NOTICE: This standard has either been superseded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

Standard Specification for In-Service Care of Insulating Blankets¹

This standard is issued under the fixed designation F 479; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers the in-service care, inspection, testing, and use voltage of insulating blankets for protection from electrical shock. The product requirements and acceptance testing are as shown in Specification D 1048.

1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Section 6 for specific precautionary statements.

2. Referenced Documents

2.1 ASTM Standards:

- D 1048 Specification for Rubber Insulating Blankets²
- D 2865 Practice for Calibration of Standards and Equipment for Electrical Insulating Materials Testing³
- F 819 Definitions of Terms Relating to Electrical Protective Equipment for Workers²
- 2.2 ANSI Standard:
- C 84.1 Voltage Ratings for Electric Power Systems and Equipment (60 Hz)⁴

3. Terminology

3.1 Definitions:

3.1.1 *breakdown*—the electrical discharge or arc occurring between the electrodes and through the equipment being tested.

3.1.2 *compatible*—not injurious to or changing the physical or electrical characteristics of the blankets or affecting their application, use, or acceptability.

3.1.3 *designated person*—an individual who is qualified by experience or training to perform an assigned task.

3.1.4 *electrical testing facility*—a location with qualified personnel, testing equipment, and procedures for the inspection and electrical testing of electrical insulating protective equipment (in accordance with Definitions F 819).

3.1.5 *electrode*—the energized or grounded conductor portion of electrical test equipment which is placed near or in contact with the material or equipment being tested (in accordance with Definitions F 819).

3.1.6 *flashover*—the electrical discharge or arc occurring between electrodes and over or around, but not through, the equipment being tested.

3.1.7 *ozone*—a very active form of oxygen that may be produced by corona, arcing, or ultra-violet rays.

3.1.8 *ozone cutting and checking*—the cracks produced by ozone in a material under mechanical stress.

3.1.9 *retest*—the tests given after the initial acceptance test usually performed at regular periodic intervals or as required because of physical inspection.

3.1.10 *unassigned blankets*—blankets that are in storage prior to being issued for use.

3.1.11 *voltage, maximum use*—the a-c voltage (rms), classification of the protective equipment that designates the maximum nominal design voltage of the energized system that may be safely worked. The nominal design voltage is equal to the phase-to-phase voltage on multiphase circuits.

3.1.11.1 If there is no multiphase exposure in a system area, and the voltage exposure is limited to the phase (polarity on d-c systems) to ground potential, the phase (polarity on d-c systems) to ground potential shall be considered to be the nominal design voltage.

3.1.11.2 If electrical equipment and devices are insulated or isolated, or both, such that the multiphase exposure on a grounded wye circuit is removed, then the nominal design voltage may be considered as the phase-to-ground voltage on that circuit.

3.1.12 *voltage, maximum retest*—the voltage, either a-c rms or d-c avg, that is equal to the proof test voltage for new protective equipment.

3.1.13 *voltage, retest*—the voltage, either a-c rms or d-c avg, that used protective equipment must be capable of withstanding for a specified test period without breakdown.

3.1.14 *voltage, nominal design*—a nominal value consistent with the latest revision of ANSI C84.1, assigned to the circuit or system for the purpose of conveniently designating its voltage class.

4. Significance and Use

4.1 Compliance with this specification should continue to provide personnel with insulating blankets of known and

¹ This specification is under the jurisdiction of ASTM Committee F-18 on Electrical Protective Equipment for Workers and is the direct responsibility of Subcommittee F18.25 on Insulating Cover-up Equipment.

Current edition approved Aug. 15, 1995. Published October 1995. Originally published as F 479 – 76. Last previous edition F 479 – 93.

² Annual Book of ASTM Standards, Vol 10.03.

³ Annual Book of ASTM Standards, Vol 10.02.

⁴ Available from the American National Standards Institute, Inc., 11 West 42nd St., 13th Floor, New York, NY 10036.

Copyright © ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.

acceptable quality after initial acceptance in accordance with Specification D 1048. The standards herein are to be considered as minimum requirements.

5. Classification

5.1 Blankets covered under this specification shall be designated as Type I or Type II; Class 0, Class 1, Class 2, Class 3, or Class 4; Style A or Style B.

5.2 *Type I*, not resistant to ozone, made from a high-grade *cis*-1,4-polyisoprene rubber compound of natural or synthetic origin, properly vulcanized.

5.3 *Type II*, ozone-resistant, made of any elastomer or combination of elastomeric compounds.

5.4 The class designation shall be based on the electrical properties as shown in Specification D 1048.

5.5 *Style A*, constructed of the elastomers indicated under Type I or Type II, shall be free of any reinforcement.

5.6 *Style B*, constructed of the elastomers indicated under Type I or Type II, shall incorporate a reinforcement. This reinforcement shall not affect adversely the dielectric characteristics of the blankets.

6. Safety Precautions

6.1 A margin of safety shall be provided between the maximum use voltage on which the blankets are used and the voltage at which they are retested. The relationship between retest voltage and maximum use voltage at which the blankets shall be used is shown in Table 1.

6.2 The user of this type of protective equipment shall be knowledgeable of and instructed in the correct and safe visual inspection and use of this equipment.

7. Inspection and Testing at an Electrical Testing Facility

7.1 The recommended sequence for inspection and testing of insulating blankets at the electrical testing facility is as follows:

7.1.1 Check in, washing, and preliminary inspection,

- 7.1.2 Repair,
- 7.1.3 Electrical test,
- 7.1.4 Final inspection,

7.1.5 Recordkeeping and marking, and

7.1.6 Packing for storage and shipping.

7.2 Dirty blankets should be cleaned. They may be washed with a mild soap or mild detergent and water. Mild household-

TABLE 1 Voltage Requirements for Blankets

Class	A-C Use	A-C Retest	D-C Retest
Designation of	Voltage,	Voltage,	Voltage,
Blankets	rms, max ^A	max	max
0	1 000	5 000	20 000
1	7 500	10 000	40 000
2	17 000	20 000	50 000
3	26 500	30 000	60 000
4	36 000	40 000	70 000

^A The maximum use voltage is based on the following equations:

Maximum a-c use voltage = 0.95 a-c maximum retest voltage - 2 000_v

Classes 1, 2, 3, and 4. Maximum a-c use voltage = 0.95 d-c maximum retest voltage - 30500,

Classes 1, 2, 3, and 4.

Maximum a-c use voltage = 0.95 d–c maximum retest voltage – 18 $000_{\rm v}$ Class 0.

type chlorine bleach may be used for disinfectant purposes. Soaps, detergents, and bleaches shall not be used at strengths that would attack or harm the rubber surface. They shall be rinsed thoroughly with water to remove all of the soap or detergent. Severe dirt and grime may be wiped off using a compatible solvent.

7.2.1 The cleaning agent shall not degrade the insulating or physical qualities of the blankets.

7.2.2 A commercial tumble type washing machine may be used. Caution must be observed to eliminate any interior surfaces or edges that may damage the blankets.

7.3 If washed, blankets should be air-dried. The air temperature should not be over 150° F (65.5°C).

7.4 Prior to the electrical test, the blankets shall be given a preliminary inspection for punctures, cuts, corona cutting, or any obvious condition which would adversely affect the performance. If any of these conditions are found, blankets shall be rejected or repaired.

7.5 The blankets shall be tested in accordance with Section 8.

7.6 After the test, the blankets shall be given an inspection for corona and ozone damage.

8. Electrical Tests

8.1 All blankets issued for service shall be retested. The interval between date of issue and retests shall be based on work practices and test experience, but shall not exceed 1 year. Blankets that have been tested electrically, but not issued for service, shall not be placed into service unless they have been tested electrically within the previous 12 months.

8.1.1 Where a visual inspection indicates that there may be reason to suspect the electrical integrity of a blanket, an electrical test shall be performed before reissuing the blanket for service.

8.2 The test apparatus shall be designed to afford the operator full protection in the performance of his duties. Reliable means of de-energizing and grounding the high voltage circuit shall be provided. It is particularly important to incorporate positive means of grounding the high voltage section of d-c test apparatus due to the likely presence of high-voltage capacitance charges at the conclusion of the test.

8.3 Both a-c and d-c voltage retest methods are included and either method may be selected for electrical testing.

8.4 All electrical tests shall be performed on clean blankets at normal room temperatures.

NOTE 1—All blankets should be in an unstressed physical condition prior to testing. Failure to achieve this may result in excessive breakdown or damage.

8.5 *A-C Test*:

8.5.1 Voltage Supply and Regulation—The voltage supply and its control equipment shall be of such size and design that, with the test specimens in the circuit, the crest factor (ratio of peak to mean effective) of the test voltage shall differ by not more than 5 % from that of a sinusoidal wave over the upper half of the range of the test voltage. The accuracy of the voltage measuring circuit shall be within ± 2 % of full scale. The correct rms value of the sinusoidal voltage wave form applied to the blanket may be measured by one of the following methods:

8.5.1.1 A voltmeter used in conjunction with a calibrated instrument transformer connected directly across the high voltage circuit,

8.5.1.2 A calibrated electrostatic voltmeter connected directly across the high voltage circuit, or

8.5.1.3 An a-c meter connected in series with appropriate high-voltage type resistors directly across the high voltage circuit.

8.5.1.4 To ensure the continued accuracy of the test voltage, as indicated by the test equipment voltmeter, the test equipment shall be calibrated at least annually, in accordance with the latest revision of Practice D 2865. The crest factor may be checked by the use of a peak reading voltmeter connected directly across the high-voltage circuit.

8.5.2 *A-C Retest*:

8.5.2.1 Each blanket shall be given an electrical retest in accordance with 8.1. The test period shall start at the instant that the prescribed testing voltage is reached.

NOTE 2—It is recommended that the retest voltage be applied initially at a low value and increased at a constant rate-of-rise of approximately 1000 V/s until the prescribed test voltage level is reached. Unless an electrical puncture has already occurred, the applied voltage should be reduced to at least half value at the end of the test period before opening the test circuit.

8.5.2.2 Electrodes shall be of such design so as to apply the electrical stress uniformly over the test area to minimize corona and mechanical strain in the material. The electrodes used in the proof test shall be designed to comply with the flashover clearances specified in Table 2.

NOTE 3—*Recommended Electrodes for Classes 0, 1, and* 2—Rectangular metal sheets approximately $\frac{1}{16}$ in. (2 mm) thick having edges and corners rounded smoothly and wet pads approximately $\frac{1}{4}$ in. (6 mm) thick, placed between the metal sheets and the blanket.

Recommended Electrodes for Classes 3 and 4—Maximum area can be tested when both electrodes are the same size. When an insulated table is not convenient, the following mask method may be used. A0.12 to 0.18 in. (3 to 5 mm) thick sheet of insulating material which is a minimum of 50 in.² (1270 mm²) and has a 30 by 30 in. (762 by 762 mm) opening in the center, is placed on a grounded metal plate. This mask which has a "picture frame" appearance shall have the opening filled with a conductive material of such thickness as to bring the ground electrode to approximately the same level as the mask in order to maintain direct contact with the blanket to be tested. The blanket is placed over the ground electrode, and a wet pad approximately the same size as the ground electrode, is placed on top of the blanket. The wet pad is energized with the test voltage. This method will test a 30 by 30 in. (762 by 762 mm) area of a

TABLE 2 Electrode Clearances ^A

Class Designation Blanket	A-C Retest, in. (mm)	D-C Retest, in. (mm)
0	3 (76)	3 (76)
1	3 (76)	3 (76)
2	5 (127)	6 (152)
3	7 (178)	8 (203)
4	10 (254)	12 (305)

^A These nominal clearances are intended to avoid flashover and may be increased by no more than 2 in. (51 mm) when required by change in atmospheric conditions from the standard of 100 kPa (1 atm) barometric pressure and average humidity conditions. These clearances may be decreased if atmospheric conditions permit.

36 by 36 in. (914 by 914 mm) blanket at 40 kV a-c as the mask prevents flashover.

Other electrode designs may be used to achieve the same result.

8.6 *D*-*C* Test:

8.6.1 Voltage Supply and Regulation—The d-c test voltage may be obtained from a source capable of supplying a d-c voltage whose peak to peak a-c ripple component does not exceed 2 % of the average voltage value under no load conditions. The d-c test voltage shall be measured by a method that provides the average value of the voltage applied to the blanket. It is recommended that the voltage be measured by the use of a d-c meter connected in series with appropriate high voltage type resistors across the high voltage circuit, or by an electrostatic voltmeter of proper range. The accuracy of the voltage measuring circuit shall be within ± 2 % of full scale. The test equipment shall be calibrated at least annually, in accordance with the latest revision of Practice D 2865.

8.6.2 *D*-*C Retest*:

8.6.2.1 Each blanket shall be given an electrical retest in accordance with 8.1.

Note 4—It is recommended that the d-c retest voltage be applied in the same manner as the a-c retest voltage, with the exception of a rate-of-rise of approximately 3000 V/s d-c.

8.6.2.2 *Electrodes*—The d-c retest may be made with dry electrodes that consist of two flat metallic plates. The electrodes used in the proof test shall be designed to comply with the flashover clearances specified in Table 2. The edges and corners of these plates should be rounded smoothly so as to eliminate sharp nicks, protuberances, and point sources that are conducive to corona inception and lowered flashover voltage.

9. Rejection Criteria

9.1 Each blanket shall withstand the 60 Hz a-c retest voltage (rms value) or the d-c retest voltage (average value) specified in Table 1. The test voltage shall be applied continuously for not less than 1 min and not more than 3 min.

9.2 Any blanket that fails to comply with the electrical retest requirements in 8.1 shall be rejected or repaired in accordance with Section 10.

9.3 Minor surface corona cutting or ozone checking need not be cause for rejection.

9.4 Blankets found upon inspection to have punctures, cuts, snags, cracks, burns, corona cutting, or any obvious condition that would adversely affect performance shall be rejected or repaired in accordance with Section 10.

10. Repairs

10.1 Physical defects in blankets such as cuts, tears, or punctures may be repaired by the application of a compatible patch that results in physical and electrical properties equal to those required in Specification D 1048. Repairs shall not be made on top of previous repairs or on ozone or corona damage. With Type II blanket repair using a heat-curing device, the repair shall be made such that no previously repaired area is recured for a second time.

10.2 Blankets with defects too extensive to repair may be salvaged by severing the defective area from the undamaged portion of the blanket provided that in Class 1, 2, 3, and 4, the

remaining portion of the blanket is not reduced to size such that the test electrode clearance is less than the values listed in Table 2.

10.3 Subsequent to any repair, blankets shall be reinspected and retested in accordance with Sections 7 and 8 of this specification.

11. Field Care, Inspection, and Storage

11.1 The field care and inspection of electrical insulating blankets, performed by the individual, is an important requirement in providing protection from electrical shock. Defective or suspected defective blankets shall not be used. They shall not be re-issued for use until they have been inspected and retested at an electrical testing facility, and meet the requirements of Section 8.

11.2 Blankets shall be inspected visually by the user for defects before being installed, and at other times if there is cause to suspect any damage. They shall be inspected on both sides over the entire surface for defects and imbedded materials.

11.3 Blankets shall be cleaned as necessary to remove foreign substances and shall be wiped clean of any oil, grease, or other damaging substances as soon as practicable.

11.4 A visual inspection of blankets shall be made in the field by a designated person to determine that such equipment is being maintained in a satisfactory condition by the users. The frequency of this inspection shall be at intervals of not more than 6 months.

11.5 Blankets shall be stored in a location as cool, dark, and dry as practicable. The location shall be as free as possible from ozone, chemicals, oils, solvents, damaging vapors and fumes, and away from electrical discharges and sunlight. Field storage of blankets shall be in a bag, box, container, or compartment that is designed for and used exclusively for them. Blankets shall not be kept folded, creased, or compressed in any manner that will cause stretching or compression.

11.6 Blankets shall not have any identifying adhesive tapes or labels applied to them by other than authorized personnel. Tape shall not be used to secure blankets for shipment or storage.

NOTE 5—Use of tape may cause blanket surface contamination or damage that may lead to reduced blanket life.

11.7 Blankets with any of the following defects shall not be used, and shall be returned to an electrical testing facility for inspection and electrical retest:

11.7.1 Holes, tears, punctures, or cuts.

11.7.2 Severe corona cutting, severe ozone checking.

11.7.3 Imbedded foreign objects.

11.7.4 Texture changes: swelling, softening, hardening, becoming sticky or inelastic.

11.7.5 Other defects that damage the insulating properties.

12. Recordkeeping and Product Marking

12.1 The test procedures of the electrical test facility shall specify the test voltage for each class of blanket to be tested, or a record shall be kept of the voltage used in the test. A date specified as test or retest shall be either recorded or provided by marking or affixing a label to the blanket. The product marking or labeling method and material shall not adversely affect the electrical or physical characteristics of the blanket or conflict with the manufacturer's original product marking or labeling.

12.2 Blankets that have been rejected and are not suitable for electrical service shall be defaced, cut, or otherwise marked and identified to indicate that they are not to be used for electrical service.

13. Precision and Bias

13.1 No statement is made about either the precision or the bias of the test methods in this standard for measuring the dielectric strength since the results merely state whether there is conformance to the criteria for success specified in the procedure.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).