
Modeling

Simulation

Implementation

User’s Guide
Version 1

For Use with Simulink®

Aerospace
Blockset

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Aerospace Blockset User’s Guide
 COPYRIGHT 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by or for the federal government of the United States. By accepting delivery of the Program, the govern-
ment hereby agrees that this software qualifies as "commercial" computer software within the meaning
of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and
DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agree-
ment shall pertain to the government’s use and disclosure of the Program and Documentation, and shall
supersede any conflicting contractual terms or conditions. If this license fails to meet the government’s
minimum needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks,
and TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 2002 Online only New for Version 1 (Release 13)

i

Contents

Using This Guide

Organization of this Document . vi

Getting Help Online . vii
For Further Help and Feedback . viii

Related Products . ix
Requirements for the Aerospace Blockset ix
Other Related Products . x

Typographical Conventions . xi

Installation . xii

1
Introduction

What Is the Aerospace Blockset? . 1-2

Getting Started with the Aerospace Blockset 1-5
Opening the Aerospace Blockset on Windows Platforms 1-5
Opening the Aerospace Blockset on UNIX Platforms 1-7

Modeling with the Aerospace Blockset 1-9
Model Definition . 1-9
Model Simulation . 1-19
Learning More About Simulink and Aerospace Blockset 1-20

ii Contents

2
Case Study: Missile Guidance System

Missile Guidance System Model . 2-2

Modeling Airframe Dynamics . 2-3
ISA Atmosphere Model block . 2-5
Aerodynamics & Equations of Motion Subsystem 2-7

Modeling a Classical Three-Loop Autopilot 2-10
Trimming and Linearizing an Airframe Model 2-11
Autopilot Design . 2-12

Modeling the Homing Guidance Loop 2-13
Guidance Subsystem . 2-14
Seeker/Tracker Subsystem . 2-17

Simulating the Missile Guidance System 2-20

Extending the Model . 2-22

References . 2-23

3
Block Reference

Blocks — By Category . 3-2
Actuator Library Blocks . 3-3
Animation Library Blocks . 3-3
Environment/Atmosphere Library Blocks 3-3
Environment/Gravity Library Blocks . 3-3
Environment/Wind Library Blocks . 3-3
Equations of Motion/3DoF Library Blocks 3-4
Equations of Motion/6DoF Library Blocks 3-4
GNC Library Blocks . 3-4
Propulsion Library Blocks . 3-6
Transformation/Axes Library Blocks . 3-6

iii

Transformations/Units Library Blocks . 3-7
Block Reference Page Description . 3-8

Blocks — Alphabetical List . 3-9

iv Contents

Using This Guide

“Using This Guide” provides general information about the Aerospace Blockset and the
documentation. The following sections are included:

Organization of this Document (p. vi) Provides overview of the Aerospace Blockset
documentation.

Getting Help Online (p. vii) Describes the options available in accessing help while
using the Aerospace Blockset.

Related Products (p. ix) Describes other MathWorks products that are especially
relevant to the kinds of tasks you can perform with the
Aerospace Blockset as well as the requirements for the
Aerospace Blockset.

Typographical Conventions (p. xi) One-page table summarizing the typographical
conventions used in this document.

Installation (p. xii) Installation note.

 Using This Guide

vi

Organization of this Document
This guide contains tutorial sections that are designed to help you become
familiar with using the Aerospace Blockset with Simulink®, as well as a
reference section for finding detailed information on particular blocks in the
blockset:

• “Introduction” on page 1-1 provides an overview of fundamental Aerospace
Blockset concepts.

• “Case Study: Missile Guidance System” on page 2-1 provides an overview of
an application of the Aerospace Blockset.

• “Block Reference” on page 3-1 provides descriptions of each block’s
operation, parameters, and characteristics.

Use this guide in conjunction with the software to learn about the powerful
features of the Aerospace Blockset.

Note The User’s Guide documentation for the Aerospace Blockset assumes
that you are familiar with Simulink. See the Simulink documentation for
more information.

Getting Help Online

vii

Getting Help Online
There are a number of easy ways to get help on the Aerospace Blockset while
you’re working at the computer:

• Block Help — Click the Help button in any block dialog box to view the
online reference documentation for that block.

• Simulink Library Browser — Right-click a block to access the help for that
block.

• Help browser — Select Full Product Family Help from the Help menu, or
type doc or helpdesk at the command line to display the Help browser. Select
Aerospace Blockset in the Contents pane.

• Command Line — Type doc('block name') at the command line to access
the help for a block with the name block name. Spaces and capitalization in
the block name are ignored.

• Help Desk (remote) — Use a Web browser or the Help browser to connect to
the MathWorks Web site at www.mathworks.com. Follow the Documentation
link on the Support Web page for remote access to the documentation.

• Release Information — Select Full Product Family Help from the Help
menu, or type whatsnew at the MATLAB® command line and select the
Aerospace Blockset Release Notes from the Contents pane of the Help
browser. You can also type info aeroblks at the MATLAB command line to
view detailed release information related to bug fixes and enhancements.

The Release Notes contain information about new features and recent
changes to the version of the Aerospace Blockset that you are using.

 Using This Guide

viii

For Further Help and Feedback
We hope you enjoy using the Aerospace Blockset and look forward to hearing
your comments and suggestions.

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports

Visit the MathWorks Web site at www.mathworks.com for complete contact
information.

Related Products

ix

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Aerospace Blockset.

Requirements for the Aerospace Blockset
You must have the following products installed to use the Aerospace Blockset:

• MATLAB® 6.5

• Control System Toolbox 5.2

• Simulink 5.0

Virtual Reality-Based Visualization
The optional virtual reality-based visualization with the Aerospace Blockset
requires the Virtual Reality Toolbox Version 3.0. The toolbox ships with its own
virtual reality viewer.

You can improve the virtual reality speed and graphics resolution by adding a
graphics accelerator hardware card to your system. Animation of simulations
is sensitive to central processor and graphics card speed and memory.

 Using This Guide

x

Other Related Products
The toolboxes listed below all include functions that extend the capabilities of
MATLAB. The blocksets all include blocks that extend the capabilities of
Simulink. These products will enhance your use of the Aerospace Blockset in
various applications.

For more information about any of these products, see either

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at www.mathworks.com; see the “Products” section

Product Description

Control System Toolbox Design and analyze feedback control systems

Real-Time Workshop Generate C code from Simulink models

Stateflow® Design and simulate event-driven systems

Stateflow Coder Generate C code from Stateflow charts

Virtual Reality Toolbox Create and manipulate virtual reality worlds
from within MATLAB and Simulink

Real-Time Workshop
Embedded Coder

Generate production code for embedded
systems

Typographical Conventions

xi

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, and user input

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

 Using This Guide

xii

Installation
The Aerospace Blockset follows the same installation procedure as the
MATLAB toolboxes. See the MATLAB installation documentation for your
platform.

1

Introduction

Welcome to the Aerospace Blockset, the premier tool for aerospace system simulation and code
generation. This section contains the following topics, which will help introduce you to the Aerospace
Blockset:

“What Is the Aerospace Blockset?” on
page 1-2

This section provides an overview of the Aerospace
Blockset.

“Getting Started with the Aerospace
Blockset” on page 1-5

This section describes how to open the Aerospace
Blockset in Simulink.

“Modeling with the Aerospace
Blockset” on page 1-9

This section provides a tutorial on building Simulink
models and simulating them.

1 Introduction

1-2

What Is the Aerospace Blockset?
The Aerospace Blockset brings the full power of Simulink® to aerospace system
design, integration, and simulation by providing key aerospace subsystems
and components in the adaptable Simulink block format. From environmental
models to equations of motion, from gain scheduling to animation, the blockset
gives you the core components to rapidly and efficiently assemble a broad range
of large aerospace system architectures.

Use the Aerospace Blockset and Simulink to develop your aerospace system
concepts, and to efficiently revise and test throughout the life cycle of your
design. Use the Aerospace Blockset together with Real-Time Workshop® to
automatically generate code for real-time execution in rapid prototyping and
for hardware-in-the-loop systems.

The Aerospace Blockset is a collection of block libraries for use with Simulink.
The blockset extends Simulink by providing core components for large
aerospace systems. You can use blocks from the Aerospace Blockset in the
same way that you would use any other Simulink blocks, combining them with
blocks from other libraries to create sophisticated aerospace systems.

The Aerospace Blockset libraries are designed specifically for aerospace
applications and include such key operations as environmental modeling,
modeling equations of motion, gain scheduling, unit conversion, and more.

You will find that the blockset can be put to work rapidly. The blocks
implement mathematical representations from textbooks and references and
the experience of the engineers at The MathWorks.

What Is the Aerospace Blockset?

1-3

Notice THE MATHWORKS PROGRAMS HAVE NOT BEEN TESTED OR
CERTIFIED BY ANY GOVERNMENT AGENCY OR INDUSTRY
REGULATORY ORGANIZATION OR ANY OTHER THIRD PARTY. THE
PROGRAMS SHOULD NOT BE RELIED ON AS THE SOLE BASIS TO
SOLVE A PROBLEM WHOSE INCORRECT SOLUTION COULD RESULT
IN INJURY TO PERSON OR PROPERTY. THE PROGRAMS ARE NOT
DESIGNED NOR TESTED FOR A LEVEL OF RELIABILITY SUITABLE
FOR USE AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT OR
OTHER INFORMATION SYSTEMS OR HARDWARE, THE FAILURE OF
WHICH CAN REASONABLY BE EXPECTED TO CAUSE DEATH OR
PERSONAL INJURY OR PROPERTY OR ENVIRONMENTAL DAMAGE.
LICENSEE AGREES THAT PRIOR TO USING, INCORPORATING OR
DISTRIBUTING THE PROGRAMS IN ANY PRODUCT, IT WILL
THOROUGHLY TEST THE PRODUCT AND THE FUNCTIONALITY OF
THE PROGRAMS IN THAT PRODUCT AND BE SOLELY RESPONSIBLE
FOR ANY PROBLEMS OR FAILURES.

The Aerospace Blockset contains a collection of blocks organized in a set of
nested libraries. The best way to explore the blockset is to expand the
Aerospace Blockset entry in the Simulink Library Browser. The fully
expanded library list is shown here.

1 Introduction

1-4

See the Simulink documentation for complete information about the Library
Browser. To access the blockset through its own window (rather than through
the Library Browser), enter

aerolib

in the MATLAB Command Window. Double-click any library in the window to
display its contents.

For a complete list of all the blocks in the Aerospace Blockset by library, see
“Blocks — By Category” on page 3-2.

Getting Started with the Aerospace Blockset

1-5

Getting Started with the Aerospace Blockset
To get started with the Aerospace Blockset, you need to use Simulink. All the
blocks in the Aerospace Blockset are designed for use together with the blocks
in the Simulink libraries. This section describes how to open the Aerospace
Blockset on Windows and on UNIX platforms.

• “Opening the Aerospace Blockset on Windows Platforms” on page 1-5

• “Opening the Aerospace Blockset on UNIX Platforms” on page 1-7

Opening the Aerospace Blockset on Windows
Platforms
You can open the Aerospace Blockset from the Simulink Library Browser.

Opening the Simulink Library Browser
To start Simulink, click the icon in the MATLAB toolbar, or type

simulink

at the command line.

The Simulink Libraries
The libraries in the Simulink Library Browser contain all the basic elements
you need to construct a model. Look here for basic math operations, switches,
connectors, simulation control elements, and other items that do not have a
specific aerospace orientation.

Opening the Aerospace Blockset
On Windows platforms, the Simulink Library Browser opens when you start
Simulink. The left pane contains a list of all the blocksets that you currently
have installed.

1 Introduction

1-6

The first item in the list is the Simulink blockset itself, which is already
expanded to show the available Simulink libraries. Click the symbol to the
left of any blockset name to expand the hierarchical list and display that
blockset’s libraries within the browser.

To open the Aerospace Blockset window from the MATLAB command line,
enter

aerolib

See the Simulink documentation for a complete description of the Library
Browser.

Getting Started with the Aerospace Blockset

1-7

Opening the Aerospace Blockset on UNIX Platforms
You can open the Aerospace Blockset from the Simulink Library window.

Opening the Simulink Library Window
To start Simulink, click the icon in the MATLAB toolbar, or type

simulink

at the command line.

The Simulink Libraries
The libraries in the Simulink Library window contain all the basic elements
you need to construct a model. Look here for basic math operations, switches,
connectors, simulation control elements, and other items that do not have a
specific aerospace orientation.

Opening the Aerospace Blockset
On UNIX platforms, the following Simulink Library window opens when you
start Simulink. To view other installed blocksets, double-click the Blocksets &
Toolboxes button.

Double-click the Aerospace Blockset icon to open the Aerospace Blockset.

1 Introduction

1-8

To open the Aerospace Blockset window from the MATLAB command line,
enter

aerolib

Modeling with the Aerospace Blockset

1-9

Modeling with the Aerospace Blockset
If you have never used Simulink before, take some time to get acquainted with
its features.

Begin by learning the two basic stages in model construction, discussed in the
following sections:

• “Model Definition” on page 1-9

• “Model Simulation” on page 1-19

Model Definition
Simulink is a software package for modeling, simulating, and analyzing
dynamic systems. Try building a simple model that drives an actuator with a
sine wave and displays the actuator’s position superimposed on the sine wave.

Note If you prefer to open the complete model shown below instead of
building it, type aeroblktutorial at the MATLAB command line.

Following are the procedures for defining a model on Windows and UNIX
platforms.

• “Defining a Model on Windows Platforms” on page 1-10

• “Defining a Model on UNIX Platforms” on page 1-15

1 Introduction

1-10

Defining a Model on Windows Platforms

1 Start Simulink.

Click the button in the MATLAB toolbar or enter simulink in the
MATLAB Command Window. The Library Browser appears.

2 Open a new model.

Select New -> Model from the File menu in the Library Browser. A new
model window appears on your screen.

Alternate methods for creating a new model are by selecting New from the
File menu in the Simulink model or by using the key sequence Ctrl+N.

Modeling with the Aerospace Blockset

1-11

3 Add a Sine Wave block to the model.

a Click Sources in the Library Browser to view the blocks in the Simulink
Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

4 Add a Second Order Linear Actuator block to the model.

a Click the symbol next to Aerospace Blockset in the Library Browser
to expand the hierarchical list of the aerospace blocks.

b In the expanded list, click Actuators to view the blocks in the Actuator
library.

c Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Click Signal Routing in the Library Browser to view the blocks in the
Simulink Signals & Systems library.

b Drag the Mux block from the Signal Routing library into the model
window.

6 Add a Scope block to the model.

a Click Sinks in the Library Browser to view the blocks in the Simulink
Sinks library.

b Drag the Scope block from the Sinks library into the model window.

7 Resize the Mux block in the model.

a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

1 Introduction

1-12

8 Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

b Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

c Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

d Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.
Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you
to set the block’s parameters. Parameters are defining values that tell the
block how to operate.

For this example, configure the block to generate a 10 rad/sec sine wave
by entering 10 for the Frequency parameter. The sinusoid has the
default amplitude of 1 and phase of 0 specified by the Amplitude and
Phase offset parameters.

Modeling with the Aerospace Blockset

1-13

b Click OK.

1 Introduction

1-14

c Double-click the Second Order Linear Actuator block.

For this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial condition of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
condition parameters.

d Click OK.

You can now move on to the model simulation phase. See “Model Simulation”
on page 1-19.

Modeling with the Aerospace Blockset

1-15

Defining a Model on UNIX Platforms

1 Start Simulink.

Enter simulink in the MATLAB Command Window. The Simulink Library
window appears.

2 Open a new model.

Select New -> Model from the File menu in the Simulink Library window.
A new model window appears on your screen.

Alternate methods for creating a new model are by selecting New from the
File menu in the Simulink model or by using the key sequence Ctrl+N.

1 Introduction

1-16

3 Add a Sine Wave block to the model.

a Double-click Sources in the Simulink Library window to view the blocks
in the Simulink Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

4 Add a Second Order Linear Actuator block to the model.

a Double-click Blocksets & Toolboxes in the Simulink Library window.
This opens the Blocksets and Toolboxes Library window.

b Double-click Aerospace Blockset in the Blocksets and Toolboxes Library
window. This opens the Aerospace Blockset block libraries.

c In the Aerospace Blockset block libraries, click Actuators to view the
blocks in the Actuator library.

d Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Double-click Signal Routing in the Simulink Library to view the Signal
Routing blocks.

b Drag the Mux block from the Signal Routing library into the model
window.

6 Add a Scope block to the model.

a Double-click Sinks in the Simulink Library window to view the blocks in
the Simulink Sinks library.

b Drag the Scope block from the Sinks library into the model window.

Modeling with the Aerospace Blockset

1-17

7 Resize the Mux block in the model.

a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

8 Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

b Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

c Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

d Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.
Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you
to set the block’s parameters. Parameters are defining values that tell the
block how to operate.

For this example, configure the block to generate a 10 rad/sec sine wave
by entering 10 for the Frequency parameter. The sinusoid has the
default amplitude of 1 and phase of 0 specified by the Amplitude and
Phase offset parameters.

1 Introduction

1-18

b Click OK.

c Double-click the Second Order Linear Actuator block.

For this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial condition of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
condition parameters.

Modeling with the Aerospace Blockset

1-19

d Click OK.

You can now move on to the model simulation phase. See “Model Simulation”.

Model Simulation
 You can run the simulation block diagram that you built to see how the system
behaves in time:

1 Double-click the Scope block if the Scope window is not already open on your
screen. The Scope window appears.

2 Select Start from the Simulation menu in the block diagram window. The
signal containing the 10 rad/sec sinusoid and the signal containing the
actuator position are plotted on the scope.

3 Adjust the Scope block’s display.

a While the simulation is running, right-click the y-axis of the scope and
select Autoscale. The vertical range of the scope is adjusted to better fit
the signal.

b Click the Properties button on the scope and enter 0.62832 for Time
range. This resizes the scope’s time axis to display only one cycle of the
signal.

1 Introduction

1-20

4 Vary the Sine Wave block parameters.

a While the simulation is running, double-click the Sine Wave block to open
it.

b Change the frequency of the sinusoid. Try entering 1 or 20 in the
Frequency field. Click Apply after entering each new value and observe
the changes on the scope.

5 Select Stop from the Simulation menu to stop the simulation.

Many parameters cannot be changed while a simulation is running. This is
usually the case for parameters that directly or indirectly alter a signal’s
dimensions or sample rate. There are some parameters, however, like the Sine
Wave Frequency parameter, that you can tune without terminating the
simulation.

Running a Simulation from an M-File
You can also modify and run a Simulink simulation from within a MATLAB
M-file. By doing this, you can automate the variation of model parameters to
explore a large number of simulation conditions rapidly and efficiently. For
information on how to do this, see “Running a Simulation Programmatically”
in the Simulink documentation.

Learning More About Simulink and Aerospace
Blockset
Here are more suggestions to help you get started with Simulink:

• Browse through the Simulink documentation to get complete exposure to all
of Simulink’s capabilities.

• Open the Simulink library as described in “Opening the Aerospace Blockset
on Windows Platforms” on page 1-5. Build a few simple models using blocks
from the Simulink and Aerospace Blockset libraries.

• Open some of the models in the Aerospace Blockset Demos library. Most of
the advanced demos have blocks that you can double-click to get information
about the algorithm or implementation. In each case, just select Start from
the Simulation menu to run the simulation.

2

Case Study: Missile
Guidance System

 This chapter illustrates the process of designing and simulating a three-degrees-of-freedom missile
guidance system using Simulink and the Aerospace Blockset. The following sections are included.

“Missile Guidance System Model” on
page 2-2

Open the model that is used in this case study

“Modeling Airframe Dynamics” on
page 2-3

Implement atmospheric equations and the equations of
motion in the missile airframe.

“Modeling a Classical Three-Loop
Autopilot” on page 2-10

Design the missile autopilot to control the acceleration
normal to the missile body.

“Modeling the Homing Guidance Loop”
on page 2-13

Design the homing guidance loop to track the target and
generate the demands that are passed to the autopilot.

“Simulating the Missile Guidance
System” on page 2-20

Simulate model and evaluate system performance.

“Extending the Model” on page 2-22 Examine a full six-degrees-of-freedom equations of motion
representation.

“References” on page 2-23 Selected Bibliography

2 Case Study: Missile Guidance System

2-2

Missile Guidance System Model
To view the missile guidance system model, type the following in the MATLAB
Command Window:

aeroblk_guidance

The missile airframe and autopilot are contained in the Airframe & Autopilot
subsystem. The homing guidance loop consists of the Seeker/Tracker
subsystem and the Guidance subsystem.

Modeling Airframe Dynamics

2-3

Modeling Airframe Dynamics
The model of the missile airframe used in this demonstration has been
presented in a number of published papers (References [1], [2], and [3]) on the
use of advanced control methods applied to missile autopilot design. The model
represents a tail-controlled missile traveling between Mach 2 and Mach 4, at
altitudes ranging between 3050 meters (10000 feet) and 18290 meters (60000
feet), and with typical angles of attack ranging between ±20 degrees.

Missile Airframe Model

The core element of the model is a nonlinear representation of the rigid body
dynamics of the airframe. The aerodynamic forces and moments acting on the
missile body are generated from coefficients that are nonlinear functions of
both incidence and Mach number. The model can easily be created in the
Simulink environment using the Aerospace Blockset.

The model of the missile airframe consists of two main components:

• “ISA Atmosphere Model block” on page 2-5

Calculates the change in atmospheric conditions with changing altitude.

• “Aerodynamics & Equations of Motion Subsystem” on page 2-7

Calculates the magnitude of the forces and moments acting on the missile
body, and integrates the equations of motion.

2 Case Study: Missile Guidance System

2-4

To view the missile airframe model, enter the following in the MATLAB
Command Window:

aeroblk_guidance_airframe

Modeling Airframe Dynamics

2-5

ISA Atmosphere Model block
The ISA Atmosphere Model block is an approximation of the International
Standard Atmosphere (ISA). This block consists of two sets of equations: one
set of equations models the troposphere region and the other set of equations
models the lower stratosphere region. The troposphere region lies between sea
level and 11000 meters (36089 feet). It is assumed that there is a linear
temperature drop with increasing altitude in the troposphere region. The lower
stratosphere region ranges between 11000 meters (36089 feet) and 20000
meters (65617 feet). It is assumed that the temperature remains constant in
the lower stratosphere region. The figure below displays how the speed of
sound and the air density vary with altitude.

The following equations define the troposphere.

T To Lh–=

ρ ρo
T
To
------ 
 

g
LR
-------- 1–

⋅=

P Po
T
To
------ 
 

g
LR

⋅=

2 Case Study: Missile Guidance System

2-6

The following equations define the lower stratosphere.

where

is the absolute temperature at mean sea level in degrees Kelvin.

 is the air density at mean sea level in kg/m3.

 is the static pressure at mean sea level in N/m2.

 is the altitude in m.

 is the absolute temperature at altitude, h, in degrees Kelvin.

ρ is the air density at altitude h in kg/m3.

 is the static pressure at altitude h in N/m2.

is the speed of sound at altitude h in m/s2.

 is the lapse rate in degrees Kelvin/m.

 is the characteristic gas constant J/kg-degrees Kelvin.

is the specific heat ratio.

 is the acceleration due to gravity in m/s2.

You can look under the mask of the ISA Atmosphere Model block to see how
these equations are implemented in the model.

a γRT=

T 216.7=
oK

ρ ρo
T
To
------ 
 

g
LR

e

g
RT
--------- 11000 h–()

⋅ ⋅=

P Po
T
To
------ 
 

g
LR
-------- 1–

e⋅ ⋅
g

RT
--------- 11000 h–()

=

a γRT=

T0

ρ0

P0

h

T

P

a

L

R

γ

g

Modeling Airframe Dynamics

2-7

Aerodynamics & Equations of Motion Subsystem
The Aerodynamics & Equations of Motion subsystem generates the forces and
moments applied to the missile in the body axes and integrates the equations
of motion that define the linear and angular motion of the airframe. The
aerodynamic coefficients are stored in data sets, and, during the simulation,
the value at the current operating condition is determined by interpolation
using the Interpolation (n-D) using PreLook-Up block.

The following are the three-degrees-of-freedom body axis equations of motion,
which are defined in the Equations of Motion (Body Axes) block:

U· T Fx+() m⁄ qW– g θsin–=

W· Fz m⁄ qU g θcos+ +=

q· M Iyy⁄=

2 Case Study: Missile Guidance System

2-8

The following are the aerodynamic forces and moments equations, which are
defined in the Aerodynamics subsystem:

The following are the stability axes variables, which are calculated in the
Incidence & Airspeed block:

where

 is the attitude in radians.

 is the body rotation rate in rad/s.

 is the missile mass in Kg.

 is the acceleration due to gravity in m/s2.

 is the moment of inertia about the y axis in Kg-m2.

 is the acceleration in the Z body axis in m/s2.

 is the change in body rotation rate in rad/s2.

 is the thrust in the X body axis in N.

 is the air density in Kg/m3.

 is the reference area in m2.

 is the coefficient of aerodynamic force in the X axis.

 is the coefficient of aerodynamic force in the Z axis.

θ· q=

Fx qSrefCx Mach α,()=

Fz qSrefCz Mach α η,(,)=

M qSrefdrefCM Mach α η q, , ,()=

q 1
2
---ρV2

=

V U2 W2
+=

α W U⁄()atan=

θ

q

M

g

Iyy

W·

q·

T

ρ

Sref

CX

CZ

Modeling Airframe Dynamics

2-9

 is the coefficient of aerodynamic moment about the Y axis.

 is the reference length in meters.

 is the fin angle in radians.

 is the aerodynamic force in the X body axis in N.

 is the aerodynamic force in the Z body axis in N.

 is the aerodynamic moment along the Y body axis.

 is the dynamic pressure in Pa.

 is the airspeed in m/s.

 is the incidence in radians.

 is the velocity in the X body axis in m/s.

 is the velocity in the Z body axis in m/s

CM

dref

η

FX

FZ

M

q

V

α

U

W

2 Case Study: Missile Guidance System

2-10

Modeling a Classical Three-Loop Autopilot
The missile autopilot controls the acceleration normal to the missile body. In
this case study, the autopilot structure is a three-loop design using
measurements from an accelerometer placed ahead of the center of gravity and
a rate gyro to provide additional damping. The figure below shows the classical
configuration of an autopilot. The controller gains are scheduled on incidence
and Mach number and they are tuned for robust performance at an altitude of
3050 meters (10000 feet).

Designing an autopilot entails the following:

• “Trimming and Linearizing an Airframe Model” on page 2-11

Models of the airframe pitch dynamics are derived for a number of trimmed
flight conditions.

• “Autopilot Design” on page 2-12

Provides overview of the autopilot design process.

Modeling a Classical Three-Loop Autopilot

2-11

Trimming and Linearizing an Airframe Model
To design the autopilot using classical design techniques requires that linear
models of the airframe pitch dynamics be derived for a number of trimmed
flight conditions. MATLAB can determine the trim conditions and derive linear
state-space models directly from the nonlinear Simulink model. This saves
time and helps to validate the model. The functions provided by the Control
System Toolbox allow the designer to visualize the behavior of the airframe
open loop frequency (or time) responses.

The Airframe trim demo shows how to trim and linearize an airframe model.
To run this demo, enter the following in the MATLAB Command Window:

aeroblk_lin_aero

The output from this demo is a Bode diagram in the Control System Toolbox
viewer.

2 Case Study: Missile Guidance System

2-12

Autopilot Design
Autopilot design can begin after the missile airframe has been linearized at a
number of flight conditions. Typically, autopilot designs are carried out on a
number of linear airframe models derived at varying flight conditions across
the expected flight envelope. To implement the autopilot in the nonlinear
model involves storing the autopilot gains in two-dimensional lookup tables,
and incorporating an anti-windup gain to prevent integrator windup when the
fin demands exceed the maximum limits. Testing the autopilot in the nonlinear
Simulink model is the best way to demonstrate satisfactory performance in the
presence of nonlinearities, such as actuator fin and rate limits and dynamically
changing gains.

The Autopilot subsystem is an implementation of the classical three-loop
autopilot design within Simulink.

Modeling the Homing Guidance Loop

2-13

Modeling the Homing Guidance Loop
The complete homing guidance loop consists of these two subsystems:

• “Guidance Subsystem” on page 2-14

Generates the normal acceleration demands that are passed to the autopilot.

• “Seeker/Tracker Subsystem” on page 2-17

Returns measurements of the relative motion between the missile and the
target.

The autopilot is now part of an inner loop within the overall homing guidance
system. See Reference [4] for information on different types of guidance
systems and on the analysis techniques that are used to quantify guidance loop
performance.

2 Case Study: Missile Guidance System

2-14

Guidance Subsystem
The Guidance subsystem performs an initial search to locate the target’s
position, and then generates demands during closed-loop tracking. A Stateflow
model is used to control the transfer between the different modes of these
operations. Stateflow is the ideal tool for rapidly defining all the operational
modes, both during normal operation and during unusual situations.

Guidance Processor Statechart
Mode switching is triggered by events generated in Simulink or in the
Stateflow chart. The variable Mode, which is passed out to Simulink, is used
to control the Simulink model’s behavior and to determine the response of the
Simulink model. For example, the Guidance Processor state chart, which is
part of the Guidance subsystem, shows the actions the system takes in

Modeling the Homing Guidance Loop

2-15

response to either a loss of lock on the target or a failure to acquire the target’s
position during the target search.

During the target search, this Stateflow state chart controls the tracker
directly by sending demands to the seeker gimbals (Sigma_d). Target
acquisition is flagged by the tracker once the target lies within the beam width
of the seeker (Acquire) and, after a short delay, closed loop guidance starts.

2 Case Study: Missile Guidance System

2-16

Proportional Navigation Guidance Measurements
Once the seeker has acquired the target a Proportional Navigation Guidance
(PNG) law is used to guide the missile until impact. This form of guidance law
has been used in guided missiles since the 1950s, and can be applied to radar-,
infrared-, or television-guided missiles. The navigation law requires
measurements of the closing velocity between the missile and target, which for
a radar-guided missile can be obtained using a Doppler tracking device, and an
estimate for the rate of change of the inertial sight line angle.

Proportional Navigation Guidance Measurements

where

λ is navigation gain (> 2).

Vc is closing velocity.

θb is body attitude.

is sight line rate.

σg is gimbal angle.

σL is look angle.

σd is dish angle.

az_dem = λVc , the demanded normal acceleration.

θ· s

θ· s

Modeling the Homing Guidance Loop

2-17

Seeker/Tracker Subsystem
The Seeker/Tracker subsystem controls the seeker gimbals to keep the seeker
dish aligned with the target, and it provides the guidance law with an estimate
of the sight line rate.

Tracker and Sightline Rate Estimator
The Tracker and Sightline Rate Estimator, which is the most interesting
subsystem of the Seeker/Tracker subsystem because of its complex error
modeling, is shown below. It contains a number of feedback loops, estimated
parameters, and parasitic effects for the homing guidance. The tracker loop
time constant tors is set to 0.05 seconds, which is a compromise between
maximizing speed of response and keeping the noise transmission to within
acceptable levels. The stabilization loop compensates for body rotation rates,
and the gain Ks, which is the loop crossover frequency, is set as high as possible
subject to the limitations of the bandwidth of the stabilizing rate gyro. The
sight line rate estimate is a filtered value of the sum of the rate of change of the
dish angle measured by the stabilizing rate gyro and an estimated value for the
rate of change of the angular tracking error (e) measured by the receiver. In
this demonstration the bandwidth of the estimator filter is set to half that of
the bandwidth of the autopilot.

2 Case Study: Missile Guidance System

2-18

Radome Aberration.

Radome aberration is also modeled by the Tracker and Sightline Rate
Estimator subsystem. Radome aberration is a parasitic feedback effect that is
commonly modeled in radar-guided missile designs. This effect occurs because
the shape of the protective covering over the seeker distorts the returning
signal, and then gives a false reading of the look angle to the target. Generally
the amount of distortion is a nonlinear function of the current gimbal angle, but
a commonly used approximation is to assume a linear relationship between the
gimbal angle and the magnitude of the distortion. Other parasitic effects, such

Modeling the Homing Guidance Loop

2-19

as sensitivity to normal acceleration in the rate gyros, are also often modeled
to test the robustness of the target tracker and estimator filters.

Radome Aberration Angles

2 Case Study: Missile Guidance System

2-20

Simulating the Missile Guidance System
Running the guidance simulation demonstrates the performance of the overall
system. The target is defined to be traveling at a constant speed of 328 m/s on
a reciprocal course to the initial missile heading and 500 meters above the
initial missile position. The data, shown in the figure below, can be used to
determine if the missile can withstand the flight demands and complete the
mission.

Simulating the Missile Guidance System

2-21

The simulation results show that target acquisition occurred 0.69 seconds into
the engagement, with closed loop guidance starting after 0.89 seconds. Impact
with the target occurred at 3.46 seconds, and the range to go at the point of
closest approach was calculated to be 0.26 meters.

2 Case Study: Missile Guidance System

2-22

Extending the Model
Modeling the airframe and guidance loop in a single plane is only the start of
the design process. Extending the model to a full six-degrees-of-freedom
representation requires the implementation of the full equations of motion for
a rigid body.

There are two blocks for integrating the equations of motion in the Aerospace
Blockset. Both of these blocks use standard Simulink component blocks. The
first implementation uses a quaternion to represent the angular orientation of
the body in space, which is ideal for simulations where the standard Euler
angle definitions become singular as the pitch attitude tends to ±90 degrees.
The second implementation uses the standard Euler angle equations of motion,
which is ideal when using the model to obtain trim conditions and linear
airframe models. A model containing one of the six-degrees-of-freedom
equations of motion blocks is shown below.

References

2-23

References
1 Bennani, S., D.M.C. Willemsen, and C.W. Scherer, “Robust LPV control with

bounded parameter rates,” AIAA-97-3641, August 1997.

2 Mracek, C. P and J.R. Cloutier, “Full Envelope Missile Longitudinal
Autopilot Design Using the State-Dependent Riccati Equation Method,”
AIAA-97-3767, August 1997.

3 Shamma, J.S. and J.R. Cloutier, “Gain-Scheduled Missile Autopilot Design
Using Linear Parameter Varying Transformations,” Journal of Guidance,
Control and Dynamics, Vol. 16, No. 2, March-April 1993.

4 Lin, Ching-Fang, “Modern Navigation, Guidance, and Control Processing,”
Volume 2, ISBN 0-13-596230-7, Prentice Hall, 1991.

2 Case Study: Missile Guidance System

2-24

3

Block Reference

Blocks — By Category (p. 3-2) Provides tables of Aerospace Blockset blocks by category.

Blocks — Alphabetical List (p. 3-9) Provides an alphabetical list of Aerospace Blockset
blocks.

3 Block Reference

3-2

Blocks — By Category
The Aerospace Blockset’s main library, aerolib, organizes its blocks into
libraries according to their behavior. The aerolib window displays the block
library icons and names:

Actuator Library Blocks Contain actuator models.

Animation Library Blocks Contain blocks that provide 3-D animation
during simulation.

Environment/Atmosphere
Library Blocks

Contain atmosphere models.

Environment/Gravity
Library Blocks

Contain gravity models.

Environment/Wind Library
Blocks

Contain wind models.

Equations of Motion/3DoF
Library Blocks

Contain three-degrees-of-freedom equations of
motion blocks.

Equations of Motion/6DoF
Library Blocks

Contain six-degrees-of-freedom equations of
motion blocks.

GNC Library Blocks Contain gain scheduling blocks.

Propulsion Library Blocks Contain simple propulsion system models.

Transformation/Axes
Library Blocks

Contain blocks that convert reference axes.

Transformations/Units
Library Blocks

Contain blocks that convert unit axes.

Blocks — By Category

3-3

Actuator Library Blocks

Animation Library Blocks

Environment/Atmosphere Library Blocks

Environment/Gravity Library Blocks

Environment/Wind Library Blocks

Second Order Linear
Actuator

Implement a second-order linear actuator

Second Order Nonlinear
Actuator

Implement a second-order actuator with rate
and deflection limits

3DoF Animation Create a 3-D Handle Graphics animation of a
three-degrees-of-freedom object

6DoF Animation Create a 3-D Handle Graphics animation of a
six-degrees-of-freedom object

COESA Atmosphere Model Implement the 1976 COESA lower atmosphere

ISA Atmosphere Model Implement the International Standard
Atmosphere (ISA)

WGS84 Gravity Model Implement the 1984 World Geodetic System
representation of Earth’s gravity

Discrete Wind Gust Model Generate discrete wind gust

Dryden Wind Turbulence
Model

Generate wind turbulence with the Dryden
velocity spectra

Wind Shear Model Calculate wind shear conditions

3 Block Reference

3-4

Equations of Motion/3DoF Library Blocks

Equations of Motion/6DoF Library Blocks

GNC Library Blocks

Equations of Motion Implement three-degrees-of-freedom equations
of motion

Incidence & Airspeed Calculate incidence and air speed

6DoF (Euler Angles) Implement an Euler angle representation of
six-degrees-of-freedom equations of motion

6DoF (Quaternion) Implement a quaternion representation of
six-degrees-of-freedom equations of motion

1D Controller
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller depending on one scheduling
parameter

1D Controller Blend
u=(1-L).K1.y+L.K2.y

Implement a 1-D vector of state-space
controllers by linear interpolation of their
outputs

1D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space
controller in an observer form depending on
one scheduling parameter

1D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller in a self-conditioned form

2D Controller
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller depending on two scheduling
parameters

2D Controller Blend Implement a 2-D vector of state-space
controllers by linear interpolation of their
outputs

Blocks — By Category

3-5

2D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space
controller in an observer form depending on
two scheduling parameters

2D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller in a self-conditioned form

3D Controller
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller depending on three scheduling
parameters

3D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space
controller in an observer form depending on
three scheduling parameters

3D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller in a self-conditioned form

Gain Scheduled Lead-Lag Implement a first-order lead-lag with
gain-scheduled coefficients

Interpolate Matrix(x) Return an interpolated matrix for given input x

Interpolate Matrix(x,y) Return an interpolated matrix for given inputs
x and y

Interpolate Matrix(x,y,z) Return an interpolated matrix for given inputs
x, y, and z

Self-Conditioned [A,B,C,D] Implement a state-space controller in a
self-conditioned form

3 Block Reference

3-6

Propulsion Library Blocks

Transformation/Axes Library Blocks

Turbofan Engine System Implement a first-order representation of a
turbofan engine with controller

3x3 Cross Product Calculate the cross product of two 3-by-1
vectors

Direction Cosine Matrix to
Euler Angles

Convert direction cosine matrix to Euler angles

Direction Cosine Matrix to
Quaternions

Convert direction cosine matrix to quaternion
vector

Euler Angles to Direction
Cosine Matrix

Convert Euler angles to direction cosine matrix

Euler Angles to
Quaternions

Convert Euler angles to quaternion vector

Quaternions to Direction
Cosine Matrix

Convert quaternion vector to direction cosine
matrix

Quaternions to Euler
Angles

Convert quaternion vector to Euler angles

Blocks — By Category

3-7

Transformations/Units Library Blocks
Acceleration Conversion Convert from acceleration units to desired

acceleration units

Angle Conversion Convert from angle units to desired angle units

Angular Acceleration
Conversion

Convert from angular acceleration units to
desired angular acceleration units

Angular Velocity
Conversion

Convert from angular velocity units to desired
angular velocity units

Density Conversion Convert from density units to desired density
units

Force Conversion Convert from force units to desired force units

Length Conversion Convert from length units to desired length
units

Mass Conversion Convert from mass units to desired mass units

Pressure Conversion Convert from pressure units to desired
pressure units

Temperature Conversion Convert from temperature units to desired
temperature units

Velocity Conversion Convert from velocity units to desired velocity
units

3 Block Reference

3-8

Block Reference Page Description
Blocks appear in alphabetical order and contain the following information:

• The block name, icon, and block library that contains the block

• The purpose of the block

• A description of the block’s use

• The block dialog box and parameters

• Additional information, as it applies to the block:

- Inputs and outputs descriptions

- Assumptions and limitations to the block’s use

- Examples using the block

- References to other documents

• A “See Also” of related blocks

Blocks — Alphabetical List

3-9

Blocks — Alphabetical List 3

1D Controller [A(v),B(v),C(v),D(v)] . 3-12
1D Controller Blend u=(1-L).K1.y+L.K2.y . 3-15
1D Observer Form [A(v),B(v),C(v),F(v),H(v)] . 3-18
1D Self-Conditioned [A(v),B(v),C(v),D(v)] . 3-21
2D Controller [A(v),B(v),C(v),D(v)] . 3-25
2D Controller Blend . 3-28
2D Observer Form [A(v),B(v),C(v),F(v),H(v)] . 3-32
2D Self-Conditioned [A(v),B(v),C(v),D(v)] . 3-36
3D Controller [A(v),B(v),C(v),D(v)] . 3-40
3D Observer Form [A(v),B(v),C(v),F(v),H(v)] . 3-43
3D Self-Conditioned [A(v),B(v),C(v),D(v)] . 3-47
3DoF Animation . 3-51
3x3 Cross Product . 3-53
6DoF Animation . 3-54
6DoF (Euler Angles) . 3-56
6DoF (Quaternion) . 3-60
Acceleration Conversion . 3-64
Angle Conversion . 3-66
Angular Acceleration Conversion . 3-68
Angular Velocity Conversion . 3-70
COESA Atmosphere Model . 3-72
Density Conversion . 3-74
Direction Cosine Matrix to Euler Angles . 3-76
Direction Cosine Matrix to Quaternions . 3-78
Discrete Wind Gust Model . 3-80
Dryden Wind Turbulence Model . 3-83
Euler Angles to Direction Cosine Matrix . 3-91
Euler Angles to Quaternions . 3-93
Equations of Motion . 3-95
Force Conversion . 3-99
Gain Scheduled Lead-Lag . 3-101
Incidence & Airspeed . 3-102
Interpolate Matrix(x) . 3-103
Interpolate Matrix(x,y) . 3-105
Interpolate Matrix(x,y,z) . 3-107

3

3-10

ISA Atmosphere Model . 3-110
Length Conversion . 3-111
Mass Conversion . 3-113
Pressure Conversion . 3-115
Quaternions to Direction Cosine Matrix . 3-117
Quaternions to Euler Angles . 3-119
Second Order Linear Actuator . 3-121
Second Order Nonlinear Actuator . 3-123
Self-Conditioned [A,B,C,D] . 3-125
Temperature Conversion . 3-130
Turbofan Engine System . 3-132
Velocity Conversion . 3-135
WGS84 Gravity Model . 3-137
Wind Shear Model . 3-141

1D Controller [A(v),B(v),C(v),D(v)]

3-11

31D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on one
scheduling parameter

Library GNC

Description The 1D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

where v is a parameter over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

Dialog Box

x· A v()x B v()y+=

u C v()x D v()y+=

1D Controller [A(v),B(v),C(v),D(v)]

3-12

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1D scheduling,
the A-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the A-matrix
corresponding to the first entry of v is the identity matrix, then
A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. In the case of 1D scheduling,
the B-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the B-matrix
corresponding to the first entry of v is the identity matrix, then
B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. In the case of 1D scheduling,
the C-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the C-matrix
corresponding to the first entry of v is the identity matrix, then
C(:,:,1) = 1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. In the case of 1D scheduling,
the D-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the D-matrix
corresponding to the first entry of v is the identity matrix, then
D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

1D Controller [A(v),B(v),C(v),D(v)]

3-13

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter input to the block goes out of range, then it is
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the autopilot in the aeroblk_HL20.mdl demo for an example of this block.

See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y
1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Controller [A(v),B(v),C(v),D(v)]
3D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

3-14

31D Controller Blend u=(1-L).K1.y+L.K2.yPurpose Implement a 1-D vector of state-space controllers by linear interpolation of
their outputs

Library GNC

Description The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of
state-space controller designs. The controllers are run in parallel, and their
outputs interpolated according to the current flight condition or operating
point. The advantage of this implementation approach is that the state-space
matrices A, B, C, and D for the individual controller designs do not need to vary
smoothly from one design point to the next.

For example, suppose two controllers are designed at two operating points
v=vmin and v=vmax. The 1D Controller Blend block implements

For longer arrays of design points, the blocks only implement nearest neighbor
designs. For the 1D Controller Blend block, at any given instant in time, three
controller designs are being updated. This reduces computational
requirements.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

x1
· A1x1 B1y+=

u1 C1x1 D1y+=

x2
· A2x2 B2y+=

u2 C= 2x2 D2y+

u 1 λ–()u1 λu2+=

λ

0 v vmin<

v vmin–

vmax vmin–
-------------------------------- vmin v vmax≤ ≤

1 v vmax>







=

1D Controller Blend u=(1-L).K1.y+L.K2.y

3-15

Dialog Box

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1D blending, the
A-matrix should have three dimensions, the last one corresponding to
scheduling variable v. Hence, for example, if the A-matrix corresponding to
the first entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation.

C-matrix(v)
C-matrix of the state-space implementation.

D-matrix(v)
D-matrix of the state-space implementation.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

1D Controller Blend u=(1-L).K1.y+L.K2.y

3-16

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

Inputs and
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The output is the actuator demands.

Assumptions
and Limitations

This block requires the Control Systems Toolbox.

Examples See the autopilot in the aeroblk_HL20.mdl demo for an example of this block
in use.

References Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

See Also 1D Controller [A(v),B(v),C(v),D(v)]
1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Controller Blend

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-17

31D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form
depending on one scheduling parameter

Library GNC

Description The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer for:

The main application of this blocks is to implement a controller designed using
H-infinity loop-shaping, one of the design methods supported by the

-Analysis and Synthesis Toolbox.

Dialog Box

x· A v() H v()C v()+()x B v()umeas H v() y ydem–()+ +=

udem F v()x=

µ

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-18

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 1];.

F-matrix(v)
State-feedback matrix. The F-matrix should have three dimensions, the
last one corresponding to the scheduling variable v. Hence, for example, if
the F-matrix corresponding to the first entry of v is the identity matrix,
then F(:,:,1) = [1 0;0 1];.

H-matrix(v)
Observer (output injection) matrix. The H-matrix should have three
dimensions, the last one corresponding to the scheduling variable v. Hence,
for example, if the H-matrix corresponding to the first entry of v is the
identity matrix, then H(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the set-point error.

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-19

The second input is the scheduling variable.

The third input is measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter input to the block goes out of range, then it is
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the observer implementation within the aeroblk_HL20.mdl demo.

References Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]
1D Controller Blend u=(1-L).K1.y+L.K2.y
1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-20

31D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC

Description The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
parameter over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a
function of v, which is often the case in aerospace applications.

x· A v()x B v()y+=

u C v()x D v()y+=

z· A v() H v()C v()–()z B v() H v()D v()–()e H v()umeas++=

udem C v()z D v()e+=

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-21

Dialog Box

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 1];.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-22

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. The D-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the D-matrix corresponding to the first entry of v is
the identity matrix, then D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

Inputs and
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The third input is the measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter input to the block goes out of range, then it is
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control Systems Toolbox.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-23

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Controller [A(v),B(v),C(v),D(v)]
1D Controller Blend u=(1-L).K1.y+L.K2.y
1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3-24

32D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on two
scheduling parameters

Library GNC

Description The 2D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

where v is a vector of parameters over which A, B, C, and D are defined. This
type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

x· A v()x B v()y+=

u C v()x D v()y+=

2D Controller [A(v),B(v),C(v),D(v)]

3-25

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then B(:,:,1,1) = [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then C(:,:,1,1) = [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the measurements.

The second and third block inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

2D Controller [A(v),B(v),C(v),D(v)]

3-26

Assumptions
and Limitations

If the scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the autopilot in the aeroblk_HL20.mdl demo for an example of this block.

See Also 1D Controller [A(v),B(v),C(v),D(v)]
2D Controller Blend
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

3-27

32D Controller BlendPurpose Implement a 2-D vector of state-space controllers by linear interpolation of
their outputs

Library GNC

Description The 2D Controller Blend block implements an array of state-space controller
designs. The controllers are run in parallel, and their outputs interpolated
according to the current flight condition or operating point. The advantage of
this implementation approach is that the state-space matrices A, B, C, and D
for the individual controller designs do not need to vary smoothly from one
design point to the next.

For the 2D Controller Blend block, at any given instant in time, nine controller
designs are updated.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

2D Controller Blend

3-28

Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2D blending, the
A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation.

C-matrix(v1,v2)
C-matrix of the state-space implementation.

D-matrix(v1,v2)
D-matrix of the state-space implementation.

2D Controller Blend

3-29

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

Inputs and
Outputs

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The output is the actuator demands.

Assumptions
and Limitations

This block requires the Control Systems Toolbox.

Examples See the autopilot in the aeroblk_HL20.mdl demo for an example of this block
in use.

References Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

2D Controller Blend

3-30

See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y
2D Controller [A(v),B(v),C(v),D(v)]
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-31

32D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form
depending on two scheduling parameters

Library GNC

Description The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

The main application of these blocks is to implement a controller designed
using H-infinity loop-shaping, one of the design methods supported by the

-Analysis and Synthesis Toolbox.

x· A v() H v()C v()+()x B v()umeas H v() y ydem–()+ +=

udem F v()x=

µ

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-32

Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then B(:,:,1,1) = [1 0;0 1];.

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-33

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then C(:,:,1,1) = [1 0;0 1];.

F-matrix(v1,v2)
State-feedback matrix. In the case of 2D scheduling, the F-matrix should
have four dimensions, the last two corresponding to scheduling variables
v1 and v2. Hence, for example, if the F-matrix corresponding to the first
entry of v1 and first entry of v2 is the identity matrix, then F(:,:,1,1) = [1
0;0 1];.

H-matrix(v1,v2)
Observer (output injection) matrix. In the case of 2D scheduling, the
H-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the H-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then H(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the set-point error.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The fourth input is measured actuator position.

The output is the actuator demands.

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-34

Assumptions
and Limitations

If the scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the observer implementation within the aeroblk_HL20.mdl demo.

References Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]
2D Controller [A(v),B(v),C(v),D(v)]
2D Controller Blend
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-35

32D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC

Description The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

x· A v()x B v()y+=

u C v()x D v()y+=

z· A v() H v()C v()–()z B v() H v()D v()–()e H v()umeas++=

udem C v()z D v()e+=

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-36

Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-37

corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then B(:,:,1,1) = [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then C(:,:,1,1) = [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter, v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

Inputs and
Outputs

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The fourth input is the measured actuator position.

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-38

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control Systems Toolbox.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Controller [A(v),B(v),C(v),D(v)]
2D Controller Blend
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3-39

33D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on three
scheduling parameters

Library GNC

Description The 3D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

where v is a vector of parameters over which A, B, C, and D are defined. This
type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

Dialog Box

x· A v()x B v()y+=

u C v()x D v()y+=

3D Controller [A(v),B(v),C(v),D(v)]

3-40

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0 0;0 1 0; 0 0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

3D Controller [A(v),B(v),C(v),D(v)]

3-41

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the measurements.

The second, third and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter input to the block goes out of range, then it is
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the autopilot in the aeroblk_HL20.mdl demo for an example of this block.

See Also 1D Controller [A(v),B(v),C(v),D(v)]
2D Controller [A(v),B(v),C(v),D(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-42

33D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form
depending on three scheduling parameters

Library GNC

Description The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

The main application of this block is to implement a controller designed using
H-infinity loop-shaping, one of the design methods supported by the

-Analysis and Synthesis Toolbox.

x· A v() H v()C v()+()x B v()umeas H v() y ydem–()+ +=

udem F v()x=

µ

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-43

Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-44

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

F-matrix(v1,v2,v3)
State-feedback matrix. In the case of 3D scheduling, the F-matrix should
have five dimensions, the last three corresponding to scheduling variables
v1, v2, and v3. Hence, for example, if the F-matrix corresponding to the
first entry of v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then F(:,:,1,1,1) = [1 0;0 1];.

H-matrix(v1,v2,v3)
observer (output injection) matrix. In the case of 3D scheduling, the
H-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the H-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then H(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the set-point error.

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-45

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See the observer implementation within the aeroblk_HL20.mdl demo.

References Hyde, R.A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]]
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]]
3D Controller [A(v),B(v),C(v),D(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-46

33D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC

Description The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. These blocks implement a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

x· A v()x B v()y+=

u C v()x D v()y+=

z· A v() H v()C v()–()z B v() H v()D v()–()e H v()umeas++=

udem C v()z D v()e+=

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-47

Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-48

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-49

number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

Inputs and
Outputs

The first input is the measurements.

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is the measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control Systems Toolbox.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]]
3D Controller [A(v),B(v),C(v),D(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3DoF Animation

3-50

33DoF AnimationPurpose Create a 3-D Handle Graphics animation of a three-degrees-of-freedom object

Library Animation

Description The 3DoF Animation block displays a 3-D animated view of a
three-degrees-of-freedom (3DoF) craft, its trajectory, and its target using
Handle Graphics.

The 3DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Dialog Box

3DoF Animation

3-51

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation will be redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Enter view
Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are

• Fixed position

• Cockpit

• Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation
When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

Inputs The first input is a vector containing the altitude and the downrange position
of the target in Earth coordinates.

The second input is a vector containing the altitude and the downrange
position of the craft in Earth coordinates.

The third input is the attitude of the craft.

See Also 6DoF Animation

3x3 Cross Product

3-52

33x3 Cross ProductPurpose Calculate the cross product of two 3-by-1 vectors

Library Transformations/Axes

Description The 3x3 Cross Product block computes cross (or vector) product of two vectors,
A and B, by generating a third vector, C, in a direction normal to the plane
containing A and B, and with magnitude equal to the product of the lengths of
A and B multiplied by the sine of the angle between them. The direction of C is
that in which a right-handed screw would move in turning from A to B.

Dialog Box

Inputs and
Outputs

The inputs are two 3-by-1 vectors.

The output is a 3-by-1 vector.

A a1i a2j a3k
B

+ +
b1i b2j b3k+ +

=
=

C A B
i j k

a1 a2 a3

b1 b2 b3

=×=

a2b3 a3b2–()= i a3b1 a1b3–()j a1b2 a2b1–()k+ +

6DoF Animation

3-53

36DoF AnimationPurpose Create a 3-D Handle Graphics animation of a six-degrees-of-freedom object

Library Animation

Description The 6DoF Animation block displays a 3-D animated view of a
six-degrees-of-freedom (6DoF) craft, its trajectory, and its target using Handle
Graphics.

The 6DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Dialog Box

6DoF Animation

3-54

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation will be redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Static object position
Specifies the altitude, the cross-range position, and the downrange position
of the target.

Enter view
Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are

- Fixed position

- Cockpit

- Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation
When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

Inputs The first input is a vector containing the altitude, the cross-range position, and
the downrange position of the craft in Earth coordinates.

The second input is a vector containing the Euler angles of the craft.

See Also 3DoF Animation

6DoF (Euler Angles)

3-55

36DoF (Euler Angles)Purpose Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Library Equations of Motion/6DoF

Description The 6DoF (Euler Angles) block considers the rotation of a body-fixed coordinate
frame about an Earth-fixed reference frame . The
origin of the body-fixed coordinate frame is the center of gravity of the body,
and the body is assumed to be rigid, an assumption that eliminates the need to
consider the forces acting between individual elements of mass. The
Earth-fixed reference frame is considered inertial, a simplification that allows
the forces due to the Earth’s motion relative to a star-fixed reference system to
be neglected.

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the body-fixed frame, and the mass
of the body is assumed constant.

Xb Yb Zb, ,() Xe Ye Ze, ,()

Ye

Ze

Earth-fixed reference frame

Xe
ZbYb

vb wb

Xb
ub

Center of
Gravity

O

m

Fb

Fx

Fy

Fz

= m Vb
· ω Vb×+()=

6DoF (Euler Angles)

3-56

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor is with respect to the
origin O.

The relationship between the body-fixed angular velocity vector, [p q r]T, and
the rate of change of the Euler angles, []T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

Inverting then gives the required relationship to determine the Euler rate
vector.

Vb

ub

vb

wb

ω,
p
q
r

= =

I

MB

L
M
N

= Iω· ω Iω()×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

φ· θ· ψ·

p
q
r

φ·

0
0

1 0 0
0 φcos φsin
0 φsin– φcos

0

θ·

0

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

0
0

ψ·
+ + J 1–

φ·

θ·

ψ·
≡=

J

φ·

θ·

ψ·
J

p
q
r

1 φ θtansin() φ θtancos()
0 φcos φsin–

0 φsin
θcos

------------ φcos
θcos

p
q
r

= =

6DoF (Euler Angles)

3-57

Dialog Box

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame, in meters.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame, in meters per second.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

6DoF (Euler Angles)

3-58

Mass
The mass of the rigid body, in kilograms.

Inertia matrix
The 3-by-3 inertia tensor matrix , in kilograms meters squared.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces, in
Newtons, and the second input is a vector containing the three applied
moments, in Newton meters.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame, in meters per second.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame, in meters.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame, in meters per second.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

See Also 6DoF (Quaternion)

I

6DoF (Quaternion)

3-59

36DoF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational
dynamics, see the block description for the 6DoF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain drives the norm of the quaternion state vector to 1.0 should
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

K ε

q· 0

q1
·

q· 2

q· 3

1
2

q3 q2– q1

q2 q3 q0–

q1– q0 q3

q0– q1– q2–

p
q
r

Kε

q0

q1

q2

q3

ε

+=

1 q0
2 q1

2 q3
2 q4

2
+ + +()–=

6DoF (Quaternion)

3-60

Dialog Box

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame, in meters.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame, in meters per second.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

6DoF (Quaternion)

3-61

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Mass
The mass of the rigid body, in kilograms.

Inertia matrix
The 3-by-3 inertia tensor matrix I, in kilograms meters squared.

Normalization gain
The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces, in
Newtons, and the second input is a vector containing the three applied
moments, in Newton meters.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame, in meters per second.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame, in meters.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame, in meters per second.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

6DoF (Quaternion)

3-62

Examples See the Simulink model aeroblk_six_dof.mdl for an example of the use of the
6DoF (Quaternion) block.

See Also 6DoF (Euler Angles)

Acceleration Conversion

3-63

3Acceleration ConversionPurpose Convert from acceleration units to desired acceleration units

Library Transformations/Units

Description The Acceleration Conversion block computes the conversion factor from
specified input acceleration units to specified output acceleration units and
applies the conversion factor to the input signal.

The Acceleration Conversion block icon displays the input and output units
selected from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s^2 Meters per second squared

ft/s^2 Feet per second squared

km/s^2 Kilometers per second squared

in/s^2 Inches per second squared

km/h-s Kilometers per hour per second

mph-s Miles per hour per second

Acceleration Conversion

3-64

Inputs and
Outputs

The input is acceleration in initial acceleration units.

The output is acceleration in final acceleration units.

See Also Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

Angle Conversion

3-65

3Angle ConversionPurpose Convert from angle units to desired angle units

Library Transformations/Units

Description The Angle Conversion block computes the conversion factor from specified
input angle units to specified output angle units and applies the conversion
factor to the input signal.

The Angle Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is angle in initial angle units.

The output is angle in final angle units.

deg Degrees

rad Radians

rev Revolutions

Angle Conversion

3-66

See Also Acceleration Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

Angular Acceleration Conversion

3-67

3Angular Acceleration ConversionPurpose Convert from angular acceleration units to desired angular acceleration units

Library Transformations/Units

Description The Angular Acceleration Conversion block computes the conversion factor
from specified input angular acceleration units to specified output angular
acceleration units and applies the conversion factor to the input signal.

The Angular Acceleration Conversion block icon displays the input and output
units selected from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is angular acceleration in initial angular acceleration units.

The output is angular acceleration in final angular acceleration units.

deg/s^2 Degrees per second squared

rad/s^2 Radians per second squared

rpm/s Revolutions per minute per second

Angular Acceleration Conversion

3-68

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

Angular Velocity Conversion

3-69

3Angular Velocity ConversionPurpose Convert from angular velocity units to desired angular velocity units

Library Transformations/Units

Description The Angular Velocity Conversion block computes the conversion factor from
specified input angular velocity units to specified output angular velocity units
and applies the conversion factor to the input signal.

The Angular Velocity Conversion block icon displays the input and output
units selected from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is angular velocity in initial angular velocity units.

The output is angular velocity in final angular velocity units.

deg/s Degrees per second

rad/s Radians per second

rpm Revolutions per minute

Angular Velocity Conversion

3-70

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

COESA Atmosphere Model

3-71

3COESA Atmosphere ModelPurpose Implement the 1976 COESA lower atmosphere

Library Environment/Atmosphere

Description The COESA Atmosphere Model block implements the mathematical
representation of the 1976 COESA (Committee on Extension to the Standard
Atmosphere) United States (U.S.) standard lower atmospheric values for
absolute temperature, pressure, density, and speed of sound for the input
geopotential altitude.

Below 32000 m (approximately 104987 ft), the U.S. Standard Atmosphere is
identical with the Standard Atmosphere of the International Civil Aviation
Organization (ICAO).

The COESA Atmosphere Model block icon displays the input and output units
selected from the Units pop-up menu.

Dialog Box

COESA Atmosphere Model

3-72

Units
Specifies the input and output units:

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

Below the geopotential altitude of 0 m (0 ft) and above the geopotential altitude
of 84852 m (approximately 278386 ft), temperature values are extrapolated
linearly and pressure values are extrapolated logarithmically. Density and
speed of sound are calculated using a perfect gas relationship.

References [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also ISA Atmosphere Model

Height Temperature Speed of Sound Air Density

Metric Meters Degrees Kelvin Meters per
second

Kilograms per
cubic meter

English Feet Degrees Rankine Feet per second Pound mass
per cubic foot

Density Conversion

3-73

3Density ConversionPurpose Convert from density units to desired density units

Library Transformations/Units

Description The Density Conversion block computes the conversion factor from specified
input density units to specified output density units and applies the conversion
factor to the input signal.

The Density Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is density in initial density units.

The output is density in final density units.

lbm/ft^3 Pound mass per cubic foot

kg/m^3 Kilograms per cubic meter

slug/ft^3 Slugs per cubic foot

lbm/in^3 Pound mass per cubic inch

Density Conversion

3-74

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

Direction Cosine Matrix to Euler Angles

3-75

3Direction Cosine Matrix to Euler AnglesPurpose Convert direction cosine matrix to Euler angles

Library Transformations/Axes

Description The Direction Cosine Matrix to Euler Angles block converts a 3-by-3 direction
cosine matrix (DCM) into three Euler rotation angles. The DCM matrix
performs the coordinate transformation of a vector in inertial axes

 into a vector in body axes . The order of the axis
rotations required to bring into coincidence with
is first a rotation about through the roll angle to axes .
Second a rotation about through the pitch angle to axes ,
and finally a rotation about through the yaw angle to axes

.

Combining the three axis transformation matrices defines the following DCM.

To determine Euler angles from the DCM, the following equations are used:

ox0 oy0 oz0,,() ox3 oy3 oz3,,()
ox3 oy3 oz3,,() ox0 oy0 oz0,,()

ox3 φ() ox2 oy2 oz2,,()
oy2 θ() ox1 oy1 oz1,,()

oz1 ψ()
ox0 oy0 oz0,,()

ox3

oy3

oz3

DCM

ox0

oy0

oz0

=

ox3

oy3

oz3

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

ψcos ψsin 0
ψsin– ψcos 0

0 0 1

ox0

oy0

oz0

=

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–() φ θ ψsinsinsin φ ψcoscos–() φ θcossin
φ θ ψcossincos φ ψsinsin+() φ θ ψsinsincos φ ψcossin–() φ θcoscos

=

φ DCM 2 3,()
DCM 3 3,()
------------------------------ 
 atan=

θ DCM 1 3,()–()asin=

Direction Cosine Matrix to Euler Angles

3-76

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of Euler angles.

Assumptions
and Limitations

This implementation generates a pitch angle that lies between degrees,
and roll and yaw angles that lie between degrees.

See Also Direction Cosine Matrix to Quaternions
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions
Quaternions to Direction Cosine Matrix
Quaternions to Euler Angles

ψ DCM 1 2,()
DCM 1 1,()
------------------------------ 
 atan=

90±
180±

Direction Cosine Matrix to Quaternions

3-77

3Direction Cosine Matrix to QuaternionsPurpose Convert direction cosine matrix to quaternion vector

Library Transformations/Axes

Description The Direction Cosine Matrix to Quaternions block transforms a 3-by-3
direction cosine matrix (DCM) into a four-element unit quaternion vector
(q0,q1,q2,q3). The DCM performs the coordinate transformation of a vector in
inertial axes to a vector in body axes.

The DCM is defined as a function of a unit quaternion vector by the following:

Using this representation of the DCM, there are a number of calculations to
arrive at the correct quaternion. The first of these is to calculate the trace of
the DCM to determine which set of algorithms are used. If the trace is greater
that zero, the quaternion can be automatically calculated. When the trace is
less than or equal to zero, the major diagonal element of the DCM with the
greatest value must be identified to determine the final algorithm used to
calculate the quaternion. Once the major diagonal element is identified, the
quaternion is calculated. For a detailed view of these algorithms, look under
the mask of the Direction Cosine Matrix to Quaternions block.

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 direction cosine matrix.

The output is a 4-by-1 quaternion vector.

DCM

q0
2 q1

2 q2
2 q3

2
––+() 2 q1q2 q0q3+() 2 q1q3 q0q2–()

2 q1q2 q0q3–() q0
2 q1

2
– q2

2 q3
2

–+() 2 q2q3 q0q1+()

2 q1q3 q0q2+() 2 q2q3 q0q1–() q0
2 q1

2
– q2

2 q3
2

+–()

=

Direction Cosine Matrix to Quaternions

3-78

See Also Direction Cosine Matrix to Euler Angles
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions
Quaternions to Direction Cosine Matrix
Quaternions to Euler Angles

Discrete Wind Gust Model

3-79

3Discrete Wind Gust ModelPurpose Generate discrete wind gust

Library Environment/Wind

Description The Discrete Wind Gust Model block implements a wind gust of the standard
“1-cosine” shape. This block implements the mathematical representation in
the Military Specification MIL-F-8785C [1]. The gust is applied to each axis
individually, or to all three axes at once. The user specifies the gust amplitude
(the increase in wind speed generated by the gust), the gust length (length, in
meters, over which the gust builds up) and the gust start time.

The Discrete Wind Gust Model block can represent the wind speed in units of
feet per second, meters per second, or knots.

The following figure shows the shape of the gust with a start time of zero. The
parameters that govern the gust shape are indicated on the diagram.

The discrete gust can be used singly or in multiples to assess airplane response
to large wind disturbances.

Discrete Wind Gust Model

3-80

The mathematical representation of the discrete gust is

where Vm is the gust amplitude, dm is the gust length, x is the distance
traveled, and Vwind is the resultant wind velocity in the body axis frame.

Dialog Box

Units of velocity
Define the units of wind gust.

Vwind

0 x 0<

Vm
2

-------- 1 πx
dm
-------- 
 cos– 

  0 x dm≤ ≤

Vm x dm>









=

Wind Altitude

Meters/second Meters/second Meters

Feet/second Feet/second Feet

Knots Knots Feet

Discrete Wind Gust Model

3-81

Check for gust in u-axis
Select to apply the wind gust to the u-axis in the body frame.

Check for gust in v-axis
Select to apply the wind gust to the v-axis in the body frame.

Check for gust in w-axis
Select to apply the wind gust to the w-axis in the body frame.

Gust start time (seconds)
The model time, in seconds, at which the gust begins.

Gust length (meters or feet)
The length, in meters or feet (depending on the choice of units), over which
the gust builds up in each axis.

Gust amplitude (meters/second, feet/second, or knots)
The magnitude of the increase in wind speed caused by the gust in each
axis.

Inputs and
Outputs

The input is altitude in units selected.

The output is wind speed in units selected.

Examples See aeroblk_HL20.mdl example included with the blockset.

References Military Specification MIL-F-8785C, 5th November 1980.

See Also Dryden Wind Turbulence Model
Wind Shear Model

Dryden Wind Turbulence Model

3-82

3Dryden Wind Turbulence ModelPurpose Generate wind turbulence with the Dryden velocity spectra

Library Environment/Wind

Description The Dryden Wind Turbulence Model block uses the Dryden spectral
representation to add turbulence to the aerospace model by passing
band-limited white noise through appropriate forming filters. This block
implements the mathematical representation in the Military Specification
MIL-F-8785C [1].

Turbulence can be considered as a stochastic process defined by velocity
spectra. For an aircraft flying at a speed V through a “frozen” turbulence field
with a spatial frequency of Ω radians per meter, the circular frequency ω is
calculated by multiplying V by Ω. The appropriate component spectra for the
Dryden model of turbulence are shown here.

Longitudinal:

Lateral:

 Φu ω()
2σu

2Lu
πV

------------------ 1

1 Lu
ω
V
----()

2
+

----------------------------⋅=

Φpg
ω()

σw
2

VLw

0.8
πLw
4b

----------- 
 

1
3

1 4b
π

------- ω
V

 
 +

-----------------------------⋅=

Φv ω()
σv

2Lv
πV

1 3 Lv

ω
V
----()

2
+

1 Lv
ω
V
----()

2
+[]

2
-----------------------------------⋅=

Dryden Wind Turbulence Model

3-83

Vertical:

b is the aircraft wingspan, are the turbulence scale lengths, and σu,
σv, σw are the turbulence intensities.

To generate a signal with the correct characteristics a unit variance
band-limited white noise signal is passed through appropriate forming filters
that are derived by taking the spectral square roots of the spectrum equations.
The resulting transfer functions are shown here.

Longitudinal:

Lateral:

Φr ω()

ω
V
---- 
  2

1 3b
π

------- ω
V

 
  2

+

----------------------------= Φv ω()⋅

Φw ω()
σw

2Lw
πV

1 3 Lw

ω
V
----()

2
+

1 Lw
ω
V
----()

2
+[]

2
------------------------------------⋅=

Φq ω()

ω
V
---- 
  2

1 4b
π

-------ω
V

 
  2

+

----------------------------= Φw ω()⋅

Lu Lv Lw, ,

Hu s() σu
2Lu
πV

1

1
Lu
V

--------s+
-------------------=

Hp s() σw
0.8
V

π 4b()⁄()1 6⁄

Lw
1 3⁄ 1 4b

π
------- 
  s+ 

 
--=

Dryden Wind Turbulence Model

3-84

Hv s() σv
Lv
πV

1

1
Lv
V

-------s+()
2

--------------------------=

Hr s() s V⁄

1 3b
πV
------- 
  s+ 

 
------------------------------- Hv s()⋅=

Dryden Wind Turbulence Model

3-85

Vertical:

The turbulence scale lengths and intensities are functions of altitude, and
there are two distinct regions.

Low-Altitude Model (Altitude < 1000 feet)
In [1] the turbulence scale lengths at low altitudes are as given below, where

 is the altitude in feet.

The turbulence intensities are given below, where is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

Hw s() σw
Lw
πV

1

1
Lw
V

---------s+()
2

---------------------------=

Hq s() s V⁄

1 4b
πV
------- 
  s+ 

 
------------------------------- Hw s()⋅=

h

Lw h

Lu Lv
h

0.177 0.000823h+()1.2
--

=

= =

W20

σw 0.1W20

σu
σw

σv
σw
------- 1

0.177 0.000823h+()0.4
--

=

= =

Dryden Wind Turbulence Model

3-86

Medium/High Altitudes (Altitude > 2000 feet)
For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In reference [1] the
scale lengths are as given below:

The turbulence intensities are determined from a lookup table that gives the
turbulence intensity as a function of altitude and the probability of the
turbulence intensity’s being exceeded.

Lu Lv Lw 1750= = = ft

Dryden Wind Turbulence Model

3-87

At altitudes between 1000 feet and 2000 feet, the turbulence scale lengths and
intensities are determined by interpolating between the value from the low-
altitude model at 1000 feet and the value from the high-altitude model at 2000
feet.

Dialog Box

Units of Velocity
Define the units of wind speed due to the turbulence.

Wind speed at 20 ft (6 m) defines the low altitude intensity
The measured wind speed at a height of 20 feet provides the intensity for
the low-altitude turbulence model.

Wind Velocity Altitude Air Speed

Meters/second Meters/second Meters Meters/second

Feet/second Feet/second Feet Feet/second

Knots Knots Feet Knots

Dryden Wind Turbulence Model

3-88

Probability of exceedance of high altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant, and from
reference [1] a figure of 1750 feet is recommended.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise sample time (seconds)
The sample time at which the unit variance white noise signal is generated.

Noise seeds
There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and
Outputs

The first input is altitude, in units selected.

The second input is aircraft speed, in units selected.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

Examples See the aeroblk_HL20.mdl example included with the blockset.

References Military Specification MIL-F-8785C, 5th November, 1980.

Dryden Wind Turbulence Model

3-89

See Also Discrete Wind Gust Model
Wind Shear Model

Euler Angles to Direction Cosine Matrix

3-90

3Euler Angles to Direction Cosine MatrixPurpose Convert Euler angles to direction cosine matrix

Library Transformations/Axes

Description The Euler Angles to Direction Cosine Matrix block converts the three Euler
rotation angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix
performs the coordinate transformation of a vector in inertial axes

 into a vector in body axes . The order of the axis
rotations required to bring into coincidence with
is first a rotation about through the roll angle to axes .
Second a rotation about through the pitch angle to axes ,
and finally a rotation about through the yaw angle to
axes .

Combining the three axis transformation matrices defines the following DCM.

ox0 oy0 oz0,,() ox3 oy3 oz3,,()
ox3 oy3 oz3,,() ox0 oy0 oz0,,()

ox3 φ() ox2 oy2 oz2,,()
oy2 θ() ox1 oy1 oz1,,()

oz1 ψ()
ox0 oy0 oz0,,()

ox3

oy3

oz3

DCM

ox0

oy0

oz0

=

ox3

oy3

oz3

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

ψcos ψsin 0
ψsin– ψcos 0

0 0 1

ox0

oy0

oz0

=

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–() φ θ ψsinsinsin φ ψcoscos–() φ θcossin
φ θ ψcossincos φ ψsinsin+() φ θ ψsinsincos φ ψcossin–() φ θcoscos

=

Euler Angles to Direction Cosine Matrix

3-91

Dialog Box

Inputs and
Outputs

The input is a 3-by-1 vector of Euler angles.

The output is a 3-by-3 direction cosine matrix.

Examples See aeroblk_six_dof.mdl to see the use of the Euler Angles to Direction
Cosine Matrix block in the implementation of the equations of motion for a
rigid body.

See Also Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Quaternions
Quaternions to Direction Cosine Matrix
Quaternions to Euler Angles

Euler Angles to Quaternions

3-92

3Euler Angles to QuaternionsPurpose Convert Euler angles to a quaternion vector

Library Transformations/Axes

Description The Euler Angles to Quaternions block converts the rotation described by the
three Euler angles (roll, pitch, yaw) into the four-element quaternion vector
(q0,q1,q2,q3).

A quaternion vector represents a rotation about a unit vector ()
through an angle . A unit quaternion itself has unit magnitude, and can be
written in the following vector format.

An alternative representation of a quaternion is as a complex number,

where, for the purposes of multiplication,

The benefit of representing the quaternion in this way is the ease with which
the quaternion product can represent the resulting transformation after two or
more rotations. The quaternion to represent the rotation through the three
Euler angles is given below.

µx µy µz
θ

q

q0

q1

q2

q3

θ 2⁄()cos
θ 2⁄()µxsin

θ 2⁄()µysin

θ 2⁄()µzsin

= =

q q0 iq1 jq2 kq3+ + +=

i2 j2 k2 1–= = =

ij ji– k= =

jk kj– i
ki

,

ik– j
= =

= =

q qφqθqψ
φ
2
--- 
  i φ

2
--- 
 sin–cos 

  θ
2
--- 
  j θ

2
--- 
 sin–cos 

  ψ
2
---- 
  k ψ

2
---- 
 sin–cos 

 = =

Euler Angles to Quaternions

3-93

Expanding the preceding representation gives the four quaternion elements
following.

Dialog Box

Inputs and
Outputs

The input is a 3-by-1 vector of Euler angles.

The output is a 4-by-1 quaternion vector.

See Also Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Direction Cosine Matrix
Quaternions to Direction Cosine Matrix
Quaternions to Euler Angles

q0

q1

q2

q3

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
  φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 sinsinsin+coscoscos

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
 cos φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 sinsincos–cossin

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
 cos φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 sincossin+sincos

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
 sin φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 sinsinsin–coscos

=

Equations of Motion

3-94

3Equations of MotionPurpose Implement three-degrees-of-freedom equations of motion

Library Equations of Motion/3DoF

Description The 3DoF Equations of Motion block considers the rotation in the vertical plane
of a body-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are given below:

where the applied forces are assumed to act at the center of gravity of the body.

u·
Fx
m
------ qw– g θ

w·

sin–

Fz
m
------ qu g θ

q·

cos+ +

M
Iyy

θ· q

=

=

=

=

Equations of Motion

3-95

Dialog Box

Initial velocity [m/s]
A scalar value for the initial velocity of the body, (V0).

Initial body attitude [rad]
A scalar value for the initial pitch attitude of the body, .

Initial incidence [rad]
A scalar value for the initial angle between the velocity vector and the body,

.

Initial body rotation rate [rad/sec]
A scalar value for the initial body rotation rate, (q0).

θ0()

α0()

Equations of Motion

3-96

Initial position (x,z) [m]
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Mass [kg]
A scalar value for the mass of the body.

Inertia [Kg.m2]
A scalar value for the inertia of the body.

Acceleration due to gravity [m/s2]
A scalar value for the acceleration due to gravity. If gravity is to be
neglected in the simulation, this value can be set to 0.

Inputs and
Outputs

The first input to the block is the force acting along the body x-axis, in Newtons
.

The second input to the block is the force acting along the body z-axis, in
Newtons .

The third input to the block is the applied pitch moment, in Newton.meters
(M).

The first output from the block is the pitch attitude, in radians .

The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second
squared .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, in meters (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, in meters per second (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, in meters per second squared

(Ax,Az).

Examples See the Simulink model aeroblk_guidance.mdl for an example of the use of
the 3DoF Equations of Motion block.

Fx()

Fz()

θ()

q·()

Equations of Motion

3-97

See Also Incidence & Airspeed

Force Conversion

3-98

3Force ConversionPurpose Convert from force units to desired force units

Library Transformations/Units

Description The Force Conversion block computes the conversion factor from specified
input force units to specified output force units and applies the conversion
factor to the input signal.

The Force Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is force in initial force units.

The output is force in final force units.

lbf Pound force

N Newtons

Force Conversion

3-99

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

Gain Scheduled Lead-Lag

3-100

3Gain Scheduled Lead-LagPurpose Implement a first-order lead-lag with gain-scheduled coefficients

Library GNC

Description The Gain Scheduled Lead-Lag block implements a first-order lag of the form

where e is the filter input, and u the filter output.

The coefficients a and b are inputs to the block, and hence can be made
dependent on flight condition or operating point. For example, they could be
produced from the Look-Up Table (n-D) block.

Dialog Box

Initial state, x_initial
The initial internal state for the filter x_initial. Given this initial state, the
initial output is given by

Inputs and
Outputs

The first input is the filter input.

The second input is the numerator coefficient.

The third input is the denominator coefficient.

The output is the filter output

u 1 as+
1 bs+
----------------e=

u
t 0=

xinitial ae+
b

--------------------------------=

Incidence & Airspeed

3-101

3Incidence & AirspeedPurpose Calculate incidence and air speed

Library Equations of Motion/3DoF

Description The Incidence & Airspeed block supports the 3DoF equations of motion model
by calculating the angle between the velocity vector and the body, and also the
total air speed from the velocity components in the body-fixed coordinate
frame.

Dialog Box

Inputs and
Outputs

The input to the block is the two-element vector containing the velocity of the
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle, in radians.

The second output is the velocity of the body.

Examples See the Simulink demo aeroblk_guidance.mdl for an example of the use of
this block.

See Also Equations of Motion

α w
u
---- 
 

V

atan

u2 w2
+

=

=

Interpolate Matrix(x)

3-102

3Interpolate Matrix(x)Purpose Return an interpolated matrix for given input x

Library GNC

Description The Interpolate Matrix(x) block interpolates a one-dimensional array of
matrices.

This one-dimensional case assumes a matrix M is defined at a discrete number
of values of an independent variable x = [x1 x2 x3 ... xi xi+1 ... xn]. Then for
xi < x < xi+1, the block output is given by

where the interpolation fraction is defined as

Dialog Box and
Parameters

Matrix to interpolate
Matrix to be interpolated. It should be three dimensional, the first two
dimensions corresponding to the matrix at each value of x. For example, if
you have three matrices A, B, and C defined at x = 0, x = 0.5, and
x = 1.0, then the input matrix is given by

matrix(:,:,1) = A;

matrix(:,:,2) = B;

matrix(:,:,3) = C;

1 λ–()M xi() λM xi 1+()+

λ x xi–() xi 1+ xi–()⁄=

Interpolate Matrix(x)

3-103

Inputs and
Outputs

The first input is the first independent variable.

The output is the interpolated matrix.

Assumptions
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

Examples See the following Aerospace Blockset blocks: 1D Controller
[A(v),B(v),C(v),D(v)], 1D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 1D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x,y)
Interpolate Matrix(x,y,z)

Interpolate Matrix(x,y)

3-104

3Interpolate Matrix(x,y)Purpose Return an interpolated matrix for given inputs x and y

Library GNC

Description The Interpolate Matrix(x,y) block interpolates a two-dimensional array of
matrices.

This two-dimensional case assumes the matrix is defined as a function of two
independent variables, x = [x1 x2 x3 ... xi xi+1 ... xn] and y = [y1 y2 y3 ... yj yj+1
... ym]. For given values of x and y, four matrices are interpolated. Then for
xi < x < xi+1 and yj < y < yj+1, the output matrix is given by

where the two interpolation fractions are denoted by

and

Dialog Box and
Parameters

Matrix to interpolate
Matrix to be interpolated. It should be four dimensional, the first two
dimensions corresponding to the matrix at each value of x and y. For
example, if you have four matrices A, B, C, and D defined at

1 λy–() 1 λx–()M xi yj,() λxM xi 1+ yj,()+[]

λy 1 λx–()M xi yj 1+,() λxM xi 1+ yj 1+,()+[]

+

λx x xi–() xi 1+ xi–()⁄=

λy y yj–() yj 1+ yj–()⁄=

Interpolate Matrix(x,y)

3-105

(x = 0.0,y = 1.0), (x = 0.0,y = 3.0), (x = 1.0,y = 1.0) and
(x = 1.0,y = 3.0), then the input matrix is given by

matrix(:,:,1,1) = A;

matrix(:,:,1,2) = B;

matrix(:,:,2,1) = C;

matrix(:,:,2,2) = D;

Inputs and
Outputs

The first input is the first independent variable.

The second input is the second independent variable.

The output is the interpolated matrix.

Assumptions
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

Examples See the following Aerospace Blockset blocks: 2D Controller
[A(v),B(v),C(v),D(v)], 2D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 2D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)
Interpolate Matrix(x,y,z)

Interpolate Matrix(x,y,z)

3-106

3Interpolate Matrix(x,y,z)Purpose Return an interpolated matrix for given inputs x, y, and z

Library GNC

Description The Interpolate Matrix(x,y,z) block interpolates a three-dimensional array of
matrices.

This three-dimensional case assumes the matrix is defined as a function of
three independent variables, x = [x1 x2 x3 ... xi xi+1 ... xn], y = [y1 y2 y3 ... yj yj+1
... ym], and z = [z1 z2 z3 ... zk zk+1 ... zp]. For given values of x, y, and z, eight
matrices are interpolated. Then for xi < x < xi+1, yj < y < yj+1 and zk < z < zk+1,
the output matrix is given by

where the three interpolation fractions are denoted by

In the three-dimensional case, the interpolation is carried out first on x, then
y, and finally z.

1 λ– z() 1 λy–() 1 λx–()M xi yj zk, ,() λxM xi 1+ yj zk, ,()+[]

λy 1 λx–()M xi yj 1+ zk,,() λxM xi 1+ yj 1+ zk,,()+[]

+{

}

λz 1 λy–() 1 λx–()M xi yj zk 1+, ,() λxM xi 1+ yj zk 1+, ,()+[]

λy 1 λx–()M xi yj 1+ zk 1+,,() λxM xi 1+ yj 1+ zk 1+,,()+[]

+{

}

+

λx x xi–() xi 1+ xi–()⁄=

λy y yj–() yj 1+ yj–()⁄=

λz z zk–() zk 1+ zk–()⁄=

Interpolate Matrix(x,y,z)

3-107

Dialog Box and
Parameters

Matrix to interpolate
Matrix to be interpolated. It should be five dimensional, the first two
dimensions corresponding to the matrix at each value of x, y, and z. For
example, if you have eight matrices A, B, C, D, E, F, G, and H defined at
the following values of x, y, and z, then the corresponding input matrix is
given by

Inputs and
Outputs

The first input is the first independent variable.

The second input is the second independent variable.

The third input is the third independent variable.

The output is the interpolated matrix.

(x = 0.0,y = 1.0,z = 0.1) matrix(:,:,1,1,1) = A;

(x = 0.0,y = 1.0,z = 0.5) matrix(:,:,1,1,2) = B;

(x = 0.0,y = 3.0,z = 0.1) matrix(:,:,1,2,1) = C;

(x = 0.0,y = 3.0,z = 0.5) matrix(:,:,1,2,2) = D;

(x = 1.0,y = 1.0,z = 0.1) matrix(:,:,2,1,1) = E;

(x = 1.0,y = 1.0,z = 0.5) matrix(:,:,2,1,2) = F;

(x = 1.0,y = 3.0,z = 0.1) matrix(:,:,2,2,1) = G;

(x = 1.0,y = 3.0,z = 0.5) matrix(:,:,2,2,2) = H;

Interpolate Matrix(x,y,z)

3-108

Assumptions
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

Examples See the following Aerospace Blockset blocks: 3D Controller
[A(v),B(v),C(v),D(v)], 3D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 3D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)
Interpolate Matrix(x,y)

ISA Atmosphere Model

3-109

3ISA Atmosphere ModelPurpose Implement the International Standard Atmosphere (ISA)

Library Environment/Atmosphere

Description The ISA Atmosphere Model block implements the mathematical
representation of the international standard atmosphere values for absolute
temperature, pressure, density, and speed of sound for the input geopotential
altitude.

The ISA Atmosphere Model block icon displays the input and output metric
units.

Dialog Box

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

Below the geopotential altitude of 0 Km and above the geopotential altitude of
20 Km, temperature and pressure values are held. Density and speed of sound
are calculated using a perfect gas relationship.

References [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model

Length Conversion

3-110

3Length ConversionPurpose Convert from length units to desired length units

Library Transformations/Units

Description The Length Conversion block computes the conversion factor from specified
input length units to specified output length units and applies the conversion
factor to the input signal.

The Length Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m Meters

ft Feet

km Kilometers

in Inches

mi Miles

naut mi Nautical miles

Length Conversion

3-111

Inputs and
Outputs

The input is length in initial length units.

The output is length in final length units.

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

Mass Conversion

3-112

3Mass ConversionPurpose Convert from mass units to desired mass units

Library Transformations/Units

Description The Mass Conversion block computes the conversion factor from specified
input mass units to specified output mass units and applies the conversion
factor to the input signal.

The Mass Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is mass in initial mass units.

The output is mass in final mass units.

lbm Pound mass

kg Kilograms

slug

Mass Conversion

3-113

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Length Conversion
Force Conversion
Pressure Conversion
Temperature Conversion
Velocity Conversion

Pressure Conversion

3-114

3Pressure ConversionPurpose Convert from pressure units to desired pressure units

Library Transformations/Units

Description The Pressure Conversion block computes the conversion factor from specified
input pressure units to specified output pressure units and applies the
conversion factor to the input signal.

The Pressure Conversion block icon displays the input and output units
selected from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is pressure in initial pressure units.

The output is pressure in final pressure units.

psi Pound mass per square inch

Pa Pascals

psf Pound mass per square foot

atm Atmospheres

Pressure Conversion

3-115

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Temperature Conversion
Velocity Conversion

Quaternions to Direction Cosine Matrix

3-116

3Quaternions to Direction Cosine MatrixPurpose Convert quaternion vector to direction cosine matrix

Library Transformations/Axes

Description The Quaternions to Direction Cosine Matrix block transforms the four-element
unit quaternion vector (q0,q1,q2,q3) into a 3-by-3 direction cosine matrix
(DCM). The outputted DCM performs the coordinate transformation of a vector
in inertial axes to a vector in body axes.

Using quaternion algebra, if a point P is subject to the rotation described by a
quaternion q, it changes to P’ given by the following relationship:

Expanding P’ and collecting terms in x, y, and z gives the following for P’ in
terms of P in the vector quaternion format.

Since individual terms in P’ are linear combinations of terms in x, y, and z, a
matrix relationship to rotate the vector (x,y,z) to (x’,y’,z’) can be extracted from
the preceding. This matrix rotates a vector in inertial axes, and hence is
transposed to generate the DCM that performs the coordinate transformation
of a vector in inertial axes into body axes.

P′ qPqc

q q0 iq1 jq2 kq3

qc
+ + +=

q0 iq1– jq2– kq3

P

–

0 ix jy kz+ + +

=

=

=

P′

0
x′
y′
z′

0

q0
2 q1

2 q2
2

– q3
2

–+()x 2 q1q2 q0q3–()y 2 q1q3 q0q2+()z+ +

2 q0q3 q1q2+()x q0
2 q1

2
– q2

2 q3
2

–+()y 2 q2q3 q0q1–()z+ +

2 q1q3 q0q2–()x 2 q0q1 q2q3+()y q0
2 q1

2
– q2

2
– q3

2
+()z+ +

= =

Quaternions to Direction Cosine Matrix

3-117

Dialog Box

Inputs and
Outputs

The input is a 4-by-1 quaternion vector.

The output is a 3-by-3 direction cosine matrix.

Examples See aeroblk_six_dof.mdl for an example of the use of the Quaternions to
Direction Cosine Matrix block in an implementation of the equations of motion
of a rigid body.

See Also Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions
Quaternions to Euler Angles

DCM

q0
2 q1

2 q2
2 q3

2
––+() 2 q1q2 q0q3+() 2 q1q3 q0q2–()

2 q1q2 q0q3–() q0
2 q1

2
– q2

2 q3
2

–+() 2 q2q3 q0q1+()

2 q1q3 q0q2+() 2 q2q3 q0q1–() q0
2 q1

2
– q2

2 q3
2

+–()

=

Quaternions to Euler Angles

3-118

3Quaternions to Euler AnglesPurpose Convert quaternion vector to Euler angles

Library Transformations/Axes

Description The Quaternions to Euler Angles block converts the four-element unit
quaternion (q0,q1,q2,q3) into the equivalent three Euler angle rotations (roll,
pitch, yaw).

The conversion is generated by comparing elements in the direction cosine
matrix (DCM), as functions of the Euler rotation angles, with elements in the
DCM, as functions of a unit quaternion vector.

From the preceding, you can derive the following relationships between DCM
elements and individual Euler angles:

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–() φ θ ψsinsinsin φ ψcoscos–() φ θcossin
φ θ ψcossincos φ ψsinsin+() φ θ ψsinsincos φ ψcossin–() φ θcoscos

=

DCM

q0
2 q1

2 q2
2 q3

2
––+() 2 q1q2 q0q3+() 2 q1q3 q0q2–()

2 q1q2 q0q3–() q0
2 q1

2
– q2

2 q3
2

–+() 2 q2q3 q0q1+()

2 q1q3 q0q2+() 2 q2q3 q0q1–() q0
2 q1

2
– q2

2 q3
2

+–()

=

φ DCM 2 3,() DCM 3 3,(),()atan=

2 q2q3 q0q1+() q0
2 q1

2
– q2

2 q3
2

+–(),()atan=

θ D– CM 1 3,()()asin=
2– q1q3 q0q2–()()asin=

ψ DCM 1 2,() DCM 1 1,(),()atan=

2 q1q2 q0q3+() q0
2 q1

2 q2
2 q3

2
––+(),()atan=

Quaternions to Euler Angles

3-119

Dialog Box

Inputs and
Outputs

The input is a 4-by-1 quaternion vector.

The output is a 3-by-1 vector of Euler angles.

Assumptions
and Limitations

This implementation generates a pitch angle that lies between degrees,
and roll and yaw angles that lie between degrees.

Examples See aero_six_dof.mdl for an example of the use of the Quaternions to Euler
Angles block in an implementation of the equations of motion of a rigid body.

See Also Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions
Quaternions to Direction Cosine Matrix

90±
180±

Second Order Linear Actuator

3-120

3Second Order Linear ActuatorPurpose Implement a second-order linear actuator

Library Actuators

Description The Second Order Linear Actuator block outputs the actual actuator position
using the input demanded actuator position and other dialog parameters that
define the system.

Dialog Box

Natural frequency
The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Initial position
The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

Second Order Linear Actuator

3-121

Inputs and
Outputs

The input is the demanded actuator position.

The output is the actual actuator position.

See Also Second Order Nonlinear Actuator

Second Order Nonlinear Actuator

3-122

3Second Order Nonlinear ActuatorPurpose Implement a second-order actuator with rate and deflection limits

Library Actuators

Description The Second Order Nonlinear Actuator block outputs the actual actuator
position using the input demanded actuator position and other dialog
parameters that define the system.

Dialog Box

Second Order Nonlinear Actuator

3-123

Natural frequency
The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Maximum deflection
The largest actuator position allowable. The units of maximum deflection
should be the same as the units of demanded actuator position.

Minimum deflection
The smallest actuator position allowable. The units of minimum deflection
should be the same as the units of demanded actuator position.

Maximum rate
The fastest speed allowable for actuator motion. The units of maximum
rate should be the units of demanded actuator position per second.

Initial position
The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

Inputs and
Outputs

The input is the demanded actuator position.

The output is the actual actuator position.

See Also Second Order Linear Actuator

Self-Conditioned [A,B,C,D]

3-124

3Self-Conditioned [A,B,C,D]Purpose Implement a state-space controller in a self-conditioned form

Library GNC

Description The Self-Conditioned [A,B,C,D] block can be used to implement the state-space
controller defined by

in the self-conditioned form

The input umeas is a vector of the achieved actuator positions, and the output
udem is the vector of controller actuator demands. In the case that the actuators
are not limited, then umeas = udem and substituting the output equation into
the state equation returns the nominal controller. In the case that they are not
equal, the dynamics of the controller are set by the poles of A-HC.

Hence H must be chosen to make the poles sufficiently fast to track umeas but
at the same time not so fast that noise on e is propagated to udem. The matrix
H is designed by a callback to the Control Systems Toolbox command place.m
to place the poles at defined locations.

x· Ax Be+=

u Cx De+=

z· A HC–()z B HD–()e Humeas++=

udem Cz De+=

Self-Conditioned [A,B,C,D]

3-125

Dialog Box

A-matrix
A-matrix of the state-space implementation.

B-matrix
B-matrix of the state-space implementation.

C-matrix

C-matrix of the state-space implementation.

D-matrix
D-matrix of the state-space implementation.

Self-Conditioned [A,B,C,D]

3-126

Initial state, x_initial
This is a vector of initial states for the controller, i.e., initial values for the
state vector, z. It should have length equal to the size of the first dimension
of A.

Poles of A-H*C
This is a vector of the desired poles of A-H*C. Hence the number of pole
locations defined should be equal to the dimension of the A-matrix.

Inputs and
Outputs

The first input is control error.

The second input is the measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

This block requires the Control Systems Toolbox.

Self-Conditioned [A,B,C,D]

3-127

Examples This Simulink model shows a state-space controller implemented in both
self-conditioned and standard state-space forms. The actuator authority limits
of +/- 0.5 units are modeled by the saturation block.

Self-Conditioned [A,B,C,D]

3-128

Notice that the A-matrix has a zero in the 1,1 element, indicating integral
action.

The top trace shows the conventional state-space implementation. The output
of the controller winds up well past the actuator upper authority limit of +0.5.
The lower trace shows that the self-conditioned form results in an actuator
demand that tracks the upper authority limit, which means that when the sign
of the control error, e, is reversed, the actuator demand responds immediately.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Temperature Conversion

3-129

3Temperature ConversionPurpose Convert from temperature units to desired temperature units

Library Transformations/Units

Description The Temperature Conversion block computes the conversion factor from
specified input temperature units to specified output temperature units and
applies the conversion factor to the input signal.

The Temperature Conversion block icon displays the input and output units
selected from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is temperature in initial temperature units.

The output is temperature in final temperature units.

K Degrees Kelvin

F Degrees Fahrenheit

C Degrees Celsius

R Degrees Rankine

Temperature Conversion

3-130

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Velocity Conversion

Turbofan Engine System

3-131

3Turbofan Engine SystemPurpose Implement a first-order representation of a turbofan engine with controller

Library Propulsion

Description The Turbofan Engine System block computes the thrust and the weight of fuel
flow of a turbofan engine and controller at a specific throttle position, Mach
number, and altitude.

This system is represented by a first-order system with unitless heuristic
lookup tables for thrust, thrust specific fuel consumption (TSFC), and engine
time constant. For the lookup table data, thrust is a function of throttle position
and Mach number, TSFC is a function of thrust and Mach number, and engine
time constant is a function of thrust. The unitless lookup table outputs are
corrected for altitude using the relative pressure ratio δ and relative
temperature ratio θ, and scaled by Ratio of installed thrust to uninstalled
thrust, Maximum sea-level static thrust, Sea-level static thrust specific
fuel consumption, and Fastest engine time constant at sea-level static.

The Turbofan Engine System block icon displays the input and output units
selected from the Units pop-up menu.

Turbofan Engine System

3-132

Dialog Box

Units
Specifies the input and output units:

Initial thrust source
Specifies the source of initial thrust:

Altitude Thrust Fuel Flow

Metric Meters Newtons Kilograms per second

English Feet Pound force Pound mass per second

Internal Use initial thrust value from mask dialog.

External Use external input for initial thrust value.

Turbofan Engine System

3-133

Initial thrust
Initial value for thrust.

Maximum sea-level static thrust
Maximum thrust at sea-level and at Mach = 0.

Fastest engine time constant at sea-level static
Sea-level static thrust specific fuel consumption

Thrust specific fuel consumption at sea-level, at Mach = 0, and at
maximum thrust, in specified mass units per hour per specified thrust
units.

Ratio of installed thrust to uninstalled thrust
Coefficient representing the loss in thrust due to engine installation.

Inputs and
Outputs

The first input is throttle position. Throttle position can vary from zero to one,
corresponding to no to full throttle.

The second input is Mach number.

The third input is altitude, in specified length units.

The first output is thrust, in specified force units.

The second output is fuel flow, in specified mass units per second.

Assumptions
and Limitations

The atmosphere is at standard day conditions and an ideal gas.

Mach number is limited to less than 1.0.

This engine system is for indication purposes only. It is not meant to be used
as a reference model.

References “Aeronautical Vestpocket Handbook,” United Technologies Pratt & Whitney,
August, 1986.

Raymer, D.P., “Aircraft Design: A Conceptual Approach,” AIAA Education
Series, Washington, DC, 1989.

Hill, P.G, and Peterson, C.R., “Mechanics and Thermodynamics of Propulsion,”
Addison-Wesley Publishing Company, Reading, MA, 1970.

Velocity Conversion

3-134

3Velocity ConversionPurpose Convert from velocity units to desired velocity units

Library Transformations/Units

Description The Velocity Conversion block computes the conversion factor from specified
input velocity units to specified output velocity units and applies the
conversion factor to the input signal.

The Velocity Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s Meters per second

ft/s Feet per second

km/s Kilometers per second

in/s Inches per second

km/h Kilometers per hour

Velocity Conversion

3-135

Inputs and
Outputs

The input is velocity in initial velocity units.

The output is velocity in final velocity units.

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion

mph Miles per hour

kts Nautical miles per hour

WGS84 Gravity Model

3-136

3WGS84 Gravity ModelPurpose Implement the 1984 World Geodetic System (WGS84) representation of Earth’s
gravity

Library Environment/Gravity

Description The WGS84 Gravity Model block implements the mathematical representation
of the geocentric equipotential ellipsoid of the World Geodetic System
(WGS84). The block output is the Earth’s gravity at a specific location. Gravity
precision is controlled via Type of gravity model.

The WGS84 Gravity Model block icon displays the input and output units
selected from the Units pop-up menu.

Dialog Box

WGS84 Gravity Model

3-137

Type of gravity model
Specifies the method to calculate gravity:

• WGS84 Taylor Series

• WGS84 Close Approximation

• WGS84 Exact

Units
Specifies the input and output units:

Exclude Earth’s atmosphere
When selected, the value for the Earth’s gravitational field excludes the
mass of the atmosphere.

If cleared, the value for the Earth’s gravitational field includes the mass of
the atmosphere.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Precessing reference frame
When selected, the angular velocity of the Earth is calculated using the
International Astronomical Union (IAU) value of the Earth’s angular
velocity and the precession rate in right ascension. In order to obtain the
precession rate in right ascension, Julian Centuries from Epoch J2000.0 is
calculated using the dialog parameters of Month, Day, and Year.

If cleared, the angular velocity of the Earth used is the value of the
standard Earth rotating at a constant angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Month
Specifies the month used to calculate Julian Centuries from Epoch
J2000.0.

Height Gravity

Metric Meters Meters per second squared

English Feet Feet per second squared

WGS84 Gravity Model

3-138

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

Day
Specifies the day used to calculate Julian Centuries from Epoch J2000.0.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

Year
Specifies the year used to calculate Julian Centuries from Epoch J2000.0.
The year must be 2000 or greater.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

No centrifugal effects
When selected, calculated gravity is based on pure attraction resulting
from the normal gravitational potential.

If cleared, calculated gravity includes the centrifugal force resulting from
the Earth’s angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Inputs and
Outputs

The first input is a vector containing altitudes in specified length units.

The second input is a vector containing latitudes in degrees.

The third input is a vector containing longitudes in degrees. This input is only
available with Type of Gravity Model WGS84 Close Approximation or WGS84
Exact.

The output is a vector containing gravities in specified acceleration units.

WGS84 Gravity Model

3-139

Assumptions
and Limitations

The WGS84 gravity calculations are based on the assumption of a geocentric
equipotential ellipsoid of revolution. Since the gravity potential is assumed to
be the same everywhere on the ellipsoid, there must be a specific theoretical
gravity potential that can be uniquely determined from the four independent
constants defining the ellipsoid.

Use of the WGS84 Taylor Series model should be limited to low geodetic
heights. It will be sufficient near the surface when sub-microgal precision is not
necessary. At medium and high geodetic heights, it will be less accurate.

Use of the WGS84 Close Approximation model should be limited to a geodetic
height of 20000.0 m (approximately 65620.0 ft). Below this height, it will give
results with sub-microgal precision.

References [1] NIMA TR8350.2: “Department of Defense World Geodetic System 1984, Its
Definition and Relationship with Local Geodetic Systems.”

Wind Shear Model

3-140

3Wind Shear ModelPurpose Calculate wind shear conditions

Library Environment/Wind

Description The Wind Shear Model block adds wind shear to the aerospace model. This
implementation is based on the mathematical representation in the Military
Specification MIL-F-8785C [1]. The magnitude of the wind shear is given by
the following equation for the mean wind profile as a function of altitude and
the measured wind speed at 20 feet (6 m) above the ground.

where uw is the mean wind speed, W20 is the measured wind speed at an
altitude of 20 feet, is the altitude, and is a constant equal to 0.15 feet for
Category C flight phases and 2.0 feet for all other flight phases. Category C
flight phases are defined in reference [1] to be terminal flight phases, which
include takeoff, approach, and landing.

The resultant mean wind speed in the Earth-fixed axis frame is changed to
body-fixed axis coordinates by multiplying by the direction cosine matrix
(DCM) input to the block. The block output is the mean wind speed in the
body-fixed axis.

uw W20

h
z0
----- 
 ln

20
z0
------ 
 ln

------------------ 3ft h 1000ft< <,=

h z0

Wind Shear Model

3-141

Dialog Box

Units of velocity

Define the units of wind shear.

Flight Phase
Select flight phase:

- Category C - Terminal Flight Phases
- Other

Wind speed at 20 feet (or 6 m) altitude (meters/second, feet/second, or
knots)

The measured wind speed at an altitude of 20 feet (6 m) above the ground.

Wind direction at 20 feet altitude (degrees clockwise from north)
The direction of the wind at an altitude of 20 feet (6 m), measured in
degrees clockwise from the direction of the Earth x-axis (north). The wind
direction is defined as the direction from which the wind is coming.

Wind Altitude

Meters/second Meters/second Meters

Feet/second Feet/second Feet

Knots Knots Feet

Wind Shear Model

3-142

Inputs and
Outputs

The first input is altitude, in units selected.

The second input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of the mean wind speed in the body axes frame,
in the selected units.

Examples See the aeroblk_HL20.mdl example included with the blockset.

References Military Specification MIL-F-8785C, 5th November, 1980.

See Also Discrete Wind Gust Model
Dryden Wind Turbulence Model

I-1

Index

A
Acceleration Conversion block 3-63
Actuator library 3-2
adding blocks 1-9
aerolib 1-4
Aerospace Blockset

accessing 1-5
getting started with 1-5
organization 1-3
overview 1-2

Angle Conversion block 3-65
Angular Acceleration Conversion block 3-67
Angular Velocity Conversion block 3-69
Animation library 3-2

B
block diagrams

creating 1-9
blocks

Acceleration Conversion 3-63
adding 1-9
Angle Conversion 3-65
Angular Acceleration Conversion 3-67
Angular Velocity Conversion 3-69
COESA Atmosphere Model 3-71
connecting 1-12
Density Conversion 3-73
Direction Cosine Matrix to Euler Angles 3-75
Direction Cosine Matrix to Quaternions 3-77
Discrete Wind Gust Model 3-79
Dryden Wind Turbulence Model 3-82
Equations of Motion 3-94
Euler Angles to Direction Cosine Matrix 3-90
Euler Angles to Quaternions 3-92
Force Conversion 3-98
Gain Scheduled Lead-Lag 3-100

Incidence & Airspeed 3-101
Interpolate Matrix(x) 3-102
Interpolate Matrix(x,y) 3-104
Interpolate Matrix(x,y,z) 3-106
ISA Atmosphere Model 3-109
Length Conversion 3-110
Mass Conversion 3-112
1D Controller [A(v),B(v),C(v),D(v)] 3-11
1D Controller Blend u=(1-L).K1.y+L.K2.y

3-14
1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-17
1D Self-Conditioned [A(v),B(v),C(v),D(v)] 3-20
parameters for 1-12
Pressure Conversion 3-114
Quaternions to Direction Cosine Matrix 3-116
Quaternions to Euler Angles 3-118
resizing 1-9
Second Order Linear Actuator 3-120
Second Order Nonlinear Actuator 3-122
Self-Conditioned [A,B,C,D] 3-124
6DoF (Euler Angles) 3-55
6DoF (Quaternions) 3-59
6DoF Animation 3-53
Temperature Conversion 3-129
3DoF Animation 3-50
3D Controller [A(v),B(v),C(v),D(v)] 3-39
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-42
3D Self-Conditioned [A(v),B(v),C(v),D(v)] 3-46
3x3 Cross Product 3-52
Turbofan Engine System 3-131
2D Controller [A(v),B(v),C(v),D(v)] 3-24
2D Controller Blend 3-27
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-31

Index

I-2

2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3-35

Velocity Conversion 3-134
WGS84 Gravity Model 3-136
Wind Shear Model 3-140

building models 1-9

C
COESA Atmosphere Model block 3-71
connecting blocks and ports 1-12

D
defining models 1-9
Density Conversion block 3-73
Direction Cosine Matrix to Euler Angles block

3-75
Direction Cosine Matrix to Quaternions block

3-77
Discrete Wind Gust Model block 3-79
Dryden Wind Turbulence Model block 3-82

E
Environment/Atmosphere library 3-2
Environment/Gravity library 3-2
Environment/Wind library 3-2
Equations of Motion block 3-94
Equations of Motion/3DoF library 3-2
Equations of Motion/6DoF library 3-2
Euler Angles to Direction Cosine Matrix block

3-90
Euler Angles to Quaternions block 3-92

F
Force Conversion block 3-98

G
Gain Scheduled Lead-Lag block 3-100
GNC library 3-2

I
Incidence & Airspeed block 3-101
Interpolate Matrix(x) block 3-102
Interpolate Matrix(x,y) block 3-104
Interpolate Matrix(x,y,z) block 3-106
ISA Atmosphere Model block 3-109

L
Length Conversion block 3-110
libraries

Simulink 1-5

M
Mass Conversion block 3-112
M-files

running simulations from 1-20
missile guidance system 2-1
models

defining and building 1-9
simulating 1-19

Mux block 1-11

O
1D Controller [A(v),B(v),C(v),D(v)] block 3-11
1D Controller Blend u=(1-L).K1.y+L.K2.y block

3-14

Index

I-3

1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block
3-17

1D Self-Conditioned [A(v),B(v),C(v),D(v)] block
3-20

overview of Aerospace Blockset 1-2

P
parameters

definition of 1-12
setting 1-12
tuning 1-20

ports
connecting 1-12, 1-17

Pressure Conversion block 3-114
Propulsion library 3-2

Q
Quaternions to Direction Cosine Matrix block

3-116
Quaternions to Euler Angles block 3-118

R
resizing blocks 1-9

S
Scope block 1-11
Second Order Linear Actuator block

description 3-120
in tutorial 1-11

Second Order Nonlinear Actuator block 3-122
Self-Conditioned [A,B,C,D] block 3-124
simulations

running 1-19

running from M-file 1-20
Simulink

accessing 1-5
learning 1-20
libraries 1-5
Library Browser 1-5
Library Window 1-7

simulink 1-5
6DoF (Euler Angles) block 3-55
6DoF (Quaternions) block 3-59
6DoF Animation block 3-53

T
Temperature Conversion block 3-129
3D Controller [A(v),B(v),C(v),D(v)] block 3-39
3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block

3-42
3D Self-Conditioned [A(v),B(v),C(v),D(v)] block

3-46
3DoF Animation block 3-50
3x3 Cross Product block 3-52
Transformations/Axes library 3-2
Transformations/Units library 3-2
tuning parameters 1-20
Turbofan Engine System block 3-131
2D Controller [A(v),B(v),C(v),D(v)] block 3-24
2D Controller Blend block 3-27
2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block

3-31
2D Self-Conditioned [A(v),B(v),C(v),D(v)] block

3-35

U
using the Simulink Library Browser 1-5
using the Simulink Library Window 1-7

Index

I-4

V
Velocity Conversion block 3-134
Virtual Reality Toolbox

used in visualization ix

W
WGS84 Gravity Model block 3-136
Wind Shear Model block 3-140

	Using This Guide
	Organization of this Document
	Getting Help Online
	For Further Help and Feedback

	Related Products
	Requirements for the Aerospace Blockset
	Other Related Products

	Typographical Conventions
	Installation

	Introduction
	What Is the Aerospace Blockset?
	Getting Started with the Aerospace Blockset
	Opening the Aerospace Blockset on Windows Platforms
	Opening the Aerospace Blockset on UNIX Platforms

	Modeling with the Aerospace Blockset
	Model Definition
	Model Simulation
	Learning More About Simulink and Aerospace Blockset

	Case Study: Missile Guidance System
	Missile Guidance System Model
	Modeling Airframe Dynamics
	ISA Atmosphere Model block
	Aerodynamics & Equations of Motion Subsystem

	Modeling a Classical Three-Loop Autopilot
	Trimming and Linearizing an Airframe Model
	Autopilot Design

	Modeling the Homing Guidance Loop
	Guidance Subsystem
	Seeker/Tracker Subsystem

	Simulating the Missile Guidance System
	Extending the Model
	References

	Block Reference
	Blocks — By Category
	Actuator Library Blocks
	Animation Library Blocks
	Environment/Atmosphere Library Blocks
	Environment/Gravity Library Blocks
	Environment/Wind Library Blocks
	Equations of Motion/3DoF Library Blocks
	Equations of Motion/6DoF Library Blocks
	GNC Library Blocks
	Propulsion Library Blocks
	Transformation/Axes Library Blocks
	Transformations/Units Library Blocks
	Block Reference Page Description

	Blocks — Alphabetical List

	Index

