This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: F 1116 - 88 (Reapproved 1995) 1116 - 03

Standard Test Method for Determining Dielectric Strength of <u>Overshoe Dielectric</u> Footwear ¹

This standard is issued under the fixed designation F 1116; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers testing to determine the determination "Dielectric Strength" of the dielectric strength of overfoot and overshoe footwear. Three procedures are provided, the use of which depends upon the portion of the footwear that it Testing is desired to test.

1.1.1 Procedure A-Withstand voltage proof test of done over the sole portion of the overshoe footwear.

1.1.2 Procedure B—Withstand voltage proof test of the sole and foot portion of the overshoe footwear.

1.1.3 *Procedure C*—Withstand voltage proof test of the maximum possible-portion area of the overshoe dielectric footwear without permitting flashover between electrodes.

1.2 The use and maintenance of this equipment dielectric footwear is beyond the scope of this test method.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements appear in 5.2.

Current edition approved Feb. Nov. 1, 1988. 2003. Published May January 2004. Originally approved in 1988. Last previous edition approved in 1988 as F 1116-88.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This test method is under the jurisdiction of ASTM Committee F⁻¹8 on Electrical Protective Equipment for Workers and is the direct responsibility of Subcommittee F18.15 on Worker Personal Equipment.

∰ F 1116 – 88 (1995) <u>1116 – 03</u>

2. Referenced Documents

2.1 ASTM Standards: ²

D 149 Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies

<u>F 1117 Specification for Dielectric Footwear</u>

3. Descriptions of Terms Specific to This Standard Terminology

3.1 sole-the underside Descriptions of the boot or rubber that would be Terms Specific to This Standard:

<u>3.1.1 user— as used in contact with 1.3</u>, the ground. In this type footwear it is normally one piece and constructed of a molded elastomer.

3.2 *foot portion*—the portion of entity employing the actual worker utilizing the equipment; if no separate employer, then the individual.

3.1.2 overfoot footwear-footwear designed to be worn directly owver the w feet as the only source of foot cover'ing.

3.1.3 overshoe footwear-footwear designkled to be worn over existing footwear.

4. Significance and Use

4.1 Electrical contact injuries to workers may involve a current path through the feet of the worker. <u>The footwear covered by</u> this specification is dielectrically rated to provide additional insulation and isolation to the wearer. This test method will determine that overshoe footwear, if provided as additional isolation or insulation, dielectric footwear has a particular value of dielectric strength integrity at the time of the test.

5. Apparatus

5.1 Electrodical Test Criteria:

5.1.1 <u>Test Procedure-A</u>—The footwear shall be filled with immersed in water or conductive metal shot so that other conducting media to a depth where the inner sole flashover clearance is completely covered. The footwear shall then be placed consistent with the proof test voltage as listed in Table 1. Since the water to such a depth that or other conducting media inside the footwear forms one test electrode and the water or the other conducting media in the container outside the footwear forms the other electrode, 152 mm or 6 in. of clearance between electrodes consists of 76 mm or 3 in. of clearance from the sole is, top of the footwear to the greatest extent practicable, in contact with top of the water w or other conducting media both inside and outside of the water going above footwear. Water is recommended as the medium for the electrodes to ensure complete coverage of any part the surfaces of the footwear or sother conducting media inside the footwear forms one test electrode and shall be connected directly to the other reminal of the voltage source (. Due to the weight of water or other electrode and shall be connected directly to the other terminal of the voltage source (. Due to the weight of water or other types of ele-Fctrode media, support racks are needed to secure footwear being tested. The maximum protective area of the footwear shall be tested. Care must be taken to thoroughly dry the inside of the footwear following the test and prior to storage. See Fig. 1- and Fig. 24):

5.1.2 Procedures B and C—These procedures differ from Procedure A in how much of the overshoe footwear is subjected to the voltage proof test. In Procedure B, the footwear is immersed to a level of the top of the foot, while in Procedure C the footwear is immersed to a depth where the flashover clearance is consistent with the proof for typical test-voltage as listed in Table 1. In Procedures B and C, the inner electrode would preferably be water because of the weight of that quantity of shot. Care must therefore be taken to thoroughly dry the inside of the footwear following the proof arrangements for dielectric test of rubbers and prior to storage or issue. boots using water electrodes.

NOTE 1-Water used as electrodes should have a minimum conductance of 0.25 mho.

² Annual Book of ASTM Standards, Vol 10.01.

IABLE 1 lest voltages and Electrodes			
A-C-Proof Test		D-C-Proof Test	
Voltage (rms	mm (in.)	Voltage (avg	mm (in.)
value)		value)	
-5 000	-76 (3)	20 000	-76 (3)
15 000	127 (5)	45 000	152 (6)
10 000	76 (3)	40 000	102 (4)
20 000	127 (5)	50 000	152 (6)
20 000	152 (6)	60 000	178 (7)

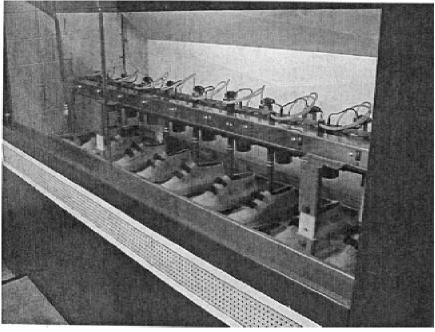


FIG. 1 Typical Test Arrangement for Dielectric Test of Rubbers Using Water Electrodes

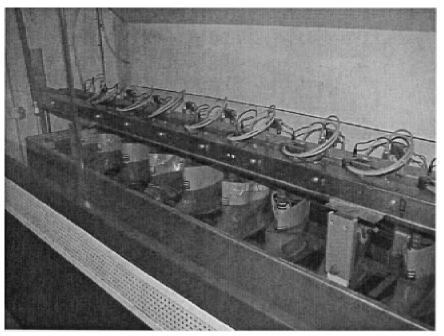


FIG. 2 Typical Test Arrangement for Dielectric Test of Boots Using Water Electrodes

5.2 *Precautions*—It is recommended that the test apparatus be designed to afford the operator full protection in performance of his duties. Reliable means of de_energizing and grounding the high-voltage circuit shall be provided. It is particularly important to incorporate a positive means of grounding the high-voltage section of the <u>d-e_dc</u> test apparatus due to the likely presence of high-voltage capacitance charges at the conclusion of the test.

5.3 *Electrical Test Equipment*:

5.3.1 The test equipment used in the dielectric strength or proof tests shall be capable of supplying an essentially stepless and continuously variable voltage to the test specimen. The equipment shall be inspected at least annually to ensure that the general condition of the equipment is acceptable and to verify the characteristics and accuracy of the test voltage.

5.3.2 Breakdown or failure indicators or accessory circuits shall be designed to give positive indication of failure and shall require resetting by the operator before tests can be continued.

5.4 *A-C<u>AC</u> Tests*:

() F 1116 – 88 (1995) 1116 – 03

5.4.1 Voltage Supply and Regulation :

5.4.1.1 The test voltage crest factor shall not differ more than 5 % 2 % from a sinusoidal wave.

5.4.1.2 The accuracy of the voltage measuring circuit shall be within $\pm 2\%$ of full scale. test voltage.

5.5 *D-CDC* Tests:

5.5.1 Voltage Supply and Regulation :

5.5.1.1 The peak to peak a-e ac ripple component of the d-e dc proof-test voltage shall not exceed 2 % of the average voltage value under no-load conditions.

5.5.1.2 The accuracy of the voltage measuring circuit shall be within $\pm 2\%$ of full scale. test voltage.

6. Conditioning

6.1 Perform all electrical tests at room temperature. The exposed portion both inside and outside of the overshoe footwear that is not in direct contact with an electrode shall be as dry as practicable in each test method.

7. Procedure (See Test Methods D 149)

7.1 A-C ProofAC Tests:

7.1.1 Place each article of footwear to be given a proof test in the test apparatus in accordance with 5.1.1 or 5.1.2. 5.1.1. Smoothly apply the proof-test test voltage to 75% of proof the desired test voltage and then increase it at a rate-of-rise of 1000 volts per second (V/s) ± 20 % until the prescribed testing voltage is reached, or failure occurs. The test period starts at the instant that the prescribed testing voltage is reached and shall consist of a minimum of 1 min-and to a maximum of 3 min time at the prescribed test voltage. At the end of the test period, gradually reduce the applied voltage to at least half value before opening the test circuit.

7.2 *D-C ProofDC Tests*:

7.2.1 Place each article of footwear to be given a proof test in the test apparatus in accordance with 5.1.1 or 5.1.2. 5.1.1. Apply the <u>d-e proof-test</u> dc test voltage in the same manner as for <u>a-e proof</u> ac tests in 7.1.1 except with a rate-of-rise of approximately 3000 V/s.

8. Report

8.1 The reportRecord Keeping and Marking

8.1 Each piece of footwear shall-include be marked clearly and permanently with the following information:

8.1.1 Make name of the manufacturer or supplier, ASTM F 1117, size, and style AC voltage rating.

8.2 The test procedures of the electrical test facility shall specify the test voltage for each voltage rating of footwear-specimen. 8.1.2 Date to be tested or a record shall be kept of test.

8.1.3 Type of test; a-e the voltage used in the test. A date specified as test or d-c, retest shall be either recorded or provided by marking or affixing a label to the footwear. The marking or labeling method and prescribed proof-test voltage.

8.1.4 Length material shall not adversely affect the electrical or physical characteristics of proof test at prescribed voltage.

8.1.5 Breakdown voltage, if specimen failed proof test. the footwear or conflict with the manufacturer's original marking or labeling

8.3 Footwear that have been rejected and are not suitable for electrical service shall be defaced, cut or otherwise marked and identified to indicate that they are not to be used for electrical service.

9. Precision and Bias

9.1 The precision of this test method has not been determined. No statement can be made as to the bias of this test method since no standard materials are available.

10. Keywords

10.1 dielectric

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).