Aerospace
Blockset

For Use with Simulink®

Modeling
—

Simulation
—

Implementation
—

User’s Guide .-.e‘\The MathWorks

Version 1

X L8

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
508-647-7000

508-647-7001

The MathWorks, Inc.

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information
Phone

Fax

Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Aerospace Blockset User’s Guide
© COPYRIGHT 2002 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by or for the federal government of the United States. By accepting delivery of the Program, the govern-
ment hereby agrees that this software qualifies as "commercial" computer software within the meaning
of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and
DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agree-
ment shall pertain to the government’s use and disclosure of the Program and Documentation, and shall
supersede any conflicting contractual terms or conditions. If this license fails to meet the government’s
minimum needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks,
and TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 2002 Online only New for Version 1 (Release 13)

1]

Using This Guide

Organization of this Document vi
Getting HelpOnline vii
For Further Help and Feedback viii
Related Products i ix
Requirements for the Aerospace Blockset ix
Other Related Products x
Typographical Conventions xi
Installation xii
Introduction

What Is the Aerospace Blockset? 1-2
Getting Started with the Aerospace Blockset 1-5
Opening the Aerospace Blockset on Windows Platforms 1-5
Opening the Aerospace Blockset on UNIX Platforms 1-7
Modeling with the Aerospace Blockset 1-9
Model Definition0 1-9
Model Simulation 1-19

Learning More About Simulink and Aerospace Blockset 1-20

Contents

ii

Contents

Case Study: Missile Guidance System

2

Missile Guidance System Model 2-2
Modeling Airframe Dynamics 2-3
ISA Atmosphere Model block 2-5
Aerodynamics & Equations of Motion Subsystem 2-7
Modeling a Classical Three-Loop Autopilot 2-10
Trimming and Linearizing an Airframe Model 2-11
Autopilot Design 2-12
Modeling the Homing Guidance Loop 2-13
Guidance Subsystem 2-14
Seeker/Tracker Subsystem 2-17
Simulating the Missile Guidance System 2-20
Extendingthe Model 2-22
References i 2-23

Block Reference

3|

Blocks —By Categoryc00 ... 3-2
Actuator Library Blocks 3-3
Animation Library Blocks 3-3
Environment/Atmosphere Library Blocks 3-3
Environment/Gravity Library Blocks 3-3
Environment/Wind Library Blocks 3-3
Equations of Motion/3DoF Library Blocks 34
Equations of Motion/6DoF Library Blocks 34
GNC Library Blocks 3-4
Propulsion Library Blocks 3-6
Transformation/Axes Library Blocks 3-6

Transformations/Units Library Blocks 3-7
Block Reference Page Description 3-8

Blocks — Alphabetical List 3-9

iii

iv Contents

Using This Guide

“Using This Guide” provides general information about the Aerospace Blockset and the
documentation. The following sections are included:

Organization of this Document (p. vi) Provides overview of the Aerospace Blockset
documentation.

Getting Help Online (p. vii) Describes the options available in accessing help while
using the Aerospace Blockset.

Related Products (p. ix) Describes other MathWorks products that are especially
relevant to the kinds of tasks you can perform with the
Aerospace Blockset as well as the requirements for the
Aerospace Blockset.

Typographical Conventions (p. xi) One-page table summarizing the typographical
conventions used in this document.

Installation (p. xii) Installation note.

Using This Guide

Organization of this Document

This guide contains tutorial sections that are designed to help you become
familiar with using the Aerospace Blockset with Simulink®, as well as a
reference section for finding detailed information on particular blocks in the
blockset:

¢ “Introduction” on page 1-1 provides an overview of fundamental Aerospace
Blockset concepts.

¢ “Case Study: Missile Guidance System” on page 2-1 provides an overview of
an application of the Aerospace Blockset.

¢ “Block Reference” on page 3-1 provides descriptions of each block’s
operation, parameters, and characteristics.

Use this guide in conjunction with the software to learn about the powerful
features of the Aerospace Blockset.

Note The User’s Guide documentation for the Aerospace Blockset assumes
that you are familiar with Simulink. See the Simulink documentation for
more information.

vi

Cetting Help Online

Getting Help Online

There are a number of easy ways to get help on the Aerospace Blockset while
you’re working at the computer:

¢ Block Help — Click the Help button in any block dialog box to view the
online reference documentation for that block.

Block Parameters: ISA Atmosphere Mod - E|

"Intemational Standard Atmozphere Maodel [mazk] (link]

Compute [nternational Standard Atmozphers [154) model for altitudes
between 0 Km and 20 Km.

ak I Cancel | Help | Apply |

¢ Simulink Library Browser — Right-click a block to access the help for that
block.

¢ Help browser — Select Full Product Family Help from the Help menu, or
type doc or helpdesk at the command line to display the Help browser. Select
Aerospace Blockset in the Contents pane.

¢ Command Line — Type doc('block name') at the command line to access
the help for a block with the name block name. Spaces and capitalization in
the block name are ignored.

¢ Help Desk (remote) — Use a Web browser or the Help browser to connect to
the MathWorks Web site at www.mathworks . com. Follow the Documentation
link on the Support Web page for remote access to the documentation.

¢ Release Information — Select Full Product Family Help from the Help
menu, or type whatsnew at the MATLAB® command line and select the
Aerospace Blockset Release Notes from the Contents pane of the Help
browser. You can also type info aeroblks at the MATLAB command line to
view detailed release information related to bug fixes and enhancements.

The Release Notes contain information about new features and recent
changes to the version of the Aerospace Blockset that you are using.

vii

Using This Guide

viii

For Further Help and Feedback

We hope you enjoy using the Aerospace Blockset and look forward to hearing
your comments and suggestions.

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports

Visit the MathWorks Web site at www.mathworks.com for complete contact
information.

Related Products

Related Products

The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Aerospace Blockset.

Requirements for the Aerospace Blockset
You must have the following products installed to use the Aerospace Blockset:

e MATLAB® 6.5
¢ Control System Toolbox 5.2
® Simulink 5.0

Virtual Reality-Based Visualization

The optional virtual reality-based visualization with the Aerospace Blockset
requires the Virtual Reality Toolbox Version 3.0. The toolbox ships with its own
virtual reality viewer.

You can improve the virtual reality speed and graphics resolution by adding a
graphics accelerator hardware card to your system. Animation of simulations
is sensitive to central processor and graphics card speed and memory.

ix

Using This Guide

Other Related Products

The toolboxes listed below all include functions that extend the capabilities of
MATLAB. The blocksets all include blocks that extend the capabilities of
Simulink. These products will enhance your use of the Aerospace Blockset in
various applications.

Product Description

Control System Toolbox Design and analyze feedback control systems
Real-Time Workshop Generate C code from Simulink models
Stateflow® Design and simulate event-driven systems
Stateflow Coder Generate C code from Stateflow charts
Virtual Reality Toolbox Create and manipulate virtual reality worlds

from within MATLAB and Simulink

Real-Time Workshop Generate production code for embedded
Embedded Coder systems

For more information about any of these products, see either

¢ The online documentation for that product if it is installed or if you are
reading the documentation from the CD

® The MathWorks Web site, at www.mathworks.com; see the “Products” section

Typographical Conventions

Typographical Conventions

This manual uses some or all of these conventions.

Item

Convention

Example

Example code

Function names, syntax,
filenames, directory/folder
names, and user input

Buttons and keys

Literal strings (in syntax
descriptions in reference
chapters)

Mathematical
expressions

MATLAB output

Menu and dialog box titles

New terms and for
emphasis

Omitted input arguments

String variables (from a
finite list)

Monospace font

Monospace font

Boldface with book title caps

Monospace bold for literals

Italics for variables

Standard text font for functions,
operators, and constants

Monospace font

Boldface with book title caps

Ttalics

(...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

Monospace italics

To assign the value 5 to A,
enter

A=5

The cos function finds the
cosine of each array element.

Syntax line example is
MLGetVar ML_var_name

Press the Enter key.

f = fregspace(n, 'whole')

This vector represents the
polynomial p = x? + 2x + 3.

MATLAB responds with
A =
5

Choose the File Options
menu.

An array is an ordered
collection of information.

[c,ia,ib] = union(...)

sysc = d2c(sysd, 'method"')

xi

Using This Guide

Installation

The Aerospace Blockset follows the same installation procedure as the
MATLAB toolboxes. See the MATLAB installation documentation for your
platform.

xii

Introduction

Welcome to the Aerospace Blockset, the premier tool for aerospace system simulation and code
generation. This section contains the following topics, which will help introduce you to the Aerospace
Blockset:

“What Is the Aerospace Blockset?” on This section provides an overview of the Aerospace

page 1-2 Blockset.

“Getting Started with the Aerospace This section describes how to open the Aerospace
Blockset” on page 1-5 Blockset in Simulink.

“Modeling with the Aerospace This section provides a tutorial on building Simulink

Blockset” on page 1-9 models and simulating them.

1 Introduction

What Is the Aerospace Blockset?

The Aerospace Blockset brings the full power of Simulink® to aerospace system
design, integration, and simulation by providing key aerospace subsystems
and components in the adaptable Simulink block format. From environmental
models to equations of motion, from gain scheduling to animation, the blockset
gives you the core components to rapidly and efficiently assemble a broad range
of large aerospace system architectures.

Use the Aerospace Blockset and Simulink to develop your aerospace system
concepts, and to efficiently revise and test throughout the life cycle of your
design. Use the Aerospace Blockset together with Real-Time Workshop® to
automatically generate code for real-time execution in rapid prototyping and
for hardware-in-the-loop systems.

The Aerospace Blockset is a collection of block libraries for use with Simulink.
The blockset extends Simulink by providing core components for large
aerospace systems. You can use blocks from the Aerospace Blockset in the
same way that you would use any other Simulink blocks, combining them with
blocks from other libraries to create sophisticated aerospace systems.

The Aerospace Blockset libraries are designed specifically for aerospace
applications and include such key operations as environmental modeling,
modeling equations of motion, gain scheduling, unit conversion, and more.

You will find that the blockset can be put to work rapidly. The blocks
implement mathematical representations from textbooks and references and
the experience of the engineers at The MathWorks.

What Is the Aerospace Blockset2

Notice THE MATHWORKS PROGRAMS HAVE NOT BEEN TESTED OR
CERTIFIED BY ANY GOVERNMENT AGENCY OR INDUSTRY
REGULATORY ORGANIZATION OR ANY OTHER THIRD PARTY. THE
PROGRAMS SHOULD NOT BE RELIED ON AS THE SOLE BASIS TO
SOLVE A PROBLEM WHOSE INCORRECT SOLUTION COULD RESULT
IN INJURY TO PERSON OR PROPERTY. THE PROGRAMS ARE NOT
DESIGNED NOR TESTED FOR A LEVEL OF RELIABILITY SUITABLE
FOR USE AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT OR
OTHER INFORMATION SYSTEMS OR HARDWARE, THE FAILURE OF
WHICH CAN REASONABLY BE EXPECTED TO CAUSE DEATH OR
PERSONAL INJURY OR PROPERTY OR ENVIRONMENTAL DAMAGE.
LICENSEE AGREES THAT PRIOR TO USING, INCORPORATING OR
DISTRIBUTING THE PROGRAMS IN ANY PRODUCT, IT WILL
THOROUGHLY TEST THE PRODUCT AND THE FUNCTIONALITY OF
THE PROGRAMS IN THAT PRODUCT AND BE SOLELY RESPONSIBLE
FOR ANY PROBLEMS OR FAILURES.

The Aerospace Blockset contains a collection of blocks organized in a set of
nested libraries. The best way to explore the blockset is to expand the
Aerospace Blockset entry in the Simulink Library Browser. The fully
expanded library list is shown here.

1-3

1 Introduction

[simulink Library Browser
File Edit Wiew Help

[= & Find ||

Actuators: asmolibvl AActuatars

=101 =]

El Simulink. -
(= W] Aerospace Blockset
| Actuators

2] fnimation [~ —+D.J|>t Animation
| Environment ==
| Equations of Mation vE)]_gLH Enviranment
2 GNC &
2| Propulsion ! Equations of Motion
| Transformations '

[+ W] COMA Reference Blackset E GME

[+ W] Communications Blocksst H(s)

----- B Control System Toolbox T

&1 B DSP Blockset Propulsion

[+ W Dials & Gauges Elockset

[+ Wh| Embedded Target For Motoraola MPCS!)__ A Tranzformations

[+ W] Embedded Target for TI C6000 DSP

[]I--- | Fixed-Point Blockset [_lLI

4 »

Ready A

See the Simulink documentation for complete information about the Library
Browser. To access the blockset through its own window (rather than through
the Library Browser), enter

aerolib

in the MATLAB Command Window. Double-click any library in the window to
display its contents.

For a complete list of all the blocks in the Aerospace Blockset by library, see
“Blocks — By Category” on page 3-2.

14

Cetting Started with the Aerospace Blockset

Getting Started with the Aerospace Blockset

To get started with the Aerospace Blockset, you need to use Simulink. All the
blocks in the Aerospace Blockset are designed for use together with the blocks
in the Simulink libraries. This section describes how to open the Aerospace
Blockset on Windows and on UNIX platforms.

® “Opening the Aerospace Blockset on Windows Platforms” on page 1-5
® “Opening the Aerospace Blockset on UNIX Platforms” on page 1-7

Opening the Aerospace Blockset on Windows
Platforms
You can open the Aerospace Blockset from the Simulink Library Browser.

Opening the Simulink Library Browser
To start Simulink, click the E icon in the MATLAB toolbar, or type

simulink

at the command line.

The Simulink Libraries

The libraries in the Simulink Library Browser contain all the basic elements
you need to construct a model. Look here for basic math operations, switches,
connectors, simulation control elements, and other items that do not have a
specific aerospace orientation.

Opening the Aerospace Blockset

On Windows platforms, the Simulink Library Browser opens when you start
Simulink. The left pane contains a list of all the blocksets that you currently
have installed.

1 Introduction

1-6

[& a find ||

Continuous: simulink /Continuous

= Tl Simulink
m Continuous

y Discontinuities

y Discrete

] Look-Up Tables
... 2| Math Operations
.. 22| Model verification
.. 21| Model-wide Utilities
.. 7t Ports & Subsystems
. 21| Signal Attributes
.. 2| Signal Routing
< 2| Sinks
. 23] Sources
.. 2 User-Defined Functions
[+ E| Aerospace Blockset
= E| CDMA Reference Blockset
- W Communications Blockset
W Control System Tookox
[+ | D3P Blockset

ri, Bl Fiale 2 Cainac Rlackeak

4

o

Ready

Discontinuities

Discrete

Look-Up T ables

tath Operations

Model Verfication

Modelwide Utilties
Poits & Subspstems

Signal Attibutes

=]
4

The first item in the list is the Simulink blockset itself, which is already
expanded to show the available Simulink libraries. Click the # symbol to the
left of any blockset name to expand the hierarchical list and display that

blockset’s libraries within the browser.

To open the Aerospace Blockset window from the MATLAB command line,

enter

aerolib

See the Simulink documentation for a complete description of the Library

Browser.

Cetting Started with the Aerospace Blockset

Opening the Aerospace Blockset on UNIX Platforms

You can open the Aerospace Blockset from the Simulink Library window.

Opening the Simulink Library Window
To start Simulink, click the E icon in the MATLAB toolbar, or type

simulink

at the command line.

The Simulink Libraries

The libraries in the Simulink Library window contain all the basic elements
you need to construct a model. Look here for basic math operations, switches,
connectors, simulation control elements, and other items that do not have a
specific aerospace orientation.

Opening the Aerospace Blockset

On UNIX platforms, the following Simulink Library window opens when you
start Simulink. To view other installed blocksets, double-click the Blocksets &
Toolboxes button.

[Z1Library: simulink =10l x|

File Edit “iew Formab Help

e

f . : -| =
X N N H &

Soumes Sinks Continuous Discmte Math Signal Signal
Crparations Routing Attributes

y=flu} =ik @ kv —F Mizc
\ Q| Kc
Discontinuities Look-Up UserDefined Model Fors & Mode -\Wide
Tables Functions Werfication Subsystems Liilities
Blocksets & Simulink Block Library 5.0 Demos
Toolboxes Copyright ic) 19902002 The MathWaorks, Inc.

Double-click the Aerospace Blockset icon to open the Aerospace Blockset.

1-7

1 Introduction

To open the Aerospace Blockset window from the MATLAB command line,
enter

aerolib

1-8

Modeling with the Aerospace Blockset

Modeling with the Aerospace Blockset

If you have never used Simulink before, take some time to get acquainted with
its features.

Begin by learning the two basic stages in model construction, discussed in the
following sections:

¢ “Model Definition” on page 1-9

¢ “Model Simulation” on page 1-19

Model Definition

Simulink is a software package for modeling, simulating, and analyzing
dynamic systems. Try building a simple model that drives an actuator with a
sine wave and displays the actuator’s position superimposed on the sine wave.

Note If you prefer to open the complete model shown below instead of
building it, type aeroblktutorial at the MATLAB command line.

N

A _dem Fo_ac
N A - Scope
Sine WMiave

Second Order Linear Actuatar

Following are the procedures for defining a model on Windows and UNIX
platforms.

¢ “Defining a Model on Windows Platforms” on page 1-10
¢ “Defining a Model on UNIX Platforms” on page 1-15

1 Introduction

Defining a Model on Windows Platforms
1 Start Simulink.

Click the | button in the MATLAB toolbar or enter simulink in the
MATLAB Command Window. The Library Browser appears.

[FAsimulink Library Browser] B4

Fle Edit Wiew Help

O = - Find ||

Continuous: simulink/Continuous

=1 Tl Simulink -
. 1 Continuous ‘l&
. 2] Discontinuities NAS |
y Discrete %Ck Digcontinuities
< 2 Look-Up Tables Mo |
. 2| Math Operations ﬂ ": Discrete
- 21| Madel Verification —
o 2| Model-wide Utlities y=fuk| Look-Up Tables
. 21| Ports & Subsystems
2 signal attributes +* = Math Operations
- signal Routing — X
2 Sinks ® o
] sources @ ModelYerification
... 21 User-Defined Functions
- | Aerospace Blockset Misc Modelwide Utilties ~
- il CDMA Reference Blockset
) | Communications Blackset J'I; J Ports & Subsystems
. g Control System Toolbox <
DSP Blockset 2 . .
?‘I g F I LILI I—an Signal Attributes

[
4

Ready

2 Open a new model.

Select New -> Model from the File menu in the Library Browser. A new
model window appears on your screen.

Alternate methods for creating a new model are by selecting New from the
File menu in the Simulink model or by using the key sequence Ctrl+N.

1-10

Modeling with the Aerospace Blockset

3 Add a Sine Wave block to the model.

a Click Sources in the Library Browser to view the blocks in the Simulink
Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

4 Add a Second Order Linear Actuator block to the model.

a Click the @ symbol next to Aerospace Blockset in the Library Browser
to expand the hierarchical list of the aerospace blocks.

b In the expanded list, click Actuators to view the blocks in the Actuator
library.

¢ Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Click Signal Routing in the Library Browser to view the blocks in the
Simulink Signals & Systems library.

b Drag the Mux block from the Signal Routing library into the model
window.

6 Add a Scope block to the model.

a Click Sinks in the Library Browser to view the blocks in the Simulink
Sinks library.

b Drag the Scope block from the Sinks library into the model window.
7 Resize the Mux block in the model.
a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

1-11

1 Introduction

1-12

8 Connect the blocks.
a Position the pointer near the output port of the Sine Wave block. Hold

down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.
Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.
a Double-click the Sine Wave block. The dialog box that appears allows you

to set the block’s parameters. Parameters are defining values that tell the
block how to operate.

For this example, configure the block to generate a 10 rad/sec sine wave
by entering 10 for the Frequency parameter. The sinusoid has the
default amplitude of 1 and phase of 0 specified by the Amplitude and
Phase offset parameters.

Modeling with the Aerospace Blockset

Block Parameters: Sine Wave
 Sine Wave

Output & sine wave where the sine wpe determines the computational
technique used. The parameters in the two types are related through:

Samples per period = 2pi / [Frequency * S ample time)
Mumber of offset samples = Phase * Samples per period / [2#gi]

Use the sample-based sine type if numerical problems due to running for
large times [e.g. overflow in absolute time) occur.

—P "
F

Sine type: ITime based j
Amplitude:
[1
Bias:
[o
Frequency [rad/sec]:
[1
Phase [rad]:
[o
Sample time:
[o

v Intempret vector parameters az 10

QK I Cancel Help

Apply

b Click OK.

1-13

1 Introduction

¢ Double-click the Second Order Linear Actuator block.

For this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial condition of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
condition parameters.

Block Parameters: Second Order Linear Actuatff |

— Second Order Linear Actuator [mazk) [link)]

Implement a second-order actuator model

— Parameters
Matural frequency:
150

Damping ratio:
(0.7

Initial pogition:
[0

kK I Cancel Help Spply

d Click OK.

You can now move on to the model simulation phase. See “Model Simulation”
on page 1-19.

1-14

Modeling with the Aerospace Blockset

Defining a Model on UNIX Platforms

1 Start Simulink.

Enter simulink in the MATLAB Command Window. The Simulink Library

window appears.

[Z1Library: simulink E o] [
File Edit “iew Formab Help
% bl -
:—‘{- e g 8 ""_‘ .m P
¥y Pl + X E |
Soumes Sinks Continuous Discmte Math Signal Signal
Crparations Routing Attributes
\ y=flu} n-lm| % %’*C‘;I; Misc
Discontinuities Look-Up UserDefined Model Fors & Mode -\Wide
Tables Functions Werfication Subsystems Liilities
Blocksets & Simulink Block Library 5.0 Demos
Toolboxes Copyright ic) 19902002 The MathWaorks, Inc.

2 Open a new model.

Select New -> Model from the File menu in the Simulink Library window.

A new model window appears on your screen.

Alternate methods for creating a new model are by selecting New from the

File menu in the Simulink model or by using the key sequence Ctrl+N.

1-15

1 Introduction

1-16

Add a Sine Wave block to the model.

Double-click Sources in the Simulink Library window to view the blocks
in the Simulink Sources library.

Drag the Sine Wave block from the Sources library into the new model
window.

Add a Second Order Linear Actuator block to the model.

d

Double-click Blocksets & Toolboxes in the Simulink Library window.
This opens the Blocksets and Toolboxes Library window.

Double-click Aerospace Blockset in the Blocksets and Toolboxes Library
window. This opens the Aerospace Blockset block libraries.

In the Aerospace Blockset block libraries, click Actuators to view the
blocks in the Actuator library.

Drag the Second Order Linear Actuator block into the model window.

Add a Mux block to the model.

Double-click Signal Routing in the Simulink Library to view the Signal
Routing blocks.

Drag the Mux block from the Signal Routing library into the model
window.

Add a Scope block to the model.

b

Double-click Sinks in the Simulink Library window to view the blocks in
the Simulink Sinks library.

Drag the Scope block from the Sinks library into the model window.

Modeling with the Aerospace Blockset

7 Resize the Mux block in the model.
a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

8 Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

b Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

¢ Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

d Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.
Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you
to set the block’s parameters. Parameters are defining values that tell the
block how to operate.

For this example, configure the block to generate a 10 rad/sec sine wave
by entering 10 for the Frequency parameter. The sinusoid has the
default amplitude of 1 and phase of 0 specified by the Amplitude and
Phase offset parameters.

1-17

1 Introduction

Bl0CK Paramerers: Sine yave |
—Sine Wave

Output 3 sine wave where the sine lype determines the computational
technique used. The parameters in the two types are related through:

Samples per period = 2°pi / [Frequency * Sample time]
Mumber of offset samples = Phase * S amples per period / [2+pi]

Use the sample-based sine type if numerical problems due to running for
large times [e g. overflow in abzolute time) oceur

B
F

Sine type: ITime based =
Amplitude:

Frequency (rad/sec):
f1
Phase [rad):
[o

Sample time:
[o

¥ Interpret vector parameters as 1-0

Ok I Cancel Help Apply

b Click OK.

¢ Double-click the Second Order Linear Actuator block.

For this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial condition of 0 radians

specified by the Natural frequency, Damping ratio, and Initial
condition parameters.

1-18

Modeling with the Aerospace Blockset

Block Parameters: Second Drder Linear Sckus #|

— Second Order Linear Actuator [mazk) [link)]

Implement a second-order actuator model

— Parameters
Matural frequency:
150

Damping ratio:
(0.7

Initial pogition:
[

kK I Cancel Help Spply

d Click OK.

You can now move on to the model simulation phase. See “Model Simulation”.

Model Simulation

You can run the simulation block diagram that you built to see how the system
behaves in time:

1 Double-click the Scope block if the Scope window is not already open on your
screen. The Scope window appears.

2 Select Start from the Simulation menu in the block diagram window. The
signal containing the 10 rad/sec sinusoid and the signal containing the
actuator position are plotted on the scope.

3 Adjust the Scope block’s display.

a While the simulation is running, right-click the y-axis of the scope and
select Autoscale. The vertical range of the scope is adjusted to better fit
the signal.

b Click the Properties button on the scope and enter 0.62832 for Time
range. This resizes the scope’s time axis to display only one cycle of the
signal.

1-19

1 Introduction

1-20

4 Vary the Sine Wave block parameters.

a While the simulation is running, double-click the Sine Wave block to open
it.
b Change the frequency of the sinusoid. Try entering 1 or 20 in the

Frequency field. Click Apply after entering each new value and observe
the changes on the scope.

5 Select Stop from the Simulation menu to stop the simulation.

Many parameters cannot be changed while a simulation is running. This is
usually the case for parameters that directly or indirectly alter a signal’s
dimensions or sample rate. There are some parameters, however, like the Sine
Wave Frequency parameter, that you can tune without terminating the
simulation.

Running a Simulation from an M-File

You can also modify and run a Simulink simulation from within a MATLAB
M-file. By doing this, you can automate the variation of model parameters to
explore a large number of simulation conditions rapidly and efficiently. For
information on how to do this, see “Running a Simulation Programmatically”
in the Simulink documentation.

Learning More About Simulink and Aerospace
Blockset

Here are more suggestions to help you get started with Simulink:

¢ Browse through the Simulink documentation to get complete exposure to all
of Simulink’s capabilities.

¢ Open the Simulink library as described in “Opening the Aerospace Blockset
on Windows Platforms” on page 1-5. Build a few simple models using blocks
from the Simulink and Aerospace Blockset libraries.

¢ Open some of the models in the Aerospace Blockset Demos library. Most of
the advanced demos have blocks that you can double-click to get information
about the algorithm or implementation. In each case, just select Start from
the Simulation menu to run the simulation.

Case Study: Missile
Guidance System

This chapter illustrates the process of designing and simulating a three-degrees-of-freedom missile
guidance system using Simulink and the Aerospace Blockset. The following sections are included.

“Missile Guidance System Model” on
page 2-2

“Modeling Airframe Dynamics” on
page 2-3

“Modeling a Classical Three-Loop
Autopilot” on page 2-10

“Modeling the Homing Guidance Loop”
on page 2-13

“Simulating the Missile Guidance
System” on page 2-20

“Extending the Model” on page 2-22

“References” on page 2-23

Open the model that is used in this case study

Implement atmospheric equations and the equations of
motion in the missile airframe.

Design the missile autopilot to control the acceleration
normal to the missile body.

Design the homing guidance loop to track the target and
generate the demands that are passed to the autopilot.

Simulate model and evaluate system performance.

Examine a full six-degrees-of-freedom equations of motion
representation.

Selected Bibliography

2 Cose Study: Missile Guidance System

2-2

Missile Guidance System Model

To view the missile guidance system model, type the following in the MATLAB
Command Window:

aeroblk_guidance

The missile airframe and autopilot are contained in the Airframe & Autopilot
subsystem. The homing guidance loop consists of the Seeker/Tracker
subsystem and the Guidance subsystem.

Eaeruhlkfguidance I [=[3

File Edit Wew Simulation Format Tools Help

DISH& B0 RES® > = [N ~|

Demanded look angle during target search L-rarwpos
Sigma_d

sigmadot || Sigmadot sigma_d e Ze T
| Range
+ s el Fod—mred Attude | Attitude
- Look fagle
Target ry 3DoF Animation
Positian Missile - Target Rm [Rm Miss 1
Separation 1
SeskerTracker Guidance Airframe
A
Autopilat
Miss Distance
Mizsile Body Angular Rate
Missile Attitude
Wlissie Positon
Double olick here to go to a
demo on timming and linearizing
airframe models
Ready |100e% |odeds 4

Modeling Airframe Dynamics

Modeling Airframe Dynamics

The model of the missile airframe used in this demonstration has been
presented in a number of published papers (References [1], [2], and [3]) on the
use of advanced control methods applied to missile autopilot design. The model
represents a tail-controlled missile traveling between Mach 2 and Mach 4, at
altitudes ranging between 3050 meters (10000 feet) and 18290 meters (60000
feet), and with typical angles of attack ranging between +20 degrees.

* Body Rate
b

x,U‘1 q

Center of
Gravity]
Incidence = o

Fin Deflection =1

ZW
Normal Acceleration =a_

Missile Airframe Model

The core element of the model is a nonlinear representation of the rigid body
dynamics of the airframe. The aerodynamic forces and moments acting on the
missile body are generated from coefficients that are nonlinear functions of
both incidence and Mach number. The model can easily be created in the
Simulink environment using the Aerospace Blockset.

The model of the missile airframe consists of two main components:
® “ISA Atmosphere Model block” on page 2-5
Calculates the change in atmospheric conditions with changing altitude.

® “Aerodynamics & Equations of Motion Subsystem” on page 2-7

Calculates the magnitude of the forces and moments acting on the missile
body, and integrates the equations of motion.

2-3

2 Cose Study: Missile Guidance System

To view the missile airframe model, enter the following in the MATLAB
Command Window:

aeroblk guidance_airframe

E!aeroblk_guidance_airframe = |EI|5|
File Edit Wiew Simulstion Formak Tools Help

D sEHS| %20 hE-®r o]

Model used to trim and linearize airframe

Temperature (K

Spead of Sound (mss)

Height (m3
Air Pressure (MAM™21
Air Density (Kg/m®31
Atmoszphere
model
e
| Rha =
Atitude
> a
-
q
R
az
-
(D
Fin Deflection W
Aerodynamics &
Equations of Motion
Double-click here to generate linearizations
Ready [100% |ode4s >

Modeling Airframe Dynamics

ISA Atmosphere Model block

The ISA Atmosphere Model block is an approximation of the International
Standard Atmosphere (ISA). This block consists of two sets of equations: one
set of equations models the troposphere region and the other set of equations
models the lower stratosphere region. The troposphere region lies between sea
level and 11000 meters (36089 feet). It is assumed that there is a linear
temperature drop with increasing altitude in the troposphere region. The lower
stratosphere region ranges between 11000 meters (36089 feet) and 20000
meters (65617 feet). It is assumed that the temperature remains constant in
the lower stratosphere region. The figure below displays how the speed of
sound and the air density vary with altitude.

ST

File Edit %iew Insert Tools Window Help

losda/xar’s @20

Speed of Sound
260

0 ez

0 2 4 6 2 10 12 14 16 18 20

Altitude [Km]
Air Density

0 2 4 G 8 10 12 14 16 18 20
Altitude [Km]

The following equations define the troposphere.

T=T,-Lh
_ ,(z)z%-l
p=ro 7
£
per, (B

o

2-5

2 Cose Study: Missile Guidance System

a = JYRT
The following equations define the lower stratosphere.
T =216.7°K
T\is (11000 h)
P =Py (_> e
o TO
8 8
P_p .(z)ﬁ_l . eﬁ(lmomh)
o TO
a = JYRT
where

T is the absolute temperature at mean sea level in degrees Kelvin.
Py is the air density at mean sea level in kg/m3.

P is the static pressure at mean sea level in N/m?.

h is the altitude in m.

T is the absolute temperature at altitude, h, in degrees Kelvin.
p is the air density at altitude h in kg/m?.

P is the static pressure at altitude h in N/m?2.

a is the speed of sound at altitude h in m/s?.

L is the lapse rate in degrees Kelvin/m.

R is the characteristic gas constant J/kg-degrees Kelvin.

v is the specific heat ratio.

g is the acceleration due to gravity in m/s2.

You can look under the mask of the ISA Atmosphere Model block to see how
these equations are implemented in the model.

2-6

Modeling Airframe Dynamics

Aerodynamics & Equations of Motion Subsystem

The Aerodynamics & Equations of Motion subsystem generates the forces and
moments applied to the missile in the body axes and integrates the equations
of motion that define the linear and angular motion of the airframe. The
aerodynamic coefficients are stored in data sets, and, during the simulation,
the value at the current operating condition is determined by interpolation
using the Interpolation (n-D) using PreLook-Up block.

E!aerohIk_guidance_airframe,.-"Aerodynamics & = | Ellll
File Edit “iew Simulation Format Tools Help

DEES $2B 9 REL® 1 o

Incidence & Airzpead

Hpha

U fof

v Thrust{_3)
Atitude (rad)
. o Fa) Aftitude
»
- Apha q (fadis) e 3)
q
. ot (radis't) | —— " d)
-a Fe »Fz () aot
Ye.Ze (M)
R XeZe
Rho U imés)
Fin 1] {1 (H-m)
®Fin ’ b 22 (mis2)
i Ao bz
Aerodynamics Equations of Mation
[Body Axes)
Ready [1o02 [[|odes v

The following are the three-degrees-of-freedom body axis equations of motion,
which are defined in the Equations of Motion (Body Axes) block:

U= (T+F,)/m-qW-gsin6
W =F,/m+qU +gcos6

q=M/I,

2-7

2 Cose Study: Missile Guidance System

0=gq

The following are the aerodynamic forces and moments equations, which are
defined in the Aerodynamics subsystem:

F_= (erefo(Mach,oc)
F, = quesz(Mach,oc,n)

M =g8,,d,,CyMach,a,n, q)
~ 1 2
q=5pV

The following are the stability axes variables, which are calculated in the
Incidence & Airspeed block:

V= JU+ W
o = atan(W/U)
where
0 is the attitude in radians.
q is the body rotation rate in rad/s.
M is the missile mass in Kg.
g is the acceleration due to gravity in m/s2.
1 vy is the moment of inertia about the y axis in Kg—m2 .
W is the acceleration in the Z body axis in m/s?.
¢ is the change in body rotation rate in rad/s2.
T is the thrust in the X body axis in N.
p is the air density in Kg/m3.
S, of is the reference area in m2.

Cx is the coefficient of aerodynamic force in the X axis.

C, is the coefficient of aerodynamic force in the Z axis.

2-8

Modeling Airframe Dynamics

C, is the coefficient of aerodynamic moment about the Y axis.
d, of is the reference length in meters.

7 is the fin angle in radians.

Fy is the aerodynamic force in the X body axis in N.
F, is the aerodynamic force in the Z body axis in N.
M is the aerodynamic moment along the Y body axis.
g is the dynamic pressure in Pa.

V is the airspeed in m/s.

o is the incidence in radians.

U is the velocity in the X body axis in m/s.

W is the velocity in the Z body axis in m/s

2-9

2 Cose Study: Missile Guidance System

Modeling a Classical Three-Loop Autopilot

The missile autopilot controls the acceleration normal to the missile body. In
this case study, the autopilot structure is a three-loop design using
measurements from an accelerometer placed ahead of the center of gravity and
arate gyro to provide additional damping. The figure below shows the classical
configuration of an autopilot. The controller gains are scheduled on incidence
and Mach number and they are tuned for robust performance at an altitude of
3050 meters (10000 feet).

Actuators | Airframe

Rate . Body Rate q

|

/{\ _ dg/dt
(e

" Mormal Acceleration
Accelerator 4
+

Designing an autopilot entails the following:

Gyro

F

¢ “Trimming and Linearizing an Airframe Model” on page 2-11

Models of the airframe pitch dynamics are derived for a number of trimmed
flight conditions.

¢ “Autopilot Design” on page 2-12
Provides overview of the autopilot design process.

2-10

Modeling a Classical Three-loop Autopilot

Trimming and Linearizing an Airframe Model

To design the autopilot using classical design techniques requires that linear
models of the airframe pitch dynamics be derived for a number of trimmed
flight conditions. MATLAB can determine the trim conditions and derive linear
state-space models directly from the nonlinear Simulink model. This saves
time and helps to validate the model. The functions provided by the Control
System Toolbox allow the designer to visualize the behavior of the airframe
open loop frequency (or time) responses.

The Airframe trim demo shows how to trim and linearize an airframe model.
To run this demo, enter the following in the MATLAB Command Window:

aeroblk_lin_aero

The output from this demo is a Bode diagram in the Control System Toolbox
viewer.

J LTI Viewer =10/ %]

File Edt Window Help

Ipg @2

Bode Diagram
From: Elerator

Magnitude (dB) ; Phase (deg)

2
0 T T T T T T TTTTT T T TTTTT T T TTTTT

Frequency (radfsec)

Change the line etyles shown in this LTI Viewer

2-11

2 Cose Study: Missile Guidance System

2-12

Avutopilot Design

Autopilot design can begin after the missile airframe has been linearized at a
number of flight conditions. Typically, autopilot designs are carried out on a
number of linear airframe models derived at varying flight conditions across
the expected flight envelope. To implement the autopilot in the nonlinear
model involves storing the autopilot gains in two-dimensional lookup tables,
and incorporating an anti-windup gain to prevent integrator windup when the
fin demands exceed the maximum limits. Testing the autopilot in the nonlinear
Simulink model is the best way to demonstrate satisfactory performance in the

presence of nonlinearities, such as actuator fin and rate limits and dynamically
changing gains.

The Autopilot subsystem is an implementation of the classical three-loop
autopilot design within Simulink.

E!aerohlk_guidance,.-"Airframe&Autopilot,.w"nutnpilot ii -0 ﬂ
File Edit Yiew Smulation Format Tools Help

D|@n§|%ﬁ|ﬂﬂ|ﬂ§—@|}lf‘lmma\ 'l

kg
Cowte
Alpha Kl
K
Mach
hizch Ka

Giain
Seheduled

. Antiindup
Gain

I_m

5 F Fin

Az_d Demand
F v
D

Ready 100% [|adeds v

Modeling the Homing Guidance Loop

Modeling the Homing Guidance Loop

The complete homing guidance loop consists of these two subsystems:

¢ “Guidance Subsystem” on page 2-14

Generates the normal acceleration demands that are passed to the autopilot.

¢ “Seeker/Tracker Subsystem” on page 2-17

Returns measurements of the relative motion between the missile and the
target.

The autopilot is now part of an inner loop within the overall homing guidance
system. See Reference [4] for information on different types of guidance
systems and on the analysis techniques that are used to quantify guidance loop
performance.

Eaeruhlkfguidance I [=[3

File Edit Wew Simulation Format Tools Help

DSH& B9 RES® > = [N ~|

Demanded look angle during target search LTWMDS
Sigma_d

sigmadot || Sigmadot sigma_d e Ze T
| Range
+ s el Fod—mred Attude | Attitude
- Look fagle
Target ry 3DoF Animation

Fosition Missile --= Target

Rm [Rm Wisz
Separation q

SeckenTracker

Guidance Airframe

A
Autopilat

Mizs Distance

Mizsile Body Angular Rate

Missile Attitude

hissile Pasition

Double olick here to go to a
demo on timming and linearizing
airframe models

Ready |100e% |odeds 4

2-13

2 Cose Study: Missile Guidance System

Guidance Subsystem

The Guidance subsystem performs an initial search to locate the target’s
position, and then generates demands during closed-loop tracking. A Stateflow
model is used to control the transfer between the different modes of these
operations. Stateflow is the ideal tool for rapidly defining all the operational
modes, both during normal operation and during unusual situations.

E!aeroblk_guidance,.-"Guidance iy =] |

File Edit Wiew Simulation Formak Tools Help

DIE2E& &+ 2R - mES®|» = [Noma ~]

Fure
-
Dt > =
Farge Il
N I
[Acquire] fAoquire % Sigrma_d——pe{_ 1)
Sigma_d
Acquisition =
Mode - tode
1
—- - az_dem
z az_fix
0.01 Sec
Hold Guidanes Pmeessor »H
{Updated & 100Hz)
e lﬂ—l Az_d
» a5 - Limit
© : Ll Hormal fAcceleration
Demand
. -
Sigmadot Froportianal -
Mavigation L
Gain
Ready [100%% |ode4s 5

Guidance Processor Statechart

Mode switching is triggered by events generated in Simulink or in the
Stateflow chart. The variable Mode, which is passed out to Simulink, is used
to control the Simulink model’s behavior and to determine the response of the
Simulink model. For example, the Guidance Processor state chart, which is
part of the Guidance subsystem, shows the actions the system takes in

2-14

Modeling the Homing Guidance Loop

response to either a loss of lock on the target or a failure to acquire the target’s
position during the target search.

During the target search, this Stateflow state chart controls the tracker
directly by sending demands to the seeker gimbals (Sigma_d). Target
acquisition is flagged by the tracker once the target lies within the beam width
of the seeker (Acquire) and, after a short delay, closed loop guidance starts.

File Edt Smulation View Toos Add Help

<) Stateflow {chart) aeroblk_guidance/Guidance/Guidance Processor (Updated @1 Ii: - |D|ﬂ

CEX:

"
1

-

{

Quidnce oz o)

Target_Search
an: Mocke=1; Sigma_ck0:incr=100:Acquire_time=H
olu: Sigma_ckaigma_ckd.01incr;

[Acquire_time=7] ! Timesut,

iy

Abort
an:Datonate=1;

W RN N RN NN RN RN RN IR AR AR R RN RN RN RN RN RRRRRRNT
L

i
'

Fuze
. [infGuickance Rackr_Guided)&&Range=1000]

[mert
anFuze=0;

enter{Guidance Taret Saanch)

hnammssEmsssmsssE s e

Ll

‘ Ready

2-15

2 Cose Study: Missile Guidance System

2-16

Proportional Navigation Guidance Measurements

Once the seeker has acquired the target a Proportional Navigation Guidance
(PNG) law is used to guide the missile until impact. This form of guidance law
has been used in guided missiles since the 1950s, and can be applied to radar-,
infrared-, or television-guided missiles. The navigation law requires
measurements of the closing velocity between the missile and target, which for
aradar-guided missile can be obtained using a Doppler tracking device, and an
estimate for the rate of change of the inertial sight line angle.

Target
e
__,//J 7 Seeker Dish
K
N g

Missile @1

»x, Inertial Reference

75
Proportional Navigation Guidance Measurements

where

A is navigation gain (> 2).
V. is closing velocity.

0}, is body attitude.

0, is sight line rate.

Oy is gimbal angle.

oL, is look angle.

04 is dish angle.

a, dem = M0, the demanded normal acceleration.

Modeling the Homing Guidance Loop

Seeker/Tracker Subsystem

The Seeker/Tracker subsystem controls the seeker gimbals to keep the seeker
dish aligned with the target, and it provides the guidance law with an estimate
of the sight line rate.

E!aerohlk_guidance,.-"Seeker,.-"Tracker - |I:I| X|
File Edit View Simulation Format Tools Help
. : -
D|BH§|$E|DQ|HE®|} IINormaI ‘I
D . o Look fagle
Look Angle
Acquire Flag P Acquire
Look Angle
Gimbal fngle P Gimbal Angle
- »a Target
9 Acquisition ¥
Sightline Rate T
b sigma_d Sigrmadat Closing velosity | ——W{ 2)
Sigma_d
Wi
Tracker and Sightline Rate ER . 2
Estimator R=ange Range
R
Range and
Clasing Welocity Estimates
Ready |100% [|odeds 5

Tracker and Sightline Rate Estimator

The Tracker and Sightline Rate Estimator, which is the most interesting
subsystem of the Seeker/Tracker subsystem because of its complex error
modeling, is shown below. It contains a number of feedback loops, estimated
parameters, and parasitic effects for the homing guidance. The tracker loop
time constant tors is set to 0.05 seconds, which is a compromise between
maximizing speed of response and keeping the noise transmission to within
acceptable levels. The stabilization loop compensates for body rotation rates,
and the gain Ks, which is the loop crossover frequency, is set as high as possible
subject to the limitations of the bandwidth of the stabilizing rate gyro. The
sight line rate estimate is a filtered value of the sum of the rate of change of the
dish angle measured by the stabilizing rate gyro and an estimated value for the
rate of change of the angular tracking error (e) measured by the receiver. In
this demonstration the bandwidth of the estimator filter is set to half that of
the bandwidth of the autopilot.

2-17

2 Cose Study: Missile Guidance System

2-18

[aeroblk_guidance/Seeker /Tracker/Tracker and Sightline Rate Estimator — 1ol x|
File Edit View Simulation Format Tools Help

DS E&E| % hEY®| b 8o =

Angular Noise
paasl>
Cish Eror Mode Guided Flight
Look Angle
FReceier
I
.—p Sigre_d Dizh Erar] Dizh emor
Sigma_d sightiine Rate |—e{ 2)
Sightline
i
Girnbal Rate
Tracking Estimator Filter
Anake Switch to Closed Gain
Gimbal Loop Tracking
Stabilzation J——
Gain
- woyme
2420 T wgyros+wgyn 2
Stabilzing Frate Gym
Ready [100% |ode4s v

Radome Aberration.

Radome aberration is also modeled by the Tracker and Sightline Rate
Estimator subsystem. Radome aberration is a parasitic feedback effect that is
commonly modeled in radar-guided missile designs. This effect occurs because
the shape of the protective covering over the seeker distorts the returning
signal, and then gives a false reading of the look angle to the target. Generally
the amount of distortion is a nonlinear function of the current gimbal angle, but
a commonly used approximation is to assume a linear relationship between the
gimbal angle and the magnitude of the distortion. Other parasitic effects, such

Modeling the Homing Guidance Loop

as sensitivity to normal acceleration in the rate gyros, are also often modeled
to test the robustness of the target tracker and estimator filters.

Radome Error 6,=K,G, A Apparent Target

/ a /ﬁ'l‘me Target

* Gr/{:/ﬁ Seeker

£
s

e

i

s
_f/fif” Gimbal Angle &
e g
e T Seeker Axis
Radome

Radome Aberration Angles

2-19

2 Cose Study: Missile Guidance System

Simulating the Missile Guidance System

2-20

Running the guidance simulation demonstrates the performance of the overall
system. The target is defined to be traveling at a constant speed of 328 m/s on
a reciprocal course to the initial missile heading and 500 meters above the
initial missile position. The data, shown in the figure below, can be used to
determine if the missile can withstand the flight demands and complete the

mission.

<) Figure No. 2 o [m] 1

File Edit Wiew Insert Tools ‘Window Help
__ 40 20
=2 H
= = E
.% 20 ﬁﬁ ------------ 1. ------ -E--—
o 3 !
[a¥] Lo e oo ___1 T
& 0 § 10
o 20 — E.o]) " PR - —— I
= E . : :
& - .
= 40 0
0] 1 2 3
Time [Sec]
2.1 T 10
i =
- X 0
8305 ' =
£ = E
= ! o -
= i £
5 af . 2
E] = -
: i Dol
2.95 :

Time [Sec] Time [Sec]

Simulating the Missile Guidance System

The simulation results show that target acquisition occurred 0.69 seconds into
the engagement, with closed loop guidance starting after 0.89 seconds. Impact
with the target occurred at 3.46 seconds, and the range to go at the point of
closest approach was calculated to be 0.26 meters.

<} Figure No. 3 i] 4

File Edit Miew Insert Tools ‘Window Help

DEzEaE@ YA A/ | 2e o

30 T T T I I I

v | — True Look Angle
20 I T Gimbal Angle

' ' ! # Wlode Changes

-
]

Gimbal & Look Angles [deg|
3 o

Fa
=

1.5 2 2.5 3
Time [Sec]

Ity
=

=]
=TT
n
—_

2-21

2 Cose Study: Missile Guidance System

Extending the Model

Modeling the airframe and guidance loop in a single plane is only the start of
the design process. Extending the model to a full six-degrees-of-freedom
representation requires the implementation of the full equations of motion for
a rigid body.

There are two blocks for integrating the equations of motion in the Aerospace
Blockset. Both of these blocks use standard Simulink component blocks. The
first implementation uses a quaternion to represent the angular orientation of
the body in space, which is ideal for simulations where the standard Euler
angle definitions become singular as the pitch attitude tends to +90 degrees.
The second implementation uses the standard Euler angle equations of motion,
which is ideal when using the model to obtain trim conditions and linear
airframe models. A model containing one of the six-degrees-of-freedom
equations of motion blocks is shown below.

E!aeruhlk_sir:_duf i [=] S

File Edit Wiew Simulation Format Tools Help

-
W) iy T el fes Ll |:|
He)

-
L

Farees X ¥ T (M) Foaon in Trarial Awas
Buer (= —’IbT’ prer
Fadians o Inertizl
Euler =
M o
Angles b —’-EI egrees

b i)

Welocity in Body Axes > I:I
FIN T) K e
Radians 1o

oot qdot, ot (radizAg) degrees Body

Equations of Motion

[o =3

Shock

Ready |1o0%% |ode4s v

2-22

References

References

Bennani, S., D.M.C. Willemsen, and C.W. Scherer, “Robust LPV control with
bounded parameter rates,” AIAA-97-3641, August 1997.

Mracek, C. P and J.R. Cloutier, “Full Envelope Missile Longitudinal
Autopilot Design Using the State-Dependent Riccati Equation Method,”
ATAA-97-3767, August 1997.

Shamma, J.S. and J.R. Cloutier, “Gain-Scheduled Missile Autopilot Design
Using Linear Parameter Varying Transformations,” Journal of Guidance,
Control and Dynamics, Vol. 16, No. 2, March-April 1993.

Lin, Ching-Fang, “Modern Navigation, Guidance, and Control Processing,”
Volume 2, ISBN 0-13-596230-7, Prentice Hall, 1991.

2-23

2 Cose Study: Missile Guidance System

2-24

Block Reference

Blocks — By Category (p. 3-2) Provides tables of Aerospace Blockset blocks by category.

Blocks — Alphabetical List (p. 3-9) Provides an alphabetical list of Aerospace Blockset
blocks.

3 Block Reference

Blocks — By Category

The Aerospace Blockset’s main library, aerolib, organizes its blocks into
libraries according to their behavior. The aerolib window displays the block

library icons and names:

Actuator Library Blocks
Animation Library Blocks

Environment/Atmosphere
Library Blocks

Environment/Gravity
Library Blocks

Environment/Wind Library
Blocks

Equations of Motion/3DoF
Library Blocks

Equations of Motion/6DoF
Library Blocks

GNC Library Blocks
Propulsion Library Blocks

Transformation/Axes
Library Blocks

Transformations/Units
Library Blocks

Contain actuator models.

Contain blocks that provide 3-D animation
during simulation.

Contain atmosphere models.

Contain gravity models.

Contain wind models.

Contain three-degrees-of-freedom equations of
motion blocks.

Contain six-degrees-of-freedom equations of
motion blocks.

Contain gain scheduling blocks.
Contain simple propulsion system models.

Contain blocks that convert reference axes.

Contain blocks that convert unit axes.

Blocks — By Category

Actuator Library Blocks

Second Order Linear Implement a second-order linear actuator
Actuator

Second Order Nonlinear Implement a second-order actuator with rate
Actuator and deflection limits

Animation Library Blocks

3DoF Animation Create a 3-D Handle Graphics animation of a
three-degrees-of-freedom object

6DoF Animation Create a 3-D Handle Graphics animation of a
six-degrees-of-freedom object

Environment/Atmosphere Library Blocks
COESA Atmosphere Model Implement the 1976 COESA lower atmosphere

ISA Atmosphere Model Implement the International Standard
Atmosphere (ISA)

Environment/Gravity Library Blocks

WGS84 Gravity Model Implement the 1984 World Geodetic System
representation of Earth’s gravity

Environment/Wind Library Blocks
Discrete Wind Gust Model Generate discrete wind gust

Dryden Wind Turbulence = Generate wind turbulence with the Dryden
Model velocity spectra

Wind Shear Model Calculate wind shear conditions

3 Block Reference

Equations of Motion/3DoF Library Blocks

Equations of Motion Implement three-degrees-of-freedom equations
of motion
Incidence & Airspeed Calculate incidence and air speed

Equations of Motion/6DoF Library Blocks

6DoF (Euler Angles) Implement an Euler angle representation of
six-degrees-of-freedom equations of motion

6DoF (Quaternion) Implement a quaternion representation of
six-degrees-of-freedom equations of motion

GNC Library Blocks

1D Controller Implement a gain-scheduled state-space

[A(v),B(v),C(v),D(v)] controller depending on one scheduling
parameter

1D Controller Blend Implement a 1-D vector of state-space

u=(1-L).K1.y+L.K2.y controllers by linear interpolation of their
outputs

1D Observer Form Implement a gain-scheduled state-space

[A(v),B(v),C(v),F(v),H(v)] controller in an observer form depending on
one scheduling parameter

1D Self-Conditioned Implement a gain-scheduled state-space

[A(v),B(v),C(v),D(v)] controller in a self-conditioned form

2D Controller Implement a gain-scheduled state-space

[A(v),B(v),C(v),D(v)] controller depending on two scheduling
parameters

2D Controller Blend Implement a 2-D vector of state-space
controllers by linear interpolation of their
outputs

Blocks — By Category

2D Observer Form
[AW),B(),C(v),F(v),H(v)]

2D Self-Conditioned
[A(v),B(v),C(v),D(v)]

3D Controller
[A(v),B(v),C(v),D(v)]

3D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned
[A(W),B(v),C(v),D(v)]
Gain Scheduled Lead-Lag

Interpolate Matrix(x)
Interpolate Matrix(x,y)

Interpolate Matrix(x,y,z)

Self-Conditioned [A,B,C,D]

Implement a gain-scheduled state-space
controller in an observer form depending on
two scheduling parameters

Implement a gain-scheduled state-space
controller in a self-conditioned form

Implement a gain-scheduled state-space
controller depending on three scheduling
parameters

Implement a gain-scheduled state-space
controller in an observer form depending on
three scheduling parameters

Implement a gain-scheduled state-space
controller in a self-conditioned form

Implement a first-order lead-lag with
gain-scheduled coefficients

Return an interpolated matrix for given input x

Return an interpolated matrix for given inputs
xandy

Return an interpolated matrix for given inputs
X,y, and z

Implement a state-space controller in a
self-conditioned form

3 Block Reference

Propulsion Library Blocks

Turbofan Engine System Implement a first-order representation of a
turbofan engine with controller

Transformation/Axes Library Blocks

3x3 Cross Product Calculate the cross product of two 3-by-1
vectors

Direction Cosine Matrix to Convert direction cosine matrix to Euler angles
Euler Angles

Direction Cosine Matrix to Convert direction cosine matrix to quaternion
Quaternions vector

Euler Angles to Direction =~ Convert Euler angles to direction cosine matrix
Cosine Matrix

Euler Angles to Convert Euler angles to quaternion vector
Quaternions

Quaternions to Direction Convert quaternion vector to direction cosine
Cosine Matrix matrix

Quaternions to Euler Convert quaternion vector to Euler angles
Angles

3-6

Blocks — By Category

Transformations/Units Library Blocks

Acceleration Conversion

Angle Conversion

Angular Acceleration
Conversion

Angular Velocity
Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Convert from acceleration units to desired
acceleration units

Convert from angle units to desired angle units

Convert from angular acceleration units to
desired angular acceleration units

Convert from angular velocity units to desired
angular velocity units

Convert from density units to desired density
units

Convert from force units to desired force units

Convert from length units to desired length
units

Convert from mass units to desired mass units

Convert from pressure units to desired
pressure units

Convert from temperature units to desired
temperature units

Convert from velocity units to desired velocity
units

3-7

3 Block Reference

Block Reference Page Description

Blocks appear in alphabetical order and contain the following information:

¢ The block name, icon, and block library that contains the block
¢ The purpose of the block
® A description of the block’s use
® The block dialog box and parameters
¢ Additional information, as it applies to the block:
= Inputs and outputs descriptions
= Assumptions and limitations to the block’s use
= Examples using the block
= References to other documents
* A “See Also” of related blocks

Blocks — Alphabetical List

Blocks — Alphabetical List

1D Controller [A(v),B(v),C(v),DW)] 3-12
1D Controller Blend u=(1-L). K1.y+L.K2.y 3-15
1D Observer Form [A(v),Bv),Cv),FV),H™)] L. 3-18
1D Self-Conditioned [A(v),BV),Cv),D¥)] i .. 3-21
2D Controller [Av),Bv),C(v),D(V)]o 3-25
2D Controller Blend i 3-28
2D Observer Form [A(v),B(v),C(v),Fv),H™)] 3-32
2D Self-Conditioned [A(v),B(v),C(v),DV)] 3-36
3D Controller [A(v),B(v),C(v),DV)] i 3-40
3D Observer Form [A(v),B(v),C(v),Fv),H™)] 3-43
3D Self-Conditioned [A(V),B(v),CV),DW)] 3-47
3DoF Animation e 3-51
3x3 Cross Product 3-53
6DoF Animation e 3-54
6DoF (Euler Angles)t i 3-56
6DoF (Quaternion) it e 3-60
Acceleration Conversionc.oiiiitiriiiiiia 3-64
Angle Conversionttt ittt e 3-66
Angular Acceleration Conversionoiiiuieeeennnn. 3-68
Angular Velocity Conversionc.cuitieiiunennnennn. 3-70
COESA Atmosphere Model 3-72
Density Conversionoutiiite it eninieennn.. 3-74
Direction Cosine Matrix to Euler Angles 3-76
Direction Cosine Matrix to Quaternionsccouunn... 3-78
Discrete Wind Gust Model 3-80
Dryden Wind Turbulence Model 3-83
Euler Angles to Direction Cosine Matrix 3-91
Euler Angles to Quaternions0 i, 3-93
Equations of Motion e 3-95
Force Conversioniuuiutinie i, 3-99
Gain Scheduled Lead-Lag 3-101
Incidence & Airspeed 3-102
Interpolate Matrix(X)ottt 3-103
Interpolate Matrix(X,y)o 3-105
Interpolate Matrix(X,7,2)o v vt e 3-107

3-10

ISA Atmosphere Model i, 3-110
Length Conversion it 3-111
Mass CONVETrSIONoiute ittt et et e e 3-113
Pressure Conversionciiiiiiiiii i 3-115
Quaternions to Direction Cosine Matrix 3-117
Quaternions to Euler Angles 3-119
Second Order Linear Actuator 3-121
Second Order Nonlinear Actuator 3-123
Self-Conditioned [A,B,C,D] 3-125
Temperature Conversionouuiiuieennnennnnnnn. 3-130
Turbofan Engine System i, 3-132
Velocity Conversionc.c.uuteeeiniiiee i, 3-135
WGS84 Gravity Model 3-137
Wind Shear Model 3-141

1D Controller [A(v),B(v),C(v),D(v)]
|

Purpose Implement a gain-scheduled state-space controller depending on one
scheduling parameter

Library GNC

Description The 1D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

v
W

x= A(v)x + B(v)y
u= C(v)x+D(v)y

where v is a parameter over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

Dialog Box

Block Paramn: [x|
-~ StateSpacetBCD-10 [mask)

Implement a state-space controller [4.B.C.0] where &4, B, C, and D
depend oh one scheduling parameter, .

r— Parameter
A-matrisf+]:
Ja

B-mnatris[v]:
[E1

C-matris[+]:
Jo

[-matriz+):
o1

Scheduling wariable break points:

Iv_vec

Initial state, =_initial:
o

0K Cancel Help Aol

3-11

1D Controller [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

3-12

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1D scheduling,
the A-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the A-matrix

corresponding to the first entry of v is the identity matrix, then
A(;,:,1) =[10;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. In the case of 1D scheduling,
the B-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the B-matrix
corresponding to the first entry of v is the identity matrix, then
B(,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. In the case of 1D scheduling,
the C-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the C-matrix
corresponding to the first entry of v is the identity matrix, then
C(,:,1) =10;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. In the case of 1D scheduling,
the D-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the D-matrix
corresponding to the first entry of v is the identity matrix, then
D(,:,1) = [1 050 1];.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

1D Controller [A(v),B(v),C(v),D(v)]
|

The output is the actuator demands.

Assumptions If the scheduling parameter input to the block goes out of range, then it is
and Limitations clipped; i.e., the state-space matrices are not interpolated out of range.
Examples See the autopilot in the aeroblk HL20.md1l demo for an example of this block.
See Also 1D Controller Blend u=(1-L). K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Controller [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3-13

1D Controller Blend u=(1-L).K1.y+L.K2.y

Purpose

Library

Description

¥
W

3-14

Implement a 1-D vector of state-space controllers by linear interpolation of
their outputs

GNC

The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of
state-space controller designs. The controllers are run in parallel, and their
outputs interpolated according to the current flight condition or operating
point. The advantage of this implementation approach is that the state-space
matrices A, B, C, and D for the individual controller designs do not need to vary
smoothly from one design point to the next.

For example, suppose two controllers are designed at two operating points
U=U,,;, and v=v,,,,,.. The 1D Controller Blend block implements

951 =Ax +By
uy = Cix;+Dyy
Xg = Agxg+Boy
ug = C2x2+D2y
u = (1-Nu;+2Aru,

For longer arrays of design points, the blocks only implement nearest neighbor
designs. For the 1D Controller Blend block, at any given instant in time, three
controller designs are being updated. This reduces computational
requirements.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

1D Controller Blend u=(1-L).K1.y+L.K2.y

Dialog Box

— Blend-10 [mazk]

Blend between outputs of a 1-00 vectar of state-space controllers. All
controllers must have the same state dimension.

— Parameters
A-mnatrisfv]:
fa

B-matrix[+]:

I

C-matriz[+]:
C

Dr-rnatrisfs]:
D

Scheduling variable breakpaints:

Iv_vec:

Initial state. ®_initial:

jo

FPoleg of afw]-H[»Clv] = [wl ... wA]:
[15-21

u]:4 I Cancel Help Al

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1D blending, the
A-matrix should have three dimensions, the last one corresponding to
scheduling variable v. Hence, for example, if the A-matrix corresponding to
the first entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation.

C-matrix(v)
C-matrix of the state-space implementation.

D-matrix(v)
D-matrix of the state-space implementation.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

3-15

1D Controller Blend u=(1-L).K1.y+L.K2.y

Inputs and
Outputs

Assumptions
and Limitations

Examples

References

See Also

3-16

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The output is the actuator demands.

This block requires the Control Systems Toolbox.

See the autopilot in the aeroblk_HL20.md1l demo for an example of this block
in use.

Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

1D Controller [A(v),B(v),C(¥),D(¥)]

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Controller Blend

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose

Library

Description

w-y_dem
W

U_meas

u_dem

Dialog Box

GNC

Implement a gain-scheduled state-space controller in an observer form
depending on one scheduling parameter

The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer for:

= (A()+H@)C()x +B)u,, 06 * HO)Y =Y gom)

Ugem= F(v)x

Black P: |
— StateSpaceABCFH-1D [mask)

The main application of this blocks is to implement a controller designed using
H-infinity loop-shaping, one of the design methods supported by the
U -Analysis and Synthesis Toolbox.

Implement a state-space controller [&,B,C.F H] in observer form where &,
B.C.F, and H depend on one scheduling parameter.

—Par

Aematrix{v]:

&

B-miakriw]):

E

C-ratris+]:

|c

F-matrif]:

|F

H-matrix{+]:

H

Scheduling vanable breakpoints:

|v_vec

Initial state, 4_initial

|D

Ok Carcel

Help

Aol

3-17

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 11;.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 11;.

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 11;.

F-matrix(v)
State-feedback matrix. The F-matrix should have three dimensions, the
last one corresponding to the scheduling variable v. Hence, for example, if
the F-matrix corresponding to the first entry of v is the identity matrix,
then F(:,:,1) = [1 0;0 1];.

H-matrix(v)
Observer (output injection) matrix. The H-matrix should have three
dimensions, the last one corresponding to the scheduling variable v. Hence,
for example, if the H-matrix corresponding to the first entry of v is the
identity matrix, then H(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and The first input is the set-point error.
Outputs

3-18

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Assumptions
and Limitations

Examples

References

See Also

The second input is the scheduling variable.
The third input is measured actuator position.
The output is the actuator demands.

If the scheduling parameter input to the block goes out of range, then it is
clipped; i.e., the state-space matrices are not interpolated out of range.

See the observer implementation within the aeroblk_HL20.md1l demo.

Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

1D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y
1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-19

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose Implement a gain-scheduled state-space controller in a self-conditioned form
Library GNC
Description The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a

” gain-scheduled state-space controller as defined by the equations

W u_dem p

u_meas

x= A(v)x+B(v)y
u= C(v)x+D(v)y

in the self-conditioned form

2= (A(v)-Hw)C(v))z +(B(v)-H(v)D(v))e+ H(v)u

meas

Ugom= C(v)z+D(v)e

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
parameter over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a
function of v, which is often the case in aerospace applications.

3-20

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Dialog Box

E Pai 1 =l
— StateSpaceSelfCond-10 [mask)

Implement a state-zpace controller [&[v].Blv].Clw).D[+]] in a
sell-conditioned form. If u_meas = u_dem, then the implemented contraller
iz [&.B.C.D] If u_meas is imited, e.q.. rate limiting, then the poles of the
controller become thosze defined in the mask dialog box. Uses call to
Contral Spstems Toolbox function place.m when intializing. &, B, C. and D
should be 3-0 matices, the last dimension cormezponding to the
scheduling parameter, and the first two comesponding to the matri« for a
aiven set of scheduling parameter values.

— Parameter
L-matriv(v]:
[

B-matrix[+]:
B

C-matrix[]:
c

D-mnatrisf+]:
D

Scheduling variable breakpoints:

I\-'_\rec

Initial state, ¥_initial:
fo
Poles of Alv]-H[]Clv] = [wl ... wi]:
[1:5-21

Qg | Cancel | Help | Apoly |

A-matrix(v)

A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)

B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 1];.

3-21

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Assumptions
and Limitations

3-22

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 11;.

D-matrix(v)
D-matrix of the state-space implementation. The D-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the D-matrix corresponding to the first entry of v is
the identity matrix, then D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The third input is the measured actuator position.

The output is the actuator demands.

If the scheduling parameter input to the block goes out of range, then it is
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control Systems Toolbox.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]
|

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Controller [A(v),B(v),C(v),D(v)]
1D Controller Blend u=(1-L).K1.y+L.K2.y
1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-23

2D Controller [A(v),B(v),C(v),D(v)]

Purpose

Library

Description

W
vl up
w2

Dialog Box

Implement a gain-scheduled state-space controller depending on two

scheduling parameters

GNC

The 2D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

x= A(v)x + B(v)y
u= C(v)x+D(v)y

where v is a vector of parameters over which A, B, C, and D are defined. This
type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

Block
[~ StateSpacedBCD-2D [mask)

Implement a state-space contioller [4. 8 .C.0] where &, B, C. and D
depend on twa scheduling parameters, w1 and v2.

P
Param

T
A-matris[w1,v2)

e

B-matrix(v1,v2).

[e

C-matrix(+1.v2).

Ic

D-malrikfy1 2

[o

First scheduling variable [v1) breakpoints:

|v‘Lvac

Second scheduling varable [v2) breakpoints:

|v27vec

Initial state, #_initial:

[o

0k | cacel | mep | e

A-matrix(vl,v2)

3-24

A-matrix of the state-space implementation. In the case of 2D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix

corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

2D Controller [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

B-matrix(vl,v2)
B-matrix of the state-space implementation. In the case of 2D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then B(:,:;,1,1) = [1 0;0 1];.

C-matrix(vl,v2)
C-matrix of the state-space implementation. In the case of 2D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then C(:,;,1,1) = [1 0;0 1];.

D-matrix(vl,v2)
D-matrix of the state-space implementation. In the case of 2D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

The first input is the measurements.

The second and third block inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

3-25

2D Controller [A(v),B(v),C(v),D(v)]

Assumptions
and Limitations

Examples

See Also

3-26

If the scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

See the autopilot in the aeroblk HL20.mdl demo for an example of this block.

1D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

Purpose

Library

Description

v
wi

w2

Implement a 2-D vector of state-space controllers by linear interpolation of
their outputs

GNC

The 2D Controller Blend block implements an array of state-space controller
designs. The controllers are run in parallel, and their outputs interpolated
according to the current flight condition or operating point. The advantage of
this implementation approach is that the state-space matrices A, B, C, and D
for the individual controller designs do not need to vary smoothly from one
design point to the next.

For the 2D Controller Blend block, at any given instant in time, nine controller
designs are updated.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

3-27

2D Controller Blend

Dialog Box

Block Para x|
—Blend-20 [mask)

Blend between outputs of a 2-0 vector of state-space controllers. Al
contrallers must have the same state dimension.

— Parameter
A-mnatrisv] v2):
[&

B-ratrisv1.v2):
E
C-mnatrisv1.v2):
B
D-matrisf+1 w2]:
o

First scheduling wariable [+1) breakpoints:

|\-"I_vec

Second scheduling variable [+2) breakpoints:

|v2_vec

Initial state, &_initial:
[0
Poles of Alv]-H[]Cl] = [wl .. wn]:
|52

Ok | Cancel | Help Spply

A-matrix(vl,v2)
A-matrix of the state-space implementation. In the case of 2D blending, the
A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then A(:,;,1,1) = [1 0;0 1];.

B-matrix(vl,v2)
B-matrix of the state-space implementation.

C-matrix(vl,v2)
C-matrix of the state-space implementation.

D-matrix(vl,v2)
D-matrix of the state-space implementation.

3-28

2D Controller Blend

Inputs and
Outputs

Assumptions
and Limitations

Examples

References

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The output is the actuator demands.

This block requires the Control Systems Toolbox.

See the autopilot in the aeroblk HL20.md1l demo for an example of this block
in use.

Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight

Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

3-29

2D Controller Blend

See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y
2D Controller [A(v),B(v),C(v),D(v)]
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-30

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose

Library

Description

w-y_dem

wl
w2 u_dem

U_meas

Implement a gain-scheduled state-space controller in an observer form
depending on two scheduling parameters

GNC

The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

= (A@)+H@W)C()x+B)t,,,0s * HO)Y =Y gom)
Ugem= F(v)x

The main application of these blocks is to implement a controller designed

using H-infinity loop-shaping, one of the design methods supported by the
U -Analysis and Synthesis Toolbox.

3-31

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Dialog Box

| — StateSpacetBCFH-20 [mazk]

Implement a state-space controller [4.8.C.F H] in obzerver form where &,
B, C,F, and H depend on bwo scheduling parameters.

 Parameters
A-matrinfv] v 2):
[
B-matrixfv1,w2):
B
C-matrisfw1,+2):
B

F-rnatrisfs1 42]:
[F
H-matrin(s1 2]
[H

Firgt scheduling vanable [+1] breakpoints:

|v1 _wec

Second gcheduling vanable [va] breakpoints:

I\-'2_vec

Initial state, #_initial
o

QK. | Cancel | Help Sppli

A-matrix(vl,v2)
A-matrix of the state-space implementation. In the case of 2D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then A(:,;,1,1) = [1 0;0 1];.

B-matrix(vl,v2)
B-matrix of the state-space implementation. In the case of 2D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then B(:,;,1,1) = [1 0;0 1];.

3-32

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Inputs and
Outputs

C-matrix(vl,v2)
C-matrix of the state-space implementation. In the case of 2D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then C(:,;,1,1) = [1 0;0 1];.

F-matrix(vl,v2)
State-feedback matrix. In the case of 2D scheduling, the F-matrix should
have four dimensions, the last two corresponding to scheduling variables
v1 and v2. Hence, for example, if the F-matrix corresponding to the first
entry of vl and first entry of v2 is the identity matrix, then F(:,:,1,1) = [1
0;0 1];.

H-matrix(vl,v2)
Observer (output injection) matrix. In the case of 2D scheduling, the
H-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the H-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then H(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of

v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state

vector, x. It should have length equal to the size of the first dimension of A.

The first input is the set-point error.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The fourth input is measured actuator position.

The output is the actuator demands.

3-33

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Assumptions If the scheduling parameter inputs to the block goes out of range, then they are
and Limitations clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the observer implementation within the aeroblk_HL20.md1 demo.

References Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]
2D Controller [A(v),B(v),C(v),D(v)]
2D Controller Blend
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-34

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose
Library

Description

¥

:; u_dem

u_meas

Implement a gain-scheduled state-space controller in a self-conditioned form
GNC

The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

x= A(w)x+B(v)y
u= C(v)x+D(v)y

in the self-conditioned form

2= (A(v)-Hw)C(v))z+ (B(v)-H(v)D(v))e+ H(v)u

meas

Ugom= C(v)z+D(v)e

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

3-35

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Dialog Box

— StateSpaceSelfCond-20 [mask)

Implement a state-space controller [&[v1.%2)B[w1,%2] Clv1.+2).D[1,+2]]
in a gelf-conditioned form. |f u_meas = u_dem, then the implemented
controller is [&,B,C.0]. If u_meas is imited, e.g., rate limiting, then the poles
aof the controller become those defined in the mask dialog box, Uses call
to Control Spstems T oolbox function place.m when intializing. &, B, C, and
[should be 4-0 matrices, the last two dimensions coresponding to the
scheduling parameters, and the first bwo comesponding to the matrix for a
given set of zchaduling parameter values.

— Parameter
A-matrisl] w2):

I
B-matrisf«1 42]:
I3
C-matrizf«1,v2):
Ic

D-matrizf+1.+2):
|p

First scheduling variable [+1] breakpoints:

I\-"I_vec

Second scheduling wanable (2] breakpoints:

|v2_vec

Imitial state, »_initial:
o
Puoles af Afv]-H[wClv) = [wl .. wn]
jr5-2

1] 4 | Cancel | Help | Al |

A-matrix(vl,v2)

A-matrix of the state-space implementation. In the case of 2D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of vl and first entry of v2 is the identity

matrix, then A(:,;,1,1) = [1 0;0 1];.
B-matrix(vl,v2)

B-matrix of the state-space implementation. In the case of 2D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix

3-36

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then B(:,:;,1,1) = [1 0;0 1];.

C-matrix(vl,v2)
C-matrix of the state-space implementation. In the case of 2D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then C(:,;,1,1) = [1 0;0 1];.

D-matrix(vl,v2)
D-matrix of the state-space implementation. In the case of 2D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.
Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter, v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The fourth input is the measured actuator position.

3-37

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Assumptions
and Limitations

References

See Also

3-38

The output is the actuator demands.

If the scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control Systems Toolbox.

The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(Vv)]

Purpose

Library

Description

v
wl

w2
w3

Dialog Box

Implement a gain-scheduled state-space controller depending on three

scheduling parameters

GNC

The 3D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

x= A(v)x + B(v)y
u= C(v)x+D(v)y

where v is a vector of parameters over which A, B, C, and D are defined. This
type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

— StateSpaceABCD-3D [mask]

Implement a state-space controller [4,B.C.0] where &, B, C, and D
depend on three scheduling parameters, 1, w2, and w3,

A-matiiafv] 2w 3):

Ja
B-matriz(+1,%2,3]:

IE
C-matriz(+1,w2,%3]:

Ic
Dr-matris[v] w2,3):

|o

First scheduling wariable [v1] breakpoints:

IvT_vec

Second scheduling variable [+2) breakpoints:

|v2_vec:

Third scheduling variable [+3) breakpoints:

|v3_vec:

Initial state, »_initial:

Jo

Ok Cancel Help

Apply

3-39

3D Controller [A(v),B(v),C(v),D(v)]

3-40

A-matrix(vl,v2,v3)

A-matrix of the state-space implementation. In the case of 3D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) =[100;0 1 0; 0 0 1];.

B-matrix(vl,v2,v3)

B-matrix of the state-space implementation. In the case of 3D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(vl,v2,v3)

C-matrix of the state-space implementation. In the case of 3D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(vl,v2,v3)

D-matrix of the state-space implementation. In the case of 3D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,;,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

3D Controller [A(v),B(v),C(v),D(Vv)]

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

The first input is the measurements.

The second, third and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

If the scheduling parameter input to the block goes out of range, then it is
clipped; i.e., the state-space matrices are not interpolated out of range.

See the autopilot in the aeroblk HL20.md1l demo for an example of this block.
1D Controller [A(v),B(v),C(v),D(V)]
2D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-41

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose

Library

Description

wy_dem

wl

w2 u_dem
w3

u_meas

3-42

Implement a gain-scheduled state-space controller in an observer form
depending on three scheduling parameters

GNC

The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

= (A@)+HW)C()x+B)t,, 0 + HO)Y =Y gom)
Ugem= F(v)x
The main application of this block is to implement a controller designed using

H-infinity loop-shaping, one of the design methods supported by the
U -Analysis and Synthesis Toolbox.

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
|

Dialog Box

— StateSpacesBCFH-3D [mask)

Implement a state-space controller [4,B.C.F.H] in observer fom where &,
. |B.LC.F. and H depend on three scheduling parameters.

.~ Parameters
A-matriz(v] w2 w3
I
Ei-matriafv w2 w3
|E
C-matrialw1 w2 w3
Ic
F-matris{w] v 2.w3):
|F
H-matrisf+1, w2, 3]
|H

Firzt zcheduling vanable [+1] breakpoints:

Iv‘l_\-'ec

Second scheduling wariable [v2] break points:

|v2_\-'ec

Third scheduling wariable [+3] breakpoints:

|v3_vec

Initial state, «_initial:

Jo

QK I Cancel I Help Aoy

A-matrix(vl,v2,v3)
A-matrix of the state-space implementation. In the case of 3D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(vl,v2,v3)
B-matrix of the state-space implementation. In the case of 3D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

3-43

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Inputs and
Outputs

3-44

C-matrix(vl,v2,v3)
C-matrix of the state-space implementation. In the case of 3D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

F-matrix(vl,v2,v3)
State-feedback matrix. In the case of 3D scheduling, the F-matrix should
have five dimensions, the last three corresponding to scheduling variables
v1, v2, and v3. Hence, for example, if the F-matrix corresponding to the
first entry of v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then F(:,:,1,1,1) = [1 0;0 1];.

H-matrix(vl,v2,v3)
observer (output injection) matrix. In the case of 3D scheduling, the
H-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the H-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then H(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

The first input is the set-point error.

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Assumptions
and Limitations

Examples

References

See Also

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is measured actuator position.
The output is the actuator demands.

If the scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

See the observer implementation within the aeroblk_HL20.md1l demo.

Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

1D Controller [A(v),B(v),C(v),D(¥)]]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]]
3D Controller [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-45

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose
Library

Description

v
wl

wi u_dem
]
u_meas

3-46

Implement a gain-scheduled state-space controller in a self-conditioned form
GNC

The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

x= A(v)x+B(v)y
u= C(v)x+D(v)y

in the self-conditioned form

2= (A(v)-Hw)C(v))z +(B(v)-H(v)D(v))e+ H(v)u

meas

Ugom= C(v)z+D(v)e

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. These blocks implement a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

3D Self-Conditioned [A(v),B(v),C(v),D(V)]

Dialog Box

— StatelS paceSelfCond-30 [mask)

Implement a state-space contraller

[A[w1 w2 v 3] B vl w2 3] Clvl w2 v3).0[1 %2 3] in & self-conditioned
form. IF u_meas = u_dem, then the implemented controller is [&.8.C.0]. If
u_meas iz limited, e.g.. rate limiting, then the poles of the controller
become those defined in the mask dialog box. Uzez call ta Contral
Systems Toolbox function place.m when initializing. & B, C, and D should
be 5-00 matrices, the last three dimengions comesponding to the
scheduling parameters, and the first bwo corresponding to the matrix for &
given set of scheduling parameter values.

— Parameters
A-matriz(v1 w2 3
I

B-matrin[v w2 w3
I

C-rnatriv[+] w2 v 3):
Ic
D-matrigful w2 43
|p

First scheduling variable [v1) breakpoints:

|V‘I_vec

Second scheduling variable [+2) break points:

|v2_vec

Third gcheduling wariable [+3] breakpoints:

|v3_vec

Initial state, «_initial:
|o
Poles of Afw]-H[»]"Clv] = [wl ... wn]:
[(5-a

ak | Cancel | Help Leppl

A-matrix(vl,v2,v3)

A-matrix of the state-space implementation. In the case of 3D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

3-47

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-48

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(vl,v2,v3)
C-matrix of the state-space implementation. In the case of 3D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(vl,v2,v3)
D-matrix of the state-space implementation. In the case of 3D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,;,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.
Poles of A(v)-H(v)*C(v)

Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the

3D Self-Conditioned [A(v),B(v),C(v),D(V)]

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.
The first input is the measurements.

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is the measured actuator position.

The output is the actuator demands.

Ifthe scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control Systems Toolbox.

The algorithm used to determine the matrix H is defined in Kautsky, Nichols,

and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]]
3D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-49

3DoF Animation

Purpose
Library

Description

Target Pos
He, e

Ftitude

Dialog Box

3-50

Create a 3-D Handle Graphics animation of a three-degrees-of-freedom object
Animation

The 3DoF Animation block displays a 3-D animated view of a
three-degrees-of-freedom (3DoF) craft, its trajectory, and its target using
Handle Graphics.

The 3DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Block Para s 3Dof &
— aDoF_&nimation [mask]

Create & 3-00 animated view of a three-degrees-of-freedom craft and itz
target, where ¥ and Z target pozition [T argetPoz], # and £ craft pozition
[<eZe], and craft attitude are inputs.

Digplay parameters are in the game units of length as the input parameters,

—Parameters
Aues limitz [Zmin gmax yrin yrmax zmin zmas];

| 2000 -5050 -3050]

Time interval between updates:;
f0.05

Size of craft dizplayed:
f1

Enter view: IFiHBd position j

Fosition of camera [sc ye zc]:
|[2DDD 500 -3150]

Wiew angle:
10

¥ Enable animation

0k Cancel Help Apply

3DoF Animation

Inputs

See Also

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation will be redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Enter view

Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are

¢ Fixed position
® Cockpit
¢ Fly alongside

Position of camera [xc yc zc]

Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.

View angle

Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation

When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

The first input is a vector containing the altitude and the downrange position
of the target in Earth coordinates.

The second input is a vector containing the altitude and the downrange
position of the craft in Earth coordinates.

The third input is the attitude of the craft.

6DoF Animation

3-51

3x3 Cross Product

Purpose Calculate the cross product of two 3-by-1 vectors
Library Transformations/Axes
Description The 3x3 Cross Product block computes cross (or vector) product of two vectors,
A and B, by generating a third vector, C, in a direction normal to the plane
A oss Product containing A and B, and with magnitude equal to the product of the lengths of
g =B “F AandB multiplied by the sine of the angle between them. The direction of C is
that in which a right-handed screw would move in turning from A to B.

A = aqi+aygj+agk
B = bji+byj+b3k

i jk
C=AxB=|a;aya4
b1b2b3

= (agbg—agbgy)i+(agb;—a bg)j+(ajbg—aysb)k

Dialog Box

Block Parameters Cross Product

"Eromproduct [mazk]

Calculate the crozs product of bwo 3-by-1 vectors,

kK, I Cancel | Help e i

Inputs and The inputs are two 3-by-1 vectors.

Ovutputs The output is a 3-by-1 vector.

3-52

6DoF Animation

Purpose
Library

Description

Pasition

Euler

Dialog Box

Create a 3-D Handle Graphics animation of a six-degrees-of-freedom object
Animation

The 6DoF Animation block displays a 3-D animated view of a
six-degrees-of-freedom (6DoF) craft, its trajectory, and its target using Handle
Graphics.

The 6DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Block Par. | x|
— BDoF_&nimation [maszk]

Create a 30 ammated view of a six-degrees-of-freedom craft, where =,
and £ craft pozition [Poszition] and craft Euler angles [Euler] are inputs,

Dizplay parameters are in the same units of length as the input parameters.

— Parameters
Az limits [min xmax ymin ymas zmin zmas);

I 2000 -5000 -2000]

Time interval between updates:
0.1

Size of craft displayed:
[1.0

Static obyect position [=p vp zpl:
{4000 0 -5000]

Enter view: IFi:-:ecI position j

Pozition of camera [#o yo zc):

|[2DEID 500 -3150]

Wiew angle:

|1|3

[+ Enable animation

] Cancel Help Spply

3-53

6DoF Animation

Inputs

See Also

3-54

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation will be redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Static object position

Specifies the altitude, the cross-range position, and the downrange position
of the target.

Enter view

Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are

= Fixed position
= Cockpit
= Fly alongside
Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.
View angle
Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation

When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

The first input is a vector containing the altitude, the cross-range position, and
the downrange position of the craft in Earth coordinates.

The second input is a vector containing the Euler angles of the craft.

3DoF Animation

6DoF (Euler Angles)

Purpose Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Library Equations of Motion/6DoF

Description The 6DoF (Euler Angles) block considers the rotation of a body-fixed coordinate

frame (X, Y,, Z;) about an Earth-fixed reference frame (X,,Y,,Z,) . The

origin of the body-fixed coordinate frame is the center of gravity of the body,

and the body is assumed to be rigid, an assumption that eliminates the need to
Euler (ad) consider the forces acting between individual elements of mass. The

:n”g're's new Earth-fixed reference frame is considered inertial, a simplification that allows
wmep the forces due to the Earth’s motion relative to a star-fixed reference system to

Aboments LMNQHT) o be neglected.

i (i)

Forses ¥ 1 Z () e (m)

pdot qdat rdot (radés"2)

Center of
Gravity Xb
0 ub
/
/
/
/
— o Xe
» Yb Zb
vb wb

Yeé
Ze

Earth-fixed reference frame

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [F, F, FZ]T are in the body-fixed frame, and the mass
of the body m is assumed constant.

F

X

Fy=|F | = m(Vy+0xV,)
FZ

3-55

6DoF (Euler Angles)

|

(o]
]
<

(e

e
]

N QT

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M NIT, and the inertia tensor I is with respect to the

origin O.
L
Mg= M| = Io+ox (o)
N
Ixx _Ixy _Ixz
=111, -1,
_sz _Izy Izz

The relationship between the body-fixed angular velocity vector, [p q 1T, and
the rate of change of the Euler angles, [¢ 6 17, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

o| [t0 0 |0 |10 0 |lcosB O-sin6|0] _|¢
=10/t |0 cos¢p sing||6] T |0 cos¢p sing|[0 10 0=J |
v

N QT

0 0 —sin¢ cosd| [0 0 —sin¢ cos¢||[sin® 0 cosO | |y

Inverting J then gives the required relationship to determine the Euler rate

vector.
: 1 (sindptan®) (cosdptan6d
b 8 (sino) (')) »
N _ |0 cosd —sin¢
0 q . q
) - sin ¢ cosd ,
v cos0 cos0

3-56

6DoF (Euler Angles)

Dialog Box

— BDwoF [Euler Anglez] Eobd [mask)]

Integrate the six-degrees-of-freedom equations of mation wsing an Euler
angle representation for the onentation of the body in space.

Inputs are forces on the body in 8-axis, p-axis, and 2-axis; and moments on
the body along #-axis, y-axis, and z-aris. Dutputs are translational velocity
ih R-axiz. y-axis. and 2-axis in inertial coordinates: position in 2-asis, y-agis,
and z-axis i inertial coordinates; phi, theta, and psi; 3-by-3 dirsction
cosine matriz; translational velocity in =-asis, y-axis. and z-axis in body
coordinates; rall, pitch, and yaw rate; and roll, pitch, and yaw acceleration,

— Parameters

Initial pozition in inertial axes [<e e L] [m]:

Jio oo

Imitial welocity in body axes [Uyv.w] [mds):

|[n oo

Iritial Euler orientation [roll. pitch, yaw] [rad):

Joouo
Initial body rotation rates [p.q.r] (radss):

Jio ooy
M azz (kg

1o

|mertia matris (ka.m™2):

Ie_l,le[S]

ak | Cancel | Help

Initial position in inertial axes

The three-element vector for the initial location of the body in the

Earth-fixed reference frame, in meters.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame, in meters per second.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,

yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians

per second.

3-57

6DoF (Euler Angles)

Inputs and
Outputs

Assumptions
and Limitations

See Also

3-58

Mass
The mass of the rigid body, in kilograms.

Inertia matrix
The 3-by-3 inertia tensor matrix I, in kilograms meters squared.

The first input to the block is a vector containing the three applied forces, in
Newtons, and the second input is a vector containing the three applied
moments, in Newton meters.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame, in meters per second.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame, in meters.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame, in meters per second.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

6DoF (Quaternion)

6DoF (Quaternion)

Purpose

Library

Description

Wiz (i)
He (m)
Forges XY Z (M)
Euler (rad)
Quatemions DCh
Wb (i)
hdoments L i N (H-m) P (radis)

pdat qdot rdot {radfs"2)

Implement a quaternion representation of six-degrees-of-freedom equations of
motion

Equations of Motion/6DoF

For a description of the coordinate system employed and the translational
dynamics, see the block description for the 6DoF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain K drives the norm of the quaternion state vector to 1.0 should ¢
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

90 d3 499 91 N
qq)_ 1|92 93 4o Z +Ke| N
ds 2 41 90 93|, D)
ds —99 91 42 ds

2 2 2 2
€=1-(qy +q1 +q3 +q4)

3-59

6DoF (Quaternion)

Dialog Box
B Bl
r— BDoF [Quaterion) Eakd [mask)

Integrate the zix-dearees-of-freedom equations of motion using a
quaternioh reprezentation for the orientation of the body in space.

Inputs are forces on the body in #-axis, p-axis, and z-axis; and moments on
the body along x-axiz, y-axis, and z-axis. Dutputs are translational velocity
In %-axis, p-axis, and z-axis in inertial coordinates; position in -axis, p-axis,
and z-auig in inertial coordinates; phi, theta, and psi; 3-bp-3 direction
cozine matrix; translational velocity in #-axis, p-axis, and z-axiz in body
coordinates; rall, pitch, and yaw rate; and rall, pitch, and yaw acceleration.

— Parameter:
Initial position in inertial axes [XeveZe] [m]:
|[D oo

Initial welocity in bodp axes [U,w.w] [mdz):
Joou

Initial Euler orientation [roll, pitch, vaw] rad):
Jiooa

|ritial bady rotation rates [poa.r [rad/s):
oo

Maszs [ka):

1o

Imertia matriz (kag.m”2):
|e_l,le[3]

Gain for quaternion normalization:

|1

oK. | Cancel | Help | Lpply |

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame, in meters.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame, in meters per second.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

3-60

6DoF (Quaternion)

Inputs and
Outputs

Assumptions

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Mass
The mass of the rigid body, in kilograms.

Inertia matrix
The 3-by-3 inertia tensor matrix I, in kilograms meters squared.

Normalization gain
The gain to maintain the norm of the quaternion vector equal to 1.0.

The first input to the block is a vector containing the three applied forces, in
Newtons, and the second input is a vector containing the three applied
moments, in Newton meters.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame, in meters per second.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame, in meters.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame, in meters per second.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The block assumes that the applied forces are acting at the center of gravity of

and Limitations the body, and that the mass and inertia are constant.

3-61

6DoF (Quaternion)

Examples See the Simulink model aeroblk six_dof.mdl for an example of the use of the
6DoF (Quaternion) block.

See Also 6DoF (Euler Angles)

3-62

Acceleration Conversion

Purpose
Library

Description

"2 mis2

Dialog Box

Convert from acceleration units to desired acceleration units
Transformations/Units

The Acceleration Conversion block computes the conversion factor from
specified input acceleration units to specified output acceleration units and
applies the conversion factor to the input signal.

The Acceleration Conversion block icon displays the input and output units
selected from the Initial units and the Final units pop-up menus.

x|
—Acceleration Conversion [mazk)
Convert unitz of input signal to desired autput units.
— Parameters
|mitial urits: Iftf'gA2 j
Firal units: Im,n'g"z j
0k | Cancel Help Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s"2 Meters per second squared
ft/s~2 Feet per second squared
km/s"2 Kilometers per second squared
in/s"2 Inches per second squared
km/h-s Kilometers per hour per second
mph-s Miles per hour per second

3-63

Acceleration Conversion

Inputs and
Outputs

See Also

3-64

The input is acceleration in initial acceleration units.

The output is acceleration in final acceleration units.

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion
Velocity Conversion

Angle Conversion

Purpose
Library

Description

deg rad

Dialog Box

Inputs and
Outputs

Convert from angle units to desired angle units

Transformations/Units

The Angle Conversion block computes the conversion factor from specified
input angle units to specified output angle units and applies the conversion

factor to the input signal.

The Angle Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

—Angle Conversion [mazk]

Carnvert unitz of input signal to desired output units.

— Parameters

Initial units: I.jeg

Final units: I;ad

QK | Cancel Help Apply

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

deg Degrees
rad Radians
rev Revolutions

The input is angle in initial angle units.

The output is angle in final angle units.

3-65

Angle Conversion

See Also

3-66

Acceleration Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion
Velocity Conversion

Angular Acceleration Conversion

Purpose
Library

Description

degis"? radie"Z p

Dialog Box

Inputs and
Outputs

Convert from angular acceleration units to desired angular acceleration units
Transformations/Units

The Angular Acceleration Conversion block computes the conversion factor
from specified input angular acceleration units to specified output angular
acceleration units and applies the conversion factor to the input signal.

The Angular Acceleration Conversion block icon displays the input and output
units selected from the Initial units and the Final units pop-up menus.

—&ngular Acceleration Conversion [maszk]

Convert units of input signal to desired output units.

— Parameters
Initial units: |.jegjg"2 i

Final units: Irad.‘s’? j

)8 | Cancel Help Spply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:
deg/s"2 Degrees per second squared
rad/s"2 Radians per second squared

rpm/s Revolutions per minute per second

The input is angular acceleration in initial angular acceleration units.

The output is angular acceleration in final angular acceleration units.

3-67

Angular Acceleration Conversion

See Also

3-68

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion
Velocity Conversion

Angular Velocity Conversion

Purpose
Library

Description

degiz radss

Dialog Box

Inputs and
Outputs

Convert from angular velocity units to desired angular velocity units

Transformations/Units

The Angular Velocity Conversion block computes the conversion factor from
specified input angular velocity units to specified output angular velocity units
and applies the conversion factor to the input signal.

The Angular Velocity Conversion block icon displays the input and output
units selected from the Initial units and the Final units pop-up menus.

Block Paramel 5 A

—Angular Yelocity Conversion [mazk)

Convert units of input gignal to desired output units,

— Parameters

Initial rits: Ideg,fs

Final unitz: Iral:l.-"s

ok | Cahcel Help Al

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

deg/s Degrees per second
rad/s Radians per second
rpm Revolutions per minute

The input is angular velocity in initial angular velocity units.

The output is angular velocity in final angular velocity units.

3-69

Angular Velocity Conversion

See Also

3-70

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion
Velocity Conversion

COESA Atmosphere Model

Purpose
Library

Description

Temperature (K)

Speed of Sound (mes)
Height (m)
Air Pressure (Pa)

Ar Density (kg/m™3)

Dialog Box

Implement the 1976 COESA lower atmosphere
Environment/Atmosphere

The COESA Atmosphere Model block implements the mathematical
representation of the 1976 COESA (Committee on Extension to the Standard
Atmosphere) United States (U.S.) standard lower atmospheric values for
absolute temperature, pressure, density, and speed of sound for the input
geopotential altitude.

Below 32000 m (approximately 104987 ft), the U.S. Standard Atmosphere is
identical with the Standard Atmosphere of the International Civil Aviation
Organization (ICAO).

The COESA Atmosphere Model block icon displays the input and output units
selected from the Units pop-up menu.

Calculate 1976 COESA-extended U 5. Standard Atmosphere. Given
geopotenhial altitude, calculate abzolute temperature, pressure, and
denzity uging ztandard interpolation formulas [linear ik temperature and
logarithmic in prezsure).

E «trapolate temperature inearly and preszure logarithmically beyond the

range
0 <= altitude <= 84852 m

Denszity iz calculated using a perfect gas relationship,

Data uged iz from the 15-0CT-1976 COESA, extensions to the 1.5,
Standard Atmozphere, 1376, published by the U.5. Govermment Frinting
Office, Washington, 0.C.

The unit aystem selected applies to bath input and outputs.

— Parameters
Urits: [petric =

0k | Cancel Help Soply |

3-71

COESA Atmosphere Model

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

3-72

Units
Specifies the input and output units:
Height Temperature Speed of Sound Air Density
Metric Meters Degrees Kelvin Meters per Kilograms per
second cubic meter
English Feet Degrees Rankine Feet per second Pound mass

per cubic foot

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Below the geopotential altitude of 0 m (0 ft) and above the geopotential altitude
of 84852 m (approximately 278386 ft), temperature values are extrapolated
linearly and pressure values are extrapolated logarithmically. Density and
speed of sound are calculated using a perfect gas relationship.

[1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

ISA Atmosphere Model

Density Conversion

Purpose
Library

Description

Ibmdft*2 hgim"3

Dialog Box

Inputs and
Outputs

Convert from density units to desired density units

Transformations/Units

The Density Conversion block computes the conversion factor from specified
input density units to specified output density units and applies the conversion

factor to the input signal.

The Density Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

— Denzity Conversion [mazk]

Cornvert units of input signal to desired output units,

— Parameters

Initial units: IIbmx’ftAB

Final units: Ikg,.-'m"g

0k I Cancel Help]

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

lbm/ft"3 Pound mass per cubic foot
kg/m~3 Kilograms per cubic meter
slug/ft"3 Slugs per cubic foot

lbm/in~3 Pound mass per cubic inch

The input is density in initial density units.

The output is density in final density units.

3-73

Density Conversion

See Also

3-74

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion
Velocity Conversion

Direction Cosine Matrix to Euler Angles

Purpose Convert direction cosine matrix to Euler angles
Library Transformations/Axes
Description The Direction Cosine Matrix to Euler Angles block converts a 3-by-3 direction

cosine matrix (DCM) into three Euler rotation angles. The DCM matrix
performs the coordinate transformation of a vector in inertial axes

(0x(, 0y, 02()) into a vector in body axes (oxg, 0y3, 0z3) . The order of the axis
rotations required to bring (oxg, 0y3, 0z3) into coincidence with (ox, 0y, 0z()
is first a rotation about ox5 through the roll angle (¢) to axes (0xo,0y4,025).
Second a rotation about oy, through the pitch angle (0) to axes (ox;, 0y4,0z;),
and finally a rotation about 0z, through the yaw angle (y) to axes

(0xg, 0y, 02() -

LCMZEUl P

0xg 0x
oy3 =DCM oyo
0zg4 0z
0x3 10 0 cos® 0 —sin6||cosy siny 0| [°%0
0y3| = |0 cos¢ sino||0 10 —siny cosy 0f |0y
0zg 0 —sin¢ cos¢||sin® 0 cos® ||0 0 1 0z

Combining the three axis transformation matrices defines the following DCM.

cosOcosy cosOsiny —sin®
DCM = |(sin¢sinBcosy — cosdsiny) (sindsin@siny — coshcosy) sindcosd
(cosdsinBcosy + sindsiny) (coshpsinBsiny — sinhpcosy) cosdpcosO

To determine Euler angles from the DCM, the following equations are used:

B DCM(2,3)
¢ = atan(DCM(S, 3))

0 = asin(-DCM(1, 3))

3-75

Direction Cosine Matrix to Euler Angles

_ DCM(1, 2)
V= atan(DCM(L 1))

Dialog Box

Elock Param | 4l
DCM2Euler [mask)

Determine an euler arientation [rall, pitch, waw] fram the 3-by-3 direction
coszing matrix [DCM]. The input DCK transforms vectors from inertial ases

to body axes.
Ok, I Cancel | Help Sl
Inputs and The input is a 3-by-3 direction cosine matrix.
Outputs The output is a 3-by-1 vector of Euler angles.
Assumpi‘ions This implementation generates a pitch angle that lies between +90 degrees,

and Limitations and roll and yaw angles that lie between +180 degrees.

See Also Direction Cosine Matrix to Quaternions
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions
Quaternions to Direction Cosine Matrix
Quaternions to Euler Angles

3-76

Direction Cosine Matrix to Quaternions

Purpose
Library

Description

DCMZQuat B

Dialog Box

Inputs and
Outputs

Convert direction cosine matrix to quaternion vector
Transformations/Axes

The Direction Cosine Matrix to Quaternions block transforms a 3-by-3
direction cosine matrix (DCM) into a four-element unit quaternion vector
(ap,a1,92,93)- The DCM performs the coordinate transformation of a vector in
inertial axes to a vector in body axes.

The DCM is defined as a function of a unit quaternion vector by the following:

2 2 2 2
(Qo+91-99-93) 2(9199+9093) 2(9195-9092)

_ 2 2 2 2
DCM = 2((11(12—(10(]3) (99—91+92-93) 2(‘]2‘]3"“10‘]1)

2 2 2 2
2(q195+9¢49) 2(9993-9091) (99—91-99+9q3)

Using this representation of the DCM, there are a number of calculations to
arrive at the correct quaternion. The first of these is to calculate the trace of
the DCM to determine which set of algorithms are used. If the trace is greater
that zero, the quaternion can be automatically calculated. When the trace is
less than or equal to zero, the major diagonal element of the DCM with the
greatest value must be identified to determine the final algorithm used to
calculate the quaternion. Once the major diagonal element is identified, the
quaternion is calculated. For a detailed view of these algorithms, look under
the mask of the Direction Cosine Matrix to Quaternions block.

DL 20uaternion [mazk]

Determine the 441 quaternion orientation vectar from a 3-by-3 direction
cozing matrix [DCM]. The input DCM transforms vectors from inertial ases
to body axes.

k. Cancel Help 1]

The input is a 3-by-3 direction cosine matrix.

The output is a 4-by-1 quaternion vector.

3-77

Direction Cosine Matrix to Quaternions

See Also

3-78

Direction Cosine Matrix to Euler Angles
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions
Quaternions to Direction Cosine Matrix
Quaternions to Euler Angles

Discrete Wind Gust Model
|

Purpose Generate discrete wind gust
Library Environment/Wind
Description The Discrete Wind Gust Model block implements a wind gust of the standard

“1-cosine” shape. This block implements the mathematical representation in
aireratt Specd (miny winaminp 0RE Military Specification MIL-F-8785C [1]. The gust is applied to each axis
individually, or to all three axes at once. The user specifies the gust amplitude
(the increase in wind speed generated by the gust), the gust length (length, in
meters, over which the gust builds up) and the gust start time.

The Discrete Wind Gust Model block can represent the wind speed in units of
feet per second, meters per second, or knots.

The following figure shows the shape of the gust with a start time of zero. The
parameters that govern the gust shape are indicated on the diagram.

Gust Length

6L Gust Amplitude

Wind Speed (m/s)

Distance (m)

The discrete gust can be used singly or in multiples to assess airplane response
to large wind disturbances.

3-79

Discrete Wind Gust Model

The mathematical representation of the discrete gust is

Vwind = %@(l—cos(gﬁ)) 0<x<d,,

where V,,, is the gust amplitude, d,, is the gust length, x is the distance
traveled, and V,;,,4 is the resultant wind velocity in the body axis frame.

Dialog Box

Block Parameters; x|
— Digcrete 'Wind Gust Model [masgk)

Generate a dizcrete wind gust. The gust profile takes the 1-cosing’ farn.

r Parameter

Unitz of velocity: |meters/second j

[¥ Check for gust in u-asis
¥ Check for gust in v-axis
[¥ Check for qust in w-axis
Gust start time [geconds]:

|5

Gust length [dx dp dz] [meters):
[n2012080

Gust amplitude [ug vg wa] [meters/second):
|[3.5 353.0]

ak. | Cancel | Help | Al |

Units of velocity
Define the units of wind gust.

Wind Altitude
Meters/second Meters/second Meters
Feet/second Feet/second Feet
Knots Knots Feet

3-80

Discrete Wind Gust Model

Inputs and
Outputs

Examples
References

See Also

Check for gust in u-axis
Select to apply the wind gust to the u-axis in the body frame.

Check for gust in v-axis
Select to apply the wind gust to the v-axis in the body frame.

Check for gust in w-axis
Select to apply the wind gust to the w-axis in the body frame.

Gust start time (seconds)
The model time, in seconds, at which the gust begins.

Gust length (meters or feet)

The length, in meters or feet (depending on the choice of units), over which
the gust builds up in each axis.

Gust amplitude (meters/second, feet/second, or knots)

The magnitude of the increase in wind speed caused by the gust in each
axis.

The input is altitude in units selected.

The output is wind speed in units selected.
See aeroblk HL20.md1l example included with the blockset.
Military Specification MIL-F-8785C, 5th November 1980.

Dryden Wind Turbulence Model
Wind Shear Model

3-81

Dryden Wind Turbulence Model

Purpose
Library

Description

Altitude (m) Wifind velocity (mis)

Airspeed (mfs) Angular rates (rad/zec)

3-82

Generate wind turbulence with the Dryden velocity spectra
Environment/Wind

The Dryden Wind Turbulence Model block uses the Dryden spectral
representation to add turbulence to the aerospace model by passing
band-limited white noise through appropriate forming filters. This block
implements the mathematical representation in the Military Specification
MIL-F-8785C [1].

Turbulence can be considered as a stochastic process defined by velocity
spectra. For an aircraft flying at a speed V through a “frozen” turbulence field
with a spatial frequency of Q radians per meter, the circular frequency o is
calculated by multiplying V by Q. The appropriate component spectra for the
Dryden model of turbulence are shown here.

Longitudinal:
2
20 L 1
q)u((i)) = an 2 5
1+ (L,p)
1
3
R =y
@ _ % 4b
p, (@) = VL, 1+(@9)
TV
Lateral:
2 o2
oL 1+3(L,3)
q)u(“)) _ _vv, vy
1A%

2
[1+(L,27

Dryden Wind Turbulence Model

Vertical:

2
6 L, 1+3(L,2

w —w

1%

o, (w) = 53
[1+(L,7)]

b is the aircraft wingspan, L, L , L, are the turbulence scale lengths, and 6,
G,, 0,, are the turbulence intensities.

To generate a signal with the correct characteristics a unit variance
band-limited white noise signal is passed through appropriate forming filters
that are derived by taking the spectral square roots of the spectrum equations.
The resulting transfer functions are shown here.

Longitudinal:
oL
H,(s) = o, /n—‘;‘ 1L
1+
H o) —o [08 (n/(4b))"°
() = %uw 57 1/3 4b
Lw (1 + (———) s)
1
Lateral:

3-83

Dryden Wind Turbulence Model

H(s) = ﬁ 1
v(8) = Oy 3

(1++79)

H(s) = _s/V -H ()

(1+G9))

3-84

Dryden Wind Turbulence Model

Vertical:
Lw 1
(1+7s)
/V
H,(s) = ———— H,(s)

(1+ (%))

The turbulence scale lengths and intensities are functions of altitude, and
there are two distinct regions.

Low-Altitude Model (Altitude < 1000 feet)

In [1] the turbulence scale lengths at low altitudes are as given below, where
h is the altitude in feet.

_ h
v 1.2
(0.177 + 0.000823Ah)

The turbulence intensities are given below, where W, is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

o, = 0.1Wy,

_ S 1

w Sw (0.177 +0.0008231)"*

QIQ
S

3-85

Dryden Wind Turbulence Model

3-86

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In reference [1] the
scale lengths are as given below:

L,=L,=L,=1750ft

The turbulence intensities are determined from a lookup table that gives the
turbulence intensity as a function of altitude and the probability of the
turbulence intensity’s being exceeded.

a0

70

60

h
o

w
o

Altitude, thousands of feet
B
(]

10

Medium/High Altitude Turbulence Intensities (Probability of Exceedance)

"Severe"
107

_"Moderate" |
1073

: i
10 15 20 25 30
RMS Turbulence Amplitude [ft/sec]

Dryden Wind Turbulence Model

Dialog Box

At altitudes between 1000 feet and 2000 feet, the turbulence scale lengths and
intensities are determined by interpolating between the value from the low-
altitude model at 1000 feet and the value from the high-altitude model at 2000

feet.

Block Param C =]

— Drwden Wind Turbulence Model [mask]

Generate atmospheric turbulence. White noize iz passed through a filter ta
give the turbulence the Diyden velocity spectra.

— Parameter:

Units of velocity: | meters/second j

wWind speed at B m defines the law-altitude intenzity [meters/second]:
|15

Frobability of exceedance of high-altitude intensity |‘|[|"-2 - Light vI

Scale length at medium/high altitudes [meters]:
|522

Wingspan [meters):
[10

Band-limited noize zample time [zecondsz]:
Joa

Moize seeds [ug wg wg pgl:
|[2334‘I 23342 23343 23344)

¥ Turbulernce on

Qg I Cancel I Help e 1]

Units of Velocity

Define the units of wind speed due to the turbulence.

Wind Velocity Altitude

Meters/second Meters/second Meters
Feet/second Feet/second Feet

Knots Knots Feet

Air Speed
Meters/second
Feet/second

Knots

Wind speed at 20 ft (6 m) defines the low altitude intensity

The measured wind speed at a height of 20 feet provides the intensity for

the low-altitude turbulence model.

3-87

Dryden Wind Turbulence Model

Inputs and
Outputs

Examples

References

3-88

Probability of exceedance of high altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant, and from
reference [1] a figure of 1750 feet is recommended.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise sample time (seconds)
The sample time at which the unit variance white noise signal is generated.

Noise seeds

There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

The first input is altitude, in units selected.

The second input is aircraft speed, in units selected.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

See the aeroblk HL20.mdl example included with the blockset.

Military Specification MIL-F-8785C, 5th November, 1980.

Dryden Wind Turbulence Model
|

See Also Discrete Wind Gust Model
Wind Shear Model

3-89

Euler Angles to Direction Cosine Matrix

Purpose

Library

Description

EulzDChl

3-90

Convert Euler angles to direction cosine matrix
Transformations/Axes

The Euler Angles to Direction Cosine Matrix block converts the three Euler
rotation angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix
performs the coordinate transformation of a vector in inertial axes

(0x(, 0y, 02()) into a vector in body axes (oxg, 0y3,0z3) . The order of the axis
rotations required to bring (ox3, 0y, 0z3) into coincidence with (ox, 0y, 0z()
is first a rotation about ox5 through the roll angle (¢) to axes (0xo, 0y4, 025).
Second a rotation about oy, through the pitch angle (0) to axes (ox;,0y4,0z;),
and finally a rotation about 0z, through the yaw angle (y) to

axes(0xg, 0y, 02¢) -

oxg 0x
oy3 = DCM oyO
0z 0z
0x3 10 0 cos® 0 —sin6||cosy siny 0 |°%0
0y3| = |0 cos¢ sino||0 10 —siny cosy 0| |0y
0zg 0 —sin¢ cos¢||sin® 0 cos® ||0 0 1 0z

Combining the three axis transformation matrices defines the following DCM.

cosOcosy cosOsiny —sin®
(sin¢sinBcosy — cosPsiny) (sindsinOsiny — coshcosy) sindpcoso
(coshsinBcosy + sin¢siny) (coshpsinBsiny — sinhpcosy) cosdpcosO

DCM =

Euler Angles to Direction Cosine Matrix

Dialog Box

Inputs and
Outputs

Examples

See Also

Euler2DCM [maszk]

Determine the 3-by-3 direction cozine matrix [DCM] from an Euler
arientation [roll, pitch, yaw]. The output DCM transforms vectars fronm
inertial axes to body axes.

k. | Cancel | Help | 1] |

The input is a 3-by-1 vector of Euler angles.

The output is a 3-by-3 direction cosine matrix.

See aeroblk six_dof.mdl to see the use of the Euler Angles to Direction
Cosine Matrix block in the implementation of the equations of motion for a
rigid body.

Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Quaternions
Quaternions to Direction Cosine Matrix
Quaternions to Euler Angles

3-91

Euler Angles to Quaternions

Purpose
Library

Description

EulZ2Quat p

3-92

Convert Euler angles to a quaternion vector
Transformations/Axes

The Euler Angles to Quaternions block converts the rotation described by the
three Euler angles (roll, pitch, yaw) into the four-element quaternion vector

(a9,91,92,93)-

A quaternion vector represents a rotation about a unit vector (p My W,)
through an angle 6. A unit quaternion itself has unit magnitude, and can be
written in the following vector format.

99 cos(0/2)

qq sin(0/2)u,

T g, T [siner2)n,

s sin(0/2)u,
An alternative representation of a quaternion is as a complex number,
q =4qgp+ iql +jCI2 +kQ3

where, for the purposes of multiplication,

i2=J2=k2=—1
ij=—ji==~Fk
jk = -kj =1,
ki =ik =j

The benefit of representing the quaternion in this way is the ease with which
the quaternion product can represent the resulting transformation after two or
more rotations. The quaternion to represent the rotation through the three
Euler angles is given below.

@ = 4460, = (05(3) - isin(3)) (cos(3) ~ssin() (cos(§) - ksin(F)

Euler Angles to Quaternions

Dialog Box

Inputs and
Outputs

See Also

Expanding the preceding representation gives the four quaternion elements
following.

Qs () s &)Y (Y
o (8 eo(Genf)-cogon(in(3
2 eo(gon(Go(g)+sn(Y (Y n(
s $ns Qi3-S Y n(3)

Block Parameters: Euler Angles to Duatemions

Euler2Quaternion [mazk)
’j:alculate guaternion [q0.91.92.93) from Euler angles [roll, pitch, paw)

0k I Cancel | Help Apply

The input is a 3-by-1 vector of Euler angles.

The output is a 4-by-1 quaternion vector.

Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Direction Cosine Matrix
Quaternions to Direction Cosine Matrix
Quaternions to Euler Angles

3-93

Equations of Motion

Purpose

Library

Description

Fx (M3

Fz (M)

b CH-m2

Atitude rad)

q (rads=a

qdot radés =] [

He Ze (Ml

Uw (mss) B

e - N (Tl -

3-94

Implement three-degrees-of-freedom equations of motion

Equations of Motion/3DoF

The 3DoF Equations of Motion block considers the rotation in the vertical plane
of a body-fixed coordinate frame about an Earth-fixed reference frame.

A

xb,U\q

Body fixed
coordinate

.
Incidence =t *,
frame p

Earth fived
reference frape’

zb,w

Xe

Ze

The equations of motion are given below:

= —=—qw-gsin®
m

w = —=+qu+gcosb
m
M

¢ =7
yy

6=gq

where the applied forces are assumed to act at the center of gravity of the body.

Equations of Motion

Dialog Box

— 30 oF Eobd [mazk)

z-awiz due to body forces.

Integrate the three-degrees-of-freedom eguations of mation to determine
biody position, velocity, attitude, and related values.

Inputs are forces on the body in #-axis, forces on the body in z-axis, and
moments on the body along y-axiz. Dutputs are pitch angle, pitch rate,
pitch accelerstion, position in x-axis and z-axiz in Earth coordinates,
tranglational velocity in #-asis and z-axiz, and acceleration in %-asis and

— Parameter
Initial welocity [mez]:

f1o0

Initial body attitude [rad):

|n

Initial incidence [rad);

|n

Initial body ratation rate [rad/sec]:

[0

Initial pasition [« 2] [m]:

[
ass [Kal:

[

Iretia [Fog.m 2]

|1

Acceleration due to aravity [mds/s]:

|9.81

oK | Cancel |

Initial velocity [m/s]

A scalar value for the initial velocity of the body, (V).

Initial body attitude [rad]

A scalar value for the initial pitch attitude of the body, (8,) .

Initial incidence [rad]

A scalar value for the initial angle between the velocity vector and the body,

(o) -

Initial body rotation rate [rad/sec]

A scalar value for the initial body rotation rate, (q().

3-95

Equations of Motion

Inputs and
Outputs

Examples

3-96

Initial position (x,z) [m]
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Mass [kg]
A scalar value for the mass of the body.

Inertia [Kg.m?]
A scalar value for the inertia of the body.
Acceleration due to gravity [m/s%]

A scalar value for the acceleration due to gravity. If gravity is to be
neglected in the simulation, this value can be set to 0.

The first input to the block is the force acting along the body x-axis, in Newtons
(F.).

The second input to the block is the force acting along the body z-axis, in
Newtons (F,).

The third input to the block is the applied pitch moment, in Newton.meters
(M).

The first output from the block is the pitch attitude, in radians (6).
The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second
squared (q).

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, in meters (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, in meters per second (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, in meters per second squared

(Ax,Az).

See the Simulink model aeroblk guidance.mdl for an example of the use of
the 3DoF Equations of Motion block.

Equations of Motion

See Also Incidence & Airspeed

3-97

Force Conversion

Purpose
Library

Description

Ibf N

Dialog Box

Inputs and
Outputs

3-98

Convert from force units to desired force units

Transformations/Units

The Force Conversion block computes the conversion factor from specified
input force units to specified output force units and applies the conversion

factor to the input signal.

The Force Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Block Para

r— Force Cornvergion [maszk)

Canvert unitz of input signal to desired output units.

— Parameters

| mitial urits: |||;.f

Final units: IN

0k | Cancel Help Lpply

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

1bf Pound force

N Newtons

The input is force in initial force units.

The output is force in final force units.

Force Conversion

See Also

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion
Velocity Conversion

3-99

Gain Scheduled Lead-Lag

Purpose
Library

Description

&
a [(+as)1+b.s)
b

u

Dialog Box

Inputs and
Outputs

3-100

Implement a first-order lead-lag with gain-scheduled coefficients
GNC

The Gain Scheduled Lead-Lag block implements a first-order lag of the form

u = 1+ase
T 1+bs

where e is the filter input, and u the filter output.

The coefficients a and b are inputs to the block, and hence can be made
dependent on flight condition or operating point. For example, they could be
produced from the Look-Up Table (n-D) block.

Blo L

— ain Scheduled Lead-Lag [mask]
|mplement gain-scheduled first-order lead-lag of the farm [1+a.5]/[1+b.s].
Initial output iz given by [4_initial+a.e)/b where »_initial is the initial state

defined in the mask dialog box. Mote that b should never be allowed to be
zem0.

— Parameters
Initial state, =_initial:

1]

kK | Cancel | Help I a1 |

Initial state, x_initial
The initial internal state for the filter x_initial. Given this initial state, the
initial output is given by

u _ xinitial + ae

|t =0 b

The first input is the filter input.

The second input is the numerator coefficient.
The third input is the denominator coefficient.

The output is the filter output

Incidence & Airspeed

Purpose
Library

Description

Apha |
Uw
W

Dialog Box

Inputs and
Outputs

Examples

See Also

Calculate incidence and air speed
Equations of Motion/3DoF

The Incidence & Airspeed block supports the 3DoF equations of motion model
by calculating the angle between the velocity vector and the body, and also the
total air speed from the velocity components in the body-fixed coordinate
frame.

Calzulate the angle between the body and the velocity vectar [incidence)

IncidencetAirspeed [mask)
|Vand the: velocity magnitude from the components in body axes (U w).

0K Cancel Help Al

The input to the block is the two-element vector containing the velocity of the
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle, in radians.

The second output is the velocity of the body.

See the Simulink demo aeroblk _guidance.mdl for an example of the use of
this block.

Equations of Motion

3-101

Interpolate Matrix(x)

Purpose Return an interpolated matrix for given input x
Library GNC
Description The Interpolate Matrix(x) block interpolates a one-dimensional array of
matrices.
« hiEtrso B
This one-dimensional case assumes a matrix M is defined at a discrete number

of values of an independent variable x = [x; X9 x3 ... x; %;,7 ... X,]. Then for
X; < x < x;, 1, the block output is given by

(1-MM(x,) + M (x; ,)
where the interpolation fraction is defined as

Dialog Box and
Parameters

— MatrixSchedule-10 [mazk]

Feturnz an interpolated matrix for given input «. Input % must be fram the
Simulink PrelLook-up Index Search block.

— Parameters
b atrix to interpolate:

makrix

(1] | Cancel | Help | Apply |

Matrix to interpolate

Matrix to be interpolated. It should be three dimensional, the first two
dimensions corresponding to the matrix at each value of x. For example, if
you have three matrices A, B, and C defined at x = 0, x = 0.5, and

x = 1.0, then the input matrix is given by

matrix(:,:,1) = A;
matrix(:,:,2) = B;

matrix(:,:,3) = C;

3-102

Interpolate Matrix(x)

Inputs and The first input is the first independent variable.

Outputs The output is the interpolated matrix.

Assumptions This block must be driven from the Simulink PreLookup Index Search block.
and Limitations

Examples See the following Aerospace Blockset blocks: 1D Controller
[A(v),B(v),C(v),D(v)], 1D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 1D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x,y)
Interpolate Matrix(x,y,z)

3-103

Interpolate Matrix(x,y)

Purpose
Library

Description

W

x
y L= (R Ty

Dialog Box and
Parameters

3-104

Return an interpolated matrix for given inputs x and y
GNC

The Interpolate Matrix(x,y) block interpolates a two-dimensional array of
matrices.

This two-dimensional case assumes the matrix is defined as a function of two
independent variables, ¥ = [x; xp x3... %; %7 ... ¥, landy = [y; y9¥3 ... ¥j ¥ju1
.. ¥l For given values of x and y, four matrices are interpolated. Then for

x; <x <x;,.7 and y; <y <yj,1, the output matrix is given by

(1 —7\-},)[(1 —xx)M(xpyj) + xxM(xiJrlayj)] +

where the two interpolation fractions are denoted by
Ay = (0 =2)/ (%1 -%;)

and

7\-y = (y_yj)/(yj+1—yj)

Black Parameter x|
— MatnixSchedule-20 [mazk)

Feturn an interpolated matnix for given inputs and ». [nputs » and ¥ must
be from Simulink Prelook-up Index Search block.

— Parameters
b atrix bo interpolate;

e

Ok Cancel Help Lepply

Matrix to interpolate
Matrix to be interpolated. It should be four dimensional, the first two
dimensions corresponding to the matrix at each value of x and y. For
example, if you have four matrices A, B, C, and D defined at

Interpolate Matrix(x,y)

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

(x = 0.0,y = 1.0), (x = 0.0,y = 3.0), (x = 1.0,y = 1.0) and
(x = 1.0,y = 3.0), then the input matrix is given by
matrix(:,:,1,1) = A;

matrix(:,:,1,2) = Bj;

matrix(:,:,2,1) = C;

matrix(:,:,2,2) = D;

)))

The first input is the first independent variable.
The second input is the second independent variable.

The output is the interpolated matrix.

This block must be driven from the Simulink PreLookup Index Search block.
See the following Aerospace Blockset blocks: 2D Controller
[A(v),B(v),C(v),D(v)], 2D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 2D
Self-Conditioned [A(v),B(v),C(v),D(v)].

Interpolate Matrix(x)
Interpolate Matrix(x,y,z)

3-105

Interpolate Matrix(x,y,z)

Purpose

Library

Description

®
w hlEtrix,w.2)
2

e

3-106

Return an interpolated matrix for given inputs x, y, and z
GNC
The Interpolate Matrix(x,y,z) block interpolates a three-dimensional array of

matrices.

This three-dimensional case assumes the matrix is defined as a function of
three independent variables, x = [x; X9 x3 ... %; i1 X, L, ¥ = [¥1 Y23 ¥j¥ju1
wYmlyand z =127 2923 ... 2} 241 .. 2, |. For given values of x, y, and z, eight
matrices are interpolated. Then for x; <x < x;,7,¥; <y <yjy7 and 2z <z <zp,j,
the output matrix is given by

(1—%2){(1—hy)[(l—kx)M(xi,yj, zk)+kxM(xi+1,yj,zk)] +
MU =AM (x5, 125) + MM (2, 1,554 12)]1)
+A,{(1 —ky)[(l —kx)M(xi,yj, 2,1+ kxM(le,yj, 2,1+

MU =AM (x5 12p 1) MM (% L 9128 D)

where the three interpolation fractions are denoted by
Ay = (=%)/ (%, 1 -%;)
Ay = (-9 1))
A, = (2-2p)/ (2112

In the three-dimensional case, the interpolation is carried out first on x, then
y, and finally z.

Interpolate Matrix(x,y,z)

Dialog Box and
Parameters

Inputs and
Outputs

Block Para x|
— MatrixS chedule-30 [mask)]

Return an interpolated matrix for given inputs =, v, and 2. [nputs &, y, 2
must be from Simulink, Prelook-up Index Search block.

— Parameters
I atrix to interpolate:

matrix

0k Cancel Help Al

Matrix to interpolate
Matrix to be interpolated. It should be five dimensional, the first two
dimensions corresponding to the matrix at each value of x, y, and z. For
example, if you have eight matrices A, B, C, D, E, F, G, and H defined at
the following values of %, y, and z, then the corresponding input matrix is
given by

(x = 0.0,y =1.0,z = 0.1) matrix(:,:,1,1,1) = A;
(x = 0.0,y =1.0,z = 0.5) matrix(:,:,1,1,2) = B;
(x = 0.0,y = 3.0,z = 0.1) matrix(:,:,1,2,1) = C;
(x = 0.0,y = 3.0,z = 0.5) matrix(:,:,1,2,2) = D;
(x = 1.0,y = 1.0,z = 0.1) matrix(:,:,2,1,1) = E;
(x = 1.0,y = 1.0,z = 0.5) matrix(:,:,2,1,2) = F;
(x = 1.0,y = 3.0,z = 0.1) matrix(:,:,2,2,1) = G;
(x =1.0,y = 3.0,z = 0.5) matrix(:,:,2,2,2) = H;

The first input is the first independent variable.
The second input is the second independent variable.
The third input is the third independent variable.

The output is the interpolated matrix.

3-107

Interpolate Matrix(x,y,z)

Assumptions This block must be driven from the Simulink PreLookup Index Search block.
and Limitations

Examples See the following Aerospace Blockset blocks: 3D Controller
[A(v),B(v),C(v),D(v)], 3D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 3D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)
Interpolate Matrix(x,y)

3-108

ISA Atmosphere Model

Purpose
Library

Description

Temperature (K]

Speed of Sound (mds) R
Height (m)
Ar Pressure (M/mM™2) B

Ar Density (Kg/m ™3 p

Dialog Box

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

Implement the International Standard Atmosphere (ISA)
Environment/Atmosphere

The ISA Atmosphere Model block implements the mathematical
representation of the international standard atmosphere values for absolute
temperature, pressure, density, and speed of sound for the input geopotential
altitude.

The ISA Atmosphere Model block icon displays the input and output metric
units.

Block Parameters: 154 Atmosphere Model

Compute Intermational Standard Atmosphere [154) maodel for altitudes

|ntemational Standard Atmosphere Model [maszk]
|Vbetween 0k and 20 K.

0k I Cancel Help Lol

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Below the geopotential altitude of 0 Km and above the geopotential altitude of
20 Km, temperature and pressure values are held. Density and speed of sound

are calculated using a perfect gas relationship.

[1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

COESA Atmosphere Model

3-109

Length Conversion

Purpose
Library

Description

Dialog Box

3-110

Convert from length units to desired length units

Transformations/Units

The Length Conversion block computes the conversion factor from specified
input length units to specified output length units and applies the conversion

factor to the input signal.

The Length Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

— Length Corwerzion [maszk]

Conwert units of input signal to desired output unitz.

— Parameters

Initial units: Ift

Final unitg: Im

Ok | Cancel Help Lpli

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m Meters

ft Feet

km Kilometers

in Inches

mi Miles

naut mi Nautical miles

Length Conversion

Inputs and
Outputs

See Also

The input is length in initial length units.

The output is length in final length units.

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion
Velocity Conversion

3-111

Mass Conversion

Purpose
Library

Description

Ibm kg

Dialog Box

Inputs and
Outputs

3-112

Convert from mass units to desired mass units

Transformations/Units

The Mass Conversion block computes the conversion factor from specified
input mass units to specified output mass units and applies the conversion

factor to the input signal.

The Mass Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

— Mazs Convversion [mazk)

Convert unitz of input signal to desired output units.

— Parameters

I mitial umits: IIbrn

Final urits: Ikg

1] 8 | Cancel Help Ll

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

lbm Pound mass
kg Kilograms
slug

The input is mass in initial mass units.

The output is mass in final mass units.

Mass Conversion

See Also

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Length Conversion

Force Conversion

Pressure Conversion
Temperature Conversion
Velocity Conversion

3-113

Pressure Conversion

Purpose
Library

Description

Dialog Box

Inputs and
Outputs

3-114

Convert from pressure units to desired pressure units

Transformations/Units

The Pressure Conversion block computes the conversion factor from specified
input pressure units to specified output pressure units and applies the

conversion factor to the input signal.

The Pressure Conversion block icon displays the input and output units
selected from the Initial units and the Final units pop-up menus.

— Prezsure Converzion [mazk)

Convert units of input signal to desired output units.

— Parameters

Imitial Liits: ngi

Final units: IPa

0k | Cancel Help Spply

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

psi Pound mass per square inch
Pa Pascals

psf Pound mass per square foot
atm Atmospheres

The input is pressure in initial pressure units.

The output is pressure in final pressure units.

Pressure Conversion

See Also

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Temperature Conversion
Velocity Conversion

3-115

Quaternions to Direction Cosine Matrix

Purpose
Library

Description

Quat2DChl [

3-116

Convert quaternion vector to direction cosine matrix
Transformations/Axes

The Quaternions to Direction Cosine Matrix block transforms the four-element
unit quaternion vector (qg,q1,dq9,43) into a 3-by-3 direction cosine matrix
(DCM). The outputted DCM performs the coordinate transformation of a vector
in inertial axes to a vector in body axes.

Using quaternion algebra, if a point P is subject to the rotation described by a
quaternion q, it changes to P’ given by the following relationship:

P’ = gPq°

q= CI()+iCI1 +jQ2+kQ3

q° = q9-iq;-jay - ka3

P =0+ix+jy+kz

Expanding P’ and collecting terms in x, y, and z gives the following for P’ in
terms of P in the vector quaternion format.

0
0 2 2 2 2
, X (qg+91-95-93)x +2(9199—q9493)y + 2(q9193 +q¢q9)?
Pr="= 2 2 2 29
y 2(q093+9199)x +(qg—q1+95—-93)y +2(q993—q¢q1)?
2’ 2 2 2 2
12(9193-9092)% +2(90q1 + 92930y + (90— 91~ 92+ q3)?|

Since individual terms in P’ are linear combinations of terms in x, y, and z, a
matrix relationship to rotate the vector (x,y,z) to (x’,y’,z’) can be extracted from
the preceding. This matrix rotates a vector in inertial axes, and hence is
transposed to generate the DCM that performs the coordinate transformation
of a vector in inertial axes into body axes.

Quaternions to Direction Cosine Matrix

Dialog Box

Inputs and
Outputs

Examples

See Also

2 2 2 2
(qo+91-95—-93) 2(Q1Q2+QQQ3) 2(‘11‘13“10‘12)

DCM =

2 2 2 2
2(‘11‘12“]0(]3) (99—91+92-93) 2(‘12‘13"“10‘11)

2 2 2 2
2(q193+9¢99) 2(9993-9091) (99—91-99+43)

Quaternion2DCM [mask)]

Determing the 3-by-3 direction cozine matris (DC] from a 4-bp-1
quaternion orientation vectar. The output DCM transforms vectors fiom
inertial axes to body axes.

ak I Cancel | Help Sl

The input is a 4-by-1 quaternion vector.

The output is a 3-by-3 direction cosine matrix.

See aeroblk six_dof.mdl for an example of the use of the Quaternions to
Direction Cosine Matrix block in an implementation of the equations of motion
of a rigid body.

Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions
Quaternions to Euler Angles

3-117

Quaternions to Euler Angles

Purpose Convert quaternion vector to Euler angles
Library Transformations/Axes
Description The Quaternions to Euler Angles block converts the four-element unit

quaternion (qg,q1,99,93) into the equivalent three Euler angle rotations (roll,
QuatzEul B pitCh’ yaw).

The conversion is generated by comparing elements in the direction cosine

matrix (DCM), as functions of the Euler rotation angles, with elements in the
DCM, as functions of a unit quaternion vector.

DCM =

DCM =

_cosecosw cosOsiny —sin®
(sindsinBcosy — coshsiny) (sindsinOsiny — cosdcosy) sindcosO
|(cosdsinBcosy + sindsiny) (cosdpsinOsiny — sindpcosy) coshcosO

[2 2 2 2
(99 +91-92-93) 2(9199+q093) 2(9193-9092)

2 2 2 2
2(9199-9093) (99—91+95-93) 2(9993+9¢q7)

2 2 2 2
_2(Q1Q3+QOQ2) 2(9993-9091) (99—971-99+93)

From the preceding, you can derive the following relationships between DCM
elements and individual Euler angles:

o = atan(DCM(2, 3), DCM(3, 3))
2 2 2 2
= atan(2(q993+9091)-(99—971-92+43))
0 = asin(-DCM(1, 3))
= asin(—2(q1q3—q0q2))
y = atan(DCM(1,2),DCM(1, 1))

2 2 2 2
= atan(2(q19y +94q3): (9o +491-92-93))

3-118

Quaternions to Euler Angles

Dialog Box

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

Block Para | x|
" CuaternionZE uler [mazk]

Calzulate Euler angles [roll, pitch, paw] fram quaternion [g0.q1.92.93]

()4 Cancel Help Spply

The input is a 4-by-1 quaternion vector.

The output is a 3-by-1 vector of Euler angles.

This implementation generates a pitch angle that lies between +90 degrees,
and roll and yaw angles that lie between +180 degrees.

See aero_six_dof.mdl for an example of the use of the Quaternions to Euler
Angles block in an implementation of the equations of motion of a rigid body.

Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

3-119

Second Order Linear Actuator

Purpose Implement a second-order linear actuator
Library Actuators
Descripﬁon The Second Order Linear Actuator block outputs the actual actuator position

using the input demanded actuator position and other dialog parameters that
Ac_dem Ac_ac define the system.

Dialog Box .
El ||:||::|-::_ F'-EI[-E!FI = EI

— Second Order Linear Actuatar [mask]
Implement a second-order actuatar madel

— Parameters
Matural frequency:
|150
Damping ratio;
|07
[ritial pazition;
|0

ok Cancel Help Al

Natural frequency

The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.
Initial position

The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

3-120

Second Order Linear Actuator

Inputs and The input is the demanded actuator position.

Outputs The output is the actual actuator position.

See Also Second Order Nonlinear Actuator

3-121

Second Order Nonlinear Actuator

Purpose

Library

Description

Ac_dem Ac_ac

Dialog Box

3-122

Implement a second-order actuator with rate and deflection limits
Actuators
The Second Order Nonlinear Actuator block outputs the actual actuator

position using the input demanded actuator position and other dialog
parameters that define the system.

— Second Order Monlingar Actuator [mask]

Implement a zecond-order actuator model with saturation and rate limits.

— Parameters
M atural frequency:

|15IJ

D amping ratio:
|07

b awimim deflection;
|207pir120

Minimum deflection:
|-207pin a0

b awimim rates
|5EID"pi£1BIZI

Initial pozition:
|0

I[:4 Cancel Help Aol

Second Order Nonlinear Actuator

Inputs and
Outputs

See Also

Natural frequency

The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Maximum deflection

The largest actuator position allowable. The units of maximum deflection
should be the same as the units of demanded actuator position.

Minimum deflection

The smallest actuator position allowable. The units of minimum deflection
should be the same as the units of demanded actuator position.

Maximum rate

The fastest speed allowable for actuator motion. The units of maximum
rate should be the units of demanded actuator position per second.

Initial position
The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

The input is the demanded actuator position.

The output is the actual actuator position.

Second Order Linear Actuator

3-123

Self-Conditioned [A,B,C,D]

Purpose
Library

Description

-]

u_meas u_dem

3-124

Implement a state-space controller in a self-conditioned form
GNC

The Self-Conditioned [A,B,C,D] block can be used to implement the state-space
controller defined by

%= Ax + Be
u= Cx + De

in the self-conditioned form

2= (A-HC)z+(B-HD)e+Hu

meas

Ugom= Cz+De

The input uy,e,s is a vector of the achieved actuator positions, and the output
Ugem 18 the vector of controller actuator demands. In the case that the actuators
are not limited, then u,,,5 = Ugen, and substituting the output equation into
the state equation returns the nominal controller. In the case that they are not
equal, the dynamics of the controller are set by the poles of A-HC.

Hence H must be chosen to make the poles sufficiently fast to track u,,q,¢ but
at the same time not so fast that noise on e is propagated to uge,,. The matrix
H is designed by a callback to the Control Systems Toolbox command place.m
to place the poles at defined locations.

Self-Conditioned [A,B,C,D]

Dialog Box

Block Para

— Self-Conditioned [mask)

Implement a state-space cantroller [4,B.C.0] in a self-conditioned farm, IF
u_meas = u_dem, then the implemented controller is [4,8B.C.0]. If u_meas
iz limited, e.g., rate limiting. then the poles of the controller become those
defined in the mazk dialog box. Uses call to Contral Systems Toolbox
function place.m when initializing.

— Parameters
A-mnatris:

|[-1 0.2:0-3]

B-rnatrix:
i1
C-matris:
fi1o
Dr-matriz:

|u.uz

Initial state, #_initial:

E

Pales of &-H*C = [wl ... wnl:
5 2]

0k Cancel Help Spply

A-matrix
A-matrix of the state-space implementation.

B-matrix
B-matrix of the state-space implementation.

C-matrix
C-matrix of the state-space implementation.

D-matrix
D-matrix of the state-space implementation.

3-125

Self-Conditioned [A,B,C,D]

Inputs and
Outputs

Assumptions
and Limitations

3-126

Initial state, x_initial
This is a vector of initial states for the controller, i.e., initial values for the
state vector, z. It should have length equal to the size of the first dimension
of A.

Poles of A-H*C

This is a vector of the desired poles of A-H*C. Hence the number of pole
locations defined should be equal to the dimension of the A-matrix.

The first input is control error.
The second input is the measured actuator position.

The output is the actuator demands.

This block requires the Control Systems Toolbox.

Self-Conditioned [A,B,C,D]
|

Examples This Simulink model shows a state-space controller implemented in both

self-conditioned and standard state-space forms. The actuator authority limits
of +/- 0.5 units are modeled by the saturation block.

E! aeroblks_zelf_cond_cntr =] 3
File Edit “iew Simulation Fommat Tools Help
D& fB2R 02 wES & IINormaI -1

FtBu
W= CwtDo
State-Space
[Same contraller, no
self conditioning]

T el
o
Step att+=1=s on u_meas il =-

tracking errar sent Self-Conditioned Saturation: J:ctuatodr
to the controller [4.B.C.D] Madel of actuator eman
authority limits
[0.5.0.5]
Feady 100z |odeds L
B = =|

— Self-Conditioned [mask] [link]

Implement a state-space controller [4.8.C.0] in a self-conditioned form. IF
u_meas = u_derm, then the implemented controller is [A.B.C.00 If u_meas
iz limited, e.g.. rate limiting, then the poles of the controller become those
defined in the mazk dialog box. Usez call to Control Syztems Toolbox
function place.m wher initializing.

— Parameters

A-makris:
|[D -0.2:0-3]

B-rnatriz:
|0l
C-rnakriz:
|
Dr-matris:
Jo.oz

Initial state, 2_initial:
[
Poles of &-H*C = [wl ... wn]:
Ji5-21

Ok Cancel Help e w1

3-127

Self-Conditioned [A,B,C,D]

References

See Also

3-128

Notice that the A-matrix has a zero in the 1,1 element, indicating integral
action.

=} Actuator demand = =] B3
|leEop e ABB|IDE &

The top trace shows the conventional state-space implementation. The output
of the controller winds up well past the actuator upper authority limit of +0.5.
The lower trace shows that the self-conditioned form results in an actuator

demand that tracks the upper authority limit, which means that when the sign
of the control error, e, is reversed, the actuator demand responds immediately.

The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Temperature Conversion

Purpose
Library

Description

Dialog Box

Inputs and
Outputs

Convert from temperature units to desired temperature units

Transformations/Units

The Temperature Conversion block computes the conversion factor from
specified input temperature units to specified output temperature units and
applies the conversion factor to the input signal.

The Temperature Conversion block icon displays the input and output units
selected from the Initial units and the Final units pop-up menus.

Block Para

— Temperature Conversion [mazk)

Convert unitz of input sighal to desired output unitz.

— Parameters

Ipitial units: IH

Final urits: IK

ok | Cahcel Help Appl

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

K Degrees Kelvin

F Degrees Fahrenheit
C Degrees Celsius

R Degrees Rankine

The input is temperature in initial temperature units.

The output is temperature in final temperature units.

3-129

Temperature Conversion

See Also

3-130

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Velocity Conversion

Turbofan Engine System

Purpose
Library

Description

Throttle position ¢ o (H)
Mach

Altitude (m) Fuel flow i)

Implement a first-order representation of a turbofan engine with controller
Propulsion

The Turbofan Engine System block computes the thrust and the weight of fuel
flow of a turbofan engine and controller at a specific throttle position, Mach
number, and altitude.

This system is represented by a first-order system with unitless heuristic
lookup tables for thrust, thrust specific fuel consumption (TSFC), and engine
time constant. For the lookup table data, thrust is a function of throttle position
and Mach number, TSFC is a function of thrust and Mach number, and engine
time constant is a function of thrust. The unitless lookup table outputs are
corrected for altitude using the relative pressure ratio é and relative
temperature ratio 0, and scaled by Ratio of installed thrust to uninstalled
thrust, Maximum sea-level static thrust, Sea-level static thrust specific
fuel consumption, and Fastest engine time constant at sea-level static.

The Turbofan Engine System block icon displays the input and output units
selected from the Units pop-up menu.

3-131

Turbofan Engine System

Dialog Box

3-132

— Turbafan Engine Systern [mazk)

Implement a turtbofan engine system. The turbofan engine spstem includes
both engine and controller.

Thraottle position can vary from 2ero ta one, cormesponding to no to full
throttle. Altitude, initial thrust, and masimum thrust are entered in the same
unit syztem as zelected from the block for thrust and fuel How output.

r— Parameters
Urits: | b etric j
Initial thrust source: | |ntermal j
Initial thrust:
fo

Masimum sealevel static thrust:
f45000

Fastest engine time constant at sea-level static [zec]:

[

Sealevel static thrust specific fuel consumption:

f0.35

Ratio of installed thiust to uninstalled thust:

03

0K | Cancel | Help | Sppl |
Units
Specifies the input and output units:
Altitude Thrust Fuel Flow

Metric Meters Newtons Kilograms per second
English Feet Pound force Pound mass per second

Initial thrust source
Specifies the source of initial thrust:

Internal Use initial thrust value from mask dialog.

External Use external input for initial thrust value.

Turbofan Engine System

Inputs and
Outputs

Assumptions
and Limitations

References

Initial thrust
Initial value for thrust.

Maximum sea-level static thrust
Maximum thrust at sea-level and at Mach = 0.

Fastest engine time constant at sea-level static
Sea-level static thrust specific fuel consumption

Thrust specific fuel consumption at sea-level, at Mach = 0, and at
maximum thrust, in specified mass units per hour per specified thrust
units.

Ratio of installed thrust to uninstalled thrust

Coefficient representing the loss in thrust due to engine installation.
The first input is throttle position. Throttle position can vary from zero to one,
corresponding to no to full throttle.
The second input is Mach number.
The third input is altitude, in specified length units.
The first output is thrust, in specified force units.

The second output is fuel flow, in specified mass units per second.

The atmosphere is at standard day conditions and an ideal gas.

Mach number is limited to less than 1.0.

This engine system is for indication purposes only. It is not meant to be used
as a reference model.

“Aeronautical Vestpocket Handbook,” United Technologies Pratt & Whitney,
August, 1986.

Raymer, D.P., “Aircraft Design: A Conceptual Approach,” ATAA Education
Series, Washington, DC, 1989.

Hill, P.G, and Peterson, C.R., “Mechanics and Thermodynamics of Propulsion,”
Addison-Wesley Publishing Company, Reading, MA, 1970.

3-133

Velocity Conversion

Purpose Convert from velocity units to desired velocity units
Library Transformations/Units
Descripﬁon The Velocity Conversion block computes the conversion factor from specified
input velocity units to specified output velocity units and applies the
s mis conversion factor to the input signal.

The Velocity Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Dialog Box

x|
—Welocity Conversion [mazk)
Carnvert units af input signal to desired output urits.
— Parameters
Initial units: Ift,'s j
Final units: Im,'s j
Ok | Cancel Help Spply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s Meters per second
ft/s Feet per second

km/s Kilometers per second
in/s Inches per second
km/h Kilometers per hour

3-134

Velocity Conversion

Inputs and
Outputs

See Also

mph Miles per hour

kts Nautical miles per hour

The input is velocity in initial velocity units.

The output is velocity in final velocity units.

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion

3-135

WGS84 Gravity Model

Purpose

Library

Description

Height (m)

WG 324
Grawity (més"2)

(Taylor Seres
Latitude (deq)

Dialog Box

3-136

Implement the 1984 World Geodetic System (WGS84) representation of Earth’s
gravity

Environment/Gravity

The WGS84 Gravity Model block implements the mathematical representation
of the geocentric equipotential ellipsoid of the World Geodetic System
(WGS84). The block output is the Earth’s gravity at a specific location. Gravity
precision is controlled via Type of gravity model.

The WGS84 Gravity Model block icon displays the input and output units
selected from the Units pop-up menu.

—WESE4 Gravity Model [mazk)

Calculate Earth's gravity at a specific location using World Geodetic
Syztern PGS 84).

The WG5S 84 model is defined as a geocentric equipotential elipzoid. This
model can be found in MIkMA TRE350.2, "Department of Defense World
Geodetic Svstem 1984, [tz Definition and Relationship with Local
Geodetic Systems. "

Height is entered in the zame unit spstem as selected for gravity. Latitude:
and longitude [if required] are entered in dearees.

— Parameters
Type of gravity model: IWGSE4 Close Approsimation j
Units: IMetric j

¥ Exclude Earth's atmosphers

¥ Precessing reference frame

Manth: IFehruar_l,l j
Day:

[

Year

|2nun

¥ Mo centifugal effects

0k, Cancel Help Apply

WGS84 Gravity Model

Type of gravity model
Specifies the method to calculate gravity:

® WGS84 Taylor Series
® WGS84 Close Approximation
* WGS84 Exact

Units
Specifies the input and output units:

Height Gravity
Metric Meters Meters per second squared

English Feet Feet per second squared

Exclude Earth’s atmosphere
When selected, the value for the Earth’s gravitational field excludes the
mass of the atmosphere.

If cleared, the value for the Earth’s gravitational field includes the mass of
the atmosphere.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Precessing reference frame
When selected, the angular velocity of the Earth is calculated using the
International Astronomical Union (IAU) value of the Earth’s angular
velocity and the precession rate in right ascension. In order to obtain the
precession rate in right ascension, Julian Centuries from Epoch J2000.0 is
calculated using the dialog parameters of Month, Day, and Year.

If cleared, the angular velocity of the Earth used is the value of the
standard Earth rotating at a constant angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Month
Specifies the month used to calculate Julian Centuries from Epoch
J2000.0.

3-137

WGS84 Gravity Model

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

Day
Specifies the day used to calculate Julian Centuries from Epoch J2000.0.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

Year

Specifies the year used to calculate Julian Centuries from Epoch J2000.0.
The year must be 2000 or greater.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

No centrifugal effects

When selected, calculated gravity is based on pure attraction resulting
from the normal gravitational potential.

If cleared, calculated gravity includes the centrifugal force resulting from
the Earth’s angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Inputs and The first input is a vector containing altitudes in specified length units.

Outputs The second input is a vector containing latitudes in degrees.

The third input is a vector containing longitudes in degrees. This input is only
available with Type of Gravity Model WGS84 Close Approximation or WGS84
Exact.

The output is a vector containing gravities in specified acceleration units.

3-138

WGS84 Gravity Model

Assumptions
and Limitations

References

The WGS84 gravity calculations are based on the assumption of a geocentric
equipotential ellipsoid of revolution. Since the gravity potential is assumed to
be the same everywhere on the ellipsoid, there must be a specific theoretical
gravity potential that can be uniquely determined from the four independent
constants defining the ellipsoid.

Use of the WGS84 Taylor Series model should be limited to low geodetic
heights. It will be sufficient near the surface when sub-microgal precision is not
necessary. At medium and high geodetic heights, it will be less accurate.

Use of the WGS84 Close Approximation model should be limited to a geodetic
height of 20000.0 m (approximately 65620.0 ft). Below this height, it will give
results with sub-microgal precision.

[1] NIMA TR8350.2: “Department of Defense World Geodetic System 1984, Its
Definition and Relationship with Local Geodetic Systems.”

3-139

Wind Shear Model

Purpose
Library

Description

Altitude (m)
Mind (mss)
LT

3-140

Calculate wind shear conditions
Environment/Wind

The Wind Shear Model block adds wind shear to the aerospace model. This
implementation is based on the mathematical representation in the Military
Specification MIL-F-8785C [1]. The magnitude of the wind shear is given by
the following equation for the mean wind profile as a function of altitude and
the measured wind speed at 20 feet (6 m) above the ground.

1n(£—)

3ft <h <1000f¢

where u,, is the mean wind speed, Wy is the measured wind speed at an
altitude of 20 feet, & is the altitude, and z, is a constant equal to 0.15 feet for
Category C flight phases and 2.0 feet for all other flight phases. Category C
flight phases are defined in reference [1] to be terminal flight phases, which
include takeoff, approach, and landing.

The resultant mean wind speed in the Earth-fixed axis frame is changed to
body-fixed axis coordinates by multiplying by the direction cosine matrix
(DCM) input to the block. The block output is the mean wind speed in the
body-fixed axis.

Wind Shear Model

Dialog Box

Block. Param !
—ind Shear Model

[mask)

[20 feet) sbove the ground.

Calculate the wind shear from conditions measured at a height of & meters

— Parameters

Units of welocity: Imetersfsecond

"

Flight phaze: |Category C

‘wind speed at B meters altitude [meters/zsecond):

"

15

“wiind direction at B meters altitude [degrees clockwize fram narth:

o

ak | Cancel | Help Al

Units of velocity

Define the units of wind shear.

Wind
Meters/second Meters/second
Feet/second Feet/second
Knots Knots
Flight Phase
Select flight phase:

Altitude
Meters
Feet
Feet

= Category C - Terminal Flight Phases

= Other

Wind speed at 20 feet (or 6 m) altitude (meters/second, feet/second, or

knots)

The measured wind speed at an altitude of 20 feet (6 m) above the ground.

Wind direction at 20 feet altitude (degrees clockwise from north)

The direction of the wind at an altitude of 20 feet (6 m), measured in
degrees clockwise from the direction of the Earth x-axis (north). The wind
direction is defined as the direction from which the wind is coming.

3-141

Wind Shear Model

Inputs and The first input is altitude, in units selected.
Outputs The second input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of the mean wind speed in the body axes frame,
in the selected units.

Examples See the aeroblk_HL20.md1 example included with the blockset.
References Military Specification MIL-F-8785C, 5th November, 1980.
See Also Discrete Wind Gust Model

Dryden Wind Turbulence Model

3-142

A

Acceleration Conversion block 3-63
Actuator library 3-2
adding blocks 1-9
aerolib 1-4
Aerospace Blockset
accessing 1-5
getting started with 1-5
organization 1-3
overview 1-2
Angle Conversion block 3-65
Angular Acceleration Conversion block 3-67
Angular Velocity Conversion block 3-69
Animation library 3-2

B
block diagrams

creating 1-9
blocks
Acceleration Conversion 3-63
adding 1-9
Angle Conversion 3-65
Angular Acceleration Conversion 3-67
Angular Velocity Conversion 3-69
COESA Atmosphere Model 3-71
connecting 1-12
Density Conversion 3-73
Direction Cosine Matrix to Euler Angles 3-75
Direction Cosine Matrix to Quaternions 3-77
Discrete Wind Gust Model 3-79
Dryden Wind Turbulence Model 3-82
Equations of Motion 3-94
Euler Angles to Direction Cosine Matrix 3-90
Euler Angles to Quaternions 3-92
Force Conversion 3-98
Gain Scheduled Lead-Lag 3-100

Incidence & Airspeed 3-101

Interpolate Matrix(x) 3-102

Interpolate Matrix(x,y) 3-104

Interpolate Matrix(x,y,z) 3-106

ISA Atmosphere Model 3-109

Length Conversion 3-110

Mass Conversion 3-112

1D Controller [A(v),B(v),C(v),D(v)] 3-11

1D Controller Blend u=(1-L).K1.y+L.K2.y
3-14

1D Observer Form [A(v),B(v),C(v),F(v),H(¥)]
3-17

1D Self-Conditioned [A(v),B(v),C(v),D(v)] 3-20

parameters for 1-12

Pressure Conversion 3-114

Quaternions to Direction Cosine Matrix 3-116

Quaternions to Euler Angles 3-118

resizing 1-9

Second Order Linear Actuator 3-120

Second Order Nonlinear Actuator 3-122

Self-Conditioned [A,B,C,D] 3-124

6DoF (Euler Angles) 3-55

6DoF (Quaternions) 3-59

6DoF Animation 3-53

Temperature Conversion 3-129

3DoF Animation 3-50

3D Controller [A(v),B(v),C(v),D(v)] 3-39

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
3-42

3D Self-Conditioned [A(v),B(v),C(v),D(v)] 3-46

3x3 Cross Product 3-52

Turbofan Engine System 3-131

2D Controller [A(v),B(v),C(v),D(v)] 3-24

2D Controller Blend 3-27

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
3-31

I1

Index

2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3-35
Velocity Conversion 3-134
WGS84 Gravity Model 3-136
Wind Shear Model 3-140
building models 1-9

C
COESA Atmosphere Model block 3-71

connecting blocks and ports 1-12

D

defining models 1-9

Density Conversion block 3-73

Direction Cosine Matrix to Euler Angles block
3-75

Direction Cosine Matrix to Quaternions block
3-77

Discrete Wind Gust Model block 3-79

Dryden Wind Turbulence Model block 3-82

E

Environment/Atmosphere library 3-2

Environment/Gravity library 3-2

Environment/Wind library 3-2

Equations of Motion block 3-94

Equations of Motion/3DoF library 3-2

Equations of Motion/6DoF library 3-2

Euler Angles to Direction Cosine Matrix block
3-90

Euler Angles to Quaternions block 3-92

F

Force Conversion block 3-98

G
Gain Scheduled Lead-Lag block 3-100

GNC library 3-2

|
Incidence & Airspeed block 3-101

Interpolate Matrix(x) block 3-102
Interpolate Matrix(x,y) block 3-104
Interpolate Matrix(x,y,z) block 3-106
ISA Atmosphere Model block 3-109

L
Length Conversion block 3-110
libraries

Simulink 1-5

M
Mass Conversion block 3-112

M-files
running simulations from 1-20
missile guidance system 2-1
models
defining and building 1-9
simulating 1-19
Mux block 1-11

o)

1D Controller [A(v),B(v),C(v),D(v)] block 3-11

1D Controller Blend u=(1-L).K1.y+L.K2.y block
3-14

Index

1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block
3-17

1D Self-Conditioned [A(v),B(v),C(v),D(v)] block
3-20

overview of Aerospace Blockset 1-2

P

parameters

definition of 1-12

setting 1-12

tuning 1-20
ports

connecting 1-12, 1-17
Pressure Conversion block 3-114
Propulsion library 3-2

Q

Quaternions to Direction Cosine Matrix block
3-116
Quaternions to Euler Angles block 3-118

R
resizing blocks 1-9

S
Scope block 1-11

Second Order Linear Actuator block
description 3-120
in tutorial 1-11
Second Order Nonlinear Actuator block 3-122
Self-Conditioned [A,B,C,D] block 3-124
simulations
running 1-19

running from M-file 1-20
Simulink

accessing 1-5

learning 1-20

libraries 1-5

Library Browser 1-5

Library Window 1-7
simulink 1-5
6DoF (Euler Angles) block 3-55
6DoF (Quaternions) block 3-59
6DoF Animation block 3-53

T

Temperature Conversion block 3-129

3D Controller [A(v),B(v),C(v),D(v)] block 3-39

3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block
3-42

3D Self-Conditioned [A(v),B(v),C(v),D(v)] block
3-46

3DoF Animation block 3-50

3x3 Cross Product block 3-52

Transformations/Axes library 3-2

Transformations/Units library 3-2

tuning parameters 1-20

Turbofan Engine System block 3-131

2D Controller [A(v),B(v),C(v),D(v)] block 3-24

2D Controller Blend block 3-27

2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block
3-31

2D Self-Conditioned [A(v),B(v),C(v),D(v)] block
3-35

V)

using the Simulink Library Browser 1-5
using the Simulink Library Window 1-7

I3

Index

I4

\')
Velocity Conversion block 3-134

Virtual Reality Toolbox
used in visualization ix

w
WGS84 Gravity Model block 3-136

Wind Shear Model block 3-140

	Using This Guide
	Organization of this Document
	Getting Help Online
	For Further Help and Feedback

	Related Products
	Requirements for the Aerospace Blockset
	Other Related Products

	Typographical Conventions
	Installation

	Introduction
	What Is the Aerospace Blockset?
	Getting Started with the Aerospace Blockset
	Opening the Aerospace Blockset on Windows Platforms
	Opening the Aerospace Blockset on UNIX Platforms

	Modeling with the Aerospace Blockset
	Model Definition
	Model Simulation
	Learning More About Simulink and Aerospace Blockset

	Case Study: Missile Guidance System
	Missile Guidance System Model
	Modeling Airframe Dynamics
	ISA Atmosphere Model block
	Aerodynamics & Equations of Motion Subsystem

	Modeling a Classical Three-Loop Autopilot
	Trimming and Linearizing an Airframe Model
	Autopilot Design

	Modeling the Homing Guidance Loop
	Guidance Subsystem
	Seeker/Tracker Subsystem

	Simulating the Missile Guidance System
	Extending the Model
	References

	Block Reference
	Blocks — By Category
	Actuator Library Blocks
	Animation Library Blocks
	Environment/Atmosphere Library Blocks
	Environment/Gravity Library Blocks
	Environment/Wind Library Blocks
	Equations of Motion/3DoF Library Blocks
	Equations of Motion/6DoF Library Blocks
	GNC Library Blocks
	Propulsion Library Blocks
	Transformation/Axes Library Blocks
	Transformations/Units Library Blocks
	Block Reference Page Description

	Blocks — Alphabetical List

	Index

