596 0.2296
27 0.6234 0.5798 0.5440 0.5140 0.4885 0.4470 0.4145 0.3881 0.3477 0.3053 0.2597 0.2299
28 0.6156 0.5737 0.5392 0.5101 0.4853 0.4447 0.4129 0.3870 0.3471 0.3051 0.2599 0.2302
29 0.6081 0.5678 0.5345 0.5063 0.4821 0.4425 0.4113 0.3858 0.3464 0.3049 0.2600 0.2304
30 0.6009 0.5621 0.5299 0.5025 0.4790 0.4403 0.4097 0.3846 0.3458 0.3047 0.2600 0.2306
35 0.5686 0.5361 0.5086 0.4848 0.4641 0.4294 0.4016 0.3785 0.3421 0.3031 0.2600 0.2312
40 0.5413 0.5136 0.4897 0.4688 0.4504 0.4191 0.3936 0.3722 0.3382 0.3010 0.2594 0.2314
45 0.5179 0.4939 0.4728 0.4542 0.4377 0.4094 0.3859 0.3660 0.3340 0.2987 0.2586 0.2312
50 0.4975 0.4764 0.4577 0.4410 0.4260 0.4002 0.3785 0.3600 0.3299 0.2962 0.2575 0.2308

significance level. It has been shown by Hawkins, however, thatif5 and the total degrees of freedom+ v) are greater than 20, then this effect
is negligible, as are the effects of masking (one outlier hiding another) and swamping (the rejection of one outlier leading to the rejection of others

A1.6.1.6 When the test is applied to laboratories averaged over all samples, Table Al1.4 will reduce to a single column
containing:
n = number of laboratories &,
m = overall mean =T/N, whereN is the total number of results in the array, and
SS= sum of squares of deviations of laboratory means from the overall mean, and is given by

SS=§;<%—HOZ (A1.10)

where:

n, = the number of results in Laboratory

In the test procedure, therefore, identify the laboratory nig@pwhich differs most from the overall meam, The corresponding
test ratio then becomes:

. hin —m
~ 4/SS

A1.6.1.7 This shall be compared with the critical value from Table A1.5 as before, but now with extra degrees of freedom

(A1.11)
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= 0. If a laboratory is rejected, adjust the valuespin,and SSaccordingly and repeat the calculations.

Al1.7 Variance Ratio Test F-Test)

Al1.7.1 Avariance estimaté ,, based ow, degrees of freedom, can be compared with a second estifpidiased orv, degrees
of freedom, by calculating the ratio
Vi
Vv
A1.7.2 If the ratio exceeds the appropriate critical value given in Tables A1.6-A1.9, wheoeresponds to the numerator and
Vv, corresponds to the denominator, thénis greater tharV, at the chosen level of significance.

F (A1.12)

TABLE A1.6 Critical 5 % Values of F

V1
3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 0

3 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.66 8.62 8.58 8.55 8.54 8.53 8.53
4 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.80 5.75 5.70 5.66 5.65 5.64 5.63
5 5.41 5.19 5.05 4.95 4.88 4.82 477 4.74 4.62 4.56 4.50 4.44 4.41 4.39 4.37 4.37
6
7
8

4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.81 3.75 3.71 3.69 3.68 3.67

4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.38 3.32 3.27 3.25 3.24 3.23

4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.08 3.02 2.97 2.95 2.94 2.93

9 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.94 2.86 2.80 2.76 2.73 2.72 271
10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2,77 2.70 2.64 2.59 2.56 2.55 2.54
15 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.33 2.25 2.18 2.12 2.10 2.08 2.07
20 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.12 2.04 1.97 1.91 1.88 1.86 1.84
30 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.93 1.84 1.76 1.70 1.66 1.64 1.62
50 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.78 1.69 1.60 1.52 1.48 1.46 1.44
100 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.77 1.68 1.57 1.48 1.39 1.34 1.31 1.28
200 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.72 1.62 1.52 1.41 1.32 1.26 1.22 1.19
500 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.69 1.59 1.48 1.38 1.28 121 1.16 111
0 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.67 1.57 1.46 1.35 1.24 117 111 1.00

V2
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TABLE A1.7 Critical 1 % Values of F

Y

3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 el

3 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 26.9 26.7 26.5 26.4 26.2 26.2 26.1 26.1
4 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.2 14.0 13.8 13.7 13.6 13.5 13.5 13.5
5 121 11.4 11.0 10.7 105 10.3 10.2 10.1 9.72 9.55 9.38 9.24 9.13 9.08 9.04 9.02
6 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.56 7.40 7.23 7.09 6.99 6.93 6.90 6.88
7 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.31 6.16 5.99 5.86 5.75 5.70 5.67 5.65
8 7.59 7.01 6.63 6.37 6.18 6.03 591 5.81 5.52 5.36 5.20 5.07 4.96 491 4.88 4.86

9 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.96 4.81 4.65 452 4.42 4.36 4.33 431
10 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.56 4.41 4.25 4.12 4.01 3.96 3.93 3.91
v2 15 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.52 3.37 3.21 3.08 2.98 2.92 2.89 2.87
20 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.09 2.94 2.78 2.64 2.54 2.48 2.44 2.42
30 451 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.70 2.55 2.39 2.25 2.13 2.07 2.03 2.01
50 4.20 3.72 341 3.19 3.02 2.89 2.79 2.70 2.42 2.27 2.10 1.95 1.82 1.76 1.71 1.68
100 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.22 2.07 1.89 1.73 1.60 1.52 1.47 1.43
200 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.13 1.97 1.79 1.63 1.48 1.39 1.33 1.28
500 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36 2.07 1.92 1.74 1.56 1.41 1.31 1.23 1.16
S 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.04 1.88 1.70 1.52 1.36 1.25 1.15 1.00
TABLE A1.8 Critical 0.1 % Values of F
V1
3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 £
3 141 137 135 133 132 131 130 129 127 126 125 125 124 124 124 124
4 56.2 53.4 51.7 50.5 49.7 49.0 48.5 48.0 46.8 46.1 45.4 44.9 445 44.3 44.1 44.0
5 33.2 31.1 29.8 28.8 28.2 27.6 27.2 26.9 25.9 25.4 24.9 24.4 24.1 23.9 23.8 23.8
6 23.7 21.9 20.8 20.0 19.5 19.0 18.7 18.4 17.6 17.1 16.7 16.3 16.0 15.9 15.8 15.8
7 18.8 17.2 16.2 15.5 15.0 14.6 14.3 14.1 13.3 12.9 12.5 12.2 11.9 11.8 11.7 11.7
8 15.8 14.4 135 12.9 12.4 12.0 11.8 11.5 10.8 10.5 10.1 9.80 9.57 9.46 9.39 9.34
9 13.9 12.6 11.7 111 10.7 10.4 10.1 9.89 9.24 8.90 8.55 8.26 8.04 7.93 7.86 7.81
N 10 12.6 11.3 10.5 9.92 9.52 9.20 8.96 8.75 8.13 7.80 7.47 7.19 6.98 6.87 6.81 6.76
2 15 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08 5.53 5.25 4.95 4.70 4.51 4.41 4.35 4.31
20 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.56 4.29 4.01 3.77 3.58 3.48 3.42 3.38
30 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 3.75 3.49 3.22 2.98 2.79 2.69 2.63 2.59
50 6.34 5.46 4.90 451 4.22 4.00 3.82 3.67 3.20 2.95 2.68 2.44 2.24 2.14 2.07 2.03
100 5.85 5.01 4.48 4.11 3.83 3.61 3.44 3.30 2.84 2.59 2.32 2.07 1.87 1.75 1.68 1.62
200 5.64 4.81 4.29 3.92 3.65 3.43 3.26 3.12 2.67 2.42 2.15 1.90 1.68 1.55 1.46 1.39
500 5.51 4.69 4.18 3.82 3.54 3.33 3.16 3.02 2.58 2.33 2.05 1.80 1.57 1.43 1.32 1.23
o 5.42 4.62 4.10 3.74 3.47 3.27 3.10 2.96 2.51 2.27 1.99 1.73 1.49 1.34 1.21 1.00
TABLE A1.9 Critical 0.05 % Values of F
V1
3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 o
3 225 218 214 211 209 208 207 206 203 201 199 198 197 197 196 196
4 80.1 76.1 73.6 71.9 70.6 69.7 68.9 68.3 66.5 65.5 64.6 63.8 63.2 62.9 62.7 62.6
5 44.4 415 39.7 38.5 37.6 36.9 36.4 35.9 34.6 33.9 33.1 325 32.1 31.8 31.7 31.6
6 30.4 28.1 26.6 25.6 24.9 24.3 23.9 23.5 22.4 21.9 21.4 20.9 20.5 20.3 20.2 20.1
7 23.5 21.4 20.2 19.3 18.7 18.2 17.8 17.5 16.5 16.0 15.5 15.1 14.7 14.6 14.5 14.4
8 19.4 17.6 16.4 15.7 15.1 14.6 14.3 14.0 13.1 12.7 12.2 11.8 11.6 11.4 11.4 11.3
9 16.8 15.1 14.1 13.3 12.8 12.4 12.1 11.8 11.0 10.6 10.2 9.80 9.53 9.40 9.32 9.26
N 10 15.0 13.4 12.4 11.8 11.3 10.9 10.6 10.3 9.56 9.16 8.75 8.42 8.16 8.04 7.96 7.90
2 15 10.8 9.48 8.66 8.10 7.68 7.36 7.11 6.91 6.27 5.93 5.58 5.29 5.06 4.94 4.87 4.83
20 9.20 8.02 7.28 6.76 6.38 6.08 5.85 5.66 5.07 4.75 4.42 4.15 3.93 3.82 3.75 3.70
30 7.90 6.82 6.14 5.66 5.31 5.04 4.82 4.65 4.10 3.80 3.48 3.22 3.00 2.89 2.82 2.78
50 7.01 6.01 5.37 4.93 4.60 4.34 4.14 3.98 3.45 3.16 2.86 2.59 2.37 2.25 2.17 2.13
100 6.43 5.47 4.87 4.44 4.13 3.89 3.70 3.54 3.03 2.75 2.44 2.18 1.95 1.82 1.74 1.67
200 6.16 5.23 4.64 4.23 3.92 3.68 3.49 3.34 2.83 2.56 2.25 1.98 1.74 1.60 1.50 1.42
500 6.01 5.09 451 4.10 3.80 3.56 3.36 3.21 2.72 2.45 2.14 1.87 1.61 1.46 1.34 1.24
o 591 5.00 4.42 4.02 3.72 3.48 3.30 3.14 2.65 2.37 2.07 1.79 1.53 1.36 1.22 1.00

A2. EXAMPLE RESULTS OF TEST FOR DETERMINATION OF BROMINE NUMBER AND STATISTICAL TABLES

A2.1 Bromine Number for Low Boiling Samples
A2.1.1 See Table A2.1.

22



A D 6300 - 034
“afl

TABLE A2.1 Bromine Number for Low Boiling Samples

Sample

Laboratory 1 2 3 4 5 6 7 8
A 1.9 64.5 0.80 3.7 11.0 46.1 114.8 1.2
21 65.5 0.78 3.8 1.1 46.5 114.2 1.2

B 1.7 65.4 0.69 3.7 11.1 50.3 1145 1.2
1.8 66.0 0.72 3.7 11.0 49.9 114.3 1.2

C 1.8 63.5 0.76 35 104 48.5 112.4 1.3
1.8 63.8 0.76 3.5 10.5 48.2 112.7 1.3

D 4.1 63.6 0.80 4.0 10.8 49.6 108.8 1.0
4.0 63.9 0.80 3.9 10.8 49.9 108.2 1.1

E 21 63.9 0.83 3.7 10.9 47.4 115.6 1.3
1.8 63.7 0.83 37 1.1 47.6 115.1 1.4

F 1.8 70.7 0.72 34 11.5 49.1 121.0 14
1.7 69.7 0.64 3.6 11.2 47.9 117.9 14

G 1.9 63.8 0.77 3.5 10.6 46.1 114.1 1.1
2.2 63.6 0.59 35 10.6 455 112.8 0.93

H 2.0 66.5 0.78 3.2 10.7 49.6 114.8 1.1
1.8 65.5 0.71 35 10.7 48.5 114.5 1.0

J 2.1 68.2 0.81 4.0 1.1 49.1 115.7 1.4
2.1 65.3 0.81 37 11.1 47.9 113.9 1.4

A2.2 Cube Root of Bromine Number for Low Boiling Samples
A2.2.1 See Table A1.3.

A2.3 Critical 1 % Values of Cochran’s Criterion for n Variance Estimates andv Degrees of Freedom
A2.3.1 See Table A2.2.

A2.4 Critical Values of Hawkins’ 1 % Outlier Test for n = 3 to 50 andv = 0 to 200
A2.4.1 See Table A1.5.

TABLE A2.2 Critical 1 % Values of Cochran’s Criterion for n Variance Estimates and v Degrees of Freedom #

Degrees of Freedom v

n 1 2 3 4 5 10 15 20 30 50
3 0.9933 0.9423 0.8831 0.8335 0.7933 0.6743 0.6145 0.5775 0.5327 0.4872
4 0.9676 0.8643 0.7814 0.7212 0.6761 0.5536 0.4964 0.4620 0.4213 0.3808
5 0.9279 0.7885 0.6957 0.6329 0.5875 0.4697 0.4168 0.3855 0.3489 0.3131
6 0.8828 0.7218 0.6258 0.5635 0.5195 0.4084 0.3597 0.3312 0.2982 0.2661
7 0.8376 0.6644 0.5685 0.5080 0.4659 0.3616 0.3167 0.2907 0.2606 0.2316
8 0.7945 0.6152 0.5209 0.4627 0.4227 0.3248 0.2832 0.2592 0.2316 0.2052
9 0.7544 0.5727 0.4810 0.4251 0.3870 0.2950 0.2563 0.2340 0.2086 0.1842
10 0.7175 0.5358 0.4469 0.3934 0.3572 0.2704 0.2342 0.2135 0.1898 0.1673
11 0.6837 0.5036 0.4175 0.3663 0.3318 0.2497 0.2157 0.1963 0.1742 0.1532
12 0.6528 0.4751 0.3919 0.3428 0.3099 0.2321 0.2000 0.1818 0.1611 0.1414
13 0.6245 0.4498 0.3695 0.3223 0.2909 0.2169 0.1865 0.1693 0.1498 0.1313
14 0.5985 0.4272 0.3495 0.3043 0.2741 0.2036 0.1748 0.1585 0.1400 0.1226
15 0.5747 0.4069 0.3318 0.2882 0.2593 0.1919 0.1645 0.1490 0.1315 0.1150
20 0.4799 0.3297 0.2654 0.2288 0.2048 0.1496 0.1274 0.1150 0.1010 0.0879
25 0.4130 0.2782 0.2220 0.1904 0.1699 0.1230 0.1043 0.0939 0.0822 0.0713
30 0.3632 0.2412 0.1914 0.1635 0.1455 0.1046 0.0885 0.0794 0.0694 0.0600
35 0.3247 0.2134 0.1685 0.1435 0.1274 0.0912 0.0769 0.0690 0.0601 0.0519
40 0.2940 0.1916 0.1507 0.1281 0.1136 0.0809 0.0681 0.0610 0.0531 0.0457
45 0.2690 0.1740 0.1364 0.1158 0.1025 0.0727 0.0611 0.0547 0.0475 0.0409
50 0.2481 0.1596 0.1248 0.1057 0.0935 0.0661 0.0555 0.0496 0.0431 0.0370
60 0.2151 0.1371 0.1068 0.0902 0.0796 0.0561 0.0469 0.0419 0.0363 0.0311
70 0.1903 0.1204 0.0935 0.0788 0.0695 0.0487 0.0407 0.0363 0.0314 0.0269
80 0.1709 0.1075 0.0832 0.0701 0.0617 0.0431 0.0360 0.0320 0.0277 0.0236
90 0.1553 0.0972 0.0751 0.0631 0.0555 0.0387 0.0322 0.0287 0.0248 0.0211
100 0.1424 0.0888 0.0685 0.0575 0.0505 0.0351 0.0292 0.0260 0.0224 0.0191

A These values are slightly conservative approximations calculated via Bonferroni’s inequality (3) as the upper 0.01/n fractile of the beta distribution. If intermediate
values are required along the n-axis, they may be obtained by linear interpolation of the reciprocals of the tabulated values. If intermediate values are required along the
v-axis, they may be obtained by second order interpolation of the reciprocals of the tabulated values.
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A2.4.2 The critical values in the table are correct to the fourth decimal place in the man@eo 30 andv = 0, 5, 15, and 30
(3). Other values were derived from the Bonferroni inequality as

1
. (n-1) 2
B _t[n(n+v—2+tz)] (A2.1)
wheret is the upper 0.0054 fractile of at-variate withn + v — 2 degrees of freedom. The values so computed are only slightly
conservative, and have a maximum error of approximately 0.0002 above the true value. If critical values are required for
intermediate values af andv, they may be estimated by second order interpolation using the square of the reciprocals of the
tabulated values. Similarly, second order extrapolation can be used to estimate valuesrbeyahandv = 200.

A2.5 Critical Values of t
A2.5.1 See Table A2.3.

A2.6 Critical Values of F*

A2.6.1 Critical 5 % Values of F—See Table Al.6.

A2.6.2 Critical 1 % Values of FSee Table A1.7.

A2.6.3 Critical 0.1 % Values of —See Table A1.8.

A2.6.4 Critical 0.05 % Values of FSee Table A1.9.

A2.6.5 Approximate Formula for Critical Values of-FCritical values ofF for untabulated values of;, and v, may be
approximated by second order interpolation from the tables. Critical valuegofresponding te; > 30 andv , > 30 degrees of
freedom and significance level 100 @)%, whereP is the probability, can also be approximated from the formula

| F AP) CP<1+1> A2.2
00y (F) 5—BP) (P) v, v, (A2.2)
300.
I 7 See(8) for the source of these tables.
TABLE A2.3 Critical Values of ¢
Double-Sided % Significance Level
Degrees of Freedom
50 40 30 20 10 5 1

1 1.000 1.376 1.963 3.078 6.314 12.706 63.657
2 0.816 1.061 1.386 1.886 2.920 4.303 9.925
3 0.765 0.978 1.250 1.638 2.353 3.182 5.841
4 0.741 0.941 1.190 1.533 2.132 2.776 4.604
5 0.727 0.920 1.156 1.476 2.015 2.571 4.032
6 0.718 0.906 1.134 1.440 1.943 2.447 3.707
7 0.711 0.896 1.119 1.415 1.895 2.365 3.499
8 0.706 0.889 1.108 1.397 1.860 2.306 3.355
9 0.703 0.883 1.100 1.383 1.833 2.262 3.250
10 0.700 0.879 1.093 1.372 1.812 2.228 3.165
11 0.697 0.876 1.088 1.363 1.796 2.201 3.106
12 0.695 0.873 1.083 1.356 1.782 2.179 3.055
13 0.694 0.870 1.079 1.350 1.771 2.160 3.012
14 0.692 0.868 1.076 1.345 1.761 2.145 2.977
15 0.691 0.866 1.074 1.341 1.753 2.131 2.947
16 0.690 0.865 1.071 1.337 1.746 2.120 2.921
17 0.689 0.863 1.069 1.333 1.740 2.110 2.898
18 0.688 0.862 1.067 1.330 1.734 2.101 2.878
19 0.688 0.861 1.066 1.328 1.729 2.093 2.861
20 0.687 0.860 1.064 1.325 1.725 2.086 2.845
21 0.686 0.859 1.063 1.323 1.721 2.080 2.831
22 0.686 0.858 1.061 1.321 1.717 2.074 2.819
23 0.685 0.858 1.060 1.319 1.714 2.069 2.807
24 0.685 0.857 1.059 1.318 1.711 2.064 2.797
25 0.684 0.856 1.058 1.316 1.708 2.060 2.787
26 0.684 0.856 1.058 1.315 1.706 2.056 2.779
27 0.684 0.855 1.057 1.314 1.703 2.052 2.771
28 0.683 0.855 1.056 1.313 1.701 2.048 2.763
29 0.683 0.854 1.055 1.311 1.699 2.045 2.756
30 0.683 0.854 1.055 1.310 1.697 2.042 2.750
40 0.681 0.851 1.050 1.303 1.684 2.021 2.704
50 0.680 0.849 1.048 1.299 1.676 2.008 2.678
60 0.679 0.848 1.046 1.296 1.671 2.000 2.660
120 0.677 0.845 1.041 1.289 1.658 1.980 2.617
o 0.674 0.842 1.036 1.282 1.645 1.960 2.576
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where:

1 1
b= 2/<V—1 + V_Z) (A2.3)

A2.6.5.1 Values ofA ( P), B (P), andC(P) are given in Table A2.4 for typical values of significance level 100 @) %.

A2.7 Critical Values of the Normal Distribution (see Table A2.5)

A2.7.1 Critical value& corresponding to a single-sided probabiltyor to a double-sided significance level 2 (P}are given
below in terms of the “standard normal deviate,” where

z=— (A2.4)

and where 1 and are the mean and standard deviation respectively of the normal distribution.

TABLE A2.4 Constants for Approximating Critical Values of F A

100 (1 - P) % A(P) B(P) c(P)
10.0 % 1.1131 0.77 0.527
5.0 % 1.4287 0.95 0.681
25% 1.7023 1.14 0.846

1.0 % 2.0206 1.40 1.073
0.5% 22373 1.61 1.250
0.1% 2.6841 2.09 1.672
0.05 % 2.8580 2.30 1.857

A For values of P not given above, critical values of F may be obtained by
second order interpolation/extrapolation of log (F) (either tabulated or estimated
from the formula) against log (1 — P).
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TABLE A2.5 Critical Values of the Normal Distribution A

P 0.70 0.80 0.90 0.95 0.975 0.99 0.995
4 0.524 0.842 1.282 1.645 1.960 2.326 2.576
2(1-P) 0.60 0.40 0.20 0.10 0.05 0.02 0.01

AWhen P is less than 0.5 the appropriate critical value is the negative of the
value corresponding to a probability (1 — P).

A3. TYPES OF DEPENDENCE AND CORRESPONDING TRANSFORMATIONS (7.2)

A3.1 Types of Dependence
A3.1.1 See Table A3.1.

A3.2 Transformation Procedure

A3.2.1 The following steps shall be taken in identifying the correct type of transformation and its paraBeieBg, or both.
A3.2.1.1 Plot laboratories standard deviatiddsand repeats standard deviatiothsagainst sample means in the form of scatter
J| diagrams. Refer to Figs—A3-1-A3.6 A3.1-A3.6 and identify the type of transformation to be applied (if any).

A3.2.1.2 With the exception of the power transformation (Type 2 in Table A3.1), the transformation parameter is either known
in advance or estimated from the scatter diagrams. For the arcsin (Type 3) and logistic (Type 4) transforfnatibios the upper
limit of the rating scale or “score” that defines results. For the log (Type 1) transformation, caBydtem the intercept and
slope B, = intercept/slope), estimated from the scatter diagrams. Similarly, estBrfaden the intercept in the case of the arctan
(Type 5) transformation. In every cadgor By, or both, shall be rounded to give a meaningful value that satisfies the plots for
both the laboratories and repeats standard deviations.

A3.2.1.3 In the case of the power transforBhand B, = O will be estimated as part of the line fitting procedure described in
the next section (A3.2.1.4). A non-zeB, may be estimated by minimizing the sum of squared residuals from the fitted line.
Function minimization using a simplex procedure due to Nelder and Matle) has been found satisfactory. This is applied to
the functional form of the line shown in Table A3.1 using the calculated sample means and standard deviations. The values and
significances of all the constants are determined simultaneously as part of the simplex minimization. For detailed discussion of
simplex minimization consult a trained statistician.

A3.2.1.4 In order to confirm the selected transformation type, and to estimate the parBmet#ne case of the power
transformation, fit the line specified in Table A3.1, corresponding to the transformation in question, in accordance with the
computational procedure in A4.3. For the power transformation, coeffi@eshall differ significantly from zero and shall be
rounded to a meaningful value. For the arcsin transformakipehall have a value not significantly different from 0.5. Similarly,

b, shall not significantly differ from a value of one for the logistic, log, and arctan transformations. In every case the test specified
in Table A3.1 shall be applied at the 5 % significance level. Failure of this test implies either that the type of transformation or its
parameterB is incorrect. Similarly, coefficienbs shall in every case be tested as zero. Failure in this case implies that the
transformation is different for repeatability and reproducibility. In some cases the presence of outliers (see 7.3) can give rise to this
difference.

A3.2.1.5 If the tests applied above were satisfactory, transform all the results accordingly, recalculate means and standard
deviations using transformed results, and create new scatter diagrams as in A3.2.1. These will now show a uniform level for
laboratories standard deviation, and a uniform (but not necessarily the same) level for repeats standard deviation. A statistical test
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TABLE A3.1 Types of Dependence *
Form of Dependence Transformations Form of Line to be Fitted ax/dy Remarks
D = K(m + By) y=log(x + By) log(D) = b,+ (x + By) Care must be taken if (x + Bp) is small, as
m+ By>0 Type 1 - “log” + bilog(m + By) + b, T + bsTlog(m + Bg) rounding becomes critical
Test: by=1, by=0
D = K(m + B)B y=(x+ By)* log(D) = b, + Blog(m + Bp) + b, T + (x +Bp)PI(L - By B=%:o0r2 are common cases.

m+ By> 0,
B#1

D=K[(m/B) (1 - m/B)|2

0=m=8B

D=K[ (m/B)(1- m/B)]

0=m=B

D=K[(m? + B2)/B]

B>0

Type 2 — “power”

y=arcsin(x/B)*/?

Type 3 — “arcsin”

y=log[x/(B-x)]

Type 4 — “logistic”

y = arctan(x/B)

Type 5 — “arctan”

bsTlog(m + Bg)
Test: B# 1, b;=0

log(D) = by+ bylog[m (B - m)] + b,T +
bsTog[m (B — m)]

Test: by=1/2, b= 0

log(D)= b,+ bilog[m (B - m)] + b,T +
bsTlog[m (B — m)]

Test: by=1, b3=0

log(D)= by+ bjlog(m?+B?) + b, T +
b;Tlog(m? + B?)

Test: by=1, bs=0

2[x (B - x)]*?

x (B -x)/B

(@ + BY)IB

If B is not different from 1, use log
transform 1 above. The fitted line may pass
through the origin.

This case often arises when results are
reported as percentages or qualitatively as
“scores.” If x is always small compared to
B, the transformation reduces to y=(x)*'2, a
special case of 2 above.

This case arises when results are reported
on a scale of 0 to B. If x is always small
compared to B, then the transformation
reduces to y = log(x) a special case of 1
above.

The fitted line does not pass through the
origin. If B is small, the transformation
reduces to y = 1/x, a special case of 2
above.

A The forms of dependence above are shown graphically in the corresponding Figs. A3.1-A3.6. In all cases, K can be any positive constant, and “log” refers to natural
logarithms. The form of line to be fitted includes a dummy variable T (see A4.1) by which it is possible to test for a difference in the transformation as applied to repeatability

and reproducibility.

Standard Deviation (D)

Mean (m)

D=K(m+Bn), m+BQ>O

FIG. A3.1 Type 1, log
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Mean (m)

Standard Deviation (D)

D=Km+By)?. m+B,>0,0<B<1
FIG. A3.2 Type 2, power

Mean (m)

D =K(m+B,)®, m+B,>0,B>1
FIG. A3.3 Type 2, power

Standard Deviation (D)

L
Mean (m)

D=K[(m/B) (1-m/B)]'">.0 E m<B
FIG. A3.4 Type 3, arcsin

28



A D 6300 - 034
“afl

Standard Deviation (D)

"
Mean (m)

D=K[(m/B) (1-m/B)). 0 £ m< B

FIG. A3.5 Type 4, logistic

Standard Devistion (D)

a s L "

Mean (m)

D=K[(m*+B3/B], B> 0
FIG. A3.6 Type 5, arctan

A4. WEIGHTED LINEAR REGRESSION ANALYSIS (7.2)

A4.1 Explanation for Use of a Dummy Variable

A4.1.1 Two different variable¥ ; andY,, when plotted against the same independent varigp¥ell in general give different
linear relationships of the form
Y, = by + by X (A4.1)
Y, = b, + b, X
where the coefficient; are estimated by regression analysis. In order to compare the two relationships, a dummy Variable
can be defined such that

T = T,, a constant value for every observation of Yy,
T = T,, a constant value for every observation of Y5, and
T,# T,

A4.1.2 LettingY represent the combination &% andY,, plot a single relationship

Y = by + b X+ b,T + b,TX (A4.2)
where, as before, the coefficieriisare estimated by regression analysis. By comparing Eq A4.1 and Eq A4.2), it is evident that
by = by + b,T, (A4.3)

by, = by + b,T,
and that therefore
D1p—Dy =0, (T; —T)) (A4.4)
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A4.1.3 Similarly,
by —loy =3 (Ty—Tp) (A4.5)

A4.1.4 In order to test for a difference betwelp andb,, therefore, it is only necessary to test for a non-zero coeffidignt
Similarly, to test for a difference betwedn, andb,,, test for a non-zero coefficier.

A4.1.5 Any non-zero values can be chosenTpandT,. However, since reproducibility is the basis of tests for quality control
against specifications, weighting shall reflect this in the estimation of precision relationships. An “importance ratio” of 2:1 in the
favor of reproducibility shall be applied by settifig= 1 andT, = -2, whereT , refers to the plot of laboratories standard deviation
andT, refers to the repeats standard deviation.

A4.2 Derivation of Weights Used in Regression Analysis

A4.2.1 In order to account for the relative precision of fitted variables in a regression analysis, weights shall be used that are
inversely proportional to the variances of the fitted variables.

A4.2.1.1 For a variabl®, which is an estimate of population standard deviatigibased orv (D) degrees of freedom, the
variance ofD is given by

Var (D) = o%/2v (D) (A4.6)
A4.2.1.2 Replacing by its estimateD?, the weight for this variable will be approximated by
w(D) = 2v (D)/D? (A4.7)

A4.2.1.3 ltis clear that as standard deviat@rncreases, so will the weight decrease. For this reason the fitted variable in the
weighted regression shall instead be a function of standard deviation, which yields weights independent of the fitted variable.
A4.2.1.4 In cases where a functigD) is fitted, rather tham itself, the variance formula becomes

2

1 1 o
Var[log (D)] = FVar(D) =

G0 (A48)

A4.2.1.5 Once again replacingf by its estimateD?, the weight forlog(D) will be approximated by
wllog (D)] = 2v (D) (A4.9)

A4.2.1.6 In relation to laboratories standard deviatiband repeats standard deviatidrtherefore, it is necessary to perform
regression analysis in termsloig(D) andlog(d), since weighting will then take account only of the amount of data on which the
standard deviation was based. A relationship estimated in this way will be less dependent on samples which have a high proportion
of missing results.

A4.2.1.7 Denoting degrees of freedomwB) for laboratory standard deviatiomsandv(d) for repeats standard deviatiods
formulae for calculating weights then become

w(log (D)] = 2v (D) (A4.10)

wllog (d)] = 2v (d) (A4.11)

Note A4.1—Unweighted regression corresponds to weighted regression in which all the weights have a constant value 1.

A4.3 Computational Procedure for Regression Analysis

A4.3.1 The following technique gives the best fitting straight line of the form of Eq A4.2.

A4.3.1.1 First draw up a table (see Table A4.1) giving values of the variables to be plotted in the regression, together with
corresponding weights. Functiogs andg, will always be natural logarithms corresponding to the transformation in question, as
specified in A3.2.

A4.3.1.2 Using the symbols defined in Table A4.1, the line to be fitted (Eq A4.2) becomes

y=Dby + bxg + X, + byXg (A4.12)
A4.3.1.3 The intercephb 4, can be eliminated by rewriting this as
(Y=Y) = by (X, =X1) + b, (% =Xo) + b3 (X3 —X3) (A4.13)
wherey, X, X,, andx; are weighted mean values, for example
n
izl WiXsi
X = (A4.14)

and wheren is the number of points (twice the number of samples) to be plotted.
A4.3.1.4 The least squares solution of Eq A4.14 requires the solution of the set of simultaneous equations of the form

ay = ayby + aph, + aghs (A4.15)
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TABLE A4.1 Arrangement of Variables for Regression Analysis

Standard |
Deviation Sample lMean .
Sample Function Function Dummy T T9, Weight
9>
91
1 9, (Dy) 9. (M) 1 g, (my) 2v (Dy)
2 91 (D7) 9. (my) 1 9> (my) 2v (D)
3 91 (Ds) 9. (m3) 1 9> (ms) 2v (Ds)
S gl (Ds) g2 (ms) 1 g2 (ms) 2v (Ds)
1 9. (dy) 9, (my) -2 —2g,(my)  2v (dy)
2 9: (dy) 9> (my) -2 —20,(m;)  2v (dy)
3 91 (da) 9> (m3) -2 —2g5(ms)  2v (da)
S g1 (ds) 92 (ms) -2 _2g2(ms) 2v (ds)
Symbol Vi X3 X5 X3i Wi

ap = ayb; + 3y, + agbs
ag = agly + agh, + abs
A4.3.1.5 Examples of;aand g; elements, in terms of weighted meansare as follows
B = ZW (X —X) 7 B = IW (X —%p) (Xg — %) (A4.16)
ap =3W (% —Y) 0 —X)  a, = Sw (Y -y
A4.3.1.6 Having solved the equations toy, b,, andbs, calculate the intercept from the weighted means of the variables as
by = y—biX; —byX, —bsXs (A4.17)
A4.3.1.7 Coefficient estimatds; can be summarized in tabular form, together with test statistics, as in Table A4.2.

A4.3.1.8 In order to complete the table, it is necessary to calculate the standard deviation of the opsalves about the
estimated line. This is called the residual standard deviation, and is given by

s= \/né4 (@y —bsa,; —bsa, —bsas) (A4.18)
A4.3.1.9 Standard errors of the estimates then become
g =s\/¢,fori=1t03 (A4.19)
and
& =
s\/ % FCX? F O + Cagh? + 201, X% + 201K X5 + 2C,5% Xy (A4.20)

where the elements; correspond to the inverse of the matrix containing elemants

A4.3.1.10 The-ratios are the ratiod(—K)/ g, whereK is a constant, and by comparing these to the critical valuésofable
A2.3, it is possible to test if coefficier; differs fromK. If t; is greater than the critical value corresponding to 5 % significance
and f1 — 4) degrees of freedom, then the coefficient can be regarded as differingkfrdm particular,t; will identify an
inappropriate slopé, andt; will indicate whether the slope is different for laboratories and repeats standard deviations. Since
laboratories standard deviation will generally be larger than repeats standard deviation at the same level of samiplevithean,
in general indicate a non-zero coefficidnt,.

A4.4 Worked Example
A4.4.1 This section describes the fitting of a power function (Type 2 of Table A3.1) using weighted linear regression according

TABLE A4.2 Presentation of Estimates from Regression Analysis

Fitted Coefficient Standard Error of £Ratio
Variable Estimate Estimate
Intercept bo € to
Sample Mean by e, t
Dummy b, e, t
Dummy X mean by ey t;
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to the procedure of A3.2. Rounded sample means and standard deviations are given in Table 3, 7.2, based on the bromine numbe
data in A2.1.

A4.4.1.1 Scatter diagrams identified the power transformation as appropriate, as indicated by the log-log plot shown in Fig.
A4.1.

A4.4.1.2 Transformation paramet@mneed not be estimated from Fig. A4.1, since it will be given in the regression analysis that
follows.

A4.4.1.3 The form of the line to be fitted (Table A3.1) is

log(D) = by + b,log (M) + b,T + bsTlog (m) (A4.21)

A4.4.1.4 The table of values to be fitted (see Table A4.1) is shown in Table A4.3.
A4.4.1.5 Least squares regression requires the solution of the simultaneous equations
614.671= 999.894, — 35.8524, — 493.045 , (A4.22)
188.526= 35.852d, + 673.92®, + 1409.5&,
195.477= -493.045, + 1409.5®, + 5362.2D,

A4.4.1.6 Also required are
a,, = 505.668 (A4.23)
s= 2.23868

A4.4.1.7 The solution is summarized in Table A4.4 (see Table A4.2):

A4.4.1.8 Comparing theratios with the critical 5 % values for 12 degrees of freedom (namely 2.179) given in Table A2.3, it
can be seen that the slope is significantly non-zbye=(0.638), confirming that a transformation was required. Furthermore, since
coefficientb; does not significantly differ from zero, the slope (and resulting transformation) is the same for both laboratories and
repeats standard deviations.

A4.4.1.9 As the slopé, = 0.638 has a standard error of 0.074, the approximate 66 % confidence region of-006384 will
contain the value 2/3. Rounding to this value is therefore reasonable, and leads to the convenient transformation

y =8 (A4.24)
A4.4.1.10 Having applied this transformation and recalculated sample means and standard deviations, corresponding scatter

diagrams are shown in Fig. A4.2. These show uniform levels for both laboratories and repeats standard deviations for all samples
except Sample 1. In the case of the latter sample, the extreme point is due to outliers.

log (standard deviation)

log (sample mean)

o laboratories sd + repeats sd
FIG. A4.1 Precisions Vary with Level
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TABLE A4.3 Arrangement of Variables for Sample Data

Logarithm of

Logarithm of Dummy X log

Sample Star)dgrd Sample Mean Dummy T (mean) Weight
Deviation
1 —-0.3158 0.7655 1 0.7655 16
2 0.7969 4.1804 1 4.1804 18
3 —2.7046 —0.2802 1 —-0.2802 28
4 —1.5568 1.2932 1 1.2932 22
5 —1.2358 2.3888 1 2.3888 18
6 0.4029 3.8755 1 3.8755 18
7 1.0762 4.7378 1 4.7378 18
8 —1.8401 0.1975 1 0.1975 18
1 —2.0644 0.7655 -2 —-1.5309 18
2 —0.2015 4.1804 -2 —8.3609 18
3 —2.9957 —-0.2802 -2 0.5605 18
4 —2.1585 1.2932 -2 —2.5864 18
5 —2.3613 2.3888 -2 -4.7775 18
6 —0.6415 3.8755 -2 —7.7510 18
7 -0.0674 4.7378 -2 -9.4756 18
8 —2.8612 0.1975 -2 —-0.3949 18
Symbol Yi X1 Xoi X3i Wi
APPENDIX

(Nonmandatory Information)

X1. DERIVATION OF FORMULA FOR CALCULATING THE NUMBER OF SAMPLES REQUIRED (see 6.4.3)

standard deviation
[ ]
b

o4 .
[ ]
- e . ]
b prs - e 2
L] B
<
.
sample mean
0 laboratories sd + repeats sd
FIG. A4.2 After Transforming, Precisions Do Not Vary with Level
TABLE A4.4 Presentation of Estimates from Sample Data
Fitted Variable Coefficient Estimate Standar‘d Error of Ratio
b; Estimate
Intercept —2.4064
Log (mean) 0.63773 0.07359 8.67
Dummy 0.25496 0.13052 1.95
Dummy X log (mean) 0.02808 0.04731 0.59

X1.1 An analysis of variance is carried out on the results of the pilot program. Setting the three expressions in 8.3.1 equal tc
the corresponding mean squares and solving yields rough estimates of the three components of variance, namely:
2
oy for repeats,
o, 2 for laboratoriesx samples interaction, and
o ,? for laboratories.
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X1.2 Substituting the above in Eq 39 (8.3.3.3) for calculating the reproducibility degrees of freedom, this becomes
(1+P+0Q° [(1/2+P)S+Q® (S-)(12+P° 1

v (L-1 FL-1 * s (X1.1)
where
P = o,%0
Q = 0, %0y
v = reproducibility degrees of freedom,
L = number of laboratories, and
S = number of samples.

X1.3 The formula rearranges into the form
aS+b=0 (X1.2)

where:
a=v@-(1+P+Q?*L-1),and
b = v[(2Q+ 1/2+P) (1/2+P)+0.25 L - 1) /L].
X1.3.1 Therefore5 = —b/agives the values of for given values oL, P, Q andv.

X1.4 Fig. 1 is based om = 30 degrees of freedom. For non-integral value® @nd Q, Scan be estimated by second order
interpolation from the table.
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