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1. Scope 1.4 This guide offers an organized collection of information

1.1 This guide provides techniques that are useful for th@' @ series of options and does not recommend a specific course
comparison of modeled air concentrations with observed fiel@f action. This guide cannot replace education or experience
data. Such comparisons provide a means for assessing@Rd should be used in conjunction with professional judgment.
model's performance, for example, bias and precision ofNot all aspects of this guide may be applicable in all circum-
uncertainty, relative to other candidate models. Methodologie§tances. This guide is not intended to represent or replace the
for such comparisons are yet evolving; hence, modification§tandard of care by which the adequacy of a given professional
will occur in the statistical tests and procedures and datgerviceé must be judged, nor should it be applied without
analysis as work progresses in this area. Until the interestegPnsideration of a project’s many unique aspects. The word
parties agree upon standard testing protocols, differences iptandard” in the ftitle of this guide means only that the
approach will occur. This guide describes a framework, odocument has been approved through the ASTM consensus
philosophical context, within which one determines whether Pr0C€ss.
model's performance is significantly different from other 1.5 This standard does not purport to address all of the
candidate models. It is suggested that the first step should be §§fety concerns, if any, associated with its use. It is the
determine which model's estimates are closest on average 8Sponsibility of the user of this standard to establish appro-
the observations, and the second step would then test wheth@iiate safety and health practices and to determine the
the differences seen in the performance of the other models a@Pplicability of regulatory limitations prior to use.
significantly different from the model chosen in the first step., Referenced Documents
An example procedure is provided in Appendix X1 to illustrate ™
an existing approach for a particular evaluation goal. This 2-1 ASTM Standards: . _ _
example is not intended to inhibit alternative approaches or D 1356 Terminology Relating to Sampling and Analysis of
techniques that will produce equivalent or superior results. As Atmosphere$
discussed in Section 6, statistical evaluation of model perfor3
mance is viewed as part of a larger process that collectively is’
referred to as model evaluation.

1.2 This guide has been designed with flexibility to allow - . .
expansion to address various characterizations of atmospheric3-2 Definitions of Terms Specific to This Standard:
dispersion, which might involve dose or concentration fluctua- 3-2-1 atmospheric dispersion modet—an idealization of
tions, to allow development of application-specific evaluation?MOoSpheric physics and processes to calculate the magnitude
schemes, and to allow use of various statistical comparisoﬁ”d location of pollutant concentrations based on fate, trans-

metrics. No assumptions are made regarding the manner " and dispersion in the atmosphere. This may take the form
which the models characterize the dispersion. of an equation, algorithm, or series of equations/algorithms

1.3 The focus of this guide is on end results, that is thd/sed to calculate average or time-varying concentration. The

accuracy of model predictions and the discernment of whethdPd€l may involve numerical methods for solution.
differences seen between models are significant, rather than3-2-2 dispersion, absoluten—the characterization of the
operational details such as the ease of model implementation §Préading of material released into the atmosphere based on a

the time required for model calculations to be performed. ~ coordinate system fixed in space. o
3.2.3 dispersion, relative n—the characterization of the

spreading of material released into the atmosphere based on a
1 This guide is under the jurisdiction of ASTM Committee D22 on Sampling and
Analysis of Atmospheres and is the direct responsibility of Subcommittee D22.11 on

Meteorology. —
Current edition approved Sept. 10, 2000. Published November 2000. 2 Annual Book of ASTM Standardgol 11.03.

Terminology

3.1 Definitions—For definitions of terms used in this guide,
refer to Terminology D 1356.
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coordinate system that is relative to the local median position 4.3 In assessing the performance of air quality models to
of the dispersing material. characterize a particular evaluation objective, one should
3.2.4 evaluation objectiven—a feature or characteristic, consider what the models are capable of providing. As dis-
which can be defined through an analysis of the observedussed in Section 7, most models attempt to characterize the
concentration pattern, for example, maximum centerline conensemble average concentration pattern. If such models should
centration or lateral extent of the average concentration pattefprovide favorable comparisons with observed concentration
as a function of downwind distance, which one desires tanaxima, this is resulting from happenstance, rather than skill in
assess the skill of the models to reproduce. the model; therefore, in this discussion, it is suggested a model
3.2.5 evaluation proceduren—the analysis steps to be be assessed on its ability to reproduce what it was designed to
taken to compute the value of the evaluation objective from theroduce, for at least in these comparisons, one can be assured
observed and modeled patterns of concentration values.  that zero bias with the least amount of scatter is by definition
3.2.6 fate, n—the destiny of a chemical or biological pol- good model performance.
lutant after release into the environment. 4.4 As an illustration of the principles espoused in this
3.2.7 model input valugen—characterizations that must be guide, a procedure is provided in Appendix X1 for comparison
estimated or provided by the model developer or user beforef observed and modeled near-centerline concentration values,
model calculations can be performed. which accommodates the fact that observed concentration
3.2.8 regime n—a repeatable narrow range of conditions, values include a large component of stochastic, and possibly
defined in terms of model input values, which may or may notdeterministic, variability unaccounted for by current models.
be explicitly employed by all models being tested, needed foiThe procedure provides an objective statistical test of whether
dispersion model calculations. It is envisioned that the disperdifferences seen in model performance are significant.
sion observed should be similar for all cases having similar =
model input values. 5. Significance and Use
3.2.9 uncertainty n—refers to a lack of knowledge about 5.1 Guidance is provided on designing model evaluation
specific factors or parameters. This includes measuremeperformance precedures and on the difficulties that arise in
errors, sampling errors, systematic errors, and differencestatistical evaluation of model performance caused by the
arising from simplification of real-world processes. In prin- stochastic nature of dispersion in the atmosphere. It is recog-
ciple, uncertainty can be reduced with further information ornized there are examples in the literature where, knowingly or
knowledge(1)>. unknowingly, models were evaluated on their ability to de-
3.2.10 variability, n—refers to differences attributable to scribe something which they were never intended to charac-
true heterogeneity or diversity in atmospheric processes thaerize. This guide is attempting to heighten awareness, and
result in part from natural random processes. Variabilitythereby, to reduce the number of “unknowing” comparisons. A
usually is not reducible by further increases in knowledge, bugoal of this guide is to stimulate development and testing of

it can in principle be better characteriz€b). evaluation procedures that accommodate the effects of natural
' variability. A technique is illustrated to provide information
4. Summary of Guide from which subsequent evaluation and standardization can be

4.1 Statistical evaluation of dispersion model performancelerived.
with field data is viewed as part of a larger process thag Model Evaluation
collectively is called model evaluation. Section 6 discusses the"
components of model evaluation. 6.1 Background—Air quallty simulation models have been

4.2 To statistically assess model performance, one mustsed for many decades to characterize the transport and
define an overall evaluation goal or purpose. This will suggesglispersion of material in the atmosphég4). Early evalua-
features (evaluation objectives) within the observed and modions of model performance usually relied on linear least-
eled concentration patterns to be compared, for exampléquares analyses of observed versus modeled values, using
maximum surface concentrations, lateral extent of a dispersingjaditional scatter plots of the valug$-7). During the 1980s,
plume. The selection and definition of evaluation objectivesittempts have been made to encourage the standardization of
typically are tailored to the model's capabilities and intendednethods used to judge air quality model performa(&d1)
uses. The very nature of the problem of characterizing aifurther development of these proposed statistical evaluation
quality and the way models are applied make one single oprocedures was needed, as it was found that the rote applica-
absolute evaluation objective impossible to define that idion of statistical metrics, such as those listed(8), was
suitable for all purposes. The definition of the evaluationincapable of discerning differences in model performai@,
objectives will be restricted by the limited range conditionsWhereas if the evaluation results were sorted by stability and
experienced in the available comparison data suitable for usélistance downwind, then differences in modeling skill could be
For each evaluation objective, a procedure will need to béliscerned13). It was becoming increasingly evident that the
defined that allows definition of the evaluation objective frommodels were characterizing only a small portion of the ob-

the available observations of concentration values. served variations in the concentration valyég). To better
deduce the statistical significance of differences seen in model

performance in the face of large unaccounted for uncertainties

3 The boldface numbers in parentheses refer to the list of references at the end @Ind variations,_ inveStigatorS began to explore the use of
this standard. bootstrap techniqugd5). By the late 1980s, most of the model
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performance evaluations involved the use of bootstrap techalgorithms. And as models become more complex, discerning
nigues in the comparison of maximum values of modeled anthe sensitivity of the modeling results to input parameter
observed cumulative frequency distributions of the concentravariations becomes less clear; hence, two important tasks that
tions valueg16). Even though the procedures and metrics to besupport model evaluation efforts are verification of software
employed in describing the performance of air quality simula-and sensitivity and Monte Carlo analyses.

tion models are still evolvingl7-19) there has been a general 5.1 Verification of Software-Often a set of modeling
acceptance that defining performance of air quality modelgigorithms will require numerical solution. An important task
needs to address the large uncertainties inherent in attemptig@pportive to a model evaluation is a review in which the
to characterize atmospheric fate, transport and dispersiomathematics described in the technical description of the
processes. There also has been a consensus reached onfigjel are compared with the numerical coding, to insure that
philosophical reasons that models of earth science processgfe code faithfully implements the physics and mathematics.
can never be validated, in the sense of claiming that a model is g 5 o Sensitivity and Monte Carlo AnalysesSensitivity
truthfully representing natural processes. No general empirical, 4 \onte Carlo analyses provide insight into the response of
proposition about the natural world can be certain, since therg el to input variation. An example of this technique is to
will always remain the prospect that future observations MaYystematically vary one or more of the model inputs to
call the theory in questio(20). It is seen that numerical models jatermine the effect on the modeling resyR®). Each input

of air pollution are a form of a highly complex scientific ghqyiq be varied over a reasonable range likely to be encoun-
hypothesis conc.ernlng.natural processes, that can be_conflrmgéjred. The traditional sensitivity studiéz2) were developed to
through comparison with observations, but never validated. petter understand the performance of plume dispersion models
6.2 Components of Model EvaluatierA model evaluation  simulating the transport and dispersion of inert pollutants. For
includes science peer reviews and statistical evaluations WitBharacterization of the effects of input uncertainties on model-
field data. The completion of each of these componentshg results, Monte Carlo studies with simple random sampling
assumes specific model goals and evaluation objectives (s@ge recommended?23), especially for models simulating
Section 10) have been defined. chemically reactive species where there are strong nonlinear
6.3 Science Peer ReviewsGiven the complexity of char- couplings between the model input and outf24). Results
acterizing atmospheric processes, and the inevitable necessitpm sensitivity and Monte Carlo analyses provide useful
of limiting model algorithms to a resolvable set, one compo-guidance on which inputs should be most carefully prescribed
nent of a model evaluation is to review the model's science thecause they account for the greatest sensitivity in the model-
confirm that the construct is reasonable and defensible for thiag output. These analyses also provide a view of what to
defined evaluation objectives. A key part of the scientific peeexpect for model output in conditions for which data are not
review will include the review of residual plots where modeledavailable.
and observed evaluation objectives are compared over a range
of model inputs, for example, maximum concentrations as &. A Framework for Model Evaluations
function of estimated plume rise or as a function of distance

downwind. 7.1 This section introduces a philosophical model for ex-

. , , . L plaining how and why observations of physical processes and
6.4 Statistical Evaluations with Field DataThe objective e simulations of physical processes differ. It is argued that
comparison of modeled concentrations with observed field datgy,qerations are individual realizations, which in principle can
provides a means for assessing model performance. Due to tB% envisioned as belonging to some ensemble. Most of the
limited supply of evaluation data sets, there are severe practic|,;rent models attempt to characterize the average concentra-
limits in assessing model performance. For this reason, thﬁon for each ensemble, but there are under development

conclusions reached in the science peer reviews (see 6.3) ajf,ye|s that attempt to characterize the distribution of concen-
the supportive analyses (see 6.5) have particular relevance {fio yajues within an ensemble. Having this framework for

dec:dmg whit_her.amodel cdan be app:jhed for thg d.eﬂ?ed mod_ escribing how and why observations differ from model
evaluation objectives. In order to conduct a statistical comparigjy, jations has important ramifications in how one assesses

son, one will have to define one or more evaluation objectivesy jescrines a model's ability to reproduce what is seen by
for which objective comparisons are desired (Section 10). A ay of observations. This framework provides a rigorous basis

discussed in 8.4.4, the process of summarizing the overay "yeqigning the statistical comparison of modeling results
performance of a model over the range of conditions experiy i observations

enced within a field experiment typically involves determining u o

two points for each of the model evaluation objectives: which 7'(216;?|§ (C)?Trfgpsttcc))::hgzttittj:raclo\r/\iga?rg%nagle({:joxlgglﬁﬁs ﬁ‘rr]grtn
of the models being assessed has on average the smallé ¢ ; ; ; : ung
ispersion are difficult to predict. In this context, the difference

combined bias and scatter in comparisons with observations, ;
etween the ensemble average and any one observed realiza-

and whether the differences seen in the comparisons with thtlon experimental observation) is ascribed to natural variabil-
other models statistically are significant in light of the uncer-. (exp o > ) ]
ity, whose variationg,*, can be expressed as:

tainties in the observations.

6.5 Other Tasks Supportive to Model EvaluatieAs atmo- of = (C, —Cp)? @
spheric dispersion models become more sophisticated, it is not )
easy to detect coding errors in the implementation of the modewhere'
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C, = the observed concentration (or evaluation objective,error in each group. Grouping data together for analysis
see 10.3) seen within a realization; the overbarsrequires large data sets, of which there are few.
represent averages over all realizations within a given 7.3.5 The observations and the modeling results come from
ensemble, so thaC, is the estimated ensemble different statistical populations, whose means are, for an
average. The ¢” subscript indicates an observed unbiased model, the same. The variance seen in the observa-
value. tions results from differences in realizations of averages, that
7.2.1 The ensemble in Eq 1 refers to the ideal infiniteWhich the model is attempting to characterize, plus an addi-
population of all possible realizations meeting the (fixed)tional variance caused by stochastic variations between indi-
characteristics associated with an ensemble. In practice, onédual realizations, which is not accounted for in the modeling.
will have only a small sample from this ensemble. 7.3.6 As the averaging time increases in the concentration
7.2.2 Measurement uncertainty in concentration values iiyalues and corresponding evaluation objectives, one might
most tracer experiments may be a small fraction of theeXPect the respective variances in the observations and the
measurement threshold, and when this is true its contribution tB10deling results would increasingly reflect variations in en-
o, can usually be deemed negligible; however, as discussed f#fmble averages. As averaging time increases, one might
9.2 and 9.4, expert judgment is needed as the reliability an§XPect the variance in the concentration values and correspond-
usefulness of field data will vary depending on the intendedNd evaluation objectives to decrease; however, as averaging
uses being made of the data. time increases, the magnitude of the concentration values also
7.3 Defining the characteristics of the ensemble in Eq Hecreases. As averaging time increases, it is possible that the

using the model’s input values, one can view the observed modeling uncertainties may yet be large Wher_w compared to the
concentrations (or evaluation objective) as: average modeled concentration values, and likewise, the unex-

_ plained variations in the observations yet may be large when
Co = ColaB) = Coler) + G(AC) + c(at,B) @ compared to the average observed concentration values.
where 7.4 1t is recommended that one goal of a model evaluation
B are the variables needed to describe the unresolved transpafiould be to assess the model’s skill in predicting what it was
and dispersion processes, the overbar represents an averagended to characterize, namély(a) , which can be viewed
over all possible values @ for the specified set of model input as the systematic (deterministic) variation of the observations
parametersx; ¢ (Ac) represents the effects of measurementfrom one regime to the next. In such comparisons, there is a
uncertainty, anat («,B) represents ignorance ph(unresolved basis for believing that a well-formulated model would have
deterministic processes and stochastic fluctuati¢hé)1) zero bias for all regimes. The model with the smallest
7.3.1 SinceC,(a) is an average over ap, it is only a  deviations on average from the regime averages, would be the
function of «, and in this context,C,(a) represents the best performing model. One always has the privilege to test the
ensemble average that the model ideally is attempting tability of a model to simulate something it was not intended to

characterize. provide, such as the ability of a deterministic model to provide
7.3.2 The modeled concentratior®,, can be envisioned an accurate characterization of extreme maximum values, but
as: then one must realize that a well-formulated model may appear
C., = Cy(a) + d(Aa) + f(@) @) to do poorly. If one selects as the best performing model, the

model having the least bias and scatter, when compared with

where: observed maxima, this may favor selection of models that
d (Ac) represents the effects of uncertainty in specifying thesystematically overestimate the ensemble average by a com-
model inputs, and («) represents the effects of errors in the pensating bias to underestimate the lateral dispersion. Such a
model formulations. Thert" subscript indicates a modeled model may provide good comparisons with short-term ob-
value. served maxima, but it likely will not perform well for estimat-

7.3.3 A method for performing an evaluation of modeling ing maximum impacts for longer averaging times. By assessing
skill is to separately average the observations and modelingerformance of a model to simulate something it was not
results over a series of non-overlapping limited-ranges.,of intended to provide, there is a risk of selecting poorly-formed
which are called “regimes.” Averaging the observations promodels that may by happenstance perform well on the few
vides an empirical estimate of what most of the current modelgxperiments available for testing. These are judgement deci-
are attempting to simulat€,(c). A comparison of the respec-  sjons that model users will decide based on the anticipated uses
tive observed and modeled averages over a seriesgobups  and needs of the moment of the modeling results. This guide
provides an empirical estimate of the combined deterministifas served its purpose, if users better realize the ramifications
error associated with inpUt Uncertainty and formulation errorsthat arise in testing a model’'s performance to simulate some-

7.3.4 This process is not without problems. The variance iRhing that it was not intended to characterize.
observed concentration values due to natural variability is of o ) _
order of the magnitude of the regime averags 25) hence 8. Statistical Comparison Metrics and Methods
small sample sizes in the groups will lead to large uncertainties 8.1 The preceeding section described a philosophical frame-
in the estimates of the ensemble averages. The variance work for understanding why observations differ with model
modeled concentration values due to input uncertainty can b&mulation results. This section provides definitions of the
quite large(23,24) hence small sample sizes in the groups willcomparison metrics methods most often employed in current
lead to large uncertainties in the estimates of the deterministiair quality model evaluations. This discussion is not meant to
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be exhaustive. The list of possible metrics is extené8)ebut >(P, —P)(©O, = 0)

it has been illustrated that a few well-chosen simple-to- r= [S(P, —P7 -3 (O, —OF (13)
understand metrics can provide adequate characterization of a
model’s performancél4). The key is not in how many metrics
are used, but is in the statistical design used when the metri

are applied13) employed. The focus in such comparisons usually is on

8.2 Paired Statistical Comparison Metriesin the follow- whether the maximum observed and modeled concentration
ing equationsQ; is used to represent the observed evaluation

objective, andP; is used to represent the corresponding\égm?asti‘g;e,,S;r;'"a;’vgrja?igi %a;)neiltjisztlmz fga:rfhgewecidreizgd
model’s estimate of the evaluation objective, where the evalu: oo y € | 0D : P

. o : . : numerically. As discussed in 7.3.7, the direct comparison of
ation objective, as explained in 10.3, is some feature that can

be defined through the analysis of the concentration field. Ir|]nd|V|duaI observed realizations with modeled ensemble aver-

the equations, the subscrigt fefers to paired values and the a?tis dli?f;?:nfzrgﬁracgzogf (\)/fa:;l;?]ctff?]fnnct:tﬁ;uesrtlecZL:?S#é?:r?gﬁ-
“overbar” indicates an average. ' '

. - . tal philosophical problems with such comparisons. As men-
arg’jz'l Average bias), and standard deviation of the bias, tioned in 7.4, such comparisons are going to be made, as this
' may be how the modeling results will be used. At best, one can
d=d (4)  hope that such comparisons are made by individuals that are
cognizant of the philosophical problems involved.
o2 = (d —d)y? (5) 8.3.1 The quantile-quantile plot is constructed by plotting
the ranked concentration values against one another, for
where: example, highest concentration observed versus the highest
d = (R-0). concentration modeled, etc. If the observed and modeled
8.2.2 Fractional bias, FB, and standard deviation of theoncentration frequency distributions are similar, then the
fractional biasogg, are: plotted values will lie along the 1:1 line on the plot. By visual
FB = FB, (6) inspection, one can easily see if the respective distributions are
similar and whether the observed and modeled concentration
maximum values are similar.
whereFB — 2(P -0) 8.3.2 Cumulative frequency distribution plots are con-
PP+ 0O structed by plotting the ranked concentration values (highest to
8.2.3 Absolute fractional biagyFB, and standard deviation lowest) against the plotting position frequentytypically in

8.3 Unpaired Statistical Comparison Metrieslf the ob-
rved and modeled values are sorted from highest to lowest,
ere are several statistical comparisons that are commonly

og = (FB; —FB)’ @)

of the absolute fractional bias,gg, are: percent), where is the rank (1=highest)\ is the number of
AFB = AFB, @  Vvalues and fis defined 4&6):
f =100 %(p — 0.4/N, for p<N/2 (14)
ors = (AFB —AFB)’ ©)
2P — 0| f =100 % — 100 %N —p + 0.6)/N, for p>N/2 (15)
| I

whereAFB, = P T Oy As with the quantile-quantile plot, a visual inspection of the

8.2.4 As a measure of gross error resulting from both biagespective cumulative frequency distribution plots (observed
and scatter, the normalized mean squared error, NMSE, often &1d modeled), usually is sufficient to suggest whether the two
used (the normalization by O assures that NMSE treat distributions are similar, and whether there is a bias in the
equally bias to over-predict or under-predict): model to over- or under-estimate the maximum concentration
— values observed.

F:-9) (10) 8.3.3 The Robust Highest Concentration (RHC) often is
PO used where comparisons are being made of the maximum
8.2.5 For a scatter plot, where the predictions are plottedoncentration values and is envisioned as a more robust test

along the horizontal x-axis and the observations are plottedtatistic than direct comparison of maximum values. The RHC

along the vertical y-axis, the linear regression (method of leags based on an exponential fit to the highest R-1 values of the
squares) slope, m, and intercept, b, between the predicted andmulative frequency distribution, where R typically is set to

NMSE=

observed values are: be 26 for frequency distributions involving a year's worth of
NXPO - (ZP)(Z0) values (aver:?\ging times of 24 h or legd6). The RHC is
m= NSPZ - (3P (11)  computed as:
3R-1
RHC=CR) + 0 * |n< 5 > (16)
b - (ZOIEP) -(EPO)(EP) 12)
NXP? — (> P)? where:
8.2.6 As a measure of the linear correlation between theg(R) _ f‘h‘f{;’i‘@gr%fet;ﬁllu'grge“ values, and
predicted and observed values, the Pearson correlation coeffi- '
cient often is used: Note 1—The value ofR may be set to a lower value when there are
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fewer values in the distribution to work with, sée6). The RHC of the ~ A*P= NMSEl*b - NMSEZ*b then can be computed. Once &l
observed and modeled cumulative frequency distributions are ofte@amp|es have been processed, compute from the Bataifies
compared using a FB metric, and may or may not involve stratification ofof A* = (A*l A*2 A% B) the average and standard deviation
the values by meteorological condition prior to computation of the RHCK ando . The null hypothesis is thatis greater than zero with

values. . .
a stated level of confidence,, and thet-value for use in a
8.4 Bootstrap ResamplirgBootstrap sampling can be used Stydent'st test is:

to generate estimates of the sampling error in the statistical _
metric computed15,16,27) The distribution of some statisti- t=— 17)
cal metrics, for example, NMSE and RHC, are not necessarily T4
easily transformed to a normal distribution, which is desirable For illustration purposes, assume the level of confidence is
when performing statistical tests to see if there are statisticallp0 % ( = 0.1). Then, for large values &, if the t-value from
significant differences in values computed, for example, in thé=q 17 is larger than Studentts, equal to 1.645, it can be
comparison of RHC values computed from the 8760 values ofoncluded with 90 % confidence thais not equal to zero, and
1-h observed and modeled concentration values for a year. hence, there is a significant difference in the NMSE values for
8.4.1 Following the description provided 1§g7), suppose the two models being tested.
one is analyzing a data setx,,..X,, Which for convenience is i . i i o )
denoted by the vectox=(x,X,,..X). A bootstrap sample 9. Considerations in Performing Statistical Evaluations
X*=(X,*,%%,...X,¥) is obtained by randomly sampling times, 9.1 Evaluation of the performance of a model mostly is
with replacement, from the original data poixts(X;,Xy,..X,)- constrained by the amount and quality of observational data
For instance, with n=7 one might obtain available for comparison with modeling results. The simulation
X*=(Xg,X7,X5,%4,X7,%3,X1). From each bootstrap sample one canmodels are capable of providing estimates of a larger set of
compute some statistics (say the median, average, RHC, etccpnditions than for which there is observational data. Further-
By creating a number of bootstrap samplds, one can more, most models do not provide estimates of directly
compute the means , and standard deviationy,, of the  measurable quantities. For instance, even if a model provides
statistic of interest. For estimation of standard errdBs, an estimate of the concentration at a specific location, it is most
typically is on the order of 50 to 500. likely an estimate of an ensemble average result which has an
8.4.2 The bootstrap resampling procedure often can benplied averaging time, and for grid models represents an
improved by blocking the data into two or more blocks or setsaverage over some volume of air, for example, grid average;
with each block containing data having similar characteristicshence, in establishing what abilities of the model are to be
This prevents the possibility of creating an unrealistic bootstrapested, one must first consider whether there is sufficient
sample where all the members are the same vdlGe observational data available that can provide, either directly or
8.4.3 When performing model performance evaluations, fothrough analysis, observations of what is being modeled.
each hour there is not only the observed concentration values, 9.2 Understanding Observed Concentrations
but also the modeling results from all the models being tested. 9.2.1 It is not necessary for a user of concentration obser-
In such cases, the individual members, in the vector vations to know or understand all details of how the observa-
X=(X1,%,..X,) are in themselves vectors, composed of thetions were made, but some fundamental understanding of the
observed value and its associated modeling results (from adampler limitations (operational range), background concentra-
models, if there are more than one); thus the selection of theon value(s), and stochastic nature of the atmosphere is
observed concentratiog also includes each model’s estimate necessary for developing effective evaluation procedures.
for this case. This is called “concurrent sampling.” The purpose 9.2.2 All samplers have a detection threshold below which
of concurrent sampling is to preserve correlations inherent imbserved values either are not provided, or are considered
the data(16). These temporal and spatial correlations affect thesuspect. It is possible that there is a natural background of the
statistical properties of the data samples. One of the considetracer, which either has been subtracted from the observations,
ations in devising a bootstrap sampling procedure is to address needs to be considered in using the observations. Data
how best to preserve inherent correlations that might existollected under a quality assurance program following consen-
within the data. sus standards are more credible in most settings than data
8.4.4 For assessing differences in model performance, onghose quality cannot be objectively documented. Some sam-
often wishes to test whether the differences seen in a perfoplers have a saturation point which limits the maximum value
mance metric computed between Model No. 1 and the obsethat can be observed. The user of concentration observations
vations (say the NMSH, is significantly different when should address these, as needed, in designing the evaluation
compared to that computed for another model (say Model Noprocedures
2, NMSE,) using the same observations. For testing whether 9.2.3 Atmospheric transport and dispersion processes in-
the difference between statistical metrics is significant, thelude stochastic components. The transport downwind follows
following procedure is recommended. Let each bootstra@a serpentine path, being influenced by both random and
sample be denoted*®, where * indicates this is a bootstrap periodic wind oscillations, composed of both large and small
sample (8.4.1) ant) indicates this is sample b of a series of scale eddies in the wind field. Fig. 1 illustrates the observed
bootstrap samples (where the total number of bootstraponcentrations seen along a sampling arc at 50-m downwind
samples iB). From each bootstrap sampie?, one computes and centered on a near-surface point-source release of sulfur-
the respective values for NMS$Eand NMSEP. The difference  dioxide during Project Prairie Gra¢28). Fig. 1 is a summary
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ul

Project Pralrle Grass O AlEsperiments whether the model provides volume average concentration
6 — meter downwind arc results Experiment 31 ) h h h d | d
: 70 Experiments G estimates, or whether the model provides average concentra-
o© 5 tion estimates for specific positions above the ground. The user
[=] =)

must know whether the characterizations of transport, disper-

sion, formation and removal processes are expressed using
equations that provide ensemble average estimates of concen-
tration values, or whether the equations and relationships used
provide stochastic estimates of concentration values. Answers
to these and like questions are necessary when attempting to
define the evaluation objectives (10.3).

9.3.2 A mass balance model tracks material entering and
leaving a particular air volume. Within this conceptual frame-
work, concentrations are increased by emissions that occur
within the defined volume and by transport from other adjacent
volumes. Similarly, concentrations are decreased by transport
exiting the volume, either by removal by chemical/physical
sinks within the volume, for example, wet and dry deposition,
and for reactive species, or by conversion to other forms. These
relationships can be specified through a differential equation

FIG. 1 lllustration of Effects of Natural Variability on Crosswind quantlfymg factors related to material gain or IQBQ), Models

Profiles of a Plume Dispersing Downwind (Grouped in a Relative of this type typically provide ?nsemb{e Volume—av_erage con-
Dispersion Context) centration values as a function of time. One will have to

consult the model documentation in order to know whether the
oncentration values reported are averaged over some period of

receptor positionsy, relative to the observed center of mass |f|~ﬂ¢, such 'a?j 1-h, orr] are thehvolu?e—faver?]gﬁ valul?s.at tlhg end
along the arc have been divided by, which is the second- of time periods, such as att € endof each hour of simu ation.
moment of the concentration values seen along each arc, that9-3-3 Some models are entirely empirical. A common ex-
is, the lateral dispersion which is a measure of the lateral exter@MPle (30) involves analysis and characterization of the
of the plume. The observed concentration values have beéfPncentration dlStflbuthﬂS_ using measurements under d|ffc_arent
divided by C, ., = CY/(O_y /27), whereCY is the crosswind conditions across a variety of collec_:tlon sites. Empirical
integrated concentration along the arc. The crosswind intgNCdels are strictly-speaking only applicable to the range of
grated concentration is a measure of the vertical dilution thén€asurement conditions upon which they were developed.
plume has experienced in traveling to this downwind position. 9.3.4 Most atmospheric transport and dispersion models
To assume that the crosswind concentration distribution folinvolve the combination of theoretical and empirical param-
lows a Gaussian curve, which is implicit in the relationshipeterizations of the physical processgl), therefore, even
used to comput€,,.,, is seen to be a reasonable approximationthough theoretical models may be suitable to a wide range of
when all the experimental results are combined. As shown bgpplications in principle, they are limited to the physical
the results for Experiment 31, a Gaussian prof"e may not app|9rOCeSSGS characterized, and to the inherent limitations of
that well for any one realization, where random effects oc-empirically derived relationships embedded within them.
curred, even though every attempt was made to collect data 9.3.5 Generally speaking, as model complexity grows in
under nearly ideal circumstances. Under less ideal conditionserms of temporal and spatial detail, the task of supplying
as with emissions from a large industrial power plant stack ofippropriate inputs becomes more demanding. It is not a given
order 75 m in height and a buoyant plume rise of order 100 nthat increasing the complexity in the treatment of the transport
above the stack, it is easy to understand that the observexhd fate of dispersing material will provide less uncertain
lateral profile for individual experimental results might well predictions. As the number of model input parameters in-
vary from the ideal Gaussian shape. It must be recognised thateases, more sources are provided for development of model
features like double peaks, saw-tooth patterns and other irreguncertainty,d (A«) in Eq 3. Understanding the sensitivity of
lar behavior are often observed for individual realizations. the modeling results to model input uncertainty should affect
9.3 Understanding the Models to be Evaluated the definition of evaluation objectives and associated proce-
9.3.1 As in other branches of meteorology, a complete set afures. For instance, specifying the transport direction of a
equations for the characterization of the transport and fate aispersing plume is highly uncertain. It has been estimated that
material dispersing through the atmosphere is so complex th#te uncertainty in characterizing the plume transport is on the
no unique analytical solution is known. Approximate analyticalorder of 25 % of the plume width or mof&7). If one attempts
principles, such as mass balance, are frequently combined witb define the relative skill of several models with the modeling
other concepts to allow study of a particular situati@®). results and observations paired in time and space, the uncer-
Before evaluating a model, the user must have a sufficientainties in positioning a plume relative to the receptor positions
understanding of the basis for the model and its operation twill cause there to be no correlation between the model results
know what it was intended to characterize. The user must knownd observations, when in fact some of the models may be

C/Cmax

over all 70 experiments. For each experiment the crosswin
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performing well, once uncertainties resulting from plume 10.1.1 When the intent is to test a model on its ability to
transport are mitigate(il3,17) perform as intended, the evaluation goal for each evaluation
9.4 Choosing Data Sets for Model Evaluation objective can be to determine which of several models has the
9.4.1 In principle, data used for the evaluation processowest combination of bias and scatter when modeling results
should be independent of the data used to develop the modelre compared with observed values of evaluation objectives
If independent data cannot be found, there are two choiceslefined within the observed and modelggla) patterns. For
Either use all available data from a variety of experiments andhis assessment, this guide recommends using at least the
sites to broadly challenge the models to be evaluated, or colle®IMSE (other comparison metrics may also provide useful
new data to support the evaluation process. Realistically, thiasights). Define the model having the lowest value for the
latter approach is only feasible in rare circumstances, given thREMSE as the base-model. Then to assess the relative skill of
cost to conduct full-scale comprehensive field studies othe other models, the null hypotheses would be that the NMSE
atmospheric dispersion. values computed for the other models significantly is different
9.4.2 The following series of steps should be used invhen compared to that computed for the base-model (see
choosing data sets for model evaluation: select evaluation field.4.4).
data sets appropriate for the applications for which the model 10 1.2 Given that verification of the truth of any model is an
is to be evaluated; note the model input values that requirgnnossible task, this guide recommends viewing model perfor-
estimation for the selected data sets; determine the requirgfance in relative terms. Testing one model using results from
levels of temporal detail, for example, minute-by-minute orgne field experiment provides little insight into its perfor-
hour-by-hour, and spatial detail, for example, vertical ormance. This guide anticipates that models are going to be used
horizontal variation in the meteorological conditions, for the gy sjtations for which there is no evaluation data; hence, it is
models to be evaluated, as well as the existence and variationgyays pest to test several models in their ability to performing
of other sources of the same material within the modelingerain desired tasks best over a variety of circumstances.
domain; ensure that the samplers are sufficiently close t0 onghen  the task becomes to eliminate those models whose
another and in sufficient numbers for definition of the evaluaerformance is significantly different from the apparent best
tion objectives; and, find or collect appropriate data forperforming model, given the unexplained variations seen
estimation of the model inputs and for comparison with modelyjithin the observations. As new field data becomes available
outputs. o _ _ , the apparent best performing model may change, as the models
9.4.3 In principle, the information required for the evalua- iy pe tested for new conditions and in new circumstances.
tion_ process includes not only measured atmos_pheric CONCeRYis argues for using a variety of field data sets, to provide
trations but also measurements of all model inputs. Mode},qhe for development of robust conclusions as to which of
inputs typically include: emission release characteristicSeyeral models can be deemed to be performing best.

(physical stack he|ghp stac.k Qx't diameter, poIIuta_mt e.x't. 10.2 Establishing Regimes (Stratificatienr)As mentioned
temperature and velocity, emission rate), mass and size distri-

. . A X ; in 7.3.3, this guide recommends sorting the available concen-
bution of particulate emissions, upwind and downwind fetch, _.. ; : : -

g tration data into regimes, or groups of data having similar

characteristics, for example, land-cover, surface roughness

length, daytime and nighttime mixing heights, and Surface_model inputa, prior to performing any statistical comparisons.

layer stability. In practice, since suitable data for all theIf one chooses to stratify the evaluation data into regimes, this

. . ; . may affect the evaluation objectives, their definition, and the
required model inputs are rarely, if ever, available, one resorts . o .
rocedures used to compute their values, hence “regimes” will

to one or more of the following alternatives: compress the leve . ; . : o
: . R e discussed now, before discussing evaluation objectives and
of temporal and spatial detail for model application to that for .
evaluation procedures.

which suitable data can be obtained; provide best estimates for . ) ) .
model inputs, recognizing the limitations imposed by this 10.2.1 By stratifying the data into regimes, one mitigates the

particular approach; or, collect the additional data required t&0SSiPility for offsetting biases in the model's performance to
enable proper estimation of inputs. A number of assumption§OMPensate. By stratifying the data into regimes and analyzing
are usually made when modeling even the simplest of situs@!! the data within a group together, comparisons can be made
tions. These assumptions, and their potential influence on tHf the ability of a deterministic model to replicate without bias

modeling results, should be identified in the evaluation procesdN® régime’s characteristics, for example, average” centerline”
concentration, average lateral extent, average time a puff takes

10. Statistical Procedures and Data Analysis to pass a particular position, average horizontal extent. If a
10.1 Establishing Evaluation GoalsAssuming suitable stochastic model were being evaluated, the evaluation objec-
observational data are available, the evaluation goals may be tiyes might be the average variance in the “centerline” concen-
assess the performance of the model on its ability to charadtation values, or the average variance in the lateral extent.
terize what it was intended to characterize or on its ability to 10.2.2 The goal in grouping data together is to use such
characterize something different than it was intended to chastrata as needed to capture the essence of the physics being
acterize. There are consequences in choosing the latter, ascisaracterized, such that model performance can be quantified.
mentioned in 7.4. This guide recommends including in theAs discussed ii§32), the aim in stratification is to break up the
evaluation, an assessment of how well the model performsjniverse into classes, or regimes, that are fundamentally
when used to characterize quantities it was intended to chadifferent in respect to the average or level of some quality-
acterize, namelf («) of Eq 3. characteristic. In theory, the stratification is based on properties
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of the various regimes that govern the variance of the estimate 10.3 Establishing and Defining Evaluation Objectivein

of the mean or the total variance of the unive®2). A  order to perform statistical comparisons, this guide recom-
consideration in defining the strata is that there should be mends defining those evaluation objectives (features or char-
reasonable number of realizations within each stratum, of ordeacteristics) within the pattern of observed and modeled con-
five or more(33). The ability to describe model performance ascentration values that are of interest to compare. As yet, no one
conditions change will argue for many regimes, while thefeature or characteristic has been found that can be defined
limits of data available for comparison will limit the number of within a concentration pattern that will fully test a model’s
regimes possible. performance. For instance, the maximum surface concentration

10.2.3 Specific criteria, as to numbers of cases needed fj2y appear unbiased through a compensation of errors in
each regime, or on desired tolerances on how much the modgptimating the lateral extent of the dispersing material and in
input valuesg, can vary for data being grouped together Car]_estlr_natlng thg vertlt_:al extent of the_d|spersmg materla!. Add-
not be provided at this time. What can be reported is that evelfid into consideration that other biases that may exist, for
rather simplistic sorting of the data by stability and distance ha§*@MPle, in treatment of the chemical and removal processes
been shown to reveal differences in model performai&, _dU”ng transport, in estimating bUannt'plum'e rise, in account-
where with identical evaluation data and modeling results nd"9 for vymd dlrectlon. ch.anges with height, in accountlng f.or
differences were detected when the data were not s¢t@&d penetrgtlon of ma_terlaliln_to I{;\yers above the current mixing
In an assessment of modeling multiple point source emission@epth’ n systt_amatlc yarlatlon in all of t_hese biases as a function
in an urban are34), a stratification by Pasquill stability of atmospheric stability), one appreciates that there are many

categories was used, which revealed an informative pattern s that a model can falsely give the appearance of good

model bias as a function of stability. An investigation Wasperformances._ ) ) ) o
undertaken with the example evaluation procedures discussed10-3-1 In principle, modeling dispersion involves character-
in Appendix X1 to this guidé33). It was found that even with izing the size and shape of the volume into which the material

minimal sorting of the data at a specified distance downwind.S 'dispersing, as well as, the distribytion 9f the material within
into as few as two stability classes, namely all cases with i/ this volume. Volumes have three dimensions, so an evaluation

<~ 50 and all cases with Zi/L > —50 (Zi is mixing height and L of model performance will be more complete if it tests the

is Monin-Obukhov length), differences in model performancemodel’s ability to characterize dispersion along more than one

were detectable. These results are admittedly anecdotal, bﬁ{ these dimensions. In practice, there are more observations

. . . o : available on the downwind and crosswind concentration pro-
they provide evidence that overly tight criteria are likely not . ; : ) : "
: . : . files of dispersing material, than are available on vertical
needed in sorting the data into regimes.

) . - ) concentration profiles of dispersing material.

10.2.4 Besude_s atmospherlc_stabm.ty gnd transport distance, 10.3.2 Developing evaluation objectives, involves having a
one could consider other sorting criteria. Time of day maysenqe of what analysis procedures might be employed. This
prove to be useful for evaluating model performance when,,q\es 5 combination of understanding the modeling assump-

land-sea breeze circulations are present. Cloud amount anfls nowledge of possible comparison measures, and knowl-
presence of precipitation may prove to be useful for evaluatln%dge of the success of previous practices. For example, to

model performance when the fate of the dispersing material i§ggegs performance of a model to simulate the pattern of a
strongly affected by the presence of moisture and clougyjispersing puff from a comparison of isolated measurements
processes, such as the fate and transport of sulfafs with the estimated concentration patte36) used a procedure
10.2.5 As discussed ir{32), a common misconception developed for measuring the skill of mesoscale meteorological
regarding stratification is that a particular sample is invalidatednodels to forecast the pressure pattern of a tropical cyclone
because some of the elements were “misclassified.” The reathen only isolated pressure measurements are availabe for
universe is dynamic, and the information that is used forcomparison(37). In particular, the surface area where concen-
classification is always to some extent uncertain. Moreover, ittrations were predicted to be above a certain threshold was
any real stratification a few blunders may occur; they ought nocompared to a surface area deduced from the available moni-
to, but they do. Misclassification is thus expected as a naturdpring data. The lesson here is that evaluation objectives and
course of events. The point to be made is not that misclassifprocedures developed in other earth sciences can often be
cations occur, but to understand that such occurrences wiidapted for evaluating air dispersion models.
increase the sampling error, and thus reduce the overall 10.3.3 This guide recommends that an evaluation should
precision in discerning differences in model performance. Afattempt to include in its comparisons, test of whether the model
very worse, stratification will provide no better discernmentis performing well when used as intended. This would entail
than if the universe was left unstratified. It is sometimesdeveloping evaluation objectives (features or characteristics)
proposed that stratification will always bring gains in precision,from the pattern of observed and modelggle) values for
but this will only occur if the regime averages, or quality- comparison.
characteristic, either modeled or observed, are indeed different. 10.3.4 For each of the example evaluation objectives listed
It is during such circumstances, when modeled or observeih 10.2.1, one will have to provide a definition of what is meant
regime quality-characteristics differ, that the gains of stratifi-by the observed and modeled patteriCgf) . It will be found
cation are greaf32). that these definitions will have to be specified in terms of the
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nature and scope of available field data for analysis, andhoose to resolve this by normalizing the concentration values
whether one has sorted the data into regimes. by dividing by the respective emission rates. To divide by the
: . ) . . emission rate requires either a constant emission rate over the
Nore 2—For instance, if one is testing models on their ability 10 ¢ ire rejease, or the downwind transport is sufficiently obvious
provide regime average centerline concentration values, then criteria fQ .. .
sorting the data into regimes will be needed. If the model input values aré‘at one can compute an emission rate based on travel time that
used for the regime criteria, a resolution will be needed for cases whel§ appropriate for each downwind distance. This discussion is
different models have different input values for the same parameter for theot meant to be exhaustive but to be illustrative. It provides an
same hour. If one is testing models on their ability to reproduce centerlin@lustration of how the thought process might evolve. It is seen
concentration values, a procedure will be needed to determine which ghat in defining terms, other questions arise that when resolved
the available Qbser\_/atlons are representatlve_ of centerline concentratlca/emua”y will develop an analysis that will compute the
values. If one is testing models to produce estimates of the average or the . S .
variance in the centerline concentration values, the averaging time to b%valuatlon objective from the gvallable data. There may ,be no
associated with these estimates will need to be stated. one best answer to the questions that develop, and this may
o ) , cause the evaluation procedures to develop multiple paths to
10.4 Establishing Evaluation ProceduresHaving selected  the same goal. If the same set of models is chosen as the best

evaluation objectives for comparison, the next step would be t%erforming models, regardless of which path is chosen, one can

define an analysis procedure or series of procedures, whigfkely be assured that the conclusions reached are robust.
define how each evaluation objective will be derived from the 1942 Appendix X1 contains an example evaluation proce-

available information. dure for computing the average centerline maximum concen-
10.4.1 Development of evaluation procedures begins byration value from tracer field data. It illustrates an approach
defining the terminology used in the goal statement. Fokhat has been tested and shown to be effective, but has yet to
instance let us suppose that one of the evaluation goals is to tegfach a consensus of acceptar(88,39) In the example
the ability of models to replicate the average centerlineapproach in Appendix X1, an example procedure is outlined
concentration as a function of transport downwind and as gor definition of centerline concentration values that is robust to
function of atmospheric stability. The stated goal involvesthe effects of variations in the atmospheric conditions and
several items which will require definition, namely averagemodeling input g-variations).
centerline concentration, transport downwind, and stability. 10.4.3 Providing technical definitions of terminology is the
The last two may appear innocent, but when viewed in theyasis upon which one defines and develops the evaluation
context of the evaluation data, other terms or problems wilrocedures. In some cases, there is no one correct answer to
surface for resolution. During near-calm wind conditions,some of the questions that one might pose. What is important
when transport may have favored more than one direction oveg to define what is being evaluated and how terms are to be
the sampling period, “downwind” is not well described by onedefined, and it is recommended that these definitions be
direction. If plume models are being tested, one might excludexpressed within the context of the evaluation framework
near-calm conditions, since plume models are not meant t@iscussed in Section 7. This requires one to understand the
provide meaningful results during such conditions. If puff consequences of the evaluation framework, within the context
models or grid models are being tested, one might sort thef the analyses being conducted.
near-calm cases into a special regime for analysis. For surface10.4.4 It is beyond the scope of this guide to address
releases, surface-layer Monin-Obukhov length (L) has beeBomprehensively how evaluation procedures should be de-
found to adequately define stability effects, whereas, fofined. The example procedure in Appendix X1 might be
elevated releases Zi/L, where Zi is the mixing depth, has beegdapted to other evaluation goals, but it is narrowly limited to
found a useful parameter for describing stability effects. Eacly particular class of problems. Dispersion models are used in a
model likely has its own meteorological processor. It is a likelyvariety of ways, and the discussion in Appendix X1 is not
circumstance that different processors will have different valmeant to provide a template from which all evaluation proce-
ues for L and Zi for each of the evaluation cases. There is n@ures can be developed successfully. As experience is gained in
one best way to deal with this problem. One solution might behe development and testing of evaluation procedures, more
to sort the data into regimes using each of the model's inpuépecific guidance may become available.
values, and see if the conclusions reached as to best performing o
model are affected. Given a sampling arc of concentratiodl- Summarizing Model Performance
values, a decision is needed of whether the centerline concen-11.1 There are two methods commonly used for summariz-
tration is the maximum value seen anywhere along the arc, ang model performance. The first involves the comparison of
whether the centerline concentration is that seen near the centgloserved and modeled values (evaluation objectives) as a
of mass of the observed lateral concentration distribution. Ifunction of one or more model input variables and is used to
one chooses the latter concept, then definition is needed of hodletect trends in modeling bias. The second is a summary of one
near one has to be, to be representative of a centerling more comparison metrics over all conditions experienced
concentration value. If one chooses the latter concept, onwithin a particular field experiment and is used to select the set
might decide to select all values within a specific rangeof best performing models for a given application. These
(nearness to the center of mass). In such a case, eithercamparisons can be done with or without stratification of the
definition or a procedure will be needed to define how thisevaluation data into regimes. This guide suggests that perform-
specific range will be determined. If one is grouping dataing these summary comparisons using the modeled and ob-
together for which the emission rates are different, one mighserved regime averages, improves the likelihood of detecting

10
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bias in the models’ ability to perform as intended. As notedin terms of Pasquill stability category and low/high wind speed
below, references to observed and modeled values are referrimtasses), bootstrap resampling was used to develop standard
to the observed and model model evaluation objectives. error estimates on the comparisons, and the comparison metric
11.2 Detecting Trends in Modeling Bias was the RHC (computed from the raw observed cumulative
11.2.1 A plot of the observed and modeled values as #requency distribution). This procedure can be improved if the
function of one of the model input parameters is a direct meangegimes are defined in terms of stability defined by Zi/L and
for detecting model bias. Such comparison have been reconransport distance, and if the comparison metric is the NMSE
mended and employed in a variety of investigati(®sL7, 25)  computed from the modeled and observed regime averages of
In some cases the comparison is the ratio, formed by dividingenterline concentration values. As discussed(®4), Zi/L
the modeled value by the observed value, plotted as a functiofetter captures the boundary-layer stability effects for elevated
of one or more of the model input parameters. releases than Pasquill stability category (which is essentially
11.2.2 If the data have been stratified into regimes, one alsgnother definition of L). Using downwind distance avoids good
can display the standard error estimates on the respectiv@mparisons to result from offsetting model bias in the
modeled and observed regime averages. If the respectivgyaracterizations of the vertical dilution of the material during
averages are encompassed by the error bars, typicathyo  transport downwind. The RHC was a comparison of the

times the standard error estimates, one can assume the diffgfighest concentration values (maxima), which most models do
ences are not significar{88). As described by(15), this @ ot contain the physics to simulate.

seductive inference. A more robust assessment of the signifi-

cance of the differences would be to use the analysis discussedll'?".3 A major "m'ta“o'f‘ with the Appendlx X1 _procedu_re
s that it can only be applied to intensive tracer field studies,

in 8.4.4, but in practice conclusions reached using sucl?,
seductive inferences usually are confirmed when the mor&ylthadense receptor network, wheré;hé)a_ttempted to make
rigorous procedure is employed. use of very sparse receptor networks having one or more years
11.3 Overall Summary of Performance of sampling results. With dense receptor networks, attempts
can be made to compare modeled and observed centerline

11.3.1 The design for statistically summarizing model per- ; .
formance over several regimes can be envisioned as a five Stf\gncentratlon values, but there are only a few experiments that

procedure. In Step 1, form a replicate sample using concurre ve sufficient data to_allow stratification of the data into
sampling of the observed and modeled values for each regimEdimes for analysis. With sparse receptor networks, there are
In Step 2, compute the average of observed and modeldd°re data for analysis, byt there is msufﬁuettt |nf0tmat|on to
values for each regime. In Step 3, compute the NMSE using th@€fine the observed maxima relative to the dispersing plume’s
computed regime averages, and store off the value of theenter of mass; thus, it will not be known whether the observed
NMSE computed for this pass of the bootstrap sampling. Ifnaxima are representative of centerlmg concentration values.
Steps 4 and 5, repeat steps 1 through 3 for all B bootstraffS seen in Fig. 1, observed concentrations near the center of
sampling passes and implement the procedure described fass can easily vary by a factor of two in magnitude. Also seen
8.4.4 to detect which model has the lowest computed NMSEN Fig. 1, observed concentrations away from the center of
value (call this the base model), and which models have NMSEass, easily can be of the same magnitude as the average
values that are significantly different from the base model. centerline concentration value. It is not obvious that the
) ) ) ) ) average of thé\ (say 25) observed maximum hourly concen-
Note 3—As described in Appendix X1 forming the replicate samplesp,ation values (for a particular distance downwind and nar-

involves judgement in order to preserve correlations that might exis v defined stabilit is th bl ¢
within the data, and to insulate the data samples from being undugowy efined stability range) is the ensemble average center-

affected by grouping data together within a regime that invariably ardin€ concentration the model is attempting to model; in fact,
affected by variations in dispersive conditions (variationsaxinmodel ~ one might anticipate that it is likely higher than the ensemble

input parameters). average of the centerline concentration. As discussed in 7.4,
Note 4—When developing pooled (summary) statistics across alltesting a model in this manner may favor as best performing
regimes, steps should be taken to avoid confounding the conclusiorﬁoony_formed models that routinely underestimate the lateral
reached. No realization should appear in more than one regime, and it 5ispersion This in turn, may bias the performance of such
helpful towards avoiding Simpson’s Parad@40) to have a similar T . ’ . .
models in their ability to correctly characterize concentration

number of realizations in each regime. . ; .
Note 5—The NMSE is used in the discussion above, but any of Jpatterns for longer averaging times. Given a well-formulated

number of comparison metrics may usefully be substituted, for examplgnodel ( which was selected u;ing ﬁe_ld d"-‘}ta from an intensive
linear regression slope and intercept results, Pearson correlation coeffietwork of receptors), evaluations using field data from sparse
cient, etc. These paired comparison metrics are difficult to interpret anghetworks are seen as a useful extension to further explore the

have less value when raw observations are compared to modeling resulbterformance of a well-formulated model for other environs and
as then the comparison is between different populations that are oan/or use of the model for other purposes

vaguely correlated. When comparing regime averages, the paired com-

parison metrics are anticipated to have greater usefulness, because the .

averaging process filters out, hopefully most, of the observational and2. Conclusions

modeled fluctuations which are uncorrelated. 12.1 The statistical evaluation of model performance with
11.3.2 The summary procedure described above and usedfield data is a valuable exercise, but will be limited in scope by

Appendix X1 was constructed using that introduced§)as  the availability of suitable data for comparison; thus, the

a template. In(16), the data were sorted into regimes (definedstatistical comparison results are best interpreted within the

11
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context of a peer review of the model algorithms and supportprovide. It would be worthwhile also for such evaluations to
ive analyses (code verification, sensitivity analyses, and Montdiscuss the consequences and possible limitations of such
Carlo analyses). evaluations.

12.2 The development of a design for performing a statis- 12 4 Given that verification of the truth of any model is an
tical evaluation begins with the formation of evaluation goals,impossib|e task’ this guide recommends Viewing a model’s
which will allow construction of null hypotheses, which can be performance in relative terms, in comparison to several avail-
tested. This guide recognizes that one may compose evaluatigile models over a variety of circumstances. As new field data
goals that test the ability of a model to replicate something ifhecomes available the selection of which of several models is
was not designed to characterize, as this may be the real-worfbrforming best may change, as the models may be tested for
include statistical evaluation of the ability of the models toysing a variety of field data sets, to provide hope for develop-
perform as designed. The evaluation goals provide a basis fofent of robust conclusions as to which of several models can
the definition of specific evaluation objectives and associatele deemed to be currently performing best.

procedures for computing the evaluation objectives. This guide 12.5 As experience increases in the use of this guide, it is

recommends that the evaluation objectives and assomater%ped that consensus will be reached in certain evaluation

z\r/(;(fjgt?gﬁsfrg;e‘\j/f;ri”gggcr\i’\gg;r}ntgicggﬂt?ﬂ of the mode oals, evaluation objectives and associated evaluation proce-
' dures, and data sets to be employed. The ultimate goal will be

12.3 There are gvaluatlons n the I|Feratgre that ImpIICItIyto define a standard test method for each evaluation goal.
assume that what is observed is what is being modeled, when

this is not the case. This guide is attempting to heighte

awareness and thereby promote statistical model evaluations g - Keywords

at least document when the models are being tested on their13.1 air quality; model; model performance; qualitative
ability to simulate something they were not intended toevaluation; quantitative evaluation; statistical

APPENDIXES
(Nonmandatory Information)

X1. EXAMPLE PRACTICE FOR STATISTICAL PERFORMANCE EVALUATION OF THE CHARACTERIZATION OF THE
AVERAGE CENTERLINE CONCENTRATION VALUES BY LOCAL-SCALE DISPERSION MODELS FOR DISPERSION FROM
AN ISOLATED POINT SOURCE

X1.1 This appendix provides the logic and analysis steps téered on the pollutant (or tracer) release position. It is assumed
conduct a statistical performance evaluation for local-scal¢hat the downwind transport of the pollutant (or tracer) is fairly
atmospheric dispersion models. The logic is the same, regardteady, and situations having light and variable winds are not
less of whether the evaluation objective is the average of theonsidered in this assessment. These assumptions allow testing
centerline concentration values, or the average variance of thef dispersion models that are typically used in routine model
centerline concentration values, or the average lateral extent assessments. Use of field data with poorly formed sampling
the plume as a function of downwind distance, or any otheilarcs or unsteady transport will degrade the usefulness of these
average feature that can be derived from a collection o&valuation procedures.
observations within a regime. X1.2.3 Definition of Atmospheric StabilitvFor near-

surface releases, the Monin-Obukhov length (L) has been

X1.2 Evaluation GoakTo conduct a statistical perfor- shown to explain well the stability effects to atmospheric
mance evaluation of the ability of several models to simulatedispersion. For elevated releases, the ratio Zi/L, where Zi is the
without bias the near-surface average centerline concentratidacal mixing height, is anticipated to explain the stability
value (1 h or less) for continuous releases from an isolateéffects to atmospheric dispersion.
point source as a function of transport downwind and atmo- X1.2.4 Definition of Regimes-The goal is to detect bias in
spheric stability. the average value of the centerline concentration. This is
interpreted to indicate that the intent is to test the ability of

X1.2.1 Definition of Centerline Concentration Valuedt is dels to simulate without bias th bl terli
assumed that those receptors that are suitably close (to peCdels to simulate without bias the ensemble mean centerline

defined within the associated procedure, see X1.5) to th8oncentration. Pseudo-ensembles (regimes) will be formed by

observed center of mass along each arc, are close enough to ting all 'datg seen along Qach arc into separate stability
true plume centerline position to be representative of whal"oupPs. This will allow comparison of obse_rved and modeled_
would be observed at the plume centerline. group averages at each distance downwind. Each regime is

X1.2.2 Definition of Transport DownwineHlt is assumed Sefmed by distance downwind and a range of stability condi-
: . ions
that field studies have near-surface receptors placed along arcs
(or pseudo-arcs) at prescribed distances downwind and cen-X1.3 Evaluation Procedure for Sorting Data into Regimes
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(Pseudo-Ensembles)Judgement will be involved in sorting made here is that the rate of dispersion for different transport
the data by stability, as it will not always be obvious whetherdirections is not anticipated to be different, all other factors
L or Zi/L is best, and the ranges in stability will vary depending being equal.

on the number of arcs of data available at each downwind X1.4.3 Data Files for Analyses-The first two steps, X1.4.1
distance. As described in 10.2.3, exact criteria on defining thend X1.4.2, can be accomplished and the results stored for use
range of allowable variation in stability are likely not needed,in later analyses. It has been assumed in the discussion that
as past experiences have shown that most any segregation wllows in Appendix X2, that two data files have been
prove helpful. Numerical studig83) indicate characterization constructed. The first file contains a listing of results obtained
of the centerline concentration average is best achieved pirough an analysis of the observed concentration values for

having at least five, preferably seven or more, arcs of dat§ach arc of the field study. Each arc has been analyzed to
within each stability regime for an arc. determine the center of mass, and the receptor positions have

been expressed relative to the position of the arc’s center of

X1.4 Evaluation Procedures for Combining Data Within a Mass, €ither in units of angular degrees or distance. The
Regime for Analysis-There are several practical problems to concentration values are listed and have been divided by the

be solved. A decision is needed of how to group data togethéfacer emission rate. Sufficient information is included in this

having different transport directions and different emission‘clle to a”OW sortlng.the arcs of data into speqﬁed reglmes.The
cond file contains the modeled centerline concentration

rates, but belonging to the same regime. Stochastic variatio -
ging g values for each arc for each experiment. Note, that the

will make uncertain the definition of the mean tranSportmodelin results are not listed at positions where observations
direction, as well as, the centerline position of the dispersingN 9 ; ! P .
ere taken, since there is only one value listed for each

e, o e olong, 3 sl I rowdd o 1 corment o cach ar, il th modsiodcoerine con-
P g step P "B&ntration value divided by the emission rate.

X1.4.1 Rationale for Grouping Experiments with Different
Emission Rates-For dispersion in which the transport down-  X1.5 Evaluation Procedure for Determining Which Recep-
wind does not involve wind direction reversals or near-calmtors Provide Observations of Centerline Concentration
conditions, the observed concentration is directly proportionavValues—If the crosswind dispersion were Gaussian, one would
to the emission rate. In order to jointly analyze experiment£Xpect observed concentration values would be on average, at
within a regime’ or across several regimeS, the observed adgast within 20 % of the centerline maximum concentration
modeled concentration values will be divided by the emissioryalue if /Sy were less than or equal to 0.67, wherés the
rate. For a continuous point source, the normalized concentrglistance from the centerline a&yis the standard deviation of
tion values then have the units of (mass/volume) (time/mass) the crosswind concentration distribution for the regime (col-

(time/volume). For a puff release, the normalized concentratiotfction of experiments). Given the anticipated large fluctua-
values then have the units of (mass/volume) (1/mass) HONs to be seen (substar)ually greater thia?0 %),_areceptor
(L/ivolume). that is near the centerline (center of mass) is assumed to

X1.4.2 Rationale for Definition of Centerline Positien provide a representative sample of a centerline concentration

. . . X ... . value. With this in mind, near centerline concentrations are
The stochastic fluctuations in the concentration values W'th"befined as coming from those receptors for whig/Sj =

thi. ne?réciantr(]erhne portion ﬁf td||spersmg Ipclil'JT('abS thave .?:85.67. There are results that suggest that due to large variations
estimated to have a somewnat log-normal GiStrbution WIth &, e |ateral extent of the individual arcs within a regime, the
standard geometric deviation of order 1.5 t83). Most of the %ﬁlsy = 0.67 criteria may not be sufficiently restrictié1),

tllme, the S"zpe,rs'”g plume eﬁpands'tczjar\llvgr;gle OE the order erefore, a study was conducted to refine the selection criteria
0 to 50° during transport downwind. With such a narrowby further limiting the selection criterié39). The results are

plume, even a 4° error in estimating the transport direction caQnecific to particular tracer field studies. It was found that a
cause very large differences between predicted and observgiier representation of the centerline concentration values can
concentrations paired in time and sp4&8,17) As aresult of  pe gptained by limiting the selection to only the 1 (for sparse
wind shifts and random fluctuations, the crosswind profile Ofsampling along an arc) to 3 (for dense sampling along an arc)
concentrations observed along a sampling arc for individugleceptors that are nearest to the center of mass receptors that
realizations likely WI||. not appear _Gau35|an (sge Fig. 1.). Thesgyjj| satisfy the criteria ofy}/Syl < 0.67. When saving off those
departures from the ideal Gaussian shape will result in uncegpservations selected as being near the centerline position,
tainty in the definition of the centerline position. To avoid the record which receptors are adjacent to one another, and link the

effects of transport uncertainty, and assuming the observeghodeled concentrations with the observations selected.
concentration values have a sampling time of 1-h or less,

concentrations taken from different experiments, but for the X1.6 Evaluation Procedure for Sampling of Observed Cen-
same regime and for the same experimental site, can be jointtgrline Concentration Values During Bootstrap Resampling
analyzed using the center of mass to provide an approximatehe procedure described in X1.5, and discussed in more detail
position of the centerline. By using the center of massjn X2.3, may result in an unequal number of values being
computed for each experiment and arc, as a common referenselected from each realization (sampling arc of data) within a
point, data that actually may have been transported in differentegime. When developing the bootstrap samples, treat each arc
directions can be grouped together. The assumption beings equally likely. This argues for the same number of values to
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be selected from each realization during the bootstrap resamandom one pair of adjacent near-centerline values, see X2.6.3,
pling. There also is every likelihood that concentration valuesvould be selected from all possible pairs of adjacent values.
from adjacent receptors will be somewhat autocorrelatedThe consequence of computing variances using Method 1
Autocorrelation will affect the computed variance. Two meth-versus Method 2 was testéd?2), and it was concluded that

ods could be used in the construction of the bootstrap samplegutocorrelation effects were present, and were sufficient to

Method 1, when an arc is selected for sampling, at random ongarrant consideration; hence, sampling by pairs (Method 2) is
value would be selected from all the near-centerline valuegecommended.

available. Method 2, when an arc is selected for sampling, at

X2. GUIDANCE ON PROGRAMING LOGIC OF EXAMPLE PRACTICE

X2.1 In Section X2.3 a series of steps is outlined. Steps lions from all arcs in this regiméy, equals>y ;S.
and 2, implement the procedures defined in X1.5 for selecting Norte X2.3—In the sampling discussion presented, the method with
concentration values deemed representative of what would txample pairs of values were employed because stdBsuggest that
observed near the centerline position of a plume dispersinﬂﬂere is some positive autocorrelation between adjacent observed near

downwind. Data files as discussed in X1.4 are assumed to ha&gnterline concentration values. When an experiment is selected for
: ) sampling, values are selected not only from the observations, but also

been created for use. Steps 3 through 6, implement th1(?0m all models, as well. Sampling in this fashion, called concurrent

procedures defined i_n X1.6 for §ampling pairs of observationgampling, attempts to address correlation effects that might exist between
in the bootstrap replicate sampling. the modeling results and the experimental conditions present during a

. selected experiment.
X2.2 Begin Loop on B Bootstrap Samplesy$& = 500)—

See X2.6.1. X2.3.3 Step 3-Define number of pairs to sample. Draw
N'/2 pairs of samples, with replacement, whéde= 2*INT
X2.3 Begin Loop on K Regimes (N/2), whereINT represents the truncated integer result of

X2.3.1 Step +-ComputeSy, for this regime. Read in all dividing N by 2.
arcs of observations for this regime, and compute the regime’s X2.3.4 Step 4—Each arc is considered equally likely. Select
lateral dispersionSy, as: one of the arcs at random. It is necessary to sample these same
R arcs in developing the samples of modeled centerline concen-
R A trations for each model, see discussion in X2.6.2. One method
s == (X2.1)  to accomplish this would be to store off a pair of modeled
> >C centerline concentration values for each model, just before or
) ) after the pair of observed values (see Step 5 below) is selected.
wherel, is the number of observed concentrations orrarc X2.3.5 Step 5—-Select a pair. If§ > 1, then there is more
which there areR arcs to be processed, represents the han one observed concentration valy¢ that was deemed to
sampling position along the sampling arc, gpds the distance  eet the criteria for providing concentrations that are repre-
of sampling position from the center of mass (computed usingenative of centerline values. At random select a pair of values
only thel, concentration values for this exper_lment). It hasihat are adjacent to one anotherSlE 1, then there is only one
been assumed that the observed concentration va@ig$, valueC,° to sample and the pair is defined to be this one value,

have been divided by the emission rate appropriate for eackgected twice. For further discussion of sampling of pairs see
experiment. X2.6.3.

Note X2.1—The preceding actions can be completed and the results X2.3.6 Step 6—Repeat Steps 4 and 5 aboM¥2 times.

stored off for the first bootstrap sample. For all succeeding bootstrap ) )
samples, the results obtained and previously stored are used. It is NOTE X2.4—lIn 8.4.2, mention was made that blocking can be used to

anticipated in the following discussion, that a regime contains arcs of dat@void the development of unrealistic bootstrap samples, where all the
that are at the same distance (or nearly so) downwind from the releasevalues are identical. The addition of blocking in Steps 4 and 5 is a possible

. . future enhancement that could be made to this procedure.
X2.3.2 Step 2-ldentify the set of observed centerline

concentrations. Treat each arc separately. Store for later analy-X2.3.7 Step 7—At the completion of Step 6, a bootstrap
sis, theNfilter values ofC,;° that have the smallest values for Sample of observed and modeled centerline concentration
ly,| for which /S| = 0.67, whereNfilter is an integer, likely values for this regime will have been constructed.
in the range from 1 to 3, that will be defined for each field study X2.3.7.1 Compute the averad®,’ of the N’ samples of
using judgment, see analyses discusse(8®). As values are 0bserved concentration values, where b represents the boot-
stored for later use, it is important also to retain the relativestrap sample index and the superscript denotes that the
position of the receptors along the arc, as it will be needed t@verage was derived using observed concentration values.
know which values are adjacent to one another. X2.3.7.2 Loop on all models and compute the aver@ge

Note X2.2—For the purposes of later discussion, detepresent the of the N' samples of modeled concentration values for each

number of values selected from arc r (assumed to be representative of £'H°de'-
observed centerline concentration value). Then the total number of )
observed values selected as being representative of centerline concentra-X2.4 End Loop on Regimes
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X2.4.1 Atthe completion of generating and analyzingkall the next. In a previous study?), it was found that iB was at
regimes, there is available for analy$isvalues ofC,° andK least 500, the criterion was met in all regimes.
values for each model &@,™. There are any number of paired  x2.6.2 Concurrent Sampling-It is assumed that the repli-
statistical analyses that one could insert at this step. Fagate sampling conducted in the “loop on samples” is such that
illustration of the |0g|C and Completlon of the evaluation goalthe exact same sequence of cases will be chosen for every
being discussed, compute the NMSE for each model with thenodel. For instance, if sample one contains five cases, and
K regime averages of observed and modeled centerline cofhose selected are cases numbered 1, 2, 4, 5 and 1. Then, every
centration values. For notation purposes let NWSEepre-  model for sample one will consist of cases numbered 1, 2, 4, 5
sent the normalized mean square error for bootstrap sampleand 1. This preserves any model to model correlations in the
and modeim. differences to be seen between the modeling results and the
) . observations. Ideally, the observations and modeling results
X2.5 End Loop on Bootstrap SamplirgAt the completion  would all be sampled at the same time, but this may not be
of generating and analyzing @lbootstrap samples, there will feasible as it maximizes the computer memory requirements.
be available for analysi8 values of the NMSE for each model. ope may be able to take advantage of the fact that some
) ) ) ~random number generators will generate the same sequence of
X2.6 Notes on Considerations in Performance Evaluationrgndom numbers given the same seed. This allows one to
Procedure sample the observations and the modeling results from each

X2.6.1 Determination of Bootstrap Sample Siz&nce the ~model se_parately, taking_ care to alwa_ys start with the same
data to be used in each regime have been defined, one c&f€d- This may result in a substantial saving of memory
conduct the following numerical experiment to help answer thé€quirements for the storage of data arrays. Another solution
question of how many bootstrap samplBsare neede@42).  Would be_ to list the case numbers selected, when _sampllng the
Run the analysis outlined in Steps 1 through 7, ten times, witlPbservations, to a side file and reuse these results in developing
ten bootstrap samples for each regime. From each run, we hatlee samples for each model.
an estimate for each regime for the standard deviation of the X2.6.3 Determination of a Random Pair of Values
observed concentration values. Using the ten estimates for thlessume that four values from one arc are found to satisfy the
standard deviation of the observed concentration values, fariteria of being sufficiently close to the center of mass that
each regime compute the average of these ten standatidey will be considered as representative of centerline concen-
deviations, Avg(std), and the variance of these ten standaration values. Number these four values as 1, 2, 3, and 4. Value
deviations, Var(std). The ratig/Var(std)/Avg(std) is expected 1 is adjacent to only value 2, whereas, value 2 is adjacent to
to be proportional to 14/B, whereB is the bootstrap sample both value 1 and value 3. There are three pairs possible: (1,2),
size. There will be a different ratio for each regime. One can(2,3), (3,4). Pair (1,2) is considered to be the same as pair (2,1).
solve for the value oB such that the ratig,/Var(std)/Avg(std) In this example, there are three pairs possible, and in the
is less than some desired tolerance, say 0.05, for all regimeseplicate sampling each of the three pairs would be considered
The sample siz8 needed, typically varies from one regime to equally likely.

X3. GUIDANCE ON PROGRAMMING LOGIC FOR DETERMINATION OF BEST PERFORMING MODELS

X3.1 Determine Base Case Model X3.2.1 Loop on allM models, excluding moded.

X3.1.1 The base case model is defined as that model, which X3-2.1.1 Compute from the values of NMSE: and NM-
typically exhibits the smallest deviations (bias plus scatterSE "> the B differencesA,°™ = NMSE>® — NSME™™
from the average of the observed values. Loop on all models X3.2.1.2 Compute the meak’™ and the standard deviation

and compute the average NM3br each modeinfromtheB  ¢,°" from theB values ofA,*".
values of NMSE™ X3.2.1.3 Compute thestatistic for comparison with, ,, as,

Sm _ Asmy _sm
Note X3.1—The procedure for determining the best performing mod-U = Aoy . Cem s
els is outlined in 8.4.4. It is worth mentioning here that although one might X3.2.1.4 Reject any model for whidA™ is greater than or

show that model-to-model differences are statistically significant, suctequal tot, ,. The null Hypothesis will be that the difference,

differences are typically of little practical importance. What is of real NMSE—~ NMSE", is not statistically significant for a stated

concern is whether the model-to-observation differences, from one modgéye| of significancen. For illustration purposes say = 0.1,

comparison metric to the next, are significantly different. then the Student-for use in testing the null Hypothesis
X3.1.2 The model with the lowest value for NMSE is (assume large number of values)is = 1.645.

defined as the base case model. kadenote this model’s X3.2.1.5 End loop on models.

in th Is, that is NMSE
number in the sequence b models, that is S X3.3 The set of best performing models is composed of all

X3.2 Determine Set of Best Performing Models those not rejected (above) plus the base case model.
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