This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: D 6616 – 01<u>a</u>

An American National Standard

Standard Test Method for Measuring Viscosity at High Shear Rate by Tapered Bearing Simulator Viscometer At 100°C¹

This standard is issued under the fixed designation D 6616; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.07.0B on High Temperature Rheology of Non-Newtonian Fluids.

Current edition approved Feb. Nov. 10, 2001. Published August 2001. February 2002. Originally published as D 6616 - 01. Last previous edition D 6616 - 01.

1. Scope

1.1 This test method covers the laboratory determination of the viscosity of engine oils at 100° C and $1 \cdot 10^{6}$ s⁻¹ using the Tapered Bearing Simulator (TBS) viscometer.²

Note 1-This test method is similar to Test Method D 4683 which uses the same TBS viscometer to measure high shear viscosity at 150°C.

1.2 The Newtonian calibration oils used to establish this test method range from approximately 5 to 12 mPa \bullet s (cP) at 100°C and either the manual or automated protocol was used by each participant in developing the precision statement. The viscosity range of the test method at this temperature is from 1 mPa \bullet s (cP) to above 25 mPa \bullet s (cP), depending on the model of TBS.

1.3 The non-Newtonian reference oil used to establish the shear rate of $1 \cdot 10^6 s^{-1}$ for this test method has a viscosity of approximately 10 mPa $\cdot s$ at 100°C.

1.4 Application to petroleum products other than engine oil has not been determined in preparing the viscometric information for this test method.

1.5 This test method uses the milliPascal second (mPa \cdot s) as the unit of viscosity. This unit is equivalent to the centiPoise (cP), which is shown in parentheses.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

D 4683 Test Method for Measuring Viscosity at High Shear Rate and High Temperature by Tapered Bearing Simulator³

3. Terminology

3.1 Definitions:

3.1.1 *density*—the mass per unit volume. In the SI, the unit of density is the kilogram per cubic metre, but for practical use, a submultiple is more convenient. The gram per cubic centimetre is equivalent to 10^3 kg/m^3 and is customarily used.

3.1.2 *Newtonian oil or fluid*—an oil or fluid that at a given temperature exhibits a constant viscosity at all shear rates or shear stresses.

3.1.3 non-Newtonian oil or fluid—an oil or fluid that exhibits a viscosity that varies with changing shear stress or shear rate. 3.1.4 shear rate—the velocity gradient in fluid flow. The SI unit for shear rate is s^{-1} .

3.1.5 shear stress—the motivating force per unit area for fluid flow. The area is the area under shear.

3.1.6 *viscosity*—the ratio between the applied shear stress and the rate of shear. It is sometimes called the coefficient of dynamic viscosity. This coefficient is a measure of the resistance to flow of the liquid. In the SI, the unit of viscosity is the Pascal•second; often the milliPascal•second or its equivalent the centiPoise is found more convenient.

3.1.6.1 *apparent viscosity*—the viscosity of a non-Newtonian fluid at a given shear rate or shear stress determined by this test method.

3.2 Definitions of Terms Specific to This Standard:

 $3.2.1 \ idling \ oil^2$ —an oxidatively stable Newtonian oil injected into the operating viscometer stator when the instrument is likely to be held for periods of time greater than 30 min and up to two weeks at 100°C. Use of this oil prevents stator deposits from additives, which may decompose after longer exposure times in the operating viscometer and permits continuous operation of the viscometer without need to shut the instrument off.

3.2.2 Newtonian Reference Oil^2 —a specially blended Newtonian oil that has the same viscosity at 100°C as the non-Newtonian reference oil of 3.2.3.

3.2.3 non-Newtonian reference oil^2 —a specially formulated non-Newtonian oil, identified as NNR-10, having a selected apparent viscosity at $1 \cdot 10^6 s^{-1}$ shear rate. The oil is used to establish an operating gap between the rotor and stator which will produce $1 \cdot 10^6 s^{-1}$ shear rate when the rotor height is adjusted to give a torque output equivalent to that of the special reference oil described in 3.2.2.

3.2.4 reciprocal torque intersection, $1/T_i$ —the rotor position on the micrometer defined by the intersection of two straight lines generated by the reciprocal torque method using the Newtonian reference oil of 3.2.2 and non-Newtonian reference oil of 3.2.3. Reciprocal torque versus rotor height measurements on both oils gives straight lines whose intersection, $1/T_i$, establishes the desired rotor position for operation at $1 \cdot 10^6 \text{s}^{-1}$ shear rate.

3.2.5 *reference Newtonian calibration oils*²—specially chosen Newtonian oils used to determine the viscosity-torque relationship of the TBS viscometer at 100°C from which the viscosity of an unknown oil is calculated.

² Available from Tannas Co., 4800 James Savage Rd., Midland, MI 48642. This viscometer and associated equipment as listed in the research report was used to develop the precision statement. To date, no other equipment has demonstrated, through ASTM interlaboratory testing, the ability to meet the precision of this test. This is not an endorsement or certification by ASTM.

³ Annual Book of ASTM Standards, Vol 05.02.

3.2.6 rotor height (rotor position)—the vertical position of the rotor relative to the stator and measured by the platform micrometer.

3.2.6.1 *stored rotor height (rotor position)*—the rotor position with the rotor 0.50 mm above the rubbing contact position (see 3.2.7) when the instrument is shut down.

3.2.7 *rubbing contact position*—the rotor height determined when the tapered rotor is lightly brought into contact with the similarly tapered stator.

3.2.8 test oil—any oil for which the apparent viscosity is to be determined by this test method.

4. Summary of Test Method

4.1 A motor drives a tapered rotor closely fitted inside a matched tapered stator. Appropriate technique establishes operation of the viscometer to yield $1 \cdot 10^6 s^{-1}$ at a temperature of 100°C at which point test oils are introduced into the gap between the spinning rotor and stationary stator. The rotor exhibits a reactive torque to the viscous resistance of each test oil and the value of this torque response is used to determine the apparent viscosity of the test oil at 100°C.

5. Significance and Use

5.1 Viscosity at the shear rate and temperature of this test method is thought to be particularly representative of bearing conditions in large medium speed reciprocating engines as well as automotive and heavy duty engines operating in this temperature regime.

5.2 The importance of viscosity under these conditions has been stressed in railroad specifications.

6. Apparatus

6.1 *Tapered Bearing Simulator Viscometers*² (*TBS*)—a viscometer consisting of a motor connected to a slightly tapered rotor that fits into a matched stator. Several models of the TBS are in use. All of these are capable of analyzing test oils at 100°C but earlier models are more limited in their upper viscosity range.

6.2 Different models of the tapered bearing simulator (TBS) have the following upper levels of operating viscosities at $1 \cdot 10^6 s^{-1}$ shear rate:

6.2.1 Model Series 400 (similar to Fig. 1)—~14 mPa•s (cP), dual speed.

6.2.2 Model Series 500 (Fig. 1)—~ 16 mPa•·s (cP) single speed.

6.2.3 Model Series 600 (Fig. 2)-~100 mPa•s (cP) (usually liquid cooled), dual speed.

6.2.4 Model Series SS (SuperShear) (similar to Fig. 1)—~20 mPa•s (cP), multi-speed.

6.2.5 Model Series 2100 E (Fig. 3)—~20 mPa•s (cP) (see Note 2), multi-speed.

FIG. 1 Tapered Bearing Simulator Viscometer Model 500

🖽 D 6616 – 01<u>a</u>

FIG. 2 High Torque Tapered Bearing Simulator Viscometer Model 600

NOTE 2—TBS Models 500, 600, and SS use a so-called *bouncer* to automate unloading and reloading the load cell just before taking a torque reading. (All automated units apply the bouncer at the appropriate point of operation as part of their program.) If a bouncer is not on the TBS model used (Model 400), the effect is generated by placing the thumb on the brass weight pin and turning the turntable slightly in a clockwise direction and quickly releasing the turntable. The bearingless Models 2100 E do not require unloading the cell since there is no turntable bearing.

6.3 Automated System for Calibration, Injection, and Data Analysis Programs—An automated program for the Tapered Bearing Simulator, simulating the manual method has been used.

6.4 *Console*—The console shown in Fig. 4 is similar in Models 400, 500, and 600. Consoles for Series SS and 2100 E have provisions for changing motor speed. All consoles contain the power source for the load cell, thermoregulator circuit, stator-heating element, and motor. They also contain the circuitry for regulating and monitoring the temperature of the oil in the stator as well as the amplifier and digital readout of the load cell.

Note 3—The thermoregulator circuit of the TBS viscometers has evolved as improvements have been made in the solid-state temperature controller and heater. To achieve the 5 min analysis time specified in this test method requires a late model solid-state controller with automatic reset coupled to a thermo-foil stator heater with small heat inertia or a fast-responding thermoregulated liquid bath.²

6.5 *Cooling Systems*—Two cooling systems are available for TBS viscometer work at 100° C – forced air cooling and liquid bath cooling. The stator housing is prepared for the former but must be modified for the latter according to directions from the manufacturer.

6.6 *Glass Syringe*—A 50-mL glass syringe equipped with a Luer needle lock fits the tip of the filling tube for injection of test oil into the test cell. Smaller glass and plastic syringes can be used if any air bubble in the fill tube caused by the exchange of syringes is first pulled up into the next syringe to be used.

6.7 *Filter Assembly*—A unit made of a filter holder² and nominal 10- μ filter² is interposed between the syringe and the filling tube to remove particles capable of damaging the rotor/stator cell.

6.8 *Data Recording Equipment*—Some form of recording the torque and temperature data produced by the tapered bearing simulator is desired in order to (1) determine torque/temperature equilibrium and (2) determine the torque with sufficient precision to calculate viscosity to the second decimal place. Early in the use of the TBS viscometer, a strip-chart recorder was used, later an automated, computer-based recording system was developed with both a computer-simulated strip chart and with data digitally recorded.

NOTE 4—Although the console has a torque indicator that can be used for determining viscosity, it has been found that the small oscillatory variation of torque with time makes desirable the recording and analysis of the torque output more precise, particularly when determining torque equilibrium.

6.8.1 Strip-chart Recorder:

6.8.1.1 If a strip-chart recorder is used to record the torque and temperature output signals, use the manufacturer's directions for calibrating and setting up the strip chart for recording torque/temperature data (see Note 5). The torque reading must be in

🕼 D 6616 – 01<u>a</u>

FIG. 3 Multi-Speed Tapered Bearing Simulator Viscometer Model 2100E

FIG. 4 Control Console for Tapered Bearing Simulator Viscometer Models 400, 500, and 600

milliVolts and the temperature in °C with a full-scale chart range of 20° to 120°C.

6.8.1.2 Use a chart speed of 1 cm/min for recording.

6.8.1.3 Set and, when necessary, reset, the strip chart torque voltage to that which will permit recording the torque as much as possible on the upper two-thirds of the chart paper for maximum sensitivity.

6.8.1.4 Factor the resulting voltage values to calculate the correct values of torque.

NOTE 5—Although the digital information from the torque output meter on the viscometer console can be, and is, used for recording additional test information, it is desirable to use a two-pen, strip-chart recorder or its computer equivalent since this provides a continuous torque/temperature record of torque/temperature equilibrium necessary for precision in calibration and in calculating viscosity.

6.8.2 Computer Accumulation of Torque and Temperature Data—Computer recording of digital data can also be used for the test method. Such programs should show data for both torque and stator temperature. Torque information should be capable of

🕼 D 6616 – 01<u>a</u>

permitting the calculation of viscosity to the second decimal place.

7. Materials

7.1 *Reference Newtonian Calibration Oils*², Newtonian oils of known dynamic viscosity at 100°C. Table 1 shows the dynamic viscosity values of five Newtonian oils used in developing the information for this test method.

7.2 Idling Oil—See 3.2.1 for information and use.

7.3 Non-Newtonian Reference Oil², essential in setting the rotor/stator gap to $1 \cdot 10^6 \text{s}^{-1}$ shear rate. The nominal level of apparent viscosity of non-Newtonian reference oil, NNR-10 used in applying this test method is given in Table 1.

7.4 *Polar Solvent*, such as dimethyl sulfoxide is used to dissolve any deposits on the rotor/stator surfaces after extended use. 7.5 Source of moderate pressure (<100 PSI) *dry* air or nitrogen.

Note 6—Depending on room temperatures, higher torque levels at 100° C and $1 \cdot 10^{6}$ s⁻¹ may require air or other gas cooling. Use of *dry* gas is required (to keep moisture from entering the stator housing).

8. Sampling

8.1 Fifty millilitres of a representative sample of fresh or used test oil is placed in a 50 mL syringe equipped with attached filter holder and $10-\mu$ filter disk² in preparation for injection into the TBS viscometer.

Note 7—It is important to always use a filter and filter disk to prevent larger particles from entering the rotor-stator gap. However, it is also important to note that the TBS viscometer will work with heavily particle laden used oils as long as they are passed through the $10-\mu$ filter.

9. Preparation of Apparatus

9.1 Set up stator cooling method, air or liquid, according to the manufacturer's directions.

NOTE 8—When analyzing relatively viscous oils, stator cooling is necessary. This is particularly the case at lower operating temperatures such as 100°C where simple radiation from the stator through the stator housing is not sufficient to carry away the heat generated by viscous resistance to shear.

9.1.1 *Air Cooling*—Connect cooling air tubing to the ports on the stator housing and the back of the console following directions given by the manufacturer in the Owner's Manual. This will permit use of the flow meter on the left side of the console to adjust the cooling-air flow rate.

9.1.1.1 Set the airflow rate at 100 SCFH.

NOTE 9—Once airflow rate has been set, it is important that this level be maintained throughout calibration and operation. If desired, the air may be passed through a copper coil in a chilling bath containing water, ice, or dry ice, as necessary, to obtain desired stator temperature. The cooling level must be kept constant.

9.1.2 *Liquid Cooling*—Connect liquid cooling bath tubing from bath pump to the stator housing and the back of the console using insulated tubing according to the manufacturer's directions.

9.2 If some days or weeks have elapsed since last use of the TBS viscometer, follow the manufacturer's instructions regarding set-up and alignment of the rotor in the stator, checking the accuracy of the RTD and, if necessary, adjusting to 100.0°C. Shut the power off and go to 9.3.

NOTE 10—Directions for preparation of the tapered bearing simulator viscometer and console are supplied with the equipment. One of the most important directions to be followed is the alignment of the rotor and stator before initial use of the viscometer. For those TBS Models (other than Model 2100E) requiring bearing inspection, low bearing hysteresis and bearing cleanliness are also important to obtaining reliable data.

NOTE 11—Bearing hysteresis should be checked every few months and if the values of increasing and decreasing torque are significantly different, the bearing should be cleaned and re-checked by hysteresis measurements.

9.3 If the TBS viscometer has been turned off for some period of time (>1 h), make sure the motor is off and slowly ($\sim 2 \text{ min}$) inject 50 mL of R-2400 into the stator while turning the rotor using the upper Siamese collet connecting the motor shaft and the drive wire slowly between the thumb and forefinger.

9.4 If the TBS Viscometer has been operating at 100°C, proceed to Section 11 unless recalibration is desired.

9.4.1 If recalibration is desired, proceed to 10.2.

TABLE 1 Reference Oil Viscosities at 100.0°C							
	Reference Oil	Characteristic	Nominal Viscosities ^A				
			mPa•s at 1∙10⁶s^{_1} mPa⋅s at 1⋅10 ⁶ s ^{_1}				
	R-2200	Newtonian	~3				
	R-2300	Newtonian	~5				
	R-2350	Newtonian	~7				
	R-2400	Newtonian	~10				
	R-2450	Newtonian	~12				
	NNR-10 ^B	Non-Newtonian	~10				

^A Contact supplier for certified value of Reference Oil.

^B Special reference oil closely equivalent to R-2400 at a value of 1•10⁶s⁻¹shear rate.

10. Calibration

10.1 If the operating position of the rotor in the stator has already been established in previous work at 100°C, proceed to Section 12.

10.2 If the operating position of the rotor in the stator must be established from a cold start for operation at 100°C, follow the manufacturer's instructions to find the rubbing contact position of the rotor with the stator by rotating the upper Siamese collet between the thumb and forefinger as the rotor is slowly lowered by using the elevator wheel (see Note 12).

NOTE 12-The indicator dial reading decreases when the rotor and platform are raised and vice-versa. Exercise care in using the TBS elevator wheel to move the rotor in the direction intended by the indicating arrow on top of the wheel (clockwise to simultaneously raise both the platform and rotor, counter clockwise to lower both).

10.2.1 After finding the rubbing contact position, turn the elevator wheel clockwise (see Note 12) to raise the platform and the rotor by decreasing the depth indicator dial reading by 0.5 mm.

10.2.2 After making sure that the MOTOR switch is in the off position, turn on the POWER switch and permit the electronic components of the console to warm up for a suitable length of time according to the manufacturer's instructions.

10.2.3 Set the console's temperature controller to 100.0° C and permit the stator to begin warming up to that temperature. Do not turn on the motor.

NOTE 13—The viscosity of the oil decreases exponentially with temperature and it is important that the motor not be started at higher viscosities than 20 to 30 mPa+s (cP) to protect the wire drive shaft.

10.2.4 When the stator temperature has reached 70°C, turn on the motor while pushing the red bouncer button on the console or gently holding the platform ball away from the load-cell platen (see Note 2) by lightly pushing clockwise on the brass pulley post set into the motor turntable. (This is not required or possible with Model 2100E.)

NOTE 14-For TBS Models 500, 600, and SS, it is good practice to always press on and hold the bouncer button, or otherwise push the contact ball away from the load-cell platen before turning the motor on or off. This use of the bouncer button prevents the initial start-up or shutdown surge of the motor from causing the contact ball to hammer on the platen of the sensitive load-cell.

NOTE 15-Sufficient warm-up time is important for consistency and precision. Operating with R-2400 adds the effect of viscous heating to the electrical heating of the stator and speeds the process.

10.2.5 When the temperature stabilizes at 100.0 \pm 0.2°C, go to Section 11.

10.3 If the TBS viscometer is already operating but at temperatures higher than 100°C, set the temperature control to 100.0°C and slowly (~ 1 min) inject 50 mL of idling oil into the stator through the fill tube. If using air cooling, turn the dry gas flow-meter knob on the console to maximum flow rate (100 SCFH). If using liquid cooling, start circulation.

10.3.1 When the temperature reaches 100.0 \pm 0.2°C and while the motor is turning, slowly (~1 min) inject 50 mL of Newtonian calibration oil, R-2400.

10.4 Maintain appropriate air or liquid cooling rate.

11. Setting the Rotor Position at 1•10⁶s⁻¹ Shear Rate – the Reciprocal Torque Intercept

_. _ . _ _ _

NOTE 16-In all data collected for the determination of viscosity, torque and temperature, equilibrium is necessary. Normally, this is reached within 5 minutes after injection of oil having a viscosity less than about 12-15 mPa+s (cP). However, with oils that are more viscous, the time to establish equilibrium may extend to 7 or 8 minutes at 100°C. Under all circumstances, equilibrium is assumed within 10 min. of injection at which point values should be taken and the next step in the method begun.

11.1 R-2400 Newtonian Oil—Establish the reciprocal torque information for R-2400 Newtonian oil by turning on the strip-chart recorder and slowly (~1 min) injecting 50 mL of R-2400 calibration oil.

11.1.1 Press and hold the bouncer button, then turn off the motor (see Note 14). Proceed to find rubbing contact of the rotor with the stator as described in 10.2.

11.1.2 After finding the rubbing contact position, use the elevator to *raise* the platform and the rotor by ~ 0.15 mm to the nearest exact whole tenth (0.100) mm value on the depth indicator dial (see Table 2, Example).

NOTE 17—When the rotor is raised and lowered, the indicator dial needle should be read as exactly as possible (to the third decimal place by estimating between dial markings) at each position. Parallax in reading the dial indicator should be avoided by placing the eye at the same level as the dial. A magnifying glass can be further helpful.

TABLE 2 Example of Torque/Height Data									
Rotor (Platform) Position	Example	Torque, T		Reciprocal Torque, 1/T					
-		R-2400	NNR-10	R-2400	NNR-10				
Rubbing Contact	14.176 mm ^A	_	-	-	-				
Up \sim 0.15 mm to nearest 0.1 mm	14.000 mm ^A	value	value	1/value	1/value				
Up to 0.100 mm	13.900 mm ^A	value	value	1/value	1/value				
Up to 0.100 mm	13.800 mm ^A	value	value	1/value	1/value				
Up to 0.100 mm	13.700 mm ^A	value	value	1/value	1/value				
Up to 0.100 mm	13.600 mm ^A	value	value	1/value	1/value				

- -

....

^A See Note 12 for relationship between rotor (platform) position and micrometer reading

11.1.3 While pushing the red bouncer button on the console *turn motor on* (see Note 14).

11.1.4 Hold the red bouncer button in the depressed position and adjust the torque readout to zero ('0000' (0000 on the dial) according to the manufacturer's instructions.

11.1.5 When torque/temperature equilibrium has been reached (see Note 16) at this initial position, press the bouncer button briefly (see Note 2) and release. As soon as the computer-simulated or actual strip-chart recorder again shows constant torque/temperature traces (see Note 16), record the torque value given by the data recording equipment as well as the rotor (platform) position shown by the depth indicator dial.

11.1.6 Continue with, and complete 11.1.7 through 11.1.9.4 without using bouncer button again.

11.1.7 Use the elevator to move the rotor (platform) *up* exactly 0.100 mm (see Note 17 and Table 2). Again, record the rotor (platform) position and the indicated torque after torque/temperature equilibrium is achieved (see Note 16).

11.1.8 Again raise the rotor (platform) progressively and exactly 0.100 mm (see Note 17) three more times for a total of five sets of decreasing values of indicated torque with increasing rotor (platform) height as in Table 2 (see Example) and record the torque and rotor height values.

Note 18-The full sequence required is shown in Table 2 and provides five sets of torque/height data for each of R-2400 and NNR-10.

11.1.9 Calculate the reciprocals of the torque values collected in 11.1 through 11.1.8 (see Table 2) for the Newtonian reference oil R-2400.

11.1.9.1 Linearly regress the rotor height (platform) position versus the *reciprocal* torque values found for these rotor heights. Record the slope, intercept, and correlation coefficient, R, of this best line.

11.1.9.2 The value of *R* should be equal to or greater than (\geq) 0.999.

11.1.9.3 If *R* is less than (<) 0.999, slowly ($\sim 1 \text{ min}$) re-inject 50 mL of R-2400 and repeat 11.1.2 through 11.1.9.2 using special care to set and record the exact values of height to the third decimal place on the depth indicator dial (see Note 17). Recalculate the value of *R*.

11.1.9.4 If the value of R is now acceptable, proceed to 11.2. If the value of R is still not high enough, contact the manufacturer of the TBS.

11.2 Non-Newtonian Reference Oil, NNR-10—Establish the reciprocal torque information for the non-Newtonian reference oil, NNR-10 by slowly (\sim 1 min) injecting 50 mL of non-Newtonian reference oil NNR-10 and setting the rotor (platform) height to the exact initial position previously used for the Newtonian Reference oil, R-2400 in 11.1.2 (see Note 17).

11.2.1 Establish temperature/torque equilibrium, then record the rotor (platform) position indicated by the depth indicator dial and use the bouncer button once only to initiate the series of reciprocal torque determinations. Do not use the bouncer button again while establishing the reciprocal torque values.

11.2.2 Repeat the rotor (platform) adjusting, torque-collecting sequence in 11.1.2 through 11.1.9 using identical rotor (platform) positions. Record all values of rotor (platform) position, resultant torques, and reciprocal torque values (see Notes 17 and 18).

11.2.2.1 As in 11.1.9.1, linearly regress the rotor (platform) position versus reciprocal torque values collected in 11.2 for the non-Newtonian reference oil, NNR-10. Record the slope, intercept, and correlation coefficient.

11.2.2.2 The value of *R* should be equal to or greater than (\geq) 0.999. If the value of *R* is acceptable, record and proceed to 11.3. 11.2.2.3 If the value of *R* is less than 0.999, repeat 11.2.1 through 11.2.2.2 with particular attention to setting, reading, and recording the values of platform position and torque. If the value of *R* is still less than 0.999, contact the manufacturer.

11.3 Determination of Reciprocal Torque Intersection Position for 1.10⁶s⁻¹ Shear Rate:

11.3.1 Calculate and record the reciprocal torque value, $1/T_i$, for the intersection point of the linear equations of 11.1 and 11.2 (see Note 19 and Fig. 5). This provides the experimentally determined rotor operating position for 1•·10⁶s⁻¹ shear rate.

NOTE 19—The linear equation obtained from 11.1 using Newtonian reference oil R-2400 is H = m/T + b in which *m* is the slope and *b* the intercept and *H* and 1/*T* are rotor height and reciprocal torque. The linear equation obtained from 11.2 using reference oil NNR-10 is H' = n/T' + c in which *n* is the slope and *c* the intercept, and *H'* and 1/*T'* are rotor height and reciprocal torque at the intersection point $H_i = H_i'$ as well as $1/T_i = 1/T_i'$. Setting equation H = m/T + b = H' = n/T' + c: $m/T_i + b = n/T_i + c$ and $1/T_i = (c-b)/(m-n)$ substituting 1/T = (c-b)/(m-n) into H = m/T + b $H_i = [m(c-b)/(m-n)] + b$; the intersection height for $1 \cdot 10^6 s^{-1}$.

12. Calibration of TBS Rotor and Stator

12.1 Set rotor position exactly to that indicated by 11.3.1 (see Note 17).

12.2 Check Rotor Position at $1 \cdot 10^6 s^{-1}$ Shear Rate:

Note 20—Slow expansion of the rotor and stator after start up of the TBS viscometer may slightly change the originally determined position of the rotor at $1 \cdot 10^6 s^{-1}$ shear rate and it is prudent to recheck the rotor position and to make slight adjustments, if necessary.

12.2.1 Slowly (\sim 1 min) inject 50 mL of Newtonian reference oil, R-2400, and allow for torque/temperature equilibration (see Note 16). Apply the bouncer button briefly, allow the torque value to stabilize, and record torque.

NOTE 21—In determinations of viscosity using all TBS viscometer models except Model 2100 E, it is necessary to use the bouncer button once after temperature/torque equilibrium has been established. See Note 2.

12.2.2 Slowly (~ 1 min) inject 50 mL of non-Newtonian reference oil, NNR-10, again allow for torque/temperature equilibration (see Note 16). Apply the bouncer button briefly, allow the torque value to stabilize, and record torque.

🖽 D 6616 – 01<u>a</u>

FIG. 5 Reciprocal Torque Intercept of R-2400 and NNR-10 for Setting Appropriate Rotor Position for 1•·10⁶s⁻¹Shear Rate

12.2.3 Calculate the NNR-10/R-2400 viscosity ratio from the values on the container.

12.2.4 If the torque ratio NNR-10/R-2400 is within ± 0.015 of the viscosity ratio of 12.2.3, proceed to 12.3.

12.2.5 If the torque ratio NNR-10/R-2400 is *greater than* 1.015, *lower* the rotor (platform) 0.010 mm for each 0.010 unit of ratio greater than 1.000 (see Notes 12 and 17); repeat 12.2.1 and 12.2.2, and recalculate the NNR-10/R-2400 torque ratio.

12.2.5.1 If the NNR-10/R-2400 torque ratio is still greater than 1.015, repeat 12.2.1 and 12.2.2 until the proper value is obtained. 12.2.6 If the NNR-10/R-2400 torque ratio is *less than* 0.985, raise the rotor (platform) 0.010 mm for each 0.010 unit of ratio less than 1.000 (see Notes 12 and 17), repeat 12.2.1 and 12.2.2, and recalculate the NNR-10/R-2400 torque ratio.

12.2.6.1 If the NNR-10/R-2400 torque ratio is still less than 0.985, repeat 12.2.1 and 12.2.2 until the proper value is obtained.

NOTE 22—The test method given in 12.2 is a quick and precise method of readjusting rotor (platform) position to the appropriate shear rate and can be used at any time.

12.3 Simultaneously initiate the calibration and recheck the operationally correct rotor (platform) position by slowly injecting Newtonian reference oil R-2200 and waiting until torque/temperature equilibrium is obtained (see Section 15). Use the bouncer button after torque/temperature equilibrium, allow the torque value to stabilize, and record torque.

12.3.1 Repeat 12.3 for Newtonian reference oil R-2450 and record resulting torque.

12.3.2 Use the known viscosities of Newtonian reference oils R-2200 and R-2450 and the torque values from 12.3 and 12.3.1 to calculate the slope, m_{ν} , and intercept, b_{ν} , of the line connecting these two pairs of values with indicated torque as variable T_i , and viscosity as variable V, in Eq 1.

$$V = m_V \bullet T_i + b_V \tag{1}$$

$$V = m_V \cdot T_i + b_V \tag{1}$$

12.3.3 Use the value of torque for non-Newtonian reference oil NNR-10 from 12.2.3 and substitute it into Eq 1. Calculate the value of the viscosity of NNR-10 and compare to the viscosity value of NNR-10 on the container. If the viscosity value is within ± 2 % of the value on the container, proceed to 12.4.

12.3.3.1 If the value of NNR-10 is not within ± 2 % of the container value, first check the NNR-10/R-2400 torque ratio by slowly (~1 min) injecting 50 mL of R-2400 (see 12.2.1), obtaining the torque value. Then use the last determined value of NNR-10 from 12.2.2 to re-calculate the NNR-10/R-2400 torque ratio.

(1) If the NNR-10/R-2400 torque ratio is within 1.000 ± 0.015 , return to 12.3 and re-run 12.3 to 12.3.3.

(2) If the NNR-10/R-2400 torque ratio is outside of 1.000 ± 0.015 , return to the appropriate 12.2.5 or 12.2.5.1, re-establish the correct rotor position, and proceed through the subsequent 12.3 to 12.3.3.

(3) If repeat efforts *do not* produce a viscosity value for NNR-10 within 2 % of the container value, contact the instrument manufacturer.

12.3.3.2 When the NNR-10/R-2400 torque ratio is within 1.000 \pm 0.015, and the value of NNR-10 is within 2 % of the container value, record the new setting of the rotor (platform) and proceed to 12.4.

12.4 Continue the calibration of 12.3 by sequentially and slowly ($\sim 1 \text{ min}$) injecting 50 mL of Newtonian reference oils R-2300, R-2400, R-2350, and non-Newtonian NNR-10 in that order. For each reference oil, immediately after the torque/temperature

🕼 D 6616 – 01<u>a</u>

equilibrium is attained (see Note 16), use the bouncer technique (see Notes 2 and 21), and record torques for each reference oil. 12.5 Using the known viscosity and torque values at 100.0°C for the five Newtonian reference oils R-2200 and R-2450 from 12.3, and R-2300, R-2400, and R-2350 from 12.4, linearly regress the viscosity and torque values of all five calibration oils and

determine the slope, intercept, and correlation coefficient, *R*. 12.5.1 The correlation coefficient should result in a value ≥ 0.999 . If so, go to 12.6

12.5.1.1 If the value of R is less than 0.999, repeat 12.3 through 12.4.

12.5.1.2 If there is still a problem in obtaining the desired correlation coefficient, contact the instrument manufacturer.

12.6 Use the torque value of NNR-10 from 12.4 in Eq 1 and calculate the viscosity of NNR-10.

12.6.1 The viscosity value determined for NNR-10 should be within 2 % of the value on the container. If so, proceed to Section 7.

12.6.2 If the viscosity value determined for NNR-10 is not within 2 % of the value on the container, from the torques of R-2400 and NNR-10 obtained in 12.4, test if the torque ratio of NNR-10/R-2400 is 1.000 \pm 0.015.

12.6.2.1 If the NNR-10/R-2400 torque ratio is within 1.000 \pm 0.015, repeat the calibration steps of 12.3 through 12.5.

12.6.2.2 If the NNR-10/R-2400 torque ratio is outside of 1.000 \pm 0.015, adjust the rotor height (platform) according to 12.2 until the correct torque ratio value is obtained and then repeat the calibration steps of 12.3 through 12.5.

12.6.2.3 If the viscosity of NNR-10 is still not within 2 % agreement with the value on the container, contact the instrument manufacturer.

13. Analysis of Sample Oils - Obtaining Torque Values

13.1 Inject 50 mL of each test oil slowly (~ 1 min) into the fill tube, wait for temperature/torque equilibrium, then apply the bouncer button (see Note 21), and record the torque value after it again stabilizes.

13.1.1 If the amount of test oil is limited, a different injection procedure may be used. Fill the syringe with 30 mL of oil and make three injections of 10 mL each and waiting 10 s between injections.

NOTE 23-If the amount of test oil is severely limited, contact the manufacturer regarding a technique requiring no more than 10 to 15 mL of test oil.

14. Calculation of Viscosity

14.1 Calculate the viscosity of the test oil to the nearest 0.01 mPa•: s by inserting the value of torque obtained in Eq 1 and using the constant values determined for m_v and b_v .

14.2 After every set of six sample oil analyses, analyze NNR-10.

14.2.1 If the viscosity value is within 2 % of the value on the container, proceed to 14.3.

14.2.2 If the viscosity value of NNR-10 differs by more than 2 % from the value on the container, inject reference oil R-2400 and recheck the NNR-10/R-2400 torque ratio as in 12.6.2. If necessary use these most recent torque values to recalibrate using 12.3 through 12.5.

14.3 Continue the sample analyses until completed according to the sequence of Section 13.

15. Maintenance of Instrument Precision

15.1 *Intermittent Use*—If the TBS viscometer is not to be used for more than ½ h, inject 25 mL of idling oil into the cell. The idling oil may be left in the operating rotor/stator cell for a week or more, if required. Periodically (every seven to ten days), re-inject idling oil.

NOTE 24—A test oil or reference oil should not be left in the gap for more than 15 to 20 min. since deposits from the oil may be laid down, and modify the very small rotor/stator gap.

15.2 *Standby Procedure*—When testing is complete, inject idling oil to flush the rotor/stator cell. Leave the rotor at operating position in preparation for the next use. Inject idling oil about once a week while on standby.

15.3 *Shutdown Procedure*—Inject idling oil and raise rotor (see Note 12) 0.5 mm to its shutdown storage position. Press bouncer button or hold turntable ball contact away from load-cell platen and shut off motor. Then shut off main console power.

15.3.1 When starting up again, see 9.2 or 9.3.

15.4 Cleaning Rotor/Stator Cell:

NOTE 25—Continuous operation of the TBS viscometer without a periodic flush with a polar organic solvent such as dimethyl sulfoxide will eventually lead to a test cell whose surfaces are coated with deposits from the oils being analyzed. It is recommended that the test cell be treated with an organic polar solvent after every 200 to 300 analyses if used continuously and after every 50 to 70 analyses if used intermittently.

15.4.1 After a routine shutdown in accordance with 15.3 and after the test cell has cooled to room temperature, fill the test cell with the polar organic solvent.

15.4.2 Lower the rotor (see Note 12) 0.3 mm from its shutdown storage position of 0.5 mm above the rotor operating position (see 11.3.1 and Note 19).

15.4.3 While pressing bouncer button (or holding turntable ball away from platen by lightly pressing the brass pin on the motor turntable in a clockwise direction), turn on console's main power and motor switches. When motor is running, release restraint to free motion of the turntable.

∰ D 6616 – 01<u>a</u>

15.4.4 After 10 min of operation with the polar solvent, purge the polar solvent from the cell with idling oil using a 60 mL stepwise injection of one 30 mL injection followed by two 15 mL injections, all spaced about 5 min. apart.

15.4.5 Either start up the TBS viscometer and recalibrate (see 9.3) or shut the instrument down following the directives of 15.3.

16. Report

16.1 Report the apparent viscosity to the nearest 0.01 mPa \bullet s (cP) at 100°C and $1\bullet$ 106s⁻¹ for each test oil for either the manual or automated protocols.

17. Precision and Bias⁴

17.1 *Precision*—The following criteria should be used for judging the acceptability of results from either the manual protocol or the automated protocol:

17.1.1 *Repeatability*—The difference between two successive test results, obtained by the same operator with the same apparatus under constant operating conditions on identical test material, would in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty.

1.2 % of the mean.

17.1.2 *Reproducibility*—The difference between two single and independent results, obtained by different operators working in different laboratories on identical test material, would in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty.

3.5 % of the mean.

17.1.3 Ten laboratories submitted data used in the round robin program to obtain the precision statement. Statistical analysis was obtained on ASTM engine oils covering an approximate range of viscosities from 5 to 12 mPa•s (cP) at 100°C. The test series of engine oil was composed of the following engine oils: SAE 0W-10 (1), 5W-30 (1), 15W-40 (1), 20W-40 (2), 20W-50 (1), 25W-30 (1), 30 (1), and 40 (1) for a total of nine engine oils, These nine oils covered a viscosity range of approximately 5 cP mPa•s to 12 cP mPa•s at 100°C.

17.2 Bias—There is no accepted reference material suitable for determining the bias of this test method.

18. Keywords

18.1 dynamic viscosity; high shear rate viscosity; high shear rate viscosity at 100°C; high shear viscosity; high temperature viscosity; rotational viscometer; Tapered Bearing Simulator Viscometer

⁴ Supporting data are available from ASTM International Headquarters. Request research report RR:D02-1501.

ANNEX

(Mandatory Information)

A1. ROUND ROBIN TEST METHOD FOR MEASURING VISCOSITY AT HIGH SHEAR RATE BY TAPERED BEARING SIMULATOR VISCOMETER AT 100°C USING AUTOMATED TECHNIQUE

A1.1 Summary of Automated Method

<u>A1.1.1</u> The automated version of Test Method D 4683 using the Tapered Bearing Simulator (TBS) Viscometer was developed to simplify the use of the TBS at 150°C and $1\cdot10^{6}s^{-1}$ shear rate. Recently, the automated TBS approach used in Test Method D 4683 has been similarly extended to Test Method D 6616 at 100°C and $1\cdot10^{6}s^{-1}$ shear rate. The appropriate shear rate for the automated protocols is established by using the reciprocal torque technique associated with all TBS methods.

<u>A1.1.2</u> The appropriate rotor-stator gap at the desired temperature is established by adjusting the platform controlling the rotor height as called for by the automated program. The program then calibrates the viscometer at 100° C with standard oils and then proceeds to analyze and report viscosities of the sample oils. The automated method requires:

A1.1.2.1 A computer equipped with a conversion board to translate analog signals to digital output for the appropriate data analysis program,

A1.1.2.2 An automatic sampling and injection apparatus, and

A1.1.2.3 A computer program linking and regulating all equipment and capable of computing and reporting viscometric information to a file and printer.

A1.2 Technical Terms and Identification

A1.2.1 Refer to Test Method D 4683 for all terms and TBS components including those introduced in Test Method D 6616, the 100°C manual method, to which this Annex A1 is appended.

🧚 D 6616 – 01a

A1.3 Equipment and Materials Needed

A1.3.1 Tapered Bearing Simulator-The following upper levels of operating viscosity for different models of the automated versions of the Tapered Bearing Simulator at $1 \cdot 10^6 s^{-1}$ shear rate are:

NOTE A1.1—Tapered Bearing Simulator Viscometers, their computers, and automated supporting equipment and programs are manufactured by the Tannas Co., Midland, Michigan.

A1.3.2 A suitable computer equipped with an analog to digital conversion board and connections.

A1.3.3 Automated, computer-controlled sampling and injection equipment.

A1.3.4 A printer and computer connections.

A1.3.5 Data analysis program.

A1.3.6 Newtonian Reference Oils, R-2200, R-2300, R-2350, R-2400, and R-2450, may be used for calibration. Nominal values are given in Table A1.1.

A1.3.7 Non-Newtonian Reference Oil, NNR-10, provides the reference for setting the rotor to the position corresponding to a shear rate of $1 \cdot 10^6 \text{s}^{-1}$.

A1.3.8 Idling Oil is used to prevent rotor-stator deposits from forming while the TBS is being held at operating temperature for any extended period before or after collecting data.

A1.3.9 Source of moderate pressure (<100 psi) dry air or nitrogen.

Note A1.2—Depending on room temperatures, higher torque levels at 100°C and 1·10⁶s⁻¹ may require gas cooling. Use of dry gases is required (to keep moisture from entering the stator housing).

A1.4 Preparation of TBS Viscometer for Automated Analysis

A1.4.1 Follow manufacturer's instructions as well as pertinent information in the parent method.

NOTE A1.3-The TBS automated program version for this Round Robin is Auto-TBS V. 2.0.

A1.4.2 Turn on the Auto-Sampler and the syringe pump. Start the computer and determine that the computer date and time are correct.

A1.4.3 Select Automated TBS on the computer monitor.

A1.4.4 Type C (for Continue) to start program and follow Operator's Checklist on the computer screen before beginning testing.

A1.4.5 Type C to place Warmup menu on the monitor screen. Select 100.0° C as the operating temperature setpoint and follow Warmup directives on the computer screen.

A1.4.5.1 If there is a need to align the temperatures on the screen and on the TBS console, type A and make the necessary adjustment in the temperature shown on the screen.

A1.4.6 Type C to place the Calibration Fluid Viscosity Input menu on the monitor screen. Type in the appropriate viscosity data for the Newtonian reference oils and the one non-Newtonian reference oil, NNR-10. Reference Oil 1 and Reference Oil 4 should span the greatest viscosity range of the reference oils chosen.

NOTE A1.4-Newtonian reference oils R-2200, R-2300, R-2350, R-2400, R-2450 and non-Newtonian reference oil NNR-10 are available from the Tannas Co., Midland, MI, 48642.

NOTE A1.5—Any combination of four individual Newtonian reference oils may be chosen depending on the anticipated viscosity range of the samples. Placement of vials is shown in Fig. A1.1.

A1.4.7 Type C to place the Sample Tray Filling menu on the monitor screen. Type in the sample oil identifications in the order desired. This screen also shows the tray positions of the samples when the trays are filled (see also Fig. A1.1).

Note A1.6-For the Round Robin, Form X4 shows the order of entry of all test oils as well as reference oil R-2400. Oil R-2400 is entered in this sample series for Round Robin information.

A1.4.7.1 Fill each auto-sampler vial with slightly more than 50 mL of the desired oil and place the vials according to the order indicated in A1.4.7 and the auto-sampler racks indicated in Fig. A1.1.

TABLE AT.1 Nominal Reference Oil Viscosities at 100 C						
	Reference Oil	Nominal Viscosity, <u>mPa·s</u>				
	R-2200 R-2300 R-2350	~3.00 ~5.00 ~7.00				
	<u>R-2400</u> R-2450	<u>~10.00</u> ~12.00				

~10.00^A

TABLE A1.1 Nominal Beforence Oil Viscositios at 100°C

NNR-10 A Value at 1.106s⁻¹ shear rate.

🕼 D 6616 – 01<u>a</u>

FIG. A1.1 Top View of Tray Table

NOTE A1.7-Before filling any oil vial, agitate the oil by inverting the container five times.

A1.4.8 Type *C* to place the *Reference Oil Tray Filling* menu on the computer monitor. Agitate the oils according to Note A1.7 and place the filled vials in the trays in the order shown by the screen and in Fig. A1.1.

A1.5 Establishing the Automated Rotor Position for 1.10⁶s⁻¹

Note A1.8—To establish the rotor position for $1 \cdot 10^6 \text{s}^{-1}$, it is important to make manual adjustments of the rotor position as carefully as possible using the depth-indicator dial as carefully as possible. See Note 16.

A1.5.1 Type C. A screen having a table, graphics, and instructions to find the appropriate rotor position for $1 \cdot 10^6 s^{-1}$ shear rate will appear on the monitor screen.

<u>A1.5.2</u> Turn off the motor and find the rubbing contact position of the rotor with the stator (see 4.2.3). Type in this information on the monitor screen followed by a keyboard *Enter* or ' $_{\leftarrow}$ |'. Follow monitor screen directions and raise rotor by 0.150 mm then restart the motor.

<u>A1.5.3</u> Type *T* to initiate the program that sets the proper rotor-stator gap. The program will cause the auto-sampler to flush the rotor-stator cell with two injections totaling 100 mL of the non-Newtonian reference oil NNR-10. After approximately 15 min, the computer will activate the *bouncer* (see Note 2) and *beep* five times. This signals the operator and initiates the procedure to establish the proper rotor-stator gap for $1 \cdot 10^6 \text{s}^{-1}$ shear rate.

Note A1.9—As a by-pass of these steps, typing the letter P permits the operator to enter a given rotor (platform) position without experimental determination and exit the screen with a typed C. If the position has not been determined, however, it is necessary to type T to find initially the appropriate rotor position.

A1.5.4 Immediately set the dial indicator exactly (see Note 10) to the value indicated on the monitor to position the rotor at the first step. Then type *T* to cause the computer program to collect data. The computer program will call for three more exact settings. Initiate the next step in the sequence by typing *T*. When the first four steps are completed, set the rotor back to first position again and type *T*. The computer program then initiates the same sequence with R-2400.

NOTE A1.10—It is helpful to record the torque and rotor position indicated by the dial indicator for each step with both NNR-10 and R-2400.

A1.5.5 The computer program will analyze the torque/rotor-position data and determine the slope, intercept, value of the correlation coefficient, R, for both NNR-10 and R-2400 as well as show their intersection point.

<u>NOTE</u> A1.11—To maintain quality control, record the slope, intercept and value for *R* for both R-2400 and NNR-10. Also, record the reciprocal torque and rotor position for the intersection of the two lines. The latter value is the indicated rotor position associated with a shear rate of $1 \cdot 10^6 \text{s}^{-1}$.

A1.5.6 If the two lines have acceptably high correlation coefficients (equal to or greater than 0.999), then move on to the Calibration Section A1.6.

A1.5.7 If either of the two lines have correlation coefficients less than 0.999, rerun A1.5.1 from the beginning to A1.5.6. If this fails to produce an acceptable correlation coefficient, contact the manufacturer of the equipment.

A1.6 Calibration of TBS Rotor and Stator

A1.6.1 Set the rotor position exactly (see Note 16) to the intersection point indicated by A1.5.5 and type C on the keyboard.

Note A1.12—The computer program will now enter the four calibration oils in proper sequence and determine the appropriate slope, intercept, and the correlation coefficient, R, in three stages.

∰ D 6616 – 01<u>a</u>

NOTE A1.13—The first stage in the programmed calibration is a check to see that the rotor position is correct by injecting R-2200 followed by R-2450 to develop a temporary slope and intercept followed by an injection of NNR-10 to test whether a correct value for this non-Newtonian reference oil is obtained.

<u>A1.6.2</u> After injecting Reference Oil R-2200, R-2450, and NNR-10, if the viscosity value obtained for NNR-10 (shown on the monitor screen) is within ± 0.15 cP of the value previously entered in A1.4.6, the program will continue to full calibration. The autosampler will inject the two remaining calibration Reference Oils R-2300 and R-2400 and then move on to analysis of the samples.

NOTE A1.14—The second stage in the programmed calibration adds the injection of R-2400 and R-2300 to R-2200 and R-2450 to determine the degree of linearity between viscosity and torque. If the value is acceptable, the program also presents the values of slope and intercept of the resulting best line. NOTE A1.15—The third stage in the programmed calibration is a check to see that the rotor position is correct by recalculating the viscosity of NNR-10 from the torque value previously obtained in A1.6.2.

A1.6.2.1 If the value of NNR-10 is not within ± 0.15 cP of the value previously entered in A1.4.6, the program will instruct the operator to type *R* for return to the gap-setting menu. Type *R*.

NOTE A1.16—Typing R must be done within 20 min or the program will call for injection of Idling Oil to protect the stator from deposit formation.

A1.6.2.2 On return to the gap-setting menu, enter the previously determined rubbing contact (A1.5.2) and type P to prepare to enter the new rotor position value.

A1.6.2.3 Determine the change in rotor (platform) position as follows:

(1) If the viscosity value obtained for NNR-10 is higher than the value on the NNR-10 container, move the rotor (platform) position down by 0.025 mm for each 0.10-cP decrease in viscosity desired. Set the rotor position precisely as determined (see Note 11 and Note 16).

(2) If on the other hand, the viscosity of NNR-10 is lower than the value on the NNR-10 container, move the rotor (platform) up by 0.025 mm for each 0.10 cP increase in viscosity desired. Set the rotor position precisely (see Note 11 and Note 16).

NOTE A1.17—While the direction of adjustment indicated in A1.6.2.3.1 and A1.6.2.3.2 may seem counterintuitive to correct the rotor (platform) position and viscosity of NNR-10, note that NNR-10 is a non-Newtonian oil which increases in viscosity with lower shear and vice versa.

A1.6.2.4 After typing *P* in A1.6.2.2, and calculating the change in height necessary to obtain the correct rotor position to generate $1 \cdot 10^6 \text{s}^{-1}$ shear rate, type the value of the rotor position determined in A1.6.2.3 into the indicated location at the bottom of the gap-setting menu. Then type *C* to move back to the calibration menu for recalibration and continue from A1.6.1.

<u>A1.6.3</u> When the full calibration is competed, if the value of NNR-10 does not fall within ± 0.15 cP of the value given on the container of NNR-10, the computer will call upon the operator to type *R*. This will return the operator to the gap-setting menu. Return to A1.6.2.1 through A1.6.2.4.

A1.6.4 When calibration is completed, if the value of NNR-10 falls within ± 0.15 cP of the value given on the container of NNR-10, the program will automatically proceed to run the sample analyses discussed in Section A1.7.

A1.7 Analysis of Sample Oils

A1.7.1 The program will automatically display a refreshed screen associated with the testing of each sample and continue with automated testing and analysis of the torque data using the slope and intercept values previously determined from calibration in Section A1.6.

A1.7.2 The program analyzes six samples and then injects NNR-10 to check whether the position of the rotor is producing $1 \cdot 10^6 \text{s}^{-1}$ shear rate. If the value calculated for NNR-10 falls within ± 0.15 cP of the value on the NNR-10 container, the program will continue analysis of the next six samples. It will again inject NNR-10 to check the shear rate being produced. This pattern will continue until all samples have been analyzed. All viscosity values including those for NNR-10 are shown on the computer monitor screen and typed on the printer linked to the computer.

A1.7.3 If any one of the NNR-10 injections produces a viscosity value outside of ± 0.15 cP of the viscosity value on the NNR-10 container, the program will pause and request the operator to press *R* on the keyboard. This returns the screen to the gap-setting menu as before. Return to A1.6.2.1, reestablish the appropriate gap by calculating and setting the new gap, and then recalibrate.

A1.7.4 The samples left unanalyzed when the NNR-10 analysis fell out of range must be moved up in sequential order in the trays to eliminate the empty vials.

NOTE A1.18-Re-initiation of the analysis program starts the siphon at Position 1, Tray I.

NOTE A1.19—When the automated program finishes analyzing all samples, it injects NNR-10 followed by the Idling Oil and awaits the operator's further actions.

A1.8 Report

A1.8.1 Report all viscosity data collected using the data printout of the computer. Follow the directions given in Section 16.

A1.9 Precision and Bias

A1.9.1 Refer to Section 17.

A1.10 Keywords

A1.10.1 Refer to Section 18.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).