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Waste Management Decision-Making 1

This standard is issued under the fixed designation D 6842; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 Waste management decisions generally involve uncer-
tainty because of the fact that decisions are based on the use of
sample data. When uncertainty can be reduced or controlled, a
better decision can be achieved. One way to reduce or control
uncertainty is through the estimation and control of the
components contributing to the overall uncertainty (or vari-
ance). Control of the sizes of these variance components is an
optimization process. The optimizations results can be used to
either improve an existing sampling and analysis plan (if it
should be found to be inadequate for decision-making pur-
poses) or to optimize a new plan by directing resources to
where the overall variance can be reduced the most.

1.2 Estimation of the variance components from the total
variance starts with the sampling and measurement process.
The process involves two different kinds of uncertainties:
random and systematic. The former is associated with impre-
cision of the data, while the latter is associated with bias of the
data. This guide will discuss only sources of uncertainty of a
random nature.

1.3 There may be many sources of uncertainty in waste
management decisions. However, this guide does not intend to
address the issue of how these sources are identified. It is the
responsibility of the stakeholders and their technical staff to
analyze the sampling and measurement processes in order to
identify the potentially significant sources of uncertainty. After
identifying these sources, this guide will provide guidance on
how to collect and analyze data to obtain an estimate of the
total uncertainty and its components.

2. Terminology

2.1 analysis of variance (ANOVA), n—a statistical method
of decomposing (or breaking down) the total variance and
estimating or testing its contributing component variances for
statistical significance.

2.2 balanced design, n—a statistical study where replication
in each of the levels of ANOVA is identical.

2.3 measurement process, n—the method and procedure of
obtaining and measuring samples or their subsamples to
produce sample data.

2.4 sampling process, n—the method and procedure of
collecting physical samples from a defined population.

2.5 unbalanced design, n—a statistical study where replica-
tion in some or all of the levels of ANOVA is not identical.

3. Significance and Use

3.1 This guide will evaluate sample data that contain a high
level of uncertainty for decision-making purposes and, when it
is feasible, design a statistical study to estimate and reduce the
sources of uncertainty. Oftentimes, historical data may be
available and adequate for this purpose and no new study is
needed.

3.1.1 This approach will help the stakeholders better under-
stand where the greatest sources of uncertainty are in the
sampling and analysis process. Resources can be directed to
where it can most reduce the overall uncertainty.

3.1.2 Sampling and analysis design under this approach can
often be cost-efficient because (a) the reduction in uncertainty
can be done by statistical means alone and (b) the reduction can
be translated into a lower number of analyses.

3.2 This guide is limited to the situation where a decision is
based on the mean of a population. It will only include
discussions of a balanced design for the collection and analysis
of sample data in order to estimate the sources of uncertainty.
References to unbalanced designs are provided where appro-
priate.

4. Uncertainty in Decision-Making

4.1 Decision-Making Based on Data:
4.1.1 When waste management decision-making is based on

data and when the data come from a subset of a population, the
data can be used to calculate quantities such as mean, median,
or percentage for the purpose of estimating the true value of
these quantities in the population. These estimates can be used
to make conclusions or decisions about the population on

1 This guide is under the jurisdiction of ASTM Committee D34 on Waste
Management and is the direct responsibility of Subcommittee D34.01 on Sampling
and Monitoring.
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issues such as: (1) Is the average concentration of a contami-
nant at a certain site higher or lower than a regulatory standard?
(2) Has the cleanup standard been met?

4.1.2 However, these estimates involve uncertainty because
of uncertainties in the sampling and measurement processes.
The total uncertainty associated with an estimate can be
derived from the sample data and it is usually expressed as the
variance or standard deviation of the estimate. The estimate
and its variance can be used to define the level of confidence in
decision-making. For example, they can be used to calculate
the upper and lower confidence limits, where the width of the
confidence limits is a measure of uncertainty in decision-
making.

4.1.3 An example of high data uncertainty and low confi-
dence in decision-making can occur when the sample mean
concentration of a site is substantially below a regulatory limit
while its upper confidence limit is higher than the regulatory
limit. In this case, a reduction in uncertainty will lead to better
decision-making. That is, there is a higher probability that the
correct decision about the true concentration can be reached
and the appropriate action taken.

4.2 Sampling and Measurement Process:
4.2.1 When the confidence level is not at the level desired

by the decision-makers, the data from the sampling and
measurement processes can be analyzed to identify significant
sources of contributors to the total variance. This guide will
permit project managers to focus on the large sources of
uncertainty and allocate resources for their reduction. That, in
turn, will improve the sampling and measurement processes
and achieve a higher level of confidence in project decisions.

4.2.2 This guide is limited to the situation when a decision
needs to be made regarding the mean of a population.

4.2.3 This guide is also limited to the discussions of a
balanced design for the collection and analysis of sample data
in order to estimate the sources of uncertainty. An example of
a balanced design is given in Table 1. In Table 1, the letter “m”
indicates the number of subsamples taken from a field sample
and the letter “k” indicates the number of replicate analyses
performed on each subsample. Note that there is an equal
number of subsamples for each of the field samples and an
equal number of replicate analyses for each of the subsamples
in Table 1. It is this equality in replication at the subsampling
level and at the replicate analysis level that constitutes a
balanced design. When there is inequality at any of the levels,
it is called an unbalanced design. References to unbalanced
designs will be provided where appropriate.

4.2.4 A typical sampling and measurement process goes
through three stages:

4.2.4.1 The collection of field samples,
4.2.4.2 Taking of subsamples from the field samples in the

laboratory, and
4.2.4.3 Duplicate analysis of the subsamples.
4.2.5 The variances associated with each of these stages are

known as the sampling variance, subsampling variance, and
analytical variance, respectively. The sum of these variances
constitutes the total variance in decision-making. The total
variance and its contributing components can be estimated
from the data when the sampling and measurement process is
designed for such purposes. For this guide, the 3-stage sam-
pling and measurement process above will be used as a model
for discussion purposes. When other processes are appropriate,
consult a statistician.

5. Estimation of Total Variance and Its Components

5.1 Study Design and Example Data:
5.1.1 Under any sampling and measurement process, the

total variance and its components can be estimated only when
the data are collected according to a design. In particular, for
the 3-stage process described in 4.2, the variances can be
estimated only when there are multiple field samples, where
multiple subsamples are taken from each of the field samples
and when each of the subsamples is in turn analyzed in
multiple replicates (duplicate, triplicate, etc.). The word “mul-
tiple” here implies two or more, with two being the minimum
requirement. The optimal numbers of field samples, sub-
samples and replicates will depend on the sizes of their
respective variance components and the costs associated with
the collection or analysis regarding these components. When
the costs are negligible, then they will depend solely on the
relative sizes of the variance components alone.

5.1.2 An example of such a study design may appear as
noted in Table 1. Example data of TPH concentrations col-
lected from a hypothetical site may appear as shown in Table
2, with the addition of the last 3 columns for the statistical
method Analysis of Variance (ANOVA). Note that the data in
Table 2 is a balanced design in that the number of subsamples
per field sample is equal at 2 and the number of replicate
analyses per subsample is equal at 3.

5.1.3 An unbalanced design occurs when the number of
subsamples is not equal among the field samples or when the
number of replicates is not equal among the subsamples. In this
case, the estimation of the variance components becomes more
complicated. In this situation, consult a statistician. Some

TABLE 1 Study Design for the Example Sampling and
Measurement Process Described in Section 5 A

Field Sample No. Subsample No. Replicate No. Value

1 1 1 X111

n X11n

m 1 X1m1

n X1mn

f 1 1 Xf11

n Xf1n

m 1 Xfm1

n Xfmn

Af, m, n $ 2.

TABLE 2 Example Data of TPH (ppm) for a 3-Stage Sampling and
Measurement Process

Field
Sample

Sub-
sample

TPH in Replicate Subsample
Total

Field Sample
Total

Grand
Total1 2 3

1 1 10 11 11 32
2 8 7 8 23 55

2 1 5 6 5 16
2 4 4 6 14 30 85

D 6842 – 02

2

NOTICE: This standard has either been superceded and replaced by a new version or discontinued. 
Contact ASTM International (www.astm.org) for the latest information. 



statistical software programs such as Statgraphics Plus (1993)2

allow for the estimation of variance components when the
design is unbalanced. Because the use of different algorithms
in the estimation procedure may produce different results, these
programs need to be used with care.

5.2 Estimation of Total Uncertainty and Its Components:
5.2.1 This section will discuss data uncertainty using the

example data in Table 2. The data in Table 2 represent a
two-way random effects model, the two random effect vari-
ables being the “field samples” and “subsamples.” It is also
called a nested design in that the replicates are “nested” within
each subsample and the subsamples are “nested” within a field
sample. This method of analysis can be found in most
statistical textbooks (for example, Snedecor and Cochran,
1967).3 In order to carry out this analysis, let:

Xijk = TPH value for the kth replicate of the jth subsample from
the ith field sample, where i = 1, … , f, j = 1, …, m, k = 1, …, n

Xij = sum of replicate TPH values for subsample j from field
sample i

Xi = sum of all TPH values for field sample i
X = grand total
f = number of field samples ( = 2 in the example)
m = number of subsamples per field sample ( = 2 in the example)
n = number of replicate analyses per subsample ( = 3 in the

example)

5.2.2 Calculate:
C = (X…)2/(fmn) = (85)2/[(2)(2)(3)] = 602.08

SS(total) = total sum of squares
= S Xijk

2- C
= 102+ 112+ 112+ 82+ …….. + 42+ 62

= 673.00 − 602.08
= 70.92

SS(subsamples) = sum of squares due to subsamples
= S Xij.

2/n − C
= (322+ 232 + 162+ 142) / 3 − 602.08
= 66.25

SS(field samples) = S Xi..
2/(mn) − C

= (552+ 302) / (233) − 602.08
= 52.08

SS(subsamples in field samples) = SS(subsamples) − SS(field
samples)
= 66.25 − 52.08
= 14.17

SS(replicates) = sum of squares due to replicates
= SS(total) − SS(field samples) − SS(subsamples in field samples)
= 70.92 − 52.08 − 14.17

5.2.3 An ANOVA table can be constructed using the above
quantities:

5.2.4 Note that the “expected mean squares” in Table 3 is a
function of the variance components in the sampling and
measurement process, wheresk

2 = variance component due to
replicate analyses,sj

2 = variance component due to subsam-
pling within a field sample, andsk

2 = variance component due
to field sampling.

5.2.5 Thus, the variance components can be obtained by
subtracting one row from the other and then divided by the
appropriate divisor as follows:

5.2.5.1 From row 3 of Table 3, we obtain the variance
component due to replicate analyses:

sk
2 5 0.58

5.2.5.2 From rows 2 and 3, we obtain the variance compo-
nent due to subsampling:

sj
2 5 ~7.082 0.58! / 3 5 2.17

5.2.5.3 From rows 1 and 2, we obtain the variance compo-
nent due to field sampling:

sj
2 5 ~52.082 7.08! / @~2!~3!# 5 7.50

5.2.6 Given these estimated variance components, the esti-
mated total variance of one single analysis from one subsample
taken from one field sample is:

sT
2 5 si

2 1 sj
2 1 sk

2 5 10.25 (1)

5.2.7 The estimated variance components are summarized
in Table 4:

5.2.8 The last column of Table 4 shows that the greatest
contributor to the total variance is field sampling, accounting
for 73.2 % of the total variance. Second to field sampling is
subsampling, accounting for 21.1 %, while analytical error is
only 5.7 %.

5.2.9 The results in Tables 3 and 4 can be obtained using
software programs such as Statgraphics Plus (1993) or SAS
(1993).2,4

5.2.10 These results imply that we can reduce the total
uncertainty or variance by first focusing on field sampling
variance (si

2), and then laboratory subsampling variance (sj
2).

This is discussed in the next section.
5.3 Improving Existing Design or Optimizing a New Design:

2 Statgraphics Plus, “User’s Manual—Nested Design,” Version 7, Manugistics,
Inc., 215 E. Jefferson St., Rockville, MD, 1993, pp. N1-N5.

3 Snedecor, George W., and Cochran, William G., “Statistical Methods,” 6th ed.,
The Iowa State University Press, Ames, IA, 1967, Section 10.16, pp. 285-288.

4 “SAS/STAT User’s Guide: The VARCOMP Procedure,” Version 6, 4th ed., Vol
2, SAS Institute Inc., Cary, NC, 1993, pp. 1661-1673.

TABLE 3 ANOVA Table for TPH (Nested Design) A

Source of
Variation

Degrees of
Freedom

Sum of
Squares

Mean
Squares

(MS)

Expected
MS

Field samples f − 1 = 1 52.08 52.08 sk
2+ nsj

2+ mnsi
2

Subsamples in field samples f(m − 1) = 2 14.17 7.08 sk
2+ nsj

2

Replicate analyses fm(n − 1) = 8 4.67 0.58 sk
2

Total fmn − 1 = 11 70.92 6.45
A(mean squares) = (sum of squares) / (degrees of freedom).

TABLE 4 Variance Components from Analysis of Variance of
TPH

Source of
Variation

Variance
Component

Percentage

Field samples (si
2) 7.50 73.2

Subsampling (sj
2) 2.17 21.1

Analytical error (sk
2) 0.58 5.7

Total 10.25 100.0
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5.3.1 Uncertainty about inference on the population mean is
measured by the variance of the sample mean. In the 3-stage
sampling and measurement process, the sample mean is the
average of “f” field samples, with “m” subsamples taken from
each field sample and each subsample analyzed “n” times (data
from Table 2). Thus, the variance of the sample mean (X…) is:

Var~X…! 5 si
2/f 1 sj

2/~fm! 1 sk
2/~fmn!

5 7.50/21 2.17/41 0.58/12
5 4.341 (2)

5.3.2 Eq 2 provides information on how to reduce uncer-
tainty in the inference about the population mean.

5.3.2.1 All the denominators of the three terms on the
right-hand side contain the term “f” for the number of field
samples. Thus, an increase in “f” can effectively reduce the
variance of the sample mean. Next in effectiveness is an
increase in “m” as it appears on two terms containing the
largest variance components (si

2 and sj
2). And the last is an

increase in “n” as it appears on only the term containing the
smallest variance component (sk

2).
5.3.2.2 In the numerators of the three terms on the right

hand-side, the variance component for field sampling (si
2) is

the largest in size. Thus, an increase in “f,” its denominator, can
most effectively reduce the variance of the mean. Next in
effectiveness is an increase in “m”.

5.3.2.3 Note that the variance of the sample mean,Var
(X…), has degrees of freedom off (m − 1) = 2 (see row 2 of
Table 3). These degrees of freedom can be used to obtain the
tabledt-value when calculating confidence limits for the mean.
The tabledt-value with this 2 degrees of freedom is larger than
other t-values with larger degrees of freedom. This large
t-value will lead to wider confidence limits and therefore is a
less precise inference about the population mean. If more
precise inference is needed, an increase in the number of field
samples “f” will produce narrower confidence limits (or higher
confidence) much faster than an increase in “m,” as a result of
larger degrees of freedom for thet-value.

NOTE 1—All the factors in the preceeding sections need to be consid-
ered jointly to find the desired solution.

5.3.3 Eq 2 can also be used to allocate resources to achieve
a desired level of precision (the variance of the sample mean).
Alternatively, given a desired level of precision, the optimal
combination of “f,” “ m,” and “n” can be found.

5.3.4 The following will discuss three different applications
of these principles. The first application presents the way to
determine the lowest number of samples to achieve a given
level of precision. The second illustrates how to achieve the
highest level of precision within a fixed budget. And finally, the
third approach presents a means of maximizing precision while
minimizing cost. The decision of which approach to choose
will depend on the overall project objectives. The third
approach represents an opportunity to balance between cost
and precision and achieve an optimal solution.

5.3.5 For the example data in 5.1, the variance and standard
deviation of the sample mean can be simulated for various
values off, m, andn. Table 5 gives some limited simulation
results for illustrative purposes. In real applications, more
extensive simulations may be required.

5.3.5.1 Given a desired level of precision, find the minimum
cost (or an optimal combination of “f,” “ m,” and “n”).

(1) Any combination of (f, m, n) in Table 5 represents a cost
for sampling and analysis.

TABLE 5 Examples of Resource Allocation and Sample Variance
and Standard Deviation

No. of
Field Samples

(f)

No. of
Subsamples

(m)

No. of
Replicates

(n)

Total
Number of
Analysis

Sample
Variance

Sample
Standard
Deviation

1 1 1 1 10.25 3.20
1 1 2 2 9.96 3.16
1 1 3 3 9.86 3.14
1 1 4 4 9.82 3.13
1 1 5 5 9.79 3.13
1 2 1 2 8.88 2.98
1 2 2 4 8.73 2.95
1 2 3 6 8.68 2.95
1 2 4 8 8.66 2.94
1 2 5 10 8.64 2.94
1 3 1 3 8.42 2.90
1 3 2 6 8.32 2.88
1 3 3 9 8.29 2.88
1 3 4 12 8.27 2.88
1 3 5 15 8.26 2.87

2 1 1 2 5.13 2.26
2 1 2 4 4.98 2.23
2 1 3 6 4.93 2.22
2 1 4 8 4.91 2.22
2 1 5 10 4.89 2.21
2 2 1 4 4.44 2.11
2 2 2 8 4.37 2.09
2 2 3 12 4.34 2.08
2 2 4 16 4.33 2.08
2 2 5 20 4.32 2.08
2 3 1 6 4.21 2.05
2 3 2 12 4.16 2.04
2 3 3 18 4.14 2.04
2 3 4 24 4.14 2.03
2 3 5 30 4.13 2.03

3 1 1 3 3.42 1.85
3 1 2 6 3.32 1.82
3 1 3 9 3.29 1.81
3 1 4 12 3.27 1.81
3 1 5 15 3.26 1.81
3 2 1 6 2.96 1.72
3 2 2 12 2.91 1.71
3 2 3 18 2.89 1.70
3 2 4 24 2.89 1.70
3 2 5 30 2.88 1.70
3 3 1 9 2.81 1.67
3 3 2 18 2.77 1.67
3 3 3 27 2.76 1.66
3 3 4 36 2.76 1.66
3 3 5 45 2.75 1.66

4 1 1 4 2.56 1.60
4 1 2 8 2.49 1.58
4 1 3 12 2.47 1.57
4 1 4 16 2.45 1.57
4 1 5 20 2.45 1.56
4 2 1 8 2.22 1.49
4 2 2 16 2.18 1.48
4 2 3 24 2.17 1.47
4 2 4 32 2.16 1.47
4 2 5 40 2.16 1.47
4 3 1 12 2.10 1.45
4 3 2 24 2.08 1.44
4 3 3 36 2.07 1.44
4 3 4 48 2.07 1.44
4 3 5 60 2.07 1.44
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(2) If sampling and subsampling costs are assumed to be
negligible, the total analytical cost for any (f, m, n) combina-
tion is:

Total cost5 ~fmn!Ca (3)

where:
(fmn) = the total number of analyses required, and
Ca = cost of an analysis.

(3) Oftentimes sampling cost is not negligible. A detailed
analysis of the sampling cost is then required. Assuming there
is a fixed cost (F) to move the sampling equipment to the field
and the cost of taking a physical sample isCf (and assuming
that subsampling cost is negligible), then the total cost for any
(F, m, n) combination is:

Total cost5 F 1 f Cf 1 ~fmn!Ca 5 F 1 f~Cf 1 mnCa! (4)

where:
f Cf = cost of takingf field samples, exclusive ofF,

and
(fmn)Ca = cost of analyzing (fmn) subsamples.

(4) Depending on the actual situation, either Eq 3 or Eq 4
can be calculated and included in Table 5. These results will
allow the stakeholders to identify where the lowest cost is for
a given precision (as represented by either the sample standard
deviation or variance in the table).

5.3.5.2 Given a budget, find the highest level of precision.
(1) The variance of the sample mean,Var (X…), can be

calculated for various combinations of “f,” “ m,” and “n”. The
combination that produces the smallest value forVar (X…) and
meets the total resource or cost requirements is the one to
adopt. This is an effective way of determining the number of
field samples to take (determination for “f”), the number of
subsamples to take from each field sample (determination for
“m”), and the number of replicate analyses for each subsample
(determination for “n”).

(2) Given a budget for a fixed number of analyses, Table 5
can be used to search for the smallest sample variance for that
fixed number of analyses.

(3) For example, the objectives may be: (a) to augment the
data in Table 2 to achieve a reduced overall sample variance,
(b) to maintain the balanced design given in Table 2, and (c) to
meet a budget of no mare than 10 new analyses. Table 5

indicates that a combination of 3 field samples, 2 subsamples
per field sample and 3 analyses per subsample will give a
sample variance of 2.89. This combination represents (a) an
increase, from the data in Table 2, of 1 new field sample to be
subsampled twice, which in turn is analyzed in 3 replicates (for
a total of 6 new analyses) and (b) the new sample variance is
2.89, a substantial reduction from the original variance of
4.341. This reduction of 33 % in the sample variance will
improve the statistical confidence in decision-making.

(4) If the objective is to use the results in Table 5 to
optimally design a new sampling and measurement plan, then
these objectives need to be specified in detailvf. For example,
if the only objective is to perform no more than a total of 4
analyses, Table 5 indicates that the combination of (f = 4, m =
1, n = 1), for a total of 4 analyses, the sample variance is only
2.56, smaller than any other feasible combinations in Table 5.
Since Table 5 is limited in simulation results, more extensive
simulation may be needed for more complex applications.

5.3.5.3 Combination of increased precision and reduced
cost.

(1) Approaches 5.3.5.1 and 5.3.5.2 often can be used in
combination to simultaneously achieve an increase in precision
and a reduction in cost.

(2) For example, the sample variance for the example data
in Table 2 is 4.341 (from Eq 2), requiring a total of 12 analyses.
Table 5 indicates that many combinations of (f, m, n) equal to
or smaller than 12 analyses have a smaller sample variance.
For example, for a total of 3 analyses (3 field samples, 1
subsample and 1 single analysis), a sample variance as small as
3.42 can be obtained. This represents not only a reduction in
cost (number of analyses), but also an increase in precision
(3.42 versus 4.341), assuming that sampling cost is negligible.
Other combinations may be considered depending on project
objectives. When sampling cost is not negligible, additional
calculations need to be made.

6. Keywords
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