
Computation

Visualization

Programming

User’s Guide
Version 1

MATLAB® Link for Code Composer Studio™

Development Tools

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Link for Code Composer Studio Development Tools User’s Guide
 COPYRIGHT 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 2002 Online only New for Version 1.0 (Release 13)

Contents
Preface

About MATLAB Link for Code Composer Studio
Development Tools . vi

Supported Hardware for Links to CCS IDE and RTDX vi

Related Products . viii

Using This Guide . ix
Expected Background . ix
Organization of the Document . x

Configuration Information . xi

Typographical Conventions . xiii

1
Introducing Links and Embedded Objects

Requirements for MATLAB Link for
Code Composer Studio . 1-3

Platform Requirements—Hardware and Operating System . . 1-3

Constructing Link Objects . 1-6

Properties and Property Values . 1-8
Setting and Retrieving Property Values 1-8
Setting Property Values Directly at Construction 1-8
Setting Property Values with set . 1-9
Retrieving Properties with get . 1-10
Direct Property Referencing to Set and Get Values 1-11
i

ii Contents
Overloaded Functions for Links . 1-13

Link Properties . 1-14
Quick Reference to Link Properties . 1-14
Details About the Link Properties . 1-16

Tutorial 2-1—Using Links and Embedded Objects 1-22
Introducing the Tutorial . 1-22
Selecting Your Target . 1-25
Creating and Querying Links for CCS IDE 1-26
Loading Files into CCS . 1-28
Working with Links and Data . 1-31
Working with Embedded Objects . 1-36
Closing the Links or Cleaning Up CCS IDE 1-44

Tutorial 2-2—Using Links for RTDX . 1-47
Introducing the Tutorial for Using RTDX 1-47
Creating the Links . 1-51
Configuring Communications Channels 1-53
Running the Application . 1-55
Closing the Links or Cleaning Up . 1-62
Listing the Functions for Links . 1-66

2
About Objects for MATLAB Link Software

Introduction to Objects . 2-2
Some Object-Oriented Programming Terms 2-4
About the Relationships Between Objects 2-8
Class Diagrams for the MATLAB Link for
Code Composer Studio . 2-10

Numeric Objects—Their Methods and Properties 2-15
Properties of Numeric Objects . 2-15
Methods of Numeric Objects . 2-16

Bitfield Objects—Their Methods and Properties 2-17

Properties of Bitfield Objects . 2-17
Methods of Bitfield Objects . 2-18

Enum Objects—Their Methods and Properties 2-19
Properties of Enum Objects . 2-19
Methods of Enum Objects . 2-20

Pointer Objects—Their Methods and Properties 2-21
Properties of Pointer Objects . 2-21
Methods of Pointer Objects . 2-22

String Objects—Their Methods and Properties 2-23
Properties of String Objects . 2-23
Methods of String Objects . 2-24

Rnumeric Objects—Their Methods and Properties 2-25
Properties of Rnumeric Objects . 2-25
Methods of Rnumeric Objects . 2-26

Renum Objects—Their Methods and Properties 2-27
Properties of Renum Objects . 2-27
Methods of Renum Objects . 2-28

Rpointer Objects—Their Methods and Properties 2-29
Properties of Rpointer Objects . 2-29
Methods of Rpointer Objects . 2-30

Rstring Objects—Their Methods and Properties 2-31
Properties of Rstring Objects . 2-31
Methods of Rstring Objects . 2-31

Structure Objects—Their Methods and Properties 2-32
Properties of Structure Objects . 2-32
Methods of Structure Objects . 2-33

Reference for the Properties of the Objects 2-34
Property Reference Format and Contents 2-34
address . 2-34
apiversion . 2-35
iii

iv Contents
arrayorder . 2-36
binarypt . 2-37
bitsperstorageunit . 2-37
boardnum . 2-38
ccsappexe . 2-38
endianness . 2-39
isrecursive . 2-40
label . 2-40
link . 2-41
member . 2-42
membname . 2-43
memoffset . 2-44
name . 2-46
numberofstorageunits . 2-46
numChannels . 2-46
page . 2-48
postpad . 2-49
prepad . 2-49
procnum . 2-49
represent . 2-50
rtdx . 2-52
RtdxChannel . 2-54
size . 2-54
storageunitspervalue . 2-55
timeout . 2-57
typestring . 2-57
value . 2-58
wordsize . 2-59

3
Link Functions Reference

Using the Link Function Reference . 3-2
Contents of Function Reference Pages . 3-2

Tables of Link Software Functions . 3-3

Link Functions—Alphabetical List . 3-8

Functions—Alphabetical List . 3-9
v

vi Contents

Preface

About MATLAB Link for Code
Composer Studio Development Tools
(p. vi)

Presents an overview of the product

Related Products (p. viii) Introduces products that expand the capabilities of this
toolbox

Using This Guide (p. ix) Describes this User’s Guide, its organization, and things
you should know

Configuration Information (p. xi) Points out how to tell if this product is installed on your
computer

Typographical Conventions (p. xiii) Explains the way we use different fonts to mean different
things, such as variables or functions

 Preface

vi
About MATLAB Link for Code Composer Studio
Development Tools

MATLAB Link for Code Composer Studio Development Tools lets you use
MATLAB functions to communicate with Code Composer Studio™ and with
information stored in memory and registers on a target. With the links you can
transfer information to and from Code Composer Studio and with the
embedded objects you get information about data and functions stored in your
signal processor memory and registers, as well as information about functions
in your project.

Note Both the links and the embedded objects are objects, and you work with
them in the same way you use all MATLAB objects. You can set and get their
properties, and use their methods to change them or manipulate them.

With MATLAB Link for Code Composer Studio, you create two kinds of objects:

• Links that connect MATLAB to Code Composer Studio. For information
about using links, refer to “Requirements for MATLAB Link for Code
Composer Studio” on page 1-3.

• Embedded objects you create that provide access to data and functions in
your project in Code Composer Studio and on your target. The link objects let
you use the embedded objects to access your target. Refer to “About Objects
for MATLAB Link Software” on page 2-1 for more information about using
the embedded objects, their properties, and their methods.

Supported Hardware for Links to CCS IDE and RTDX
Using the C6000 target in Real-Time Workshop®, the MATLAB Link for Code
Composer Studio supports the following boards produced by TI.

Supported Board Designation Board Description

TMS320C6701 EVM C6701 Evaluation Module.

About MATLAB Link for Code Composer Studio Development Tools
Links for RTDX and CCS work with any board that CCS supports. You can link
to any hardware that appears in the CCS Setup Utility.

MATLAB Link for Code Composer Studio provides three components that work
with and use CCS IDE and TI Real-Time Data Exchange (RTDX™):

• Link for Code Composer Studio IDE — lets you use objects to create links
between CCS IDE and MATLAB ®. From the command window, you can run
applications in CCS IDE, send to and receive data from target memory, and
check the processor status, as well as other functions such as starting and
stopping applications running on your digital signal processors.

• Link for Real-Time Data Exchange Interface — provides a communications
pathway between MATLAB and digital signal processors installed on your
PC. Using objects in the MATLAB Link for Code Composer Studio, you open
channels to processors on boards in your computer and send and retrieve
data about the processors and executing applications, as well as send data to
the processes for use and get data from the applications.

• Embedded Objects—provides object methods and properties that let you
access and manipulate information stored in memory and registers on digital
signal processors, or in your Code Composer Studio project. From MATLAB
you gather information from you project, work with the information in
MATLAB, doing things like converting data types, creating function
declarations, or changing values, and return the information to your
project—all from the MATLAB command line.

TMS320C6711 DSK C6711 DSP Starter Kit.

C6xxx simulators in CCS Digital signal processor simulators in
CCS. You can generate code to the
simulators if you have Embedded Target
for the TI TMS320C6000 DSP Platform
product, and use CCS and RTDX links
with them.

Supported Board Designation Board Description
vii

 Preface

vii
Related Products
The MathWorks provides several products that are especially relevant to the
tasks you can perform with the MATLAB Link for Code Composer Studio.

For information about the products and hardware you need to run the
MATLAB Link for Code Composer Studio, refer to “Requirements for MATLAB
Link for Code Composer Studio” on page 1-3.

For more information about any of these products, refer to either

• The online documentation for that product, if it is installed or you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com. Navigate to the
“products” area

Note The toolboxes listed below include functions that extend MATLAB
capabilities. The blocksets include blocks that extend Simulink® capabilities.

Product Description

Control System Toolbox Design and analyze feedback control systems

Data Acquisition Toolbox Capture and send data from plug-in data
acquisition boards

DSP Blockset Design and simulate DSP systems

Embedded Target for the
TI TMS320C6000 DSP
Platform

Use Simulink and the Real-Time Workshop to
create models and generate target-specific
code for supported TI hardware

Filter Design Toolbox Design and analyze advanced floating-point
and fixed-point filters

Image Processing
Toolbox

Perform image processing, analysis, and
algorithm development
i

Using This Guide
Using This Guide

Expected Background
This document introduces you to using MATLAB Link for Code Composer
Studio Development Tools. To get the most out of this manual, readers should
be familiar with MATLAB and its associated programs, such as DSP Blockset
and Simulink. We do not discuss details of digital signal processor operations
and applications. For more information about digital signal processing, you
may find one or more of the following books helpful:

• McClellan, J. H., R. W. Schafer, and M. A. Yoder, “DSP First: A Multimedia
Approach,” Prentice Hall, 1998.

• Lapsley, P., J. Bier, A. Sholam, and E. A. Lee, “DSP Processor Fundamentals
Architectures and Features,” IEEE Press, 1997.

• Steiglitz, K, “A Digital Signal Processing Primer,” Addison-Wesley
Publishing Company, 1996.

For information about Code Composer Studio and Real-Time Data Exchange™
(RTDX™), refer to your Texas Instruments documentation for each product.

If You Are a New User
New users should read “Introducing Links and Embedded Objects” on
page 1-1. This introduces the MATLAB Link for Code Composer Studio
environment — the required software and hardware, installation
requirements, and the board configuration settings that you need. To introduce
the links ideas, the section includes discussions about objects and tutorials
about using links and RTDX.

If You Are an Experienced User
All users should read “About Objects for MATLAB Link Software” on page 2-1
for information and examples about embedded objects, such as the properties
and methods of each object, and a tutorial about working with your CCS project
from MATLAB. As experienced users, you know about the link object that
enables communications between MATLAB and Code Composer Studio. This
section offers details about the objects for getting access to and manipulating
the contents of memory, storage registers, and functions in projects in Code
Composer Studio. Using the objects is the first step towards providing you with
hardware-in-the-loop capability while you develop your applications.
ix

 Preface

x

Organization of the Document

Chapter Description

Preface Introduces the MATLAB Link for Code Composer
Studio Development Tools environment — the software
and hardware you need, and the related products that
may be of interest.

Introducing
Links and
Embedded
Objects

Provides information about using the link software to
connect to Texas Instruments Code Composer Studio
Integrated Development Environment and to open
Real-Time Data Exchange channels to target digital
signal processors.

About Objects
for MATLAB
Link Software

Reveals the secrets and detail about the embedded
objects in the software. Here you find descriptions of the
properties and methods for each object you create in
MATLAB.

Link Functions
Reference

Provides reference information for the functions in the
MATLAB Link for Code Composer Studio. The functions
listed work with the links for RTDX Interface and CCS
IDE Interface.

Configuration Information
Configuration Information
To determine whether the MATLAB Link for Code Composer Studio is
installed on your system, type this command at the MATLAB prompt.

help ccslink

When you enter this command, MATLAB displays the contents of the product,
the first few lines of which are shown here.

Link for Code Composer Studio(tm)
Version 1.0 (R13) 19-Apr-2002

Methods for Link for Code Composer Studio
ccshelp/ccsdsp - Construct CCS object.

If you do not see the listing, or MATLAB does not recognize the command, you
need to install the MATLAB Link for Code Composer Studio. Without the
software, you cannot use MATLAB with the links to communicate with Code
Composer Studio.

Note For up-to-date information about system requirements, refer to the
system requirements page, available in the products area at the MathWorks
Web site (http://www.mathworks.com).

To verify that CCS is installed on your machine, enter

ccsboardinfo

at the MATLAB command line. With CCS installed and configured, MATLAB
returns information about the boards that CCS recognizes on your machine, in
a form similar to the following listing.

Board Board Proc Processor Processor
 Num Name Num Name Type
 --- ---------------------------------- --- -------------------------------
 1 C6xxx Simulator (Texas Instrum ... 0 6701 TMS320C6701
 0 C6x11 DSK (Texas Instruments) 0 CPU TMS320C6x1x

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.
xi

 Preface

xii
As a final test, start CCS to ensure that it starts up successfully. For the
MATLAB Link for Code Composer Studio to operate with CCS, the CCS IDE
must be able to run on its own.

Typographical Conventions
Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, and user input

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')
xiii

 Preface

xiv

1

Introducing Links and
Embedded Objects

Requirements for MATLAB Link for
Code Composer Studio (p. 1-3)

Describes the software and hardware requirements for
running this product

Constructing Link Objects (p. 1-6) Shows you what a link object is and how to construct one

Properties and Property Values (p. 1-8) Describes how to work with objects, their properties and
property values

Overloaded Functions for Links
(p. 1-13)

Explains what makes a function overloaded and where to
get more information about the overloaded functions in
this product

Link Properties (p. 1-14) Describes the properties of link objects

Tutorial 2-1—Using Links and
Embedded Objects (p. 1-22)

Guides you through the process of creating and using
links and embedded objects

Tutorial 2-2—Using Links for RTDX
(p. 1-47)

Demonstrates one process for using RTDX to
communicate with CCS IDE and transfering data
between MATLAB and CCS IDE

1 Introducing Links and Embedded Objects

1-2
The MATLAB Link for Code Composer Studio Development Tools uses objects
to create:

• Links to Code Composer Studio Integrated Development Environment (CCS
IDE)

• Links to Real-Time Data Exchange (RTDX) Interface. This link is a subset of
the link to CCS IDE.

Concepts you need to know about the objects for linking in this toolbox are
covered in these sections:

• “Constructing Link Objects”

• “Properties and Property Values”

• “Setting and Retrieving Property Values”

• “Setting Property Values Directly at Construction”

• “Setting Property Values with set”

• “Retrieving Properties with get”

• “Direct Property Referencing to Set and Get Values”

• “Overloaded Functions for Links”

Refer to MATLAB Classes and Objects in your MATLAB documentation for
more details on object-oriented programming in MATLAB.

Many of the links use COM server features to create handles for working with
the links. Refer to your MATLAB documentation for more information about
COM as used by MATLAB.

Requirements for MATLAB Link for Code Composer Studio
Requirements for MATLAB Link for Code Composer Studio
This section describes the hardware and software you need to run the
MATLAB Link for Code Composer Studio Development Tools on your Microsoft
Windows PC.

MATLAB Link for Code Composer Studio runs on Microsoft Windows 98,
Windows NT 4.0 Workstation and Server, and Windows 2000 platforms.

Platform Requirements—Hardware and Operating
System
To run the MATLAB Link for Code Composer Studio, your host PC must meet
the following hardware configuration:

• Intel Pentium or Intel Pentium processor compatible PC

• 64 MB RAM (128 MB recommended)

• 20 MB hard disk space available after installing MATLAB

• Color monitor

• One full-length peripheral component interface (PCI) slot available to use
the C6701 EVM internally in your PC

• CD-ROM drive

• Microsoft Windows 98, Windows NT 4.0 Server or Workstation, or
Windows 2000

Refer to your documentation from The MathWorks for more information on
installing the software required to support MATLAB Link for Code Composer
Studio, as shown in Table 1-1.

Table 1-1: Prerequisites for Using MATLAB Link for Code Composer Studio
Software for Targeting

Installed Product Additional Information

MATLAB 6.1 Core software from The MathWorks

Signal Processing
Toolbox 5.0 or later

(Recommended) Software package for analyzing
signals, processing signals, and developing
algorithms
1-3

1 Introducing Links and Embedded Objects

1-4
For information about the software required to use the MATLAB Link for Code
Composer Studio Development Tools, refer to the Products area of the
MathWorks Web site—http://www.mathworks.com.

Texas Instruments Software
In addition to the required software from The MathWorks, MATLAB Link for
Code Composer Studio requires that you install the Texas Instruments
development tools and software listed in Table 2-2. Installing Code Composer
Studio IDE for the C6000 series installs the software shown in the table.

In addition to the TI software, you need one or more of the following in any
combination:

• One or more Texas Instruments TMS320C6701 Evaluation Modules

• One or more TMS320C6711 DSP Starter Kits

Table 1-2: Required TI Software for MATLAB Link for Code Composer Studio

Installed Product Additional Information

Assembler Creates object code (.obj) for C6000 boards
from assembly code.

Compiler Compiles C code from the blocks in
Simulink models into object code (.obj). As
a by-product of the compile process, you get
assembly code (.asm) as well.

Linker Combines various input files, such as object
files and libraries.

Code Composer Studio 2.1 Texas Instruments integrated development
environment (IDE) that provides code
debugging and development tools.

TI C6000 miscellaneous
utilities

Various tools for developing applications for
the C6000 digital signal processor family.

Code Composer Setup
Utility

Program you use to configure your CCS
installation by selecting your target boards
or simulator.

Requirements for MATLAB Link for Code Composer Studio
• One or more boards that CCS supports in the Setup utility, either C5000™
or C6000™ digital signal processor platforms

• One or more simulators from CCS

To use C5000 platforms from TI, install the Code Composer Studio IDE version
that supports C5000 products.

For up-to-date information about the software from The MathWorks you need
to use the MATLAB Link for Code Composer Studio, refer to the MathWorks
Web site—www.mathworks.com. Check the Product area for the MATLAB Link
for Code Composer Studio.
1-5

1 Introducing Links and Embedded Objects

1-6
Constructing Link Objects
When you create a link to CCS IDE using the ccsdsp command, you are
creating a “link to CCS IDE and RTDX Interface” object (called a link object for
brevity from here on). The link object implementation relies on MATLAB
object-oriented programming capabilities similar to the objects you find in the
Filter Design and Control Systems Toolboxes.

The discussions in this section apply to the link objects in the MATLAB Link
for Code Composer Studio. For a discussion of the embedded objects that are
also part of this product, refer to “About Objects for MATLAB Link Software”
on page 2-1. Since both object types use the MATLAB programming
techniques, the information about working with the links, such as how you get
or set properties, or use methods, apply equally to the link objects and the
embedded objects. Only their constructors, properties, and methods are
different.

Like other MATLAB structures, objects (also called links; we use the terms
interchangeably here) in the MATLAB Link for Code Composer Studio
Development Tools have predefined fields called object properties.

If you are new to objects, you might find the glossary section, “Some
Object-Oriented Programming Terms” on page 2-4, helpful to explain the
terms used in this User’s Guide.

You specify object property values by either:

• Specifying the property values when you create the object

• Creating an object with default property values, and changing some or all of
these property values later

For examples of setting link properties, refer to “Setting Property Values with
set” on page 1-9.

Example— Constructor for Links
The easiest way to create a link object is to use the function ccsdsp to create a
link with the default properties. Create a link named cc to CCS IDE by typing

cc = ccsdsp

MATLAB responds with a list of the properties of the link cc you created along
with the associated default property values.

Constructing Link Objects
CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

Inspecting the output reveals two objects listed—a CCS IDE object and an CCS
IDE and RTDX objects cannot be created separately. By design they maintain
a member class relationship; the RTDX object is a class, a member of the CCS
object class. In this example, cc is an instance of the class CCS. If you type

rx = cc.rtdx

rx is a handle to the RTDX portion of the CCS object. As an alias, rx replaces
cc.rtdx in functions such as readmat or writemsg that use the RTDX
communications features of the CCS link. Typing rx at the command line now
produces

rx

RTDX channels : 0

The link properties are described in “Tables of Link Software Functions” on
page 3-3, and in more detail in “Link Properties” on page 1-14. These
properties are set to default values when you construct links.
1-7

1 Introducing Links and Embedded Objects

1-8
Properties and Property Values
Links (or objects) in this MATLAB Link for Code Composer Studio have
properties associated with them. Each property is assigned a value. You can set
the values of most properties, either when you create the link or by changing
the property value later. However, some properties have read-only values. And
a few property values, such as the board number and the target processor to
which the link attaches, become read-only after you create the object. You
cannot change those after you create your link.

Setting and Retrieving Property Values
You can set MATLAB Link for Code Composer Studio for Texas Instruments
DSP link property values either:

• Directly when you create the link

• By using the set function with an existing link

Retrieve CCS IDE link property values with the get function.

In addition, direct property referencing lets you either set or retrieve property
values for links.

Setting Property Values Directly at Construction
To set property values directly when you construct a link, include the following
pair of entries in the input argument list for the link construction function
ccsdsp:

• A string for the property name to set followed by a comma. Enclose the string
in single quotation marks as you do any string in MATLAB.

• The associated property value. Sometimes this value is also a string.

Include as many property names in the argument list for the object
construction command as there are properties to set directly.

Properties and Property Values
Example—Setting Link Property Values at Construction
Suppose you want to set the following link characteristics when you create a
link to a DSP on a board in your computer:

• Link to the second DSP board installed on your computer.

• Connect to the first processor on the target board.

• Set the global timeout to 5 s. The default is 10 s.

Do this by typing

cc = ccsdsp('boardname',1,'procnum',0,'timeout',5);

boardname, procnum, and timeout properties are described in “Link Properties”
on page 1-14, as are the other properties for links.

Note When you set link property values, the strings for property names and
their values are not sensitive to the case of the string. In addition, you only
need to type the shortest uniquely identifying string in each case. For
example, you could have typed the above code as

cc = ccsdsp('board',1,'proc',0,'tim',5);

Setting Property Values with set
Once you construct a link, the set function lets you modify its property values.

You can use the set function to both:

• Set specific property values

• Display a list of the link properties showing all allowed values for each
property and the default setting for each property

Example—Setting Link Property Values Using set
For example, set the timeout specification for the link cc from the previous
section.

To do this, type

set(cc,'time',8);
1-9

1 Introducing Links and Embedded Objects

1-1
Now use get to check that the desired changes have been made to cc.

get(cc)

ans =

rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: []
 boardnum: 0
 procnum: 0
 timeout: 8
 page: 0

Notice that the display reflects the changes in the property values.

To display a listing of all of the properties associated with a link cc that you
can set, type

get(cc)

ans =

rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: []
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

Retrieving Properties with get
You can use the get command to:

• Retrieve property values for an object

• Display a listing of the properties associated with an object and their
associated property values
0

Properties and Property Values
Example—Retrieving Link Property Values Using get
For example, to retrieve the value of the apiversion property for cc, and
assign it to a variable, type

v = get(cc,'apiversion')

ans =

 1 0

Note When you retrieve properties, the strings for property names and their
values are not case-sensitive. In addition, you only need to type the shortest
uniquely identifying string in each case. For example, you could have typed
the above code as

v = get(cc,'api');

To list the properties of a link cc, and their values, type

get(cc)

ansrtdx: [1x1 rtdx]

rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: []
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

Direct Property Referencing to Set and Get Values
You can reference directly into a property for setting or retrieving property
values using MATLAB structure-like referencing. Do this by using a period to
index into an object property by name.
1-11

1 Introducing Links and Embedded Objects

1-1
Example—Direct Property Referencing in Links

1 Create a link with default values.

2 Change its timeout and number of open channels.

cc = ccsdsp;
cc.time = 6;
cc.rtdx.numchannels = 4;

Notice that you do not have to type the full name of the timeout property name,
and you can use lower case to refer to the property name.

To retrieve property values, you can use direct property referencing.

num = cc.rtdx.numchannels

num =
 4
2

Overloaded Functions for Links
Overloaded Functions for Links
Several functions in this MATLAB Link for Code Composer Studio have the
same name as functions in other MathWorks toolboxes or in MATLAB. These
behave similarly to their original counterparts, but you apply these functions
directly to an object. This concept of having functions with the same name
operate on different types of objects (or on data) is called overloading of
functions.

For example, the set command is overloaded for links (link objects). Once you
specify your link by assigning values to its properties, you can apply the
functions in this toolbox (such as readmat for using RTDX to read an array of
data from the target processor) directly to the variable name you assign to your
link, without having to specify your link parameters again.

For a complete list of the functions that act on links, refer to the tables of
functions in the function reference pages.
1-13

1 Introducing Links and Embedded Objects

1-1
Link Properties
The MATLAB Link for Code Composer Studio provides links to your target
hardware so you can communicate with processors for which you are
developing systems and algorithms. Each link comprises two objects—a CCS
IDE object and an RTDX Interface object. The link objects are not separable;
the RTDX object is a subclass of the CCS IDE object. Each of the link objects
has multiple properties. To configure the links for CCS IDE and RTDX, you set
parameters that define details such as the desired target board, the target
processor, the timeout period applied for communications operations, and a
number of other values. Since the MATLAB Link for Code Composer Studio
uses objects to create the links, the parameters you set are called properties
and you treat them as properties when you set them, retrieve them, or modify
them.

This section details the properties for the links for CCS IDE and RTDX. First
the section provides tables of the properties, for quick reference. Following the
tables, the section offers in-depth descriptions of each property, its name and
use, and whether you can set and get the property value associated with the
property. Descriptions include a few examples of the property in use.

MATLAB users may find much of this handling of objects familiar. Objects, or
links as we call them in the MATLAB Link for Code Composer Studio, behave
like objects in MATLAB and the other object-oriented toolboxes. For C++
programmers, this discussion of object-oriented programming is likely to be a
review.

Quick Reference to Link Properties
The following table lists the properties for the links in the MATLAB Link for
Code Composer Studio. The second column tells you which object the property
4

Link Properties
belongs to. Knowing which property belongs to each object in a link tells you
how to access the property.

Table 1-3: Properties for the Links in MATLAB Link for Code Composer Studio

Property
Name

Applies to
Which Link?

User
Settable?

Description

apiversion CCS IDE No Reports the version
number of your CCS API.

boardnum CCS IDE Yes/initially Specifies the index
number of a board that
CCS IDE recognizes.

ccsappexe CCS IDE No Specifies the path to the
CCS IDE executable.
Read-only property.

numchannels RTDX No Contains the number of
open RTDX channels for a
specific link.

page CCS IDE Yes/default Stores the default memory
page for reads and writes.

procnum CCS IDE Yes/at start
only

Stores the number CCS
Setup Utility assigns to
the processor.

rtdx RTDX No Specifies RTDX in a
syntax.

rtdxchannel RTDX No A string. Identifies the
RTDX channel for a link.

timeout CCS IDE Yes/default Contains the global
timeout setting for the
link.

version RTDX No Reports the version of
your RTDX software.
1-15

1 Introducing Links and Embedded Objects

1-1
Some properties are read only—you cannot set the property value. Other
properties you can change at all times. If the entry in the User Settable column
is “Yes/initially”, you can set the property value only when you create the link.
Thereafter it is read only.

Details About the Link Properties
To use the links for CCS IDE and RTDX Interface you set values for:

• boardnum—The board with which the link communicates

• procnum—The processor on the board, if the board has multiple processors

• timeout—Global timeout value. (Optional. Default is 10 s.)

Details of the properties associated with links to CCS IDE and RTDX Interface
appear in the following sections, listed in alphabetical order by property name.

Many of these properties are object linking and embedding (OLE) handles. The
MATLAB COM server creates the handles when you create links for CCS IDE
and RTDX. You can manipulate the OLE handles using get, set, and invoke
to work directly with the COM interface with which the handles interact.

apiversion
Property appversion contains a string that reports the version of the
application program interface (API) for CCS IDE that you are using when you
create a link. You cannot change this string. When you upgrade the API, or
CCS IDE, the string changes to match. Use display to see the apiversion
property value for a link. This example shows the appversion value for link cc.

display(cc)

CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0
6

Link Properties
Note that the API version is not the same as the CCS IDE version.

boardnum
Property boardnum identifies the target board referenced by a link for CCS IDE.
When you create a link, you use boardnum to specify the board you are
targeting. To get the value for boardnum, use ccsboardinfo or the CCS Setup
utility from Texas Instruments. The CCS Setup utility assigns the number for
each board installed on your system.

ccsappexe
Property ccsappexe contains the path to the CCS IDE executable file
cc_app.exe. When you use ccsdsp to create a link, MATLAB determines the
path to the CCS IDE executable and stores the path in this property. This is a
read-only property. You cannot set it.

numchannels
Property numchannels reports the number of open RTDX communications
channels for an RTDX link. Each time you open a channel for a link,
numchannels increments by one. For new links numchannels is zero until you
open a channel for the link.

To see the value for numchannels create a link to CCS IDE. Then open a
channel to RTDX. Use get or display to see the RTDX link properties.

cc=ccsdsp

CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

rx=cc.rtdx

 RTDX channels : 0
1-17

1 Introducing Links and Embedded Objects

1-1
open(rx,'ichan','r','ochan','w');

get(cc.rtdx)

ans =

 numChannels: 2
 Rtdx: [1x1 COM]
 RtdxChannel: {'' '' ''}
 procType: 103
 timeout: 10

page
Property page contains the default value CCS IDE uses when the user does not
specify the page input argument in the syntax for a function that access
memory.

procnum
Property procnum identifies the processor referenced by a link for CCS IDE.
When you create a link, you use procnum to specify the processor you are
targeting. The CCS Setup Utility assigns a number to each processor installed
on each board. To determine the value of procnum for a processor, use
ccsboardinfo or the CCS Setup utility from Texas Instruments.

To identify a processor, you need both the boardnum and procnum values. For
boards with one processor, procnum equals zero. CCS IDE numbers the
processors on multiprocessor boards sequentially from 0 to the number of
processors. For example, on a board with four processors, the processors are
numbered 0, 1, 2, and 3.

rtdx
Property rtdx is a subclass of the ccsdsp link and represents the RTDX portion
of a link for CCS IDE. As shown in the example, rtdx has properties of its own
that you can set, such as timeout, and that report various states of the link.

get(cc.rtdx)

ans =
8

Link Properties
 version: 1
 numChannels: 0
 Rtdx: [1x1 COM]
 RtdxChannel: {'' [] ''}
 procType: 103
 timeout: 10

In addition, you can create an alias to the rtdx portion of a link, as shown in
this code example.

rx=cc.rtdx

 RTDX channels : 0

Now you can use rx with the functions in the MATLAB Link for Code Composer
Studio, such as get or set. If you have two open channels, the display looks like
the following

get(rx)

ans =

 numChannels: 2
 Rtdx: [1x1 COM]
 RtdxChannel: {2x3 cell}
 procType: 98
 timeout: 10

when the processor is from the C62 family.

rtdxchannel
Property rtdxchannel, along with numchannels and proctype, is a read-only
property for the RTDX portion of a link for CCS IDE. To see the value of this
property, use get with the link. Neither set nor invoke work with
rtdxchannel.
1-19

1 Introducing Links and Embedded Objects

1-2
rtdxchannel is a cell array that contains the channel name, handle, and mode
for each open channel for the link. For each open channel, rtdxchannel
contains three fields, as follows:

With four open channels, rtdxchannel contains four channel elements and
three fields for each channel element.

timeout
Property timeout specifies how long CCS IDE waits for any process to finish.
Two timeout periods can exist—one global, one local. You set the global
timeout when you create a link for CCS IDE. The default global timeout value
10 s. However, when you use functions to read or write data to CCS IDE or your
target, you can set a local timeout that overrides the global value. If you do not
set a specific timeout value in a read or write process syntax, the global
timeout value applies to the operation. Refer to the help for the read and write
functions for the syntax to set the local timeout value for an operation.

version
Property version reports the version number of your RTDX software. When
you create a link, version contains a string that reports the version of the
RTDX application that you are using. You cannot change this string. When you
upgrade the API, or CCS IDE, the string changes to match. Use display to see
the version property value for a link. This example shows the appversion
value for link rx.

get(rx) % rx is an alias for cc.rtdx.

ans =

 version: 1
 numChannels: 0

.rtdxchannel{i,1} Channel name of the ith-channel, i from 1 to the
number of open channels

.rtdxchannel{i,2} Handle for the ith-channel

.rtdxchannel{i,3} Mode of the ith-channel, either 'r' for read or 'w'
for write
0

Link Properties
 Rtdx: [1x1 COM]
 RtdxChannel: {'' [] ''}
 procType: 103
 timeout: 10
1-21

1 Introducing Links and Embedded Objects

1-2
Tutorial 2-1—Using Links and Embedded Objects
The Link for Code Composer™ Studio IDE (CCS IDE), a part of the MATLAB
Link for Code Composer Studio, provides a connection between MATLAB and
a digital signal processor in Code Composer Studio. Using links provides a
mechanism for you to control and manipulate a signal processing application
using the computational power of MATLAB. This can help you while you debug
and develop your application. Another possible use is for creating MATLAB
scripts that you use to verify and test algorithms that run in their final
implementation on your production processor target.

Before using the functions available with the link for CCS IDE, you must select
a digital signal processor to be your target because any link you create is
specific to a designated digital signal processor. Selecting a processor is only
necessary for multiprocessor boards or multiple board configurations of Code
Composer Studio. When you have only one board with a single processor, the
link defaults to the existing processor. For the links, the simulator counts a
board; if you have both a board and a simulator that CCS recognizes, you must
specify the target explicitly.

Introducing the Tutorial
To get you started using links for CCS IDE software, the MATLAB Link for
Code Composer Studio includes an example script ccstutorial.m. As you
follow along with this tutorial, you perform five tasks that step you through
creating and using links for CCS IDE:

1 Select your target.

2 Create and query links to CCS IDE.

3 Use MATLAB to load files into CCS IDE.

4 Work with your CCS IDE project from MATLAB.

5 Close the links you opened to CCS IDE.

For this tutorial, you load and run a simple digital signal processing
application on target processor you select. To help you understand how they
work, the tutorial demonstrates both writing to memory and reading from
2

Tutorial 2-1—Using Links and Embedded Objects
memory in the “Working with Links and Data” on page 1-31 portion of the
tutorial.

Using the read and write functions gets a bit complicated. MATLAB supports
only double-precision values for calculations, but you can read and write a
range of data types to and from your target. Seeing how the read and write
functions work can help you when you need to do your work.

The tutorial covers the link functions listed below. The functions listed first
apply to CCS IDE independent of the links—you do not need a link to use these
functions. The functions listed next require a CCS IDE link in place before you
can use the function syntax:

• Global functions for CCS IDE

- ccsboardinfo—return information about the boards that CCS IDE
recognizes as installed on your PC.

- boardprocsel—select the board to target. Although you can use this
generally, the MATLAB Link for Code Composer Studio provides it as an
example of a user interface you can build and as a tool in the tutorial. We
do not recommend that you use this to select your target. Use
ccsboardinfo and ccsdsp to specify the target for your processing
application

- ccsdsp—construct a link to CCS IDE. When you construct the link you
specify the target board and processor.

- clear—remove a specific link to CCS IDE or remove all existing links.

• CCS IDE link functions

- address—return the address and page for an entry in the symbol table in
CCS IDE

- disp—display the properties of a link to CCS IDE and RTDX

- halt—terminate execution of a process running on the processor

- info—return information about the target processor or information about
open RTDX channels

- isrunning—test whether the target processor is executing a process

- isrtdxcapable—test whether your target supports RTDX
communications

- read—retrieve data from memory on the target processor
1-23

1 Introducing Links and Embedded Objects

1-2
- restart—restore the program counter (PC) to the entry point for the
current program

- run—execute the program loaded on the target processor

- visible—set whether CCS IDE window is visible on the desktop while
CCS IDE is running

- write—write data to memory on the target processor

• MATLAB Link for Code Composer Studio functions for working with
embedded objects

- cast—create a new object with a different datatype (the represent
property) from an object in MATLAB Link for Code Composer Studio.
Demonstrated with a numeric object.

- convert—change the represent property for an object from one datatype
to another. Demonstrated with a numeric object.

- createobj—return an object in MATLAB that accesses embedded data.
Demonstrated with structure, string, and numeric objects.

- getmember—return an object that accesses a single field from a structure.
Demonstrated with a structure object.

- goto—position the program counter to the specified location in the project
code.

- list—return various information listings from Code Composer Studio.

- read—read the information at the location accessed by an object into
MATLAB as numeric values. Demonstrated with a numeric, string,
structure, and enumerated objects.

- readnumeric—return the numeric equivalent of data at the location.
accessed by an object. Demonstrated with an enumerated object.

- write—write to the location referenced by an object. Demonstrated with
numeric, string, structure, and enumerated objects.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB command line
or entering the functions as described in the following tutorial sections.

To run the tutorial in MATLAB, click run ccstutorial. Running the
interactive tutorial in MATLAB puts you in an interactive mode where the
tutorial program provides prompts and text descriptions to which you respond
4

Tutorial 2-1—Using Links and Embedded Objects
to move to the next portion of the lesson. The interactive tutorial covers the
same information provided by the following tutorial sections. You can view the
tutorial M-file used here by clicking ccstutorial.m.

Selecting Your Target
Links for CCS IDE provides two tools for selecting a DSP board and processor
in multiprocessor configurations. One is a command line tool called
ccsboardinfo which prints a list of the available boards and processors. So
that you can use this function in a script, ccsboardinfo can return a MATLAB
structure that you use when you want your script to select a target board
without your help.

Note The board and processor you select in the tutorial remains the target
throughout the tutorial.

1 To see a list of the boards and processors installed on your PC, type

ccsboardinfo

MATLAB returns a list that shows you all the boards and processors that
CCS IDE recognizes as installed on your system.

2 To use the Selection Utility, boardprocsel, to select a target board, type

[boardnum,procnum] = boardprocsel

When you use boardprocsel, you see a dialog similar to the following. Note
that some entries vary depending on your board set.
1-25

1 Introducing Links and Embedded Objects

1-2
3 Select a board name and processor name from the lists.

You are selecting a board and processor number that identifies your
particular target. When you create the link for CCS IDE in the next section
of this tutorial, the selected board and processor become the target of the
link.

4 Click Done to accept your board and processor selection and close the dialog.

boardnum and procnum now represent the Board name and Processor name
you selected—boardnum = 1 and procnum = 0

Creating and Querying Links for CCS IDE
In this tutorial section you create the connection between MATLAB and Code
Composer Studio IDE. This connection, or link, is represented by a MATLAB
object, which for this session you save as variable cc. You use function ccsdsp
to create link objects. When you create links, ccsdsp input arguments let you
define other link properties, such as the global timeout. Refer to the ccsdsp
documentation for more information on these input arguments.

Use the generated link cc to direct actions to your target processor. In the
following tasks, cc appears in all function syntax that interact with CCS IDE
and the target:
6

Tutorial 2-1—Using Links and Embedded Objects
1 Create a link to your selected board and processor by typing

cc=ccsdsp('boardnum',boardnum,'procnum',procnum)

If you were to watch closely, and your machine is not too fast, you see Code
Composer Studio appear briefly when you call ccsdsp. If CCS IDE was not
running before you established the new link, CCS starts and gets placed in
the background.

Note When CCS IDE is running in the background it does not appear on
your desktop, in your task bar, or on the Applications page in the Task
Manager. It does show up as a process, cc_app.exe, on the Processes tab in
Task Manager.

2 Type visible(cc,1) to force CCS IDE to be visible on your desktop

In most cases, you need to interact with Code Composer Studio while you
develop your application, so the first link function we introduce, visible,
controls the state of Code Composer Studio on your desktop. visible accepts
Boolean inputs that make Code Composer Studio either visible on your
desktop (input to visible ≥ 1) or invisible on your desktop
(input to visible = 0). For the rest of this tutorial you need to interact with
CCS IDE so we use visible to set the CCS IDE visibility to 1.

3 Now type disp(cc) at the prompt to see the status information.

CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

The MATLAB Link for Code Composer Studio provides three functions to
read the status of a target board and processor:
1-27

1 Introducing Links and Embedded Objects

1-2
- info—return a structure of testable target conditions

- disp—print information about the target CPU

- isrunning—return the state (running or halted) of the CPU

- isrtdxcapable—return whether the target handle RTDX

4 Type linkinfo = info(cc).

The cc link status information tells you about the target

linkinfo =

 procname: 'CPU'
 isbigendian: 0
 family: 320
 subfamily: 103
 revfamily: 1
 timeout: 10

5 Check to see if the target is running by entering

runstatus = isrunning(cc)

MATLAB responds by telling you that the processor is stopped

runstatus =

 0

6 At last, check to see whether the target supports RTDX communications by
entering

usesrtdx = isrtdxcapable(cc)
usesrtdx =

 1

Loading Files into CCS
You have established the link to CCS IDE and to target. Using three functions
you learned about the target, whether it was running, its type, and whether
CCS IDE was visible. Now the target needs something to do.
8

Tutorial 2-1—Using Links and Embedded Objects
In this tutorial section you load the executable code for the target CPU in CCS
IDE. For this tutorial, the MATLAB Link for Code Composer Studio includes a
Code Composer Studio project file. With the following commands in the tutorial
you locate the tutorial project file and load it into CCS IDE. The open function
directs Code Composer Studio to load a project file or workspace file

Note Code Composer Studio has its own workspace and workspace files
which are quite different from MATLAB workspace files and the MATLAB
workspace. Remember to pay attention to both workspaces.

After you have executable code running on your target you can exchange data
blocks with the target. This is the purpose of the links for CCS IDE:

1 To load the appropriate project file to your target, do one of the following
depending on the class of your target processor.

C54xx processor family—Type the following commands to load the project
file. Notice that these functions also change your CCS IDE working
directory.

projfile = fullfile(matlabroot,'toolbox','tiddk','tidemos',...
'ccstutorial','ccstut_54xx.pjt')
projpath = fileparts(projfile)
open(cc,projfile) % Open project file
cd(cc,projpath) % Change working directory of Code Composer(only)

C6x11 processor family—Type the following commands to load the project
file. Notice that these functions also change your CCS IDE working
directory.

projfile = fullfile(matlabroot,'toolbox','tiddk','tidemos',...
'ccstutorial','ccstut_6x11.pjt')
projpath = fileparts(projfile)
open(cc,projfile) % Open project file
cd(cc,projpath) % Change Code Composer working directory

C6x0x processor family—Type the following commands to load the project
file. Notice that these functions also change your CCS IDE working
directory.
1-29

1 Introducing Links and Embedded Objects

1-3
projfile = fullfile(matlabroot,'toolbox','tiddk','tidemos',...
'ccstutorial','ccstut_6x0x.pjt')
projpath = fileparts(projfile)
open(cc,projfile) % Open project file
cd(cc,projpath) % Change Code Composer working directory

2 Next, build the target executable file in CCS IDE. Select Project->Build
from the menu bar in CCS IDE.

You may get an error here related to one or more missing .lib files. If you
installed CCS IDE in a directory other than the default installation
directory, browse in your installation directory to find the missing file or
files. Use the path in the error message as an indicator of where to find the
missing files.

3 Type load(cc,'a.out') to load the target execution file.

4 You now have a loaded program file and associated symbol table. To
determine the memory address of the global symbol ddat, type

ddata = address(cc,'ddat')

ddata =

 1.0e+009 *

 2.1475 0

Your values for ddata may be different depending on your target.

Note The symbol table is available after you load the program file into the
target, not after you build a program file.

5 To convert ddata to a hexadecimal string that contains the memory address
and memory page, type

dec2hex(ddata)

MATLAB displays
0

Tutorial 2-1—Using Links and Embedded Objects
ans =

80000010
00000000

where the memory page is 0x00000000 and the address is 0x80000010.

Working with Links and Data
With the target code loaded, you can use the MATLAB Link for Code Composer
Studio functions to examine and modify data values in the processor.

When you look at the source file listing in the CCS IDE Project view window,
there should be a file named ccstut.c. The MATLAB Link for Code Composer
Studio ships this file with the tutorial and includes it in the project. ccstut.c
has two global data arrays—ddat and idat. They are declared and initialized
in lines 10 and 11 of the source code. You access these processor memory arrays
from MATLAB using the functions read and write.

The MATLAB Link for Code Composer Studio provides three functions to
control target execution—run, halt, and restart. To demonstrate these
commands, use CCS IDE to add a breakpoint to line 64 of cctut.c. Line 64 is

printf("Link for Code Composer: Tutorial - Memory Modified by Matlab!\n");

For information about adding breakpoints to a file, refer to your Code
Composer Studio User’s Guide from Texas Instruments. Then proceed with the
tutorial:

1 To demonstrate the new functions, try the following functions.

halt(cc) % Halt the processor
restart(cc) % Reset the PC to start of program
run(cc,'runtohalt',30); % Wait for program execution to stop at

% breakpoint! (timeout = 30 seconds)

When you switch to viewing CCS IDE, you see that your program stopped at
the breakpoint you inserted on line 64, and the program printed

Link for Code Composer: Tutorial - Initialized Memory
Double Data array = 16.3 -2.13 5.1 11.8
Integer Data array = 1-508-647-7000

in the CCS IDE Stdout tab. Nothing prints in MATLAB.
1-31

1 Introducing Links and Embedded Objects

1-3
2 Before you restart your program (currently stopped at line 64) you can
change some of the values in memory. Perform one of the procedures listed
below based on your target processor.

C5xxx processor family—Type the following functions to demonstrate the
read and write functions.

a Type ddatv = read(cc,address(cc,'ddat'),'double',4).

MATLAB responds with

ddatv =

 16.3000 -2.1300 5.1000 11.8000

b Type idatv = read(cc,address(cc,'idat'),'int16',4).

Now MATLAB returns

idatv =

 1 0 508 0

Because you requested 16-bit integers, whose maximum value is 512, the
values 647 and 7000 come back as zeros since they cannot be represented
as 16-bit integers. Using int32 would have returned the full values for all
the data in idatv.

c You can change the values stored in ddat by typing
write(cc,address(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB to write the values to the target
as double-precision data.

d To change idat, type

write(cc,address(cc,'idat'),int32([1:4]))

Here you write the data to the target as 32-bit integers (convenient for
representing phone numbers, for example).

e Start the program running again by typing

run(cc,'runtohalt',30);

Checking the Stdout tab in CCS IDE reveals that ddat and idat contain
new values. Now we read those new values back into MATLAB.
2

Tutorial 2-1—Using Links and Embedded Objects
f Type ddatv = read(cc,address(cc,'ddat'),'double',4).

ddatv =

 3.1416 12.3000 0.3679 0.7071

ddatv does contain the values you wrote in step c.

g Check that the change to idatv occurred by typing

idatv = read(cc,address(cc,'idat'),'int16',4)

MATLAB returns the new values for idatv.

idatv =

 1 2 3 4

h Finally, use restart to reset the program counter for your program to the
beginning. Type

restart(cc);

C6xxx processor family—Type the following commands to demonstrate the
read and write functions.

a Type ddatv = read(cc,address(cc,'ddat'),'double',4).

MATLAB responds with

ddatv =

 16.3000 -2.1300 5.1000 11.8000

b Type idatv = read(cc,address(cc,'idat'),'int16',4).

Now MATLAB responds

idatv =

 1 0 508 0

Because you requested 16-bit integers, whose maximum value is 512, the
values 647 and 7000 come back as zeros since they cannot be represented
as 16-bit integers. Using int32 would have returned the full values for all
the data in idatv.
1-33

1 Introducing Links and Embedded Objects

1-3
c You can change the values stored in ddat by typing
write(cc,address(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB to write the values to the target
as double-precision data.

d To change idat, type

write(cc,address(cc,'idat'),int32([1:4]))

Here you write the data to the target as 32-bit integers (convenient for
representing phone numbers, for example).

e Now start the program running again by typing

run(cc,'runtohalt',30);

Checking the Stdout tab in CCS IDE reveals that ddat and idat contain
new values. Now read those new values back into MATLAB.

f Type ddatv = read(cc,address(cc,'ddat'),'double',4).

ddatv =

 3.1416 12.3000 0.3679 0.7071

ddatv does contain the values you wrote in step c.

g Check that the change to idatv occurred by typing

idatv = read(cc,address(cc,'idat'),'int32',4)

MATLAB returns the new values for idatv.

idatv =

 1 2 3 4

h Finally, use restart to reset the program counter for your program to the
beginning. Type

restart(cc);

3 The MATLAB Link for Code Composer Studio offers two more functions for
reading and writing data to your target. These functions let you read and
write data to the processor registers: regread and regwrite. They let you
change variable values on the processor in real time. As before, the functions
4

Tutorial 2-1—Using Links and Embedded Objects
behave slightly differently depending on your target. Select the appropriate
procedure for your target to demonstrate regread and regwrite.

C5xxx processor family—Most registers are memory-mapped and
consequently are available using read and write. However, the PC register
is not memory mapped. To access this register, you use the special pair of
functions—regread and regwrite. The following commands demonstrate
how to use these functions to read and write to the PC register.

a To read the value stored in register PC, type

cc.regread('PC','binary')

To tell MATLAB what datatype you are reading, the string binary
indicates that the PC register contains a value stored as an unsigned
binary integer.

In response, MATLAB displays

ans =

 33824

b To write a new value to the PC register, type

cc.regwrite('PC',hex2dec('100'),'binary')

This time, binary as an input argument tells MATLAB to write the value
to the target as an unsigned binary integer. Notice that you used hex2dec
to convert the hexadecimal string to decimal.

c Check the PC contains the value you wrote.

cc.regread('PC','binary’)

C6xxx processor family—regread and regwrite let you access the
processor registers directly. Type the following functions to get data into and
out of the A0 and B2 registers on your target.

a Retrieve the value in register A0 and store it in a variable in your
MATLAB workspace. Type

treg = cc.regread('A0','2scomp');

treg now contains the two’s complement representation of the value in
A0.
1-35

1 Introducing Links and Embedded Objects

1-3
b Retrieve the value in register B2 as an unsigned binary integer, by typing

cc.regread('B2','binary');

c Now, use regwrite to put the value in treg into register A2.

cc.regwrite('A2',treg,'2scomp');

CCS IDE reports that A0, B2, and A2 have the values you expect. Select
View–>CPU Registers–>Core Registers from the CCS IDE menu bar to
see a listing of the processor registers.

Working with Embedded Objects
Having direct access to the memory on your target DSP, as provided by the
links in MATLAB Link for Code Composer Studio, can be a powerful tool for
helping you develop and troubleshoot your digital signal processing
applications. But for programming in C, it is perhaps more valuable to be able
to work with memory and data in ways that are consistent with the C variables
embedded in your programs.

MATLAB Link for Code Composer Studio implements just this sort of access
and manipulation capability by using MATLAB objects (called embedded
objects in this guide) that access and represent variables and data embedded
in your project. Various functions that compose the MATLAB Link for Code
Composer Studio, such as createobj, convert, and write, help you create the
embedded objects you use to work with your data in DSP memory and
registers, and let you manipulate the data in MATLAB and in your code.

This portion of the tutorial introduces some of the functions and how to use
them to access and manipulate them.

Function list generates a lot of information for you about an embedded
variable in the symbol table. An even more useful function is createobj that
creates a MATLAB object that represents a C variable in the symbol table in
CCS. Working with the object that createobj returns, you can read the entire
contents of a variable, or one or more elements of the variable when the
variable is an array or structure.

From the beginning of this tutorial you have used the link object cc with all of
the functions. cc represents the path to communicate with a particular
processor in CCS. For the remainder of this tutorial you work with a variety of
functions that use, not the link object cc, but other objects such as numeric or
structure objects, that represent embedded objects in CCS. All of these new
6

Tutorial 2-1—Using Links and Embedded Objects
functions use the object names (handles) as the first input argument to the
function (in just the way you used cc). When you create the object cvar in step
4 that follows, cvar represents the embedded variable idat.

To begin, restart the program and use list to get some information about
a variable (an embedded object) in Code Composer Studio.

Using list

1 To restart the program in CCS, enter

restart(cc)

This resets the program counter to the beginning of your program.

2 To move the program counter (PC) to the beginning of main, which you
should do before rerunning your program, enter

goto(cc,'main')

Moving the PC to main ensures that the program initializes the embedded
C variables.

3 Now, to get information about a variable in your program, use list with two
input options—'variable' which defines the type of information to return,
and 'idat' which identifies the symbol itself.

idatlist = list(cc,'variable','idat')

idat is a global variable; the input keyword variable identifies it as one.
Other keywords for list include project, globalvar, function, and type.
Refer to list for more information about these options.

In your MATLAB workspace and window, you see a new structure named
idatlist. If you use the MATLAB Workspace browser, double-click
idatlist in the browser to see idatlist.

4 Rather than using list to get information about idat, create an object that
represents idat in your MATLAB workspace by entering

cvar = createobj(cc,'idat')

which creates the new numeric object cvar.
1-37

1 Introducing Links and Embedded Objects

1-3
NUMERIC Object
 Symbol Name : idat
 Address : [40060 0]
 Wordsize : 16 bits
 Address Units per value : 2 AU
 Representation : signed
 Binary point position : 0
 Size : [4]
 Total address units : 8 AU
 Array ordering : row-major
 Endianness : little

You use cvar, through the numeric object properties and functions, to access
and manipulate the embedded variable idat, both in your MATLAB
workspace and in CCS if you write your changes back to CCS from your
workspace.

Using read and write

5 Try the following functions to read and write cvar. Notice the way the return
values change as you change the function syntax. Notice also that write
actually changes the data in memory on the target, as you see from what
comes back to MATLAB after the third read.

a read(cvar)

This form returns all of the entries in the embedded array cvar to your
MATLAB workspace.

ans =

 1 508 647 7000

b read(cvar,2)

In contrast to the previous syntax, this one returns only the second
element of cvar—508.

c write(cvar,4,7001)

Using write to change the value stored in the fourth element of cvar to
7001.
8

Tutorial 2-1—Using Links and Embedded Objects
d write(cvar,1,'FFFF')

Change the first element of cvar to -1, which is the decimal equivalent of
0xFFFF. When you entered FFFF as a string (enclosed in single quotation
marks), write converts the string to its decimal equivalent and stores
that at the target location in memory.

e read(cvar)

At last, read the embedded array cvar to see if your changes to the first
and fourth elements really occurred (they did).

f read(cvar,[1 size(cvar)]

Finally, read the first and last elements of the embedded variable cvar.

Using cast, convert, and size

Each time you used read, the function took the raw values of idat stored in
memory on your target and converted them to equivalaent MATLAB
numeric values. The way that read converts idat elements to numeric
values is controlled by the properties of the object cvar which resulted from
using createobj to create it. When you created cvar, the object that accesses
the embedded variable idat, createobj assigned default property values to
the properties of cvar that were appropriate for your target DSP
architecture and for the C representation of variable idat.

In many cases, it may help you develop your program if you change the
default conversion properties. Several of the object properties, such as
endianness, arrayorder, and size respond to changes made using function
set. To make more complex changes, use functions like cast and convert
that adjust multiple object property values simultaneously.

In step 6 of this tutorial, you have the opportunity to use cast, convert, and
size to modify cvar by changing property values. Unlike read and write,
cast, convert, and size (and set mentioned earlier) do not affect the
information stored on the target; they only change the properties of the
object in MATLAB. Unless you write your changes back to your target, the
changes you make in MATLAB stay in MATLAB.

6 To introduce changing the properties of cvar using cast, convert, and size,
enter the following commands at the prompt. In this series of examples, you
use read to view the changes each command makes to cvar.
1-39

1 Introducing Links and Embedded Objects

1-4
a set(cvar,'size',[2])

As a result of this function, idat gets resized to only the first two
elements in the array.

b read(cvar)

ans =

 1 508

Returns only two values, not the full data set you saw in step 5a.

c uintcvar = cast(cvar,'unsigned short')

uintcvar is a new object, a copy of cvar (and thus idat), but with the
datatype property value of unsigned short instead of double. Notice
that the actual values are not different—just the interpretation. Where
cvar interprets the values in idat as doubles, uintcvar interprets the
values in idat as unsigned integers with 16 bits each. Now when you use
the object to read idat, the returned values from idat are interpreted
differently.

d read(uintcvar)

e convert(cvar,'unsigned short')

In contrast to cast, convert does not make a copy of cvar; it changes the
datatype property of cvar to be unsigned short.

NUMERIC Object

 Symbol Name : idat

 Address : [40060 0]

 Wordsize : 16 bits

 Address Units per value : 2 AU

 Representation : unsigned

 Binary point position : 0

 Size : [2]

 Total address units : 4 AU

 Array ordering : row-major

 Endianness : little
0

Tutorial 2-1—Using Links and Embedded Objects
f read(cvar)

ans =

 1 508

Remember that one of the first things you did in these examples was
change the size of cvar to 2. You should see that reflected in the returned
values. The values returned by cvar after you change the datatype
property should match the values returned by uintcvar since the objects
have the same properties.

One more thing to notice—the first value of idat is no longer -1, although
you changed the value in step 5d. Recall that you changed the datatype
to unsigned short for cvar, so the first element of idat that you set to
-1 is now shown as the unsigned equivalent 1.

Using getmember

To this point you have worked with fairly simple data in memory on your
target. However, with functions in MATLAB Link for Code Composer
Studio, you can manipulate more complex data like strings, struactures,
bitfields, eumerated data types, and pointers in a very similar way.

In the next, somewhat extended examples, the tutorial demonstrates some
common functions for manipulating structures, strings, and enumerated
datatypes on your target. Pay particular attention to function getmember
which extracts a single specified field from a structure on your target as an
object in MATLAB.

7 cvar = createobj(cc,'myStruct')

Here you create a new object cvar, replacing the old cvar, that represents
an embedded structure named myStruct on your target. When you loaded
this tutorial program, one of the defined structures in the program was
myStruct.

STRUCTURE Object
 Symbol Name : myStruct
 Address : [40032 0]
 Size : [1]
 Total Address Units : 28 AU
 Members : 'iy', 'iz'
1-41

1 Introducing Links and Embedded Objects

1-4
8 read(cvar)

ans =

 iy: [2x3 double]
 iz: 'MatlabLink'

Now you see the contents of myStruct, its fields and values.

Here’s the definition of myStruct from ccstut.c in CCS.

struct TAG_myStruct {
int iy[2][3];
myEnum iz;

} myStruct = { {{1,2,3},{4,-5,6}}, MatlabLink}

9 write(cvar,'iz','Simulink')

After this command, you have updated the field iz in myStruct with the
actual enumerated name Simulink. If you look into ccstut.c, you see that
iz is an enumerated datatype. That feature comes into play in the next
steps.

10 cfield = getmember(cvar,'iz')

cfield, the object returned by getmember, represents the embedded variable
iz in the project. Here’s what cfield looks like in property form.

ENUM Object
 Symbol Name : iz
 Address : [40056 0]
 Wordsize : 32 bits
 Address Units per value : 4 AU
 Representation : signed
 Binary point position : 0
 Size : [1]
 Total address units : 4 AU
 Array ordering : row-major
 Endianness : little
 Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,
MatlabLink=3, EmbeddedTargetC6x=4

11 write(cfield,4)

12 read(cvar)
2

Tutorial 2-1—Using Links and Embedded Objects
ans =

 iy: [2x3 double]
 iz: 'EmbeddedTargetC6x'

Your command write(cfield,4) replaced the string MatlabLink with the
fourth value EmbeddedTargetC6x. That is an example of writing to an
embedded variable by value.

13 cstring = createobj(cc,'myString')

createobj returns the object cstring that represents a C structure embedded
in the project. When you leave off the closing semicolon (;) on the command,
you see

STRING Object :
 Symbol Name : myString
 Address : [40104 0]
 Total wordsize : 8 bits
 Address Units per value : 1 AU
 Representation : signed
 Binary point position : 0
 Size : [29]
 Total address units : 29 AU
 Array ordering : col-major
 Endianness : little
 Char Conversion Type : ASCII

which provides details about cstring. Using get with cstring returns the
same information, plus more, in a form listing the property names and
property values of cstring.

14 read(cstring)

In response you see the contents of cstring

ans =

Treat me like an ASCII String
1-43

1 Introducing Links and Embedded Objects

1-4
15 write(cstring,7,'ME')

This changes the the seventh element of MyString to ME. When you reread
cstring, me should be replaced by ME, so the string becomes

Treat ME like an ASCII String

as you see in the next example.

16 read(cstring)

ans =

Treat ME like an ASCII String

17 write(cstring,1,127)

write changes the contents of the first element of MyString to the ASCII
character 127—a nonprinting character.

18 readnumeric(cstring)

Using readnumeric with a string object returns the numeric equivalent of
the characters in MyString, as shown here.

ans =

 Columns 1 through 12

 127 114 101 97 116 32 77 69 32 108 105 107

 Columns 13 through 24

 101 32 97 110 32 65 78 83 73 32 83 116

 Columns 25 through 29

 114 105 110 103 0

Closing the Links or Cleaning Up CCS IDE
Objects that you create in MATLAB Link for Code Composer Studio have COM
handles to CCS. Until you delete these handles, the CCS process (cc_app.exe
4

Tutorial 2-1—Using Links and Embedded Objects
in the Task Manager) remains in memory. Closing MATLAB removes these
COM handles automatically, but there may be times when it helps to delete the
handles manually, without quitting MATLAB. Use clear to remove objects
from your MATLAB workspace and to delete any handles they contain.
clear all deletes everything in your workspace. When you need to retain your
MATLAB data while deleting objects and handles, use clear objname. Note
that this applies both to objects your create with ccsdsp and createobj. To
clean up the objects created during the tutorial, the tutorial program enters

clear cc cvar cfield uintcvar

at the prompt.

One more bit of clean up that this tutorial does is to close the project in CCS
with the command

close(cc,projfile,'project')

Finally, to delete your link to Code Composer, use clear cc.

Note If a link to CCS IDE exists when you close Code Composer Studio, the
application does not close. Windows moves it to the background (it becomes
invisible). Only after you clear all links to CCS IDE, or close MATLAB, does
closing CCS IDE unload the application. You can see if CCS IDE is running in
the background by checking in the Windows Task Manager. When CCS IDE is
running, the entry cc_app.exe appears in the Image Name list on the
Processes page.

Your development tutorial using CCS IDE is done.

During the tutorial you:

1 Selected your target.

2 Created and queried links to CCS IDE to get information about the link and
the target.

3 Used MATLAB to load files into CCS IDE, and used MATLAB to run that
file.
1-45

1 Introducing Links and Embedded Objects

1-4
4 Worked with your CCS IDE project from MATLAB by reading and writing
data to your target, and changing the data from MATLAB.

5 Created and used the embedded objects to manipulate data in a C-like way.

6 Closed the links you opened to CCS IDE.

In future development work with your signal processing applications you
follow the same set of tasks. Thus the tutorial provided here gives you
a working process for using the MATLAB Link for Code Composer Studio and
your signal processing programs to develop programs for a range of Texas
Instruments digital signal processors. While the target may change, and the
program will change, the essentials of the process remain the same, as do the
functions you use to interact with the processor and CCS IDE.
6

Tutorial 2-2—Using Links for RTDX
Tutorial 2-2—Using Links for RTDX
The MATLAB Link for Code Composer Studio and the links for CCS IDE and
RTDX speed and enhance your ability to develop and deploy digital signal
processing systems on Texas Instruments digital signal processors. By using
MATLAB and the MATLAB Link for Code Composer Studio, your MathWorks
tools, CCS IDE and RTDX work together to help you test and analyze your
processing algorithms in your MATLAB workspace.

In contrast to CCS IDE, using links for RTDX lets you interact with your
process in real time while it’s running on the target. Across the link, you can:

• Send and retrieve data from memory on the processor

• Change the operating characteristics of the program

• Make changes to algorithms as needed without stopping the program or
setting breakpoints in the code

Enabling real-time interaction lets you more easily see your process or
algorithm in action, the results as they develop, and the way the process runs.

This tutorial assumes you have Texas Instruments Code Composer Studio and
at least one DSP development board. You can use the CCS IDE simulator to
run this tutorial. Within the tutorial we use the TMS320C6701 EVM as the
target board, with the C6701 DSP on the C6701 EVM as the target processor.

After you complete the tutorial, either in the demonstration form or by entering
the functions along with this text, you are ready to begin using RTDX to work
with your applications and hardware.

Introducing the Tutorial for Using RTDX
Digital signal processing development efforts begin with an idea for processing
data; an application area, such as audio or wireless communications or
multimedia computing; and a platform or hardware to host the signal
processing. Usually these processing efforts involve applying strategies like
signal filtering, compression, and transformation to change data content; or
isolate features in data; or transfer data from one form to another or one place
to another.

In all cases, developers create algorithms that they need to accomplish the
desired result. Once they have the algorithms, developers use models and DSP
processor development tools to test their algorithms, to determine whether the
1-47

1 Introducing Links and Embedded Objects

1-4
processing achieves the goal, and whether the processing works on the
proposed platform. The MATLAB Link for Code Composer Studio and the links
for RTDX and CCS IDE ease the job of taking algorithms from the model realm
to the real world of the target digital signal processor on which the algorithm
will run.

RTDX and links for CCS IDE provide a communications pathway to
manipulate data and processing programs on your target digital signal
processor. RTDX offers real-time data exchange in two directions between
MATLAB and your target process. Data you send to the target has little effect
on the running process and plotting the data you retrieve from the target lets
you see how your algorithms are performing in real time.

To introduce the techniques and tools available in the MATLAB Link for Code
Composer Studio for using RTDX, the following procedures use many of the
methods in the link software to configure the target processor, open and enable
channels, send data to the target, and clean up after you finish your testing.
Among the functions covered are:

• From links for CCS IDE

- ccsdsp—create links to CCS IDE and RTDX.

- cd—change your CCS IDE working directory from MATLAB.

- open—load program files in CCS IDE.

- run—run processes on the target processor.

• From the RTDX class

- close—close the RTDX links between MATLAB and your target.

- configure—determine how many channel buffers to use and set the size
of each buffer.

- disable—disable the RTDX links before you close them.

- display and disp—return the results of functions get and set. When you
omit the closing semicolon (;) on a function, disp provides the default
display for the results of the operation.

- enable—enable open channels so you can use them to send and retrieve
data from your target.

- isenabled—determine whether channels are enabled for RTDX
communications.
8

Tutorial 2-2—Using Links for RTDX
- isreadable—determine whether MATLAB can read the specified memory
location.

- iswritable—determine whether MATLAB can write to the target.

- msgcount—find out how many messages are waiting in a channel queue.

- open—open channels in RTDX.

- readmat—read data matrices from the target into MATLAB as an array.

- readmsg—read one or more messages from a channel.

- writemsg—write messages to the target over a channel.

This tutorial provides the following procedure to show you how to use many of
the functions in the links. By doing the steps listed, you can work through
many of the operations yourself. As a bonus, the tutorial follows the general
task flow for developing digital signal processing programs through testing
with the links for RTDX.

Four tasks comprise this tutorial:

1 Create an RTDX link to your desired target and load the program to the
processor.

All projects begin this way. Without the links you cannot load your
executable to the target.

2 Configure channels to communicate with the target.

Notice that creating the links in Task 1 did not open communications to the
processor. With the links in place, you open as many channels as you need
to support the data transfer for your development work. This task includes
configuring channel buffers to hold data when the data rate from the target
exceeds the rate at which MATLAB can capture the data.

3 Run your application on the target. At this stage you use MATLAB to
investigate the results of your running process.

The previous tasks are common to all projects where you use RTDX to
communicate with a target. While this step is also common to all
development projects, the program used and the methods and details are up
to you.
1-49

1 Introducing Links and Embedded Objects

1-5
4 Close the links to the target and clean up the links and associated debris left
over from your work.

Once again, all projects end with these tasks. Closing channels and cleaning
up the memory and links you created ensures that CCS IDE, RTDX, and the
MATLAB Link for Code Composer Studio are ready for the next time you
start development on a project.

Within this set of tasks, numbers 1, 2, and 4 are considered fundamental to all
development projects. Whenever you work with MATLAB and links for RTDX,
you perform the functions and tasks outlined and presented in this tutorial.
Where the differences lie is in Task 3. Task 3 is the most important for using
the MATLAB Link for Code Composer Studio to develop your processing
system.

In this tutorial you use an executable program named tutorial_6xevm.out as
your application. When you use the RTDX and CCS IDE links to develop
applications, replace tutorial_6xevm.out in Task 3 with the filename and
path to your digital signal processing application.

You can view the tutorial M-file used here by clicking rtdxtutorial. To run
this tutorial in MATLAB, click run rtdxtutorial.

Note To be able to open and enable channels over a link to RTDX, the
program loaded on your target must include functions or code that define the
channels.

Your C source code might look something like this to create two channels, one
to write and one to read.

rtdx_CreateInputChannel(ichan); % Target reads from this.
rtdx_CreateOutputChannel(ochan); % Target writes to this.

These are the entries we use in int16.c (the source code that generates
rtdxtutorial_6xevm.out) to create the read and write channels.
0

Tutorial 2-2—Using Links for RTDX
If you are working with a model in Simulink and using code generation, use
the To Rtdx and From Rtdx blocks in your model to add the RTDX
communications channels to your model and to the executable code on your
target.

One more note about this tutorial. Throughout the code we use the dot notation
(direct property referencing) to access functions and link properties. For
example, we use

cc.rtdx.open('ichan','w');

to open and configure ichan for write mode. You could use an equivalent syntax
instead that does not use direct property referencing.

open(cc.rtdx,'ichan','w');

Or, use

open(rx,'ichan','w');

if you created an alias rx to the RTDX portion of cc, as follows

rx = cc.rtdx;

Creating the Links
With your processing model converted to an executable suitable for your
desired target, you are ready to use the links to test and run your model on your
processor. The MATLAB Link for Code Composer Studio and the links do not
distinguish the source of the executable—whether you used the MATLAB Link
for Code Composer Studio and Real-Time Workshop, CCS IDE, or some other
development tool to program and compile your model to an executable does not
affect the links. So long as your .out file is acceptable to the target you select,
the MATLAB Link for Code Composer Studio provides the links to the
processor.
1-51

1 Introducing Links and Embedded Objects

1-5
Note Program tutorial_6xevm.out targets the C6701 EVM. We compiled,
built, and linked the program as an executable to run on the C6701 digital
signal processor. To use the tutorial without changes, target your C6701 EVM
when you define properties boardnum and procnum.

Before continuing with this tutorial, you must load a valid GEL file to configure
the EMIF registers of your target and perform any required processor
initialization steps. Default GEL files provided by Code Composer Studio are
stored in ..\cc\gel in the folder where you installed Code Composer Studio.
Select File->Load_GEL in CCS IDE to load the default GEL file that matches
your processor family, such as init6x0x.gel for the C6x0x processor family,
and your configuration.

Begin the process of getting your model onto the target by creating a link to
CCS IDE. Start by clearing all existing handles and setting echo on so you see
functions in the M-file execute as the program runs:

1 clear all; echo on;

clear all has the side effect of removing debugging breakpoints and
resetting persistent variables since function breakpoints and persistent
variables are cleared whenever the M-file changes or is cleared. Breakpoints
within your executable remain after clear. Clearing the MATLAB
workspace does not affect your executable.

2 Now construct the link to your target board and processor by typing

cc=ccsdsp('boardnum',0);

boardnum defines which board the new link accesses. In this example,
boardnum is 0. The MATLAB Link for Code Composer Studio connects the
link to the first, and in this case only, processor on the board. To find the
boardnum and procnum values for the boards and simulators on your system,
use ccsboardinfo. When you type
2

Tutorial 2-2—Using Links for RTDX
ccsboardinfo

at the prompt, the MATLAB Link for Code Composer Studio returns a list
like the following one that identifies the boards and processors in your
computer.

3 To open and load the target file, change the path for MATLAB to be able to
find the file.

tgt_dir = fullfile(matlabroot,'toolbox','tiddk','tidemos','tutorial');
cd(cc,tgt_dir); % Or cc.cd(tgt_dir)
dir(cc); % Or cc.dir

4 You have reset the directory path to find the tutorial file. Now open the file.

cc.open('tutorial_6xevm.out')

Because open is overloaded for the CCS IDE and RTDX links, this may seem
a bit strange. In this syntax, open loads your executable file onto the target
processor identified by cc. Later in this tutorial, you use open with a
different syntax to open channels in RTDX.

In the next section, you use the new link to open and enable communications
between MATLAB and your target.

Configuring Communications Channels
Communications channels to the target do not exist until you open and enable
them through the MATLAB Link for Code Composer Studio and CCS IDE.
Opening channels consists of opening and configuring each channel for reading
or writing, and enabling the channels.

In the open function, you provide the channel names as strings for the channel
name property. The channel name you use is not random. The channel name
string must match a channel defined in the executable file. If you specify
a string that does not identify an existing channel in the executable, the open

Board Board Proc Processor Processor

Num Name Num Name Type

1 C6xxx Simulator (Texas Inst... 0 CPU TMS320C6211

0 C6701 EVM (Texas Instruments) 0 CPU_1 TMS320C6701
1-53

1 Introducing Links and Embedded Objects

1-5
operation fails. In this tutorial, two channels exist on the target—ichan and
ochan. Although the channels are named ichan for input channel and ochan for
output channel, neither channel is configured for input or output until you
configure them from MATLAB or CCS IDE. You could configure ichan as the
output channel and ochan as the input channel. The links would work just the
same. For simplicity, the tutorial configures ichan for input and ochan for
output. One more note—read and write are defined as seen by the target. When
you write data from MATLAB, you write to the channel that the target reads,
ichan in this case. Conversely, when you read from the target, you read from
ochan, the channel that the target writes to:

1 Configure buffers in RTDX to store the data until MATLAB can read it into
your workspace. Often, MATLAB cannot read data as quickly as the target
can write it to the channel.

cc.rtdx.configure(1024,4); % define 4 channels of 1024 bytes each

Channel buffers are optional. Adding them provides a measure of insurance
that data gets from your target to MATLAB without getting lost.

2 Define one of the channels as a write channel. Use 'ichan' for the channel
name and 'w' for the mode. Either 'w' or 'r' fits here, for write or read.

cc.rtdx.open('ichan','w');

3 Now enable the channel you opened.

cc.rtdx.enable('ichan');

4 Repeat steps 2 and 3 to prepare a read channel.

cc.rtdx.open('ochan','r');
cc.rtdx.enable('ochan');

5 To use the new channels, enable RTDX by typing

cc.rtdx.enable;

You could do this step before you configure the channels—the order does not
matter.

6 Reset the global timeout to 20 s to provide a little room for error. ccsdsp
applies a default timeout value of 10 s. In some cases this may not be
enough.
4

Tutorial 2-2—Using Links for RTDX
cc.rtdx.get('timeout')
ans =

10
cc.rtdx.set('timeout', 20); % Reset timeout = 20 seconds

7 Check that the timeout property value is now 20 s and that your link has
the correct configuration for the rest of the tutorial.

cc.rtdx

RTDX Object:
 API version: 1.0
 Default timeout: 20.00 secs
 Open channels: 2

Running the Application
To this point you have been doing housekeeping functions that are common to
any application you run on the target. You load the target, configure the
communications, and set up other properties you need.

In this tutorial task, you use a specific application to demonstrate a few of the
functions available in the MATLAB Link for Code Composer Studio that let
you experiment with your application while you develop your prototype. To
demonstrate the link for RTDX readmat, readmsg, and writemsg functions, you
write data to your target for processing, then read data from the target after
processing:

1 Restart the program you loaded on the target. restart ensures the program
counter (PC) is at the beginning of the executable code on the processor.

cc.restart

Restarting the target does not start the program executing. You use run to
start program execution.

2 Type cc.run('run');

Using ’run’ for the run mode tells the processor to continue to execute the
loaded program continuously until it receives a halt directive. In this mode,
1-55

1 Introducing Links and Embedded Objects

1-5
control returns to MATLAB so you can work in MATLAB while the program
runs. Other options for the mode are

- ’runtohalt'—start to execute the program and wait to return control to
MATLAB until the process reaches a breakpoint or execution terminates.

- 'tohalt'—change the state of a running processor to 'runtohalt' and wait
to return until the program halts. Use tohalt mode to stop the running
processor cleanly.

3 Type the following functions to enable the write channel and verify that the
enable takes effect.

cc.rtdx.enable('ichan');
cc.rtdx.isenabled('ichan')

If MATLAB responds ans = 0 your channel is not enabled and you cannot
proceed with the tutorial. Try to enable the channel again and reverify the
status.

4 Write some data to the target. Check that you can write to the target, then
use writemsg to send the data. You do not need to type the if-test code
shown.

if cc.rtdx.iswritable('ichan'), % Used in a script application.
 disp('writing to target...') % Optional to display progress.
 indata=1:10
 cc.rtdx.writemsg('ichan', int16(indata))
end % Used in scripts for channel testing.

We included the if-statement to simulate writing the data from within a
MATLAB script. The script uses iswritable to check that the input channel
is functioning. If iswritable returns 0 the script would skip the write and
exit the program, or respond in some way. When you are writing or reading
data to your target in a script or M-file, checking the status of the channels
can help you avoid errors during execution.

As your application runs you may find it helpful to display progress
messages. In this case, the program directed MATLAB to print a message as
it reads the data from the target by adding the function

disp('writing to target...')
6

Tutorial 2-2—Using Links for RTDX
Note Function cc.rtdx.writemsg('ichan', int16(indata)) results in 20
messages stored on the processor. Here’s how.

When you write indata to the target, the following code running on the target
takes your input data from ichan, adds one to the values and copies the data
to memory:

while (!RTDX_isInputEnabled(&ichan))

{/* wait for channel enable from MATLAB */}
RTDX_read(&ichan, recvd, sizeof(recvd));
puts("\n\n Read Completed ");

for (j=1; j<=20; j++) {
for (i=0; i<MAX; i++) {

recvd[i] +=1;
}
while (!RTDX_isOutputEnabled(&ochan))

{ /* wait for channel enable from MATLAB */ }
RTDX_write(&ochan, recvd, sizeof(recvd));

 while (RTDX_writing != NULL)
 { /* wait for data xfer INTERRUPT DRIVEN for C6000 */ }
}

Program int16_rtdx.c contains this source code. You can find the file in a
folder in the ..\tidemos\rtdxtutorial directory.

5 Type the following to check the number of available messages to read from
the target.

num_of_msgs = cc.rtdx.msgcount('ochan');

num_of_msgs should be zero. Using this process to check the amount of data
can make your reads more reliable by letting you or your program know how
much data to expect.

6 Type the following to verify that your read channel ochan is enabled for
communications.
1-57

1 Introducing Links and Embedded Objects

1-5
cc.rtdx.isenabled('ochan')

You should get back ans = 0—you have not enabled the channel yet.

7 Now enable and verify 'ochan'.

cc.rtdx.enable('ochan');
cc.rtdx.isenabled('ochan')

To show that ochan is ready, MATLAB responds ans = 1. If not, try
enabling ochan again.

8 Type

pause(5);

The pause function gives the processor extra time to process the data in
indata and transfer the data to the buffer you configured for ochan.

9 Repeat the check for the number of messages in the queue. There should be
20 messages available in the buffer.

num_of_msgs = cc.rtdx.msgcount('ochan')

With num_of_msgs = 20, you could use a looping structure to read the
messages from the queue in to MATLAB. In the next few steps of this
tutorial you read data from the ochan queue to different data formats within
MATLAB.

10 Read one message from the queue into variable outdata.

outdata = cc.rtdx.readmsg('ochan','int16')

outdata =
2 3 4 5 6 7 8 9 10 11

Notice the 'int16' represent option. When you read data from your target
you need to tell MATLAB the data type you are reading. You wrote the data
in step 4 as 16-bit integers so you use the same data type here.

While performing reads and writes, your process continues to run. You did
not need to stop the processor to get the data or send the data, unlike using
most debuggers and breakpoints in your code. You placed your data in
8

Tutorial 2-2—Using Links for RTDX
memory across an RTDX channel, the processor used the data, and you read
the data from memory across an RTDX channel, without stopping the
processor.

11 You can read data into cell arrays, rather than into simple double-precision
variables. Use the following function to read three messages to cell array
outdata, an array of three, 1-by-10 vectors. Each message is a 1-by-10 vector
stored on the processor.

outdata = rtdx.readmsg('ochan','int16',3)

outdata =
[1x10 int16] [1x10 int16] [1x10 int16]

12 Cell array outdata contains three messages. Look at the second message, or
matrix, in outdata by using dereferencing with the array.

outdata{1,2}

outdata =
4 5 6 7 8 9 10 11 12 13

13 Read two messages from the target into two 2-by-5 matrices in your
MATLAB workspace.

outdata = cc.rtdx,readdmsg('ochan','int16',[2 5],2)

outdata =
[2x5 int16] [2x5 int16]

To specify the number of messages to read and the data format in your
workspace, you used the siz and nummsgs options set to [2 5] and 2.

14 You can look at both matrices in outdata by dereferencing the cell array
again.

outdata{1,:}

ans =
6 8 10 12 14
7 9 11 13 15

ans =
7 9 11 13 15
1-59

1 Introducing Links and Embedded Objects

1-6
8 10 12 14 16

15 For a change, read a message from the queue into a column vector.

outdata = cc.rtdx.readmsg('ochan','int16',[10 1])

outdata =
8
9
10
11
12
13
14
15
16
17

16 The MATLAB Link for Code Composer Studio provides a function for
reading messages into matrices — readmat. Use readmat to read a message
into a 5-by-2 matrix in MATLAB.

outdata = readmat('ochan','int16',[5 2])

outdata =
9 14
10 15
11 16
12 17
13 18

Since a 5-by-2 matrix requires ten elements, MATLAB reads one message
into outdata to fill the matrix.

17 To check your progress, see how many messages remain in the queue. You
have read eight messages from the queue so 12 should remain.

num_of_msgs = cc.rtdx.msgcount('ochan')

num_of_msgs =
12
0

Tutorial 2-2—Using Links for RTDX
18 To demonstrate the connection between messages and a matrix in MATLAB,
read data from 'ochan' to fill a 4-by-5 matrix in your workspace.

outdata = cc.rtdx.readmat('ochan','int16',[4 5])

outdata =
10 14 18 13 17
11 15 19 14 18
12 16 11 15 19
13 17 12 16 20

Filling the matrix required two messages worth of data.

19 To verify that the last step used two messages recheck the message count.
You should find 10 messages waiting in the queue.

num_of_msgs = cc.rtdx.msgcount('ochan')

20 Continuing with matrix reads, fill a 10-by-5 matrix (50 matrix elements or
five messages).

outdata = cc.rtdx.readmat('ochan','int16',[4 5])

outdata =
12 13 14 15 16
13 14 15 16 17
14 15 16 17 18
15 16 14 18 19
16 17 18 19 20
17 18 19 20 21
18 19 20 21 22
19 20 21 22 23
20 21 22 23 24
21 22 23 24 25

21 Recheck the number of messages in the queue to see that five remain.

22 flush lets you remove messages from the queue without reading them. Data
in the message you remove is lost. Use flush to remove the next message in
the read queue. Then check the waiting message count.

cc.rtdx.flush('ochan',1)
num_of_msgs = cc.rtdx.msgcount('ochan')
1-61

1 Introducing Links and Embedded Objects

1-6
num_of_msgs =

4

23 Empty the remaining messages from the queue and verify that the queue is
empty.

cc.rtdx.flush('ochan','all')

With the ’all’ option, flush discards all messages in the ochan queue.

Closing the Links or Cleaning Up
One of the most important programmatic processes you should do in every
RTDX session is to clean up at the end. Cleaning up includes stopping your
target processor, disabling the RTDX channels you enabled, disabling RTDX
and closing your open channels. Performing this series of tasks ensures that
future processes avoid trouble caused by unexpected interactions with left-over
handles, channels, and links from your earlier development work. Best
practices suggest that you include the following tasks (or an appropriate subset
that meets your development needs) in your development scripts and
programs.

We use four functions in this section; each has a purpose—the operational
details in the following list explain how and why we use each one. They are

• clear—remove all RTDX objects and handles associated with a CCS and
RTDX link. When you finish a session with RTDX, clear removes all traces
of the specified link, or all links when you use the 'all' option in the syntax.
When you clear one or more links, they no longer exist and cannot be
reopened or used. If you are ending your programming session and do not
want to retain any of the channels or links you created, use clear to end the
RTDX communications and links and release all channels and resources
associated with existing CCS IDE and RTDX links. You do not need to use
the close or disable functions first.

To load a new program to a processor on which you have a program running,
and to which you have links, you must clear the existing links before you load
the new program to the target.
2

Tutorial 2-2—Using Links for RTDX
• close—close the specified RTDX channel. To use the channel again, you
must open and enable the channel. Compare close to disable.
close('rtdx') closes the communications provided by RTDX. After you
close RTDX, you cannot communicate with your target.

• disable—remove RTDX communications from the specified channel, but
does not remove the channel, or link. Disabling channels may be useful when
you do not want to see the data that is being fed to the channel, but you may
want to read the channel later. By enabling the channel later, you have
access to the data entering the channel buffer. Note that data that entered
the channel while it was disabled is lost.

• halt—stop a running processor. You may still have one or more messages in
the host buffer.

Use the following procedure to shut down communications between MATLAB
and the target, and end your session:

1 Begin the process of shutting down the target and RTDX by stopping the
target processor. Type the following functions at the prompt.

if (isrunning) % Use this test in scripts.
cc.halt; % Halt the processor.

end % Done.

Your processor may already be stopped at this point. In a script, you might
put the function in an if-statement as we have done here. Consider this test
to be a safety check. No harm comes to the processor if it is already stopped
when you tell it to stop. When you direct a stopped processor to halt, the
function returns immediately.

2 You have stopped the processor. Now disable the RTDX channels you opened
to communicate with the target.

cc.rtdx.disable('all');

If necessary, using disable with channel name and target identifier input
arguments lets you disable only the channel you choose. When you have
1-63

1 Introducing Links and Embedded Objects

1-6
more than one board or processor, you may find disabling selected channels
meets your needs.

When you finish your RTDX communications session, disable RTDX to
ensure that the MATLAB Link for Code Composer Studio releases your open
channels before you close them.

cc.rtdx.disable;

3 Use one or all of the following function syntaxes to close your open channels.
Either close selected channels by using the channel name in the function, or
use the ’all’ option to close all open channels.

- cc.rtdx.close('ichan') to close your input channel in this tutorial.

- cc.rtdx.close('ochan') to close your output channel in the tutorial.

- cc.rtdx.close('all') to close all of your open RTDX channels,
regardless of whether they are part of this tutorial.

Consider using the ’all’ option with the close function when you finish your
RTDX work. Closing channels reduces unforeseen problems caused by
channel objects that may exist but do not get closed correctly when you end
your session.

4 When you created your RTDX link (cc = ccsdsp('boardnum',1) at the
beginning of this tutorial, the ccsdsp function opened CCS IDE and set the
visibility to 0. To avoid problems that occur when you close the link to RTDX
with CCS visibility set to 0, be sure to make CCS IDE visible on your
desktop. The following if-statement checks the visibility and changes it if
needed.

if cc.isvisible,
 cc.visible(1);
end
4

Tutorial 2-2—Using Links for RTDX
Note Visibility can cause problems. When CCS IDE is running invisibly on
your desktop, meaning you set visibility to 0, do not use clear all to get
rid of your links for CCS IDE and RTDX. Without a link to CCS IDE you
cannot access CCS IDE to change the visibility setting, or unload the
application. To close CCS IDE when you do not have an existing link, either
create a new link to CCS IDE, or use Windows Task Manager to end the
process cc_app.exe, or close MATLAB.

5 You have finished the work in this tutorial, type the following to close all
your remaining links to CCS IDE and release all the associated resources.

clear ('all'); % Calls the link destructors to remove all links
echo off

Note that clear all (without the parentheses) removes all variables from
your MATLAB workspace.

You have completed the tutorial using RTDX. During the tutorial you:

1 Opened links to CCS IDE and RTDX and used those links to load an
executable program to your target processor.

2 Configured a pair of channels so you could transfer data to and from your
target.

3 Ran the executable on the target, sending data to the target for processing
and retrieving the results.

4 Stopped the executing program and closed the links to CCS IDE and RTDX.

In future development work with your signal processing applications you
follow the same set of tasks. Thus the tutorial provided here gives you a
working process for using the MATLAB Link for Code Composer Studio and
your signal processing programs to develop programs for a range of Texas
Instruments digital signal processors. While the target may change, the
essentials of the process remain the same.
1-65

1 Introducing Links and Embedded Objects

1-6
Listing the Functions for Links
To review a complete list of functions that operate on links, either CCS IDE or
RTDX, type either

help ccsdsp
help rtdx

at the command line. If you already have a link cc, you can use dot notation to
return the methods for CCS IDE or RTDX by entering

cc.methods or cc.rtdx.methods

at the prompt. In either instance MATLAB returns a list of the available
functions for the specified link type, including both public and private
functions. For example, to see the functions (methods) for links to CCS IDE,
type:

help ccsdsp

CCDSP - Base constructor for the 'Link to Code Composer Studio(tm)'
 Description of methods available for CCSDSP

 ACTIVATE Set the active project, text file or build configuration
 ADD Add source file to a project
 ANIMATE Initiate a target execution with breakpoint animation
 ADDRESS Search the target's symbol table for an address
 BUILD Compile/Link to build a program file
 CCSDSP Constructor which establishes the link to CCS
 CD Change or query working directory of Code Composer Studio
 CLOSE Close Code Composer Studio project or text file
 CREATEOBJ Creates objects for manipulating target values
 DELETE Delete a debug point from DSP memory
 DIR List files in Code Composer Studio working directory
 DISP Display information about the CCSDSP object
 GOTO Executes the target to the entry of a function
 HALT Immediately terminate execution of the DSP processor
 INFO Produce a list of information about the target processor
 INSERT Insert a debug point into DSP memory
 ISREADABLE Query if a block of DSP memory is available for reading
 ISRUNNING Query status of DSP execution
 ISRTDXCAPABLE Query if DSP supports RTDX communications
 ISVISIBLE Query visibility of Code Composer Studio application
 ISWRITABLE Query if a block of DSP memory is available for writing
 LIST Produces various lists of information from Code Composer
 LOAD Loads a program file into the DSP processor
 NEW Create a default project, text file or build configuration
6

Tutorial 2-2—Using Links for RTDX
 OPEN Loads a workspace, project or program file
 PROFILE Return measurements from any DSP/BIOS(tm) STS objects
 READ Return a block of data from the memory of the DSP
 REGREAD Return data storied in a DSP register
 REGWRITE Modify the contents of a DSP register
 RELOAD Reload most recently loaded program file
 REMOVE Remove a file from a project
 RESTART Return PC to the beginning of a target program
 RUN Initiates execution of the DSP processor
 SAVE Save Code Composer Studio project or text file
 SYMBOL Returns the target's entire symbol table
 VISIBLE Hide or reveal Code Composer Studio application window
 WRITE Places a block of Matlab data into the memory of the DSP
1-67

1 Introducing Links and Embedded Objects

1-6
8

2

About Objects for
MATLAB Link Software

Introduction to Objects (p. 2-2) Introduces the object classes that compose MATLAB Link
for Code Composer Studio

Numeric Objects—Their Methods
and Properties (p. 2-15)

Introduces objects that reference numeric data in memory

Bitfield Objects—Their Methods and
Properties (p. 2-17)

Introduces objects that reference bitfield data in memory

Enum Objects—Their Methods and
Properties (p. 2-19)

Introduces objects that reference enumerated data in
memory

Pointer Objects—Their Methods and
Properties (p. 2-21)

Introduces objects that reference pointers in memory

String Objects—Their Methods and
Properties (p. 2-23)

Introduces objects that reference strings in memory

Rnumeric Objects—Their Methods
and Properties (p. 2-25)

Introduces objects that reference numeric data in registers

Renum Objects—Their Methods and
Properties (p. 2-27)

Introduces objects that reference enumerated data in
registers

Rpointer Objects—Their Methods
and Properties (p. 2-29)

Introduces objects that reference pointers in registers

Rstring Objects—Their Methods and
Properties (p. 2-31)

Introduces objects that reference strings in registers

Structure Objects—Their Methods
and Properties (p. 2-32)

Introduces objects that reference data structures

Reference for the Properties of the
Objects (p. 2-34)

Provides a comprehensive property reference

2 About Objects for MATLAB Link Software

2-2
Introduction to Objects
Within your MATLAB Link for Code Composer Studio Development Tools
software, the links and the objects use object-oriented programming
techniques. Along with the link object you use to connect MATLAB to your
target hardware, MATLAB Link for Code Composer Studio provides many
objects for creating, accessing (reading from and writing to), and manipulating
(changing the contents of in MATLAB) all the symbols in the symbol table for
a program loaded on your signal processor:

Object Name Inherits From Description

Bitfield Memory Class Describes and provides access
to the contents of a bitfield
defined in your code

Enum Numeric Class Describes and provides access
to the contents of an
enumerated datatype stored
in memory defined in your
code

Numeric Memory Class Describes and provides access
to the contents of a numeric
datatype stored in memory
defined in your code

Pointer Numeric Class Describes and provides access
to the contents of a pointer
stored in a memory location
on your target

Renum Rnumeric Class Describes and provides access
to the contents of a pointer
stored in a memory location
on your target

Introduction to Objects
In the Inherits From column you see the name of another class. Objects that
inherit from another class contain all the properties and methods of the
inherited from class as well as their unique properties.

For example, the String object has the properties and methods of the Numeric
class, and its own properties and methods.

By using the objects provided, you can modify and view any and all symbols
from MATLAB.

Each of the objects has properties and methods specific to its use, although
many of the objects use the same methods and properties, as you see in the next
sections.

While you can use the MATLAB Link for Code Composer Studio software
without knowing about its object-oriented design and implementation, you
might find the next sections about objects useful to gain a better understanding
of the objects.

Rpointer Rnumeric Class Describes and provides access
to the contents of a pointer
stored in a register on your
target

Rstring Rnumeric Class Describes and provides access
to the contents of a string
stored in a register on your
target

String Numeric Class Describes and provides access
to the contents of a pointer
stored in a memory location
on your target

Structure None Describes and provides access
to the contents of a structure
stored in memory on your
target

Object Name Inherits From Description
2-3

2 About Objects for MATLAB Link Software

2-4
Some Object-Oriented Programming Terms
As an object-oriented software package, describing how to use the MATLAB
Links for Code Composer Studio requires discussing the objects, classes,
properties, and methods you use to manipulate and access data. To insure we
use the same terms and understand them in the same way, this section
provides definitions of some terms commonly used throughout the User’s
Guide.

Introduction to Objects
Definitions of Useful Object-Oriented Terms

abstract class a class without instances. Abstract classes
expect that their concrete subclasses will
add to their structure and behavior.

base class the most general class in a class structure.
Also called root classes, most applications or
systems have more than one base class.

behavior how an object reacts to its methods. How the
object state changes in response to one of its
methods acting on it.

class a set of objects that share a common
structure and behavior. A class forms the
prototype that defines the properties and
methods common to all objects of the class.
Often, type and class are used
interchangeably, although they are slightly
different. In this User’s Guide the terms are
interchangeable.

class diagram used to show the existence of classes and
their relationships. Class diagrams can
represent part or all of the class structure of
a system.

constructor a function that creates an object and
initializes its state. Constructors can also
initialize the state without creating the
object.

container class a class whose instances are collections of
other objects in the system. Also called a
package.

function same as method. Used in MATLAB for
consistency with other functions. Functions
and methods are not quite the same, but
used interchangebly in this guide.
2-5

2 About Objects for MATLAB Link Software

2-6
handle a means to access any object that MATLAB
Link for Code Composer Studio creates.
Used in this User’s Guide to refer to the
object, interchangeably with object. Often
the handle is the name you assign when you
create the object. For example, cc is the
object and handle when you create a link
object.

inheritance a relationship between classes. One class
shares the structure (properties) and
behavior (methods) defined in one or more
other classes. Subclasses inherit from one or
more superclasses, typically augmenting the
superclass with their own properties and
methods.

instance Something you can operate on. Instance and
object are synonyms and this guide uses
them interchangeably.

method an operation on an object, defined as part of
the class of the object. We call this
a function.

object something you can operate on. Objects that
are the same class share similar structure
and behavior. Or taken another way, a
collection of properties and methods. Some
sources call properties “variables.”

object diagram shows the existence of objects and their
relationships in the logical design of a
system. Object diagrams can represent part
or all of the class structure of a system.

Introduction to Objects
For more information about objects and working with their properties and
methods (or functions) refer to “Constructing Link Objects” on page 1-6.

object-based programming programming method that organizes
programs as cooperative collections of
objects, each of which represents an
instance of some type, and whose types are
members of an heirarchy, united through
relationships that are not inheritance
relationships.

object-oriented progamming programming implementation that
organizes programs as cooperative
collections of objects, each of which
represents an instance of some class, and
whose classes are members of a heirarchy of
classes united through inheritance
relationships.

property part of an object—a variable to some. Also
called attribute, it is part of the structure
that defines the state of an object.

subclass a class that inherits from one or more
classes, called its superclasses.

superclass a class that other classes inherit from. The
inheriting classes are called subclasses.

state the accumulated results of the behavior of
an object. At any time, the state of an object
encompasses the properties of the object and
the values for each of the properties.

structure the concrete representation of the state of
an object.
2-7

2 About Objects for MATLAB Link Software

2-8
Note Except for read and write, all functions that work with objects operate
solely in your MATLAB workspace. They do not affect the data stored in
memory, registers, functions, or structures on your signal processor and in
Code Composer Studio. Only by using read and write can you acess and
change information on your target or in your project in CCS.

Determining an Object’s Class
After you create an object, use whos to determine the class for your new object
(although you should know the class from the input argument you provided to
createobj). Being able to query the class for an object is particularly important
in this case because the constructor createobj determines the class of the
object created—you cannot specify the object class. Depending on the input
symbol name you provide to createobj, the returned class changes. So you
need to be able to determine the class and whos lets you do this.

Alternatively, using createobj or ccsdsp without the closing semicolon (;) at
the end of the command directs MATLAB to display the properties of your new
object in the MATLAB window when you create the object.

If you use the MATLAB workspace browser, your object appears in the list of
the contents of your workspace, indicating the object type and class—just like
whos.

About the Relationships Between Objects
MATLAB Links for Code Composer Studio uses objects exclusively to access
and manipulate complex data structures and functions, among other
programming constructs, in your project and code. Many of the objects inherit
properties and functions, also called methods, from other objects. The class
diagrams and tables presented in the next sections discuss and show the
relationships between the objects that you create when you use createobj.

Introduction to Objects
The Base Classes

The Sub Classes

Class Name Description

memory An abstract class. The numeric class and
bitfield classes inherit properties and methods
from this class, making this a superclass. You
cannot create an instance of this class.
Subclasses of the memory class always
describe objects that reside in DSP memory on
your target.

register An abstract class. The rnumeric class inherits
properties and methods from this class,
making this a superclass. You cannot create an
instance of this class. Subclasses of the
register class always describe objects that
reside in DSP registers on your target.

Class Name Description

numeric A superclass from which the enum, pointer,
and string subclasses inherit properties and
methods. You can create an object of this class
using createobj. Numeric inherits from the
abstract class memory.

enum A subclass of the numeric class. You can create
an object of this class using createobj.

pointer A subclass of the numeric class. You can create
an object of this class using createobj.

string A subclass of the numeric class. You can create
an object of this class using createobj.
2-9

2 About Objects for MATLAB Link Software

2-1
Other classes

Class Diagrams for the MATLAB Link for Code
Composer Studio
One of the most important features of object-oriented programming is the
relationship between the classes that compose the system. Class relationships
lend themselves to graphical layout like a tree structure, where the structure
of the tree shows clearly the super- and subclasses, the base classes, and the
other classes. In addition, the diagrams can show the properties and methods
for each class, and where a subclass adds properties and methods to those it
inherits from its superclass.

bitfield A subclass of the memory class. You can use
createobj to make a bitfield object.

rnumeric A superclass from which the renum, rpointer,
and rstring subclasses inherit properties and
methods. You can create an object of this class
using createobj. Rnumeric inherits from the
abstract class register.

renum A subclass of the register class. You can create
an object of this class using createobj.

rpointer A subclass of the register class. You can create
an object of this class using createobj.

rstring A subclass of the register class. You can create
an object of this class using createobj.

Class Name Description

structure A class containing information about a
structure in memory on your target.

Class Name Description
0

Introduction to Objects
The following figures show the methods and properties of each class or object.
For short descriptions about the properties for each class, refer to the tables in
the following sections:

• “Numeric Objects—Their Methods and Properties” on page 2-15

• “Bitfield Objects—Their Methods and Properties” on page 2-17

• “Enum Objects—Their Methods and Properties” on page 2-19

• “Pointer Objects—Their Methods and Properties” on page 2-21

• “String Objects—Their Methods and Properties” on page 2-23

• “Rnumeric Objects—Their Methods and Properties” on page 2-25

• “Renum Objects—Their Methods and Properties” on page 2-27

• “Rpointer Objects—Their Methods and Properties” on page 2-29

• “Rstring Objects—Their Methods and Properties” on page 2-31

• “Structure Objects—Their Methods and Properties” on page 2-32

Detailed descriptions of the properties appear in the reference pages in section
“Reference for the Properties of the Objects” on page 2-34.
2-11

2 About Objects for MATLAB Link Software

2-1
Class Diagram of the Memory Class

+copy()
-disp()
+memoryobj()
+read()
+read2bin()
+read2hex()
+write()
+writebin()

-address : <unspecified> = [0 0]
+bitsperstorageunit : double = 8
+link
+name
+numberofstorageunits : double = 1
+timeout : double = 10 secs

memory Class

+numeric()
+cast()
+convert()
+reshape()

+arrayorder : <unspecified> = col-major
-binarypt : double = 0
-endianness : <unspecified> = little
-postpad : double = 0
-prepad : double = 0
-represent : <unspecified> = signed
+size : <unspecified> = 1
+storageunitspervalue : double = 1
-wordsize : <unspecified> = 0

memory Class::numeric Class

+equivalent()

-label
-value

numeric Class::enum Class

+deref()

-reftype : String = void
-referent

numeric Class::pointer Class

+equivalent()
+readnumeric()

numeric Class::string Class

+convert()

memory Class::bitfield Class
2

Introduction to Objects
Class Diagram of the Register Class

+copy()
-disp()
+memoryobj()
+read()
+read2bin()
+read2hex()
+write()
+writebin()

-address : <unspecified> = [0 0]
+bitsperstorageunit : double = 8
+link
+name
+numberofstorageunits : double = 1
+timeout : double = 10 secs

memory Class

+numeric()
+cast()
+convert()
+reshape()

+arrayorder : <unspecified> = col-major
-binarypt : double = 0
-endianness : <unspecified> = little
-postpad : double = 0
-prepad : double = 0
-represent : <unspecified> = signed
+size : <unspecified> = 1
+storageunitspervalue : double = 1
-wordsize : <unspecified> = 0

memory Class::rnumeric Class

+equivalent()

-label
-value

rnumeric Class::renum Class

+deref()

+typestring : String = void
-referent

rnumeric Class::rpointer Class

+equivalent()
+readnumeric()
+operation1()

rnumeric Class::rstring Class
2-13

2 About Objects for MATLAB Link Software

2-1
Class Diagram of the Structure Class

+read()
+read2structure()
+write()
+write2structure()

+name
+member
+membname
+memboffset
+address
+storageunitspervalue : double
+size

structure Class
4

Numeric Objects—Their Methods and Properties
Numeric Objects—Their Methods and Properties
When you create an object that accesses a numeric symbol in your source code,
the object constructor createobj returns a numeric object. createobj uses the
information in your source code to set the properties of the object appropriately
to match the code. Within the properties and their values you find all the
information about the symbol, so that MATLAB understands how to handle the
symbol in your MATLAB workspace.

Properties of Numeric Objects

Property Name Date Type Default Value Description

arrayorder {'col-major'
'row-major'}

col-major Describes the ordering of the data
moved from linear memory storage
to n-dimensional arrays

size mxArray 1 Specifies the size of the array
created in MATLAB from the data
received from memory

storageunitspervalue double 1 Addressable units per memory
value in memory on the DSP

name mxArray None Name of the embedded symbol in
the symbol table

address mxArray [0 0] Memory address of the symbol, in
[Offset Page] format

bitsperstorageunit double 8 Bits per addressable unit in the
signal processor

numberofstorageunits double 1 Number of register units needed to
represent the memory object
2-15

2 About Objects for MATLAB Link Software

2-1
Methods of Numeric Objects

Name Overloaded? Description

cast Yes Copy an object and change the
data type for a value at the
same time

convert No Change the data type for a
value

reshape Yes Change the dimensions of the
array that contains the data in
MATLAB
6

Bitfield Objects—Their Methods and Properties
Bitfield Objects—Their Methods and Properties
When you create an object that accesses a bitfield symbol in your source code,
the object constructor createobj returns a bitfield object. createobj uses the
information in your source code to set the properties of the object appropriately
to match the code. Within the properties and their values you find all the
information about the symbol, so that MATLAB understands how to handle the
symbol in your MATLAB workspace.

Properties of Bitfield Objects

Property Name Date Type Default Value Description

name mxArray None Name of the embedded symbol in the
symbol table

address mxArray [0 0] Memory address of the symbol, in
[Offset Page] format

bitsperstorageunit double 8 Bits per addressable unit in the
signal processor

numberofstorageunits double 1 Number of register units needed to
represent the memory object

link MATLAB
handle

None Object handle that identifies the
memory object

timeout double 10 seconds Timeout period for link
functions/methods.
2-17

2 About Objects for MATLAB Link Software

2-1
Methods of Bitfield Objects

Name Overloaded? Description

copy Yes Copy an existing memory object
by creating a new pointer to the
object

disp Yes Display the properties of the
memory object

read Yes Return the contents of the
memory location specified by
the symbol

write Yes Write one or more values to the
memory location
8

Enum Objects—Their Methods and Properties
Enum Objects—Their Methods and Properties
When you create an object that accesses an enumerated symbol in your source
code, the object constructor createobj returns an enumerated object.
createobj uses the information in your source code to set the properties of the
object appropriately to match the code. Within the properties and their values
you find all the information about the symbol, so that MATLAB understands
how to handle the symbol in your MATLAB workspace.

Properties of Enum Objects

Property Name Date Type Default Value Description

name mxArray None Name of the embedded symbol in the
symbol table

address mxArray [0 0] Memory address of the symbol, in
[Offset Page] format

bitsperstorageunit double 8 Bits per addressable unit in the
signal processor

numberofstorageunits double 1 Number of register units needed to
represent the memory object

link MATLAB
handle

None Object handle that identifies the
memory object

timeout double 10 seconds Timeout period for link
functions/methods.
2-19

2 About Objects for MATLAB Link Software

2-2
Methods of Enum Objects

Name Overloaded? Description

equivalent No Return the equivalent string or
numeric value based on the
input argument
0

Pointer Objects—Their Methods and Properties
Pointer Objects—Their Methods and Properties
When you create an object that accesses a pointer symbol in your source code,
the object constructor createobj returns a pointer object. createobj uses the
information in your source code to set the properties of the object appropriately
to match the code. Within the properties and their values you find all the
information about the symbol, so that MATLAB understands how to handle the
symbol in your MATLAB workspace.

Properties of Pointer Objects

Property Name Date Type Default Value Description

name mxArray None Name of the embedded symbol in the
symbol table

address mxArray [0 0] Memory address of the symbol, in
[Offset Page] format

bitsperstorageunit double 8 Bits per addressable unit in the
signal processor

numberofstorageunits double 1 Number of register units needed to
represent the memory object

link MATLAB
handle

None Object handle that identifies the
memory object

timeout double 10 seconds Timeout period for link
functions/methods.
2-21

2 About Objects for MATLAB Link Software

2-2
Methods of Pointer Objects

Name Overloaded? Description

deref No Return the data to which the
specified pointer points
2

String Objects—Their Methods and Properties
String Objects—Their Methods and Properties
When you create an object that accesses a string symbol in your source code,
the object constructor createobj returns a string object. createobj uses the
information in your source code to set the properties of the object appropriately
to match the code. Within the properties and their values you find all the
information about the symbol, so that MATLAB understands how to handle the
symbol in your MATLAB workspace.

Properties of String Objects

Property Name Date Type Default Value Description

name mxArray None Name of the embedded symbol in the
symbol table

address mxArray [0 0] Memory address of the symbol, in
[Offset Page] format

bitsperstorageunit double 8 Bits per addressable unit in the
signal processor

numberofstorageunits double 1 Number of register units needed to
represent the memory object

link MATLAB
handle

None Object handle that identifies the
memory object

timeout double 10 seconds Timeout period for link
functions/methods.
2-23

2 About Objects for MATLAB Link Software

2-2
Methods of String Objects

Name Overloaded? Description

equivalent Yes Return the equivalent numeric
value for the input string
4

Rnumeric Objects—Their Methods and Properties
Rnumeric Objects—Their Methods and Properties
When you create an object that accesses a numeric symbol stored in a register
in your source code, the object constructor createobj returns an rnumeric
object. createobj uses the information in your source code to set the properties
of the object appropriately to match the code. Within the properties and their
values you find all the information about the symbol, so that MATLAB
understands how to handle the symbol in your MATLAB workspace.

Properties of Rnumeric Objects

Property Name Date Type Default Value Description

name mxArray None Name of the register symbol in the
symbol table

regname mxArray None Name of the register on the signal
processor

numberofstorageunits double 1 Number of register units needed to
represent the register object

link MATLAB
handle

None Object handle that identifies the
memory object

timeout double 10 seconds Timeout period for link
functions/methods.
2-25

2 About Objects for MATLAB Link Software

2-2
Methods of Rnumeric Objects

Name Overloaded? Description

cast No Change the data type of the
input argument to another data
type

convert No Convert the data type to the
specified data type

reshape No Reshape the object in MATLAB

read Yes Return the contents of the
memory location specified by
the symbol

write Yes Write one or more values to the
memory location
6

Renum Objects—Their Methods and Properties
Renum Objects—Their Methods and Properties
When you create an object that accesses an enumerated symbol stored in a
register in your source code, the object constructor createobj returns an
renum object. createobj uses the information in your source code to set the
properties of the object appropriately to match the code. Within the properties
and their values you find all the information about the symbol, so that
MATLAB understands how to handle the symbol in your MATLAB workspace.

Properties of Renum Objects

Property Name Date Type Default Value Description

name mxArray None Name of the register symbol in the
symbol table

regname mxArray None Name of the register on the signal
processor

numberofstorageunits double 1 Number of register units needed to
represent the register object

link MATLAB
handle

None Object handle that identifies the
memory object

timeout double 10 seconds Timeout period for link
functions/methods.
2-27

2 About Objects for MATLAB Link Software

2-2
Methods of Renum Objects

Name Overloaded? Description

equivalent No Return the equivalent string or
numeric

write Yes Write one or more values to the
memory location
8

Rpointer Objects—Their Methods and Properties
Rpointer Objects—Their Methods and Properties
When you create an object that accesses a pointer symbol stored in a register
in your source code, the object constructor createobj returns an rpointer
object. createobj uses the information in your source code to set the properties
of the object appropriately to match the code. Within the properties and their
values you find all the information about the symbol, so that MATLAB
understands how to handle the symbol in your MATLAB workspace.

Properties of Rpointer Objects

Property Name Date Type Default Value Description

name mxArray None Name of the register symbol in the
symbol table

regname mxArray None Name of the register on the signal
processor

numberofstorageunits double 1 Number of register units needed to
represent the register object

link MATLAB
handle

None Object handle that identifies the
memory object

timeout double 10 seconds Timeout period for link
functions/methods.
2-29

2 About Objects for MATLAB Link Software

2-3
Methods of Rpointer Objects

Name Overloaded? Description

deref No Return the data to which the
specified pointer points

read Yes Return the contents of the
memory location specified by
the symbol

write Yes Write one or more values to the
memory location
0

Rstring Objects—Their Methods and Properties
Rstring Objects—Their Methods and Properties
When you create an object that accesses a string symbol stored in a register in
your source code, the object constructor createobj returns an rstring object.
createobj uses the information in your source code to set the properties of the
object appropriately to match the code. Within the properties and their values
you find all the information about the symbol, so that MATLAB understands
how to handle the symbol in your MATLAB workspace.

Properties of Rstring Objects

Methods of Rstring Objects

Property Name Date Type Default Value Description

name mxArray None Name of the register symbol in the
symbol table

regname mxArray None Name of the register on the signal
processor

numberofstorageunits double 1 Number of register units needed to
represent the register object

link MATLAB
handle

None Object handle that identifies the
memory object

timeout double 10 seconds Timeout period for link
functions/methods.

Name Overloaded? Description

equivalent Yes Return the equivalent numeric
value for the input string
2-31

2 About Objects for MATLAB Link Software

2-3
Structure Objects—Their Methods and Properties
When you create an object that accesses a structure symbol declared in your
source code, the object constructor createobj returns a structure object.
createobj uses the information in your source code to set the properties of the
object appropriately to match the code. Within the properties and their values
you find all the information about the symbol, so that MATLAB understands
how to handle the symbol in your MATLAB workspace.

Properties of Structure Objects

Property Name Date Type Default Value Description

name mxArray None Name of the C or Assembly
function

filename mxArray None Name of the file that contains
the function

address mxArray None Address of the function

type mxArray None Return type for the function

savedregs mxArray None Registers to preserve

variables mxArray None The input and local
arguments for the function

inputvars mxArray None The input arguments for the
function

outputvars mxArray None The returned arguments from
the function

link MATLAB
handle

None Object handle that identifies
the memory object

timeout double 10 seconds Timeout period for link
functions/methods.
2

Structure Objects—Their Methods and Properties
Methods of Structure Objects

Name Overloaded? Description

getmember No Return an object that accesses
one member of a structure

read Yes Read a structure from the symbol
table

write Yes Write changes or values to the
structure in memory
2-33

2 About Objects for MATLAB Link Software

2-3
Reference for the Properties of the Objects
This section presents details of the properties that apply to the objects in
MATLAB Link for Code Composer Studio. The reference information contained
can help you learn about using the links and objects.

Property Reference Format and Contents
Ordered alphabetically by property name, most references include:

• Property Name Heading

• Description

• Property Characteristics, including

- Data type

- Default value

- Read/Write status

• Range of valid property values

• One or more examples using the property

• Referrals to related properties where appropriate

Some reference pages may not include all the features listed; in particular
some pages may not provide examples or the range of valid property values or
referrals.

address

Description
Reports the starting address of the symbol the object references—either a
memory address or a register name. In some cases the address is in
[Offset Page] format when the processor supports memory pages and the
address is a location in memory.

Characteristics
Either a numeric (for memory locations) or alphanumeric (for register
locations), this is a writable value.
4

Reference for the Properties of the Objects
If you change the offset and page values for the property, the object points to a
different location in memory. Changing the address property does not affect the
location of the symbol.

Range
Covers the entire range of addresses available on the target.

apiversion

Description
Contains a string that defines the version of the CCS application program
interface (API) being used by the link object.

Characteristics
A string value. The first entry in the square brackets is the major version
number and the second entry is the minor revision number. You cannot set this
value—it is read-only.

Range
Any ASCII characters that make up the name and version number of the API.

Examples
Create a link object and use get to review the object properties. For this object,
the API version returns 1.2 and apiversion is [1 2]. The API version in not
necessarily the same as the version of CCS.

cc=ccsdsp

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C6711
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0
2-35

2 About Objects for MATLAB Link Software

2-3
get(cc)
 rtdx: [1x1 rtdx]
 apiversion: [1 2]
 ccsappexe: 'D:\Applications\ti\cc\bin\'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

arrayorder

Description
Specifies the manner in which the object interprets data stored linearly in
memory, whether as rows or columns of an array.

Characteristics
arrayorder is a string with one of two possible values—row-major (C style
intrepretation) or column-major (normal MATLAB style).

Range
Allowed strings are row-major and column-major.

Examples
When you have nine values in memory, such as 1,2,...,9, the arrayorder
property value determines how to build an array from the values.

• In row-major order, the values form the 3-by-3 array by filling the array row
by row and left to right:
1 2 3
4 5 6
7 8 9

• In column-major order, the values form the 3-by-3 array by filling the array
column by column and top to bottom.
1 4 7
2 5 8
3 6 9
6

Reference for the Properties of the Objects
You can increase the number of array dimensions without limit.

binarypt

Description
Specifies the location of the binary point in a value. To interpret the actual
value of a value in memory, you need both the data type and binary point to
convert correctly from the binary or hexadecimal representation to decimal. A
fixed-point data type is characterized by the word size in bits, the binary point,
and whether it is signed or unsigned. The position of the binary point is the
means by which fixed-point values are scaled and interpreted. Since the object
uses double-precision representation, the word size and binary point form the
basis for simulating fixed-point values.

Characteristics
An positive or negative integer.

Range
binarypt ranges from 0 to the word size. You can use negative binary point
locations and binary point locations larger than the word size, to the limit of
double-precision representation.

Referrals
See also wordsize.

bitsperstorageunit

Description
Reports the number of bits per address location (addressable unit) on the
target. Memory locations and registers may have different values on a target.
And different processors can use different values as well.

Characteristics
An integer.
2-37

2 About Objects for MATLAB Link Software

2-3
Range
Depends on the target processor. Usually 8, 16, or 32 bits.

Referrals
See also numberofstorageunits and storageunitspervalue.

boardnum

Description
Specifies the target board or simulator with which the link object
communicates.

Characteristics
An integer. This is a read-only value determined when you create link objects
and select your target.

Range
Integer values ranging from 0 for the first board up to the number of boards
that CCS recognizes configured on your machine. Note that both simulators
and hardware count as boards.

ccsappexe

Description
Reports the full directory path to the CCS executable.

Characteristics
A string that shows the path to your CCS installation. You cannot change this
string except by moving you CCS storage location.

Examples
If your CCS installation is in a folder called Applications on your D: drive, you
might see a string like

'D:\Applications\ti\cc\bin\'

for the ccsappexe property value.
8

Reference for the Properties of the Objects
endianness

Description
Specifies whether to interpret the bit pattern in memory as little-endian or
big-endian format. Big-endian format assumes the least significant bit (LSB) is
last in a word that spans more than one addressable unit in memory;
little-endian assumes the LSB is first in a word that spans multiple
addressable units.

Characteristics
Property values are strings, either little or big. You can change the state
within the object, which changes the way MATLAB interprets the bits stored
in memory on your target.

Range
You have two options for endianness—little or big.

Examples
When you have a variable in memory, such as ddat from the link object
tutorial, creating a numeric object from ddat shows you the endianness for
ddat.

ddat = createobj(cc,'ddat')

NUMERIC Object
 Symbol Name : ddat
 Address : [40072 0]
 Wordsize : 64 bits
 Address Units per value : 8 AU
 Representation : float
 Binary point position : 0
 Size : [4]
 Total address units : 32 AU
 Array ordering : row-major
 Endianness : little

get(ddat)
 address: [40072 0]
2-39

2 About Objects for MATLAB Link Software

2-4
 bitsperstorageunit: 8
 numberofstorageunits: 32
 link: [1x1 ccsdsp]
 timeout: 10
 name: 'ddat'
 wordsize: 64
 storageunitspervalue: 8
 size: 4
 endianness: 'little'
 arrayorder: 'row-major'
 prepad: 0
 postpad: 0
 represent: 'float'
 binarypt: 0

isrecursive

Description
Indicates that the refernced pointer points to itself. When you dereference the
pointer repeatedly, you may eventually find the pointer points to void. You
should only see this in structures that have pointer that refer to the structure.

Characteristics
Double data type. isrecursive default is zero.

label

Description
Contains the names of the fields in an enumerated object or memory location.

Characteristics
ASCII characters of any type. Contains as many strings as there are
enumerated entries, entered as a cell array of strings.

Examples
Using the cfield object created in the link tutorial (run ccstutorial at the
MATLAB prompt), you see the following when you display the object.
0

Reference for the Properties of the Objects
cfield

ENUM Object
 Symbol Name : iz
 Address : [40056 0]
 Wordsize : 32 bits
 Address Units per value : 4 AU
 Representation : signed
 Binary point position : 0
 Size : [1]
 Total address units : 4 AU
 Array ordering : row-major
 Endianness : little
 Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MatlabLink=3, EmbeddedTargetC6x=4

The labels are MATLAB, Simulink, SignalToolbox, MatlabLink, and
EmbeddedTargetC6x. In this case, label is {1x5 cell}.

Referrals
See also property value.

link

Description
Specifies the link object that you used when you created the embedded object.

Characteristics
A 1 by 1 array containing the name of the link object associated with the symbol
table that holds the symbol.

Examples
In the tutorial, you created a numeric object named uicvar, using cast with
the numeric object cvar. To create cvar, you used link object cc to determine
the symbol table and project or target. When you view the properties of uicvar,
you see the property link listing the link object as ccsdsp.

get(uicvar)
 address: [40060 0]
2-41

2 About Objects for MATLAB Link Software

2-4
 bitsperstorageunit: 8
 numberofstorageunits: 4
 link: [1x1 ccsdsp]
 timeout: 10
 name: 'idat'
 wordsize: 16
 storageunitspervalue: 2
 size: 2
 endianness: 'little'
 arrayorder: 'row-major'
 prepad: 0
 postpad: 0
 represent: 'unsigned'
 binarypt: 0

Delving more deeply into the property link reveals the properties of the link
object.

uicvar.link

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C6711
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

Referrals
See also createobj

member

Description
This identifies a MATLAB structure that holds the entry for each C member in
the structure accessed by the object.
2

Reference for the Properties of the Objects
Characteristics
A MATLAB array containing:

• Array type

• Array dimensions

• Data associated with this array

• If numeric, whether the variable is real or complex

• If a structure or object, the number of fields and field names

Examples
If you have a stucture in DSP memory declared like the following structure

struct TAG_myStruct {
int iy[2][3];
myEnum iz;

} myStruct = { {{1,2,3},{4,-5,6}}, MatlabLink};

the member property of an object the access myStruct, might look like

get(cvar)
 name: 'myStruct'
 member: [1x1 ccs.containerobj]
 membname: {'iy' 'iz'}
 memboffset: [0 24]
 address: [40032 0]
 storageunitspervalue: 28
 size: 1
 numberofstorageunits: 28
 arrayorder: 'row-major'

where member returns as a 1-by-1 MATLAB array with a handle to the object
that contains it named ccs.containerobj.

membname

Description
Contains the names of the fields in a structure or union accessed by a structure
object.
2-43

2 About Objects for MATLAB Link Software

2-4
Characteristics
membname is one or more strings providing the names of the structure fields,
formatted as a cell array.

Range
Strings in membname contain any valid ASCII characters that might be found
in a C structure field.

Examples
In CCS, if you had the following structure in your project code:

struct tag {
int _a;
int B;
int b;
} var;

you could create a structure object, var, that access the structure. Using get
with var, you can review the names of the fields in the structure by looking at
the membname property for var.

var = createobj(cc,'var')
get(var,'membname')
'a' 'B' 'b'

memoffset

Description
While this is not directly useful to you, the values in the vector specify how far,
in memory in addressable units, each field in a structure is from the starting
address for the structure.

Characteristics
Any numeric or alphanumeric value that represents a valid address or register
location on the target. The vector contains one element for each field in the
structure, representing the offset to that field in memory.
4

Reference for the Properties of the Objects
Range
A vector containing M element, where M is the number of fields in the structure.
The second element in the vector is the offset to the second field in the
structure, the third element in the vector is the offset to the third field, and so
on until the final element is the offset to the final field. The first element in the
memoffset vector is always 0, since this represents the offset to the first
element in the structure, which is where the structure begins. Also any valid
register address, such as A0 or PC.

Examples
When you are working with structure objects, the property memoffset tells you
how far one structure field is from another in memory.

cvar = createobj(cc,'myStruct')

STRUCTURE Object:
 Symbol Name : myStruct
 Address : [40032 0]
 Address Units per value : 28 AU
 Size : [1]
 Total Address Units : 28 AU
 Array ordering : row-major
 Members : 'iy', 'iz'

read(cvar)

ans =

 iy: [2x3 double]
 iz: 'MatlabLink'
get(cvar)
 name: 'myStruct'
 member: [1x1 ccs.containerobj]
 membname: {'iy' 'iz'}
 memboffset: [0 24]
 address: [40032 0]
 storageunitspervalue: 28
 size: 1
 numberofstorageunits: 28
 arrayorder: 'row-major'
2-45

2 About Objects for MATLAB Link Software

2-4
From the property memoffset, you see that member iz of myStruct is 24
addresses from member iy, and from the start of the structure.

name

Description
Provides the name of the symbol or embedded object (mostly they are the same
thing) to which the object refers.

Characteristics
ASCII characters that compose valid C variable names.

Range
Any valid C variable name that occurs in your project.

numberofstorageunits

Description
Reports the number of addressable units necessary to represent the symbol to
which the object refers.

Characteristics
Reported in addressable units. Property bitsperstorageunit tells you how
many bits are in each addressable unit. Combined with property
numberofstorageunits, you can determine the storage used by the symbol.

Range
Any number of addressable unit up to the limit of memory on the target.

numChannels

Description
Reports the number of RTDX communications channels configured for the
RTDX link. Includes both read and write channels and does not depend on
whether the channels are enabled.
6

Reference for the Properties of the Objects
Examples
As you did if you followed the RTDX tutorial, create a link object, then open two
RRTDX channels for the link.

cc=ccsdsp('boardnum',boardNum,'procnum',procNum)

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C6711
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

cc.rtdx.configure(1024,4);

cc.rtdx.open('ichan','w');

cc.rtdx.open('ochan','r');

cc.rtdx.enable;

get(cc,'rtdx')

RTDX Object:
 Default timeout : 15.00 secs
 Open channels : 2

 Ch Name Mode
 -- ---- ----
 1 ichan write
 2 ochan read

Where the listing for the RTDX object shows two open channels, this is the
numChannels property value.
2-47

2 About Objects for MATLAB Link Software

2-4
page

Description
Specifies which memory page contains the symbol address. For processors that
do not use pages in memory, such as the C6701, the page value is always 0.
When you get the properties of an object, the address comes back in the format
[address page].

Characteristics
An integer that specifies the memory page for an address in memory.

Range
From 0 to the maximum number of memory pages supported by the processor.

Examples
Given a symbol in memory named ddat, when you create an object to access
ddat, you can get the properties for the object and see the the address format.

ddat=createobj(cc,'ddat')

NUMERIC Object
 Symbol Name : ddat
 Address : [40072 0]
 Wordsize : 64 bits
 Address Units per value : 8 AU
 Representation : float
 Binary point position : 0
 Size : [4]
 Total address units : 32 AU
 Array ordering : row-major
 Endianness : little

Notice that the page property value is 0. Since this example targets a C6711
digital signal processor, the page property value is always zero—the C6711
processor does not support memory pages.
8

Reference for the Properties of the Objects
postpad

Description
Reports the number of bits of padding required at the end of the memory buffer
to fill the buffer. Determining the final numeric value stored in memory ignores
the added bits.

Characteristics
Double-precision value that specifies the number of added bits.

prepad

Description
Reports the number of bits of padding required at the beginning of the memory
buffer to fill the buffer. Determining the final numeric value stored in memory
ignores the added bits.

Characteristics
Double-precision value that specifies the number of added bits.

procnum

Description
The number assigned by CCS to the processor on the board or simulator. When
the board contains more than one processor, CCS assigns a number to each
processor, numbering from 0 for the first processor on the first board. For
example, when you have two recognized boards, and the second has two
processors, the first processor on the first board is procnum=0, and the first and
second processors on the second board are procnum=1 and procnum=2. This is
also a property used when you create a new link to CCS IDE.

Range
From 0 for one processor to N-1, where N is the number of processors that CCS
recognizes as installed and configured on your machine.
2-49

2 About Objects for MATLAB Link Software

2-5
Description
Contains the name of the register as defined in the C source code. Note that
this is not the same as a CPU register on the target.

Characteristics
regname is a MATLAB array with no initial value nor a default value.

Range
Any valid register declared in your C source code.

represent

Description
Contains a string that specifies the data type for the accesses symbol. Memory
locations consist of bits and bytes. Property represent reports to MATLAB how
to interpret the data stored in memory.

Characteristics
A string that defines the data type for the variable—one of:

• float—IEEE floating point representation, either 32- or 64 bits

• fract—fractional fixed-point data

• signed—two’s complement signed integers

• ufract—unsigned fractional fixed-point data

• unsigned—unsigned two’s complement integer data

Range
While MATLAB recognizes many different data types, C and the TI processors
are somewhat different. The tables provided here show the valid data types
0

Reference for the Properties of the Objects
(from property datatype) and the strings that appear for them as the
represent property value.

Datatype String represent Property Value

'double' 'float'

'single' 'float'

'int32' 'signed'

'int16' 'signed'

'int8' 'signed'

'uint32' 'unsigned'

'uint16' 'binary'

'uint8' 'binary'

'long double' 'float'

'double_c' 'float'

'float' 'float'

'long' 'signed'

'int' 'signed'

'char' 'signed'

'unsigned long' 'signed'

'unsigned int' 'unsigned'

'unsigned char' 'binary'

’Q0.15’ 'signed'

’Q0.31’ 'unsigned'
2-51

2 About Objects for MATLAB Link Software

2-5
Various TI processors restrict the sizes of the datatypes used by objects in
MATLAB Link for Code Composer Studio. Shown in the next table, the
processor families restrict the valid word sizes for the listed data types.

Using the properties of the objects, you change the word size by changing the
value of the storageunitspervalue property of the object. Note that you
cannot change the bitsperstorageunit property value which depends on the
processor and whether the object represents a memory location or a register.

Referrals
See also cast, convert

rtdx

Description
Specifies whether the link object has RTDX channels included in the link.
When the link has open RTDX channels, this property contains a structure of
cell arrays that detail the information about the channels—the number of
channels and the names of the channels.

Characteristics
Empty or an array of cell arrays containing strings and values.

represent
Property Value

C5x Processor Word
Size Limits

C6x Processor Word
Size Limits

'float' 32, 64 bits 32,64 bits

'signed' 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits

'unsigned' 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits

'binary' 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits
2

Reference for the Properties of the Objects
Examples
When you create a link, the default state is not to have RTDX channels and the
property rtdx is empty, as you see here.

cc=ccsdsp('boardnum',boardNum,'procnum',procNum)

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C6711
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

Now, configure and open two RTDX channels to the target.

cc.rtdx.configure(1024,4);

cc.rtdx.open('ichan','w');

cc.rtdx.open('ochan','r');

After creating the channels, displaying the link shows that the rtdx property
is no longer empty. It contains the names and number of channels available,
and the channel mode, either read or write.

get(cc)
 rtdx: [1x1 rtdx]
 apiversion: [1 2]
 ccsappexe: 'D:\Applications\ti\cc\bin\'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

get(cc,'rtdx')

RTDX Object:
 Default timeout : 15.00 secs
2-53

2 About Objects for MATLAB Link Software

2-5
 Open channels : 2

 Ch Name Mode
 -- ---- ----
 1 ichan write
 2 ochan read

Referrals
See also ccsdsp, enable, open

RtdxChannel

Description
Provides the names of open RTDX channels for the link.

Characteristics
Alphanumeric strings using ASCII characters that define the channel names.

Range
From 0 to the number of defined and open channels in your project.

size

Description
Defines the number of dimensions for the numeric array that is accessed by the
numeric object. The size property provides the same information that function
size provides in MATLAB.

Characteristics
size is a vector having as many elements as the number of dimensions in the
symbol represented by the object. Each element in the vector reports the
number of entries in that dimension.

Range
size can be a scalar greater than or equal to one, or a vector of integers, each
one greater than or equal to one.
4

Reference for the Properties of the Objects
Examples
When you have a variable declaration in your code like

int x[3] [2] = {(1,2),(3,4),(5,6)};

the size property tells you about x if you create an object that accesses x.

x = createobj(cc,'x');

get(x,'size')

ans =

[3 2]

so x represents a 3-by-2 array having six elements.

storageunitspervalue

Description
Describes how many storage units (addressable units) make up the accessed
symbol.

Characteristics
Given in addressable units (AU), storageunitspervalue is an integer.

Range
storageunitspervalue is an integer equal to or greater than one, up to the
limit of your target processor. This can have a value less than one in the case
of packing of the bits in the symbol.

Examples
From the link tutorial, object cfield returns the following properties when you
create an object to provide access to the myStruct member iz.

cfield = getmember(cvar,'iz') % Extract object from structure

ENUM Object
 Symbol Name : iz
 Address : [40056 0]
2-55

2 About Objects for MATLAB Link Software

2-5
 Wordsize : 32 bits
 Address Units per value : 4 AU
 Representation : signed
 Binary point position : 0
 Size : [1]
 Total address units : 4 AU
 Array ordering : row-major
 Endianness : little
 Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MatlabLink=3, EmbeddedTargetC6x=4

get(cfield)
 address: [40056 0]
 bitsperstorageunit: 8
 numberofstorageunits: 4
 link: [1x1 ccsdsp]
 timeout: 10
 name: 'iz'
 wordsize: 32
 storageunitspervalue: 4
 size: 1
 endianness: 'little'
 arrayorder: 'row-major'
 prepad: 0
 postpad: 0
 represent: 'signed'
 binarypt: 0
 label: {1x5 cell}
 value: [0 1 2 3 4]

Requiring 4 addressable units (storage units) with 8 bits per storage unit
(property bitsperstorageunit = 8) and a size of 1, cfield requires 32 bits of
storage space in memory.
6

Reference for the Properties of the Objects
timeout

Description
Specifies how long MATLAB Link for Code Composer Studio waits for an
operation to complete, or at least to return a status of complete. In some cases,
operations continue after the timeout expires, since the time period depends on
the status of the operation, not the actual completion.

Characteristics
A value in seconds.

Range
A value greater than zero. 10 seconds is the default value.

Examples
In this example, the time out period is 10 seconds for the new object.

cc=ccsdsp('boardnum',boardNum,'procnum',procNum)

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C6711
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

typestring

Description
Describes the data type of the referent for the pointer the pointer object
accesses. typestring returns the data type for the referent as well as an
asterisk to indicate that the symbol is a pointer.
2-57

2 About Objects for MATLAB Link Software

2-5
Examples
For a pointer object that points to a floating point symbol, the property value
for typestring is float *. For a pointer to an integer, the value is int *.

value

Description
Reports the values associated with labels in an enumerated object.

Characteristics
Numbers, one or more, configured as a vector depending on the number of
entries.

Examples
Using the enumerated data type variable myEnum from the link tutorial, create
an object that accesses the labels and values for the enumerated data variable
iz.

cvar = createobj(cc,'myStruct')

STRUCTURE Object:
 Symbol Name : myStruct
 Address : [40032 0]
 Address Units per value : 28 AU
 Size : [1]
 Total Address Units : 28 AU
 Array ordering : row-major
 Members : 'iy', 'iz'

cfield = getmember(cvar,'iz')

ENUM Object
 Symbol Name : iz
 Address : [40056 0]
 Wordsize : 32 bits
 Address Units per value : 4 AU
 Representation : signed
 Binary point position : 0
 Size : [1]
8

Reference for the Properties of the Objects
 Total address units : 4 AU
 Array ordering : row-major
 Endianness : little
 Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MatlabLink=3, EmbeddedTargetC6x=4

The values for iz are 0, 1, 2, 3, and 4. In the value property, the values show
up as [0 1 2 3 4], a vector whose elements are the values.

wordsize

Description
Specifies the word size for the target processor, and the referenced symbol.

Characteristics
Depends on the processor architecture. Because this is fixed on the processor,
it is read-only, set when you create an embedded object.

Range
For most processors, the word size can be from 8 to 64 bits, usually 8, 16, or 32.
2-59

2 About Objects for MATLAB Link Software

2-6
0

3

Link Functions Reference

Using the Link Function Reference
(p. 3-2)

Explains the contents of the function reference pages

Tables of Link Software Functions
(p. 3-3)

Lists of the functions in the product

Link Functions—Alphabetical List
(p. 3-8)

Provides an alphabetical listing of the functions in the
product

3 Link Functions Reference

3-2
Using the Link Function Reference
These sections provide complete information on each function in the links in
MATLAB Link for Code Composer Studio, in a structured format. Refer to
these pages when you need details about a specific function. For help on a
function, enter

help ccshelp/functionname or help rtdxhelp/functionname

or use the Help desk to access the function reference page.

Contents of Function Reference Pages
Function reference pages are listed in alphabetical order by the function name.
Each entry contains the following information:

• Purpose — describes why you use the block or function.

• Syntax — lists each syntax and option that applies to the function.

• Description — describes what the function does, by presenting all possible
syntax structures for the function. Each syntax in the Syntax section
appears in a description.

• Examples — shows the function in use and demonstrates some of the
parameters and options for the function.

• See Also — lists related blocks and functions. This is an optional category.

Tables of Link Software Functions
Tables of Link Software Functions
For quick reference purposes, the following tables list the functions available
for the links for Code Composer Studio Integrated Development Environment
(CCS IDE) and Real-Time Date Exchange (RTDX). Each table entry includes
the function name as a link to its reference page; whether the function is
overloaded; and a brief description of the function

Table 3-1: Functions Operating on Links for CCS IDE

Function Overloaded Description

activate Change the active file or project in CCS
IDE

add Add a file to the active project in CCS
IDE

animate Run an application on the target
processor until it reaches a breakpoint

build Build the active project in CCS IDE

ccsboardinfo Return information about the boards
and simulators recognized by CCS IDE

ccsdsp Create a link to CCS IDE

cd Change the working directory that CCS
IDE uses

clear Yes Destroys the links to CCS IDE

close Yes Close open files in CCS IDE

delete Remove debug points in files in CCS IDE

dir List the files in the current CCS IDE
working directory

disp Yes Display the properties of a link to CCS
IDE
3-3

3 Link Functions Reference

3-4
display Yes Display the properties of a link to CCS
IDE

get Yes Returns the property values for a link to
CCS IDE.

halt Terminate execution of a process
running on the target processor

info Yes Return information about the target
processor

isreadable Yes Determine if MATLAB can read the
specified memory block

isrtdxcapable Determine whether the target processor
or board supports RTDX

isrunning Test whether the target processor is
executing a process

isvisible Test whether CCS IDE is running on the
PC

iswritable Yes Determine if MATLAB can write to the
specified memory block

load Transfer a program file (*.out, *.obj) to
the target processor

new Create and open a new text file, project,
or build configuration in CCS IDE

open Yes Load a file into CCS IDE

profile Return profile information from running
a DSP/BIOS-enabled program in CCS
IDE

Table 3-1: Functions Operating on Links for CCS IDE (Continued)

Function Overloaded Description

Tables of Link Software Functions
read Retrieve data from memory on the target
processor

regread Return a value from a specified register
on the target processor

reload Resend the most recently loaded
program file to the target processor

regwrite Write a value to a specified register on
the target processor

remove Remove a file from the active CCS IDE
project

reset Start to reset the target processor

restart Restore the program counter to the entry
point for the current program on the
target

run Execute the program loaded on the
target processor

set Yes Set the properties of links for CCS IDE.

symbol Return the most recent program symbol
table from CCS IDE

visible Set the visibility for CCS IDE window

write Write data to memory on the target
processor

Table 3-1: Functions Operating on Links for CCS IDE (Continued)

Function Overloaded Description
3-5

3 Link Functions Reference

3-6
Table 3-2: Functions Operating on Links for RTDX

Function Overloaded Description

address Return the address and memory page for a
symbol.

clear Yes Remove existing links for RTDX and CCS
IDE. Uses a destructor method to eliminate
the link objects.

close Yes Close an open RTDX channel.

configure Define the size and number of RTDX
channel buffers.

disable Disable the RTDX interface, a specified
channel, or all RTDX channels.

disp Yes Display the properties of an RTDX link
(default display).

display Yes Display the properties of an RTDX link.

enable Enable the RTDX interface, a specified
channel, or all RTDX channels.

flush Flush data or messages out of one or more
specified RTDX channels.

get Yes Return the property values for a link for
RTDX.

info Yes Return information about specified RTDX
links.

isenabled Determine whether the RTDX interface or
one or all RTDX channels are enabled for
communications.

isreadable Yes Determine whether MATLAB can read the
specified RTDX channel.

Tables of Link Software Functions
iswritable Yes Determine whether MATLAB can write to
the specified RTDX channel.

msgcount Return the number of messages in a
read-enable RTDX channel.

open Yes Open an RTDX channel to a target
processor.

readmat Read a matrix of data from specified RTDX
channels.

readmsg Read messages from the specified RTDX
channel.

set Yes Set the properties of a link for RTDX.

writemsg Write a message to the target processor.

Table 3-2: Functions Operating on Links for RTDX (Continued)

Function Overloaded Description
3-7

3 Link Functions Reference

3-8
Link Functions—Alphabetical List
The following reference pages list the functions included in the link software.
Each function listing includes a Purpose, Syntax, Description, and Examples
(when needed). Where it is appropriate, a See Also section provides references
to related blocks and functions.

Functions—Alphabetical List
Functions—Alphabetical List 3

activate . 3-11
add . 3-13
addregister . 3-16
address . 3-18
animate . 3-20
assignreturnstorage . 3-21
build . 3-22
cast . 3-25
ccsboardinfo . 3-27
ccsdsp . 3-32
cd . 3-35
cexpr . 3-37
clear . 3-41
close . 3-42
configure . 3-45
convert . 3-47
copy . 3-49
createobj . 3-50
delete . 3-51
deleteregister . 3-53
deref . 3-55
dir . 3-56
disable . 3-57
disp . 3-58
display . 3-60
enable . 3-62
equivalent . 3-63
execute . 3-64
flush . 3-65
get . 3-67
getmember . 3-71
goto . 3-74
halt . 3-77
info . 3-79
insert . 3-82
3-9

3

3-1
isenabled . 3-84
isreadable . 3-86
isrtdxcapable . 3-90
isrunning . 3-91
isvisible . 3-92
iswritable . 3-94
list . 3-98
load . 3-105
msgcount . 3-107
new . 3-108
open . 3-111
profile . 3-115
read . 3-122
readmat . 3-130
readmsg . 3-133
readnumeric . 3-136
regread . 3-137
regwrite . 3-140
reload . 3-146
remove . 3-148
reset . 3-149
reshape . 3-150
restart . 3-151
run . 3-152
save . 3-154
set . 3-156
symbol . 3-159
visible . 3-161
write . 3-164
writemsg . 3-174
0

activate
3activatePurpose Make the specified project, file, or build configuration active in CCS IDE

Syntax activate(cc, 'objectname','type')

Description activate(cc,'objectname','type') makes the object specified by
objectname and type the active document window or project in CCS IDE.
While you must include the link cc, it does not identify the project or file you
make active. activate accepts one of three strings for type

To specify the project file, text file, or build configuration, objectname must
contain the full project name with the .pjt extension, or the full pathname and
extension for the text file.

When you activate a build configuration, activate applies to the active project
in CCS IDE. If the build configuration you specify in activate does not exist in
the active project, MATLAB returns an error that the specified configuration
does not exist in the project. Fix this error by using activate to make the
correct project active, then use activate again to select the desired build
configuration.

Examples Create two projects in CCS IDE and use activate to change the active project,
build configuration, and document window.

cc=ccsdsp;
visible(cc,1)

String Description

'project' Makes an existing project in CCS IDE active
(current). You must include the .pjt extension in
objectname.

'text' Makes the specified text file in CCS IDE the active
document window. Include the file extension in
objectname when you specify the file.

'buildcfg' Makes the specified build configuration in CCS
IDE active. Note that build configuration is
similar to project configuration.
3-11

activate
Now make two projects in CCS IDE.

new(cc,'myproject1.pjt')
new(cc,'myproject2.pjt')

In CCS IDE, myproject2 is now the active project, since you just created it.
With two projects in CCS IDE, add a new build configuration to the second
project.

new(cc,'Testcfg','buildcfg')

If you switch to CCS IDE, you see myproject2.pjt in bold lettering in the
project view, signaling it is the active project. When you check the active
configuration list, you see three build configurations—Debug, Release, and
Testcfg. Currently, Testcfg is the active build configuration in myproject2.

Finally, add a text file to myproject1 and make it the active document window
in CCS IDE. In this case, you add the source file for the ADC block.

activate(cc,'myproject1.pjt') % Makes myproject1 the active
project
add(cc,'c6701evm_adc.c')
activate(cc,'c6701evm_adc.c','text')

See Also build, new, remove
3-12

add
3addPurpose Add files to the active project in Code Composer Studio

Syntax add(cc,'filename')

Description Use add when you have an existing file to add to your active project in CCS. You
can have more than one CCS IDE open at the same time, such as C5000 and
C6000 instances. cc identifies which CCS IDE instance gets the file, and it
identifies your board or target. Note that cc does not identify your project in
CCS—it identifies only your target hardware or simulator. add puts the file
specified by filename in the active project in CCS. Files you add must exist and
be one of the supported file types shown in the next table.

When you add files, CCS puts the files in the appropriate folder in the project,
such as putting source files with the .c extension in the Source folder and
adding .lib files to the Libraries folder. You cannot change the destination
folder in your CCS project. Using add is identical to selecting Project->Add
Files to Project... in CCS IDE.

To specify the file to add, filename must be the full pathname to the file, unless
your file is in your CCS working directory or in a directory on your MATLAB
path. The MATLAB Link for Code Composer Studio searchs for files first in
your CCS IDE working directory then in directories on your MATLAB path.

You can add the following file types to a project through add.

Table 3-3: File Types and Extensions Supported by add and CCS IDE

File Type Extensions Supported CCS Project Folder

C/C++ source files .c, .cpp, .cc, .ccx, .sa Source

Assembly source files .a*, .s* (excluding .sa,
refer to C/C++ source
files)

Source

Object and Library files .o*, .lib Libraries

Linker command file .cmd Project Name
3-13

add
Use activate to change your active project in CCS IDE or switch to the CCS
IDE and change the active directory within CCS.

Examples Create a new project and to it add a source file and a build configuration. To do
this task from MATLAB, use new to make your project in CCS IDE, then use
add to put the required files into your new project.

cc=ccsdsp

CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C64127
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

cc.visible(1) % Optional. Makes CCS IDE visible on your desktop
new(cc,'myproject','project');

% Now add a C source file

add(cc,'c6701evm_adc.c'); % Adds the source file for the ADC block

In CCS IDE, c6701evm_adc.c shows up in myproject, in the Source folder.
Now add a new build configuration to myproject. After you add the new
configuration, you can see it on the configurations list in CCS IDE, along with
the usual Debug and Release configurations.

DSP/BIOS file .cdb* DSP/BIOS Config

Visual Linker Recipe .rcp Replaces the .cmd
file, or goes under
Project Name

Table 3-3: File Types and Extensions Supported by add and CCS IDE

File Type Extensions Supported CCS Project Folder
3-14

add
new(cc,'Testcfg','buildcfg')

See Also activate, cd, open, remove
3-15

addregister
3addregisterPurpose Append one or more registers to the list of saved registers stored in the
property savedregs of function objects

Syntax addregister(ff,regname)
addregister(ff,regnamelist)

Description addregister(ff,regname) adds register regname to the list of registers that
get preserved or reverted when a function is finished running. ff indentifies
the program function to which the register applies. You can add any register to
the saved registers list.

When you issue the createobj call to create a handle to a function, the
compiler creates the default list of saved registers. When you execute the
function, the compiler saves the registers in the list, runs its process, and after
completing its process, restores the saved registers to their initial state using
the contents of the saved registers.

After a function generates a result, the execution process returns the saved
registers to their initial states and values. When you add a register to the saved
registers list, the added register is restored and saved with the other registers
in the list.

For each processor family, the default list of saved registers changes, as shown
in these sections. The default lists include registers that the compiler saves and
that MATLAB requires for MATLAB Link for Code Composer Studio to operate
correctly.

Default Saved Registers For C54x Processors
AR1, AR6, AR7, and SP (required by MATLAB, not the compiler)

Default Saved Registers For C62x and C67x Processors
A0, A2, A6, A7, A8, A9. Also B0, B1, B2, B4, B5, B6, B7, B8, B9. To support
MATLAB requirements, B15 (the stack pointer) gets saved as well.

Registers A3,A4, A5, and B3—your function must preserve these but they are
not needed for reading function output.

Default Saved Registers For C64x Processors
A0, A2, A6, A7, A8, A9, A16, A17, A19, A19, A20, A21, A22, A23, A24, A25, A26,
A27, A28, A29, A30, A31. Also B0, B1, B2, B4, B5, B6, B7, B8, B9, B16, B17,
3-16

addregister
B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31. To
support MATLAB requirements, B15 (the stack pointer) gets saved as well.

Register B15—not required by the compiler, but is required by MATLAB and
is saved.

Registers A3, A4, and A5—function must preserve these but they're needed for
reading function output.

addregister(ff,reglist) appends the register names in reglist to the list
of registers that get preserved when a task is finished. ff indentifies the
function to which the register applies. reglist is a cell array that contains the
names of registers on your processor that must be preserved during the
changes that occur during operation.

See Also deleteregister
3-17

address
3addressPurpose Return the address and page for an entry in the symbol table in CCS IDE

Syntax a = address(cc,'symbolstring')

Description a = address(cc,'symbolstring') returns the address and page values for
the symbol identified by ’symbolstring’ in CCS IDE. address returns the
symbol from the most recently loaded program in CCS IDE. In some instances
this might not be the program loaded on the target to which cc is linked. By
returning the address and page values as a structure, your programs can use
the values directly. If you provide an output argument, the output a contains
the 1-by-2 vector of [address page]. symbolstring must represent a valid
entry in the symbol table. To ensure that address returns information for the
correct symbol, use the proper case when you enter symbolstring because
symbol names are case-sensitive; ’symbolstring’ is not the same as
’Symbolstring’.

If address does not find a symbol table entry that matches symbolstring, the
first cell of a is returned empty. Notice that this function returns only the first
matching symbol in the symbol table. The output argument is a cell array
where each row in a presents the symbol name and address in the table. Each
returned symbol address comprises a two element vector with the symbol page
as the second element. For example, this table shows a few possible elements
of a, and their interpretation.

Examples After you load a program to your target, address lets you read and write to
specific entries in the symbol table for the program. For example, the following
function reads the value of symbol ’ddat’ from the symbol table in CCS IDE.

a Array Element Contents of the Specified Element

a{1} String reflecting the symbol name. If address
found a symbol that matches symbolstring, this is
the same as symbolstring. Otherwise this is
empty.

a{2}(1) Address or value of symbol entry.

a{2}(2) Memory page value. For TI C6xxx processors, the
page is 0.
3-18

address
ddatv = read(cc,address(cc,'ddat'),'double',4)

ddat is an entry in the current symbol table. address searches for the string
ddat and returns a value when it finds a match. read returns ddat to MATLAB
as a double-precision value as specified by the string ’double’.

To change values in the symbol table, use address with write:

write(cc.adddress(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

After executing this write operation, ddat contains double-precision values for
π, 12.3, e-1, and sin(π/4). Use read to check the contents of ddat.

ddatv = read(cc,address(cc,'ddat'),'double',4)

MATLAB returns

ddatv =

3.1416 12.3 0.3679 0.7071

See Also load, read, symbol, write
3-19

animate
3animate

Purpose Run an application on the target processor until it reaches a breakpoint

Syntax animate(cc)

Description animate(cc) starts the target application, which runs until it encounters a
breakpoint in the code. At the breakpoint, application execution halts and Code
Composer Studio Debugger returns data to CCS IDE to update all windows
that are not connected to probe points. After updating the display, the
application resumes execution and runs until it encounters another
breakpoint. The run-break-resume process continues until you stop the
application from MATLAB with the halt function or from CCS IDE.

When you are running scripts or files in MATLAB, you might find that animate
provides a useful way to update the CCS IDE with information as your script
or program runs.

See Also halt, restart, run
3-20

assignreturnstorage
3assignreturnstoragePurpose Assign a storage location to property outputvar for a structure returned by a
function on C6x processors

Syntax assignreturnstorage(ff,address)

assignreturnstorage(ff,handle)

Description assignreturnstorage(ff,address) sets the outputvar property of the
function object referred to by ff. outputvar determines where the process
stores the results of executing the function. To specify the address for the
output, enter address as a numeric value.

assignreturnstorage(ff,handle) assigns the return storage to the structure
reference by handle. To use this syntax, handle must refer to a structure object.

Note assignreturnstorage works only with functions that return
structures. For functions that return other types of data,
assignreturnstorage does not apply. You use assignreturnstorage only
with C6x processors.
3-21

build
3buildPurpose Build the active project in CCS IDE

Syntax build(cc,timeout)
build(cc)
build(cc,'all',timeout)
build(cc,'all')

Description build(cc,timeout) incrementally rebuilds your active project in CCS IDE. In
an incremental build:

• Files that you have changed since your last project build process get rebuilt
or recomplied.

• Source files rebuild when the time stamp on the source file is later than the
time stamp on the object file created by the last build.

• Files whose time stamps have not changed do not rebuild or recompile.

This incremental build is identical to the incremental build in CCS IDE,
available from the CCS IDE toolbar.

After building the files, CCS IDE relinks the files to create the program file
with the .out extension. To determine whether to relink the output file, CCS
IDE compares the time stamp on the output file to the time stamp on each
object file. It relinks the output when an object file time stamp is later than the
output file time stamp.

To reduce the compile and build time, CCS IDE keeps a build information file
for each project. CCS IDE uses this file to determine which file needs to be
rebuilt or relinked during the incremental build. After each build, CCS IDE
updates the build information file.

Note CCS IDE opens a Save As dialog when the requested project build
overwrites any files in the project. You must respond to the dialog before CCS
IDE continues the build. The dialog may not be visible when it opens and CCS
IDE, MATLAB, and other applications can appear to be frozen until you
respond to the dialog. It may be hidden by open windows on your desktop.
3-22

build
To limit the time that build spends performing the build, the optional
argument timeout stops the process after timeout seconds. timeout defines
the number of seconds allowed to complete the required compile, build, and
link operation. If the build process exceeds the timeout period, build returns
an error in MATLAB. Generally, build causes the processor to initiate a
restart even when the period specified by timeout passes. Exceeding the
allotted time for the operation usually indicates that confirmation that the
build was finished was not received before the timeout period passed. If you
omit the timeout option in the syntax, build defaults to the global timeout
defined in cc.

build(cc) is the same as build(cc,timeout) except that when you omit the
timeout option, build defaults to the timeout set for cc.

build(cc,'all',timeout) completely rebuilds all of the files in the active
project. This full build is identical to selecting Project->Rebuild All from the
CCS menubar. After rebuilding all files in the project, build performs the link
operation to create a new program file.

To limit the time that build spends performing the build, optional argument
timeout stops the process after timeout seconds. timeout defines the number
of seconds allowed to complete the required compile, build, and link operation.

If the build process exceeds the timeout period, build returns an error in
MATLAB. Generally, build causes the processor to initiate a restart even
when the period specified by timeout passes. Exceeding the allotted time for
the operation usually indicates that confirmation that the build was finished
was not received before the timeout period passed. If you omit the timeout
option in the syntax, build defaults to the global timeout defined in cc.

build(cc,'all') is the same as build(cc,'all',timeout) except that when
you omit the timeout option, build defaults to the timeout set for cc.

Examples To demonstrate building a project from MATLAB, use CCS IDE to load a
project from the TI tutorials. For this example, open the project file volume.pjt
from the tutorial folder where you installed CCS IDE. (You can open any
project you have for this example.)

Now use build to build the project.

cc=ccsdsp
3-23

build
CCSDSP Object:
 API version : 1.2
 Processor type : TMS320C64127
 Processor name : CPU_1
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

build(cc,'all',20)

You just completed a full build of the project in CCS IDE. On the Build pane in
CCS IDE you see the record of the build process and the results. Now, make a
change to a file in the project in CCS IDE and save the file. Then rebuild the
project with an incremental build.

build(cc,20)

When you look at the Build pane in CCS IDE, the log shows that the build only
occurred on the file or files that you changed and saved.

See Also activate, isrunning, open
3-24

cast
3castPurpose Change the datatype of an object in MATLAB Link for Code Composer Studio

Syntax objname2 = cast(objname,datatype)
objname2 = cast(objname,datatype,size)

Description objname2 = cast(objname,datatype) returns objname2, a copy of objname
whose represent property is changed to the data type specified by datatype.
Input argument datatype can be any supported datatype. After the cast
operation, read or write operations apply the appropriate data conversion to
implement on the target the datatype specified by the represent property.

The following datatypes work as input arguments to cast:

Datatype String represent Property Value

'double' 'float'

'single' 'float'

'int32' 'signed'

'int16' 'signed'

'int8' 'signed'

'uint32' 'unsigned'

'uint16' 'binary'

'uint8' 'binary'

'long double' 'float'

'double_c' 'float'

'float' 'float'

'long' 'signed'

'int' 'signed'

'char' 'signed'

'unsigned long' 'signed'
3-25

cast
Various TI processors restrict the sizes of the datatypes used by objects in
MATLAB Link for Code Composer Studio. Shown in the next table, the
processor families restrict the valid word sizes for the listed data types.

Using the properties of the objects, you change the word size by changing the
value of the storageunitspervalue property of the object. Note that you
cannot change the bitsperstorageunit property value which depends on the
processor and whether the object represents a memory location or a register.

cast applies to any object that has the represent property. function, ccsdsp,
and rtdx objects do not use the represent property and do not support cast.

objname2 = cast(objname,datatype,size) returns objname2, a copy of
objname, with the specified datatype for the represent property, and the size
property value set to size.

See Also convert

'unsigned int' 'unsigned'

'unsigned char' 'binary'

’Q0.15’ 'signed'

’Q0.31’ 'unsigned'

represent
Property Value

C5x Processor Word
Size Limits

C6x Processor Word
Size Limits

’float' 32, 64 bits 32,64 bits

’signed’ 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits

'unsigned' 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits

'binary' 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits

Datatype String represent Property Value
3-26

ccsboardinfo
3ccsboardinfoPurpose Return information about all boards and simulators known to CCS IDE

Syntax ccsboardinfo
boards = ccsboardinfo

Description ccsboardinfo returns configuration information about each board and
processor installed and recognized by CCS. When you issue the function,
ccsboardinfo returns the following information about each board or
simulator:

Installed Board
Configuration Data

Configuration
Item Name

Description

Board Number boardnum The number that CCS assigns to the board or
simulator. Board numbering starts at 0 for the first
board. This is also a property used when you create a
new link to CCS IDE.

Board Name boardname The name assigned to the board or simulator. Usually,
the name is the board model name, such as
TMS320C67xx evaluation module. If you are using a
simulator, the name tells you which processor the
simulator matches, such as C67xx simulator. If you
renamed the board during setup, your assigned name
appears here.

Processor Number procnum The number assigned by CCS to the processor on the
board or simulator. When the board contains more
than one processor, CCS assigns a number to each
processor, numbering from 0 for the first processor on
the first board. For example, when you have two
recognized boards, and the second has two processors,
the first processor on the first board is procnum=0, and
the first and second processors on the second board
are procnum=1 and procnum=2. This is also a property
used when you create a new link to CCS IDE.
3-27

ccsboardinfo
Each row in the table that you see displayed represents one digital signal
processor, either on a board or simulator. As a consequence, you use the
information in the table in the function ccsdsp to target a selected board in
your PC.

boards = ccsboardinfo returns the configuration information about your
installed boards in a slightly different manner. Rather than returning the table
containing the information, you get a listing of the board names and numbers,
where each board has an associated structure named proc that contains the
information about each processor on the board. For example

boards = ccsboardinfo

returns

boards =

 name: 'C6xxx Simulator (Texas Instruments)'
 number: 0
 proc: [1x1 struct]

where the structure proc contains the processor information for the C6xxx
Simulator board:

boards.proc

ans =

 name: 'CPU'
 number: 0
 type: 'TMS320C6200'

Processor Name procname Provides the name of the processor. Usually the name
is CPU, unless you assign a different name.

Processor Type proctype Gives the processor model, such as TMS320C6x1x for
the C6xxx series processors.

Installed Board
Configuration Data

Configuration
Item Name

Description
3-28

ccsboardinfo
Reviewing the output from both function syntaxes shows that the configuration
information is the same.

When you combine this syntax with the dot notation used to access the
elements in a structure, the result is a way to determine which board to connect
to when you construct a link to CCS IDE. For example, when you are creating
a link to a board in your PC, the dot notation provides the means to set the
target board by issuing the command with the boardnum and procnum
properties set to the entries in the structure boards. For example, when you
enter

boards = ccsboardinfo;

boards(1).name returns the name of your second installed board and
boards(1).proc(2).name returns the name of the second processor on the
second board. To create a link to the second processor on the second board, use

cc = ccsdsp('boardnum',boards(1).number,'procnum',...
boards(1).proc(2).name);

Examples On a PC with both a simulator and a DSP Starter Kit (DSK) board installed,

ccsboardinfo

returns something similar to the following table. Your display may differ
slightly based on what you called your boards when you configured them in
CCS Setup Utility.

Board Board Proc Processor Processor

 Num Name Num Name Type

 --- ---------------------------------- --- ---------------------------------- ----

 1 C6xxx Simulator (Texas Instrum ... 0 CPU TMS320C6200

0 DSK (Texas Instruments) 0 CPU_3 TMS320C6x1x

When you have one or more boards that have multiple CPUs, ccsboardinfo
returns the following table, or one similar to it.

Board Board Proc Processor Processor

 Num Name Num Name Type

 --- ---------------------------------- --- ---------------------------------- ----

 2 C6xxx Simulator (Texas Instrum ... 0 CPU TMS320C6200

 1 C6xxx EVM (Texas Instrum ... 1 CPU_Primary TMS320C6200

 1 C6xxx EVM (Texas Instrum ... 0 CPU_Secondary TMS320C6200
3-29

ccsboardinfo
0 C64xx Simulator (Texas Instru... 0 CPU TMS320C64xx

In this example, board number 1 returns two defined CPUs: CPU_Primary and
CPU_Secondary. Note that the C6xxx does not in fact have two CPUs; we
defined a second CPU for this example.

To demonstrate the syntax boards = ccsboardinfo, this example assumes a
PC with two boards installed, one of which has three CPUs.

Type

ccsboardinfo

at the MATLAB prompt. You get

Board Board Proc Processor Processor

 Num Name Num Name Type

 --- ---------------------------------- --- ---------------------------------- ----

 1 C6xxx Simulator (Texas Instrum ... 0 CPU TMS320C6211

 0 C6211 DSK (Texas Instruments) 2 CPU_3 TMS320C6x1x

 0 C6211 DSK (Texas Instruments) 1 CPU_4_1 TMS320C6x1x

0 C6211 DSK (Texas Instruments) 0 CPU_4_2 TMS320C6x1x

Now type

boards = ccsboardinfo

MATLAB returns

boards=
2x1 struct array with fields

name
number
proc

showing that you have two boards in your PC.

Use the dot notation to determine the names of the boards:

boards.name

returns

ans=
C6xxx Simulator (Texas Instruments)
ans=
3-30

ccsboardinfo
C6211 DSK (Texas Instruments)

To identify the processors on each board, again use the dot notation to access
the processor information. You have two boards (numbered 0 and 1). Board 0
has three CPUs defined for it. To determine the type of the second processor on
board 0 (the board whose boardnum = 0), enter

boards(2).proc(1)

which returns

ans=
name: 'CPU_3'
number: 1
type: 'TMS320C6x1x'

Recall that

boards(2).proc

gives you this information about the board:

ans=
3x1 struct array with fields:

name
number
type

indicating that this board has three processors defined (the 3x1 array).

using the dot notation for accessing the contents of a structure has use when
you create a link to CCS IDE. When you use ccsdsp to create your CCS link,
you can use the dot notation to tell CCS IDE which processor you are targeting.

cc = ccsdsp('boardnum',boards(1).

See Also info, ccsdsp
3-31

ccsdsp
3ccsdspPurpose Create a link to Code Composer Studio IDE

Syntax cc = ccsdsp
cc = ccsdsp('propertyname’,'propertyvalue’,...)

Description cc = ccsdsp returns a handle (or object or link) in cc that MATLAB uses to
communicate with the default processor. In the case of no input arguments,
ccsdsp constructs the object with default values for all properties. CCS IDE
handles the communications between MATLAB and the target CPU. When you
use the function, ccsdsp launches CCS IDE if it is not running. If ccsdsp
opened an instance of the CCS IDE when you issued the ccsdsp function, CCS
IDE becomes invisible after the MATLAB Link for Code Composer Studio
creates the new object.

Note When ccsdsp creates the link cc, it sets the working directory for CCS
IDE to be the same as your MATLAB working directory. This can have
consequences when you create files or projects in CCS IDE, or save files and
projects.

Each link to CCS IDE you create comprises two objects—a CCSDSP object and
an RTDX object—that include the following properties:

Object Property Name Property Default Description

CCSDSP object 'apiversion' API version N/A Defines the API version
used to create the link.

'proctype' Processor Type N/A Specifies the kind of
processor on the target
board.

'procname' Processor
Name

CPU Name given to the
processor on the board to
which this object links.
3-32

ccsdsp
cc = ccsdsp('propertyname’,'propertyvalue’,...) returns a handle in cc
that MATLAB uses to communicate with the specified processor. CCS handles
the communications between MATLAB and the target CPU.

MATLAB treats input parameters to ccsdsp as property definitions. Each
property definition consists of a property name/property value pair.

Two properties of the ccsdsp handle are read-only after you create the handle

• 'boardnum' — the identifier for the installed board selected from the active
boards recognized by CCS. If you have one board, use the default property
value 0 to access the board.

• 'procnum' — the identifier for the processor on the board defined by
boardnum. On boards with more than one processor, use this value to specify

'status' Running No Status of the program
currently loaded on the
processor

'boardnum' Board Number 0 Number that CCS assigns
to the board. Used to
identify the board.

'procnum' Processor
number

0 Number the CCS assigns
to a processor on a board.

'timeout' Default
timeout

10.0s Specifies how long
MATLAB waits for a
response from CCS after
issuing a request.

RTDX Object 'timeout' Timeout 10.0s Specifies how long CCS
waits for a response from
the processor after
requesting data.

'numchannels' Number of
open channels

0 The number of open
channels using this link.

Object Property Name Property Default Description
3-33

ccsdsp
the target processor on the board. On boards with one processor, use the
default property value 0 to specify the processor.

You do not need to specify the boardnum and procnum properties when you have
one board with one processor installed. The default property values refer to the
processor on the board.

Note Simulators count as boards. If you defined both boards and simulators
in CCS IDE, specify the boardnum and procnum properties to connect to
specific boards or simulators. Use ccsboardinfo to determine the values for
the boardnum and procnum properties of your boards and simulators.

Because these properties are read-only after you create the handle, you must
set these property values as input arguments when you use ccsdsp. You cannot
change these values after the handle exists. After you create the handle, use
the get function to retrieve the boardnum and procnum property values.

Examples On a system with three boards, where the third board has one processor and
the first and second boards have two processors each, the function

cc = ccsdsp('boardnum',1,'procnum',0);

returns a handle to the first processor on the second board. Similarly, the
function

cc = ccsdsp('boardnum',0,'procnum',1);

returns a handle to the second processor on the first board.

To access the processor on the third board, use

cc = ccsdsp('boardnum',2);

which sets the default property value procnum=0 to connect to the processor on
the third board.

See Also get, ccsboardinfo, set
3-34

cd
3cdPurpose Change the CCS IDE working directory

Syntax cd(cc,'directory')
wd = cd(cc,'directory')
cd(cc,pwd)

Description cd(cc,'directory’) changes the CCS IDE working directory to the directory
identified by the string dir. dir must refer to an existing directory for the
change to take affect. You can give the directory string either as a relative
pathname or an absolute pathname including the drive letter. CCS IDE applies
relative pathnames from the current working directory.

wd = cd(cc) returns the current CCS IDE working directory in wd.

Using cc to change the CCS IDE working directory does not affect your
MATLAB working directory or any MATLAB paths. Use the following function
syntax to set your CCS IDE working directory to match your MATLAB working
directory.

cd(cc,pwd) where pwd calls the MATLAB function pwd that shows your
present MATLAB working directory, changes your current CCS IDE working
directory to match the pathname returned by pwd.

Examples When you open a project in CCS IDE, the folder containing the project becomes
the current working folder in CCS IDE. Try opening the tutorial project
volume.mak in CCS IDE. volume.mak is in the tutorial files from CCS IDE.
When you check the working directory for CCS IDE in MATLAB, you see
something like the following result

wd=cd(cc)

wd =

D:\ticcs\c6000\tutorial\volume1

where the drive letter D may be different based on where you installed CCS
IDE.

Now check your MATLAB working directory:

pwd
3-35

cd
ans =

J:\bin\win32

Your CCS IDE and MATLAB working directories are not the same. To make
the directories the same, use the cd(cc,pwd) syntax

cd(cc,pwd) % Set CCS IDE to use your MATLAB working directory.
pwd % Check your MATLAB working directory.

ans =

J:\bin\win32

cd(cc) % Check your CCS IDE working directory.

ans =

J:\bin\win32

You have set CCS IDE and MATLAB to use the same working directory.

See Also dir, load, open
3-36

cexpr
3cexprPurpose Execute C or GEL (General Extension Language) expressions on the target

Syntax result = cexpr(cc,'expression',timeout)
result = cexpr(cc,'expression')

Description result = cexpr(cc,'expression',timeout) executes the specified
expression on the target processor refered to by cc and returns a result. If your
program includes data in complex data structures and arrays, cexpr offers one
way to access the data.

To run cexpr on your target, you must load a program to the processor. Your
target processor does not need to be running the loaded program to execute
cexpr. In operation cexpr is equivalent to using the CCS Command Line
dialog. Refer to your CCS documentation for more information about using the
command line in CCS.

When you place single quotation marks around the expression argument,
MATLAB ignores the enclosed string, passing it to your target. The target
processor evaluates the expression and returns the result to MATLAB. Any
part of the expression argument that is not in single quotation marks gets
evaluated by MATLAB and sent to the target processor along with the quoted
portion. Using single quotation marks, you can combine MATLAB, GEL (the
General Extension Language) , and C expressions within one cexpr command
so that MATLAB sets a value on the target, the target uses the value, and
returns the result to your MATLAB workspace. Refer to “Examples” for a code
example that mixes C and MATLAB functions in one command.

After you execute the function, MATLAB waits timeout seconds for CCS to
confirm successful completion of the operation. If the wait exceeds timeout
seconds, MATLAB returns an error. Often, the timeout error means the
confirmation was delayed but the succeeded.

Enter expression as a string in single quotation marks defining either a
C expression, a GEL command, or a combination of both C and GEL. CCS
defines the syntax for expression as either:

• A string with C syntax, whose variables reside in the local scope of the target
processor

• A routine mapped to GEL functions defined in the current CCS project
3-37

cexpr
result = cexpr(cc,'expression') is the same as the preceding syntax
except the timeout value defaults to the global timeout in cc. Use get(cc) to
determine the global timeout value.

When you use cexpr, a few points can help you work effectively.

• cexpr returns a result in MATLAB when you use a C statement as the
expression argument. In the first example syntax in “Examples”,
result = cexpr(cc,'x.a'), MATLAB returns result = the value of x.a on
the target. In more concrete form, the syntax
result = cexpr(cc,'x.b=10') sets x.b to 10 on the target and returns
result = 10 to your MATLAB workspace.

• When your expression arguments are GEL functions, cexpr does not return
results to MATLAB.

• Combining C and MATLAB expressions requires that you use single
quotation marks around the C expressions to isolate them from the MATLAB
interpreter. MATLAB performs the functions it understands and then
passes the rest to the target for evaluation. The target returns the result to
MATLAB.

• Pay attention to the scope of the program you are accessing. Only variables
within the current scope of the program in CCS and on the target respond to
cexpr. To access variables using cexpr, the variables must be either global
or within the current scope. When you try to read or write to a variable
outside the current scope, MATLAB returns errors like the following:
??? EvalC: identifier not found: variablename.
??? EvalC: line(1), unexpected token: variablename.

Generally, variables within the program main are available without extra
effort. To get to variables defined locally in subprograms, use breakpoints
and the runtohalt input option in run to set your program to the right scope,
then use cexpr to return the information.

For more information on GEL and GEL files, refer to your CCS documention.

Examples cexpr covers a broad range of uses. To introduce some of the possibilities, the
following examples use both the C expression and GEL expression forms.
3-38

cexpr
Because executing the examples requires that specific variables and functions
exist on the target, you cannot execute the code shown.

 cexpr Syntax Description

result = cexpr(cc,'x.a') Returns the value of field a in structure x
stored on your target. For this example,
expression is x.a and result contains the
value stored in x.a on the target.

result = cexpr(cc,'StartUp()') Executes the GEL function StartUp on the
target processor. expression is ’StartUp’, a
function in the GEL file that loads each
time you start CCS. Note that GEL function
names are case sensitive — StartUp is not
the same as startup. In this example,
result is NULL or empty because GEL
functions do not generate return values. Do
not use an output argument with GEL
expressions as input arguments.

result = cexpr(cc,'x.b = 10') Sets and returns the value of the field b in
structure x. Here the assignemt statement
in single quotation marks replaces
expression. x.b must be a structure in
memory on your target and in the current
program scope. After execution, result
contains the value 10 returned from the
target.

result = cexpr(cc,['x.c[2] =' int2str(z)]) Sets the value of x.c[2] to the string
represented by integer z. In MATLAB,
result contains the value stored in x.c[2]
as returned from the target. Notice that the
C expression is in single quotation marks,
and the MATLAB int2str is not. Using
single quotation marks directs MATLAB to
ignore the C string that applies to the
target processor and to evaluate int2str.
3-39

cexpr
A note about the final example — the variable z must be in your MATLAB
workspace for int2str to work. In contrast, x.c[2] defines a value on your
target, not in MATLAB.

See Also address, read, write
3-40

clear
3clearPurpose Remove links to CCS IDE and RTDX interface

Syntax clear(cc)
clear('all')

Description clear(cc) clears the link associated with cc. The last step in any development
that uses links. Clear links you no longer need for your work to avoid
unforeseen problems. Calling clear executes the object destructors that delete
the link object and all associated memory and resources.

clear('all') clears all existing links to CCS IDE and RTDX interface. The
last step in any development that uses links. Clear links you no longer need for
your work to avoid unforeseen problems. Calling clear with the ’all’ option
executes the object destructors to delete all the link objects and all associated
memory and resources.

Note If a link exists when you close CCS IDE, the application does not close.
Microsoft Windows moves it to the background (it becomes invisible). Only
after you clear all open links to CCS IDE, or close MATLAB, does closing CCS
IDE actually close the application. You can check to see if CCS IDE is running
by checking the Microsoft Windows Task Manager.

See Also ccsdsp, close, disable
3-41

close
3closePurpose Close files in CCS IDE or an open RTDX channel

Syntax close(cc,'filename','type')
close(rx,'channel1','channel2',...)
close(rx,'channel')

Description close(cc,'filename','type') closes the file in CCS IDE identified by
filename of type ’type’. type identifies the type of file to close. This can be
either project files when you use ’project' for the type option, or text files
when you use 'text' for the type option. To close a specific file in CCS IDE,
filename must match exactly the name of the file to close. If you replace
filename with 'all', close terminates every open file whose type matches the
type option. File types recognized by close include these extensions.

When you replace filename with the null entry [], close shuts the current
active file window in CCS IDE. When you specify ’project' for the type option,
it closes the active project.

Note close does not save files before shutting them. Closing files can result
in lost data if you have changed the files since you last saved them. Use save
to ensure that your changes are preserved before you close files that are open.

close(rx,'channel1','channel2',...) closes the channels specified by the
strings channel1, channel2, and so on as defined in rx.

close(rx,'channel') closes the specified channel. When you set channel to
’all', this function closes all the open channels associated with rx.

To avoid conflicts, do not name channels “all” or “ALL.”

type String Affected files

'project' Project files with the .pjt extension.

'text' All files with these extensions — .a*, .c, .cc, .ccx,
.cdb, .cmd, .cpp, .lib, .o*, .rcp, and .s*. Note that
'text' does not close .cfg files.
3-42

close
Examples Using close with Files and Projects

To clarify the different close options, here are six commands that close open
files or projects in CCS IDE.

Using close with RTDX

When you plan to use RTDX to communicate with a target, you open and
enable channels to the board and processor. For example, to communicate with
the processor on your installed board, you use open to set up a channel, as
follows:

cc = ccsdsp('boardnum',1,'procnum',0)
rx=cc.rtdx % Create an alias to the RTDX portion of this link.
open(rx,'ichan','w') % Open a channel for write access.
enable(rx,'ichan') % Enable the open channel for use.

After you finish using the open channel, you must close it to avoid difficulties
later on.

close(rx,'ichan')

Or to close all open channels, you could use

close(rx,'all')

Command Result

close(cc,'all','project') Close all open projects in
CCS IDE.

close(cc,'my.pjt','project') Close the project my.pjt.

close(cc,[],project') Close the active project.

close(cc,'all','text') Close all open text files. This
includes source file, libraries,
command files, and others.

close(cc,'my_source.cpp','text') Close the text file my_source.cpp.

close(cc,[],'text') Close the active file window.
3-43

close
See Also disable, open
3-44

configure
3configurePurpose Define the size and number of RTDX channel buffers

Syntax configure(rx,length,num)

Description configure(rx,length,num) sets the size of each main (host) buffer, and the
number of buffers associated with rx. length is the size in bytes of each
channel buffer and num is the number of channel buffers to create.

Main buffers must be at least 1024 bytes, with the maximum defined by the
largest message. On 16-bit processors, the main buffer must be four bytes
larger than the largest message. On 32-bit processors, set the buffer to be eight
bytes larger that the largest message. By default, configure creates four,
1024-byte buffers. Independent of the value of num, CCS IDE allocates one
buffer for each processor.

Use CCS to check the number of buffers and the length of each one.

Examples Create a default link to CCS and configure six main buffers of 4096 bytes each
for the link.

 cc=ccsdsp % Create the CCS link with default values.

CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

rx=cc.rtdx % Create an alias to the rtdx portion.

RTDX channels : 0

configure(rx,4096,6) % Use the alias rx to configure the length
% and number of buffers.
3-45

configure
After you configure the buffers, use the RTDX Tools in Code Composer Studio
IDE to verify the buffers.

See Also readmat, readmsg, write, writemsg
3-46

convert
3convertPurpose Change the represent property for an object from one datatype to another

Syntax convert(objname,datatype)
convert(objname,datatype,size)

Description convert(objname,datatype) returns objname with the represent property
changed to the data type specified by datatype. Input argument datatype can
be any supported datatype. After you change the datatype specified in
represent, read or write operations apply the appropriate data conversion to
implement on the target the datatype specified by the represent property.

The following datatypes work as input arguments to convert:

Datatype String represent Property Value

'double' 'float'

'single' 'float'

'int32' 'signed'

'int16' 'signed'

'int8' 'signed'

'uint32' 'unsigned'

'uint16' 'binary'

'uint8' 'binary'

'long double' 'float'

'double_c' 'float'

'float' 'float'

'long' 'signed'

'int' 'signed'

'char' 'signed'

'unsigned long' 'signed'
3-47

convert
Various TI processors restrict the sizes of the datatypes used by objects in
MATLAB Link for Code Composer Studio. Shown in the next table, the
processor families restrict the valid word sizes for the listed data types.

Using the properties of the objects, you change the word size by changing the
value of the storageunitspervalue property of the object. Note that you
cannot change the bitsperstorageunit property value which depends on the
processor and whether the object represents a memory location or a register.

convert applies to any object that has the represent property. function,
ccsdsp, and rtdx objects do not use the represent property and do not support
convert.

convert(objname,datatype,size) returns objname with the specified
datatype for the represent property, and the size property value set to size.

See Also cast

'unsigned int' 'unsigned'

'unsigned char' 'binary'

’Q0.15’ 'signed'

’Q0.31’ 'unsigned'

represent
Property Value

C5x Processor Word
Size Limits

C6x Processor Word
Size Limits

’float' 32, 64 bits 32,64 bits

’signed’ 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits

'unsigned' 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits

'binary' 16, 24, 32, 40, 48, 56,
64 bits

8, 16, 24, 32, 40, 48, 56,
64 bits

Datatype String represent Property Value
3-48

copy
3copyPurpose Make a copy of an object

Syntax objname2 = copy(objname)

Description objname2 = copy(objname) returns objname2 that is a copy of the input object
specified by objname. All objects in the MATLAB Link for Code Composer
Studio support the copy function. Note that objname2 is independent of the
original; it is not an alias to the original objname. When you change a property
of objname2, you are not changing the same property in objname.

See Also createobj
3-49

createobj
3createobjPurpose Create MATLAB objects that represent embedded data or functions in
a program on your target

Syntax objname = createobj(cc,'symbolname');
objname = createobj(cc,'symbolname','option');

Description objname = createobj(cc,'symbolname') makes an object in your MATLAB
workspace named objname. Your new object contains information about the
program symbol defined by symbolname. To work, you must have loaded a .out
file to your target in CCS, and the symbol must be in the current symbol table
in CCS.

To increase the accuracy of the information about global symbols in your
project, use goto, as shown here, to position the program counter to the start
of main in your application in CCS.

goto(cc,'main')

Note that symbolname can be the name of a function in your target code. Thus,
symbolname can refer to data or a function present on the target.

symbolname can be either a static variable or a global variable.

objname = createobj(cc,'symbolname','option') lets you declare whether
symbolname represents a static or global variable. Use either of the following
strings to declare the type for symbolname in option:

• static—declares that symbolname refers to a static variable in your code

• global—declares that symbolname refers to a global variable in your code

See Also copy, ccsdsp
3-50

delete
3deletePurpose Remove debug points in addresses or source files in Code Composer Studio

Syntax delete(cc,addr,'type')
delete(cc,addr)
delete(cc,filename,line,'type')
delete(cc,filename,line)

Description delete(cc,addr,'type') removes a debug point located at the memory
address identified by addr for your target digital signal processor. Object cc
identifies which target has the debug point to delete. CCS provides several
types of debug points. To learn more about the behavior of the various
debugging points refer to your CCS documentation. Options for type include
the following to remove Breakpoints and Probe Points:

• ’break' — removes a breakpoint. This is the default .

• ' ' — same as 'break'.

• ’probe' — removes a Probe Point.

Unlike CCS, you cannot enter addr as a C function name, valid C expression,
or a symbol name.

When the type you specify does not match the debug point type at the selected
location, or no debug point exists, the MATLAB Link for Code Composer Studio
returns an error reporting that it could not find the specified debugging point.

delete(cc,addr) is the same as the previous syntax except the function
defaults to 'break' for removing a breakpoint.

delete(cc,filename,line,'type') lets you specify the line from which you
are removing the debug point. Argument line specifies the line number in the
source file file in CCS. line, in decimal notation, defines the line number of
the debugging point to remove. To identify the source file, argument filename
contains the name of the file in CCS, entered as a string in single quotation
marks. type accepts one of two strings — break or probe — as defined
previously. When 'type' does not match the debug point type at the specified
location, or no debug point exists, the MATLAB Link for Code Composer Studio
returns an error that it could not find the debug point.

delete(cc,filename,line) defaults to 'break' to remove a breakpoint.
3-51

delete
See Also address, insert, run
3-52

deleteregister
3deleteregisterPurpose Remove one or more registers from the list of saved registers stored in the
property savedregs of function objects

Syntax deleteregister(ff,'regname')
deleteregister(ff,'reglist'

Description addregister(ff,regname) removes register regname from the list of registers
that get preserved or reverted when a function is finished running. ff
indentifies the program function to which the register applies. You can delete
any register you added from the saved registers list. You cannot delete
registers that are on the default list of saved registers.

When you issue the createobj call to create a handle to a function, the
compiler creates the default list of saved registers. When you execute the
function, the compiler saves the registers in the list, runs its process, and after
completing its process, restores the saved registers to their initial state using
the contents of the saved registers.

After a function generates a result, the execution process returns the saved
registers to their initial states and values. When you delete a register you
added to the saved registers list, the deleted register is not restored or saved
with other registers in the list.

For each processor family, the default list of saved registers changes, as shown
in these sections. The default lists include registers that the compiler saves and
that MATLAB requires for MATLAB Link for Code Composer Studio to operate
correctly.

Default Saved Registers For C54x Processors
AR1, AR6, AR7, and SP (required by MATLAB, not the compiler)

Default Saved Registers For C62x and C67x Processors
A0, A2, A6, A7, A8, A9. Also B0, B1, B2, B4, B5, B6, B7, B8, B9. To support
MATLAB requirements, B15 (the stack pointer) gets saved as well.

Registers A3,A4, A5, and B3—your function must preserve these but they are
not needed for reading function output.

Default Saved Registers For C64x Processors
A0, A2, A6, A7, A8, A9, A16, A17, A19, A19, A20, A21, A22, A23, A24, A25, A26,
A27, A28, A29, A30, A31. Also B0, B1, B2, B4, B5, B6, B7, B8, B9, B16, B17,
3-53

deleteregister
B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31. To
support MATLAB requirements, B15 (the stack pointer) gets saved as well.

Register B15—not required by the compiler, but is required by MATLAB and
is saved.

Registers A3, A4, and A5—function must preserve these but they're needed for
reading function output

deleteregister(ff,reglist) deletes the register names in reglist from the
list of registers that get preserved when a task is finished. ff indentifies the
function to which the register applies. reglist is a cell array that contains the
names of registers to remove from the saved registers collection.

See Also addregister
3-54

deref
3derefPurpose Return an object that accesses the object a pointer object points to

Syntax objname2 = deref(objname)

Description objname2 = deref(objname) creates objname2, an object representing the
target of objname, which is either a pointer or rpointer object. deref does
exactly what the dereferencing operator * does in C. Pointer and rpointer
objects support using function deref.

After being returned by deref, objname2 is an object which represents the
target of objname. When you write objname2 to CCS,

See Also createobj, read, write
3-55

dir
3dirPurpose List the files in the current CCS IDE working directory

Syntax dir(cc)

Description dir(cc) lists the files and directories in the current CCS IDE working
directory. This does not reflect your MATLAB working directory or change the
working directory.

Use cd to change your CCS IDE working directory.

See Also cd, open
3-56

disable
3disablePurpose Disable the RTDX interface, a specified channel, or all RTDX channels

Syntax disable(rx,'channel')
disable(rx,'all')
disable(rx)

Description disable(rx,'channel') disables the open channel specified by the string
channel, for rx. rx represents the RTDX portion of the associated link to CCS
IDE.

disable(rx,'all') disables all the open channels associated with rx.

disable(rx) disables the RTDX interface for rx.

Important requirements for using disable
On the target side, disable depends on RTDX to disable channels or the
interface. You must meet the following requirements to use disable.

1 The target must be running a program when you use disable for channels
or the RTDX interface.

2 You must have the enabled the RTDX interface.

3 Your target program must be polling periodically for disable to work.

Examples When you have opened and used channels to communicate with a target
processor, you should disable the channels and RTDX before ending your
session. Use disable to switch off open channels and disable RTDX, as follows.

disable(cc.rtdx,'all') % Disable all open RTDX channels.
disable(cc.rtdx) % Disable RTDX interface.

See Also close, enable, open
3-57

disp
3dispPurpose Display the channel properties of an RTDX link

Syntax disp(rx)

Description disp(rx) provides a formatted list of the channel property names and property
values for the specified RTDX link to your target processor. When you create a
new link in MATLAB and omit the closing semicolon on the ccsdsp function,
MATLAB uses disp to display the configuration for the new link.

Examples The following example illustrates the display for the channel properties. Notice
that disp does not return the name of the link (cc) in the display.

cc=ccsdsp

CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

disp(cc)
CCSDSP Object:
 API version = 1.0
 Processor type = C67
 Processor name = CPU
 Running? = No
 Board number = 0
 Processor number= 0
 Default timeout = 10.00 secs

RTDX channels : 0

rx = cc.rtdx
disp(rx)
3-58

disp
RTDX channels : 0

See Also display, get, set
3-59

display
3displayPurpose Display the properties of a link to CCS IDE or an RTDX link

Syntax display(cc)
display(rx)

Description Similar to omitting the closing semicolon from an expression on the command
line, except that display does not display the variable name. display provides
a formatted list of the property names and property values for a a link to CCS
IDE. To return the configuration data, display calls the function disp.

display(cc)

display(rx)

The following example illustrates the default display for a link to CCS IDE.

cc=ccsdsp;

display(cc)
CCSDSP Object:

 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

Examples Try this example to see the display for an RTDX link to a target processor.

cc = ccsdsp;
rx=(cc.rtdx) % Assign the RTDX portion of cc to rx.

RTDX channels : 0

display(rx)
3-60

display
RTDX channels : 0

See Also disp, get, set
3-61

enable
3enablePurpose Enable the RTDX interface, a specified channel, or all RTDX channels

Syntax enable(rx,'channel')
enable(rx,'all')
enable(rx)

Description enable(rx,'channel') enables the open channel specified by the string
channel, for RTDX link rx. rx represents the RTDX portion of the associated
link to CCS IDE.

enable(rx,'all') enables all the open channels associated with rx.

enable(rx) enables the RTDX interface for rx.

Important requirements for using enable
On the target side, enable depends on RTDX to enable channels. Therefore the
you must meet the following requirements to use enable.

1 The target must be running a program when you enable the RTDX interface.
When the target is not running, the state defaults to disabled.

2 You must enable the RTDX interface before you enable individual channels.

3 Channels must be open before you can enable them.

4 Your target program must be polling periodically for enable to work.

5 Using code in the program running on the target to enable channels
overrides the default disabled state of the channels.

Examples To use channels to RTDX, you must both open and enable the channels.

cc = ccsdsp; % Create a new link.
enable(cc.rtdx) % Enable the RTDX interface.
open(cc.rtdx,'inputchannel','w') % Open a channel for sending

% data to the target processor.
enable(cc.rtdx,'inputchannel') % Enable the channel so you can use

% it.

See Also disable, open
3-62

equivalent
3equivalentPurpose Return the equivalent string or numeric value for an input argument

Syntax value = equivalent(objname,input)

Description value = equivalent(objname,input) returns value as either

• The decimal numeric equivalent of input when input is a string

• The string equivalent value of input when input is a numeric

input can be a single value, a single string, an array of values or strings, or a
cell array of values or strings.

Numeric objects, string objects, rstring objects, and enum objects all support
equivalent.

The conversion process depends on the setting of the charconversion property
of the object. Currently, the only property value allowed for charconversion is
’ASCII’ indicating that strings are treated as ASCII characters and numeric
values get converted to the ASCII equivalents.

See Also cast, convert
3-63

execute
3executePurpose Execute a function on a target through Code Composer Studio

Syntax execute(ff)
execute(ff,input1,value1,...,inputn,valuen)

Description execute(ff) runs the function specified by handle ff on your target hardware.
When you do not specify values for the inputs to the function, execute uses the
values stored in property inputvars for the arguments. The function runs until
the end of the function, or until it reaches a breakpoint. After executing the
function, the execution process puts the return in the assigned location in
property outputvar of ff. From MATLAB, use read to check the result stored
in outputvar.

Before you use execute to run a function, use goto to position the program
counter to the beginning of the function. execute assumes that you have
completed this step; it does not search for the function. Execution starts from
the program counter location and continues to the end of the function or an
intervening breakpoint.

You must set the property outputvar for ff before you run your function.
execute fails if you have not set outputvar prior to executing ff.

execute(ff,input1, value1,...,inputn,valuen) runs the function
identified by ff, first writing the input values assigned by the input1, value1,
input2, value2, and so on pairs to inputvars. input1, input2,...,inputn must
be strings

See Also goto, run, write
3-64

flush
3flushPurpose Flush data or messages out of one or more specified RTDX channels

Syntax flush(rx,'channel’,num,timeout)
flush(rx,’channel’,num)
flush(rx,’channel’,[],timeout)
flush(rx,’channel’)

Description flush(rx,channel,num,timeout) removes num oldest data messages from the
RTDX channel queue specified by channel in rx. To determine how long to wait
for the function to complete, flush uses timeout (in seconds) rather than the
global timeout period stored in rx. flush applies the timeout processing when
it flushes the last message in the channel queue, since the flush function
performs a read to advance the read pointer past the last message. Use this
calling syntax only when you specify a channel configured for read access.

flush(rx,channel,num) removes the num oldest messages from the RTDX
channel queue in rx specified by the string channel. flush uses the global
timeout period stored in rx to determine how long to wait for the process to
complete. Compare this to the previous syntax that specifies the timeout
period. Use this calling syntax only when you specify a channel configured for
read access.

flush(rx,channel,[],timeout) removes all data messages from the RTDX
channel queue specified by channel in rx. To determine how long to wait for
the function to complete, flush uses timeout (in seconds) rather than the
global timeout period stored in rx. flush applies the timeout processing when
it flushes the last message in the channel queue, since flush performs a read
to advance the read pointer past the last message. Use this calling syntax only
when you specify a channel configured for read access.

flush(rx,channel) removes all pending data messages from the RTDX
channel queue specified by channel in rx. Unlike the preceding syntax options,
you use this statement to remove messages for both read-configured and
write-configured channels.

If you use flush with a write-configured RTDX channel, DKTI sends all the
messages in the write queue to the target. For read-configured channels, flush
removes one or more messages from the queue depending on the input
argument num you supply and disposes of them.
3-65

flush
Examples To demonstrate flush, this example writes data to the target over the input
channel, then uses flush to remove a message from the read queue for the
output channel.

cc = ccsdsp;
rx = cc.rtdx;
open(rx,'ichan','w');
enable(rx,'ichan');
open(rx,'ochan','r');
enable(rx,'ochan');
indata = 1:10;
writemsg(rx,'ichan',int16(indata));
flush(rx,'ochan',1);

Now flush the remaining messages from the read channel

flush(rx,'ochan','all');

See Also enable, open
3-66

get
3getPurpose Return the properties of an object

Syntax get(cc,'propertyname')
get(cc)
v = get(cc,'propertyname')
get(rx,'propertyname')
get(rx)
v = get(rx)
get(objname,'propertyname')
get(objname)

v = get(objname)

Description get(cc,'propertyname') returns the property value associated with
propertyname for link cc.

get(cc) returns all the properties and property values identified by the link
cc.

v = get(cc,'propertyname') returns a structure v whose field names are the
link cc property names and whose values are the current values of the
corresponding properties. cc must be a link. If you do not specify an output
argument, MATLAB displays the information on the screen.

get(rx,'propertyname') returns the property value associated with
propertyname for link rx.

get(rx) returns all the properties and property values identified by the link
rx.

v = get(rx) returns a structure v whose field names are the link rx property
names and whose values are the current values of the corresponding
properties. rx must be a link. If you do not specify an output argument,
MATLAB displays the information on the screen.

get(objname,'propertyname') returns the property value associated with
propertyname for objname.

get(objname) returns all the properties and property values identified by
objname.
3-67

get
v = get(objname) returns a structure v whose field names are the objname
property names and whose values are the current values of the corresponding
properties. objname must be an object in your MATLAB workspace. If you do
not specify an output argument, MATLAB displays the information on the
screen.

Examples After you create a link for CCS IDE and RTDX, get provides a way to review
the properties of the link.

cc=ccsdsp

CCSDSP Object:
 API version : 1.0
 Processor type : C67
 Processor name : CPU
 Running? : No
 Board number : 0
 Processor number : 0
 Default timeout : 10.00 secs

 RTDX channels : 0

get(cc)

ans =

 app: [1x1 activex]
 dspboards: [1x1 activex]
 dspboard: [1x1 activex]
 dsptasks: [1x1 activex]
 dsptask: [1x1 activex]
 dspuser: [1x1 activex]
 rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: 'D:\ticcs\cc\bin\cc_app.exe'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0
3-68

get
v=get(cc)

v =

 app: [1x1 activex]
 dspboards: [1x1 activex]
 dspboard: [1x1 activex]
 dsptasks: [1x1 activex]
 dsptask: [1x1 activex]
 dspuser: [1x1 activex]
 rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: 'D:\ticcs\cc\bin\cc_app.exe'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

v.app

ans =
activex object: 1-by-1

v.rtdx

 RTDX channels : 0

RTDX links work in the same way. Create an alias rx to the RTDX portion of
cc, then use the alias with get.

rx=cc.rtdx

 RTDX channels : 0

get(rx)

ans =

 numChannels: 0
 Rtdx: [1x1 activex]
 RtdxChannel: {'' [] ''}
3-69

get
 procType: 103
 timeout: 10

v=get(rx)

v =

 numChannels: 0
 Rtdx: [1x1 activex]
 RtdxChannel: {'' [] ''}
 procType: 103
 timeout: 10
v.timeout

ans =

 10

v.procType

ans =

 103

See Also set
3-70

getmember
3getmemberPurpose Return an object that accesses one member of a structure

Syntax objname2 = getmember(objname,membername)
objname2 = getmember(objname,index,membername)

Description objname2 = getmember(objname,membername) returns the object objname2
that represents membername, a member of the structure that objname accesses.
membername must be a string and objname must represent a structure in
memory. Once you create objname2, it becomes the object you use to read and
write membername. Along with createobj, these are the only functions that
create objects in the product.

The class of objname2 depends on the data type of membername—numeric
structure members return numeric objects, enumerated members return enum
objects, pointers return pointer objects, and so on.

objname2 = getmember(objname,index,membername)

Examples Suppose you have declared a structure in your source code called testdeepstr,
using code like this:

struct testdeepstr {
int x_int;
struct mystructa x_str;

 struct mystructa z_str[2];
} str_recur;

Now, getmember creates objects that directly access members of str_recur.

str_recur=createobj(cc,'str_recur')

STRUCTURE Object:
 Symbol Name : str_recur
 Address : [2147500816 0]
 Address Units per value : 224 AU
 Size : [1]
 Total Address Units : 224 AU
 Array ordering : row-major
 Members : 'x_int', 'x_str', 'z_str'

x_str=getmember(structtest,'x_str')
3-71

getmember
STRUCTURE Object:
 Symbol Name : x_str
 Address : [2147500824 0]
 Address Units per value : 72 AU
 Size : [1]
 Total Address Units : 72 AU
 Array ordering : row-major
 Members : 's_int', 'a_int', 's_double', 'a_char'

Even when the structure member is itself a structure, getmember provides
access directly to the nested structure, or indeed to members within the nested
structure.

s_double=getmember(nestx_str,'s_double')

NUMERIC Object
 Symbol Name : s_double
 Address : [2147500872 0]
 Wordsize : 64 bits
 Address Units per value : 8 AU
 Representation : float
 Binary point position : 0
 Size : [1]
 Total address units : 8 AU
 Array ordering : row-major
 Endianness : little

Numeric object s_int is now your handle to write to or read from member
s_double.

read(s_int)

ans =

 -1.4938e+059

write(s_int,2)
read(s_int)

ans =
3-72

getmember
 2

See Also createobj, read, write
3-73

goto
3gotoPurpose Position the program counter to the specified location in the project code

Syntax goto(cc)
goto(cc,'functionname')
goto(ff)
goto(objname,'input1',value1,...,'inputn',valuen)

Description goto(cc) places a breakpoint at the entry point to the main function, then
restarts the target and waits for the running application to stop at the
breakpoint. When successful, goto positions the target program counter (PC)
to the beginning of main. With the PC positioned to main, the target can
initialize the static variables.

Note goto always halts at the first breakpoint it encounters, and returns
that location.

goto(cc,'functionname') positions a breakpoint at the entry point for
functionname, then runs the program on the target until it reaches the
breakpoint, in the project specified by cc. Because CCS automatically adds a
breakpoint at main, position the PC at main before you use this syntax. If you
have other breakpoints between the start of main and the starting point for
functionname, goto may return with the location of a breakpoint that is not the
beginning of functionname. To avoid this, disable all breakpoints before you
run goto. Specify functionname as a string. Note that goto returns when it
encounters

goto(ff) postions the PC to the beginning of the function accessed by ff.
Using goto in this syntax prepares the function to be executed but does not
place any information in the registers associated with the function. Before you
use this form of goto, you must pass the necessary values for the function input
arguments into the appropriate registers. You must do this whether the
function has input parameters or not.
3-74

goto
In the following list, you see the registers and memory locations that are
affected by preparing to run the function. Since you can only use up to 10 input
arguments for a function, only 10 arguments appear in the list.

goto(ff,'input1',value1,...,'inputn',valuen) positions the PC to the
beginning of the function accessed by ff, and sets the function input arguments
input1 through inputn to the values value1 through valuen, as provided in the
command. The order of the input names and values is not important; it does

Argument Register For Long
Arguments

Description

value1 A4 A5:A4 First input value to function

value2 B4 B5:B4 Second input value to function

value3 A6 A7:A6 Third input value to function

value4 B6 B7:B6 Fourth input value to function

value5 A8 A9:A8 Fifth input value to function

value6 B8 B9:B8 Sixth input value to function

value7 A10 A11:A10 Seventh input value to function

value8 B10 B11:B10 Eighth input value to function

value9 A12 A13:A12 Ninth input value to function

value10 B12 B13:B12 Tenth input value to function

Pointer to returned
structure

A3 N/A Pointer

Return Address Register B3 N/A Address of register

Returned Argument A4 A5:A4 Returned argument

Data Page Pointer (DP) B14 N/A

Frame Pointer (FP) A15 N/A

Stack Pointer (SP) B15 N/A
3-75

goto
not need to match the order of the input arguments in the function prototype
or declaration.

See Also delete, execute, insert, run
3-76

halt
3haltPurpose Terminate execution of a process running on the target

Syntax halt(cc,timeout)

Description halt(cc,timeout) immediately stops program execution by the processor.
After the processor stops, halt returns to the host. timeout defines, in seconds,
how long the host waits for the target processor to stop running. To resume
processing after you halt the processor, use run. Also, the read(cc,'pc')
function can determine the memory address where the processor stopped after
you use halt.

timeout defines the maximum time the routine waits for the processor to stop.
If the processor does not stop within the specified timeout period, the routine
returns with a timeout error.

halt(cc) immediately stops program execution by the processor. After the
processor stops, halt returns to the host. In this syntax, the timeout period
defaults to the global timeout period specified in cc. Use get(cc) to determine
the global timeout period.

Examples Use one of the provided demonstration programs to show how halt works. From
the CCS IDE demonstration programs, load and run volume.out.

At the MATLAB prompt create a link to CCS IDE

cc = ccsdsp

Check whether the program volume.out is running on the processor.

isrunning(cc)

ans =

 1

cc.isrunning % Alternate syntax for checking the run status.

ans =

 1
halt(cc) % Stop the running application on the processor.
3-77

halt
isrunning(cc)

ans =

 0

Issuing the halt stopped the process on the target. Checking in CCS IDE shows
that the process has stopped.

See Also ccsdsp, isrunning, run
3-78

info
3infoPurpose Return information about the target processor

Syntax info = info(cc)
info = info(rx)

Description info = info(cc) returns the property names and property values associated
with the processor targeted by cc. info is a structure containing the following
information elements and values:

Structure Element Data Type Description

info.procname String Processor name as defined in the CCS setup utility. In
multiprocessor systems, this name reflects the specific
processor associated with cc.

info.isbigendian Boolean Value describing the byte ordering used by the target
processor. When the processor is big-endian, this value
is 1. Little-endian processors return 0.

info.family Integer Three-digit integer that identifies the processor family,
ranging from 000 to 999. For example, 320 for Texas
Instruments digital signal processors.

info.subfamily Decimal Decimal representation of the hexadecimal identification
value that TI assigns to the processor to identify the
processor subfamily. IDs range from 0x000 to 0x3822. Use
dec2hex to convert the value in info.subfamily to
standard notation. For example

dec2hex(info.subfamily)
produces ’67’ when the processor is a member of the 67xx
processor family.

info.timeout Integer Default timeout value MATLAB uses when transferring
data to and from CCS. All functions that use a timeout
value have an optional timeout input argument. When
you omit the optional argument, MATLAB uses this
default value—10s.
3-79

info
info = info(rx) returns info as a cell arraying containing the names of your
open RTDX channels.

Examples On a PC with a simulator configured in CCS IDE, info returns the
configuration for the processor being simulated:

info(cc)

ans =

 procname: 'CPU'
 isbigendian: 0
 family: 320
 subfamily: 103
 timeout: 10

In this example, we are simulating the TMS320C6211 processor running in
little-endian mode. When you use CCS Setup Utility to change the processor
from little-endian to big-endian, info shows the change.

info(cc)

ans =

 procname: 'CPU'
 isbigendian: 1
 family: 320
 subfamily: 103
 timeout: 10

If you have two open channels, chan1 and chan2,

info = info(rx)

returns

info =
'chan1'
'chan2'
3-80

info
where info is a cell array. You can dereference the entries in info to
manipulate the channels. For example, you can close a channel by
dereferencing the channel in info in the close function syntax.

close(rx.info{1,1})

See Also ccsdsp, dec2hex, get, set
3-81

insert
3insertPurpose Add a debug point to a source file or address in Code Composer Studio

insert(cc,addr,'type')
insert(cc,addr)
insert(cc,filename,line,'type')
insert(cc,filename,line)

Description insert(cc,addr,type) adds a debug point located at the memory address
identified by addr for your target digital signal processor. The link cc identifies
which target has the debug point to insert. CCS provides several types of debug
points. Options for type include the following strings to define Breakpoints,
Probe Points, and Profile points:

• ’break' — add a Breakpoint. It defines a point at which program execution
stops.

• ' ' — same as 'break'.

• ’probe' — add a Probe Point that updates a CCS window during program
execution. When CCS connects your probe point to a window, the window
gets updated only when the executing program reaches the Probe Point.

• ’profile' — add a point in an executing program at which CCS gathers
statistics about events that occurred since encountering the previous profile
point, or from the start of your program.

Enter addr as a hexadecimal address, not as a C function name, valid C
expression, or a symbol name.

To learn more about the behavior of the various debugging points refer to your
CCS documentation.

insert(cc,addr) is the same as the previous syntax except the type string
defaults to 'break' for inserting a Breakpoint.

insert(cc,filename,line,'type') lets you specify the line where you are
inserting the debug point. line, in decimal notation, specifies the line number
in filename in CCS where you are adding the debug point. To identify the
source file, filename contains the name of the file in CCS, entered as a string
in single quotation marks. type accepts one of three strings — break, probe, or
profile — as defined previously. When the line or file you specified does not
3-82

insert
exist, the MATLAB Link for Code Composer Studio returns an error explaining
that it could not insert the debug point.

insert(cc,filename,line) defaults to type ’break’ to insert a breakpoint.

Example Open a project in CCS IDE, such as volume.pjt in the tutorial folder where
you installed CCS IDE. Although you can do this from CCS IDE, use the
MATLAB Link for Code Composer Studio functions to open the project and
activate the appropriate source file where you add the breakpoint. Remember
to load the program file volume.out so you can access symbols and their
addresses.

cd (cc,'c:\ti\tutorial\sim62xx\volume1') % Default install;
wd=cd(cc);

wd =

c:\ti\tutorial\sim62xx\volume1

open(cc,'volume.pjt');

build(cc, 30);

Now add a breakpoint and a probe point.

insert(cc,15424,'break') % Adds a breakpoint at symbol “main”
insert(cc,'volume.c',47,'probe') % Adds a probe point on line 47

Switch to CCS IDE and open volume.c. Note the blue diamond and red circle
in the left margin of the volume.c listing. Red cirles indicate Breakpoints and
blue diamonds indicate Probe Points.

Use symbol to return a structure listing the symbols and their addresses for the
current program file. symbol returns a structure that contains all the symbols.
To display all the symbols with addresses, use a loop construct like the
following:

for k=1:length(s),disp(k),disp(s(k)),end

where structure s holds the symbols and addresses.

See Also address, delete, run
3-83

isenabled
3isenabledPurpose Determine whether an RTDX link is enabled for communications

Syntax isenabled(rx,'channel')
isenabled(rx)

Description isenabled(rx,'channel') returns ans=1 when the RTDX channel specified by
string ’channel’ is enabled for read or write communications. When ’channel’
has not been enabled, isenabled returns ans=0.

isenabled(rx) returns ans=1 when RTDX has been enabled, independent of
any channel. When you have not enabled RTDX you get ans=0 back.

Important requirements for using isenabled
On the target side, isenabled depends on RTDX to determine and report the
RTDX status. Therefore the you must meet the following requirements to use
isenabled.

1 The target must be running a program when you query the RTDX interface.

2 You must enable the RTDX interface before you check the status of
individual channels or the interface.

3 Your target program must be polling periodically for isenabled to work.

Note For isenabled to return reliable results, your target must be running
a loaded program. When the target is not running, isenabled returns a status
that may not represent the true state of the link or RTDX.

Examples With a program loaded on your target, you can determine whether RTDX
channels are ready for use. restart your program to be sure it is running. The
target must be running for isenabled to work, as well as for enabled to
work.In this example, we created a link cc to begin.

cc.restart
cc.run('run');
cc.rtdx.enable('ichan');
cc.rtdx.isenabled('ichan')
3-84

isenabled
MATLAB returns 1 indicating that your channel ’ichan’ is enabled for RTDX
communications. To determine the mode for the channel, use cc.rtdx to
display the properties of link cc.rtdx.

See Also clear, disable, enable
3-85

isreadable
3isreadablePurpose Determine if MATLAB can read the specified memory block

Syntax isreadable(cc,address,'datatype’, count)
isreadable(cc,address,'datatype’)
isreadable(rx,'channel')

Description isreadable(cc,address,'datatype’,count) returns 1 if the processor
referred to by cc can read the memory block defined by the address, count, and
datatype input arguments. When the processor cannot read any portion of the
specified memory block, isreadable returns 0. Notice that you use the same
memory block specification for this function as you use for the read function.
The data block being tested begins at the memory location defined by address.
count determines the number of values to be read. datatype defines the format
of data stored in the memory block. isreadable uses the datatype string to
determine the number of bytes to read per stored value. For details about each
input parameter, read the following descriptions.

address — isreadable uses address to define the beginning of the memory
block to read. You provide values for address as either decimal or hexadecimal
representations of a memory location in the target processor. The full address
at a memory location consists of two parts: the offset and the memory page,
entered as a vector [location, page], a string, or a decimal value. In cases
where the processor has only one memory page, as is true for many digital
signal processors, the page portion of the memory address is 0. By default,
ccsdsp sets the page to 0 at creation if you omit the page property as an input
argument to set the page parameter.
3-86

isreadable
For processors that have one memory page, setting the page value to 0 lets you
specify all memory locations in the processor using just the memory location
without the page value.

To specify the address in hexadecimal format, enter the address property
value as a string. isreadable interprets the string as the hexadecimal
representation of the desired memory location. To convert the hex value to a
decimal value, the function uses hex2dec. Note that when you use the string
option to enter the address as a hex value, you cannot specify the memory page.
For string input, the memory page defaults to the page specified by cc(page).

count — a numeric scalar or vector that defines the number of datatype values
to test for being readable. To assure parallel structure with read, count can be
a vector to define multidimensional data blocks. This function always tests a
block of data whose size is the product of the dimensions of the input vector.

datatype — a string that represents a MATLAB data type. The total memory
block size is derived from the value of count and the specified datatype.
datatype determines how many bytes to check for each memory value.
isreadable supports the following data types:

Table 3-4: Examples of Address Property Values

Property
Value

Address Type Interpretation

'1F' String Location is 31 decimal on the page
referred to by cc(page)

10 Decimal Address is 10 decimal on the page
referred to by cc(page)

[18,1] Vector Address location 10 decimal on memory
page 1 (cc(page) = 1)

datatype String Number of Bytes/Value Description

'double' Double-precision floating
point values

'int8' Signed 8-bit integers
3-87

isreadable
Like the iswritable, write, and read functions, isreadable checks for valid
address values. Illegal address values would be any address space larger than
the available space for the processor—232 for the C6xxx processor family and
216 for the C5xxx series. When the function identifies an illegal address, it
returns an error message stating that the address values are out of range.

isreadable(cc,address,'datatype’) returns 1 if the processor referred to
by cc can read the memory block defined by the address, and 'datatype' input
arguments. When the processor cannot read any portion of the specified
memory block, isreadable returns 0. Notice that you use the same memory
block specification for this function as you use for the read function. The data
block being tested begins at the memory location defined by address. When you
omit the count option, count defaults to one.

isreadable(rx,'channel') returns a 1 when the RTDX channel specified by
the string 'channel', associated with link rx, is configured for 'read' operation.
When 'channel' is not configured for reading, isreadable returns 0.

Like the iswritable, read, and write functions, isreadable checks for valid
address values. Illegal address values would be any address space larger than
the available space for the processor—232 for the C6xxx processor family and
216 for the C5xxx series. When the function identifies an illegal address, it
returns an error message stating that the address values are out of range.

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating
point data

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

datatype String Number of Bytes/Value Description
3-88

isreadable
Note isreadable relies on the memory map option in CCS IDE. If you did
not properly define the memory map for the processor in CCS IDE,
isreadable does not produce useful results. Refer to your Code Composer
Studio documentation for more information on configuring memory maps.

Examples When you write scripts to run models in MATLAB and CCS IDE, the
isreadable function is very useful. Use isreadable to check that the channel
from which you are reading is configured properly.

cc = ccsdsp;
rx = cc.rtdx;

% Define read and write channels to the target linked by cc.
open(rx,'ichannel','r');s
open(rx,'ochannel','w');
enable(rx,'ochannel');
enable(rx,'ichannel');

isreadable(rx,'ochannel')
ans=

0
isreadable(rx,'ichannel')
ans=

1

Now that your script knows that it can read from ’ichannel’, it proceeds to read
messages as required.

See Also hex2dec, iswritable, read
3-89

isrtdxcapable
3isrtdxcapablePurpose Determine whether the target processor supports RTDX

Syntax b=isrtdxcapable(cc)

Description b=isrtdxcapable(cc) returns b=1 when the target processor referenced by
link cc supports Real-Time Data Exchange (RTDX). When the target does not
support RTDX, isrtdxcapable returns b=0.

Examples Create a link to your C6701EVM. Test to see if the processor on the board
supports RTDX. It should.

cc=ccsdsp; %Assumes you have one board and it is the C6701 EVM
b=isrtdxcapable(cc)
b =

1

3-90

isrunning
3isrunningPurpose Test whether the target processor is executing a process

Syntax isrunning(cc)

Description isrunning(cc) returns 1 when the target processor is executing a program.
When the processor is halted, isrunning returns 0.

Examples isrunning lets you determine whether the target processor is running. After
you load a program to the target, use isrunning to be sure the program is
running before you enable RTDX channels.

cc = ccsdsp;

isrunning(cc)

ans =

 0
% Load a program to the target.

run(cc)
isrunning(cc)

ans =

 1

halt(cc)
isrunning(cc)

ans =

 0

See Also halt, restart, isrunning
3-91

isvisible
3isvisiblePurpose Test whether CCS IDE is running on the PC

Syntax isvisible(cc)

Description isvisible(cc) determines whether CCS IDE is running on the desktop and
the window is open. If CCS IDE window is open, isvisible returns 1.
Otherwise, the result is 0 indicating that CCS IDE is either not running or is
running in the background.

Examples Test to see if CCS IDE is running. Start by launching CCS IDE. Then open
MATLAB. At the prompt, enter

cc=ccsdsp

CCSDSP Object:
 API version = 1.0
 Processor type = C67
 Processor name = CPU
 Running? = No
 Board number = 0
 Processor number= 0
 Default timeout = 10.00 secs

RTDX Object:
 Timeout: 10.00 secs
 Number of open channels: 0

MATLAB creates a link to CCS IDE and leaves CCS IDE visible on your
desktop.

isvisible(cc)

ans =

 1

Now, change the visibility state to 0, or invisible, and check the state.

visible(cc,0)
isvisible(cc)
3-92

isvisible
ans =

 0

Notice that CCS IDE is not visible on your desktop. Recall that MATLAB did
not open CCS IDE. When you close MATLAB with CCS IDE in this invisible
state, CCS IDE remains running in the background. The only ways to close it
are either

• Launch MATLAB. Create a new link to CCS IDE. Use the new link to make
CCS IDE visible. Close CCS IDE.

• Open Windows Task Manager. Click Processes. Find and highlight
cc_app.exe. Click End Task.

See Also info, visible
3-93

iswritable
3iswritablePurpose Determine if MATLAB can write to the specified memory block

Syntax iswritable(cc,address,'datatype’,count)
iswritable(cc,address,'datatype’)

Description iswritable(cc,address,'datatype’,count) returns 1 if MATLAB can write
to the memory block defined by the address, count, and datatype input
arguments on the processor referred to by cc. When the processor cannot write
to any portion of the specified memory block, iswritable returns 0. Notice that
you use the same memory block specification for this function as you use for the
write function. The data block being tested begins at the memory location
defined by address. count determines the number of values to write. datatype
defines the format of data stored in the memory block. iswritable uses the
datatype parameter to determine the number of bytes to write per stored
value. For details about each input parameter, read the following descriptions.

address — iswritable uses address to define the beginning of the memory
block to write to. You provide values for address as either decimal or
hexadecimal representations of a memory location in the target processor. The
full address at a memory location consists of two parts: the offset and the
memory page, entered as a vector [location, page], a string, or a decimal
value. In cases where the processor has only one memory page, as is true for
many digital signal processors, the page portion of the memory address is 0. By
default, ccsdsp sets the page to 0 at creation if you omit the page property as
an input argument to set the page parameter.

For processors that have one memory page, setting the page value to 0 lets you
specify all memory locations in the processor using the memory location
without the page value.

Table 3-5: Examples of Address Property Values

Property
Value

Address Type Interpretation

'1F' String Location is 31 decimal on the page
referred to by cc(page)
3-94

iswritable
To specify the address in hexadecimal format, enter the address property value
as a string. iswritable interprets the string as the hexadecimal
representation of the desired memory location. To convert the hex value to a
decimal value, the function uses hex2dec. Note that when you use the string
option to enter the address as a hex value, you cannot specify the memory page.
For string input, the memory page defaults to the page specified by cc(page).

count—a numeric scalar or vector that defines the number of datatype values
to test for being writable. To assure parallel structure with write, count can
be a vector to define multidimensional data blocks. This function always tests
a block of data whose size is the total number of elements in matrix specified
by the input vector. If count is the vector [10 10 10]

iswritable(cc,31,[10 10 10])

iswritable writes 1000 values (10*10*10) to the target processor. For a
2-dimensional matrix defined with count as

iswritable(cc,31,[5 6])

iswritable writes 30 values to the processor.

datatype—a string that represents a MATLAB data type. The total memory
block size is derived from the value of count and the specified datatype.

10 Decimal Address is 10 decimal on the page
referred to by cc(page)

[18,1] Vector Address location 10 decimal on memory
page 1 (cc(page) = 1)

Table 3-5: Examples of Address Property Values (Continued)

Property
Value

Address Type Interpretation
3-95

iswritable
datatype determines how many bytes to check for each memory value.
iswritable supports the following data types:

iswritable(cc,address,'datatype’) returns 1 if the processor referred to
by cc can write to the memory block defined by the address, and count input
arguments. When the processor cannot write any portion of the specified
memory block, iswritable returns 0. Notice that you use the same memory
block specification for this function as you use for the write function. The data
block tested begins at the memory location defined by address. When you omit
the count option, count defaults to one.

Note iswritable relies on the memory map option in CCS IDE. If you did
not properly define the memory map for the processor in CCS IDE, this
function does not produce useful results. Refer to your Code Composer Studio
documentation for more information on configuring memory maps.

Like the isreadable, read, and write functions, iswritable checks for valid
address values. Illegal address values would be any address space larger than
the available space for the processor—232 for the C6xxx processor family and
216 for the C5xxx series. When the function identifies an illegal address, it
returns an error message stating that the address values are out of range.

datatype String Description

'double' Double-precision floating point values

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating point data

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers
3-96

iswritable
Examples When you write scripts to run models in MATLAB and CCS IDE, the
iswritable function is very useful. Use iswritable to check that the channel
to which you are writing to is indeed configured properly.

cc = ccsdsp;
rx = cc.rtdx;

% Define read and write channels to the target linked by cc.
open(rx,'ichannel','r');
open(rx,'ochannel','w');
enable(rx,'ochannel');
enable(rx,'ichannel');

iswritable(rx,'ochannel')
ans=

1
iswritable(rx,'ichannel')
ans=

0

Now that your script knows that it can write to ’ichannel’, it proceeds to write
messages as required.

See Also hex2dec, iswritable, read
3-97

list
3listPurpose Return various information listings from Code Composer Studio

Syntax list(ff,varname)
infolist = list(cc,type,option)
infolist = list(cc,type,option)

Description list(ff,varname) lists the local variables associated with the function
accessed by function object ff.

infolist = list(cc,type) reads information about your Code Composer Studio
session and returns it in infolist. Different types of information and return
formats are possible depending on the input arguments you supply to the list
function call. The type argument specifies which information listing to return.
To determine the information that list returns, use one of the following as the
type parameter string:

• project—tell list to return information about the current project in CCS

• variable—tell list to return information about one or more embedded
variable

• globalvar—tell list to return information about one or more global
embedded variables

• function—tell list to return details about one or more functions in your
project

• type—tell list to return information about one or more defined data types,
including struct, enum, and union. C datatype typedef is excluded from the
list of datatypes.

Note, the list function returns dynamic Code Composer information that can
be altered by the user. Returned information listings represent snapshots of
the current Code Composer studio configuration only. Be aware that earlier
copies of infolist might contain stale information.
3-98

list
infolist = list(cc,'project') returns a vector of structures containing
project information.

infolist = list(cc,’variable’) returns a structure of structures that
contains information on all local variables within scope. The list also includes
information on all global variables. Note, however, that if a local variable has
the same symbol name as a global variable,list returns the information about
the local variable.

infolist = list(cc,’variable’,varname) returns information about the
specified variable varname.

infolist Structure Element Description

infolist(1).name Project file name (with path).

infolist(1).type Project type—'project','projlib',
or 'projext', see new

infolist(1).targettype String Description of Target CPU

infolist(1).srcfiles Vector of structures that describes
project source files. Each structure
contains the name and path for
each source file—
infolist(1).srcfiles.name

infolist(1).buildcfg Vector of structures that describe
build configurations, each with the
following entries:

• infolist(1).buildcfg.name—
the build configuration name

• infolist(1).buildcfg.outpath
—the default directory for
storing the build output.

infolist(2).… …

infolist(n).… …
3-99

list
infolist = list(cc,’variable’,varnamelist) returns information about
variables in a list specified by varnamelist. The returned information in each
structure follows the format:

list uses the variable name as the fieldname to refer to the structure
information for the variable.

infolist = list(cc,’globalvar’) returns a structure that contains
information on all global variables.

infolist = list(cc,’globalvar’,varname) returns a structure that contains
information on the specified global variable.

infolist = list(cc,’globalvar’,varnamelist) returns a structure that
contains information on global variables in the list. The returned information
follows the same format as the syntax infolist = list(cc,’variable’,...).

infolist Structure Element Description

infolist.varname(1).name Symbol name

infolist.varname(1).isglobal Indicates whether symbol is global
or local

 infolist.varname(1).location Information about the location of the
symbol

 infolist.varname(1).size Size per dimension

infolist.varname(1).uclass ccsdsp object class that matches the
type of this symbol

infolist.varname(1).bitsize Size in bits. More information is
added to the structure depending on
the symbol type.

 infolist.(varname1).type Datatype of symbol

infolist.varname(2).… ...

infolist.varname(n).… ...
3-100

list
infolist = list(cc,’function’) returns a structure that contains information
on all functions in the embedded program.

infolist = list(cc,’function’,functionname) returns a structure that
contains information on the specified function functionname.

infolist = list(cc,’function’,functionnamelist) returns a structure that
contains information on the specified functions in functionnamelist. The
returned information follows the format:

infolist Structure Element Description

 infolist.functionname(1).name Function name

infolist.functionname(1).filename

Name of file where function is
defined

infolist.functionname(1).address Relevant address information
such as start address and end
address

infolist.functionname(1).funcvar Variables local to the function

infolist.functionname(1).uclass ccsdsp object class that matches
the type of this symbol -
’function’

infolist.functionname(1).funcdecl Function declaration; where
information such the function
return type is contained

infolist.functionname(1).islibfun
c

Is this a library function?

infolist.functionname(1).linepos Start and end line positions of
function

infolist.functionname(1).funcinfo

Miscellaneous information about
the function

infolist.functionname(2).… ...

infolist.functionname(n).… …
3-101

list
To refer to the function structure information, list uses the function name as
the fieldname.

infolist = list(cc,’type’) returns a structure that contains information on
all defined data types in the embedded program. This method includes ’struct’,
’enum’ and ’union’ datatypes and excludes typedefs. The name of a defined type
is its C struct tag, enum tag or union tag. If the C tag is not defined, it is
referred to by the Code Composer (tm) compiler as ’$faken’ where n is an
assigned number.

infolist = list(cc,’type’,typename) returns a structure that contains
information on the specified defined datatype.

infolist = list(cc,’type’,typenamelist) returns a structure that contains
information on the specified defined datatypes in the list. The returned
information follows the format:

For the fieldname, list uses the type name to refer to the type structure
information.

Important—when a variable name, type name, or function name is not a valid
MATLAB structure fieldname, list replaces or modifies the name so it
becomes valid.

infolist Structure Element Description

 infolist.typename(1).type Type name

infolist.typename(1).size Size of this type

infolist.typename(1).uclass ccsdsp object class that matches
the type of this symbol. Additional
information is added depending on
the type

infolist.typename(2).… ...

infolist.typename(n).… ...
3-102

list
Note In fieldnames that contain the invalid dollar character ‘$’, list
replaces the ‘$’ with ‘DOLLAR.’

Note Changing the MATLAB fieldname does not change the name of the
embedded symbol or type.

Examples This first example shows list used with a variable, providing information
about the variable varname. Notice that the invalid fieldname
'_with_underscore' gets changed to 'Q_with_underscore.' To make the invalid
name valid, the character ‘Q’ is inserted before the name.

varname1 = '_with_underscore'; % invalid fieldname
list(cc,'variable',varname1);
ans =

Q_with_underscore : [varinfo]
ans. Q_with_underscore
ans=

name: '_with_underscore'
isglobal: 0

 location: [1x62 char]
size: 1

uclass: 'numeric'
 type: 'int'

bitsize: 16

To demonstrate using list with a defined C type, variable typename1 includes
the type argument. Since valid fieldnames cannot contain the $ character, list
changes the $ to DOLLAR.

typename1 = '$fake3'; % name of defined C type with no tag
list(cc,'type',typename1);
ans =
3-103

list
DOLLARfake0 : [typeinfo]

ans.DOLLARfake0=

type: 'struct $fake0'
size: 1

uclass: 'structure'
sizeof: 1
members: [1x1 struct]

When you request information about a project in CCS, you see a listing like the
following that includes structures containing details about your project.

projectinfo=list(cc,'project')

projectinfo =

 name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt'
 type: 'project'
 targettype: 'TMS320C67XX'
 srcfiles: [69x1 struct]
 buildcfg: [3x1 struct]

See Also info
3-104

load
3loadPurpose Transfer a program file (*.out, *.obj) to the target processor

Syntax load(cc,'filename',timeout)
load(cc,'filename')

Description load(cc,'filename’,timeout) loads the file specified by filename into the
target processor. filename can include a full path to a file, or just the name of
a file that resides in the Code Composer Studio (CCS) working directory. Use
cd to check or modify the working directory. Only use load with program files
that are created by the Code Composer Studio build process.

timeout defines the upper limit on how long MATLAB waits for the load
process to be complete. If this period is exceeded, load returns immediately
with a timeout error.

load(cc,'filename’) loads the file specified by filename into the target
processor. filename can include a full path to a file, or just the name of a file
that resides in the Code Composer Studio (CCS) working directory. Use cd to
check or modify the working directory. Only use load with program files that
are created by the Code Composer Studio build process. timeout defaults to the
global value you set when you created link cc.

Note load disables all open channels. Open channels revert to disabled.

Examples Taken from the CCS link tutorial, this code prepares for and loads an object file
filename.out to a target processor.

projfile =...
fullfile(matlabroot,'directoryname','directoryname','filename')
projpath = fileparts(projfile)
open(cc,projfile) % Open project file
cd(cc,projpath) % Change Code Composer working directory

Now use CCS IDE to build your file. Select Project->Build from the menu bar
in CCS IDE.

With the project build complete, load your .out file by typing
3-105

load
load(cc,'filename.out')

See Also cd, dir, open
3-106

msgcount
3msgcountPurpose Return the number of messages in a read-enabled channel queue

Syntax msgcount(rx,'channel')

Description msgcount(rx,'channel') returns the number of unread messages in the
read-enabled queue specified by channel for the RTDX link rx. You cannot use
msgcount on channels configured for write access.

Examples If you have created and loaded a program to the target processor, you can write
data to the target, then use msgcount to determine the number of messages in
the read queue.

1 Create and load a program to the target.

2 Write data to the target from MATLAB.
indata=1:100;
writemsg(cc.rtdx,'ichannel', int32(indata));

3 Use msgcount to determine the number of messages available in the queue.
num_of_msgs = msgcount(cc.rtdx,'ichannel')

See Also read, readmat, readmsg
3-107

new
3newPurpose Create and open a new text file, project, or build configuration in CCS IDE

Syntax new(cc,'objectname','type')
new(cc,'objectname')

Description new(cc,'objectname','type') creates and opens an empty object of type
named objectname in the active project in CCS IDE. The new object can be a
text file, a project, or a build configuration. String objectname specifies the
name of the new object. When you create new text files or projects, objectname
can include a full path description. When you save your new project or file, CCS
IDE stores the file at the target of the full path.

If you do not provide a full path for your file, new stores the file in the CCS IDE
working directory when you save it. New files open as active windows in CCS
IDE; they are not placed in the active project folders based on their file
extension (compare to add).

New build configurations always become part of the active project in CCS IDE.
Since build configurations always become part of a project, you only need to
enter a name to distinguish your new configuration from existing
configurations in the project, such as Debug and Release.

To specify the text file or project to create, objectname must be the full
pathname to the file, unless your file is in a directory on your MATLAB path,
or the file is in your CCS working directory. Also, when you create new text files
or projects, you must include the file extension in objectname.

type accepts one of four strings or entries listed in the following table.

type string Description

’text’ Create a new text file in the active project.

’project’ Create a new project.

’projext’ Create a new CCS external make project. Using
this option idicates that your project uses and
external makefile. Refer to your CCS
documentation for more information about
external projects.
3-108

new
Use new to create the following file types listed in the following table.

Caution After you create an object in CCS IDE, save the file in CCS IDE. new
does not automatically save the file. Failing to save the file can cause you to
lose your changes when you close CCS IDE.

new(cc,'objectname') creates a project in CCS IDE, making it the active
project. When you omit the type option, new assumes you are creating a new

’projlib’ Create a new library project with the .lib file
extension. Refer to your CCS documentation for
more information about library projects.

[] Create a new project. The [] indicate that you
are creating a .pjt file.

’buildcfg’ Create a new build configuration in the active
project.

File Types and Extensions Supported by new and CCS IDE

File Type Created Supported Extensions type String Used

C/C++ source files .c, .cpp, .cc, .ccx, .sa 'text'

Assembly source files .a*, .s* (excluding .sa,
refer to C/C++ source
files)

'text'

Object and Library files .o*, .lib 'text'

Linker command file .cmd 'text'

Project file .pjt 'project'

Build configuration No extension 'buildcfg'

type string Description
3-109

new
project and appends the .pjt extension to objectname to create the project
objectname.pjt. The .pjt extension is the only extension new recognizes.

Examples When you need a new project, create a link to CCS IDE and use the link to
make a new project in CCS IDE.

cc=ccsdsp;
cc.visible(1) % Make CCS IDE visible on your desktop (optional).
new(cc,'my_new_project.pjt','project');

New files of various types result from using new to create new active windows
in CCS IDE. For instance, make a new C source file in CCS IDE with the
following command:

new(cc,'new_source.c','text');

In CCS IDE you see your new file as the active window.

See Also activate, close, save
3-110

open
3openPurpose Open a channel to a target processor or load a file into CCS IDE

Syntax open(rx,'channel1','mode1','channel2','mode2',...)
open(rx,'channel','mode')
open(cc,filename,filetype,timeout)
open(cc,filename,filetype)
open(cc,filename)

Description open(rx,'channel1','mode1','channel2','mode2',...) opens new RTDX
channels associated with the link rx. Each new channel uses the string name
channel1, channel2, and so on. For each channel, open configures the
channel according to the associated mode string. Channel1 uses mode1;
channel2 uses mode2, and so forth. Mode strings are either:

• ’r' — configure the channel to read data from the target processor.

• ’w' — configure the channel for writing data to the target processor.

open(rx,channel,mode) opens a new channel to the processor associated with
the link rx. The new channel uses the channel string and is configured for
reading or writing according to the mode string.

open(cc,filename,filetype,timeout) loads filename into CCS IDE.
filename can be the full path to the file or, if the file is in the current CCS IDE
working directory, you can use a relative path, such as the name of the file. Use
cd to determine or change the CCS IDE working directory. You use the
filetype option to override the default file extension. Four filetype strings
work in this function syntax.

filetype String Extension Description

'program' .out Executable programs for the target
processor

'project' .c, .a*, .s*, .o*,
.lib, .cmd,.mak

CCS IDE project files

'text' any All text files

'workspace' .wks CCS IDE workspace files
3-111

open
To let you determine how long MATLAB waits for open to load the file into CCS
IDE, timeout sets the upper limit, in seconds, for the period MATLAB waits for
the load. If MATLAB waits more than timeout seconds, load returns
immediately with a timeout error. REturning a timeout error does not suspend
the operation; it stops MATLAB from waiting for confirmation for the operation
completion.

open(cc,filename,filetype) loads filename into CCS IDE. filename can be
the full path to the file or, if the file is in the current CCS IDE working
directory, you can use a relative path, such as the name of the file. Use the cd
function to determine or change your CCS IDE working directory. You use the
filetype option to override the default file extension. Refer to the previous
syntax for more information about filetype. When you omit the timeout
option in this syntax, MATLAB uses the global timeout set in cc.

open(cc,filename) loads filename into CCS IDE. filename can be the full
path to the file or, if the file is in the current CCS IDE working directory, you
can use a relative path, such as the name of the file. Use the cd function to
determine or change the CCS IDE working directory. You use the filetype
option to override the default file extension. Refer to the previous syntax for
more information about filetype. When you omit the filetype and timeout
options in this syntax, MATLAB uses the global timeout set in cc, and derives
the file type from the extension in filename. Refer to the previous syntax
descriptions for more information on the input options.

Channels must be opened and enabled before you use them. You cannot write
to or read from channels that you opened but did not enable.

Note program files (.out extension) and project files (.mak extension) get
loaded on the target processor referenced by your CCS IDE link. Workspace
files are coupled to a specific target processor. As a result, open loads
workspace files to the target processor that was active when you created the
workspace file. This may not be the processor referred to by the CCS IDE link.

Examples For RTDX use, open forms part of the function pair you use to open and enable
a communications channel between MATLAB and your target processor.
3-112

open
cc = ccsdsp;
rx = cc.rtdx;
open(rx,'ichannel','w');
enable(rx,'ichannel');

When you are working with CCS IDE, open adopts a different operational form
based on your input arguments for filename and the optional arguments
filetype and timeout. In the CCS IDE variant, open loads the specified file
into CCS IDE. For example, to load the tutorial program used in “Tutorial
2-1—Using Links and Embedded Objects”, use the following syntax

cc = ccsdsp;
cc.load(tutorial_6xevm.out);

See Also cd, dir, load
3-113

open
3-114

profile
3profilePurpose Return code profiling information from executing code with or without
DSP/BIOS

Syntax ps=profile(cc,'option’,timeout)
ps=profile(cc,'option’)
ps=profile(cc)

Description ps=profile(cc,'option’,timeout) returns generated code profile
measurements from the statistics timing objects (STS) that you defined in CCS
IDE. Structure ps contains the information in either raw form or filtered and
formatted into fields. STS objects are a service provided by the DSP/BIOS
real-time kernel that can help you profile and track the way your code runs. For
details about STS objects and DSP/BIOS, refer to your Texas Instruments
documentation that came with CCS IDE.

To let you to define how to return the information from your STS objects,
profile supports three formatting options for the contents of structure ps.

option String Description

’raw’ Returns an unformatted list of the STS timing
objects information. All time-based objects get
returned and formatted.
3-115

profile
When you choose ’raw’, variable ps contains an undocumented list of the
information provided by CCS IDE. The ’tic' option provides the same
information in ps, as a collection of fields.

’report’ Returns the same data as the ’raw’ option, formatted
into an HTML report. Works only on projects that
include DSP/BIOS. If you own Embedded Target for
TI C6000 DSP, profile(cc,'report') provides
more information about code you generate from
Simulink models, using data from the STS objects
that are part of DSP/BIOS instrumentation. Refer
to “Profiling Code” in your Embedded Target for TI
C6000 DSP documentation for more information.

'tic' Returns a formatted list of the STS timing objects
information. Filters out some of the information
returned with the 'raw' option. To be returned by
this option, the object must be time-based.
User-defined objects are not returned. Use raw to
see user-defined objects.

Fields in ps Description

ps.cpuload Execution time in percent of total time spent out of
the idle task.

ps.sts Vector of defined STS objects in the project.

ps.sts(n).name User-defined name for an STS object sts(n). Value
for n ranges from 1 to the number of defined STS
objects.

ps.sts(n).units Either ‘Hi Time’ or ‘Low Time.’ Describes the timer
applied by this STS object, whether high- or low-
resolution time based.

ps,sts(n).max Maximum measured profile period for sts(n), in
seconds.

option String Description
3-116

profile
Note For the information gathered during the reporting periods to be
accurate, your CLK and STS must be configured correctly for your target. Use
the DSP/BIOS configuration file to add and configure CLK and STS objects for
your project.

With projects that you generate that use DSP/BIOS, the report option creates
a report that contains all of the information provided by the other options, plus
additional data that comes from DSP/BIOS instrumentation in the project. You
enable the DSP/BIOS report capability with the Profile performance at
atomic subsystem boundaries option on the TI C6000 Code Generation
option on the Real-Time Workshop pane of the Simulink Paramters dialog.

ps=profile(cc,'option’) defaults to the timeout period specified in the link
cc.

ps=profile(cc) returns the profile information in ps as a formatted structure
of fields.

Example Since you use profile to view information about your application running on
your target, this example presents both forms of the data returned in ps. Open
and build one of the DSP/BIOS-enabled projects from the TI DSP/BIOS
Tutorial Module, such as volume.pjt located in the folder
ti\tutorial\target\volume2. When you specify the project to open, enter the
full pathname to the project file.

cc=ccsdsp;
open(cc,'..\tutorial\sim62xx\volume2\volume.pjt');
build(cc,'all')

ps.sts(n).avg Average measured profile period for sts(n), in
seconds.

ps.sts(n).count Number of STS measurements taken while
executing the program.

Fields in ps Description
3-117

profile
In CCS IDE, open the file volume.cdb that contains the DSP/BIOS
configuration. For details about STS and CLK objects, refer to your TI
documentation.

Review the settings for the existing CLK and STS objects already in place in
the project. When you use profile, the information returned comes from these
objects. Make any changes you require and save the DSP/BIOS configuration
file. Now rebuild your project, either in CCS IDE or from MATLAB, then load
the file volume.out generated by the build process. If you get a timeout error,
add the timeout option to the build command, specifying a long timeout period,
such as 60 seconds. Often, when you receive the timeout error the build has
been completed successfully.

build(cc,'all')
load(cc,'..\tutorial\sim62xx\volume2\debug\volume.out')

With the project built and loaded, run your program.

run(cc) % Assumes that volume2 is the active project.

Running profile returns structure ps containing STS and CLK information
that DSP/BIOS gathered while your program ran.

ps=profile(cc)

ps =

 cpuload: 0
 obj: [3x1 struct]

ps.obj(1)

ans =

 name: 'KNL_swi'
 units: 'Hi Time'
 max: 1.1759e-005
 avg: 2.7597e-006
 count: 29

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
 1
3-118

profile
 name: 'KNL_swi'
 units: 'Hi Time'
 max: 1.1759e-005
 avg: 2.7597e-006
 count: 29

 2

 name: 'processing_SWI'
 units: 'Hi Time'
 max: 1.1489e-005
 avg: 1.1474e-005
 count: 2

 3

 name: 'TSK_idle'
 units: 'Hi Time'
 max: -16.1465
 avg: 0
 count: 0

Omitting the format option caused profile to return the data fully formatted
and slightly filtered. Adding the ’raw’ option to profile returns the same
information without filtering out any of the returned data.

ps=profile(cc,'raw')

ps =

 cpuload: 0
 error: 0
 avgperiod: 1000
 rate: 1000
 obj: [4x1 struct]

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
 1
3-119

profile
 name: 'KNL_swi'
 units: 'Hi Time'
 max: 1564
 total: 10644
 avg: 367.0345
 pdfactor: 0.0075
 count: 29

 2

 name: 'processing_SWI'
 units: 'Hi Time'
 max: 1528
 total: 3052
 avg: 1526
 pdfactor: 0.0075
 count: 2

 3

 name: 'TSK_idle'
 units: 'Hi Time'
 max: -2.1475e+009
 total: 0
 avg: 0
 pdfactor: 0.0075
 count: 0

 4

 name: 'IDL_busyObj'
 units: 'User Def'
 max: -2.1475e+009
 total: 0
 avg: 0
 pdfactor: 0
 count: 0

Your results can differ from this example depending on your computer and
target. In the raw data in this example, one extra timing object appears —
3-120

profile
IDL_busyObj. As defined in the .cdb file, this is not a time based object (Units
is 'User Def’) and is not returned by specifying ’tic’ as the format option in
profile.

See Also ccsdsp
3-121

read
3readPurpose Retrieve data from memory on the target processor or in CCS

Syntax mem = read(cc,address,'datatype',count,timeout)
mem = read(cc,address,'datatype',count)
mem = read(cc,address,'datatype')
data = read(objname)
data = read(objname,index)
data = read(objname,member,memberindex,structindex)
data = read(…,timeout)

Description Link Object Syntaxes

mem = read(cc,address,count,datatype,timeout) returns data from the
processor referred to by cc. The address, count, and datatype input
arguments define the memory block to be read. The data block to be read begins
at the memory location defined by address. count determines the number of
values to be read, starting at address. datatype defines the format of the raw
data stored in the referenced memory block.

read uses the datatype parameter to determine the number of bytes to read
per stored value. timeout is an optional input argument you use to specify
when to terminate long read processes and data transfers. For details about
each input parameter, read the following descriptions.

address — read uses address to define the beginning of the memory block to
read. You provide values for address as either decimal or hexadecimal
representations of a memory location in the target processor. The full address
at a memory location consists of two parts: the offset and the memory page,
entered as a vector [location, page], a string, or a decimal value. In cases
where the processor has only one memory page, as is true for many digital
signal processors, the page portion of the memory address is 0. By default,
ccsdsp sets the page to 0 at creation if you omit the page property as an input
argument to set the page parameter.
3-122

read
For processors that have one memory page, setting the page value to 0 lets you
specify all memory locations in the processor using just the memory location
without the page value.

To specify the address in hexadecimal format, enter the address property value
as a string. read interprets the string as the hexadecimal representation of the
desired memory location. To convert the hex value to a decimal value, the
function uses hex2dec. Note that when you use the string option to enter the
address as a hex value, you cannot specify the memory page. For string input,
the memory page defaults to the page specified by cc(page).

count — a numeric scalar or vector that defines the number of datatype values
to read. Entering a scalar for count causes read to return mem as a column
vector which has count elements. count can be a vector to define
multidimensional data blocks. The elements of count define the dimensions of
the data matrix returned in mem. The following table shows examples of input
arguments to count and how read responds.

Table 3-6: Examples of Address Property Values

Property
Value

Address Type Interpretation

'1F' String Offset is 31 decimal on the page
referred to by cc(page)

10 Decimal Offset is 10 decimal on the page
referred to by cc(page)

[18,1] Vector Offset is 18 decimal on memory page 1
(cc(page) = 1)

Input Response

n Read n values into a column vector. Return the vector in
mem.
3-123

read
datatype — a string that represents a MATLAB data type. The total memory
block size is derived from the value of count and the specified datatype.
datatype determines how many bytes to check for each memory value. read
supports the following data types:

To limit the time that read spends transferring data from the target processor,
the optional argument timeout tells the data transfer process to stop after
timeout seconds. timeout out is defined as the number of seconds allowed to
complete the read operation. You might find this useful for limiting prolonged
data transfer operations. If you omit the timeout option in the syntax, read
defaults to the global timeout defined in cc.

mem = read(cc,address,'datatype',count) reads data from memory on the
processor referred to by cc and defined by the address, and datatype input

[m,n] Read (m*n) values from memory into an m-by-n matrix in
column major order. Return the matrix in mem.

[m,n,p,...] Read (m*n*p*...) values from the processor memory in
column major order. Return the data in an m-by-n-by-p-by...
multidimensional matrix and return the matrix in mem.

datatype String Description

'double' Double-precision floating point values

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating point data

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

Input Response
3-124

read
arguments. The data block being read begins at the memory location defined
by address. count determines the number of values to be read. When you omit
the timeout option, timeout defaults to the value specified by the timeout
property in cc.

mem = read(cc,address,'datatype') reads the memory location defined by
the address input argument from the processor memory referred to by cc. The
data block being read begins at the memory location defined by address. When
you omit the count option, count defaults to 1. This syntax reads one memory
location of datatype.

Note read does not coerce data type alignment in your processor memory.
You can write and read data of any type (datatype) to and from any memory
location (address). Certain combinations of address and datatype are
difficult for some processors to use. To ensure seamless read operation, use
the address function to extract address values that are compatible with the
alignment required by your target processor.

Like the isreadable, iswritable, and write functions, read checks for valid
address values. Illegal address values are any address space larger than the
available space for the processor—232 for the C6xxx processor family and 216
for the C5xxx series. When read identifies an illegal address, it returns an
error message stating that the address values are out of range.

Embedded Object Syntaxes
read works with all of the objects you create with createobj. To transfer data
from Code Composer Studio to MATLAB, use the read function—read—
depending on the data to access. Note that read and its variants are the only
way to get data from CCS to MATLAB as objects.

data = read(objname) reads all the data in memory at the location accessed
by object objname, and converts the data into a numeric representation.
Properties of objname, such as wordsize, storageunitspervalue, size,
represent, and binarypt—determine how read performs the numeric
conversion. data is a numeric array whose dimensions are defined by the size
property of objname. Object property size is the dimensions vector. Each
element in the dimensions vector contains the size of the data array in that
3-125

read
dimension. When size is a scalar, data is a column vector of the length
specified by size.

For example, when size is [2 3], data is a 2-by-3 array.

Properties of the Object
objname, the object that accesses the data, has the following properties, if the
object is a numeric object. The properties differ for different types of objects,
such as structure objects or register objects.

data = read(objname,index) reads the specified element in the memory
location accessed by objname. index is a scalar or a vector that identifies the

Property Options Description

size Greater than 1 Specifies the dimensions of the output
numeric array.

arrayorder col-major or
row-major

Defines how to map sequential memory
locations into arrays. ’col-major’ is the
default, and the MATLAB standard.
C uses ’row-major’ ordering most often.

represent float, signed,
unsigned,
fract

Determines the numeric representation
used in the output data.

• float—IEEE floating point
representation, either 32- or 64 bits

• signed—two’s complement signed
integers

• unsigned—unsigned binary integer

• fract—fractional fixed-point data

wordsize Greater than 1 (Read-only) Calculated from other object
properties such as
storageunitspervalue

binarypt 0 to wordsize Determines the position of the binary
point in a word to specify its
interpretation
3-126

read
particular data element to return. When you enter [] for index, read returns all
the data stored at the memory location. When you enter a scalar for index,
read returns a column vector of length size containing the data from the
memory space. When index is a vector, read returns the element in the array
specified by the entries in the vector. For example, if you are reading data from
a 3-by-3-by-3 array, setting index to be [2 2 2] returns the element
data(2,2,2). To return more than one element, use MATLAB standard range
notation for the vector elements in index. As an example, when index is [1:6],
read returns the first six elements of data. You must remember that the
number of elements in the vector in index must be either one (a scalar) or the
same as the number of dimensions in data and specified by the property size.
When data is a four dimensional array, your vector in index must have four
elements, one for each array dimension. Otherwise, read cannot determine
which elements to return.

data = read(objname,member,memberindex,structindex) reads the
members of the structure that objname accesses. When you omit all of the input
arguments except objname, read returns the entire structure. member,
memberindex, and structindex (an optional input argument) specify which
structure member to read:

• member—specifies the name of the member of the structure to read.

• memberindex—provides the index of the data element to read.

• structindex—identifies the structure to read when objname accesses
a structure containing structures or a vector.

Note that the class of the object data from the read operation depends on the
class of the member being read—numeric values return numeric objects, string
values return string objects, and so on.

data = read(…,timeout) During read operations, the timeout property of
objname determines the time allowed to complete the read. Including a value
for the timeout input argument in the read syntax lets you override the
timeout property setting for objname with the value you enter for argument
timeout. For reading large data arrays, being able to explicitly set the timeout
value as an input option may be necessary to let read run to completion. Note
that using the timeout input option does not change the timeout property
value for objname.
3-127

read
When you need to read one member of a structure or to do individual read
operations, consider using getmember.

Examples In its most straightforward form, read reads data that you wrote to the target
processor.

cc = ccsdsp;
indata = 1:25;
write(cc,0,indata,30);
outdata=read(cc,0,25,'double',10)

outdata =

 Columns 1 through 13

 1 2 3 4 5 6 7 8 9 10 11 12 13

 Columns 14 through 25

 14 15 16 17 18 19 20 21 22 23 24 25

outdata now contains the values in indata, returned from the target processor.

As a further demonstration of read, try the following functions after you create
a link cc and load an appropriate program to your target. To perform the first
example, ’var’ must exist in the symbol table loaded in CCS.

• Read one 16-bit integer at the location of target symbol ’var’.
mlvar = read(cc,address(cc,'var'),'int16')

• Read 100 32-bit integers from address f000 (hexadecimal) and plot the data.
mlplt = read(cc,'f000','int32',100)
plot(double(mlplt))

• Increment the integer value stored at address 10 (decimal) of the target
processor.

cc = ccsdsp;
ainc = 10
mlinc = read(cc,ainc,'int32')
mlinc = int32(double(mlinc)+1)
3-128

read
cc.write(ainc,mlinc)

Reading String Variables
Using read to return a string creates a string object. Within the string object,
the property charconversion controls the read operation. When you set
charconversion to ASCII, read recognizes only the ASCII characters from 0 to
127. ASCII is the only accepted type for the charconversion property value.

While reading strings from memory, read continues until it encounters a null
character, then it stops.

For example, if memory contains the string “Hello World” in the following
format in memory (each block represents one memory location)

read does not return the M because it stops at the null character \0.

To return a string from memory as a numeric object in MATLAB, use
readnumeric.

Reading Enumerated Variables
If you read an enumerated date type from memory, the returned entry is a
string object.

Reading Structures

See Also getmember, isreadable, symbol, write

H e l l o W o r l d \0 M
3-129

readmat
3readmatPurpose Read a matrix of values from an RTDX channel

Syntax data = readmat(rx,channelname,datatype,siz,timeout)
data = readmat(rx,channelname,datatype,siz)

Description data = readmat(rx,channelname,datatype,siz,timeout) reads a matrix of
data from an RTDX channel configured for read access. datatype defines the
type of data to read, and channelname specifies the queue to read. readmat
reads the desired data from the RTDX link specified by rx. Before you try to
read from a channel, open and enable the channel for read access. Replace
channelname with the string you specified when you opened the desired
channel. channelname must identify a channel that you defined in the program
loaded on the target processor. You cannot read data from a channel you have
not opened and configured for read access. If necessary, use the RTDX tools
provided in CCS IDE to determine which channels exist for the loaded
program.

data contains a matrix whose dimensions are given by the input argument
vector siz, where siz can be a vector of two or more elements. To operate
properly, the number of elements in the output matrix data must be an
integral number of channel messages.

When you omit the timeout input argument, readmat reads messages from the
specified channel until the output matrix is full or the global timeout period
specified in rx elapses.

Caution If the timeout period expires before the output data matrix is fully
populated, you lose all the messages read from the channel to that point.

MATLAB supports reading five data types with readmat:

datatype String Data Format

’double’ Double-precision floating point values. 64 bits.

’int16’ 16-bit signed integers
3-130

readmat
data = readmat(rx,channelname,datatype,siz) reads a matrix of data from
an RTDX channel configured for read access. datatype defines the type of data
to read, and channelname specifies the queue to read. readmat reads the
desired data from the RTDX link specified by rx. Before you try to read from
a channel, open and enable the channel for read access. Replace channelname
with the string you specified to open and enable the desired channel. You
cannot read data from a channel you have not opened and configured for read
access. data contains a matrix whose dimensions are given by the input
argument vector siz, where siz can be a vector of two or more elements. To
operate properly, the number of elements in the output matrix data must be an
integral number of channel messages.

When you include the timeout input argument, readmat reads messages from
the specified channel until the output matrix is full or the timeout period
elapses.

Caution If the timeout period expires before the output data matrix is fully
populated, you lose all the messages read from the channel to that point.

MATLAB supports reading five data types with readmat:

’int32’ 32-bit signed integers

’single’ Single-precision floating point values. 32 bits.

’uint8’ Unsigned 8-bit integers

datatype String Data Format

’double’ Double-precision floating point values, 64 bits.

’int16’ 16-bit signed integers.

’int32’ 32-bit signed integers.

datatype String Data Format
3-131

readmat
Examples In this data read and write example, you write data to the target through the
CCS IDE. You can then read the data back in two ways—either through read
or through readmsg. To duplicate this example you need to have a program
loaded on the target. The channels listed in this example, ichannel and
ochannel, must be defined in the loaded program. If the current program on
the target defines different channels, you can replace the listed channels with
your current ones.

cc = ccsdsp;
rx = cc.rtdx;
open(rx,'ichannel','w');
enable(rx,'ichannel');
open(rx,'ochannel','r');
enable(rx,'ochannel');
indata = 1:25; % Set up some data.
write(cc,0,indata,30);
outdata=read(cc,0,25,'double',10)

outdata =

 Columns 1 through 13

 1 2 3 4 5 6 7 8 9 10 11 12 13

 Columns 14 through 25

 14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the data into a 5-by-5 array called out_array.

out_array = readmat('ochannel','double',[5 5])

See Also readmsg, writemsg

'single' Single-precision floating point values. 32 bits.

'uint8' Unsigned 8-bit integers.

datatype String Data Format
3-132

readmsg
3readmsgPurpose Read messages from the specified RTDX channel

Syntax data = readmsg(rx,channelname,datatype,siz,nummsgs,timeout)
data = readmsg(rx,channelname,datatype,siz,nummsgs)
data = readmsg(rx,channelname,datatype,siz)
data = readmsg(rx,channelname,datatype,nummsgs)
data = readmsg(rx,channelname,datatype)

Description data = readmsg(rx,channelname,datatype,siz,nummsgs,timeout) reads
nummsgs from a channel associated with rx. channelname identifies the channel
queue, which must be configured for read access. Each message is the same
type, defined by datatype. nummsgs can be an integer that defines the number
of messages to read from the specified queue, or ’all’ to read all the messages
present in the queue when you call the readmsg function. Each read message
becomes an output matrix in data, with dimensions specified by the elements
in vector siz. Thus, when siz is [m n], reading 10 messages (nummsgs equal 10)
creates 10 m-by-n matrices in data. Each output matrix in data must have the
same number of elements (m x n) as the number of elements in each message.
You must specify the type of messages you are reading by including the
datatype argument. datatype supports six strings that define the type of data
you are expecting.

When you include the timeout input argument in the function, readmsg reads
messages from the specified queue until it receives nummsgs, or until the period
defined by timeout expires while readmsg waits for more messages to be
available. When the desired number of messages is not available in the queue,
readmsg enters a ‘wait’ loop and stays there until more messages become

datatype String Specified Data Type

'double' Floating point data, 64-bits (double-precision).

'int16' Signed 16-bit integer data.

'int32' Signed 32-bit integers.

'single' Floating point data, 32-bits (single- precision).

'uint8' Unsigned 8-bit integers.
3-133

readmsg
available or timeout seconds elapse.The timeout argument overrides the
global timeout specified when you create rx.

data = readmsg(rx,channelname,datatype,siz,nummsgs) reads nummsgs
from a channel associated with rx. channelname identifies the channel queue,
which must be configured for read access. Each message is the same type,
defined by datatype. nummsgs can be an integer that defines the number of
messages to read from the specified queue, or ’all’ to read all the messages
present in the queue when you call the readmsg function. Each read message
becomes an output matrix in data, with dimensions specified by the elements
in vector siz. Thus, when siz is [m n], reading 10 messages (nummsgs equal 10)
creates 10 n-by-m matrices in data. Each output matrix in data must have the
same number of elements (m x n) as the number of elements in each message.
You must specify the type of messages you are reading by including the
datatype argument. Datatype supports six strings that define the type of data
you are expecting.

data = readmsg(rx,channelname,datatype,siz) reads one data message
because nummsgs defaults to one when you omit the input argument. readmsgs
returns the message as a row vector in data.

data = readmsg(rx,channelname,datatype,nummsgs) reads the number of
messages defined by nummsgs. data becomes a cell array of row matrices,
data = {msg1,msg2,...,msg(nummsgs)}, because siz defaults to [1,nummsgs];
each returned message becomes one row matrix in the cell array. Each row
matrix contains one element for each data value in the current message —
msg# = [element(1), element(2),...,element(l)] where l is the number of data
elements in message. In this syntax, the read messages can have different
lengths, unlike the previous syntax options.

data = readmsg(rx,channelname,datatype) reads one data message,
returning a row vector in data. All of the optional input arguments, nummsgs,
siz, and timeout, use their default values.

In all calling syntaxes for readmsg, you can set siz and nummsgs to empty
matrixes, causing them to use their default settings — nummsgs = 1 and
siz = [1,l], where l is the number of data elements in the read message.
3-134

readmsg
Caution If the timeout period expires before the output data matrix is fully
populated, you lose all the messages read from the channel to that point.

Examples cc = ccsdsp;
rx = cc.rtdx;
open(rx,'ichannel','w');
enable(rx,'ichannel');
open(rx,'ochannel','r');
enable(rx,'ochannel');
indata = 1:25; % Set up some data.
write(cc,0,indata,30);
outdata=read(cc,0,25,'double',10)

outdata =

 Columns 1 through 13

 1 2 3 4 5 6 7 8 9 10 11 12 13

 Columns 14 through 25

 14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the messages into a 4-by-5 array called out_array.

number_msgs = msgcount(rx,'ochannel') % Check number of msgs
% in read queue.

out_array = cc.rtdx.readmsg('ochannel','double',[4 5])

See Also read, readmat, writemsg
3-135

readnumeric
3readnumericPurpose Read a string object and convert to the numeric equivalent in MATLAB

Syntax data = readnumeric(objname)
data = readnumeric(objname,index)
data = readnumeric(…,timeout)

Description data = readnumeric(objname)

data = readnumeric(objname,index)

data = readnumeric(…,timeout)

See Also getmember, read, write
3-136

regread
3regread

Purpose Return a value from a specified target processor register

Syntax reg = regread(cc,'regname','represent',timeout)
reg = regread(cc,'regname','represent')
reg = regread(cc,'regname')

Description reg = regread(cc,'regname','represent',timeout) reads the data value
in the regname register of the target processor and returns the value in reg as
a double-precision value. For convenience, regread converts each return value
to the MATLAB double datatype independent of the datatype defined by
represent. Making this conversion lets you manipulate the data in MATLAB.
String regname specifies the name of the source register on the target. Link cc
defines the target to read from. Valid entries for regname depend on your target
processor. Register names are not case-sensitive — a0 is the same as A0. For
example, the TMS320C6xxx processor family provides the following register
names that are valid entries for regname:

Other processors provide other register sets. Refer to the documentation for
your target processor to determine the registers for the processor.

Note Use read (called a direct memory read) to read memory-mapped
registers. For the TMS320C5xxx processor family, register PC is memory

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR, CSR Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register
pairs
3-137

regread
mapped and thus available using read, not regread. Use regread to read from
all other registers.

The represent input argument defines the format of the data stored in
regname. Input argument represent takes one of three input strings:

To limit the time that regread spends transferring data from the target
processor, the optional argument timeout tells the data transfer process to stop
after timeout seconds. timeout is defined as the number of seconds allowed to
complete the read operation. You might find this useful for limiting prolonged
data transfer operations. If you omit the timeout option in the syntax, regread
defaults to the global timeout defined in cc.

reg = regread(cc,'regname','represent') reads the data value in the
regname register of the target processor and returns the value in reg as a
double-precision value. String regname specifies the name of the source register
on the target. Link cc defines the target to read from. For convenience, regread
converts each return value to the MATLAB double datatype independent of
the datatype defined by represent. Making this conversion lets you manipulate
the data in MATLAB. The represent input argument defines the format of the
data stored in regname.

reg = regread(cc,'regname') reads the data value in the regname register of
the target processor and returns the value in reg. String regname specifies the
name of the source register on the target. Link cc defines the target to read

represent string Description

2scomp Source register contains a signed integer value in two’s
complement format. This is the default setting when
you omit the represent argument.

binary Source register contains an unsigned binary integer.

ieee Source register contains a floating point 32-bit or
64-bit value in IEEE floating-point format. Use this
only when you are reading from 32 and 64 bit registers
on the target.
3-138

regread
from. For convenience, regread converts each return value to the MATLAB
double datatype independent of the datatype of the source. Making this
conversion lets you manipulate the data in MATLAB.

Examples For the C5xxx processor family, most registers are memory-mapped and
consequently are available using read and write. However, the PC register is
not memory-mapped. The following command demonstrates how to read the
PC register. To identify the target, cc is a link for CCS IDE.

cc.regread('PC','binary')

To tell MATLAB what datatype you are reading, the string binary indicates
that the PC register contains a value stored as an unsigned binary integer.

In response, MATLAB displays

ans =

 33824

For processors in the C6xxx family, regread lets you access processor registers
directly. To read the value in general purpose register A0, type the following
function.

treg = cc.regread('A0','2scomp');

treg now contains the two’s complement representation of the value in A0.

Now read the value stored in register B2 as an unsigned binary integer, by
typing

cc.regread('B2','binary');

See Also read, regwrite, write
3-139

regwrite
3regwritePurpose Write data values to specified registers on a target processor

Syntax regwrite(cc,'regname',value,'represent',timeout)
regwrite(cc,'regname',value,'represent')
regwrite(cc,'regname',value,)

Description regwrite(cc,'regname',value,'represent',timeout) writes the data in
value to the regname register of the target processor. regwrite converts value
from its representation in the MATLAB workspace to the representation
specified by represent. The represent input argument defines the format of
the data when it is stored in regname. Input argument represent takes one of
three input strings:

String regname specifies the name of the destination register on the target.
Link cc defines the target to write value to. Valid entries for regname depend
on your target processor. Register names are not case-sensitive — a0 is the

represent string Description

2scomp Write value to the destination register as a signed
integer value in two’s complement format. This is the
default setting when you omit the represent
argument.

binary Write value to the destination register as an unsigned
binary integer.

ieee Write value to the destination registers as a floating
point 32-bit or 64-bit value in IEEE floating-point
format. Use this only when you are writing to 32- and
64-bit registers on the target.
3-140

regwrite
same as A0. For example, the TMS320C6xxx processor family provides the
following register names that are valid entries for regname:

Other processors provide other register sets. Refer to the documentation for
your target processor to determine the registers for the processor.

Note Use write (called a direct memory write) to write memory-mapped
registers. For the TMS320C5xxx processor family, register PC is memory
mapped and thus available using write, not regwrite. Use regwrite to write
to all other registers.

To limit the time that regwrite spends transferring data to the target
processor, the optional argument timeout tells the data transfer process to stop
after timeout seconds. timeout is defined as the number of seconds allowed to
complete the write operation. You might find this useful for limiting prolonged
data transfer operations. If you omit the timeout option in the syntax,
regwrite defaults to the global timeout defined in cc. If the write operation
exceeds the time specified, regwrite returns with a timeout error. Generally,
timeout errors do not stop the register write process. They stop while waiting
for CCS IDE to respond that the write operation is complete.

regwrite(cc,'regname',value,'represent') writes the data in value to
register regname of the target processor. regwrite converts value from its
representation in the MATLAB workspace to the representation specified by

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR, CSR Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register
pairs
3-141

regwrite
represent. The represent input argument defines the data format when it is
stored in regname. Input argument represent takes one of three input strings:

String regname specifies the name of the destination register on the target.
Link cc defines the target to write value to. Valid entries for regname depend
on your target processor. Register names are not case-sensitive — a0 is the
same as A0. For example, the TMS320C6xxx processor family provides the
following register names that are valid entries for regname:

Other processors provide other register sets. Refer to the documentation for
your target processor to determine the registers for the processor.

represent string Description

2scomp Write value to the destination register as a signed
integer value in two’s complement format. This is the
default setting when you omit the represent
argument.

binary Write value to the destination register as an unsigned
binary integer.

ieee Write value to the destination registers as a floating
point 32-bit or 64-bit value in IEEE floating-point
format. Use this only when you are writing to 32- and
64-bit registers on the target.

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR, CSR Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register
pairs
3-142

regwrite
Note Use write (called a direct memory write) to write memory-mapped
registers. For the TMS320C5xxx processor family, register PC is memory
mapped and thus available using write, not regwrite. Use regwrite to write
to all other registers.

regwrite(cc,'regname',value,) writes the data in value to the regname
register of the target processor. regwrite converts value from its
representation in the MATLAB workspace to the representation specified by
represent. The represent input argument defines the format of the data when
it is stored in regname. Input argument represent takes one of three input
strings:

String regname specifies the name of the destination register on the target.
Link cc defines the target to write value to. Valid entries for regname depend
on your target processor. Register names are not case-sensitive — a0 is the

represent string Description

2scomp Write value to the destination register as a signed
integer value in two’s complement format. This is the
default setting when you omit the represent
argument.

binary Write value to the destination register as an unsigned
binary integer.

ieee Write value to the destination registers as a floating
point 32-bit or 64-bit value in IEEE floating-point
format. Use this only when you are writing to 32- and
64-bit registers on the target.
3-143

regwrite
same as A0. For example, the TMS320C6xxx processor family provides the
following register names that are valid entries for regname:

Other processors provide other register sets. Refer to the documentation for
your target processor to determine the registers for the processor.

When you omit the represent argument, regwrite takes value from the
function and writes it to the designated register as a two’s complement value
signed integer.

Note Use write (called a direct memory write) to write to memory-mapped
registers. For the TMS320C5xxx processor family, register PC is memory
mapped and thus available using write, not regwrite. Use regwrite to write
to all other registers.

Examples To write a new value to the PC register on a C5xxx family processor, type

regwrite(cc,'pc',hex2dec('100'),'binary')

specifying that you are writing the value 256 (the decimal value of 0x100) to
register pc as binary data.

To write a 64-bit value to a register pair, such as B1:B0, the following syntax
specifies the value as a string, representation, and target registers.

regwrite(cc,'b1:b0',hex2dec('1010'),'ieee')

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR, CSR Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register
pairs
3-144

regwrite
Registers B1:B0 now contain the value 4112 in double-precision format.

See Also read, regread, write
3-145

reload
3reloadPurpose Reload to the target signal processor the most recently loaded program file

Syntax s = reload(cc,timeout)
s = reload(cc)

Description s = reload(cc,timeout) resends the most recently loaded program file to the
target processor. If you have not loaded a program file in the current session
(so there is no previously loaded file), reload returns the null entry [] in
s indicating that it could not load a file to the target. Otherwise, s contains the
full pathname to the program file. After you reset your target processor or after
any event produces changes in your target processor memory, use reload to
restore the program file to the target for execution.

To limit the time CCS IDE spends trying to reload the program file to the
target, timeout specifies how long the load process can take. If the load process
exceeds the timeout limit, CCS IDE stops trying to load the program file and
returns an error stating that the time period expired. Exceeding the allotted
time for the reload operation usually indicates that the reload was successful
but CCS IDE did not receive confirmation before the timeout period passed.

s = reload(cc) reloads the most recent program file, using the timeout value
set when you created link cc, the global timeout setting.

Examples After you create a link, use the link to reload your most recently loaded project.
If you have not loaded a project in this session, reload returns an error and an
empty value for s. Loading a project eliminates the error.

cc=ccsdsp;
s=reload(cc,23)
Warning: No action taken - First load a valid Program file before
you reload
> In E:\nightly\toolbox\tiddk\tiddk\@ccs\@ccsdsp\reload.m at line
23

s =

 ''

open(cc,'D:\ti\tutorial\sim62xx\gelsolid\hellodsp.pjt',...
'project')
3-146

reload
build(cc)

load(cc,'hellodsp.pjt')
halt(cc)
s=reload(cc,23)

s =

D:\ti\tutorial\sim62xx\gelsolid\Debug\hellodsp.out

See Also cd, load, open
3-147

remove
3removePurpose Remove a file from the active CCS IDE project

Syntax remove(cc,'filename')

Description remove(cc,'filename') deletes the file specified by filename from the active
project in CCS IDE. You can remove files that exist in the active project only.
filename must match the name of an existing file exactly to remove the file.

Examples After you have a project in CCS IDE, you can delete files from it using remove
from the MATLAB command line.

See Also activate, add, cd, open
3-148

reset
3resetPurpose Initiate a reset of the target processor

Syntax reset(cc,timeout)
reset(cc)

Description reset(cc,timeout) stops program execution on the target processor and
asynchronously performs a processor reset, returning all processor register
contents to their power up settings. The reset function returns after the
processor halts. To allow you to determine how long reset waits for the
processor to halt, input option timeout lets you set the waiting period in
seconds. After you use reset, the routine returns after the processor halts or
after timeout seconds elapses, whichever comes first.

reset(cc) stops program execution on the target processor and
asynchronously performs a processor reset, returning all processor register
contents to their power up settings. The reset function returns after the
processor halts. reset uses the global timeout setting defined in cc to
determine how long to wait for the processor to halt before returning. Use get
to examine the global timeout value for the link.

Use run to restart the program loaded on the target.

Compare to halt which does not reset the processor after the program stops
running.

See Also halt, restart, run
3-149

reshape
3reshapePurpose Change the shape of an array maintaining the same number of elements

Syntax reshape(x,m,n)
reshape(x,m,n,p…)
reshape(x,[m n p…])
reshape(x,…,[],…)

Description reshape(x,m,n) returns the m-by-n array whose elements are taken
columnwise from x. If x does not have m*n elements, reshape returns an error
from the operation.

Generally, reshape(x,siz) returns an n-dimensional array with the same
elements as x, but reshaped to size(siz). Note that prod(siz) must be the
same as prod(size(x)).

reshape(x,m,n,p…) returns an n-dimensional array with the same number of
elements as x, but reshaped to have size m-by-n-by-p-by-…. For the reshape
operation to work, m*n*p*… must equal prod(size(x)).

reshape(x,[m n p …]) is the same as the preceding syntax.

reshape(x,…,[],…) calculates the length of the dimension replaced by [] in
the command, so that the product of the dimensions equals prod(size(x)).For
the length calculation to succeed, prod(size(x)) bust be evenly divisible by
the product of the known dimensions (all the dimensions exclusive of the
unknown dimension). Within the function call, you are allowed to use only one
set of square brackets, [], for one unknown dimension.
3-150

restart
3restartPurpose Restore the program counter to the entry point for the current program

Syntax restart(cc,timeout)
restart(cc)

Description restart(cc,timeout) halts the processor immediately and resets the program
counter (PC) to the program entry point for the loaded program. Use run to
execute the program after you use restart. restart does not execute the
program after resetting the PC. timeout allows you to specify how long
restart waits for the processor to stop and return the PC to the program entry
point. Specify timeout in seconds. After you use restart, the restart routine
returns after resetting the PC or after timeout seconds elapse, whichever
comes first. If the timeout period expires, restart returns a timeout error.

restart(cc) halts the processor immediately and resets the program counter
(PC) to the program entry point for the loaded program. Use run to execute the
program after you use restart. restart does not execute the program after
resetting the PC. When you omit the timeout argument, restart uses the
global default timeout period defined in cc to determine how long to wait for
the processor to stop and the PC to be reset to the program entry point.

Examples When you are developing algorithms for your target processor, restart
becomes a particularly useful function. Rather than resetting the target after
each algorithm test, use the restart function to return the program counter to
the program entry point. Since restart restores your local variables to their
initial settings, but does not reset the processor, you are ready to rerun your
algorithm with new values. Also, in the case where your process gets lost or
halts, restart is a quick way to restore your program.

See Also halt, isrunning, run
3-151

run
3runPurpose Execute the program loaded on the target processor

Syntax run(cc,state,timeout)

Description run(cc,state,timeout) starts to execute the program loaded on the target
processor referred to by cc. Program execution starts from the location of the
program counter. After starting program execution, the input argument state
determines when you regain program control.

To define the action of run, state accepts three strings that set the state of the
processor:

To allow you to specify how long run waits for the processor to start executing
the loaded program before returning, the input argument timeout lets you set
the waiting period in seconds. After you use run, the routine returns after
confirming that the program started to execute, or after timeout seconds
elapses, whichever comes first. If the timeout period expires, run returns a
timeout error.

State String Run Action

’run’ Start to execute the program. Wait until the program
is running, then return. The program continues to
run. If you omit the option argument, run defaults to
this setting. Sets the processor to the running state
and returns. This is useful when you want to continue
to work in MATLAB while the processor executes a
program.

’runtohalt’ Start to execute the program. Wait to return until the
program encounters a breakpoint or the program
execution terminates. Sets the processor to the
running state and returns when the processor halts.

’tohalt’ Changes the state of a running process to ’runtohalt’,
and waits for the processor to halt before returning.
Use this when you want to stop a running process
cleanly. If the processor is already stopped when you
use this state setting, run returns immediately.
3-152

run
Examples After you build and load a program to your target, use run to start execution.

cc = ccsdsp('boardnum',0,'procnum',0); % Create a link to CCS
% IDE.

cc.load('tutorial_6xevm.out'); % Load an executable file to the
% target.

cc.rtdx.configure(1024,4); % Configure four buffers for data
% transfer needs.

cc.rtdx.open('ichan','w'); % Open RTDX channels for read and
% write.

cc.rtdx.enable('ichan');
cc.rtdx.open('ochan','r');
cc.rtdx.enable('ochan');

cc.restart; % Return the PC to the beginning of the current
% program.

cc.run('run'); % Run the program to completion.

This example uses a tutorial program included with DKTI. Set your CCS IDE
working directory to be the one that holds your project files. The load function
uses the current working directory unless you provide a full pathname in the
input arguments.

Rather than using the dot notation to access the RTDX functions, you can
create an alias to the cc link and use the alias in later commands. Thus, if you
add the line

rx = cc.rtdx;

to the program, you can replace

cc.rtdx.configure(1024,4);

with

configure(rx,1024,4);

See Also halt, isrunning, restart
3-153

save
3savePurpose Save files and projects in CCS IDE

Syntax save(cc,'filename','type')
save(cc,'filename')

Description save(cc,'filename','type') save the file in CCS IDE identified by filename
of type ’type’. type identifies the type of file to save, either project files when
you use ’project' for type, or text files when you use 'text' for the type
option. To save a specific file in CCS IDE, filename must match the name of
the file to save exactly. If you replace filename with 'all', save writes every
open file whose type matches the type option. File types recognized by save
include these extensions.

When you replace filename with the null entry [], save writes to storage the
current active file window in CCS IDE, or the active project when you specify
’project' for the type option.

Examples To clarify the different save options, here are six commands that save open
files or projects in CCS IDE.

type String Affected files

'project' Project files with the .pjt extension.

'text' All files with these extensions — .a*, .c, .cc, .ccx, .cdb,
.cmd, .cpp, .lib, .o*, .rcp, and .s*. Note that 'text'
does not save .cfg files.

Command Result

save(cc,'all','project') Save all open projects in CCS IDE.

save(cc,'my.pjt','project') Save the project my.pjt.

save(cc,[],project') Save the active project.

save(cc,'all','text') Save all open text files. This
includes source file, libraries,
command files, and others.
3-154

save
See Also add, cd, close, open

save(cc,'my_source.cpp','text') Save the text file my_source.cpp.

save(cc,[],'text') Save the active file window.

Command Result
3-155

set
3setPurpose Set the properties of links for CCS IDE and RTDX interface

Syntax set(cc,'propertyname','propertyvalue')
set(cc,'propname1','propvalue1','propname2','propvalue2')
v = set(cc)
cc.propertyname = 'propertyvalue'
set(rx,'propertyname','propertyvalue')
set(rx,'propname1','propvalue1','propname2','propvalue2')
v = set(rx)
rx.propertyname = 'propertyvalue'

Description set(cc,'propertyname','propertyvalue') sets the specified property of cc
to the specified value.

set(cc,'propname1','propvalue1','propname2','propvalue2') sets
multiple properties (propname1, propname2) of cc to corresponding property
values (propvalue1, propvalue2) with a single statement. cc must be a link.

v = set(cc) returns the properties and range of acceptable values of link cc.
When the range of values for a property is not finite, set returns {} for the
property value. When you omit the output argument, MATLAB displays the
results on the screen.

cc.propertyname = propertyvalue uses the dot notation to set propertyname
to propertyvalue.

set(rx,'propertyname','propertyvalue') sets the specified property of rx
to the specified value.

set(rx,'propname1','propvalue1','propname2','propvalue2') sets
multiple properties (propname1, propname2) of rx to corresponding property
values (propvalue1, propvalue2) with a single statement.

v = set(rx) returns the properties and range of values of link rx. rx is the
RTDX portion of a link for CCS IDE. When the range of values for a property
is not finite, set returns {} for the property value. When you omit the output
argument, MATLAB displays the results on the screen.

rx.propertyname = propertyvalue uses the dot notation to set propertyname
to propertyvalue for link rx.
3-156

set
Examples Create a link to CCS IDE

cc = ccsdsp;

Now review the properties of cc to see the acceptable values for each property.

v=set(cc)

v =

 timeout: {}
 page: {}
 eventwaitms: {}

The properties accept any input value, as shown by the {} entries returned.

Set timeout to 10 s and page to 2. Property eventwaitms cannot be set. It is
read-only.

set(cc,'timeout',10,'page',2)
get(cc)

ans =

 app: [1x1 activex]
 dspboards: [1x1 activex]
 dspboard: [1x1 activex]
 dsptasks: [1x1 activex]
 dsptask: [1x1 activex]
 dspuser: [1x1 activex]
 rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: 'D:\ticcs\cc\bin\cc_app.exe'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 2

Reset page to 0 since this is a C6xxx processor.

cc.page = 0
get(cc)
3-157

set
ans =

 app: [1x1 activex]
 dspboards: [1x1 activex]
 dspboard: [1x1 activex]
 dsptasks: [1x1 activex]
 dsptask: [1x1 activex]
 dspuser: [1x1 activex]
 rtdx: [1x1 rtdx]
 apiversion: [1 0]
 ccsappexe: 'D:\ticcs\cc\bin\cc_app.exe'
 boardnum: 0
 procnum: 0
 timeout: 10
 page: 0

See Also get
3-158

symbol
3symbolPurpose Return the most recent program symbol table from CCS IDE

Syntax s = symbol(cc)

Description s = symbol(cc) returns the symbol table for the program loaded in CCS IDE.
symbol only applies after you load a target program file. s is an array of
structures where each row in s presents the symbol name and address in the
table. Therefore, s has two columns; one is the symbol name, the other is the
symbol address and symbol page. For example, this table shows a few possible
elements of s, and their interpretation.

You can use field address in s as the address input argument to read and
write.

It you use symbol and the symbol table does not exist, s returns empty and you
get a warning message.

Symbol tables are a portion of a COFF object file that contains information
about the symbols that are defined and used by the file. When you load a
program to the target, the symbol table resides in CCS IDE. While CCS IDE
may contain more than one symbol table at a time, symbol accesses the symbol
table belonging to the program you last loaded on the target.

Examples Demonstrating this function requires that you load a program file to your
target. In this example, build and load theMATLAB Link for Code Composer
Studio demo program c6701evmafxr. Start by entering c6701evmafxr at the
MATLAB prompt.

c6701evmafxr;

s Structure Field Contents of the Specified Field

s(1).name String reflecting the symbol entry name.

s(1).address(1) Address or value of symbol entry.

s(1).address(2) Memory page for the symbol entry. For TI C6xxx
processors, the page is 0.
3-159

symbol
Now set the simulation parameters for the model and build the model to your
target. With the model loaded on your target, use symbol to return the entries
stored in the symbol table in CCS IDE.

cc = ccsdsp;
s = symbol(cc);

s contains all the symbols and their addresses, in a structure you can display
with the following code:

for k=1:length(s),disp(k),disp(s(k)),end;

MATLAB lists the symbols from the symbol table in a column.

See Also load, run
3-160

visible
3visiblePurpose Set whether CCS IDE window is visible while CCS is running

Syntax visible(cc,state)

Description visible(cc,state) sets CCS IDE to be visible or not visible on the desktop.
Input argument state accepts either 0 or 1 to set the visibility. Setting state
equal to 0 makes CCS IDE not visible on the desktop. However, the CCS IDE
process runs in the background while the window is not visible. Running CCS
IDE without making it visible lets you use the CCS IDE functions from
MATLAB, without interacting with CCS IDE. If you need to interact with CCS
IDE, set state equal to 1. This makes CCS IDE visible and you can use the
features of the user window.

An important feature of visible is that it creates a new link to CCS IDE when
you change the IDE visibility. As a result, after you use

visible(cc,state)

to make CCS IDE show on your desktop, the MATLAB clear all function does
not remove the visibility handle. You must remove the handle explicitly before
you use clear.

To see the visibility difference, open Code Composer Studio and use Windows
Task Manager to look at the applications and processes running on your
computer. When CCS IDE is visible (the normal startup and operating mode
for the IDE), CCS IDE appears listed on the Applications page of Task
Manager. And the process cc_app.exe shows up on the Processes page as a
running process. When you set CCS IDE to not visible (state equal 0), CCS
IDE disappears from the Applications page, but remains on the Processes
page, with a Process ID (PID), using CPU and memory resources.

Note When you close MATLAB while CCS IDE is not visible, MATLAB closes
CCS if it launched the IDE. This happens because the operating system treats
CCS as a subprocess in MATLAB when CCS is not visible. By having
MATLAB close the invisible IDE when you close MATLAB, you do not need to
worry about CCS being left open with no way to close it without using
Windows Task Manager. If CCS IDE is not visible when you open MATLAB,
closing MATLAB leaves CCS IDE running in as invisible state. More directly,
3-161

visible
MATLAB leaves CCS IDE in the visibility and operating state in which it
finds it.

Examples Test to see whether CCS IDE is running. Then change the visibility and check
again. Start by launching CCS IDE. Then open MATLAB and at the prompt,
type

cc=ccsdsp

CCSDSP Object:
 API version = 1.0
 Processor type = C67
 Processor name = CPU
 Running? = No
 Board number = 0
 Processor number= 0
 Default timeout = 10.00 secs

RTDX Object:
 Timeout: 10.00 secs
 Number of open channels: 0

MATLAB creates a link to CCS IDE and leaves CCS IDE visible on your
desktop.

isvisible(cc)

ans =
1

Now, change the visibility state to 0, or invisible, and check the state.

visible(cc,0)
isvisible(cc)

ans =
0

Notice that CCS IDE is not visible on your desktop. Recall that MATLAB did
not open CCS IDE. When you close MATLAB with CCS IDE in this invisible
3-162

visible
state, CCS IDE remains running in the background. The only ways to close it
are either

• Launch MATLAB. Create a new link to CCS IDE. Use the new link to make
CCS IDE visible. Close CCS IDE.

• Open Windows Task Manager. Click Processes. Find and highlight
cc_app.exe. Click End Task.

See Also isvisible, load
3-163

write
3writePurpose Write data to memory on the target processor

Syntax write(cc,address,data,timeout)
write(cc,address,data)

write(objname)
write(objname,index)
write(objname,stindex,member1,value1,…,membern,valuen,memindex)
write(…,timeout)

Description Link Object Syntaxes

write(cc,address,data,timeout) sends a block of data to memory on the
processor referred to by cc. The address and data input arguments define the
memory block to be written—where the memory starts and what data is being
written. The memory block to be written to begins at the memory location
defined by address. data is the data to be written, and can be a scalar, a vector,
a matrix, or a multidimensional array. Data get written to memory in
column-major order. timeout is an optional input argument you use to
terminate long write processes and data transfers. For details about each input
parameter, read the following descriptions.

address — write uses address to define the beginning of the memory block to
write to. You provide values for address as either decimal or hexadecimal
representations of a memory location in the target processor. The full address
at a memory location consists of two parts: the offset and the memory page,
entered as a vector [location, page], a string, or a decimal value. In cases
where the processor has only one memory page, as is true for many digital
signal processors, the page portion of the memory address is 0. By default,
ccsdsp sets the page to 0 at creation if you omit the page property as an input
argument to set the page parameter.
3-164

write
For processors that have one memory page, setting the page value to 0 lets you
specify all memory locations in the processor using just the memory location
without the page value.

To specify the address in hexadecimal format, enter the address property value
as a string. write interprets the string as the hexadecimal representation of
the desired memory location. To convert the hex value to a decimal value, the
function uses hex2dec. Note that when you use the string option to enter the
address as a hex value, you cannot specify the memory page. For string input,
the memory page defaults to the page specified by cc(page).

data — the scalar, vector, or array of values that are written to memory on
the processor. write supports the following data types:

Table 3-7: Examples of Address Property Values

Property
Value

Address Type Interpretation

'1F' String Offset is 31 decimal on the page
referred to by cc(page)

10 Decimal Offset is 10 decimal on the page
referred to by cc(page)

[18,1] Vector Offset is 18 decimal on memory page 1
(cc(page) = 1)

datatype String Description

'double' Double-precision floating point values

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating point data

'uint8' Unsigned 8-bit integers
3-165

write
To limit the time that write spends transferring data from the target
processor, the optional argument timeout tells the data transfer process to stop
after timeout seconds. timeout out is defined as the number of seconds allowed
to complete the write operation. You may find this useful for limiting prolonged
data transfer operations. If you omit the timeout option in the syntax, write
defaults to the global timeout defined in cc.

write(cc,address,data) ends a block of data to memory on the processor
referred to by cc. The address and data input arguments define the memory
block to be written—where the memory starts and what data is being written.
The memory block to be written to begins at the memory location defined by
address. data is the data to be written, and can be a scalar, a vector, a matrix,
or a multidimensional array. Data get written to memory in column-major
order. Refer to the preceding syntax for details about the input arguments. In
this syntax, timeout defaults to the global timeout period defined in
cc.timeout. Use get to determine the default timeout value.

Like the isreadable, iswritable, and read functions, write checks for valid
address values. Illegal address values would be any address space larger than
the available space for the processor—232 for the C6xxx processor family and
216 for the C5xxx series. When the function identifies an illegal address, it
returns an error message stating that the address values are out of range.

Embedded Object Syntaxes
write works with all of the objects you create with createobj. To transfer data
from MATLAB to Code Composer Studio, use one of the write functions—
write—depending on the data to write. Note that write and its variants are
the only way to get data from MATLAB to CCS from objects.

write(objname) writes all the data in objname to the location accessed by
object objname. Properties of objname, such as wordsize,
storageunitspervalue, size, represent, and binarypt—determine how
write performs the numeric conversion. data is a numeric array whose

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

datatype String (Continued) Description
3-166

write
dimensions are defined by the size property of objname. Object property size
is the dimensions vector. Each element in the dimensions vector contains the
size of the data array in that dimension. When size is a scalar, data is a
column vector of the length specified by size.

For example, when size is [2 3], data is a 2-by-3 array.

Properties of the Object
objname, the object that accesses the data, has the following properties, if the
object is a numeric object. The properties differ for different types of objects,
such as structure objects or register objects.

Property Options Description

size Greater than 1 Specifies the dimensions of the output
numeric array.

arrayorder col-major or
row-major

Defines how to map sequential memory
locations into arrays. ’col-major’ is the
default, and the MATLAB standard.
C uses ’row-major’ ordering most often.

represent float, signed,
unsigned,
fract

Determines the numeric representation
used in the output data.

• float—IEEE floating point
representation, either 32- or 64 bits

• signed—two’s complement signed
integers

• unsigned—unsigned binary integer

• fract—fractional fixed-point data

wordsize Greater than 1 (Read-only) Calculated from other object
properties such as
storageunitspervalue

binarypt 0 to wordsize Determines the position of the binary
point in a word to specify its
interpretation
3-167

write
write(objname,index) reads the specified element in the memory location
accessed by objname. index is a scalar or a vector that identifies the particular
data element to return. When you enter [] for index, write returns all the data
stored at the memory location. When you enter a scalar for index, write
returns a column vector of length size containing the data from the memory
space. When index is a vector, write returns the element in the array specified
by the entries in the vector. For example, if you are reading data from
a 3-by-3-by-3 array, setting index to be [2 2 2] returns the element
data(2,2,2). To return more than one element, use MATLAB standard range
notation for the vector elements in index. As an example, when index is [1:6],
write returns the first six elements of data. You must remember that the
number of elements in the vector in index must be either one (a scalar) or the
same as the number of dimensions in data and specified by the property size.
When data is a four dimensional array, your vector in index must have four
elements, one for each array dimension. Otherwise, write cannot determine
which elements to return.

write(objname,stindex,member1,value1,…,membern,valuen,memindex)
reads the members of the structure that objname accesses. When you omit all
of the input arguments except objname, write returns the entire structure.
membern, valuen, memindex, and stindex (an optional input argument) specify
which structure member to read:

• membern—specifies the name of the member of the structure to write

• valuen—specifies the value to write to membern

• memberindex—provides the index of the data element to write

• structindex—identifies the structure to write when objname accesses
a structure containing structures or a vector

Note that the class of the object data from the write operation depends on the
class of the member being read—numeric values return numeric objects, string
values return string objects, and so on.

write(…,timeout) During write operations, the timeout property of objname
determines the time allowed to complete the write. Including a value for the
timeout input argument in the write syntax lets you override the timeout
property setting for objname with the value you enter for argument timeout.
For reading large data arrays, being able to explicitly set the timeout value as
an input option may be necessary to let write run to completion. Note that
3-168

write
using the timeout input option does not change the timeout property value for
objname.

When you need to write one member of a structure or to do individual write
operations, consider using getmember.

Notes About Using write With Embedded Objects
When you are writing data into memory on your target, consider a number of
points that affect how write performs the write operation.

• The data you write to the target can be either numeric or hexadecimal
format.

• When the data you are writing contains values that exceed the representable
range for the variable date type and word size, the value written saturates
to the maximum or minimum representable value for the variable
representation. For example, if you try to write the value 70000 into an
unsigned, 16-bit variable, the write operation stores 65535 into memory.
65535 is the maximum representable value for unsigned, 16-bit integers.
Similarly, if you try to write -3 to the same variable, the stored value will be
0. You cannot represent negative numbers in the unsigned format.

• When you write more data elements to memory than fit in the specified size
of the memory block, only the number of elements that fit in the memory
block get written to the target. Excess elements do not get stored and are
lost.

• When you write fewer data elements to memory than fit in the specified size
of the memory block, all the elements get written to the memory block on the
target. Memory space in the block which does not receive new elements is not
affected by the write operation and remains unchanged.

• Use separate write operations to write multiple data elements to different
locations within the memory block accessed by an object. For example, to
write to the fifth and eighth elements of a 1-by-10 array in memory accessed
by an object, use write twice—once to write to the fifth memory location and
the again to write to the eighth location. You cannot combine the write
operations in a single command unless the memory locations are contiguous.
Refer to the next item in this list for information about writing to contiguous
memory locations within a memory block.
3-169

write
• To write a block of data into contiguous locations in the memory block
accessed by the object, supply just the starting index for the locations in the
memory block.

Notes About Writing Strings to Memory
Writing strings to memory has some idiosyncracies. Recall the following points
when you use write with string data.

• Data that you write to memory can be numeric or string data

• When your data is strings or characters, the write operation is controlled by
the charconversion property value for the object. write accepts and writes
only characters with ASCII values from 0 to 127 when the charconversion
property value is ASCII.

• Numeric data is not restricted in any way when you use write.

• write appends a null character as the last element written to memory,
except when

- you write numeric data

- the object points to a single C character (size equals 1)

- the amount of data you are writing exceeds the allocated space

• When the string data you write does not fill the allotted space in memory,
write does not fill the extra space with zeros—no zero padding.

Notes About Writing to Structures

When you are writing data to a particular index within the structure, consider
using getmember to create an object that accesses the desired member. Then
use your new object as objname in the write function call.

Refer to the section “Embedded Object Examples” for samples of write in use.

Examples Link Object Examples
Create a link to a target processor and write data to the target. In this example,
CCS IDE recognizes one board having one processor.

cc = ccsdsp;
cc.visible(1);
write(cc,'50',1:250);
mem = read(cc,0,50,'double') % Returns 50 values as a column

% vector in mem.
3-170

write
It may be more convenient to return the data in an array. If you enter a vector
for count, mem contains a matrix of dimensions the same as vector count.

write(cc,10,1:100);
mem=read(cc,10,[10 10],'double')

mem =

 1 11 21 31 41 51 61 71 81 91
 2 12 22 32 42 52 62 72 82 92
 3 13 23 33 43 53 63 73 83 93
 4 14 24 34 44 54 64 74 84 94
 5 15 25 35 45 55 65 75 85 95
 6 16 26 36 46 56 66 76 86 96
 7 17 27 37 47 57 67 77 87 97
 8 18 28 38 48 58 68 78 88 98
 9 19 29 39 49 59 69 79 89 99
 10 20 30 40 50 60 70 80 90 100

Embedded Object Examples
The following examples show you some of the details about using write with
embedded objects. Also, you can find an example or two for each of the items in
the list from the section “Notes About Using write With Embedded Objects”.

When you try to write more elements to the memory space than the space can
hold, write ignores the extra elements, storing only the ones that fit. In this
example, mm is an object that access a 1-by-10 variable in memory.

• writing 15 elements to the 1-by-10 array
write(mm,[1:15])

results in elements 1 through 10 (or [1:10]) being written to memory.
Elements 11 through 15 are ignored.

• writing 5 element to the 1-by-10 array
write(mm,[1:5])

results in elements [1:5] being written to memory without changing the
values in memory for element [6:10].
3-171

write
To write multiple element to different indices in the 1-by-10 array, use multiple
write calls.

write(mm,5,6)

writes value 6 to the fifth index in the array. Now to write another value to a
different index, use

write(mm,7,9)

which writes value 9 to the seventh element of the array. Trying to use one call
like

write(mm,[5 7],[6 9])

to write 6 into index 5 and 9 into index 7 does not work.

Examples That Write Strings
Embedded object mm accesses a 1-by-12 array in memory on the target.

To write a string to target memory, use

write(mm,'Hello World')

which writes 11 characters to memory plus the additional null character at the
end of the string.

Notice that the M at the end of the memory space is not affected by the write
operation. Now write a new string to memory, such as “Ciao.”

write(mm,'Ciao')

After writing to memory, the stored string looks like:

where the fifth element now holds the null character that resulted from writing
‘Ciao' to indices 1 through 4, plus the null character in index 5. Alll the
characters after index 5 remain the same. Recall that if you now read the

H e l l o W o r l d \0 M

C i a o \0 W o r l d \0 M
3-172

write
memory, the read operation stops at the first null character and does not
return “World” or “M.”

See Also read, symbol
3-173

writemsg
3writemsgPurpose Write messages to the specified RTDX channel

Syntax data = writemsg(rx,channelname,data,timeout)
data = writemsg(rx,channelname,data)

Description data = writemsg(rx,channelname,data) writes data to a channel associated
with rx. channelname identifies the channel queue, which must be configured
for write access. All messages must be the same type for a single write
operation. writemsg takes the elements of matrix data in column-major order.

To limit the time that writemsg spends transferring messages from the target
processor, the optional argument timeout tells the message transfer process to
stop after timeout seconds. timeout is defined as the number of seconds
allowed to complete the write operation. You may find this useful for limiting
prolonged data transfer operations. If you omit the timeout option in the
syntax, write defaults to the global timeout defined in cc.

writemsg supports the following datatypes: uint8, int16, int32, single, and
double.

data = writemsg(rx,channelname,data) ises the global timeout setting
assigned to cc when you create the link.

Examples After you load a program to your target, configure a link in RTDX for write
access and use writemsg to write data to the target. Recall that the program
loaded on the target must define ’ichannel’ and the channel must be
configured for write access.

cc=ccsdsp;
rx = cc.rtdx;
open(rx,'ichannel','w'); % Could use rx.open('ichannel','w')
enable(rx,'ichannel');
inputdata(1:25);
writemsg(rx,'ichannel',int16(inputdata));

As a further illustration, the following code snippet writes the messages in
matrix indata to the write-enabled channel specified by ichan. Note again that
this example works only when ichan is defined by the program on the target
and enabled for write access.

indata = [1 4 7; 2 5 8; 3 6 9];
3-174

writemsg
writemsg(cc.rtdx, 'ichan', indata);

The matrix indata is written column-wise to ichan. The preceding function
syntax is equivalent to:

writemsg(cc.rtdx, 'ichan', [1:9]);

See Also readmat, readmsg, write
3-175

writemsg
3-176

Index
A
abbreviate property names 1-9
about MATLAB Link for Code Composer Studio

Development Tools vi
abstract class 2-5
access properties 1-8
address property 2-34
apiversion 1-16
apiversion property 2-35
arrayorder property 2-36

B
base class 2-5
behavior 2-5
binarypt property 2-37
bitsperstorageunit property 2-37
boardnum 1-17
boardnum property 2-38

C
CCS IDE links

tutorial about using 1-22
ccsappexe 1-17
ccsappexe property 2-38
class 2-5
class diagram 2-5
class, abstract 2-5
class, base 2-5
class, container 2-5
constructor 2-5
container class 2-5

D
diagram
object 2-6
diagram, class 2-5

E
embedded object

arrayorder 2-36
binarypt 2-37
bitsperstorageunit 2-37
boardnum 2-38
ccsappexe 2-38
endianness 2-39
isrecursive 2-40
label 2-40
link 2-41
member 2-42
membname 2-43
memoffset 2-44
name 2-46
numberofstorageunits 2-46
numChannels 2-46
page 2-48
postpad 2-49
prepad 2-49
procnum 2-49
represent 2-50
rtdx 2-52
RtdxChannel 2-54
storageunitspervalue 2-55
timeout 2-57
typestring 2-57
value 2-58
wordsize 2-59

embedded object properties
address 2-34
apiversion 2-35
I-1

Index

I-2
endianness property 2-39

F
function 2-5
functions, overloading 1-13

G
getting properties 1-10

H
hardware requirements for MATLAB Link for

Code Composer Studio 1-3

I
inheritance 2-6
instance 2-6
isrecursive property 2-40

L
label property 2-40
link filters properties

getting 1-11
link properties

about 1-14, 1-16
apiversion 1-16
boardnum 1-17
ccsappexe 1-17
numchannels 1-17
page 1-18
procnum 1-18
quick reference table 1-15
rtdx 1-18
rtdxchannel 1-19
setting 1-11
timeout 1-20
version 1-20

link properties, details about 1-16
link property 2-41
links

closing CCS IDE 1-44
closing RTDX 1-62
communications for RTDX 1-53
creating links for CCS IDE 1-26
creating links for RTDX 1-51
details 1-16
introducing the links for CCS IDE tutorial 1-22
introducing the tutorial for using links for RTDX

1-47
loading files into CCS IDE 1-28
quick reference 1-14
running applications using RTDX 1-55
selecting targets for CCS IDE 1-25
tutorial about using links for CCS IDE 1-22
tutorial about using links for RTDX 1-47
working with your target 1-31

M
MATLAB Link for Code Composer Studio

about vi
expected background for using ix
hardware and OS requirements 1-3
information for new users ix
listing link functions 1-66
requirements for TI software 1-4
requirements for use viii

member property 2-42
membname property 2-43
memoffset property 2-44
method 2-6

Index
method See also function

N
name property 2-46
numberofstorageunits property 2-46
numchannels 1-17
numChannels property 2-46

O
object 2-6

behavior 2-5
class 2-5
constructor 2-5
function 2-5
handle 2-6
inheritance 2-6
instance 2-6
method 2-6
property 2-7
state 2-7
structure 2-7

object diagram 2-6
object diagramSee alsoclass diagram
object-based programming 2-7
object-oriented programming 2-7
OS requirements for MATLAB Link for Code

Composer Studio 1-3
overloading 1-13

P
page 1-18
page property 2-48
postpad property 2-49
prepad property 2-49

prerequisites for using MATLAB Link for Code
Composer Studio viii

procnum 1-18
procnum property 2-49
programming

object-based 2-7
object-oriented 2-7

properties
abbreviating names 1-9
referencing directly 1-11
retrieving 1-8

function for 1-10
retrieving by direct property referencing 1-11
setting 1-8

properties See link properties
property 2-7
property values

abbreviating 1-11

R
represent property 2-50
rtdx 1-18
RTDX links

tutorial about using 1-47
rtdx property 2-52, 2-54
rtdxchannel 1-19

S
set properties 1-8
state 2-7
storageunitspervalue property 2-55
structure 2-7
structure-like referencing 1-11
subclass 2-7
subclass See also superclass
I-3

Index

I-4
superclass 2-7
superclass See also subclass

T
timeout 1-20
timeout property 2-57
tutorial for links for CCS IDE 1-22
tutorial for links for RTDX 1-47
typestring property 2-57
typographical conventions (table) xiii

U
use CCS IDE links 1-22
use links for RTDX 1-47

V
value property 2-58
version 1-20

W
wordsize property 2-59

	Preface
	About MATLAB Link for Code Composer Studio Development Tools
	Supported Hardware for Links to CCS IDE and RTDX

	Related Products
	Using This Guide
	Expected Background
	If You Are a New User
	If You Are an Experienced User

	Organization of the Document

	Configuration Information
	Typographical Conventions

	Introducing Links and Embedded Objects
	Requirements for MATLAB Link for Code Composer Studio
	Platform Requirements—Hardware and Operating System
	Texas Instruments Software

	Constructing Link Objects
	Example— Constructor for Links

	Properties and Property Values
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Example—Setting Link Property Values at Construction

	Setting Property Values with set
	Example—Setting Link Property Values Using set

	Retrieving Properties with get
	Example—Retrieving Link Property Values Using get

	Direct Property Referencing to Set and Get Values
	Example—Direct Property Referencing in Links

	Overloaded Functions for Links
	Link Properties
	Quick Reference to Link Properties
	Details About the Link Properties
	apiversion
	boardnum
	ccsappexe
	numchannels
	page
	procnum
	rtdx
	rtdxchannel
	timeout
	version

	Tutorial 2-1—Using Links and Embedded Objects
	Introducing the Tutorial
	Running the Interactive Tutorial

	Selecting Your Target
	Creating and Querying Links for CCS IDE
	Loading Files into CCS
	Working with Links and Data
	Working with Embedded Objects
	Using list
	Using read and write
	Using cast, convert, and size
	Using getmember

	Closing the Links or Cleaning Up CCS IDE

	Tutorial 2-2—Using Links for RTDX
	Introducing the Tutorial for Using RTDX
	Creating the Links
	Configuring Communications Channels
	Running the Application
	Closing the Links or Cleaning Up
	Listing the Functions for Links

	About Objects for MATLAB Link Software
	Introduction to Objects
	Some Object-Oriented Programming Terms
	Definitions of Useful Object-Oriented Terms
	Determining an Object’s Class

	About the Relationships Between Objects
	The Base Classes
	The Sub Classes
	Other classes

	Class Diagrams for the MATLAB Link for Code Composer Studio
	Class Diagram of the Memory Class
	Class Diagram of the Register Class
	Class Diagram of the Structure Class

	Numeric Objects—Their Methods and Properties
	Properties of Numeric Objects
	Methods of Numeric Objects

	Bitfield Objects—Their Methods and Properties
	Properties of Bitfield Objects
	Methods of Bitfield Objects

	Enum Objects—Their Methods and Properties
	Properties of Enum Objects
	Methods of Enum Objects

	Pointer Objects—Their Methods and Properties
	Properties of Pointer Objects
	Methods of Pointer Objects

	String Objects—Their Methods and Properties
	Properties of String Objects
	Methods of String Objects

	Rnumeric Objects—Their Methods and Properties
	Properties of Rnumeric Objects
	Methods of Rnumeric Objects

	Renum Objects—Their Methods and Properties
	Properties of Renum Objects
	Methods of Renum Objects

	Rpointer Objects—Their Methods and Properties
	Properties of Rpointer Objects
	Methods of Rpointer Objects

	Rstring Objects—Their Methods and Properties
	Properties of Rstring Objects
	Methods of Rstring Objects

	Structure Objects—Their Methods and Properties
	Properties of Structure Objects
	Methods of Structure Objects

	Reference for the Properties of the Objects
	Property Reference Format and Contents
	address
	Description
	Characteristics
	Range

	apiversion
	Description
	Characteristics
	Range
	Examples

	arrayorder
	Description
	Characteristics
	Range
	Examples

	binarypt
	Description
	Characteristics
	Range
	Referrals

	bitsperstorageunit
	Description
	Characteristics
	Range
	Referrals

	boardnum
	Description
	Characteristics
	Range

	ccsappexe
	Description
	Characteristics
	Examples

	endianness
	Description
	Characteristics
	Range
	Examples

	isrecursive
	Description
	Characteristics

	label
	Description
	Characteristics
	Examples
	Referrals

	link
	Description
	Characteristics
	Examples
	Referrals

	member
	Description
	Characteristics
	Examples

	membname
	Description
	Characteristics
	Range
	Examples

	memoffset
	Description
	Characteristics
	Range
	Examples

	name
	Description
	Characteristics
	Range

	numberofstorageunits
	Description
	Characteristics
	Range

	numChannels
	Description
	Examples

	page
	Description
	Characteristics
	Range
	Examples

	postpad
	Description
	Characteristics

	prepad
	Description
	Characteristics

	procnum
	Description
	Range
	Description
	Characteristics
	Range

	represent
	Description
	Characteristics
	Range
	Referrals

	rtdx
	Description
	Characteristics
	Examples
	Referrals

	RtdxChannel
	Description
	Characteristics
	Range

	size
	Description
	Characteristics
	Range
	Examples

	storageunitspervalue
	Description
	Characteristics
	Range
	Examples

	timeout
	Description
	Characteristics
	Range
	Examples

	typestring
	Description
	Examples

	value
	Description
	Characteristics
	Examples

	wordsize
	Description
	Characteristics
	Range

	Link Functions Reference
	Using the Link Function Reference
	Contents of Function Reference Pages

	Tables of Link Software Functions
	Link Functions—Alphabetical List

	Index

