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Using This Guide

“Using This Guide” provides general information about the Aerospace Blockset and the 
documentation. The following sections are included:

Organization of this Document (p. vi) Provides overview of the Aerospace Blockset 
documentation.

Getting Help Online (p. vii) Describes the options available in accessing help while 
using the Aerospace Blockset.

Related Products (p. ix) Describes other MathWorks products that are especially 
relevant to the kinds of tasks you can perform with the 
Aerospace Blockset as well as the requirements for the 
Aerospace Blockset.

Typographical Conventions (p. xi) One-page table summarizing the typographical 
conventions used in this document.

Installation (p. xii) Installation note.
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Organization of this Document
This guide contains tutorial sections that are designed to help you become 
familiar with using the Aerospace Blockset with Simulink®, as well as a 
reference section for finding detailed information on particular blocks in the 
blockset:

• “Introduction” on page 1-1 provides an overview of fundamental Aerospace 
Blockset concepts. 

• “Case Study: Missile Guidance System” on page 2-1 provides an overview of 
an application of the Aerospace Blockset.

• “Block Reference” on page 3-1 provides descriptions of each block’s 
operation, parameters, and characteristics.

Use this guide in conjunction with the software to learn about the powerful 
features of the Aerospace Blockset.

Note  The User’s Guide documentation for the Aerospace Blockset assumes 
that you are familiar with Simulink. See the Simulink documentation for 
more information.
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Getting Help Online
There are a number of easy ways to get help on the Aerospace Blockset while 
you’re working at the computer:

• Block Help — Click the Help button in any block dialog box to view the 
online reference documentation for that block.

• Simulink Library Browser — Right-click a block to access the help for that 
block.

• Help browser — Select Full Product Family Help from the Help menu, or 
type doc or helpdesk at the command line to display the Help browser. Select 
Aerospace Blockset in the Contents pane.

• Command Line — Type doc('block name') at the command line to access 
the help for a block with the name block name. Spaces and capitalization in 
the block name are ignored.

• Help Desk (remote) — Use a Web browser or the Help browser to connect to 
the MathWorks Web site at www.mathworks.com. Follow the Documentation 
link on the Support Web page for remote access to the documentation.

• Release Information — Select Full Product Family Help from the Help 
menu, or type whatsnew at the MATLAB® command line and select the 
Aerospace Blockset Release Notes from the Contents pane of the Help 
browser. You can also type info aeroblks at the MATLAB command line to 
view detailed release information related to bug fixes and enhancements.

The Release Notes contain information about new features and recent 
changes to the version of the Aerospace Blockset that you are using. 
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For Further Help and Feedback
We hope you enjoy using the Aerospace Blockset and look forward to hearing 
your comments and suggestions. 

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports

Visit the MathWorks Web site at www.mathworks.com for complete contact 
information.
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Related Products
The MathWorks provides several products that are especially relevant to the 
kinds of tasks you can perform with the Aerospace Blockset.

Requirements for the Aerospace Blockset
You must have the following products installed to use the Aerospace Blockset:

• MATLAB® 6.5

• Control System Toolbox 5.2

• Simulink 5.0

Virtual Reality-Based Visualization
The optional virtual reality-based visualization with the Aerospace Blockset 
requires the Virtual Reality Toolbox Version 3.0. The toolbox ships with its own 
virtual reality viewer.

You can improve the virtual reality speed and graphics resolution by adding a 
graphics accelerator hardware card to your system. Animation of simulations 
is sensitive to central processor and graphics card speed and memory.
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Other Related Products
The toolboxes listed below all include functions that extend the capabilities of 
MATLAB. The blocksets all include blocks that extend the capabilities of 
Simulink. These products will enhance your use of the Aerospace Blockset in 
various applications. 

For more information about any of these products, see either

• The online documentation for that product if it is installed or if you are 
reading the documentation from the CD

• The MathWorks Web site, at www.mathworks.com; see the “Products” section

Product Description

Control System Toolbox Design and analyze feedback control systems

Real-Time Workshop Generate C code from Simulink models

Stateflow® Design and simulate event-driven systems

Stateflow Coder Generate C code from Stateflow charts

Virtual Reality Toolbox Create and manipulate virtual reality worlds 
from within MATLAB and Simulink

Real-Time Workshop 
Embedded Coder

Generate production code for embedded 
systems
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Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A, 
enter

A = 5

Function names, syntax, 
filenames, directory/folder 
names, and user input

Monospace font The cos function finds the 
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax 
descriptions in reference 
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions, 
operators, and constants

This vector represents the 
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options 
menu.

New terms and for 
emphasis

Italics An array is an ordered 
collection of information.

Omitted input arguments (...) ellipsis denotes all of the 
input/output arguments from 
preceding syntaxes. 

[c,ia,ib] = union(...)

String variables (from a 
finite list)

Monospace italics sysc = d2c(sysd,'method')
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Installation
The Aerospace Blockset follows the same installation procedure as the 
MATLAB toolboxes. See the MATLAB installation documentation for your 
platform.
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Introduction

Welcome to the Aerospace Blockset, the premier tool for aerospace system simulation and code 
generation. This section contains the following topics, which will help introduce you to the Aerospace 
Blockset:

“What Is the Aerospace Blockset?” on 
page 1-2

This section provides an overview of the Aerospace 
Blockset.

“Getting Started with the Aerospace 
Blockset” on page 1-5

This section describes how to open the Aerospace 
Blockset in Simulink. 

“Modeling with the Aerospace 
Blockset” on page 1-9

This section provides a tutorial on building Simulink 
models and simulating them.
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What Is the Aerospace Blockset?
The Aerospace Blockset brings the full power of Simulink® to aerospace system 
design, integration, and simulation by providing key aerospace subsystems 
and components in the adaptable Simulink block format. From environmental 
models to equations of motion, from gain scheduling to animation, the blockset 
gives you the core components to rapidly and efficiently assemble a broad range 
of large aerospace system architectures.

Use the Aerospace Blockset and Simulink to develop your aerospace system 
concepts, and to efficiently revise and test throughout the life cycle of your 
design. Use the Aerospace Blockset together with Real-Time Workshop® to 
automatically generate code for real-time execution in rapid prototyping and 
for hardware-in-the-loop systems. 

The Aerospace Blockset is a collection of block libraries for use with  Simulink. 
The blockset extends Simulink by providing core components for large 
aerospace systems. You can use blocks from the Aerospace Blockset in the 
same way that you would use any other Simulink blocks, combining them with 
blocks from other libraries to create sophisticated aerospace systems.

The Aerospace Blockset libraries are designed specifically for aerospace 
applications and include such key operations as environmental modeling, 
modeling equations of motion, gain scheduling, unit conversion, and more. 

You will find that the blockset can be put to work rapidly. The blocks 
implement mathematical representations from textbooks and references and 
the experience of the engineers at The MathWorks.
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Notice  THE MATHWORKS PROGRAMS HAVE NOT BEEN TESTED OR 
CERTIFIED BY ANY GOVERNMENT AGENCY OR INDUSTRY 
REGULATORY ORGANIZATION OR ANY OTHER THIRD PARTY. THE 
PROGRAMS SHOULD NOT BE RELIED ON AS THE SOLE BASIS TO 
SOLVE A PROBLEM WHOSE INCORRECT SOLUTION COULD RESULT 
IN INJURY TO PERSON OR PROPERTY. THE PROGRAMS ARE NOT 
DESIGNED NOR TESTED FOR A LEVEL OF RELIABILITY SUITABLE 
FOR USE AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT OR 
OTHER INFORMATION SYSTEMS OR HARDWARE, THE FAILURE OF 
WHICH CAN REASONABLY BE EXPECTED TO CAUSE DEATH OR 
PERSONAL INJURY OR PROPERTY OR ENVIRONMENTAL DAMAGE. 
LICENSEE AGREES THAT PRIOR TO USING, INCORPORATING OR 
DISTRIBUTING THE PROGRAMS IN ANY PRODUCT, IT WILL 
THOROUGHLY TEST THE PRODUCT AND THE FUNCTIONALITY OF 
THE PROGRAMS IN THAT PRODUCT AND BE SOLELY RESPONSIBLE 
FOR ANY PROBLEMS OR FAILURES.

The Aerospace Blockset contains a collection of blocks organized in a set of 
nested libraries. The best way to explore the blockset is to expand the 
Aerospace Blockset entry in the Simulink Library Browser. The fully 
expanded library list is shown here.
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See the Simulink documentation for complete information about the Library 
Browser. To access the blockset through its own window (rather than through 
the Library Browser), enter

aerolib

in the MATLAB Command Window. Double-click any library in the window to 
display its contents. 

For a complete list of all the blocks in the Aerospace Blockset by library, see 
“Blocks — By Category” on page 3-2.
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Getting Started with the Aerospace Blockset
To get started with the Aerospace Blockset, you need to use Simulink. All the 
blocks in the Aerospace Blockset are designed for use together with the blocks 
in the Simulink libraries. This section describes how to open the Aerospace 
Blockset on Windows and on UNIX platforms. 

• “Opening the Aerospace Blockset on Windows Platforms” on page 1-5

• “Opening the Aerospace Blockset on UNIX Platforms” on page 1-7

Opening the Aerospace Blockset on Windows 
Platforms 
You can open the Aerospace Blockset from the Simulink Library Browser.

Opening the Simulink Library Browser
To start Simulink, click the  icon in the MATLAB toolbar, or type

simulink

at the command line.

The Simulink Libraries
The  libraries in the Simulink Library Browser contain all the basic elements 
you need to construct a model. Look here for basic math operations, switches, 
connectors, simulation control elements, and other items that do not have a 
specific aerospace orientation.

Opening the Aerospace Blockset
On Windows platforms, the Simulink Library Browser opens when you start 
Simulink. The left pane contains a list of all the blocksets that you currently 
have installed. 
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The first item in the list is the Simulink blockset itself, which is already 
expanded to show the available Simulink libraries. Click the symbol to the 
left of any blockset name to expand the hierarchical list and display that 
blockset’s libraries within the browser.

To open the Aerospace Blockset window from the MATLAB command line, 
enter

aerolib

See the Simulink documentation for a complete description of the Library 
Browser.
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Opening the Aerospace Blockset on UNIX Platforms 
You can open the Aerospace Blockset from the Simulink Library window.

Opening the Simulink Library Window
To start Simulink, click the  icon in the MATLAB toolbar, or type

simulink

at the command line. 

The Simulink Libraries
The  libraries in the Simulink Library window contain all the basic elements 
you need to construct a model. Look here for basic math operations, switches, 
connectors, simulation control elements, and other items that do not have a 
specific aerospace orientation.

Opening the Aerospace Blockset
On UNIX platforms, the following Simulink Library window opens when you 
start Simulink. To view other installed blocksets, double-click the Blocksets & 
Toolboxes button. 

Double-click the Aerospace Blockset icon to open the Aerospace Blockset.
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To open the Aerospace Blockset window from the MATLAB command line, 
enter

aerolib
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Modeling with the Aerospace Blockset
If you have never used Simulink before, take some time to get acquainted with 
its features.

Begin by learning the two basic stages in model construction, discussed in the 
following sections:

• “Model Definition” on page 1-9

• “Model Simulation” on page 1-19

Model Definition
Simulink is a software package for modeling, simulating, and analyzing 
dynamic systems. Try building a simple model that drives an actuator with a 
sine wave and displays the actuator’s position superimposed on the sine wave.

Note  If you prefer to open the complete model shown below instead of 
building it, type aeroblktutorial at the MATLAB command line.

Following are the procedures for defining a model on Windows and UNIX 
platforms.

• “Defining a Model on Windows Platforms” on page 1-10

• “Defining a Model on UNIX Platforms” on page 1-15
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Defining a Model on Windows Platforms

1 Start Simulink.

Click the  button in the MATLAB toolbar or enter simulink in the 
MATLAB Command Window. The Library Browser appears.

2 Open a new model.

Select New -> Model from the File menu in the Library Browser. A new 
model window appears on your screen.

Alternate methods for creating a new model are by selecting New from the 
File menu in the Simulink model or by using the key sequence Ctrl+N.
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3 Add a Sine Wave block to the model.

a Click Sources in the Library Browser to view the blocks in the Simulink 
Sources library.

b Drag the Sine Wave block from the Sources library into the new model 
window.

4 Add a Second Order Linear Actuator block to the model.

a Click the symbol next to Aerospace Blockset in the Library Browser 
to expand the hierarchical list of the aerospace blocks.

b In the expanded list, click Actuators to view the blocks in the Actuator 
library.

c Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Click Signal Routing in the Library Browser to view the blocks in the 
Simulink Signals & Systems library.

b Drag the Mux block from the Signal Routing library into the model 
window. 

6 Add a Scope block to the model.

a Click Sinks in the Library Browser to view the blocks in the Simulink 
Sinks library.

b Drag the Scope block from the Sinks library into the model window. 

7 Resize the Mux block in the model.

a Click the Mux block to select the block. 

b Hold down the mouse button and drag a corner of the Mux block to 
change the size of the block.
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8 Connect the blocks. 

a Position the pointer near the output port of the Sine Wave block. Hold 
down the mouse button and drag the line that appears until it touches the 
input port of the Second Order Linear Actuator block. Release the mouse 
button.

b Using the same technique, connect the output of the Second Order Linear 
Actuator block to the second input port of the Mux block. 

c Using the same technique, connect the output of the Mux block to the 
input port of the Scope block. 

d Position the pointer near the first input port of the Mux block. Hold down 
the mouse button and drag the line that appears over the line from the 
output port of the Sine Wave block until double crosshairs appear. 
Release the mouse button. The lines are connected when a knot is present 
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you 
to set the block’s parameters. Parameters are defining values that tell the 
block how to operate. 

For this example, configure the block to generate a 10 rad/sec sine wave 
by entering 10 for the Frequency parameter. The sinusoid has the 
default amplitude of 1 and phase of 0 specified by the Amplitude and 
Phase offset parameters.
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b Click OK.
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c Double-click the Second Order Linear Actuator block.

For this example, the actuator has the default natural frequency of 150 
rad/sec, a damping ratio of 0.7, and an initial condition of 0 radians 
specified by the Natural frequency, Damping ratio, and Initial 
condition parameters.

d Click OK.

You can now move on to the model simulation phase. See “Model Simulation” 
on page 1-19.
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Defining a Model on UNIX Platforms

1 Start Simulink.

Enter simulink in the MATLAB Command Window. The Simulink Library 
window appears.

2 Open a new model.

Select New -> Model from the File menu in the Simulink Library window. 
A new model window appears on your screen.

Alternate methods for creating a new model are by selecting New from the 
File menu in the Simulink model or by using the key sequence Ctrl+N.
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3 Add a Sine Wave block to the model.

a Double-click Sources in the Simulink Library window to view the blocks 
in the Simulink Sources library.

b Drag the Sine Wave block from the Sources library into the new model 
window.

4 Add a Second Order Linear Actuator block to the model.

a Double-click Blocksets & Toolboxes in the Simulink Library window. 
This opens the Blocksets and Toolboxes Library window.

b Double-click Aerospace Blockset in the Blocksets and Toolboxes Library 
window. This opens the Aerospace Blockset block libraries.

c In the Aerospace Blockset block libraries, click Actuators to view the 
blocks in the Actuator library.

d Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Double-click Signal Routing in the Simulink Library to view the Signal 
Routing blocks.

b Drag the Mux block from the Signal Routing library into the model 
window. 

6 Add a Scope block to the model.

a Double-click Sinks in the Simulink Library window to view the blocks in 
the Simulink Sinks library.

b Drag the Scope block from the Sinks library into the model window. 
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7 Resize the Mux block in the model.

a Click the Mux block to select the block. 

b Hold down the mouse button and drag a corner of the Mux block to 
change the size of the block.

8 Connect the blocks. 

a Position the pointer near the output port of the Sine Wave block. Hold 
down the mouse button and drag the line that appears until it touches the 
input port of the Second Order Linear Actuator block. Release the mouse 
button.

b Using the same technique, connect the output of the Second Order Linear 
Actuator block to the second input port of the Mux block. 

c Using the same technique, connect the output of the Mux block to the 
input port of the Scope block. 

d Position the pointer near the first input port of the Mux block. Hold down 
the mouse button and drag the line that appears over the line from the 
output port of the Sine Wave block until double crosshairs appear. 
Release the mouse button. The lines are connected when a knot is present 
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you 
to set the block’s parameters. Parameters are defining values that tell the 
block how to operate. 

For this example, configure the block to generate a 10 rad/sec sine wave 
by entering 10 for the Frequency parameter. The sinusoid has the 
default amplitude of 1 and phase of 0 specified by the Amplitude and 
Phase offset parameters.
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b Click OK. 

c Double-click the Second Order Linear Actuator block.

For this example, the actuator has the default natural frequency of 150 
rad/sec, a damping ratio of 0.7, and an initial condition of 0 radians 
specified by the Natural frequency, Damping ratio, and Initial 
condition parameters.
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d Click OK. 

You can now move on to the model simulation phase. See “Model Simulation”.

Model Simulation
 You can run the simulation block diagram that you built to see how the system 
behaves in time:

1 Double-click the Scope block if the Scope window is not already open on your 
screen. The Scope window appears.

2 Select Start from the Simulation menu in the block diagram window. The 
signal containing the 10 rad/sec sinusoid and the signal containing the 
actuator position are plotted on the scope. 

3 Adjust the Scope block’s display.

a While the simulation is running, right-click the y-axis of the scope and 
select Autoscale. The vertical range of the scope is adjusted to better fit 
the signal.

b Click the Properties button  on the scope and enter 0.62832 for Time 
range. This resizes the scope’s time axis to display only one cycle of the 
signal.
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4 Vary the Sine Wave block parameters.

a While the simulation is running, double-click the Sine Wave block to open 
it. 

b Change the frequency of the sinusoid. Try entering 1 or 20 in the 
Frequency field. Click Apply after entering each new value and observe 
the changes on the scope. 

5 Select Stop from the Simulation menu to stop the simulation.

Many parameters cannot be changed while a simulation is running. This is 
usually the case for parameters that directly or indirectly alter a signal’s 
dimensions or sample rate. There are some parameters, however, like the Sine 
Wave Frequency parameter, that you can tune without terminating the 
simulation. 

Running a Simulation from an M-File
You can also modify and run a Simulink simulation from within a MATLAB 
M-file. By doing this, you can automate the variation of model parameters to 
explore a large number of simulation conditions rapidly and efficiently. For 
information on how to do this, see “Running a Simulation Programmatically” 
in the Simulink documentation.

Learning More About Simulink and Aerospace 
Blockset
Here are more suggestions to help you get started with Simulink:

• Browse through the Simulink documentation to get complete exposure to all 
of Simulink’s capabilities.

• Open the Simulink library as described in “Opening the Aerospace Blockset 
on Windows Platforms” on page 1-5. Build a few simple models using blocks 
from the Simulink and Aerospace Blockset libraries. 

• Open some of the models in the Aerospace Blockset Demos library. Most of 
the advanced demos have blocks that you can double-click to get information 
about the algorithm or implementation. In each case, just select Start from 
the Simulation menu to run the simulation.
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Case Study: Missile 
Guidance System

 This chapter illustrates the process of designing and simulating a three-degrees-of-freedom missile 
guidance system using Simulink and the Aerospace Blockset. The following sections are included.

“Missile Guidance System Model” on 
page 2-2

Open the model that is used in this case study

“Modeling Airframe Dynamics” on 
page 2-3

Implement atmospheric equations and the equations of 
motion in the missile airframe.

“Modeling a Classical Three-Loop 
Autopilot” on page 2-10

Design the missile autopilot to control the acceleration 
normal to the missile body. 

“Modeling the Homing Guidance Loop” 
on page 2-13

Design the homing guidance loop to track the target and 
generate the demands that are passed to the autopilot.

“Simulating the Missile Guidance 
System” on page 2-20

Simulate model and evaluate system performance.

“Extending the Model” on page 2-22 Examine a full six-degrees-of-freedom equations of motion 
representation.

“References” on page 2-23 Selected Bibliography



2 Case Study: Missile Guidance System

2-2

Missile Guidance System Model
To view the missile guidance system model, type the following in the MATLAB 
Command Window:

aeroblk_guidance

The missile airframe and autopilot are contained in the Airframe & Autopilot 
subsystem. The homing guidance loop consists of the Seeker/Tracker 
subsystem and the Guidance subsystem.
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Modeling Airframe Dynamics
The model of the missile airframe used in this demonstration has been 
presented in a number of published papers (References [1], [2], and [3]) on the 
use of advanced control methods applied to missile autopilot design. The model 
represents a tail-controlled missile traveling between Mach 2 and Mach 4, at 
altitudes ranging between 3050 meters (10000 feet) and 18290 meters (60000 
feet), and with typical angles of attack ranging between ±20 degrees.

Missile Airframe Model

The core element of the model is a nonlinear representation of the rigid body 
dynamics of the airframe. The aerodynamic forces and moments acting on the 
missile body are generated from coefficients that are nonlinear functions of 
both incidence and Mach number. The model can easily be created in the 
Simulink environment using the Aerospace Blockset.

The model of the missile airframe consists of two main components: 

• “ISA Atmosphere Model block” on page 2-5

Calculates the change in atmospheric conditions with changing altitude.

• “Aerodynamics & Equations of Motion Subsystem” on page 2-7

Calculates the magnitude of the forces and moments acting on the missile 
body, and integrates the equations of motion.
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To view the missile airframe model, enter the following in the MATLAB 
Command Window:

aeroblk_guidance_airframe
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ISA Atmosphere Model block
The ISA Atmosphere Model block is an approximation of the International 
Standard Atmosphere (ISA). This block consists of two sets of equations: one 
set of equations models the troposphere region and the other set of equations 
models the lower stratosphere region. The troposphere region lies between sea 
level and 11000 meters (36089 feet). It is assumed that there is a linear 
temperature drop with increasing altitude in the troposphere region. The lower 
stratosphere region ranges between 11000 meters (36089 feet) and 20000 
meters (65617 feet). It is assumed that the temperature remains constant in 
the lower stratosphere region. The figure below  displays how the speed of 
sound and the air density vary with altitude.

The following equations define the troposphere. 
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The following equations define the lower stratosphere.

 

where

is the absolute temperature at mean sea level in degrees Kelvin.

 is the air density at mean sea level in kg/m3.

 is the static pressure at mean sea level in N/m2.

 is the altitude in m.

 is the absolute temperature at altitude, h, in degrees Kelvin.

ρ is the air density at altitude h in kg/m3.

 is the static pressure at altitude h in N/m2.

is the speed of sound at altitude h in m/s2.

 is the lapse rate in degrees Kelvin/m.

 is the characteristic gas constant J/kg-degrees Kelvin.

is the specific heat ratio. 

 is the acceleration due to gravity in m/s2.

You can look under the mask of the ISA Atmosphere Model block to see how 
these equations are implemented in the model.
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Aerodynamics & Equations of Motion Subsystem
The Aerodynamics & Equations of Motion subsystem generates the forces and 
moments applied to the missile in the body axes and integrates the equations 
of motion that define the linear and angular motion of the airframe. The 
aerodynamic coefficients are stored in data sets, and, during the simulation, 
the value at the current operating condition is determined by interpolation 
using the Interpolation (n-D) using PreLook-Up block. 

The following are the three-degrees-of-freedom body axis equations of motion, 
which are defined in the Equations of Motion (Body Axes) block:

U· T Fx+( ) m⁄ qW– g θsin–=

W· Fz m⁄ qU g θcos+ +=

q· M Iyy⁄=
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The following are the aerodynamic forces and moments equations, which are 
defined in the Aerodynamics subsystem: 

The following are the stability axes variables, which are calculated in the 
Incidence & Airspeed block:

where

 is the attitude in radians.

 is the body rotation rate in rad/s.

 is the missile mass in Kg.

 is the acceleration due to gravity in m/s2.

 is the moment of inertia about the y axis in Kg-m2.

 is the acceleration in the Z body axis in m/s2.

 is the change in body rotation rate in rad/s2.

 is the thrust in the X body axis in N.

 is the air density in Kg/m3.

 is the reference area in m2.

 is the coefficient of aerodynamic force in the X axis.

 is the coefficient of aerodynamic force in the Z axis.
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 is the coefficient of aerodynamic moment about the Y axis.

 is the reference length in meters.

 is the fin angle in radians.

 is the aerodynamic force in the X body axis in N.

 is the aerodynamic force in the Z body axis in N.

 is the aerodynamic moment along the Y body axis.

 is the dynamic pressure in Pa.

 is the airspeed in m/s.

 is the incidence in radians.

 is the velocity in the X body axis in m/s.

 is the velocity in the Z body axis in m/s

CM

dref

η

FX

FZ

M

q

V

α
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Modeling a Classical Three-Loop Autopilot
The missile autopilot controls the acceleration normal to the missile body. In 
this case study, the autopilot structure is a three-loop design using 
measurements from an accelerometer placed ahead of the center of gravity and 
a rate gyro to provide additional damping. The figure below  shows the classical 
configuration of an autopilot. The controller gains are scheduled on incidence 
and Mach number and they are tuned for robust performance at an altitude of 
3050 meters (10000 feet).

Designing an autopilot entails the following:

• “Trimming and Linearizing an Airframe Model” on page 2-11

Models of the airframe pitch dynamics are derived for a number of trimmed 
flight conditions.

• “Autopilot Design” on page 2-12

Provides overview of the autopilot design process.



Modeling a Classical Three-Loop Autopilot

2-11

Trimming and Linearizing an Airframe Model
To design the autopilot using classical design techniques requires that linear 
models of the airframe pitch dynamics be derived for a number of trimmed 
flight conditions. MATLAB can determine the trim conditions and derive linear 
state-space models directly from the nonlinear Simulink model. This saves 
time and helps to validate the model. The functions provided by the Control 
System Toolbox allow the designer to visualize the behavior of the airframe 
open loop frequency (or time) responses.

The Airframe trim demo shows how to trim and linearize an airframe model. 
To run this demo, enter the following in the MATLAB Command Window:

aeroblk_lin_aero

The output from this demo is a Bode diagram in the Control System Toolbox 
viewer.



2 Case Study: Missile Guidance System

2-12

Autopilot Design
Autopilot design can begin after the missile airframe has been linearized at a 
number of flight conditions. Typically, autopilot designs are carried out on a 
number of linear airframe models derived at varying flight conditions across 
the expected flight envelope. To implement the autopilot in the nonlinear 
model involves storing the autopilot gains in two-dimensional lookup tables, 
and incorporating an anti-windup gain to prevent integrator windup when the 
fin demands exceed the maximum limits. Testing the autopilot in the nonlinear 
Simulink model is the best way to demonstrate satisfactory performance in the 
presence of nonlinearities, such as actuator fin and rate limits and dynamically 
changing gains.

The Autopilot subsystem is an implementation of the classical three-loop 
autopilot design within Simulink.
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Modeling the Homing Guidance Loop
The complete homing guidance loop consists of these two subsystems:

• “Guidance Subsystem” on page 2-14

Generates the normal acceleration demands that are passed to the autopilot.

• “Seeker/Tracker Subsystem” on page 2-17

Returns measurements of the relative motion between the missile and the 
target.

The autopilot is now part of an inner loop within the overall homing guidance 
system. See Reference [4] for information on different types of guidance 
systems and on the analysis techniques that are used to quantify guidance loop 
performance.
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Guidance Subsystem
The Guidance subsystem  performs an initial search to locate the target’s 
position, and then generates demands during closed-loop tracking. A Stateflow 
model is used to control the transfer between the different modes of these 
operations. Stateflow is the ideal tool for rapidly defining all the operational 
modes, both during normal operation and during unusual situations.

Guidance Processor Statechart
Mode switching is triggered by events generated in Simulink or in the 
Stateflow chart. The variable Mode, which is passed out to Simulink, is used 
to control the Simulink model’s behavior and to determine the response of the 
Simulink model. For example, the Guidance Processor state chart, which is 
part of the Guidance subsystem, shows the actions the system takes in 
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response to either a loss of lock on the target or a failure to acquire the target’s 
position during the target search.

During the target search, this Stateflow state chart controls the tracker 
directly by sending demands to the seeker gimbals (Sigma_d). Target 
acquisition is flagged by the tracker once the target lies within the beam width 
of the seeker (Acquire) and, after a short delay, closed loop guidance starts.
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Proportional Navigation Guidance Measurements
Once the seeker has acquired the target a Proportional Navigation Guidance 
(PNG) law is used  to guide the missile until impact. This form of guidance law 
has been used in guided missiles since the 1950s, and can be applied to radar-, 
infrared-, or television-guided missiles. The navigation law requires 
measurements of the closing velocity between the missile and target, which for 
a radar-guided missile can be obtained using a Doppler tracking device, and an 
estimate for the rate of change of the inertial sight line angle.

Proportional Navigation Guidance Measurements

where

λ is navigation gain ( > 2).

Vc is closing velocity.

θb is body attitude.

is sight line rate.

σg is gimbal angle.

σL is look angle.

σd is dish angle.

az_dem =  λVc , the demanded normal acceleration.

θ· s

θ· s
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Seeker/Tracker Subsystem
The Seeker/Tracker subsystem controls the seeker gimbals to keep the seeker 
dish aligned with the target, and it provides the guidance law with an estimate 
of the sight line rate.

Tracker and Sightline Rate Estimator
The Tracker and Sightline Rate Estimator, which is the most interesting 
subsystem of the Seeker/Tracker subsystem because of its complex error 
modeling, is shown below. It contains a number of feedback loops, estimated 
parameters, and parasitic effects for the homing guidance. The tracker loop 
time constant tors is set to 0.05 seconds, which is a compromise between 
maximizing speed of response and keeping the noise transmission to within 
acceptable levels. The stabilization loop compensates for body rotation rates, 
and the gain Ks, which is the loop crossover frequency, is set as high as possible 
subject to the limitations of the bandwidth of the stabilizing rate gyro. The 
sight line rate estimate is a filtered value of the sum of the rate of change of the 
dish angle measured by the stabilizing rate gyro and an estimated value for the 
rate of change of the angular tracking error (e) measured by the receiver. In 
this demonstration the bandwidth of the estimator filter is set to half that of 
the bandwidth of the autopilot.
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Radome Aberration.

Radome aberration is also modeled by the Tracker and Sightline Rate 
Estimator subsystem. Radome aberration is a parasitic feedback effect that is 
commonly modeled in radar-guided missile designs. This effect occurs because 
the shape of the protective covering over the seeker distorts the returning 
signal, and then gives a false reading of the look angle to the target. Generally 
the amount of distortion is a nonlinear function of the current gimbal angle, but 
a commonly used approximation is to assume a linear relationship between the 
gimbal angle and the magnitude of the distortion. Other parasitic effects, such 
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as sensitivity to normal acceleration in the rate gyros, are also often modeled 
to test the robustness of the target tracker and estimator filters.

Radome Aberration Angles
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Simulating the Missile Guidance System
Running the guidance simulation demonstrates the performance of the overall 
system. The target is defined to be traveling at a constant speed of 328 m/s on 
a reciprocal course to the initial missile heading and 500 meters above the 
initial missile position. The data, shown in the figure below, can be used to 
determine if the missile can withstand the flight demands and complete the 
mission.
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The simulation results  show that target acquisition occurred 0.69 seconds into 
the engagement, with closed loop guidance starting after 0.89 seconds. Impact 
with the target occurred at 3.46 seconds, and the range to go at the point of 
closest approach was calculated to be 0.26 meters.
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Extending the Model
Modeling the airframe and guidance loop in a single plane is only the start of 
the design process. Extending the model to a full six-degrees-of-freedom 
representation requires the implementation of the full equations of motion for 
a rigid body. 

There are two blocks for integrating the equations of motion in the Aerospace 
Blockset. Both of these blocks use standard Simulink component blocks. The 
first implementation uses a quaternion to represent the angular orientation of 
the body in space, which is ideal for simulations where the standard Euler 
angle definitions become singular as the pitch attitude tends to ±90 degrees. 
The second implementation uses the standard Euler angle equations of motion, 
which is ideal when using the model to obtain trim conditions and linear 
airframe models. A model containing one of the six-degrees-of-freedom 
equations of motion blocks is shown below.
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Block Reference

Blocks — By Category (p. 3-2)  Provides tables of Aerospace Blockset blocks by category.

Blocks — Alphabetical List (p. 3-9) Provides an alphabetical list of Aerospace Blockset 
blocks.



3 Block Reference

3-2

Blocks — By Category
The Aerospace Blockset’s main library, aerolib, organizes its blocks into 
libraries according to their behavior. The aerolib window displays the block 
library icons and names:  

Actuator Library Blocks Contain actuator models.

Animation Library Blocks Contain blocks that provide 3-D animation 
during simulation.

Environment/Atmosphere 
Library Blocks

Contain atmosphere models.

Environment/Gravity 
Library Blocks

Contain gravity models.

Environment/Wind Library 
Blocks

Contain wind models.

Equations of Motion/3DoF 
Library Blocks

Contain  three-degrees-of-freedom equations of 
motion blocks.

Equations of Motion/6DoF 
Library Blocks

Contain  six-degrees-of-freedom equations of 
motion blocks.

GNC Library Blocks Contain gain scheduling blocks.

Propulsion Library Blocks Contain simple propulsion system models.

Transformation/Axes 
Library Blocks

Contain blocks that convert reference axes.

Transformations/Units 
Library Blocks

Contain blocks that convert unit axes.
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Actuator Library Blocks

Animation Library Blocks

Environment/Atmosphere Library Blocks 

Environment/Gravity Library Blocks 

Environment/Wind Library Blocks

Second Order Linear 
Actuator

Implement a second-order linear actuator

Second Order Nonlinear 
Actuator

Implement a second-order actuator with rate 
and deflection limits

3DoF Animation Create a 3-D Handle Graphics animation of a 
three-degrees-of-freedom object

6DoF Animation Create a 3-D Handle Graphics animation of a 
six-degrees-of-freedom object

COESA Atmosphere Model Implement the 1976 COESA lower atmosphere

ISA Atmosphere Model Implement the International Standard 
Atmosphere (ISA)

WGS84 Gravity Model Implement the 1984 World Geodetic System 
representation of Earth’s gravity

Discrete Wind Gust Model Generate discrete wind gust

Dryden Wind Turbulence 
Model

Generate wind turbulence with the Dryden 
velocity spectra

Wind Shear Model Calculate wind shear conditions
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Equations of Motion/3DoF Library Blocks 

Equations of Motion/6DoF Library Blocks 

GNC Library Blocks

Equations of Motion Implement three-degrees-of-freedom equations 
of motion

Incidence & Airspeed Calculate incidence and air speed

6DoF (Euler Angles) Implement an Euler angle representation of 
six-degrees-of-freedom equations of motion

6DoF (Quaternion) Implement a quaternion representation of 
six-degrees-of-freedom equations of motion

1D Controller 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller depending on one scheduling 
parameter

1D Controller Blend 
u=(1-L).K1.y+L.K2.y

Implement a 1-D vector of state-space 
controllers by linear interpolation of their 
outputs

1D Observer Form 
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space 
controller in an observer form depending on 
one scheduling parameter

1D Self-Conditioned 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller in a self-conditioned form

2D Controller 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller depending on two scheduling 
parameters

2D Controller Blend Implement a 2-D vector of state-space 
controllers by linear interpolation of their 
outputs
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2D Observer Form 
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space 
controller in an observer form depending on 
two scheduling parameters

2D Self-Conditioned 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller in a self-conditioned form

3D Controller 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller depending on three scheduling 
parameters

3D Observer Form 
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space 
controller in an observer form depending on 
three scheduling parameters

3D Self-Conditioned 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller in a self-conditioned form

Gain Scheduled Lead-Lag Implement a first-order lead-lag with 
gain-scheduled coefficients

Interpolate Matrix(x) Return an interpolated matrix for given input x

Interpolate Matrix(x,y) Return an interpolated matrix for given inputs 
x and y

Interpolate Matrix(x,y,z) Return an interpolated matrix for given inputs 
x, y, and z

Self-Conditioned [A,B,C,D] Implement a state-space controller in a 
self-conditioned form
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Propulsion Library Blocks 

Transformation/Axes Library Blocks

Turbofan Engine System Implement a first-order representation of a 
turbofan engine with controller

3x3 Cross Product Calculate the cross product of two 3-by-1 
vectors

Direction Cosine Matrix to 
Euler Angles

Convert direction cosine matrix to Euler angles

Direction Cosine Matrix to 
Quaternions

Convert direction cosine matrix to quaternion 
vector

Euler Angles to Direction 
Cosine Matrix

Convert Euler angles to direction cosine matrix

Euler Angles to 
Quaternions

Convert Euler angles to quaternion vector

Quaternions to Direction 
Cosine Matrix

Convert quaternion vector to direction cosine 
matrix

Quaternions to Euler 
Angles

Convert quaternion vector to Euler angles



Blocks — By Category

3-7

Transformations/Units Library Blocks
Acceleration Conversion Convert from acceleration units to desired 

acceleration units

Angle Conversion Convert from angle units to desired angle units

Angular Acceleration 
Conversion

Convert from angular acceleration units to 
desired angular acceleration units

Angular Velocity 
Conversion

Convert from angular velocity units to desired 
angular velocity units

Density Conversion Convert from density units to desired density 
units

Force Conversion Convert from force units to desired force units

Length Conversion Convert from length units to desired length 
units

Mass Conversion Convert from mass units to desired mass units

Pressure Conversion Convert from pressure units to desired 
pressure units

Temperature Conversion Convert from temperature units to desired 
temperature units

Velocity Conversion Convert from velocity units to desired velocity 
units
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Block Reference Page Description
Blocks appear in alphabetical order and contain the following information:

• The block name, icon, and block library that contains the block

• The purpose of the block

• A description of the block’s use

• The block dialog box and parameters

• Additional information, as it applies to the block:

- Inputs and outputs descriptions

- Assumptions and limitations to the block’s use

- Examples using the block

- References to other documents

• A “See Also” of related blocks
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Blocks — Alphabetical List 3

1D Controller [A(v),B(v),C(v),D(v)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-12
1D Controller Blend u=(1-L).K1.y+L.K2.y . . . . . . . . . . . . . . . . . . . . . . . . .  3-15
1D Observer Form [A(v),B(v),C(v),F(v),H(v)] . . . . . . . . . . . . . . . . . . . . . . .  3-18
1D Self-Conditioned [A(v),B(v),C(v),D(v)]  . . . . . . . . . . . . . . . . . . . . . . . . .  3-21
2D Controller [A(v),B(v),C(v),D(v)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-25
2D Controller Blend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-28
2D Observer Form [A(v),B(v),C(v),F(v),H(v)] . . . . . . . . . . . . . . . . . . . . . . .  3-32
2D Self-Conditioned [A(v),B(v),C(v),D(v)]  . . . . . . . . . . . . . . . . . . . . . . . . .  3-36
3D Controller [A(v),B(v),C(v),D(v)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-40
3D Observer Form [A(v),B(v),C(v),F(v),H(v)] . . . . . . . . . . . . . . . . . . . . . . .  3-43
3D Self-Conditioned [A(v),B(v),C(v),D(v)]  . . . . . . . . . . . . . . . . . . . . . . . . .  3-47
3DoF Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-51
3x3 Cross Product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-53
6DoF Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-54
6DoF (Euler Angles)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-56
6DoF (Quaternion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-60
Acceleration Conversion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-64
Angle Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-66
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31D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on one 
scheduling parameter

Library GNC

Description The 1D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled 
state-space controller as defined by the equations

where v is a parameter over which A, B, C, and D are defined. This type of 
controller scheduling assumes that the matrices A, B, C, and D vary smoothly 
as a function of v, which is often the case in aerospace applications.

Dialog Box

x· A v( )x B v( )y+=

u C v( )x D v( )y+=



1D Controller [A(v),B(v),C(v),D(v)]

3-12

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1D scheduling, 
the A-matrix should have three dimensions, the last one corresponding to 
the scheduling variable v. Hence, for example, if the A-matrix 
corresponding to the first entry of v is the identity matrix, then 
A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. In the case of 1D scheduling, 
the B-matrix should have three dimensions, the last one corresponding to 
the scheduling variable v. Hence, for example, if the B-matrix 
corresponding to the first entry of v is the identity matrix, then 
B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. In the case of 1D scheduling, 
the C-matrix should have three dimensions, the last one corresponding to 
the scheduling variable v. Hence, for example, if the C-matrix 
corresponding to the first entry of v is the identity matrix, then 
C(:,:,1) = 1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. In the case of 1D scheduling, 
the D-matrix should have three dimensions, the last one corresponding to 
the scheduling variable v. Hence, for example, if the D-matrix 
corresponding to the first entry of v is the identity matrix, then 
D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v 
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and 
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of 
the state-space matrices.
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The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter input to the block goes out of range, then it is 
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the autopilot in the aeroblk_HL20.mdl demo for an example of this block.

See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y     
1D Observer Form [A(v),B(v),C(v),F(v),H(v)] 
1D Self-Conditioned [A(v),B(v),C(v),D(v)] 
2D Controller [A(v),B(v),C(v),D(v)] 
3D Controller [A(v),B(v),C(v),D(v)] 
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31D Controller Blend u=(1-L).K1.y+L.K2.yPurpose Implement a 1-D vector of state-space controllers by linear interpolation of 
their outputs

Library GNC

Description The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of 
state-space controller designs. The controllers are run in parallel, and their 
outputs interpolated according to the current flight condition or operating 
point. The advantage of this implementation approach is that the state-space 
matrices A, B, C, and D for the individual controller designs do not need to vary 
smoothly from one design point to the next.

For example, suppose two controllers are designed at two operating points 
v=vmin and v=vmax. The 1D Controller Blend block implements

For longer arrays of design points, the blocks only implement nearest neighbor 
designs. For the 1D Controller Blend block, at any given instant in time, three 
controller designs are being updated. This reduces computational 
requirements.

As the value of the scheduling parameter varies and the index of the controllers 
that need to be run changes, the states of the oncoming controller are 
initialized by using the self-conditioned form as defined for the 
Self-Conditioned [A,B,C,D] block.

x1
· A1x1 B1y+=

u1 C1x1 D1y+=

x2
· A2x2 B2y+=

u2 C= 2x2 D2y+

u 1 λ–( )u1 λu2+=

λ

0 v vmin<

v vmin–

vmax vmin–
-------------------------------- vmin v vmax≤ ≤

1 v vmax>







=
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Dialog Box

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1D blending, the 
A-matrix should have three dimensions, the last one corresponding to 
scheduling variable v. Hence, for example, if the A-matrix corresponding to 
the first entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. 

C-matrix(v)
C-matrix of the state-space implementation. 

D-matrix(v)
D-matrix of the state-space implementation. 

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v 
should be same as the size of the third dimension of A, B, C, and D.
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Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that 
the controller output tracks the current block output, u. The poles of the 
observer are defined in this dialog box as a vector, the number of poles 
being equal to the dimension of the A-matrix. Poles that are too fast result 
in sensor noise propagation, and poles that are too slow result in the failure 
of the controller output to track u.

Inputs and 
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of 
the state-space matrices.

The output is the actuator demands. 

Assumptions 
and Limitations

This block requires the Control Systems Toolbox.

Examples See the autopilot in the aeroblk_HL20.mdl demo for an example of this block 
in use.

References Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight 
Application,” Springer Verlag, Advances in Industrial Control Series, 1995. 
ISBN 3-540-19960-8. See Chapter 5.

See Also 1D Controller [A(v),B(v),C(v),D(v)] 
1D Observer Form [A(v),B(v),C(v),F(v),H(v)]   
1D Self-Conditioned [A(v),B(v),C(v),D(v)] 
2D Controller Blend 
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31D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form 
depending on one scheduling parameter

Library GNC

Description The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a 
gain-scheduled state-space controller defined in the following observer for:

The main application of this blocks is to implement a controller designed using 
H-infinity loop-shaping, one of the design methods supported by the 

-Analysis and Synthesis Toolbox.

Dialog Box

x· A v( ) H v( )C v( )+( )x B v( )umeas H v( ) y ydem–( )+ +=

udem F v( )x=

µ
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A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the A-matrix corresponding to the first entry of v is 
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the B-matrix corresponding to the first entry of v is 
the identity matrix, then B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the C-matrix corresponding to the first entry of v is 
the identity matrix, then C(:,:,1) = [1 0;0 1];.

F-matrix(v)
State-feedback matrix. The F-matrix should have three dimensions, the 
last one corresponding to the scheduling variable v. Hence, for example, if 
the F-matrix corresponding to the first entry of v is the identity matrix, 
then F(:,:,1) = [1 0;0 1];.

H-matrix(v)
Observer (output injection) matrix. The H-matrix should have three 
dimensions, the last one corresponding to the scheduling variable v. Hence, 
for example, if the H-matrix corresponding to the first entry of v is the 
identity matrix, then H(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v 
should be same as the size of the third dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and 
Outputs

The first input is the set-point error. 
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The second input is the scheduling variable. 

The third input is measured actuator position.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter input to the block goes out of range, then it is 
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the observer implementation within the aeroblk_HL20.mdl demo.

References Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight 
Application,” Springer Verlag, Advances in Industrial Control Series, 1995. 
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)] 
1D Controller Blend u=(1-L).K1.y+L.K2.y 
1D Self-Conditioned [A(v),B(v),C(v),D(v)] 
2D Observer Form [A(v),B(v),C(v),F(v),H(v)] 
3D Observer Form [A(v),B(v),C(v),F(v),H(v)] 
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31D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC

Description The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a 
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the 
Self-Conditioned [A,B,C,D] block reference. This block implements a 
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the 
parameter over which A, B, C, and D are defined. This type of controller 
scheduling assumes that the matrices A, B, C, and D vary smoothly as a 
function of v, which is often the case in aerospace applications.

x· A v( )x B v( )y+=

u C v( )x D v( )y+=

z· A v( ) H v( )C v( )–( )z B v( ) H v( )D v( )–( )e H v( )umeas++=

udem C v( )z D v( )e+=
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Dialog Box

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the A-matrix corresponding to the first entry of v is 
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the B-matrix corresponding to the first entry of v is 
the identity matrix, then B(:,:,1) = [1 0;0 1];.



1D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-22

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the C-matrix corresponding to the first entry of v is 
the identity matrix, then C(:,:,1) = [1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. The D-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the D-matrix corresponding to the first entry of v is 
the identity matrix, then D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v 
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the 
same locations for all values of the scheduling parameter v. Hence the 
number of pole locations defined should be equal to the length of the first 
dimension of the A-matrix.

Inputs and 
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of 
the state-space matrices. 

The third input is the measured actuator position.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter input to the block goes out of range, then it is 
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control Systems Toolbox.
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References The algorithm used to determine the matrix H is defined in Kautsky, Nichols, 
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,” 
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Controller [A(v),B(v),C(v),D(v)] 
1D Controller Blend u=(1-L).K1.y+L.K2.y 
1D Observer Form [A(v),B(v),C(v),F(v),H(v)]     
2D Self-Conditioned [A(v),B(v),C(v),D(v)] 
3D Self-Conditioned [A(v),B(v),C(v),D(v)] 
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32D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on two 
scheduling parameters

Library GNC

Description The 2D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled 
state-space controller as defined by the equations

where v is a vector of parameters over which A, B, C, and D are defined. This 
type of controller scheduling assumes that the matrices A, B, C, and D vary 
smoothly as a function of v, which is often the case in aerospace applications.

Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2D scheduling, 
the A-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the A-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then A(:,:,1,1) = [1 0;0 1];.

x· A v( )x B v( )y+=

u C v( )x D v( )y+=
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B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2D scheduling, 
the B-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the B-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then B(:,:,1,1) = [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2D scheduling, 
the C-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the C-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then C(:,:,1,1) = [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2D scheduling, 
the D-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the D-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and 
Outputs

The first input is the measurements. 

The second and third block inputs are the scheduling variables ordered 
conforming to the dimensions of the state-space matrices.

The output is the actuator demands. 
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Assumptions 
and Limitations

If the scheduling parameter inputs to the block goes out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the autopilot in the aeroblk_HL20.mdl demo for an example of this block.

See Also 1D Controller [A(v),B(v),C(v),D(v)] 
2D Controller Blend 
2D Observer Form [A(v),B(v),C(v),F(v),H(v)] 
2D Self-Conditioned [A(v),B(v),C(v),D(v)]        
3D Controller [A(v),B(v),C(v),D(v)] 
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32D Controller BlendPurpose Implement a 2-D vector of state-space controllers by linear interpolation of 
their outputs

Library GNC

Description The 2D Controller Blend block implements an array of state-space controller 
designs. The controllers are run in parallel, and their outputs interpolated 
according to the current flight condition or operating point. The advantage of 
this implementation approach is that the state-space matrices A, B, C, and D 
for the individual controller designs do not need to vary smoothly from one 
design point to the next.

For the 2D Controller Blend block, at any given instant in time, nine controller 
designs are updated.

As the value of the scheduling parameter varies and the index of the controllers 
that need to be run changes, the states of the oncoming controller are 
initialized by using the self-conditioned form as defined for the 
Self-Conditioned [A,B,C,D] block.
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Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2D blending, the 
A-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the A-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. 

C-matrix(v1,v2)
C-matrix of the state-space implementation. 

D-matrix(v1,v2)
D-matrix of the state-space implementation. 
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First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that 
the controller output tracks the current block output, u. The poles of the 
observer are defined in this dialog box as a vector, the number of poles 
being equal to the dimension of the A-matrix. Poles that are too fast result 
in sensor noise propagation, and poles that are too slow result in the failure 
of the controller output to track u.

Inputs and 
Outputs

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming 
to the dimensions of the state-space matrices.

The output is the actuator demands. 

Assumptions 
and Limitations

This block requires the Control Systems Toolbox.

Examples See the autopilot in the aeroblk_HL20.mdl demo for an example of this block 
in use.

References Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight 
Application,” Springer Verlag, Advances in Industrial Control Series, 1995. 
ISBN 3-540-19960-8. See Chapter 5.
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See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y 
2D Controller [A(v),B(v),C(v),D(v)]        
2D Observer Form [A(v),B(v),C(v),F(v),H(v)] 
2D Self-Conditioned [A(v),B(v),C(v),D(v)] 
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32D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form 
depending on two scheduling parameters

Library GNC

Description The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a 
gain-scheduled state-space controller defined in the following observer form:

The main application of these blocks is to implement a controller designed 
using H-infinity loop-shaping, one of the design methods supported by the 

-Analysis and Synthesis Toolbox.

x· A v( ) H v( )C v( )+( )x B v( )umeas H v( ) y ydem–( )+ +=

udem F v( )x=

µ
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Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2D scheduling, 
the A-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the A-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2D scheduling, 
the B-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the B-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then B(:,:,1,1) = [1 0;0 1];.
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C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2D scheduling, 
the C-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the C-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then C(:,:,1,1) = [1 0;0 1];.

F-matrix(v1,v2)
State-feedback matrix. In the case of 2D scheduling, the F-matrix should 
have four dimensions, the last two corresponding to scheduling variables 
v1 and v2. Hence, for example, if the F-matrix corresponding to the first 
entry of v1 and first entry of v2 is the identity matrix, then F(:,:,1,1) = [1 
0;0 1];.

H-matrix(v1,v2)
Observer (output injection) matrix. In the case of 2D scheduling, the 
H-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the H-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then H(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and 
Outputs

The first input is the set-point error.

The second and third inputs are the scheduling variables ordered conforming 
to the dimensions of the state-space matrices. 

The fourth input is measured actuator position.

The output is the actuator demands. 
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Assumptions 
and Limitations

If the scheduling parameter inputs to the block goes out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the observer implementation within the aeroblk_HL20.mdl demo.

References Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight 
Application,” Springer Verlag, Advances in Industrial Control Series, 1995. 
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)] 
2D Controller [A(v),B(v),C(v),D(v)] 
2D Controller Blend 
2D Self-Conditioned [A(v),B(v),C(v),D(v)] 
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]   



2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-35

32D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC

Description The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a 
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the 
Self-Conditioned [A,B,C,D] block reference. This block implements a 
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the 
vector of parameters over which A, B, C, and D are defined. This type of 
controller scheduling assumes that the matrices A, B, C, and D vary smoothly 
as a function of v, which is often the case in aerospace applications.

x· A v( )x B v( )y+=

u C v( )x D v( )y+=

z· A v( ) H v( )C v( )–( )z B v( ) H v( )D v( )–( )e H v( )umeas++=

udem C v( )z D v( )e+=
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Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2D scheduling, 
the A-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the A-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2D scheduling, 
the B-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the B-matrix 
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corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then B(:,:,1,1) = [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2D scheduling, 
the C-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the C-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then C(:,:,1,1) = [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2D scheduling, 
the D-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the D-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the 
same locations for all values of the scheduling parameter, v. Hence the 
number of pole locations defined should be equal to the length of the first 
dimension of the A-matrix.

Inputs and 
Outputs

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming 
to the dimensions of the state-space matrices. 

The fourth input is the measured actuator position.
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The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter inputs to the block goes out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control Systems Toolbox.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols, 
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,” 
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)] 
2D Controller [A(v),B(v),C(v),D(v)] 
2D Controller Blend 
2D Observer Form [A(v),B(v),C(v),F(v),H(v)] 
3D Self-Conditioned [A(v),B(v),C(v),D(v)]    
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33D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on three 
scheduling parameters

Library GNC

Description The 3D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled 
state-space controller as defined by the equations

where v is a vector of parameters over which A, B, C, and D are defined. This 
type of controller scheduling assumes that the matrices A, B, C, and D vary 
smoothly as a function of v, which is often the case in aerospace applications.

Dialog Box

x· A v( )x B v( )y+=

u C v( )x D v( )y+=
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A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3D scheduling, 
the A-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0 0;0 1 0; 0 0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3D scheduling, 
the B-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3D scheduling, 
the C-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3D scheduling, 
the D-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of 
v3 should be same as the size of the fifth dimension of A, B, C, and D.
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Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and 
Outputs

The first input is the measurements. 

The second, third and fourth inputs are the scheduling variables ordered 
conforming to the dimensions of the state-space matrices.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter input to the block goes out of range, then it is 
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the autopilot in the aeroblk_HL20.mdl demo for an example of this block.

See Also 1D Controller [A(v),B(v),C(v),D(v)] 
2D Controller [A(v),B(v),C(v),D(v)] 
3D Observer Form [A(v),B(v),C(v),F(v),H(v)] 
3D Self-Conditioned [A(v),B(v),C(v),D(v)] 
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33D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form 
depending on three scheduling parameters

Library GNC

Description The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a 
gain-scheduled state-space controller defined in the following observer form:

The main application of this block is to implement a controller designed using 
H-infinity loop-shaping, one of the design methods supported by the 

-Analysis and Synthesis Toolbox.

x· A v( ) H v( )C v( )+( )x B v( )umeas H v( ) y ydem–( )+ +=

udem F v( )x=

µ
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Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3D scheduling, 
the A-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3D scheduling, 
the B-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.
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C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3D scheduling, 
the C-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

F-matrix(v1,v2,v3)
State-feedback matrix. In the case of 3D scheduling, the F-matrix should 
have five dimensions, the last three corresponding to scheduling variables 
v1, v2, and v3. Hence, for example, if the F-matrix corresponding to the 
first entry of v1, the first entry of v2, and the first entry of v3 is the identity 
matrix, then F(:,:,1,1,1) = [1 0;0 1];.

H-matrix(v1,v2,v3)
observer (output injection) matrix. In the case of 3D scheduling, the 
H-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the H-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then H(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of 
v3 should be same as the size of the fifth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and 
Outputs

The first input is the set-point error. 
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The second, third, and fourth inputs are the scheduling variables ordered 
conforming to the dimensions of the state-space matrices. 

The fifth input is measured actuator position.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter inputs to the block goes out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the observer implementation within the aeroblk_HL20.mdl demo.

References Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight 
Application,” Springer Verlag, Advances in Industrial Control Series, 1995. 
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]] 
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]] 
3D Controller [A(v),B(v),C(v),D(v)] 
3D Self-Conditioned [A(v),B(v),C(v),D(v)]    
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33D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC

Description The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a 
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the 
Self-Conditioned [A,B,C,D] block reference. These blocks implement a 
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the 
vector of parameters over which A, B, C, and D are defined. This type of 
controller scheduling assumes that the matrices A, B, C, and D vary smoothly 
as a function of v, which is often the case in aerospace applications.

x· A v( )x B v( )y+=

u C v( )x D v( )y+=

z· A v( ) H v( )C v( )–( )z B v( ) H v( )D v( )–( )e H v( )umeas++=

udem C v( )z D v( )e+=
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Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3D scheduling, 
the A-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.
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B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3D scheduling, 
the B-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3D scheduling, 
the C-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3D scheduling, 
the D-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of 
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the 
same locations for all values of the scheduling parameter v. Hence the 
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number of pole locations defined should be equal to the length of the first 
dimension of the A-matrix.

Inputs and 
Outputs

The first input is the measurements. 

The second, third, and fourth inputs are the scheduling variables ordered 
conforming to the dimensions of the state-space matrices. 

The fifth input is the measured actuator position.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter inputs to the block goes out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control Systems Toolbox.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols, 
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,” 
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)] 
2D Self-Conditioned [A(v),B(v),C(v),D(v)]]   
3D Controller [A(v),B(v),C(v),D(v)] 
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]   
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33DoF AnimationPurpose Create a 3-D Handle Graphics animation of a three-degrees-of-freedom object

Library Animation

Description The 3DoF Animation block displays a 3-D animated view of a 
three-degrees-of-freedom (3DoF) craft, its trajectory, and its target using 
Handle Graphics.

The 3DoF Animation block uses the input values and the dialog parameters to 
create and display the animation.

Dialog Box
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Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation will be redrawn. 

Size of craft displayed
Scale factor to adjust the size of the craft and target. 

Enter view
Selects preset Handle Graphics parameters CameraTarget and 
CameraUpVector for the figure axes. The dialog parameters Position of 
camera and View angle are used to customize the position and field of 
view for the selected view. Possible views are

• Fixed position

• Cockpit

• Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure 
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the 
figure axes in degrees. 

Enable animation
When selected, the animation is displayed during the simulation. If not 
selected, the animation is not displayed.

Inputs The first input is a vector containing the altitude and the downrange position 
of the target in Earth coordinates.

The second input is a vector containing the altitude and the downrange 
position of the craft in Earth coordinates.

The third input is the attitude of the craft.

See Also 6DoF Animation   
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33x3 Cross ProductPurpose Calculate the cross product of two 3-by-1 vectors

Library Transformations/Axes

Description The 3x3 Cross Product block computes cross (or vector) product of two vectors, 
A and B, by generating a third vector, C, in a direction normal to the plane 
containing A and B, and with magnitude equal to the product of the lengths of 
A and B multiplied by the sine of the angle between them. The direction of C is 
that in which a right-handed screw would move in turning from A to B.

Dialog Box

Inputs and 
Outputs

The inputs are two 3-by-1 vectors.

The output is a 3-by-1 vector.

A a1i a2j a3k
B

+ +
b1i b2j b3k+ +

=
=

C A B
i j k

a1 a2 a3

b1 b2 b3
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36DoF AnimationPurpose Create a 3-D Handle Graphics animation of a six-degrees-of-freedom object

Library Animation

Description The 6DoF Animation block displays a 3-D animated view of a 
six-degrees-of-freedom (6DoF) craft, its trajectory, and its target using Handle 
Graphics.

The 6DoF Animation block uses the input values and the dialog parameters to 
create and display the animation.

Dialog Box
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Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation will be redrawn. 

Size of craft displayed
Scale factor to adjust the size of the craft and target. 

Static object position
Specifies the altitude, the cross-range position, and the downrange position 
of the target.

Enter view
Selects preset Handle Graphics parameters CameraTarget and 
CameraUpVector for the figure axes. The dialog parameters Position of 
camera and View angle are used to customize the position and field of 
view for the selected view. Possible views are

- Fixed position

- Cockpit

- Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure 
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the 
figure axes in degrees. 

Enable animation
When selected, the animation is displayed during the simulation. If not 
selected, the animation is not displayed.

Inputs The first input is a vector containing the altitude, the cross-range position, and 
the downrange position of the craft in Earth coordinates.

The second input is a vector containing the Euler angles of the craft.

See Also 3DoF Animation       
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36DoF (Euler Angles)Purpose Implement an Euler angle representation of six-degrees-of-freedom equations 
of motion

Library Equations of Motion/6DoF

Description The 6DoF (Euler Angles) block considers the rotation of a body-fixed coordinate 
frame about an Earth-fixed reference frame . The 
origin of the body-fixed coordinate frame is the center of gravity of the body, 
and the body is assumed to be rigid, an assumption that eliminates the need to 
consider the forces acting between individual elements of mass. The 
Earth-fixed reference frame is considered inertial, a simplification that allows 
the forces due to the Earth’s motion relative to a star-fixed reference system to 
be neglected.

The translational motion of the body-fixed coordinate frame is given below, 
where the applied forces [Fx Fy Fz]

T are in the body-fixed frame, and the mass 
of the body  is assumed constant.
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The rotational dynamics of the body-fixed frame are given below, where the 
applied moments are [L M N]T, and the inertia tensor  is with respect to the 
origin O. 

The relationship between the body-fixed angular velocity vector, [p q r]T, and 
the rate of change of the Euler angles, [  ]T, can be determined by 
resolving the Euler rates into the body-fixed coordinate frame.

Inverting  then gives the required relationship to determine the Euler rate 
vector.
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Dialog Box

Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame, in meters.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed 
coordinate frame, in meters per second.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch, 
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.
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Mass
The mass of the rigid body, in kilograms.

Inertia matrix
The 3-by-3 inertia tensor matrix , in kilograms meters squared.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces, in 
Newtons, and the second input is a vector containing the three applied 
moments, in Newton meters.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame, in meters per second.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame, in meters.

The third output is a three-element vector containing the Euler rotation angles 
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
body-fixed frame, in meters per second.

The sixth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body, and that the mass and inertia are constant.

See Also 6DoF (Quaternion) 

I
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36DoF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of 
motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational 
dynamics, see the block description for the 6DoF (Euler Angles) block. 

The integration of the rate of change of the quaternion vector is given below. 
The gain  drives the norm of the quaternion state vector to 1.0 should  
become nonzero. You must choose the value of this gain with care, because a 
large value improves the decay rate of the error in the norm, but also slows the 
simulation because fast dynamics are introduced. An error in the magnitude in 
one element of the quaternion vector is spread equally among all the elements, 
potentially increasing the error in the state vector.
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Dialog Box

Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame, in meters.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed 
coordinate frame, in meters per second.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch, 
yaw], in radians.
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Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Mass
The mass of the rigid body, in kilograms.

Inertia matrix
The 3-by-3 inertia tensor matrix I, in kilograms meters squared.

Normalization gain
The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces, in 
Newtons, and the second input is a vector containing the three applied 
moments, in Newton meters.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame, in meters per second.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame, in meters.

The third output is a three-element vector containing the Euler rotation angles 
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
body-fixed frame, in meters per second.

The sixth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body, and that the mass and inertia are constant.
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Examples See the Simulink model aeroblk_six_dof.mdl for an example of the use of the 
6DoF (Quaternion) block.

See Also 6DoF (Euler Angles) 
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3Acceleration ConversionPurpose Convert from acceleration units to desired acceleration units

Library Transformations/Units

Description The Acceleration Conversion block computes the conversion factor from 
specified input acceleration units to specified output acceleration units and 
applies the conversion factor to the input signal.

The Acceleration Conversion block icon displays the input and output units 
selected from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

m/s^2 Meters per second squared

ft/s^2 Feet per second squared

km/s^2 Kilometers per second squared

in/s^2 Inches per second squared

km/h-s Kilometers per hour per second

mph-s Miles per hour per second
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Inputs and 
Outputs

The input is acceleration in initial acceleration units. 

The output is acceleration in final acceleration units. 

See Also Angle Conversion 
Angular Acceleration Conversion 
Angular Velocity Conversion 
Density Conversion 
Force Conversion 
Length Conversion 
Mass Conversion 
Pressure Conversion 
Temperature Conversion 
Velocity Conversion     
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3Angle ConversionPurpose Convert from angle units to desired angle units

Library Transformations/Units

Description The Angle Conversion block computes the conversion factor from specified 
input angle units to specified output angle units and applies the conversion 
factor to the input signal.

The Angle Conversion block icon displays the input and output units selected 
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is angle in initial angle units. 

The output is angle in final angle units. 

deg Degrees

rad Radians

rev Revolutions
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See Also Acceleration Conversion 
Angular Acceleration Conversion 
Angular Velocity Conversion 
Density Conversion 
Force Conversion 
Length Conversion 
Mass Conversion 
Pressure Conversion 
Temperature Conversion 
Velocity Conversion 
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3Angular Acceleration ConversionPurpose Convert from angular acceleration units to desired angular acceleration units

Library Transformations/Units

Description The Angular Acceleration Conversion block computes the conversion factor 
from specified input angular acceleration units to specified output angular 
acceleration units and applies the conversion factor to the input signal.

The Angular Acceleration Conversion block icon displays the input and output 
units selected from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is angular acceleration in initial angular acceleration units. 

The output is angular acceleration in final angular acceleration units. 

deg/s^2 Degrees per second squared

rad/s^2 Radians per second squared

rpm/s Revolutions per minute per second
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See Also Acceleration Conversion 
Angle Conversion 
Angular Acceleration Conversion 
Density Conversion 
Force Conversion 
Length Conversion 
Mass Conversion 
Pressure Conversion 
Temperature Conversion 
Velocity Conversion 
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3Angular Velocity ConversionPurpose Convert from angular velocity units to desired angular velocity units

Library Transformations/Units

Description The Angular Velocity Conversion block computes the conversion factor from 
specified input angular velocity units to specified output angular velocity units 
and applies the conversion factor to the input signal.

The Angular Velocity Conversion block icon displays the input and output 
units selected from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is angular velocity in initial angular velocity units. 

The output is angular velocity in final angular velocity units. 

deg/s Degrees per second

rad/s Radians per second

rpm Revolutions per minute
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See Also Acceleration Conversion 
Angle Conversion 
Angular Acceleration Conversion 
Density Conversion 
Force Conversion 
Length Conversion 
Mass Conversion 
Pressure Conversion 
Temperature Conversion 
Velocity Conversion 
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3COESA Atmosphere ModelPurpose Implement the 1976 COESA lower atmosphere

Library Environment/Atmosphere

Description The COESA Atmosphere Model block implements the mathematical 
representation of the 1976 COESA (Committee on Extension to the Standard 
Atmosphere) United States (U.S.) standard lower atmospheric values for 
absolute temperature, pressure, density, and speed of sound for the input 
geopotential altitude. 

Below 32000 m (approximately 104987 ft), the U.S. Standard Atmosphere is 
identical with the Standard Atmosphere of the International Civil Aviation 
Organization (ICAO).

The COESA Atmosphere Model block icon displays the input and output units 
selected from the Units pop-up menu.

Dialog Box
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Units
Specifies the input and output units: 

Inputs and 
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air 
density.

Assumptions 
and Limitations

Below the geopotential altitude of 0 m (0 ft) and above the geopotential altitude 
of 84852 m (approximately 278386 ft), temperature values are extrapolated 
linearly and pressure values are extrapolated logarithmically. Density and 
speed of sound are calculated using a perfect gas relationship.

References [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, 
Washington, D.C.

See Also ISA Atmosphere Model     

Height Temperature Speed of Sound Air Density

Metric Meters Degrees Kelvin Meters per 
second

Kilograms per 
cubic meter

English Feet Degrees Rankine Feet per second Pound mass 
per cubic foot
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3Density ConversionPurpose Convert from density units to desired density units

Library Transformations/Units

Description The Density Conversion block computes the conversion factor from specified 
input density units to specified output density units and applies the conversion 
factor to the input signal.

The Density Conversion block icon displays the input and output units selected 
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is density in initial density units. 

The output is density in final density units. 

lbm/ft^3 Pound mass per cubic foot

kg/m^3 Kilograms per cubic meter

slug/ft^3 Slugs per cubic foot

lbm/in^3 Pound mass per cubic inch
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See Also Acceleration Conversion 
Angle Conversion 
Angular Acceleration Conversion 
Angular Velocity Conversion 
Force Conversion 
Length Conversion 
Mass Conversion 
Pressure Conversion 
Temperature Conversion 
Velocity Conversion 
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3Direction Cosine Matrix to Euler AnglesPurpose Convert direction cosine matrix to Euler angles

Library Transformations/Axes

Description The Direction Cosine Matrix to Euler Angles block converts a 3-by-3 direction 
cosine matrix (DCM) into three Euler rotation angles. The DCM matrix 
performs the coordinate transformation of a vector in inertial axes 

 into a vector in body axes . The order of the axis 
rotations required to bring  into coincidence with  
is first a rotation about  through the roll angle  to axes . 
Second a rotation about  through the pitch angle  to axes , 
and finally a rotation about  through the yaw angle  to axes 

.

 

Combining the three axis transformation matrices defines the following DCM.

To determine Euler angles from the DCM, the following equations are used:
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Dialog Box

Inputs and 
Outputs

The input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of Euler angles.

Assumptions 
and Limitations

This implementation generates a pitch angle that lies between  degrees, 
and roll and yaw angles that lie between degrees.

See Also Direction Cosine Matrix to Quaternions 
Euler Angles to Direction Cosine Matrix 
Euler Angles to Quaternions 
Quaternions to Direction Cosine Matrix 
Quaternions to Euler Angles 

ψ DCM 1 2,( )
DCM 1 1,( )
------------------------------ 
 atan=

90±
180±
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3Direction Cosine Matrix to QuaternionsPurpose Convert direction cosine matrix to quaternion vector

Library Transformations/Axes

Description The Direction Cosine Matrix to Quaternions block transforms a 3-by-3 
direction cosine matrix (DCM) into a four-element unit quaternion vector 
(q0,q1,q2,q3). The DCM performs the coordinate transformation of a vector in 
inertial axes to a vector in body axes. 

The DCM is defined as a function of a unit quaternion vector by the following: 

Using this representation of the DCM, there are a number of calculations to 
arrive at the correct quaternion. The first of these is to calculate the trace of 
the DCM to determine which set of algorithms are used. If the trace is greater 
that zero, the quaternion can be automatically calculated. When the trace is 
less than or equal to zero, the major diagonal element of the DCM with the 
greatest value must be identified to determine the final algorithm used to 
calculate the quaternion. Once the major diagonal element is identified, the 
quaternion is calculated. For a detailed view of these algorithms, look under 
the mask of the Direction Cosine Matrix to Quaternions block.

Dialog Box

Inputs and 
Outputs

The input is a 3-by-3 direction cosine matrix.

The output is a 4-by-1 quaternion vector.

DCM

q0
2 q1

2 q2
2 q3

2
––+( ) 2 q1q2 q0q3+( ) 2 q1q3 q0q2–( )

2 q1q2 q0q3–( ) q0
2 q1

2
– q2

2 q3
2

–+( ) 2 q2q3 q0q1+( )

2 q1q3 q0q2+( ) 2 q2q3 q0q1–( ) q0
2 q1

2
– q2

2 q3
2

+–( )

=



Direction Cosine Matrix to Quaternions

3-78

See Also Direction Cosine Matrix to Euler Angles 
Euler Angles to Direction Cosine Matrix 
Euler Angles to Quaternions 
Quaternions to Direction Cosine Matrix 
Quaternions to Euler Angles 
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3Discrete Wind Gust ModelPurpose Generate discrete wind gust

Library Environment/Wind

Description The Discrete Wind Gust Model block implements a wind gust of the standard 
“1-cosine” shape. This block implements the mathematical representation in 
the Military Specification MIL-F-8785C [1]. The gust is applied to each axis 
individually, or to all three axes at once. The user specifies the gust amplitude 
(the increase in wind speed generated by the gust), the gust length (length, in 
meters, over which the gust builds up) and the gust start time.

The Discrete Wind Gust Model block can represent the wind speed in units of 
feet per second, meters per second, or knots.

The following figure shows the shape of the gust with a start time of zero. The 
parameters that govern the gust shape are indicated on the diagram.

The discrete gust can be used singly or in multiples to assess airplane response 
to large wind disturbances.
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The mathematical representation of the discrete gust is

 

where Vm is the gust amplitude, dm is the gust length, x is the distance 
traveled, and Vwind is the resultant wind velocity in the body axis frame.

Dialog Box

Units of velocity
Define the units of wind gust. 
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Check for gust in u-axis
Select to apply the wind gust to the u-axis in the body frame.

Check for gust in v-axis
Select to apply the wind gust to the v-axis in the body frame.

Check for gust in w-axis
Select to apply the wind gust to the w-axis in the body frame.

Gust start time (seconds)
The model time, in seconds, at which the gust begins. 

Gust length (meters or feet)
The length, in meters or feet (depending on the choice of units), over which 
the gust builds up in each axis. 

Gust amplitude (meters/second, feet/second, or knots)
The magnitude of the increase in wind speed caused by the gust in each 
axis. 

Inputs and 
Outputs

The input is altitude in units selected.

The output is wind speed in units selected.

Examples See aeroblk_HL20.mdl example included with the blockset.

References Military Specification MIL-F-8785C, 5th November 1980.

See Also Dryden Wind Turbulence Model 
Wind Shear Model 
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3Dryden Wind Turbulence ModelPurpose Generate wind turbulence with the Dryden velocity spectra

Library Environment/Wind

Description The Dryden Wind Turbulence Model block uses the Dryden spectral 
representation to add turbulence to the aerospace model by passing 
band-limited white noise through appropriate forming filters. This block 
implements the mathematical representation in the Military Specification 
MIL-F-8785C [1].

Turbulence can be considered as a stochastic process defined by velocity 
spectra. For an aircraft flying at a speed V through a “frozen” turbulence field 
with a spatial frequency of  Ω radians per meter, the circular frequency ω is 
calculated by multiplying V by Ω. The appropriate component spectra for the 
Dryden model of turbulence are shown here.
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Vertical: 

b is the aircraft wingspan,  are the turbulence scale lengths, and σu, 
σv, σw are the turbulence intensities.

To generate a signal with the correct characteristics a unit variance 
band-limited white noise signal is passed through appropriate forming filters 
that are derived by taking the spectral square roots of the spectrum equations. 
The resulting transfer functions are shown here.
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Vertical: 

The turbulence scale lengths and intensities are functions of altitude, and 
there are two distinct regions.

Low-Altitude Model (Altitude < 1000 feet)
In [1] the turbulence scale lengths at low altitudes are as given below, where 

 is the altitude in feet. 

The turbulence intensities are given below, where  is the wind speed at 
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15 
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe” 
turbulence the wind speed is 45 knots. 
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Medium/High Altitudes (Altitude > 2000 feet)
For medium to high altitudes the turbulence scale lengths and intensities are 
based on the assumption that the turbulence is isotropic. In reference [1] the 
scale lengths are as given below: 

The turbulence intensities are determined from a lookup table that gives the 
turbulence intensity as a function of altitude and the probability of the 
turbulence intensity’s being exceeded.

Lu Lv Lw 1750= = = ft
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At altitudes between 1000 feet and 2000 feet, the turbulence scale lengths and 
intensities are determined by interpolating between the value from the low- 
altitude model at 1000 feet and the value from the high-altitude model at 2000 
feet.

Dialog Box

Units of Velocity
Define the units of wind speed due to the turbulence. 

Wind speed at 20 ft (6 m) defines the low altitude intensity
The measured wind speed at a height of 20 feet provides the intensity for 
the low-altitude turbulence model.

Wind Velocity Altitude Air Speed

Meters/second Meters/second Meters Meters/second

Feet/second Feet/second Feet Feet/second

Knots Knots Feet Knots
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Probability of exceedance of high altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table 
that gives the turbulence intensity as a function of altitude and the 
probability of the turbulence intensity’s being exceeded.

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant, and from 
reference [1] a figure of 1750 feet is recommended.

Wingspan
The wingspan is required in the calculation of the turbulence on the 
angular rates.

Band-limited noise sample time (seconds)
The sample time at which the unit variance white noise signal is generated. 

Noise seeds
There are four random numbers required to generate the turbulence 
signals, one for each of the three velocity components and one for the roll 
rate. The turbulences on the pitch and yaw angular rates are based on 
further shaping of the outputs from the shaping filters for the vertical and 
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and 
Outputs

The first input is altitude, in units selected.

The second input is aircraft speed, in units selected.

The first output is a three-element signal containing the turbulence velocities, 
in the selected units.

The second output is a three-element signal containing the turbulence angular 
rates, in radians per second.

Examples See the aeroblk_HL20.mdl example included with the blockset.

References Military Specification MIL-F-8785C, 5th November, 1980.
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See Also Discrete Wind Gust Model    
Wind Shear Model 
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3Euler Angles to Direction Cosine MatrixPurpose Convert Euler angles to direction cosine matrix

Library Transformations/Axes

Description The Euler Angles to Direction Cosine Matrix block converts the three Euler 
rotation angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix 
performs the coordinate transformation of a vector in inertial axes 

 into a vector in body axes . The order of the axis 
rotations required to bring  into coincidence with  
is first a rotation about  through the roll angle  to axes . 
Second a rotation about  through the pitch angle  to axes , 
and finally a rotation about  through the yaw angle  to 
axes .

Combining the three axis transformation matrices defines the following DCM.

ox0 oy0 oz0,,( ) ox3 oy3 oz3,,( )
ox3 oy3 oz3,,( ) ox0 oy0 oz0,,( )

ox3 φ( ) ox2 oy2 oz2,,( )
oy2 θ( ) ox1 oy1 oz1,,( )

oz1 ψ( )
ox0 oy0 oz0,,( )

ox3

oy3

oz3

DCM

ox0

oy0

oz0

=

ox3

oy3

oz3

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

ψcos ψsin 0
ψsin– ψcos 0

0 0 1

ox0

oy0

oz0

=

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–( ) φ θ ψsinsinsin φ ψcoscos–( ) φ θcossin
φ θ ψcossincos φ ψsinsin+( ) φ θ ψsinsincos φ ψcossin–( ) φ θcoscos

=
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Dialog Box

Inputs and 
Outputs

The input is a 3-by-1 vector of Euler angles.

The output is a 3-by-3 direction cosine matrix.

Examples See aeroblk_six_dof.mdl to see the use of the Euler Angles to Direction 
Cosine Matrix block in the implementation of the equations of motion for a 
rigid body.

See Also Direction Cosine Matrix to Euler Angles 
Direction Cosine Matrix to Quaternions   
Euler Angles to Quaternions 
Quaternions to Direction Cosine Matrix 
Quaternions to Euler Angles 
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3Euler Angles to QuaternionsPurpose Convert Euler angles to a quaternion vector

Library Transformations/Axes

Description The Euler Angles to Quaternions block converts the rotation described by the 
three Euler angles (roll, pitch, yaw) into the four-element quaternion vector 
(q0,q1,q2,q3). 

A quaternion vector represents a rotation about a unit vector ( ) 
through an angle . A unit quaternion itself has unit magnitude, and can be 
written in the following vector format.

An alternative representation of a quaternion is as a complex number, 

where, for the purposes of multiplication,

The benefit of representing the quaternion in this way is the ease with which 
the quaternion product can represent the resulting transformation after two or 
more rotations. The quaternion to represent the rotation through the three 
Euler angles is given below.

µx µy µz
θ

q

q0

q1

q2

q3

θ 2⁄( )cos
θ 2⁄( )µxsin

θ 2⁄( )µysin

θ 2⁄( )µzsin

= =

q q0 iq1 jq2 kq3+ + +=

i2 j2 k2 1–= = =

ij ji– k= =

jk kj– i
ki

,

ik– j
= =

= =

q qφqθqψ
φ
2
--- 
  i φ

2
--- 
 sin–cos 

  θ
2
--- 
  j θ

2
--- 
 sin–cos 

  ψ
2
---- 
  k ψ

2
---- 
 sin–cos 

 = =
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Expanding the preceding representation gives the four quaternion elements 
following.

Dialog Box

Inputs and 
Outputs

The input is a 3-by-1 vector of Euler angles.

The output is a 4-by-1 quaternion vector.

See Also Direction Cosine Matrix to Euler Angles 
Direction Cosine Matrix to Quaternions 
Euler Angles to Direction Cosine Matrix 
Quaternions to Direction Cosine Matrix 
Quaternions to Euler Angles 

q0

q1

q2

q3

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
  φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 sinsinsin+coscoscos

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
 cos φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 sinsincos–cossin

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
 cos φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 sincossin+sincos

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
 sin φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 sinsinsin–coscos

=
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3Equations of MotionPurpose Implement three-degrees-of-freedom equations of motion

Library Equations of Motion/3DoF

Description The 3DoF Equations of Motion block considers the rotation in the vertical plane 
of a body-fixed coordinate frame about an Earth-fixed reference frame. 

The equations of motion are given below:

where the applied forces are assumed to act at the center of gravity of the body.

u·
Fx
m
------ qw– g θ

w·

sin–

Fz
m
------ qu g θ

q·

cos+ +

M
Iyy
-------

θ· q

=

=

=

=
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Dialog Box

Initial velocity [m/s]
A scalar value for the initial velocity of the body, (V0).

Initial body attitude [rad]
A scalar value for the initial pitch attitude of the body, .

Initial incidence [rad]
A scalar value for the initial angle between the velocity vector and the body, 

.

Initial body rotation rate [rad/sec]
A scalar value for the initial body rotation rate, (q0).

θ0( )

α0( )
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Initial position (x,z) [m]
A two-element vector containing the initial location of the body in the 
Earth-fixed reference frame.

Mass [kg]
A scalar value for the mass of the body.

Inertia [Kg.m2]
A scalar value for the inertia of the body.

Acceleration due to gravity [m/s2]
A scalar value for the acceleration due to gravity. If gravity is to be 
neglected in the simulation, this value can be set to 0.

Inputs and 
Outputs

The first input to the block is the force acting along the body x-axis, in Newtons 
.

The second input to the block is the force acting along the body z-axis, in 
Newtons .

The third input to the block is the applied pitch moment, in Newton.meters 
(M).

The first output from the block is the pitch attitude, in radians .

The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second 
squared .

The fourth output is a two-element vector containing the location of the body, 
in the Earth-fixed reference frame, in meters (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body 
resolved into the body-fixed coordinate frame, in meters per second (u,w).

The sixth output is a two-element vector containing the acceleration of the body 
resolved into the body-fixed coordinate frame, in meters per second squared 

(Ax,Az).

Examples See the Simulink model aeroblk_guidance.mdl for an example of the use of 
the 3DoF Equations of Motion block.

Fx( )

Fz( )

θ( )

q·( )



Equations of Motion

3-97

See Also Incidence & Airspeed
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3Force ConversionPurpose Convert from force units to desired force units

Library Transformations/Units

Description The Force Conversion block computes the conversion factor from specified 
input force units to specified output force units and applies the conversion 
factor to the input signal.

The Force Conversion block icon displays the input and output units selected 
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is force in initial force units. 

The output is force in final force units. 

lbf Pound force

N Newtons
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See Also Acceleration Conversion 
Angle Conversion 
Angular Acceleration Conversion 
Angular Velocity Conversion 
Density Conversion 
Length Conversion 
Mass Conversion 
Pressure Conversion 
Temperature Conversion 
Velocity Conversion 
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3Gain Scheduled Lead-LagPurpose Implement a first-order lead-lag with gain-scheduled coefficients

Library GNC

Description The Gain Scheduled Lead-Lag block implements a first-order lag of the form

where e is the filter input, and u the filter output.

The coefficients a and b are inputs to the block, and hence can be made 
dependent on flight condition or operating point. For example, they could be 
produced from the Look-Up Table (n-D) block.

Dialog Box

Initial state, x_initial
The initial internal state for the filter x_initial. Given this initial state, the 
initial output is given by

Inputs and 
Outputs

The first input is the filter input.

The second input is the numerator coefficient.

The third input is the denominator coefficient.

The output is the filter output

u 1 as+
1 bs+
----------------e=

u
t 0=

xinitial ae+
b

--------------------------------=
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3Incidence & AirspeedPurpose Calculate incidence and air speed

Library Equations of Motion/3DoF

Description The Incidence & Airspeed block supports the 3DoF equations of motion model 
by calculating the angle between the velocity vector and the body, and also the 
total air speed from the velocity components in the body-fixed coordinate 
frame.

 

Dialog Box

Inputs and 
Outputs

The input to the block is the two-element vector containing the velocity of the 
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle, in radians.

The second output is the velocity of the body.

Examples See the Simulink demo aeroblk_guidance.mdl for an example of the use of 
this block.

See Also Equations of Motion 

α w
u
---- 
 

V

atan

u2 w2
+

=

=
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3Interpolate Matrix(x)Purpose Return an interpolated matrix for given input x

Library GNC

Description The Interpolate Matrix(x) block interpolates a one-dimensional array of 
matrices.

This one-dimensional case assumes a matrix M is defined at a discrete number 
of values of an independent variable x = [ x1 x2 x3 ... xi  xi+1 ... xn ]. Then for 
xi < x < xi+1, the block output is given by

where the interpolation fraction is defined as

Dialog Box and 
Parameters

Matrix to interpolate
Matrix to be interpolated. It should be three dimensional, the first two 
dimensions corresponding to the matrix at each value of x. For example, if 
you have three matrices A, B, and C defined at x = 0, x = 0.5, and 
x = 1.0, then the input matrix is given by

matrix(:,:,1) = A;

matrix(:,:,2) = B;

matrix(:,:,3) = C;

1 λ–( )M xi( ) λM xi 1+( )+

λ x xi–( ) xi 1+ xi–( )⁄=
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Inputs and 
Outputs

The first input is the first independent variable.

The output is the interpolated matrix.

Assumptions 
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

Examples See the following Aerospace Blockset blocks: 1D Controller 
[A(v),B(v),C(v),D(v)], 1D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 1D 
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x,y)   
Interpolate Matrix(x,y,z) 
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3Interpolate Matrix(x,y)Purpose Return an interpolated matrix for given inputs x and y

Library GNC

Description The Interpolate Matrix(x,y) block interpolates a two-dimensional array of 
matrices.

This two-dimensional case assumes the matrix is defined as a function of two 
independent variables, x = [ x1 x2 x3 ... xi  xi+1 ... xn ] and y = [ y1 y2 y3 ... yj yj+1 
... ym]. For given values of x and y, four matrices are interpolated. Then for 
xi < x < xi+1 and yj < y < yj+1, the output matrix is given by

where the two interpolation fractions are denoted by

 

and

 

Dialog Box and 
Parameters

Matrix to interpolate
Matrix to be interpolated. It should be four dimensional, the first two 
dimensions corresponding to the matrix at each value of x and y. For 
example, if you have four matrices A, B, C, and D defined at 

1 λy–( ) 1 λx–( )M xi yj,( ) λxM xi 1+ yj,( )+[ ]

λy 1 λx–( )M xi yj 1+,( ) λxM xi 1+ yj 1+,( )+[ ]

+

λx x xi–( ) xi 1+ xi–( )⁄=

λy y yj–( ) yj 1+ yj–( )⁄=
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(x = 0.0,y = 1.0), (x = 0.0,y = 3.0), (x = 1.0,y = 1.0) and 
(x = 1.0,y = 3.0), then the input matrix is given by

matrix(:,:,1,1) = A;

matrix(:,:,1,2) = B;

matrix(:,:,2,1) = C;

matrix(:,:,2,2) = D;

Inputs and 
Outputs

The first input is the first independent variable.

The second input is the second independent variable.

The output is the interpolated matrix.

Assumptions 
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

Examples See the following Aerospace Blockset blocks: 2D Controller 
[A(v),B(v),C(v),D(v)], 2D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 2D 
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x) 
Interpolate Matrix(x,y,z) 



Interpolate Matrix(x,y,z)

3-106

3Interpolate Matrix(x,y,z)Purpose Return an interpolated matrix for given inputs x, y, and z

Library GNC

Description The Interpolate Matrix(x,y,z) block interpolates a three-dimensional array of 
matrices.

This three-dimensional case assumes the matrix is defined as a function of 
three independent variables, x = [ x1 x2 x3 ... xi  xi+1 ... xn ], y = [ y1 y2 y3 ... yj yj+1 
... ym], and z = [ z1 z2 z3 ... zk  zk+1 ... zp ]. For given values of x, y, and z, eight 
matrices are interpolated. Then for xi < x < xi+1, yj < y < yj+1 and zk < z < zk+1, 
the output matrix is given by

where the three interpolation fractions are denoted by

 

In the three-dimensional case, the interpolation is carried out first on x, then 
y, and finally z.

1 λ– z( ) 1 λy–( ) 1 λx–( )M xi yj zk, ,( ) λxM xi 1+ yj zk, ,( )+[ ]

λy 1 λx–( )M xi yj 1+ zk,,( ) λxM xi 1+ yj 1+ zk,,( )+[ ]

+{

}

λz 1 λy–( ) 1 λx–( )M xi yj zk 1+, ,( ) λxM xi 1+ yj zk 1+, ,( )+[ ]

λy 1 λx–( )M xi yj 1+ zk 1+,,( ) λxM xi 1+ yj 1+ zk 1+,,( )+[ ]

+{

}

+

λx x xi–( ) xi 1+ xi–( )⁄=

λy y yj–( ) yj 1+ yj–( )⁄=

λz z zk–( ) zk 1+ zk–( )⁄=
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Dialog Box and 
Parameters

Matrix to interpolate
Matrix to be interpolated. It should be five dimensional, the first two 
dimensions corresponding to the matrix at each value of x, y, and z. For 
example, if you have eight matrices A, B, C, D, E, F, G, and H defined at 
the following values of x, y, and z, then the corresponding input matrix is 
given by

Inputs and 
Outputs

The first input is the first independent variable.

The second input is the second independent variable.

The third input is the third independent variable.

The output is the interpolated matrix.

(x = 0.0,y = 1.0,z = 0.1) matrix(:,:,1,1,1) = A;

(x = 0.0,y = 1.0,z = 0.5) matrix(:,:,1,1,2) = B;

(x = 0.0,y = 3.0,z = 0.1) matrix(:,:,1,2,1) = C;

(x = 0.0,y = 3.0,z = 0.5) matrix(:,:,1,2,2) = D;

(x = 1.0,y = 1.0,z = 0.1) matrix(:,:,2,1,1) = E;

(x = 1.0,y = 1.0,z = 0.5) matrix(:,:,2,1,2) = F;

(x = 1.0,y = 3.0,z = 0.1) matrix(:,:,2,2,1) = G;

(x = 1.0,y = 3.0,z = 0.5) matrix(:,:,2,2,2) = H;
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Assumptions 
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

Examples See the following Aerospace Blockset blocks: 3D Controller 
[A(v),B(v),C(v),D(v)], 3D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 3D 
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)    
Interpolate Matrix(x,y) 



ISA Atmosphere Model

3-109

3ISA Atmosphere ModelPurpose Implement the International Standard Atmosphere (ISA)

Library Environment/Atmosphere

Description The ISA Atmosphere Model block implements the mathematical 
representation of the international standard atmosphere values for absolute 
temperature, pressure, density, and speed of sound for the input geopotential 
altitude. 

The ISA Atmosphere Model block icon displays the input and output metric 
units.

Dialog Box

Inputs and 
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air 
density.

Assumptions 
and Limitations

Below the geopotential altitude of 0 Km and above the geopotential altitude of 
20 Km, temperature and pressure values are held. Density and speed of sound 
are calculated using a perfect gas relationship.

References [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, 
Washington, D.C.

See Also COESA Atmosphere Model      
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3Length ConversionPurpose Convert from length units to desired length units

Library Transformations/Units

Description The Length Conversion block computes the conversion factor from specified 
input length units to specified output length units and applies the conversion 
factor to the input signal.

The Length Conversion block icon displays the input and output units selected 
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

m Meters

ft Feet

km Kilometers

in Inches

mi Miles

naut mi Nautical miles
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Inputs and 
Outputs

The input is length in initial length units. 

The output is length in final length units. 

See Also Acceleration Conversion 
Angle Conversion 
Angular Acceleration Conversion 
Angular Velocity Conversion 
Density Conversion 
Force Conversion 
Mass Conversion 
Pressure Conversion 
Temperature Conversion 
Velocity Conversion 
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3Mass ConversionPurpose Convert from mass units to desired mass units

Library Transformations/Units

Description The Mass Conversion block computes the conversion factor from specified 
input mass units to specified output mass units and applies the conversion 
factor to the input signal.

The Mass Conversion block icon displays the input and output units selected 
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is mass in initial mass units. 

The output is mass in final mass units. 

lbm Pound mass

kg Kilograms

slug
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See Also Acceleration Conversion 
Angle Conversion 
Angular Acceleration Conversion 
Angular Velocity Conversion 
Density Conversion 
Length Conversion 
Force Conversion 
Pressure Conversion 
Temperature Conversion 
Velocity Conversion 
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3Pressure ConversionPurpose Convert from pressure units to desired pressure units

Library Transformations/Units

Description The Pressure Conversion block computes the conversion factor from specified 
input pressure units to specified output pressure units and applies the 
conversion factor to the input signal.

The Pressure Conversion block icon displays the input and output units 
selected from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is pressure in initial pressure units. 

The output is pressure in final pressure units. 

psi Pound mass per square inch

Pa Pascals

psf Pound mass per square foot

atm Atmospheres
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See Also Acceleration Conversion 
Angle Conversion 
Angular Acceleration Conversion 
Angular Velocity Conversion 
Density Conversion 
Force Conversion 
Length Conversion 
Mass Conversion 
Temperature Conversion 
Velocity Conversion 
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3Quaternions to Direction Cosine MatrixPurpose Convert quaternion vector to direction cosine matrix

Library Transformations/Axes

Description The Quaternions to Direction Cosine Matrix block transforms the four-element 
unit quaternion vector (q0,q1,q2,q3) into a 3-by-3 direction cosine matrix 
(DCM). The outputted DCM performs the coordinate transformation of a vector 
in inertial axes to a vector in body axes.

Using quaternion algebra, if a point P is subject to the rotation described by a 
quaternion q, it changes to P’ given by the following relationship:

Expanding P’ and collecting terms in x, y, and z gives the following for P’ in 
terms of P in the vector quaternion format.

Since individual terms in P’ are linear combinations of terms in x, y, and z, a 
matrix relationship to rotate the vector (x,y,z) to (x’,y’,z’) can be extracted from 
the preceding. This matrix rotates a vector in inertial axes, and hence is 
transposed to generate the DCM that performs the coordinate transformation 
of a vector in inertial axes into body axes.

P′ qPqc

q q0 iq1 jq2 kq3

qc
+ + +=

q0 iq1– jq2– kq3

P

–

0 ix jy kz+ + +

=

=

=

P′

0
x′
y′
z′

0

q0
2 q1

2 q2
2

– q3
2

–+( )x 2 q1q2 q0q3–( )y 2 q1q3 q0q2+( )z+ +

2 q0q3 q1q2+( )x q0
2 q1

2
– q2

2 q3
2

–+( )y 2 q2q3 q0q1–( )z+ +

2 q1q3 q0q2–( )x 2 q0q1 q2q3+( )y q0
2 q1

2
– q2

2
– q3

2
+( )z+ +

= =
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Dialog Box

Inputs and 
Outputs

The input is a 4-by-1 quaternion vector.

The output is a 3-by-3 direction cosine matrix.

Examples See aeroblk_six_dof.mdl for an example of the use of the Quaternions to 
Direction Cosine Matrix block in an implementation of the equations of motion 
of a rigid body.

See Also Direction Cosine Matrix to Euler Angles 
Direction Cosine Matrix to Quaternions    
Euler Angles to Direction Cosine Matrix 
Euler Angles to Quaternions 
Quaternions to Euler Angles 

DCM
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2 q2
2 q3

2
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2 q1

2
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2 q3
2
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2
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3Quaternions to Euler AnglesPurpose Convert quaternion vector to Euler angles

Library Transformations/Axes

Description The Quaternions to Euler Angles block converts the four-element unit 
quaternion (q0,q1,q2,q3) into the equivalent three Euler angle rotations (roll, 
pitch, yaw).

The conversion is generated by comparing elements in the direction cosine 
matrix (DCM), as functions of the Euler rotation angles, with elements in the 
DCM, as functions of a unit quaternion vector. 

From the preceding, you can derive the following relationships between DCM 
elements and individual Euler angles:

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–( ) φ θ ψsinsinsin φ ψcoscos–( ) φ θcossin
φ θ ψcossincos φ ψsinsin+( ) φ θ ψsinsincos φ ψcossin–( ) φ θcoscos

=

DCM

q0
2 q1

2 q2
2 q3

2
––+( ) 2 q1q2 q0q3+( ) 2 q1q3 q0q2–( )

2 q1q2 q0q3–( ) q0
2 q1

2
– q2

2 q3
2

–+( ) 2 q2q3 q0q1+( )

2 q1q3 q0q2+( ) 2 q2q3 q0q1–( ) q0
2 q1

2
– q2

2 q3
2

+–( )

=

φ DCM 2 3,( ) DCM 3 3,( ),( )atan=

2 q2q3 q0q1+( ) q0
2 q1

2
– q2

2 q3
2

+–( ),( )atan=

θ D– CM 1 3,( )( )asin=
2– q1q3 q0q2–( )( )asin=

ψ DCM 1 2,( ) DCM 1 1,( ),( )atan=

2 q1q2 q0q3+( ) q0
2 q1

2 q2
2 q3

2
––+( ),( )atan=
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Dialog Box

Inputs and 
Outputs

The input is a 4-by-1 quaternion vector.

The output is a 3-by-1 vector of Euler angles.

Assumptions 
and Limitations

This implementation generates a pitch angle that lies between  degrees, 
and roll and yaw angles that lie between degrees.

Examples See aero_six_dof.mdl for an example of the use of the Quaternions to Euler 
Angles block in an implementation of the equations of motion of a rigid body.

See Also Direction Cosine Matrix to Euler Angles      
Direction Cosine Matrix to Quaternions 
Euler Angles to Direction Cosine Matrix 
Euler Angles to Quaternions 
Quaternions to Direction Cosine Matrix 

90±
180±
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3Second Order Linear ActuatorPurpose Implement a second-order linear actuator

Library Actuators

Description The Second Order Linear Actuator block outputs the actual actuator position 
using the input demanded actuator position and other dialog parameters that 
define the system. 

Dialog Box

Natural frequency
The natural frequency of the actuator. The units of natural frequency are 
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Initial position
The initial position of the actuator. The units of initial position should be 
the same as the units of demanded actuator position.
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Inputs and 
Outputs

The input is the demanded actuator position. 

The output is the actual actuator position.

See Also Second Order Nonlinear Actuator        
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3Second Order Nonlinear ActuatorPurpose Implement a second-order actuator with rate and deflection limits

Library Actuators

Description The Second Order Nonlinear Actuator block outputs the actual actuator 
position using the input demanded actuator position and other dialog 
parameters that define the system.

Dialog Box
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Natural frequency
The natural frequency of the actuator. The units of natural frequency are 
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Maximum deflection
The largest actuator position allowable. The units of maximum deflection 
should be the same as the units of demanded actuator position.

Minimum deflection
The smallest actuator position allowable. The units of minimum deflection 
should be the same as the units of demanded actuator position.

Maximum rate
The fastest speed allowable for actuator motion. The units of maximum 
rate should be the units of demanded actuator position per second.

Initial position
The initial position of the actuator. The units of initial position should be 
the same as the units of demanded actuator position.

Inputs and 
Outputs

The input is the demanded actuator position. 

The output is the actual actuator position.

See Also Second Order Linear Actuator   
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3Self-Conditioned [A,B,C,D]Purpose Implement a state-space controller in a self-conditioned form

Library GNC

Description The Self-Conditioned [A,B,C,D] block can be used to implement the state-space 
controller defined by 

in the self-conditioned form 

The input umeas is a vector of the achieved actuator positions, and the output 
udem is the vector of controller actuator demands. In the case that the actuators 
are not limited, then umeas = udem and substituting the output equation into 
the state equation returns the nominal controller. In the case that they are not 
equal, the dynamics of the controller are set by the poles of A-HC.

Hence H must be chosen to make the poles sufficiently fast to track umeas but 
at the same time not so fast that noise on e is propagated to udem. The matrix 
H is designed by a callback to the Control Systems Toolbox command place.m 
to place the poles at defined locations.

x· Ax Be+=

u Cx De+=

z· A HC–( )z B HD–( )e Humeas++=

udem Cz De+=
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Dialog Box

A-matrix
A-matrix of the state-space implementation.

B-matrix
B-matrix of the state-space implementation.

C-matrix

C-matrix of the state-space implementation.

D-matrix
D-matrix of the state-space implementation.
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Initial state, x_initial
This is a vector of initial states for the controller, i.e., initial values for the 
state vector, z. It should have length equal to the size of the first dimension 
of A.

Poles of A-H*C
This is a vector of the desired poles of A-H*C. Hence the number of pole 
locations defined should be equal to the dimension of the A-matrix.

Inputs and 
Outputs

The first input is control error.

The second input is the measured actuator position.

The output is the actuator demands. 

Assumptions 
and Limitations

This block requires the Control Systems Toolbox.
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Examples This Simulink model shows a state-space controller implemented in both 
self-conditioned and standard state-space forms. The actuator authority limits 
of +/- 0.5 units are modeled by the saturation block.
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Notice that the A-matrix has a zero in the 1,1 element, indicating integral 
action.

The top trace shows the conventional state-space implementation. The output 
of the controller winds up well past the actuator upper authority limit of +0.5. 
The lower trace shows that the self-conditioned form results in an actuator 
demand that tracks the upper authority limit, which means that when the sign 
of the control error, e, is reversed, the actuator demand responds immediately.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols, 
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,” 
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)] 
2D Self-Conditioned [A(v),B(v),C(v),D(v)] 
3D Self-Conditioned [A(v),B(v),C(v),D(v)] 
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3Temperature ConversionPurpose Convert from temperature units to desired temperature units

Library Transformations/Units

Description The Temperature Conversion block computes the conversion factor from 
specified input temperature units to specified output temperature units and 
applies the conversion factor to the input signal.

The Temperature Conversion block icon displays the input and output units 
selected from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is temperature in initial temperature units. 

The output is temperature in final temperature units. 

K Degrees Kelvin

F Degrees Fahrenheit

C Degrees Celsius

R Degrees Rankine
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See Also Acceleration Conversion 
Angle Conversion 
Angular Acceleration Conversion 
Angular Velocity Conversion 
Density Conversion 
Force Conversion 
Length Conversion 
Mass Conversion 
Pressure Conversion 
Velocity Conversion 
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3Turbofan Engine SystemPurpose Implement a first-order representation of a turbofan engine with controller

Library Propulsion

Description The Turbofan Engine System block computes the thrust and the weight of fuel 
flow of a turbofan engine and controller at a specific throttle position, Mach 
number, and altitude.

This system is represented by a first-order system with unitless heuristic 
lookup tables for thrust, thrust specific fuel consumption (TSFC), and engine 
time constant. For the lookup table data, thrust is a function of throttle position 
and Mach number, TSFC is a function of thrust and Mach number, and engine 
time constant is a function of thrust. The unitless lookup table outputs are 
corrected for altitude using the relative pressure ratio δ and relative 
temperature ratio θ, and scaled by Ratio of installed thrust to uninstalled 
thrust, Maximum sea-level static thrust, Sea-level static thrust specific 
fuel consumption, and Fastest engine time constant at sea-level static.

The Turbofan Engine System block icon displays the input and output units 
selected from the Units pop-up menu.
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Dialog Box

Units
Specifies the input and output units: 

Initial thrust source
Specifies the source of initial thrust: 

Altitude Thrust Fuel Flow

Metric Meters Newtons Kilograms per second

English Feet Pound force Pound mass per second

Internal Use initial thrust value from mask dialog.

External Use external input for initial thrust value.
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Initial thrust
Initial value for thrust.

Maximum sea-level static thrust
Maximum thrust at sea-level and at Mach = 0.

Fastest engine time constant at sea-level static
Sea-level static thrust specific fuel consumption

Thrust specific fuel consumption at sea-level, at Mach = 0, and at 
maximum thrust, in specified mass units per hour per specified thrust 
units.

Ratio of installed thrust to uninstalled thrust
Coefficient representing the loss in thrust due to engine installation.

Inputs and 
Outputs

The first input is throttle position. Throttle position can vary from zero to one, 
corresponding to no to full throttle.

The second input is Mach number.

The third input is altitude, in specified length units.

The first output is thrust, in specified force units.

The second output is fuel flow, in specified mass units per second.

Assumptions 
and Limitations

The atmosphere is at standard day conditions and an ideal gas.

Mach number is limited to less than 1.0.

This engine system is for indication purposes only. It is not meant to be used 
as a reference model.

References “Aeronautical Vestpocket Handbook,” United Technologies Pratt & Whitney, 
August, 1986.

Raymer, D.P., “Aircraft Design: A Conceptual Approach,” AIAA Education 
Series, Washington, DC, 1989.

Hill, P.G, and Peterson, C.R., “Mechanics and Thermodynamics of Propulsion,” 
Addison-Wesley Publishing Company, Reading, MA, 1970.
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3Velocity ConversionPurpose Convert from velocity units to desired velocity units

Library Transformations/Units

Description The Velocity Conversion block computes the conversion factor from specified 
input velocity units to specified output velocity units and applies the 
conversion factor to the input signal.

The Velocity Conversion block icon displays the input and output units selected 
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

m/s Meters per second

ft/s Feet per second

km/s Kilometers per second

in/s Inches per second

km/h Kilometers per hour
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Inputs and 
Outputs

The input is velocity in initial velocity units. 

The output is velocity in final velocity units. 

See Also Acceleration Conversion 
Angle Conversion 
Angular Acceleration Conversion 
Angular Velocity Conversion 
Density Conversion 
Force Conversion 
Length Conversion 
Mass Conversion 
Pressure Conversion 
Temperature Conversion 

mph Miles per hour

kts Nautical miles per hour
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3WGS84 Gravity ModelPurpose Implement the 1984 World Geodetic System (WGS84) representation of Earth’s 
gravity

Library Environment/Gravity

Description The WGS84 Gravity Model block implements the mathematical representation 
of the geocentric equipotential ellipsoid of the World Geodetic System 
(WGS84). The block output is the Earth’s gravity at a specific location. Gravity 
precision is controlled via Type of gravity model.

The WGS84 Gravity Model block icon displays the input and output units 
selected from the Units pop-up menu.

Dialog Box
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Type of gravity model
Specifies the method to calculate gravity:

• WGS84 Taylor Series

• WGS84 Close Approximation

• WGS84 Exact

Units
Specifies the input and output units: 

Exclude Earth’s atmosphere
When selected, the value for the Earth’s gravitational field excludes the 
mass of the atmosphere. 

If cleared, the value for the Earth’s gravitational field includes the mass of 
the atmosphere. 

This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact.

Precessing reference frame
When selected, the angular velocity of the Earth is calculated using the 
International Astronomical Union (IAU) value of the Earth’s angular 
velocity and the precession rate in right ascension. In order to obtain the 
precession rate in right ascension, Julian Centuries from Epoch J2000.0 is 
calculated using the dialog parameters of Month, Day, and Year. 

If cleared, the angular velocity of the Earth used is the value of the 
standard Earth rotating at a constant angular velocity. 

This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact.

Month
Specifies the month used to calculate Julian Centuries from Epoch 
J2000.0. 

Height Gravity

Metric Meters Meters per second squared

English Feet Feet per second squared



WGS84 Gravity Model

3-138

This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact and only when Precessing reference 
frame is selected.

Day
Specifies the day used to calculate Julian Centuries from Epoch J2000.0.

This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact and only when Precessing reference 
frame is selected.

Year
Specifies the year used to calculate Julian Centuries from Epoch J2000.0. 
The year must be 2000 or greater.

This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact and only when Precessing reference 
frame is selected.

No centrifugal effects
When selected, calculated gravity is based on pure attraction resulting 
from the normal gravitational potential. 

If cleared, calculated gravity includes the centrifugal force resulting from 
the Earth’s angular velocity.

This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact.

Inputs and 
Outputs

The first input is a vector containing altitudes in specified length units.

The second input is a vector containing latitudes in degrees.

The third input is a vector containing longitudes in degrees. This input is only 
available with Type of Gravity Model WGS84 Close Approximation or WGS84 
Exact.

The output is a vector containing gravities in specified acceleration units.
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Assumptions 
and Limitations

The WGS84 gravity calculations are based on the assumption of a geocentric 
equipotential ellipsoid of revolution. Since the gravity potential is assumed to 
be the same everywhere on the ellipsoid, there must be a specific theoretical 
gravity potential that can be uniquely determined from the four independent 
constants defining the ellipsoid.

Use of the WGS84 Taylor Series model should be limited to low geodetic 
heights. It will be sufficient near the surface when sub-microgal precision is not 
necessary. At medium and high geodetic heights, it will be less accurate.

Use of the WGS84 Close Approximation model should be limited to a geodetic 
height of 20000.0 m (approximately 65620.0 ft). Below this height, it will give 
results with sub-microgal precision.

References [1] NIMA TR8350.2: “Department of Defense World Geodetic System 1984, Its 
Definition and Relationship with Local Geodetic Systems.”
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3Wind Shear ModelPurpose Calculate wind shear conditions

Library Environment/Wind

Description The Wind Shear Model block adds wind shear to the aerospace model. This 
implementation is based on the mathematical representation in the Military 
Specification MIL-F-8785C [1]. The magnitude of the wind shear is given by 
the following equation for the mean wind profile as a function of altitude and 
the measured wind speed at 20 feet (6 m) above the ground.

where uw is the mean wind speed, W20 is the measured wind speed at an 
altitude of 20 feet,  is the altitude, and  is a constant equal to 0.15 feet for 
Category C flight phases and 2.0 feet for all other flight phases. Category C 
flight phases are defined in reference [1] to be terminal flight phases, which 
include takeoff, approach, and landing.

The resultant mean wind speed in the Earth-fixed axis frame is changed to 
body-fixed axis coordinates by multiplying by the direction cosine matrix 
(DCM) input to the block. The block output is the mean wind speed in the 
body-fixed axis.

uw W20

h
z0
----- 
 ln

20
z0
------ 
 ln

------------------ 3ft h 1000ft< <,=

h z0
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Dialog Box

Units of velocity

Define the units of wind shear. 

Flight Phase
Select flight phase:

- Category C - Terminal Flight Phases
- Other

Wind speed at 20 feet (or 6 m) altitude (meters/second, feet/second, or 
knots)

The measured wind speed at an altitude of 20 feet (6 m) above the ground. 

Wind direction at 20 feet altitude (degrees clockwise from north)
The direction of the wind at an altitude of 20 feet (6 m), measured in 
degrees clockwise from the direction of the Earth x-axis (north). The wind 
direction is defined as the direction from which the wind is coming.

Wind Altitude

Meters/second Meters/second Meters

Feet/second Feet/second Feet

Knots Knots Feet
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Inputs and 
Outputs

The first input is altitude, in units selected.

The second input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of the mean wind speed in the body axes frame, 
in the selected units.

Examples See the aeroblk_HL20.mdl example included with the blockset.

References Military Specification MIL-F-8785C, 5th November, 1980.

See Also Discrete Wind Gust Model 
Dryden Wind Turbulence Model 
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