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1. Scope

1.1 This guide provides techniques that are useful for the
comparison of modeled air concentrations with observed field
data. Such comparisons provide a means for assessing a
model’s performance, for example, bias and precision or
uncertainty, relative to other candidate models. Methodologies
for such comparisons are yet evolving; hence, modifications
will occur in the statistical tests and procedures and data
analysis as work progresses in this area. Until the interested
parties agree upon standard testing protocols, differences in
approach will occur. This guide describes a framework, or
philosophical context, within which one determines whether a
model’s performance is significantly different from other
candidate models. It is suggested that the first step should be to
determine which model’s estimates are closest on average to
the observations, and the second step would then test whether
the differences seen in the performance of the other models are
significantly different from the model chosen in the first step.
An example procedure is provided in Appendix X1 to illustrate
an existing approach for a particular evaluation goal. This
example is not intended to inhibit alternative approaches or
techniques that will produce equivalent or superior results. As
discussed in Section 6, statistical evaluation of model perfor-
mance is viewed as part of a larger process that collectively is
referred to as model evaluation.

1.2 This guide has been designed with flexibility to allow
expansion to address various characterizations of atmospheric
dispersion, which might involve dose or concentration fluctua-
tions, to allow development of application-specific evaluation
schemes, and to allow use of various statistical comparison
metrics. No assumptions are made regarding the manner in
which the models characterize the dispersion.

1.3 The focus of this guide is on end results, that is, the
accuracy of model predictions and the discernment of whether
differences seen between models are significant, rather than
operational details such as the ease of model implementation or
the time required for model calculations to be performed.

1.4 This guide offers an organized collection of information
or a series of options and does not recommend a specific course
of action. This guide cannot replace education or experience
and should be used in conjunction with professional judgment.
Not all aspects of this guide may be applicable in all circum-
stances. This guide is not intended to represent or replace the
standard of care by which the adequacy of a given professional
service must be judged, nor should it be applied without
consideration of a project’s many unique aspects. The word
“Standard” in the title of this guide means only that the
document has been approved through the ASTM consensus
process.

1.5 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and to determine the
applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
D 1356 Terminology Relating to Sampling and Analysis of

Atmospheres2

3. Terminology

3.1 Definitions—For definitions of terms used in this guide,
refer to Terminology D 1356.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 atmospheric dispersion model, n—an idealization of

atmospheric physics and processes to calculate the magnitude
and location of pollutant concentrations based on fate, trans-
port, and dispersion in the atmosphere. This may take the form
of an equation, algorithm, or series of equations/algorithms
used to calculate average or time-varying concentration. The
model may involve numerical methods for solution.

3.2.2 dispersion, absolute, n—the characterization of the
spreading of material released into the atmosphere based on a
coordinate system fixed in space.

3.2.3 dispersion, relative, n—the characterization of the
spreading of material released into the atmosphere based on a

1 This guide is under the jurisdiction of ASTM Committee D22 on Sampling and
Analysis of Atmospheres and is the direct responsibility of Subcommittee D22.11 on
Meteorology.
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coordinate system that is relative to the local median position
of the dispersing material.

3.2.4 evaluation objective, n—a feature or characteristic,
which can be defined through an analysis of the observed
concentration pattern, for example, maximum centerline con-
centration or lateral extent of the average concentration pattern
as a function of downwind distance, which one desires to
assess the skill of the models to reproduce.

3.2.5 evaluation procedure, n—the analysis steps to be
taken to compute the value of the evaluation objective from the
observed and modeled patterns of concentration values.

3.2.6 fate, n—the destiny of a chemical or biological pol-
lutant after release into the environment.

3.2.7 model input value, n—characterizations that must be
estimated or provided by the model developer or user before
model calculations can be performed.

3.2.8 regime, n—a repeatable narrow range of conditions,
defined in terms of model input values, which may or may not
be explicitly employed by all models being tested, needed for
dispersion model calculations. It is envisioned that the disper-
sion observed should be similar for all cases having similar
model input values.

3.2.9 uncertainty, n—refers to a lack of knowledge about
specific factors or parameters. This includes measurement
errors, sampling errors, systematic errors, and differences
arising from simplification of real-world processes. In prin-
ciple, uncertainty can be reduced with further information or
knowledge(1)3.

3.2.10 variability, n—refers to differences attributable to
true heterogeneity or diversity in atmospheric processes that
result in part from natural random processes. Variability
usually is not reducible by further increases in knowledge, but
it can in principle be better characterized(1).

4. Summary of Guide

4.1 Statistical evaluation of dispersion model performance
with field data is viewed as part of a larger process that
collectively is called model evaluation. Section 6 discusses the
components of model evaluation.

4.2 To statistically assess model performance, one must
define an overall evaluation goal or purpose. This will suggest
features (evaluation objectives) within the observed and mod-
eled concentration patterns to be compared, for example,
maximum surface concentrations, lateral extent of a dispersing
plume. The selection and definition of evaluation objectives
typically are tailored to the model’s capabilities and intended
uses. The very nature of the problem of characterizing air
quality and the way models are applied make one single or
absolute evaluation objective impossible to define that is
suitable for all purposes. The definition of the evaluation
objectives will be restricted by the limited range conditions
experienced in the available comparison data suitable for use.
For each evaluation objective, a procedure will need to be
defined that allows definition of the evaluation objective from
the available observations of concentration values.

4.3 In assessing the performance of air quality models to
characterize a particular evaluation objective, one should
consider what the models are capable of providing. As dis-
cussed in Section 7, most models attempt to characterize the
ensemble average concentration pattern. If such models should
provide favorable comparisons with observed concentration
maxima, this is resulting from happenstance, rather than skill in
the model; therefore, in this discussion, it is suggested a model
be assessed on its ability to reproduce what it was designed to
produce, for at least in these comparisons, one can be assured
that zero bias with the least amount of scatter is by definition
good model performance.

4.4 As an illustration of the principles espoused in this
guide, a procedure is provided in Appendix X1 for comparison
of observed and modeled near-centerline concentration values,
which accommodates the fact that observed concentration
values include a large component of stochastic, and possibly
deterministic, variability unaccounted for by current models.
The procedure provides an objective statistical test of whether
differences seen in model performance are significant.

5. Significance and Use

5.1 Guidance is provided on designing model evaluation
performance precedures and on the difficulties that arise in
statistical evaluation of model performance caused by the
stochastic nature of dispersion in the atmosphere. It is recog-
nized there are examples in the literature where, knowingly or
unknowingly, models were evaluated on their ability to de-
scribe something which they were never intended to charac-
terize. This guide is attempting to heighten awareness, and
thereby, to reduce the number of “unknowing” comparisons. A
goal of this guide is to stimulate development and testing of
evaluation procedures that accommodate the effects of natural
variability. A technique is illustrated to provide information
from which subsequent evaluation and standardization can be
derived.

6. Model Evaluation

6.1 Background—Air quality simulation models have been
used for many decades to characterize the transport and
dispersion of material in the atmosphere(2-4). Early evalua-
tions of model performance usually relied on linear least-
squares analyses of observed versus modeled values, using
traditional scatter plots of the values,(5-7). During the 1980s,
attempts have been made to encourage the standardization of
methods used to judge air quality model performance(8-11).
Further development of these proposed statistical evaluation
procedures was needed, as it was found that the rote applica-
tion of statistical metrics, such as those listed in(8), was
incapable of discerning differences in model performance(12),
whereas if the evaluation results were sorted by stability and
distance downwind, then differences in modeling skill could be
discerned(13). It was becoming increasingly evident that the
models were characterizing only a small portion of the ob-
served variations in the concentration values(14). To better
deduce the statistical significance of differences seen in model
performance in the face of large unaccounted for uncertainties
and variations, investigators began to explore the use of
bootstrap techniques(15). By the late 1980s, most of the model

3 The boldface numbers in parentheses refer to the list of references at the end of
this standard.
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performance evaluations involved the use of bootstrap tech-
niques in the comparison of maximum values of modeled and
observed cumulative frequency distributions of the concentra-
tions values(16). Even though the procedures and metrics to be
employed in describing the performance of air quality simula-
tion models are still evolving(17-19), there has been a general
acceptance that defining performance of air quality models
needs to address the large uncertainties inherent in attempting
to characterize atmospheric fate, transport and dispersion
processes. There also has been a consensus reached on the
philosophical reasons that models of earth science processes
can never be validated, in the sense of claiming that a model is
truthfully representing natural processes. No general empirical
proposition about the natural world can be certain, since there
will always remain the prospect that future observations may
call the theory in question(20). It is seen that numerical models
of air pollution are a form of a highly complex scientific
hypothesis concerning natural processes, that can be confirmed
through comparison with observations, but never validated.

6.2 Components of Model Evaluation—A model evaluation
includes science peer reviews and statistical evaluations with
field data. The completion of each of these components
assumes specific model goals and evaluation objectives (see
Section 10) have been defined.

6.3 Science Peer Reviews—Given the complexity of char-
acterizing atmospheric processes, and the inevitable necessity
of limiting model algorithms to a resolvable set, one compo-
nent of a model evaluation is to review the model’s science to
confirm that the construct is reasonable and defensible for the
defined evaluation objectives. A key part of the scientific peer
review will include the review of residual plots where modeled
and observed evaluation objectives are compared over a range
of model inputs, for example, maximum concentrations as a
function of estimated plume rise or as a function of distance
downwind.

6.4 Statistical Evaluations with Field Data—The objective
comparison of modeled concentrations with observed field data
provides a means for assessing model performance. Due to the
limited supply of evaluation data sets, there are severe practical
limits in assessing model performance. For this reason, the
conclusions reached in the science peer reviews (see 6.3) and
the supportive analyses (see 6.5) have particular relevance in
deciding whether a model can be applied for the defined model
evaluation objectives. In order to conduct a statistical compari-
son, one will have to define one or more evaluation objectives
for which objective comparisons are desired (Section 10). As
discussed in 8.4.4, the process of summarizing the overall
performance of a model over the range of conditions experi-
enced within a field experiment typically involves determining
two points for each of the model evaluation objectives: which
of the models being assessed has on average the smallest
combined bias and scatter in comparisons with observations,
and whether the differences seen in the comparisons with the
other models statistically are significant in light of the uncer-
tainties in the observations.

6.5 Other Tasks Supportive to Model Evaluation—As atmo-
spheric dispersion models become more sophisticated, it is not
easy to detect coding errors in the implementation of the model

algorithms. And as models become more complex, discerning
the sensitivity of the modeling results to input parameter
variations becomes less clear; hence, two important tasks that
support model evaluation efforts are verification of software
and sensitivity and Monte Carlo analyses.

6.5.1 Verification of Software—Often a set of modeling
algorithms will require numerical solution. An important task
supportive to a model evaluation is a review in which the
mathematics described in the technical description of the
model are compared with the numerical coding, to insure that
the code faithfully implements the physics and mathematics.

6.5.2 Sensitivity and Monte Carlo Analyses—Sensitivity
and Monte Carlo analyses provide insight into the response of
a model to input variation. An example of this technique is to
systematically vary one or more of the model inputs to
determine the effect on the modeling results(22). Each input
should be varied over a reasonable range likely to be encoun-
tered. The traditional sensitivity studies(22)were developed to
better understand the performance of plume dispersion models
simulating the transport and dispersion of inert pollutants. For
characterization of the effects of input uncertainties on model-
ing results, Monte Carlo studies with simple random sampling
are recommended(23), especially for models simulating
chemically reactive species where there are strong nonlinear
couplings between the model input and output(24). Results
from sensitivity and Monte Carlo analyses provide useful
guidance on which inputs should be most carefully prescribed
because they account for the greatest sensitivity in the model-
ing output. These analyses also provide a view of what to
expect for model output in conditions for which data are not
available.

7. A Framework for Model Evaluations

7.1 This section introduces a philosophical model for ex-
plaining how and why observations of physical processes and
model simulations of physical processes differ. It is argued that
observations are individual realizations, which in principle can
be envisioned as belonging to some ensemble. Most of the
current models attempt to characterize the average concentra-
tion for each ensemble, but there are under development
models that attempt to characterize the distribution of concen-
tration values within an ensemble. Having this framework for
describing how and why observations differ from model
simulations has important ramifications in how one assesses
and describes a model’s ability to reproduce what is seen by
way of observations. This framework provides a rigorous basis
for designing the statistical comparison of modeling results
with observations.

7.2 The concept of “natural variability” acknowledges that
the details of the stochastic concentration field resulting from
dispersion are difficult to predict. In this context, the difference
between the ensemble average and any one observed realiza-
tion (experimental observation) is ascribed to natural variabil-
ity, whose variation,sn

2, can be expressed as:

sn
2 5 ~Co – Co!

2 (1)

where:
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Co = the observed concentration (or evaluation objective,
see 10.3) seen within a realization; the overbars
represent averages over all realizations within a given
ensemble, so thatCo is the estimated ensemble
average. The “o” subscript indicates an observed
value.

7.2.1 The ensemble in Eq 1 refers to the ideal infinite
population of all possible realizations meeting the (fixed)
characteristics associated with an ensemble. In practice, one
will have only a small sample from this ensemble.

7.2.2 Measurement uncertainty in concentration values in
most tracer experiments may be a small fraction of the
measurement threshold, and when this is true its contribution to
sn can usually be deemed negligible; however, as discussed in
9.2 and 9.4, expert judgment is needed as the reliability and
usefulness of field data will vary depending on the intended
uses being made of the data.

7.3 Defining the characteristics of the ensemble in Eq 1
using the model’s input values,a, one can view the observed
concentrations (or evaluation objective) as:

Co 5 Co ~a,b! 5 Co~a! 1 c~Dc! 1 c~a,b! (2)

where
b are the variables needed to describe the unresolved transport
and dispersion processes, the overbar represents an average
over all possible values ofb for the specified set of model input
parametersa; c (Dc) represents the effects of measurement
uncertainty, andc (a,b) represents ignorance inb (unresolved
deterministic processes and stochastic fluctuations)(14,21).

7.3.1 SinceCo~a! is an average over allb, it is only a
function of a, and in this context,Co~a! represents the
ensemble average that the model ideally is attempting to
characterize.

7.3.2 The modeled concentrations,Cm, can be envisioned
as:

Cm 5 Co~a! 1 d~Da! 1 f~a! (3)

where:
d (Da) represents the effects of uncertainty in specifying the
model inputs, andf (a) represents the effects of errors in the
model formulations. The “m” subscript indicates a modeled
value.

7.3.3 A method for performing an evaluation of modeling
skill is to separately average the observations and modeling
results over a series of non-overlapping limited-ranges ofa,
which are called “regimes.” Averaging the observations pro-
vides an empirical estimate of what most of the current models
are attempting to simulate,Co~a!. A comparison of the respec-
tive observed and modeled averages over a series ofa-groups
provides an empirical estimate of the combined deterministic
error associated with input uncertainty and formulation errors.

7.3.4 This process is not without problems. The variance in
observed concentration values due to natural variability is of
order of the magnitude of the regime averages(17,25), hence
small sample sizes in the groups will lead to large uncertainties
in the estimates of the ensemble averages. The variance in
modeled concentration values due to input uncertainty can be
quite large(23,24), hence small sample sizes in the groups will
lead to large uncertainties in the estimates of the deterministic

error in each group. Grouping data together for analysis
requires large data sets, of which there are few.

7.3.5 The observations and the modeling results come from
different statistical populations, whose means are, for an
unbiased model, the same. The variance seen in the observa-
tions results from differences in realizations of averages, that
which the model is attempting to characterize, plus an addi-
tional variance caused by stochastic variations between indi-
vidual realizations, which is not accounted for in the modeling.

7.3.6 As the averaging time increases in the concentration
values and corresponding evaluation objectives, one might
expect the respective variances in the observations and the
modeling results would increasingly reflect variations in en-
semble averages. As averaging time increases, one might
expect the variance in the concentration values and correspond-
ing evaluation objectives to decrease; however, as averaging
time increases, the magnitude of the concentration values also
decreases. As averaging time increases, it is possible that the
modeling uncertainties may yet be large when compared to the
average modeled concentration values, and likewise, the unex-
plained variations in the observations yet may be large when
compared to the average observed concentration values.

7.4 It is recommended that one goal of a model evaluation
should be to assess the model’s skill in predicting what it was
intended to characterize, namelyCo~a! , which can be viewed
as the systematic (deterministic) variation of the observations
from one regime to the next. In such comparisons, there is a
basis for believing that a well-formulated model would have
zero bias for all regimes. The model with the smallest
deviations on average from the regime averages, would be the
best performing model. One always has the privilege to test the
ability of a model to simulate something it was not intended to
provide, such as the ability of a deterministic model to provide
an accurate characterization of extreme maximum values, but
then one must realize that a well-formulated model may appear
to do poorly. If one selects as the best performing model, the
model having the least bias and scatter, when compared with
observed maxima, this may favor selection of models that
systematically overestimate the ensemble average by a com-
pensating bias to underestimate the lateral dispersion. Such a
model may provide good comparisons with short-term ob-
served maxima, but it likely will not perform well for estimat-
ing maximum impacts for longer averaging times. By assessing
performance of a model to simulate something it was not
intended to provide, there is a risk of selecting poorly-formed
models that may by happenstance perform well on the few
experiments available for testing. These are judgement deci-
sions that model users will decide based on the anticipated uses
and needs of the moment of the modeling results. This guide
has served its purpose, if users better realize the ramifications
that arise in testing a model’s performance to simulate some-
thing that it was not intended to characterize.

8. Statistical Comparison Metrics and Methods

8.1 The preceeding section described a philosophical frame-
work for understanding why observations differ with model
simulation results. This section provides definitions of the
comparison metrics methods most often employed in current
air quality model evaluations. This discussion is not meant to
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be exhaustive. The list of possible metrics is extensive(8), but
it has been illustrated that a few well-chosen simple-to-
understand metrics can provide adequate characterization of a
model’s performance(14). The key is not in how many metrics
are used, but is in the statistical design used when the metrics
are applied(13).

8.2 Paired Statistical Comparison Metrics—In the follow-
ing equations,Oi is used to represent the observed evaluation
objective, andPi is used to represent the corresponding
model’s estimate of the evaluation objective, where the evalu-
ation objective, as explained in 10.3, is some feature that can
be defined through the analysis of the concentration field. In
the equations, the subscript “i” refers to paired values and the
“overbar” indicates an average.

8.2.1 Average bias,d, and standard deviation of the bias,sd,
are:

d 5 di (4)

sd
2 5 ~di – d!2 (5)

where:
di = (Pi – Oi).

8.2.2 Fractional bias, FB, and standard deviation of the
fractional bias,sFB, are:

FB 5 FBi (6)

sFB
2 5 ~FBi – FB!2 (7)

whereFBi 5
2~Pi – Oi!
~Pi 1 Oi!

.

8.2.3 Absolute fractional bias,AFB, and standard deviation
of the absolute fractional bias,sAFB, are:

AFB5 AFBi (8)

sAFB
2 5 ~AFBi – AFB!2 (9)

whereAFBi 5
2|Pi – Oi|
~Pi 1 Oi!

.

8.2.4 As a measure of gross error resulting from both bias
and scatter, the normalized mean squared error, NMSE, often is
used (the normalization byP O assures that NMSE treat
equally bias to over-predict or under-predict):

NMSE5
~Pi – Oi!

2

P O
(10)

8.2.5 For a scatter plot, where the predictions are plotted
along the horizontal x-axis and the observations are plotted
along the vertical y-axis, the linear regression (method of least
squares) slope, m, and intercept, b, between the predicted and
observed values are:

m5
N(PiOi – ~(Pi!~(Oi!

N(Pi
2 – ~(Pi!

2 (11)

b 5
~(Oi!~(Pi

2! – ~(PiOi!~(Pi!

N(Pi
2 – ~(Pi!

2 (12)

8.2.6 As a measure of the linear correlation between the
predicted and observed values, the Pearson correlation coeffi-
cient often is used:

r 5
(~Pi – P!~Oi – O!

@(~Pl – P!2 · ( ~Ol – O!2#1/2 (13)

8.3 Unpaired Statistical Comparison Metrics—If the ob-
served and modeled values are sorted from highest to lowest,
there are several statistical comparisons that are commonly
employed. The focus in such comparisons usually is on
whether the maximum observed and modeled concentration
values are similar, but one can substitute for the word “con-
centration,” any evaluation objective that can be expressed
numerically. As discussed in 7.3.7, the direct comparison of
individual observed realizations with modeled ensemble aver-
ages is the comparison of two different statistical populations
with different sources of variance; hence, there are fundamen-
tal philosophical problems with such comparisons. As men-
tioned in 7.4, such comparisons are going to be made, as this
may be how the modeling results will be used. At best, one can
hope that such comparisons are made by individuals that are
cognizant of the philosophical problems involved.

8.3.1 The quantile-quantile plot is constructed by plotting
the ranked concentration values against one another, for
example, highest concentration observed versus the highest
concentration modeled, etc. If the observed and modeled
concentration frequency distributions are similar, then the
plotted values will lie along the 1:1 line on the plot. By visual
inspection, one can easily see if the respective distributions are
similar and whether the observed and modeled concentration
maximum values are similar.

8.3.2 Cumulative frequency distribution plots are con-
structed by plotting the ranked concentration values (highest to
lowest) against the plotting position frequency,f (typically in
percent), wherer is the rank (1=highest),N is the number of
values and f is defined as(26):

f 5 100 %~r – 0.4!/N, for r,N/2 (14)

f 5 100 % – 100 %~N – r 1 0.6!/N, for r.N/2 (15)

As with the quantile-quantile plot, a visual inspection of the
respective cumulative frequency distribution plots (observed
and modeled), usually is sufficient to suggest whether the two
distributions are similar, and whether there is a bias in the
model to over- or under-estimate the maximum concentration
values observed.

8.3.3 The Robust Highest Concentration (RHC) often is
used where comparisons are being made of the maximum
concentration values and is envisioned as a more robust test
statistic than direct comparison of maximum values. The RHC
is based on an exponential fit to the highest R-1 values of the
cumulative frequency distribution, where R typically is set to
be 26 for frequency distributions involving a year’s worth of
values (averaging times of 24 h or less)(16). The RHC is
computed as:

RHC5 C~R! 1 Q * lnS3R– 1
2 D (16)

where:
Q = average of theR-1 largest values, and
C(R) = theRth largest value.

NOTE 1—The value ofR may be set to a lower value when there are
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fewer values in the distribution to work with, see(16). The RHC of the
observed and modeled cumulative frequency distributions are often
compared using a FB metric, and may or may not involve stratification of
the values by meteorological condition prior to computation of the RHC
values.

8.4 Bootstrap Resampling—Bootstrap sampling can be used
to generate estimates of the sampling error in the statistical
metric computed(15,16,27). The distribution of some statisti-
cal metrics, for example, NMSE and RHC, are not necessarily
easily transformed to a normal distribution, which is desirable
when performing statistical tests to see if there are statistically
significant differences in values computed, for example, in the
comparison of RHC values computed from the 8760 values of
1-h observed and modeled concentration values for a year.

8.4.1 Following the description provided by(27), suppose
one is analyzing a data setx1,x2,...xn, which for convenience is
denoted by the vectorx=(x1,x2,...xn). A bootstrap sample
x*=(x1*,x2*,...xn*) is obtained by randomly samplingn times,
with replacement, from the original data pointsx=(x1,x2,...xn).
For instance, with n=7 one might obtain
x*=(x5,x7,x5,x4,x7,x3,x1). From each bootstrap sample one can
compute some statistics (say the median, average, RHC, etc.).
By creating a number of bootstrap samples,B, one can
compute the mean,s , and standard deviation,ss, of the
statistic of interest. For estimation of standard errors,B
typically is on the order of 50 to 500.

8.4.2 The bootstrap resampling procedure often can be
improved by blocking the data into two or more blocks or sets,
with each block containing data having similar characteristics.
This prevents the possibility of creating an unrealistic bootstrap
sample where all the members are the same value(15).

8.4.3 When performing model performance evaluations, for
each hour there is not only the observed concentration values,
but also the modeling results from all the models being tested.
In such cases, the individual members,xi, in the vector
x=(x1,x2,...xn) are in themselves vectors, composed of the
observed value and its associated modeling results (from all
models, if there are more than one); thus the selection of the
observed concentrationx2 also includes each model’s estimate
for this case. This is called “concurrent sampling.” The purpose
of concurrent sampling is to preserve correlations inherent in
the data(16). These temporal and spatial correlations affect the
statistical properties of the data samples. One of the consider-
ations in devising a bootstrap sampling procedure is to address
how best to preserve inherent correlations that might exist
within the data.

8.4.4 For assessing differences in model performance, one
often wishes to test whether the differences seen in a perfor-
mance metric computed between Model No. 1 and the obser-
vations (say the NMSE1), is significantly different when
compared to that computed for another model (say Model No.
2, NMSE2) using the same observations. For testing whether
the difference between statistical metrics is significant, the
following procedure is recommended. Let each bootstrap
sample be denoted,x*b, where * indicates this is a bootstrap
sample (8.4.1) andb indicates this is sample b of a series of
bootstrap samples (where the total number of bootstrap
samples isB). From each bootstrap sample,x*b, one computes
the respective values for NMSE1

b and NMSE2
b. The difference

D*b = NMSE1*
b – NMSE2*

b then can be computed. Once allB
samples have been processed, compute from the set ofB values
of D* = (D*1, D*2,...D*B), the average and standard deviation,
D andsD. The null hypothesis is thatD is greater than zero with
a stated level of confidence,h, and thet-value for use in a
Student’s-t test is:

t 5
D
sD

(17)

For illustration purposes, assume the level of confidence is
90 % (h = 0.1). Then, for large values ofB, if the t-value from
Eq 17 is larger than Student’s-th/2 equal to 1.645, it can be
concluded with 90 % confidence thatD is not equal to zero, and
hence, there is a significant difference in the NMSE values for
the two models being tested.

9. Considerations in Performing Statistical Evaluations

9.1 Evaluation of the performance of a model mostly is
constrained by the amount and quality of observational data
available for comparison with modeling results. The simulation
models are capable of providing estimates of a larger set of
conditions than for which there is observational data. Further-
more, most models do not provide estimates of directly
measurable quantities. For instance, even if a model provides
an estimate of the concentration at a specific location, it is most
likely an estimate of an ensemble average result which has an
implied averaging time, and for grid models represents an
average over some volume of air, for example, grid average;
hence, in establishing what abilities of the model are to be
tested, one must first consider whether there is sufficient
observational data available that can provide, either directly or
through analysis, observations of what is being modeled.

9.2 Understanding Observed Concentrations:
9.2.1 It is not necessary for a user of concentration obser-

vations to know or understand all details of how the observa-
tions were made, but some fundamental understanding of the
sampler limitations (operational range), background concentra-
tion value(s), and stochastic nature of the atmosphere is
necessary for developing effective evaluation procedures.

9.2.2 All samplers have a detection threshold below which
observed values either are not provided, or are considered
suspect. It is possible that there is a natural background of the
tracer, which either has been subtracted from the observations,
or needs to be considered in using the observations. Data
collected under a quality assurance program following consen-
sus standards are more credible in most settings than data
whose quality cannot be objectively documented. Some sam-
plers have a saturation point which limits the maximum value
that can be observed. The user of concentration observations
should address these, as needed, in designing the evaluation
procedures

9.2.3 Atmospheric transport and dispersion processes in-
clude stochastic components. The transport downwind follows
a serpentine path, being influenced by both random and
periodic wind oscillations, composed of both large and small
scale eddies in the wind field. Fig. 1 illustrates the observed
concentrations seen along a sampling arc at 50-m downwind
and centered on a near-surface point-source release of sulfur-
dioxide during Project Prairie Grass(28). Fig. 1 is a summary
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over all 70 experiments. For each experiment the crosswind
receptor positions,y, relative to the observed center of mass
along the arc have been divided bysy, which is the second-
moment of the concentration values seen along each arc, that
is, the lateral dispersion which is a measure of the lateral extent
of the plume. The observed concentration values have been
divided by Cmax 5 CY/~sy=2p!, whereCY is the crosswind
integrated concentration along the arc. The crosswind inte-
grated concentration is a measure of the vertical dilution the
plume has experienced in traveling to this downwind position.
To assume that the crosswind concentration distribution fol-
lows a Gaussian curve, which is implicit in the relationship
used to computeCmax, is seen to be a reasonable approximation
when all the experimental results are combined. As shown by
the results for Experiment 31, a Gaussian profile may not apply
that well for any one realization, where random effects oc-
curred, even though every attempt was made to collect data
under nearly ideal circumstances. Under less ideal conditions,
as with emissions from a large industrial power plant stack of
order 75 m in height and a buoyant plume rise of order 100 m
above the stack, it is easy to understand that the observed
lateral profile for individual experimental results might well
vary from the ideal Gaussian shape. It must be recognised that
features like double peaks, saw-tooth patterns and other irregu-
lar behavior are often observed for individual realizations.

9.3 Understanding the Models to be Evaluated:
9.3.1 As in other branches of meteorology, a complete set of

equations for the characterization of the transport and fate of
material dispersing through the atmosphere is so complex that
no unique analytical solution is known. Approximate analytical
principles, such as mass balance, are frequently combined with
other concepts to allow study of a particular situation(29).
Before evaluating a model, the user must have a sufficient
understanding of the basis for the model and its operation to
know what it was intended to characterize. The user must know

whether the model provides volume average concentration
estimates, or whether the model provides average concentra-
tion estimates for specific positions above the ground. The user
must know whether the characterizations of transport, disper-
sion, formation and removal processes are expressed using
equations that provide ensemble average estimates of concen-
tration values, or whether the equations and relationships used
provide stochastic estimates of concentration values. Answers
to these and like questions are necessary when attempting to
define the evaluation objectives (10.3).

9.3.2 A mass balance model tracks material entering and
leaving a particular air volume. Within this conceptual frame-
work, concentrations are increased by emissions that occur
within the defined volume and by transport from other adjacent
volumes. Similarly, concentrations are decreased by transport
exiting the volume, either by removal by chemical/physical
sinks within the volume, for example, wet and dry deposition,
and for reactive species, or by conversion to other forms. These
relationships can be specified through a differential equation
quantifying factors related to material gain or loss(29). Models
of this type typically provide ensemble volume-average con-
centration values as a function of time. One will have to
consult the model documentation in order to know whether the
concentration values reported are averaged over some period of
time, such as 1-h, or are the volume-average values at the end
of time periods, such as at the end of each hour of simulation.

9.3.3 Some models are entirely empirical. A common ex-
ample (30) involves analysis and characterization of the
concentration distributions using measurements under different
conditions across a variety of collection sites. Empirical
models are strictly-speaking only applicable to the range of
measurement conditions upon which they were developed.

9.3.4 Most atmospheric transport and dispersion models
involve the combination of theoretical and empirical param-
eterizations of the physical processes(31), therefore, even
though theoretical models may be suitable to a wide range of
applications in principle, they are limited to the physical
processes characterized, and to the inherent limitations of
empirically derived relationships embedded within them.

9.3.5 Generally speaking, as model complexity grows in
terms of temporal and spatial detail, the task of supplying
appropriate inputs becomes more demanding. It is not a given
that increasing the complexity in the treatment of the transport
and fate of dispersing material will provide less uncertain
predictions. As the number of model input parameters in-
creases, more sources are provided for development of model
uncertainty,d (Da) in Eq 3. Understanding the sensitivity of
the modeling results to model input uncertainty should affect
the definition of evaluation objectives and associated proce-
dures. For instance, specifying the transport direction of a
dispersing plume is highly uncertain. It has been estimated that
the uncertainty in characterizing the plume transport is on the
order of 25 % of the plume width or more(17). If one attempts
to define the relative skill of several models with the modeling
results and observations paired in time and space, the uncer-
tainties in positioning a plume relative to the receptor positions
will cause there to be no correlation between the model results
and observations, when in fact some of the models may be

FIG. 1 Illustration of Effects of Natural Variability on Crosswind
Profiles of a Plume Dispersing Downwind (Grouped in a Relative

Dispersion Context)
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performing well, once uncertainties resulting from plume
transport are mitigated(13,17).

9.4 Choosing Data Sets for Model Evaluation:
9.4.1 In principle, data used for the evaluation process

should be independent of the data used to develop the model.
If independent data cannot be found, there are two choices.
Either use all available data from a variety of experiments and
sites to broadly challenge the models to be evaluated, or collect
new data to support the evaluation process. Realistically, the
latter approach is only feasible in rare circumstances, given the
cost to conduct full-scale comprehensive field studies of
atmospheric dispersion.

9.4.2 The following series of steps should be used in
choosing data sets for model evaluation: select evaluation field
data sets appropriate for the applications for which the model
is to be evaluated; note the model input values that require
estimation for the selected data sets; determine the required
levels of temporal detail, for example, minute-by-minute or
hour-by-hour, and spatial detail, for example, vertical or
horizontal variation in the meteorological conditions, for the
models to be evaluated, as well as the existence and variations
of other sources of the same material within the modeling
domain; ensure that the samplers are sufficiently close to one
another and in sufficient numbers for definition of the evalua-
tion objectives; and, find or collect appropriate data for
estimation of the model inputs and for comparison with model
outputs.

9.4.3 In principle, the information required for the evalua-
tion process includes not only measured atmospheric concen-
trations but also measurements of all model inputs. Model
inputs typically include: emission release characteristics
(physical stack height, stack exit diameter, pollutant exit
temperature and velocity, emission rate), mass and size distri-
bution of particulate emissions, upwind and downwind fetch
characteristics, for example, land-cover, surface roughness
length, daytime and nighttime mixing heights, and surface-
layer stability. In practice, since suitable data for all the
required model inputs are rarely, if ever, available, one resorts
to one or more of the following alternatives: compress the level
of temporal and spatial detail for model application to that for
which suitable data can be obtained; provide best estimates for
model inputs, recognizing the limitations imposed by this
particular approach; or, collect the additional data required to
enable proper estimation of inputs. A number of assumptions
are usually made when modeling even the simplest of situa-
tions. These assumptions, and their potential influence on the
modeling results, should be identified in the evaluation process.

10. Statistical Procedures and Data Analysis

10.1 Establishing Evaluation Goals—Assuming suitable
observational data are available, the evaluation goals may be to
assess the performance of the model on its ability to charac-
terize what it was intended to characterize or on its ability to
characterize something different than it was intended to char-
acterize. There are consequences in choosing the latter, as is
mentioned in 7.4. This guide recommends including in the
evaluation, an assessment of how well the model performs,
when used to characterize quantities it was intended to char-
acterize, namelyCo~a! of Eq 3.

10.1.1 When the intent is to test a model on its ability to
perform as intended, the evaluation goal for each evaluation
objective can be to determine which of several models has the
lowest combination of bias and scatter when modeling results
are compared with observed values of evaluation objectives
defined within the observed and modeledCo~a! patterns. For
this assessment, this guide recommends using at least the
NMSE (other comparison metrics may also provide useful
insights). Define the model having the lowest value for the
NMSE as the base-model. Then to assess the relative skill of
the other models, the null hypotheses would be that the NMSE
values computed for the other models significantly is different
when compared to that computed for the base-model (see
8.4.4).

10.1.2 Given that verification of the truth of any model is an
impossible task, this guide recommends viewing model perfor-
mance in relative terms. Testing one model using results from
one field experiment provides little insight into its perfor-
mance. This guide anticipates that models are going to be used
for situations for which there is no evaluation data; hence, it is
always best to test several models in their ability to performing
certain desired tasks best over a variety of circumstances.
Then, the task becomes to eliminate those models whose
performance is significantly different from the apparent best
performing model, given the unexplained variations seen
within the observations. As new field data becomes available
the apparent best performing model may change, as the models
may be tested for new conditions and in new circumstances.
This argues for using a variety of field data sets, to provide
hope for development of robust conclusions as to which of
several models can be deemed to be performing best.

10.2 Establishing Regimes (Stratification)—As mentioned
in 7.3.3, this guide recommends sorting the available concen-
tration data into regimes, or groups of data having similar
model input,a, prior to performing any statistical comparisons.
If one chooses to stratify the evaluation data into regimes, this
may affect the evaluation objectives, their definition, and the
procedures used to compute their values, hence “regimes” will
be discussed now, before discussing evaluation objectives and
evaluation procedures.

10.2.1 By stratifying the data into regimes, one mitigates the
possibility for offsetting biases in the model’s performance to
compensate. By stratifying the data into regimes and analyzing
all the data within a group together, comparisons can be made
of the ability of a deterministic model to replicate without bias
the regime’s characteristics, for example, average“ centerline”
concentration, average lateral extent, average time a puff takes
to pass a particular position, average horizontal extent. If a
stochastic model were being evaluated, the evaluation objec-
tives might be the average variance in the “centerline” concen-
tration values, or the average variance in the lateral extent.

10.2.2 The goal in grouping data together is to use such
strata as needed to capture the essence of the physics being
characterized, such that model performance can be quantified.
As discussed in(32), the aim in stratification is to break up the
universe into classes, or regimes, that are fundamentally
different in respect to the average or level of some quality-
characteristic. In theory, the stratification is based on properties
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of the various regimes that govern the variance of the estimate
of the mean or the total variance of the universe(32). A
consideration in defining the strata is that there should be a
reasonable number of realizations within each stratum, of order
five or more(33). The ability to describe model performance as
conditions change will argue for many regimes, while the
limits of data available for comparison will limit the number of
regimes possible.

10.2.3 Specific criteria, as to numbers of cases needed in
each regime, or on desired tolerances on how much the model
input values,a, can vary for data being grouped together can
not be provided at this time. What can be reported is that even
rather simplistic sorting of the data by stability and distance has
been shown to reveal differences in model performance(13),
where with identical evaluation data and modeling results no
differences were detected when the data were not sorted(12).
In an assessment of modeling multiple point source emissions
in an urban area(34), a stratification by Pasquill stability
categories was used, which revealed an informative pattern of
model bias as a function of stability. An investigation was
undertaken with the example evaluation procedures discussed
in Appendix X1 to this guide(33). It was found that even with
minimal sorting of the data at a specified distance downwind
into as few as two stability classes, namely all cases with Zi/L
<– 50 and all cases with Zi/L > –50 (Zi is mixing height and L
is Monin-Obukhov length), differences in model performance
were detectable. These results are admittedly anecdotal, but
they provide evidence that overly tight criteria are likely not
needed in sorting the data into regimes.

10.2.4 Besides atmospheric stability and transport distance,
one could consider other sorting criteria. Time of day may
prove to be useful for evaluating model performance when
land-sea breeze circulations are present. Cloud amount and
presence of precipitation may prove to be useful for evaluating
model performance when the fate of the dispersing material is
strongly affected by the presence of moisture and cloud
processes, such as the fate and transport of sulfates(35).

10.2.5 As discussed in(32), a common misconception
regarding stratification is that a particular sample is invalidated
because some of the elements were “misclassified.” The real
universe is dynamic, and the information that is used for
classification is always to some extent uncertain. Moreover, in
any real stratification a few blunders may occur; they ought not
to, but they do. Misclassification is thus expected as a natural
course of events. The point to be made is not that misclassifi-
cations occur, but to understand that such occurrences will
increase the sampling error, and thus reduce the overall
precision in discerning differences in model performance. At
very worse, stratification will provide no better discernment
than if the universe was left unstratified. It is sometimes
proposed that stratification will always bring gains in precision,
but this will only occur if the regime averages, or quality-
characteristic, either modeled or observed, are indeed different.
It is during such circumstances, when modeled or observed
regime quality-characteristics differ, that the gains of stratifi-
cation are great(32).

10.3 Establishing and Defining Evaluation Objectives—In
order to perform statistical comparisons, this guide recom-
mends defining those evaluation objectives (features or char-
acteristics) within the pattern of observed and modeled con-
centration values that are of interest to compare. As yet, no one
feature or characteristic has been found that can be defined
within a concentration pattern that will fully test a model’s
performance. For instance, the maximum surface concentration
may appear unbiased through a compensation of errors in
estimating the lateral extent of the dispersing material and in
estimating the vertical extent of the dispersing material. Add-
ing into consideration that other biases that may exist, for
example, in treatment of the chemical and removal processes
during transport, in estimating buoyant plume rise, in account-
ing for wind direction changes with height, in accounting for
penetration of material into layers above the current mixing
depth, in systematic variation in all of these biases as a function
of atmospheric stability), one appreciates that there are many
ways that a model can falsely give the appearance of good
performances.

10.3.1 In principle, modeling dispersion involves character-
izing the size and shape of the volume into which the material
is dispersing, as well as, the distribution of the material within
this volume. Volumes have three dimensions, so an evaluation
of model performance will be more complete if it tests the
model’s ability to characterize dispersion along more than one
of these dimensions. In practice, there are more observations
available on the downwind and crosswind concentration pro-
files of dispersing material, than are available on vertical
concentration profiles of dispersing material.

10.3.2 Developing evaluation objectives, involves having a
sense of what analysis procedures might be employed. This
involves a combination of understanding the modeling assump-
tions, knowledge of possible comparison measures, and knowl-
edge of the success of previous practices. For example, to
assess performance of a model to simulate the pattern of a
dispersing puff from a comparison of isolated measurements
with the estimated concentration pattern,(36)used a procedure
developed for measuring the skill of mesoscale meteorological
models to forecast the pressure pattern of a tropical cyclone
when only isolated pressure measurements are availabe for
comparison(37). In particular, the surface area where concen-
trations were predicted to be above a certain threshold was
compared to a surface area deduced from the available moni-
toring data. The lesson here is that evaluation objectives and
procedures developed in other earth sciences can often be
adapted for evaluating air dispersion models.

10.3.3 This guide recommends that an evaluation should
attempt to include in its comparisons, test of whether the model
is performing well when used as intended. This would entail
developing evaluation objectives (features or characteristics)
from the pattern of observed and modeledCo~a! values for
comparison.

10.3.4 For each of the example evaluation objectives listed
in 10.2.1, one will have to provide a definition of what is meant
by the observed and modeled pattern ofCo~a! . It will be found
that these definitions will have to be specified in terms of the
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nature and scope of available field data for analysis, and
whether one has sorted the data into regimes.

NOTE 2—For instance, if one is testing models on their ability to
provide regime average centerline concentration values, then criteria for
sorting the data into regimes will be needed. If the model input values are
used for the regime criteria, a resolution will be needed for cases when
different models have different input values for the same parameter for the
same hour. If one is testing models on their ability to reproduce centerline
concentration values, a procedure will be needed to determine which of
the available observations are representative of centerline concentration
values. If one is testing models to produce estimates of the average or the
variance in the centerline concentration values, the averaging time to be
associated with these estimates will need to be stated.

10.4 Establishing Evaluation Procedures—Having selected
evaluation objectives for comparison, the next step would be to
define an analysis procedure or series of procedures, which
define how each evaluation objective will be derived from the
available information.

10.4.1 Development of evaluation procedures begins by
defining the terminology used in the goal statement. For
instance let us suppose that one of the evaluation goals is to test
the ability of models to replicate the average centerline
concentration as a function of transport downwind and as a
function of atmospheric stability. The stated goal involves
several items which will require definition, namely average
centerline concentration, transport downwind, and stability.
The last two may appear innocent, but when viewed in the
context of the evaluation data, other terms or problems will
surface for resolution. During near-calm wind conditions,
when transport may have favored more than one direction over
the sampling period, “downwind” is not well described by one
direction. If plume models are being tested, one might exclude
near-calm conditions, since plume models are not meant to
provide meaningful results during such conditions. If puff
models or grid models are being tested, one might sort the
near-calm cases into a special regime for analysis. For surface
releases, surface-layer Monin-Obukhov length (L) has been
found to adequately define stability effects, whereas, for
elevated releases Zi/L, where Zi is the mixing depth, has been
found a useful parameter for describing stability effects. Each
model likely has its own meteorological processor. It is a likely
circumstance that different processors will have different val-
ues for L and Zi for each of the evaluation cases. There is no
one best way to deal with this problem. One solution might be
to sort the data into regimes using each of the model’s input
values, and see if the conclusions reached as to best performing
model are affected. Given a sampling arc of concentration
values, a decision is needed of whether the centerline concen-
tration is the maximum value seen anywhere along the arc, or
whether the centerline concentration is that seen near the center
of mass of the observed lateral concentration distribution. If
one chooses the latter concept, then definition is needed of how
near one has to be, to be representative of a centerline
concentration value. If one chooses the latter concept, one
might decide to select all values within a specific range
(nearness to the center of mass). In such a case, either a
definition or a procedure will be needed to define how this
specific range will be determined. If one is grouping data
together for which the emission rates are different, one might

choose to resolve this by normalizing the concentration values
by dividing by the respective emission rates. To divide by the
emission rate requires either a constant emission rate over the
entire release, or the downwind transport is sufficiently obvious
that one can compute an emission rate based on travel time that
is appropriate for each downwind distance. This discussion is
not meant to be exhaustive but to be illustrative. It provides an
illustration of how the thought process might evolve. It is seen
that in defining terms, other questions arise that when resolved
eventually will develop an analysis that will compute the
evaluation objective from the available data. There may be no
one best answer to the questions that develop, and this may
cause the evaluation procedures to develop multiple paths to
the same goal. If the same set of models is chosen as the best
performing models, regardless of which path is chosen, one can
likely be assured that the conclusions reached are robust.

10.4.2 Appendix X1 contains an example evaluation proce-
dure for computing the average centerline maximum concen-
tration value from tracer field data. It illustrates an approach
that has been tested and shown to be effective, but has yet to
reach a consensus of acceptance(38,39). In the example
approach in Appendix X1, an example procedure is outlined
for definition of centerline concentration values that is robust to
the effects of variations in the atmospheric conditions and
modeling input (a-variations).

10.4.3 Providing technical definitions of terminology is the
basis upon which one defines and develops the evaluation
procedures. In some cases, there is no one correct answer to
some of the questions that one might pose. What is important
is to define what is being evaluated and how terms are to be
defined, and it is recommended that these definitions be
expressed within the context of the evaluation framework
discussed in Section 7. This requires one to understand the
consequences of the evaluation framework, within the context
of the analyses being conducted.

10.4.4 It is beyond the scope of this guide to address
comprehensively how evaluation procedures should be de-
fined. The example procedure in Appendix X1 might be
adapted to other evaluation goals, but it is narrowly limited to
a particular class of problems. Dispersion models are used in a
variety of ways, and the discussion in Appendix X1 is not
meant to provide a template from which all evaluation proce-
dures can be developed successfully. As experience is gained in
the development and testing of evaluation procedures, more
specific guidance may become available.

11. Summarizing Model Performance

11.1 There are two methods commonly used for summariz-
ing model performance. The first involves the comparison of
observed and modeled values (evaluation objectives) as a
function of one or more model input variables and is used to
detect trends in modeling bias. The second is a summary of one
or more comparison metrics over all conditions experienced
within a particular field experiment and is used to select the set
of best performing models for a given application. These
comparisons can be done with or without stratification of the
evaluation data into regimes. This guide suggests that perform-
ing these summary comparisons using the modeled and ob-
served regime averages, improves the likelihood of detecting
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bias in the models’ ability to perform as intended. As noted
below, references to observed and modeled values are referring
to the observed and model model evaluation objectives.

11.2 Detecting Trends in Modeling Bias:
11.2.1 A plot of the observed and modeled values as a

function of one of the model input parameters is a direct means
for detecting model bias. Such comparison have been recom-
mended and employed in a variety of investigations(8, 17, 25).
In some cases the comparison is the ratio, formed by dividing
the modeled value by the observed value, plotted as a function
of one or more of the model input parameters.

11.2.2 If the data have been stratified into regimes, one also
can display the standard error estimates on the respective
modeled and observed regime averages. If the respective
averages are encompassed by the error bars, typically6 two
times the standard error estimates, one can assume the differ-
ences are not significant(38). As described by(15), this a
seductive inference. A more robust assessment of the signifi-
cance of the differences would be to use the analysis discussed
in 8.4.4, but in practice conclusions reached using such
seductive inferences usually are confirmed when the more
rigorous procedure is employed.

11.3 Overall Summary of Performance:
11.3.1 The design for statistically summarizing model per-

formance over several regimes can be envisioned as a five step
procedure. In Step 1, form a replicate sample using concurrent
sampling of the observed and modeled values for each regime.
In Step 2, compute the average of observed and modeled
values for each regime. In Step 3, compute the NMSE using the
computed regime averages, and store off the value of the
NMSE computed for this pass of the bootstrap sampling. In
Steps 4 and 5, repeat steps 1 through 3 for all B bootstrap
sampling passes and implement the procedure described in
8.4.4 to detect which model has the lowest computed NMSE
value (call this the base model), and which models have NMSE
values that are significantly different from the base model.

NOTE 3—As described in Appendix X1 forming the replicate samples
involves judgement in order to preserve correlations that might exist
within the data, and to insulate the data samples from being unduly
affected by grouping data together within a regime that invariably are
affected by variations in dispersive conditions (variations ina, model
input parameters).

NOTE 4—When developing pooled (summary) statistics across all
regimes, steps should be taken to avoid confounding the conclusions
reached. No realization should appear in more than one regime, and it is
helpful towards avoiding Simpson’s Paradox(40) to have a similar
number of realizations in each regime.

NOTE 5—The NMSE is used in the discussion above, but any of a
number of comparison metrics may usefully be substituted, for example,
linear regression slope and intercept results, Pearson correlation coeffi-
cient, etc. These paired comparison metrics are difficult to interpret and
have less value when raw observations are compared to modeling results,
as then the comparison is between different populations that are only
vaguely correlated. When comparing regime averages, the paired com-
parison metrics are anticipated to have greater usefulness, because the
averaging process filters out, hopefully most, of the observational and
modeled fluctuations which are uncorrelated.

11.3.2 The summary procedure described above and used in
Appendix X1 was constructed using that introduced by(16) as
a template. In(16), the data were sorted into regimes (defined

in terms of Pasquill stability category and low/high wind speed
classes), bootstrap resampling was used to develop standard
error estimates on the comparisons, and the comparison metric
was the RHC (computed from the raw observed cumulative
frequency distribution). This procedure can be improved if the
regimes are defined in terms of stability defined by Zi/L and
transport distance, and if the comparison metric is the NMSE
computed from the modeled and observed regime averages of
centerline concentration values. As discussed by(31), Zi/L
better captures the boundary-layer stability effects for elevated
releases than Pasquill stability category (which is essentially
another definition of L). Using downwind distance avoids good
comparisons to result from offsetting model bias in the
characterizations of the vertical dilution of the material during
transport downwind. The RHC was a comparison of the
highest concentration values (maxima), which most models do
not contain the physics to simulate.

11.3.3 A major limitation with the Appendix X1 procedure
is that it can only be applied to intensive tracer field studies,
with a dense receptor network, whereas(16)attempted to make
use of very sparse receptor networks having one or more years
of sampling results. With dense receptor networks, attempts
can be made to compare modeled and observed centerline
concentration values, but there are only a few experiments that
have sufficient data to allow stratification of the data into
regimes for analysis. With sparse receptor networks, there are
more data for analysis, but there is insufficient information to
define the observed maxima relative to the dispersing plume’s
center of mass; thus, it will not be known whether the observed
maxima are representative of centerline concentration values.
As seen in Fig. 1, observed concentrations near the center of
mass can easily vary by a factor of two in magnitude. Also seen
in Fig. 1, observed concentrations away from the center of
mass, easily can be of the same magnitude as the average
centerline concentration value. It is not obvious that the
average of theN (say 25) observed maximum hourly concen-
tration values (for a particular distance downwind and nar-
rowly defined stability range) is the ensemble average center-
line concentration the model is attempting to model; in fact,
one might anticipate that it is likely higher than the ensemble
average of the centerline concentration. As discussed in 7.4,
testing a model in this manner may favor as best performing
poorly-formed models that routinely underestimate the lateral
dispersion. This in turn, may bias the performance of such
models in their ability to correctly characterize concentration
patterns for longer averaging times. Given a well-formulated
model ( which was selected using field data from an intensive
network of receptors), evaluations using field data from sparse
networks are seen as a useful extension to further explore the
performance of a well-formulated model for other environs and
for use of the model for other purposes.

12. Conclusions

12.1 The statistical evaluation of model performance with
field data is a valuable exercise, but will be limited in scope by
the availability of suitable data for comparison; thus, the
statistical comparison results are best interpreted within the
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context of a peer review of the model algorithms and support-
ive analyses (code verification, sensitivity analyses, and Monte
Carlo analyses).

12.2 The development of a design for performing a statis-
tical evaluation begins with the formation of evaluation goals,
which will allow construction of null hypotheses, which can be
tested. This guide recognizes that one may compose evaluation
goals that test the ability of a model to replicate something it
was not designed to characterize, as this may be the real-world
application. This guide recommends that the evaluation goals
include statistical evaluation of the ability of the models to
perform as designed. The evaluation goals provide a basis for
the definition of specific evaluation objectives and associated
procedures for computing the evaluation objectives. This guide
recommends that the evaluation objectives and associated
procedures be described within the context of the model
evaluation framework described in Section 7.

12.3 There are evaluations in the literature that implicitly
assume that what is observed is what is being modeled, when
this is not the case. This guide is attempting to heighten
awareness and thereby promote statistical model evaluations to
at least document when the models are being tested on their
ability to simulate something they were not intended to

provide. It would be worthwhile also for such evaluations to
discuss the consequences and possible limitations of such
evaluations.

12.4 Given that verification of the truth of any model is an
impossible task, this guide recommends viewing a model’s
performance in relative terms, in comparison to several avail-
able models over a variety of circumstances. As new field data
becomes available the selection of which of several models is
performing best may change, as the models may be tested for
new conditions and in new circumstances. This argues for
using a variety of field data sets, to provide hope for develop-
ment of robust conclusions as to which of several models can
be deemed to be currently performing best.

12.5 As experience increases in the use of this guide, it is
hoped that consensus will be reached in certain evaluation
goals, evaluation objectives and associated evaluation proce-
dures, and data sets to be employed. The ultimate goal will be
to define a standard test method for each evaluation goal.

13. Keywords

13.1 air quality; model; model performance; qualitative
evaluation; quantitative evaluation; statistical

APPENDIXES

(Nonmandatory Information)

X1. EXAMPLE PRACTICE FOR STATISTICAL PERFORMANCE EVALUATION OF THE CHARACTERIZATION OF THE
AVERAGE CENTERLINE CONCENTRATION VALUES BY LOCAL-SCALE DISPERSION MODELS FOR DISPERSION FROM

AN ISOLATED POINT SOURCE

X1.1 This appendix provides the logic and analysis steps to
conduct a statistical performance evaluation for local-scale
atmospheric dispersion models. The logic is the same, regard-
less of whether the evaluation objective is the average of the
centerline concentration values, or the average variance of the
centerline concentration values, or the average lateral extent of
the plume as a function of downwind distance, or any other
average feature that can be derived from a collection of
observations within a regime.

X1.2 Evaluation Goal—To conduct a statistical perfor-
mance evaluation of the ability of several models to simulate
without bias the near-surface average centerline concentration
value (1 h or less) for continuous releases from an isolated
point source as a function of transport downwind and atmo-
spheric stability.

X1.2.1 Definition of Centerline Concentration Values—It is
assumed that those receptors that are suitably close (to be
defined within the associated procedure, see X1.5) to the
observed center of mass along each arc, are close enough to the
true plume centerline position to be representative of what
would be observed at the plume centerline.

X1.2.2 Definition of Transport Downwind—It is assumed
that field studies have near-surface receptors placed along arcs
(or pseudo-arcs) at prescribed distances downwind and cen-

tered on the pollutant (or tracer) release position. It is assumed
that the downwind transport of the pollutant (or tracer) is fairly
steady, and situations having light and variable winds are not
considered in this assessment. These assumptions allow testing
of dispersion models that are typically used in routine model
assessments. Use of field data with poorly formed sampling
arcs or unsteady transport will degrade the usefulness of these
evaluation procedures.

X1.2.3 Definition of Atmospheric Stability—For near-
surface releases, the Monin-Obukhov length (L) has been
shown to explain well the stability effects to atmospheric
dispersion. For elevated releases, the ratio Zi/L, where Zi is the
local mixing height, is anticipated to explain the stability
effects to atmospheric dispersion.

X1.2.4 Definition of Regimes—The goal is to detect bias in
the average value of the centerline concentration. This is
interpreted to indicate that the intent is to test the ability of
models to simulate without bias the ensemble mean centerline
concentration. Pseudo-ensembles (regimes) will be formed by
sorting all data seen along each arc into separate stability
groups. This will allow comparison of observed and modeled
group averages at each distance downwind. Each regime is
defined by distance downwind and a range of stability condi-
tions.

X1.3 Evaluation Procedure for Sorting Data into Regimes
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(Pseudo-Ensembles)—Judgement will be involved in sorting
the data by stability, as it will not always be obvious whether
L or Zi/L is best, and the ranges in stability will vary depending
on the number of arcs of data available at each downwind
distance. As described in 10.2.3, exact criteria on defining the
range of allowable variation in stability are likely not needed,
as past experiences have shown that most any segregation will
prove helpful. Numerical studies(33) indicate characterization
of the centerline concentration average is best achieved by
having at least five, preferably seven or more, arcs of data
within each stability regime for an arc.

X1.4 Evaluation Procedures for Combining Data Within a
Regime for Analysis—There are several practical problems to
be solved. A decision is needed of how to group data together
having different transport directions and different emission
rates, but belonging to the same regime. Stochastic variations
will make uncertain the definition of the mean transport
direction, as well as, the centerline position of the dispersing
plume. In the following, a rationale is provided for the
processing steps that could be taken to address these problems.

X1.4.1 Rationale for Grouping Experiments with Different
Emission Rates—For dispersion in which the transport down-
wind does not involve wind direction reversals or near-calm
conditions, the observed concentration is directly proportional
to the emission rate. In order to jointly analyze experiments
within a regime, or across several regimes, the observed and
modeled concentration values will be divided by the emission
rate. For a continuous point source, the normalized concentra-
tion values then have the units of (mass/volume) (time/mass) =
(time/volume). For a puff release, the normalized concentration
values then have the units of (mass/volume) (1/mass) =
(1/volume).

X1.4.2 Rationale for Definition of Centerline Position—
The stochastic fluctuations in the concentration values within
the near-centerline portion of dispersing plumes have been
estimated to have a somewhat log-normal distribution with a
standard geometric deviation of order 1.5 to 2(33). Most of the
time, the dispersing plume expands to an angle on the order of
10 to 50° during transport downwind. With such a narrow
plume, even a 4° error in estimating the transport direction can
cause very large differences between predicted and observed
concentrations paired in time and space(13,17). As a result of
wind shifts and random fluctuations, the crosswind profile of
concentrations observed along a sampling arc for individual
realizations likely will not appear Gaussian (see Fig. 1). These
departures from the ideal Gaussian shape will result in uncer-
tainty in the definition of the centerline position. To avoid the
effects of transport uncertainty, and assuming the observed
concentration values have a sampling time of 1-h or less,
concentrations taken from different experiments, but for the
same regime and for the same experimental site, can be jointly
analyzed using the center of mass to provide an approximate
position of the centerline. By using the center of mass,
computed for each experiment and arc, as a common reference
point, data that actually may have been transported in different
directions can be grouped together. The assumption being

made here is that the rate of dispersion for different transport
directions is not anticipated to be different, all other factors
being equal.

X1.4.3 Data Files for Analyses—The first two steps, X1.4.1
and X1.4.2, can be accomplished and the results stored for use
in later analyses. It has been assumed in the discussion that
follows in Appendix X2, that two data files have been
constructed. The first file contains a listing of results obtained
through an analysis of the observed concentration values for
each arc of the field study. Each arc has been analyzed to
determine the center of mass, and the receptor positions have
been expressed relative to the position of the arc’s center of
mass, either in units of angular degrees or distance. The
concentration values are listed and have been divided by the
tracer emission rate. Sufficient information is included in this
file to allow sorting the arcs of data into specified regimes. The
second file contains the modeled centerline concentration
values for each arc for each experiment. Note, that the
modeling results are not listed at positions where observations
were taken, since there is only one value listed for each
experiment for each arc, namely the modeled centerline con-
centration value divided by the emission rate.

X1.5 Evaluation Procedure for Determining Which Recep-
tors Provide Observations of Centerline Concentration
Values—If the crosswind dispersion were Gaussian, one would
expect observed concentration values would be on average, at
least within 20 % of the centerline maximum concentration
value if |yi/Sy| were less than or equal to 0.67, whereyi is the
distance from the centerline andSyis the standard deviation of
the crosswind concentration distribution for the regime (col-
lection of experiments). Given the anticipated large fluctua-
tions to be seen (substantially greater than620 %), a receptor
that is near the centerline (center of mass) is assumed to
provide a representative sample of a centerline concentration
value. With this in mind, near centerline concentrations are
defined as coming from those receptors for which |yi/Sy| #
0.67. There are results that suggest that due to large variations
in the lateral extent of the individual arcs within a regime, the
|yi/Sy| # 0.67 criteria may not be sufficiently restrictive(41);
therefore, a study was conducted to refine the selection criteria
by further limiting the selection criteria(39). The results are
specific to particular tracer field studies. It was found that a
better representation of the centerline concentration values can
be obtained by limiting the selection to only the 1 (for sparse
sampling along an arc) to 3 (for dense sampling along an arc)
receptors that are nearest to the center of mass receptors that
still satisfy the criteria of |yi/Sy| # 0.67. When saving off those
observations selected as being near the centerline position,
record which receptors are adjacent to one another, and link the
modeled concentrations with the observations selected.

X1.6 Evaluation Procedure for Sampling of Observed Cen-
terline Concentration Values During Bootstrap Resampling—
The procedure described in X1.5, and discussed in more detail
in X2.3, may result in an unequal number of values being
selected from each realization (sampling arc of data) within a
regime. When developing the bootstrap samples, treat each arc
as equally likely. This argues for the same number of values to
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be selected from each realization during the bootstrap resam-
pling. There also is every likelihood that concentration values
from adjacent receptors will be somewhat autocorrelated.
Autocorrelation will affect the computed variance. Two meth-
ods could be used in the construction of the bootstrap samples.
Method 1, when an arc is selected for sampling, at random one
value would be selected from all the near-centerline values
available. Method 2, when an arc is selected for sampling, at

random one pair of adjacent near-centerline values, see X2.6.3,
would be selected from all possible pairs of adjacent values.
The consequence of computing variances using Method 1
versus Method 2 was tested(42), and it was concluded that
autocorrelation effects were present, and were sufficient to
warrant consideration; hence, sampling by pairs (Method 2) is
recommended.

X2. GUIDANCE ON PROGRAMING LOGIC OF EXAMPLE PRACTICE

X2.1 In Section X2.3 a series of steps is outlined. Steps 1
and 2, implement the procedures defined in X1.5 for selecting
concentration values deemed representative of what would be
observed near the centerline position of a plume dispersing
downwind. Data files as discussed in X1.4 are assumed to have
been created for use. Steps 3 through 6, implement the
procedures defined in X1.6 for sampling pairs of observations
in the bootstrap replicate sampling.

X2.2 Begin Loop on B Bootstrap Samples (say B = 500)—
See X2.6.1.

X2.3 Begin Loop on K Regimes:

X2.3.1 Step 1—ComputeSy, for this regime. Read in all
arcs of observations for this regime, and compute the regime’s
lateral dispersion,Sy, as:

Sy
2 5

(
r51

R

(
i51

lr

yri
2 Cn

o

(
r51

R

(
i51

lr

Cn
o

(X2.1)

whereIr is the number of observed concentrations on arcr of
which there areR arcs to be processed,i represents the
sampling position along the sampling arc, andyri is the distance
of sampling position from the center of mass (computed using
only the Ir concentration values for this experiment). It has
been assumed that the observed concentration values,Cri

o,
have been divided by the emission rate appropriate for each
experiment.

NOTE X2.1—The preceding actions can be completed and the results
stored off for the first bootstrap sample. For all succeeding bootstrap
samples, the results obtained and previously stored are used. It is
anticipated in the following discussion, that a regime contains arcs of data
that are at the same distance (or nearly so) downwind from the release.

X2.3.2 Step 2—Identify the set of observed centerline
concentrations. Treat each arc separately. Store for later analy-
sis, theNfilter values ofCri

o that have the smallest values for
|yri | for which |yri /Sy| # 0.67, whereNfilter is an integer, likely
in the range from 1 to 3, that will be defined for each field study
using judgment, see analyses discussed in(39). As values are
stored for later use, it is important also to retain the relative
position of the receptors along the arc, as it will be needed to
know which values are adjacent to one another.

NOTE X2.2—For the purposes of later discussion, letsr represent the
number of values selected from arc r (assumed to be representative of an
observed centerline concentration value). Then the total number of
observed values selected as being representative of centerline concentra-

tions from all arcs in this regime,N, equals(r51
R Sr.

NOTE X2.3—In the sampling discussion presented, the method with
sample pairs of values were employed because studies(42) suggest that
there is some positive autocorrelation between adjacent observed near
centerline concentration values. When an experiment is selected for
sampling, values are selected not only from the observations, but also
from all models, as well. Sampling in this fashion, called concurrent
sampling, attempts to address correlation effects that might exist between
the modeling results and the experimental conditions present during a
selected experiment.

X2.3.3 Step 3—Define number of pairs to sample. Draw
N’/2 pairs of samples, with replacement, whereN’ = 2* INT
(N/2), where INT represents the truncated integer result of
dividing N by 2.

X2.3.4 Step 4—Each arc is considered equally likely. Select
one of the arcs at random. It is necessary to sample these same
arcs in developing the samples of modeled centerline concen-
trations for each model, see discussion in X2.6.2. One method
to accomplish this would be to store off a pair of modeled
centerline concentration values for each model, just before or
after the pair of observed values (see Step 5 below) is selected.

X2.3.5 Step 5—Select a pair. IfSr > 1, then there is more
than one observed concentration valueCrj

o that was deemed to
meet the criteria for providing concentrations that are repre-
sentative of centerline values. At random select a pair of values
that are adjacent to one another. IfSr = 1, then there is only one
valueCrj

o to sample and the pair is defined to be this one value,
selected twice. For further discussion of sampling of pairs see
X2.6.3.

X2.3.6 Step 6—Repeat Steps 4 and 5 aboveN’/2 times.

NOTE X2.4—In 8.4.2, mention was made that blocking can be used to
avoid the development of unrealistic bootstrap samples, where all the
values are identical. The addition of blocking in Steps 4 and 5 is a possible
future enhancement that could be made to this procedure.

X2.3.7 Step 7—At the completion of Step 6, a bootstrap
sample of observed and modeled centerline concentration
values for this regime will have been constructed.

X2.3.7.1 Compute the averageCb
o of the N’ samples of

observed concentration values, where b represents the boot-
strap sample index and theo superscript denotes that the
average was derived using observed concentration values.

X2.3.7.2 Loop on all models and compute the averageCb
m

of the N’ samples of modeled concentration values for each
model.

X2.4 End Loop on Regimes:
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X2.4.1 At the completion of generating and analyzing allK
regimes, there is available for analysisK values ofCb

o andK
values for each model ofCb

m. There are any number of paired
statistical analyses that one could insert at this step. For
illustration of the logic and completion of the evaluation goal
being discussed, compute the NMSE for each model with the
K regime averages of observed and modeled centerline con-
centration values. For notation purposes let NMSEbm, repre-
sent the normalized mean square error for bootstrap sampleb
and modelm.

X2.5 End Loop on Bootstrap Sampling—At the completion
of generating and analyzing allB bootstrap samples, there will
be available for analysisB values of the NMSE for each model.

X2.6 Notes on Considerations in Performance Evaluation
Procedure:

X2.6.1 Determination of Bootstrap Sample Size—Once the
data to be used in each regime have been defined, one can
conduct the following numerical experiment to help answer the
question of how many bootstrap samples,B, are needed(42).
Run the analysis outlined in Steps 1 through 7, ten times, with
ten bootstrap samples for each regime. From each run, we have
an estimate for each regime for the standard deviation of the
observed concentration values. Using the ten estimates for the
standard deviation of the observed concentration values, for
each regime compute the average of these ten standard
deviations, Avg(std), and the variance of these ten standard
deviations, Var(std). The ratio=Var~std!/Avg~std! is expected
to be proportional to 1 /=B, whereB is the bootstrap sample
size. There will be a different ratio for each regime. One can
solve for the value ofB such that the ratio=Var~std!/Avg~std!
is less than some desired tolerance, say 0.05, for all regimes.
The sample sizeB needed, typically varies from one regime to

the next. In a previous study(42), it was found that ifB was at
least 500, the criterion was met in all regimes.

X2.6.2 Concurrent Sampling—It is assumed that the repli-
cate sampling conducted in the “loop on samples” is such that
the exact same sequence of cases will be chosen for every
model. For instance, if sample one contains five cases, and
those selected are cases numbered 1, 2, 4, 5 and 1. Then, every
model for sample one will consist of cases numbered 1, 2, 4, 5
and 1. This preserves any model to model correlations in the
differences to be seen between the modeling results and the
observations. Ideally, the observations and modeling results
would all be sampled at the same time, but this may not be
feasible as it maximizes the computer memory requirements.
One may be able to take advantage of the fact that some
random number generators will generate the same sequence of
random numbers given the same seed. This allows one to
sample the observations and the modeling results from each
model separately, taking care to always start with the same
seed. This may result in a substantial saving of memory
requirements for the storage of data arrays. Another solution
would be to list the case numbers selected, when sampling the
observations, to a side file and reuse these results in developing
the samples for each model.

X2.6.3 Determination of a Random Pair of Values—
Assume that four values from one arc are found to satisfy the
criteria of being sufficiently close to the center of mass that
they will be considered as representative of centerline concen-
tration values. Number these four values as 1, 2, 3, and 4. Value
1 is adjacent to only value 2, whereas, value 2 is adjacent to
both value 1 and value 3. There are three pairs possible: (1,2),
(2,3), (3,4). Pair (1,2) is considered to be the same as pair (2,1).
In this example, there are three pairs possible, and in the
replicate sampling each of the three pairs would be considered
equally likely.

X3. GUIDANCE ON PROGRAMMING LOGIC FOR DETERMINATION OF BEST PERFORMING MODELS

X3.1 Determine Base Case Model:

X3.1.1 The base case model is defined as that model, which
typically exhibits the smallest deviations (bias plus scatter)
from the average of the observed values. Loop on all models
and compute the average NMSEm for each modelm from theB
values of NMSEbm.

NOTE X3.1—The procedure for determining the best performing mod-
els is outlined in 8.4.4. It is worth mentioning here that although one might
show that model-to-model differences are statistically significant, such
differences are typically of little practical importance. What is of real
concern is whether the model-to-observation differences, from one model
comparison metric to the next, are significantly different.

X3.1.2 The model with the lowest value for NMSE is
defined as the base case model. Lets denote this model’s
number in the sequence ofM models, that is NMSEs.

X3.2 Determine Set of Best Performing Models:

X3.2.1 Loop on allM models, excluding models.
X3.2.1.1 Compute from theB values of NMSEbs and NM-

SEbm, theB differencesDb
sm = NMSEbs – NSMEbm.

X3.2.1.2 Compute the meanDsm and the standard deviation
sD

sm from theB values ofDb
sm.

X3.2.1.3 Compute thet-statistic for comparison withth/2 as,
tsm 5 Dsm/sD

sm.
X3.2.1.4 Reject any model for whichtsm is greater than or

equal toth/2. The null Hypothesis will be that the difference,
NMSEs– NMSEm, is not statistically significant for a stated
level of significanceh. For illustration purposes sayh = 0.1,
then the Student-t for use in testing the null Hypothesis
(assume large number of values) isth/2 = 1.645.

X3.2.1.5 End loop on models.

X3.3 The set of best performing models is composed of all
those not rejected (above) plus the base case model.
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