
Modeling

Simulation

Implementation

Getting Started
Version 2

For Use with Simulink®

Communications
Blockset

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Getting Started with the Communications Blockset
 COPYRIGHT 2001 - 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: June 2001 Online only New for Version 2.0.2 (Release 12.1)
July 2002 First printing Revised for Version 2.5 (Release 13)

i

Contents

1
Introduction

What Is the Communications Blockset? 1-2

Related Products List . 1-3

Required Software . 1-4

Using This Guide . 1-5
Who Should Read This Guide? . 1-5
How to Use This Guide . 1-5

2
Building Models

Introduction . 2-2
New Simulink Users . 2-2
Building Models of Communication Systems 2-2

Running a Simulink Model . 2-4
Opening the Model . 2-4
Overview of the Model . 2-5
Quadrature Amplitude Modulation . 2-6
Running a Simulation . 2-6
Displaying the Error Rate . 2-7
Setting Block Parameters . 2-8
Displaying a Plot of Phase Noise . 2-9
More Demos . 2-10

Building a Simple Model . 2-12
The Basic Steps . 2-12
Using commstartup to Set Simulation Parameters 2-12
Opening a New Model Window . 2-13

ii Contents

Opening Block Libraries . 2-14
Moving Blocks into the Model Window 2-15
Connecting Blocks . 2-16
Setting Block Parameters . 2-18
Setting Simulation Parameters . 2-19
Running the Model . 2-20
Adding Noise to the Model . 2-21
Saving a Model . 2-24
Frames and Frame-Based Processing . 2-25
Discrete Signals and Sample Times . 2-25
Continuous Signals . 2-25

Building a Channel Noise Model . 2-27
Overview of the Model . 2-27
Selecting Blocks for the Channel Noise Model 2-28
Setting Parameters in the Channel Noise Model 2-29
Connecting the Blocks . 2-30
Running the Channel Noise Model . 2-31

Reducing the Error Rate Using a Hamming Code 2-33
Building the Hamming Code Model . 2-33
Hamming Encoder and Decoder . 2-35
Setting Parameters in the Hamming Code Model 2-35
Labeling the Display Block . 2-36
Running the Hamming Code Model . 2-36
Displaying Frame Sizes . 2-37
Adding a Scope to the Model . 2-37
Setting Parameters in the Expanded Model 2-39
Observing Channel Errors with the Scope 2-41

Modeling a Channel with Modulation 2-43
Building the BPSK Model . 2-43
Binary Phase Shift Keying . 2-44
Setting Parameters in the BPSK Model 2-45
Running the BPSK Model . 2-45

Reducing the Error Rate with a Cyclic Code 2-46
Building the Cyclic Code Model . 2-46
Setting Parameters in the Cyclic Code Model 2-47
Running the Cyclic Code Model . 2-48

iii

Setting the Symbol Period . 2-48
Using a Probe Block to Determine Symbol Period 2-49

Building a Frequency-Shift Keying Model 2-51
Building the FSK Model . 2-52
Setting Parameters in the FSK Model 2-53
Running the FSK Model . 2-55
Delays in the Model . 2-57
Finding the Delay in the Model . 2-58
Multirate Models . 2-60
Using Sample Time Colors to Check Sample Times 2-60

Building a Convolutional Code Model 2-62
Building the Convolutional Code Model 2-62
Blocks in the Model . 2-63
Setting Parameters in the Convolutional Code Model 2-64
Running the Convolutional Code Model 2-65

3

Using the Communications Blockset
with MATLAB

Introduction . 3-2

Sending Data to the MATLAB Workspace 3-3
Using a Signal To Workspace Block . 3-3
Configuring the Signal To Workspace Block 3-4
Viewing the Error Rate Data in the Workspace 3-4
Sending Signal and Error Data to the Workspace 3-4
Viewing the Signal and Error Data in the Workspace 3-6
Analyzing Signal and Error Data . 3-6

Running Simulations from the Command Line 3-8
Running a Single Simulation . 3-8
Running Multiple Simulations . 3-9
Setting Parameters in the Phase Noise Model 3-9
Plotting the Results of Multiple Simulations 3-11

iv Contents

Importing Data from the MATLAB Workspace 3-12
Simulating a Signal by Importing Data 3-12
Simulating Noise with Imported Data 3-13
Simulating Noise with Specified Error Patterns 3-14
Setting Sample Times and Samples per Frame 3-15

Learning More . 3-17
Online Help . 3-17
Demos . 3-17
The MathWorks Online . 3-18

1

Introduction

What Is the Communications Blockset? 1-2

Related Products List 1-3

Required Software 1-4

Using This Guide 1-5

1 Introduction

1-2

What Is the Communications Blockset?
The Communications Blockset is a collection of Simulink® blocks for designing
and simulating communication systems. With the Communications Blockset,
you can design models in the form of block diagrams, using simple
click-and-drag mouse operations. You can run simulations on a model at the
push of a button, and change parameters while the simulation is running.

The Communications Blockset contains ready-to-use blocks to model various
processes within communication systems, including

• Signal generation

• Source coding

• Error-correction

• Interleaving

• Modulation/demodulation

• Transmission along a channel

• Synchronization

In addition, you can create specialized blocks, to implement your own
algorithms.

All the power of MATLAB® is available to you when you use the
Communications Blockset. You can run simulations from the command line
and invoke MATLAB expressions and M-files.

Related Products List

1-3

Related Products List
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Communications Blockset.

For more information about any of these products, see either

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Note The toolboxes listed below all include functions that extend the
capabilities of MATLAB. The blocksets all include blocks that extend the
capabilities of Simulink.

Product Description

CDMA Reference
Blockset

Design and simulate IS-95A mobile phone
equipment

Communications Toolbox Design and analyze communication systems

DSP Blockset Design and simulate DSP systems

Real-Time Workshop Generate C code from Simulink models

Signal Processing
Toolbox

Perform signal processing, analysis, and
algorithm development

Simulink Design and simulate continuous- and
discrete-time systems

Stateflow Design and simulate event-driven systems

1 Introduction

1-4

Required Software
To build and run the models in this manual, the Communications Blockset and
the products it requires, which are listed below, must be installed:

• MATLAB

• Simulink

• Signal Processing Toolbox

• Communications Toolbox

• DSP Blockset

You can find instructions for installing these products in the MATLAB
installation documentation for your platform. To determine what products are
installed on your system, type ver at the MATLAB prompt. This displays
information about the version of MATLAB you are running, including a list of
all toolboxes and blocksets installed on your system.

The Communications Blockset provides demonstration files that show how to
use the blockset to model communication systems. To launch these demos, type

demo

at the MATLAB prompt, then select Blocksets, and then Communications.

Using This Guide

1-5

Using This Guide

Who Should Read This Guide?
If you are a new user, this guide, Getting Started with the Communications
Blockset, is written for you. Its purpose is to quickly get you started using the
Communications Blockset. It shows you how to

• Run a Simulink model

• Build and run models of communication systems

• Display the results of a simulation

• Change simulation parameters

• Run simulations from the MATLAB command line

• Transfer data between a model and the MATLAB workspace

If you are an experienced user, the online documentation for the
Communications Blockset provides more detailed and comprehensive
information about the blockset.

How to Use This Guide
This guide describes specific models of communication systems that you can
build with the Communications Blockset. These examples show you how to use
the blockset and familiarize you with some of its features. The best way to learn
about the blockset is to build these models for yourself as you read the guide.

This guide contains two main chapters, in addition to this introduction:

• Chapter 2, “Building Models” introduces you to Simulink and explains how
to build models with the Communications Blockset.

• Chapter 3, “Using the Communications Blockset with MATLAB” describes
how to use MATLAB to expand the capabilities of the Communications
Blockset.

1 Introduction

1-6

2

Building Models

Introduction . 2-2

Running a Simulink Model 2-4

Building a Simple Model 2-12

Building a Channel Noise Model 2-27

Reducing the Error Rate Using a Hamming Code . . . 2-33

Modeling a Channel with Modulation 2-43

Reducing the Error Rate with a Cyclic Code 2-46

Building a Frequency-Shift Keying Model 2-51

Building a Convolutional Code Model 2-62

2 Building Models

2-2

Introduction
This chapter introduces you to Simulink and the Communications Blockset.
The chapter begins by showing you how to run an existing Simulink model and
how to build a simple model. It then explains how to build typical models of
communication systems using the Communications Blockset. These models
show you how to use the blockset and illustrate some of its important features.
We encourage you to build and run these models for yourself, as this is the best
way to learn about the Communications Blockset.

New Simulink Users
If you are new to Simulink, the first two sections get you started with building
and running models:

• “Running a Simulink Model” on page 2-4 shows how to run a demo model
that is included in the Communications Blockset.

• “Building a Simple Model” on page 2-12 explains how to build a Simulink
model and how to use Simulink block libraries. The section also explains
sample times, frames, and sample-based versus frame-based processing.

Building Models of Communication Systems
If you are already familiar with Simulink, you can skip to these later sections,
which describe some typical models of communication systems:

• “Building a Channel Noise Model” on page 2-27 describes a model that
simulates a channel with noise and calculates the bit error rate of data
passing through the channel.

• “Reducing the Error Rate Using a Hamming Code” on page 2-33 describes
how to add a Hamming code to the channel noise model to improve the error
rate. The section also explains how to view errors in a scope.

• “Modeling a Channel with Modulation” on page 2-43 describes a model of a
channel with binary phase shift keying (BPSK) modulation and additive
white Gaussian noise (AWGN).

• “Reducing the Error Rate with a Cyclic Code” on page 2-46 shows how to add
a binary cyclic code to the BPSK model to improve the error rate. The section
also shows how to use a Probe block to determine frame sizes and frame
periods of signals.

Introduction

2-3

• “Building a Frequency-Shift Keying Model” on page 2-51 describes a model
of frequency-shift keying. The section explains delays created by blocks in
the model and how to compensate for them.

• “Building a Convolutional Code Model” on page 2-62 describes a model of
convolutional coding.

2 Building Models

2-4

Running a Simulink Model
This section describes a demo model of a communications system that comes
with the Communications Blockset. The model displays a scatter plot of a
signal with added noise. The purpose of this section is to familiarize you with
the basics of Simulink models and how they function.

The section takes you through some key elements of working with this model,
including

• Opening the Model

• Overview of the Model

• Quadrature Amplitude Modulation

• Running a Simulation

• Displaying the Error Rate

• Setting Block Parameters

• Displaying a Plot of Phase Noise

Opening the Model
To open the model, first start MATLAB. In the MATLAB Command Window,
type phasenoise_sim at the prompt. This opens the model in a new window, as
shown in the following figure.

Running a Simulink Model

2-5

Overview of the Model
The model shown in the preceding section, “Opening the Model”, simulates the
effect of phase noise on quadrature amplitude modulation (QAM) of a signal.
During a simulation, the model generates a random signal and modulates it
using QAM. The model then adds noise to the signal to simulate a channel. The
model also displays the symbol error rate and a scatter plot of the modulated
signal.

Notice that the model looks like a block diagram. The blocks generate and
process data during a simulation. For example, the Random Integer Generator
block, labeled “Random Integer,” generates a signal consisting of a sequence of
random integers between zero and 255. This signal then moves in the direction
of the arrows to other blocks in the model. The following sequence of blocks
processes the signal:

• The Rectangular QAM Modulator Baseband block, to the right of the
Random Integer Generator block, modulates the signal using baseband
256-ary QAM.

• The AWGN Channel block simulates a channel with noise, by adding
additive white Gaussian noise (AWGN) to the modulated signal.

• The Phase Noise block adds random noise to the angle of the complex signal.

• The Rectangular QAM Demodulator Baseband block, to the right of the
Phase Noise block, demodulates the signal.

In addition, the model uses the following blocks to calculate the errors
introduced by noise and displays the results:

• The Discrete-Time Scatter Plot Scope block, labeled “AWGN plus Phase
Noise,” displays a scatter plot of the signal with added noise.

• The Error Rate Calculation block compares the received signal with the
transmitted signal and calculates the number of symbols that differ between
the two signals.

• The Display block, at the far right of the model window, displays the symbol
error rate (SER), the total number of errors, and the total number of symbols
processed during the simulation.

All these blocks are included in the Communications Blockset and Simulink.
You can find more detailed information about any standard block by
right-clicking the block and selecting Help from the context menu.

2 Building Models

2-6

Quadrature Amplitude Modulation
This model simulates quadrature amplitude modulation (QAM), which is a
method for converting a digital signal to a complex signal. The model
modulates the signal onto a sequence of complex numbers that lie on a lattice
of points in the complex plane, called the constellation of the signal. The
constellation for baseband 256-ary QAM is shown in the following figure.

Constellation for 256-ary QAM

Running a Simulation
To run a simulation, select the Simulation menu from the top of the model
window and then select Start (or, on Microsoft Windows, click the Start button
on the toolbar). The simulation stops automatically at the Stop time, which is
specified in the Simulation parameters dialog box. You can stop the
simulation at any time by selecting Stop from the Simulation menu at the top

Running a Simulink Model

2-7

of the model window (or, on Microsoft Windows, by clicking the Stop button on
the toolbar).

When you run the model, a new window appears displaying a scatter plot of the
modulated signal with added noise, as shown in the following figure.

Scatter Plot of Signal Plus Noise

The points in the scatter plot do not lie exactly on the constellation shown in
the figure Constellation for 256-ary QAM on page 2-6, because of the added
noise. The radial pattern of points is due to the addition of phase noise, which
alters the angle of the complex modulated signal.

Displaying the Error Rate
The Display block, labeled “Error Rate Display,” displays the number of errors
introduced by the channel noise. When you run the model, three small boxes

2 Building Models

2-8

appear in the block, as shown in the following figure, displaying the vector
output from the Error Rate Calculation block.

Error Rate Display

The block displays the output as follows:

• The first entry is the symbol error rate (SER).

• The second entry is the total number of errors.

• The third entry is the total number of comparisons made. The notation
1e+004 is shorthand for 104.

Setting Block Parameters
You can control the way a Simulink block functions by setting its parameters.
To view or change a block’s parameters, double-click the block. This opens a
dialog box called the block’s mask. For example, the mask for the Phase Noise
block is shown in the following figure.

Mask for the Phase Noise Block

To change the amount of phase noise, click in the Phase noise level (dBc/Hz)
field and enter a new value. Then click OK.

Running a Simulink Model

2-9

Alternatively, you can enter a variable name, such as phasenoise, in the field.
You can then set a value for that variable at the MATLAB prompt in the
Command Window, for example by typing phasenoise=2. Setting parameters
at the command line is convenient if you need to run multiple simulations with
different parameter values. See the section “Running Multiple Simulations” on
page 3-9.

You can also change the amount of noise in the AWGN Channel block.
Double-click the block to bring up its mask, and change the value in the Es/No
parameter field. This changes the signal to noise ratio, in decibels. Decreasing
the value of Es/No increases the noise level.

You can experiment with the model by changing these or other parameters and
then running a simulation. For example,

• Change Phase noise level (dBc/Hz) to 0 in the mask for the Phase Noise
block.

• Change Es/No to 100 in the mask for the AWGN Channel block.

This essentially removes all noise from the model. When you now run a
simulation, the scatter plot appears as in the figure Constellation for 256-ary
QAM on page 2-6.

Displaying a Plot of Phase Noise
Double-click the block labeled “Display Figure” at the bottom left of the model
window. This displays a plot showing the results of multiple simulations.

2 Building Models

2-10

Plot of BER at Different Noise Levels

Each curve is a plot of bit error rate as a function of signal to noise ratio for a
fixed amount of phase noise.

You can create plots like this by running multiple simulations with different
values for the Phase noise level (dBc/Hz) and Es/No parameters. “Running
Multiple Simulations” on page 3-9 describes how to do this with a MATLAB
script, using variables for the parameters.

More Demos
You can find more demos for the Communications Blockset by typing demo at
the MATLAB prompt or selecting the Demos tab in the Help browser. Click the
+ sign next to Blocksets in the left pane, and then select Communications.
This displays a list of the Communications Blockset demos. To run a demo,
double-click its name.

Running a Simulink Model

2-11

2 Building Models

2-12

Building a Simple Model
In the previous section, you ran a model that was already built. This section
explains how to build a simple Simulink model that displays a sine wave in a
scope. For more detailed information on building models, see the Simulink
documentation.

The Basic Steps
This section describes the basic steps in building a model. It explains how to

• Set simulation parameters with commstartup

• Open a new model window

• Open block libraries

• Move blocks into a model window

• Connect the blocks

• Set block parameters

• Set simulation parameters

• Run the model

Building a model usually involves several iterations, as you decide which
blocks to include and what parameter settings to make. In the example in this
section, you will refine the model by adding noise. The section explains how to

• Add noise to the model

• Save the model

The section also explains

• Frames and frame-based processing

• Discrete signals and sample times

• Continuous signals

Using commstartup to Set Simulation Parameters
Before starting to build the model, enter

commstartup

at the MATLAB prompt. This

Building a Simple Model

2-13

• Sets the Simulink Boolean logic signals parameter to Off

• Sets default simulation parameters that are optimal for communications
models

The Communications Blockset does not support signals with boolean data
types. If you want to use Simulink blocks that output boolean data types, such
as the Logical Operator block, in a model with blocks from the Communications
Blockset, enter commstartup before building the model. The commstartup
settings apply to any models you create during the current MATLAB session.
You must enter commstartup at the beginning of each MATLAB session to
establish these settings.

If you build a model without entering commstartup and subsequently decide to
use Simulink blocks that output signals with boolean data types, turn off the
model’s Boolean logic signals parameter by entering

set_param('my_model', 'BooleanDataType', 'off')

where my_model.mdl is the name of the model.

Opening a New Model Window
The first step in building a model is to open a new model window. To do so,
select New from the File menu, and then select Model. This opens an empty
model window, as shown in the following figure.

2 Building Models

2-14

Opening Block Libraries
The next step is to select the blocks for the model. These blocks are contained
in libraries. To view the libraries for the products you have installed, type
simulink at the MATLAB prompt (or, on Microsoft Windows, click the
Simulink button on the MATLAB toolbar). If you are using Microsoft
Windows, this displays the Simulink Library Browser, as shown in the
following figure.

Simulink Library Browser

The left pane displays the installed products, each of which has its own library
of blocks. To open a library, click the + sign next to the name of the blockset in
the left pane. This displays the contents of the library in the right-hand pane.

You can find the blocks you need to build models of communication systems in
the libraries of the Communications Blockset, the DSP Blockset, and Simulink.

Building a Simple Model

2-15

Note To search for a block in the Simulink Library Browser, enter a keyword
in the field next to Find, at the top of the Browser window, and click Find.
This displays the next block that contains the keyword. To continue the
search, click Find again.

Moving Blocks into the Model Window
The next step in building the model is to move blocks from the Simulink
Library Browser into the model window. To do so,

1 Click the + sign next to DSP Blockset in the left pane of the Library
Browser. This displays a list of the DSP Blockset libraries, as shown in the
following figure.

2 Click DSP Sources in the left pane. This displays a list of the DSP Sources
library blocks in the right pane. If you do not see the Sine Wave block, scroll
down the list until it is visible.

3 Click the Sine Wave block and drag it into the model window. To drag a
block, position the mouse pointer over the block, then press and hold down
the mouse button. Move the pointer into the model window, and then release
the mouse button.

4 Click DSP Sinks in the left pane of the Library Browser.

5 Scroll down in the right pane of the Library Browser until you see the Vector
Scope block, and drag the block into the model window to the right of the
Sine Wave block.

Once a block is in the model window, you can move it to another position by
clicking and dragging the block while pressing the mouse button.

2 Building Models

2-16

Dragging a Block into a Model Window

Connecting Blocks
The small arrowhead pointing outward from the right side of the Sine Wave
block is an output port for the data the block generates. The arrowhead
pointing inward on the Vector Scope block is an input port. To connect the two
blocks, click the output port of the Sine Wave block and move the mouse toward
the input port of the Vector Scope block, while pressing the mouse button, as
shown in the following figure.

Building a Simple Model

2-17

When the pointer is on the input port of the Vector Scope block, release the
mouse button. You should see a solid arrow appear, as in the following figure.

Sine Wave Model

If you do not see a solid arrowhead, you have not made a good connection, and
data will not pass from the Sine Wave block to the Vector Scope block. In this
case, click the arrowhead again, drag it all the way to the Vector Scope’s input
port, and release the mouse button.

2 Building Models

2-18

Setting Block Parameters
To set parameters for the Sine Wave block, double-click the block to bring up
its mask, as shown in the following figure. Change the following parameters by
clicking in the field next to the parameter, deleting the default setting, and
entering the new setting in its place:

1 Set Amplitude to 5.

2 Set Frequency to 30.

3 Set Samples per frame to 100.

4 Click OK.

Note You must set Samples per frame to a value larger than 1 to see an
image of the sine wave in the Scope block.

Building a Simple Model

2-19

Mask for the Sine Wave Block

Setting Simulation Parameters
Besides individual block parameters, the model also has overall simulation
parameters. To view the current settings,

1 Select the Simulation menu at the top of the model window.

2 Select Simulation parameters to open the Simulation Parameters dialog
box, as shown in the following figure.

2 Building Models

2-20

Simulation Parameters Dialog Box

If you typed commstartup before creating the model, the Stop time should be
set to inf. The Stop time determines the time at which the simulation ends.
Setting Stop time to inf causes the simulation to run indefinitely, until you
stop it by selecting Stop from the Simulation menu.

The Stop time is not the actual time it takes to run a simulation. The actual
run-time for a simulation depends on factors such as the model’s complexity
and your computer’s clock speed.

The settings in the Simulation parameters dialog box affect only the
parameters of the current model.

Note To conserve memory in a model, click the Workspace I/O tab and make
sure the boxes next to Time and Output under Save to workspace are not
selected.

Running the Model
Run the model by selecting Start from the Simulation menu. When you do so,
a scope window appears, displaying a sine wave as shown in the following
figure.

Building a Simple Model

2-21

Sine Wave Displayed in a Scope

Note If you do not see the sine wave in the scope, make sure that the
Samples per frame parameter for the Sine Wave block is set to 100.

When you are finished observing the simulation, select Stop from the
Simulation menu.

Adding Noise to the Model
You can add noise to the model using the AWGN Channel block, from the
Channels library of the Communications Blockset. The block adds white
Gaussian noise to the sine wave. Move the block from the Simulink Library

2 Building Models

2-22

Browser into the model window, as described in “Moving Blocks into the Model
Window” on page 2-15. You can add the block to the model as follows:

1 Extend the line between the Sine Wave block and the Vector Scope block by
dragging the Vector Scope block to the right, to make room for the AWGN
Channel block.

2 Click the AWGN block and drag it onto the line. This automatically connects
the Sine Wave block and the Vector Scope block to the AWGN Channel
block.

Sine Wave Plus Noise

Double-click the AWGN Channel block to bring up its mask, as shown in the
following figure. Then, click the down arrow in the Mode field and select
Signal to noise ratio (SNR).

Building a Simple Model

2-23

Mask for the AWGN Channel Block

Now when you run the model, the scope clearly shows the added noise.

Select Signal to noise ratio (SNR)

2 Building Models

2-24

Sine Wave with Noise Added

When you are finished observing the simulation, stop the model by selecting
Stop from the Simulation menu.

Saving a Model
To save your model for future use, select Save from the File menu. The first
time you save the model, this displays the Save As dialog box. In the Save in
field, select the directory where you want to save the model. It is best to keep
your work files in a separate directory from the files shipped with the product.
In the File name field, enter a name for the model, such as sine.mdl, and click
Save.

To load the model in a future MATLAB session, first change your working
directory to the one where you saved the file. You can do this by selecting the
directory in the Current Directory field on the MATLAB toolbar. Then type
sine at the MATLAB prompt.

Building a Simple Model

2-25

Frames and Frame-Based Processing
A frame is a sequence of samples combined into a single vector. By setting
Samples per frame to 100 in the Sine Wave block, you set the frame size to
100, so that each frame contains 100 samples. This enables the Vector Scope
block to display enough data for a good picture of the sine wave.

Another important reason to set the frame size is that many Communications
Blockset blocks require their inputs to be vectors of specific sizes. If you connect
a source block, such as the Sine Wave block, to one of these blocks, you can set
the input size correctly by setting Samples per frame to the required value.
The model described in “Reducing the Error Rate Using a Hamming Code” on
page 2-33 shows how to do this.

In frame-based processing all the samples in a frame are processed
simultaneously. In sample-based processing, on the other hand, samples are
processed one at a time. The advantage of frame-based processing is that it can
greatly increase the speed of a simulation. If you see double lines between
blocks, the model uses frame-based processing.

Discrete Signals and Sample Times
The Sine Wave block in the DSP Blockset generates a discrete signal. This
means that it updates the signal at integer multiples of a fixed time interval,
called the sample time. You can set the length of this time interval in the
Sample time parameter in the block’s mask. In the example shown in the
figure Sine Wave Model on page 2-17, the Sample time has the default value
of 1/1000. All the sources in the Communications Blockset and the DSP
Blockset generate discrete signals exclusively. These sources are primarily
designed for modeling digital communication systems.

To learn more about sample times, see “Building a Frequency-Shift Keying
Model” on page 2-51.

Continuous Signals
The Simulink libraries also contain blocks that generate continuous signals.
This means that they update the signal at variable time intervals, whose
length is determined by the numerical solver the simulation uses. For example,
the Sine Wave block in the Simulink Sources library can generate a continuous
sine wave.

2 Building Models

2-26

Note Many blocks in the Communications Blockset accept only discrete
signals. To find out whether a block accepts continuous signals, consult the
reference page for the block.

Building a Channel Noise Model

2-27

Building a Channel Noise Model
This section shows how to build a simple model of a communication system.
The model, shown in the following figure, contains the most basic elements of
a communication system: a source for the signal, a channel with noise, and
means of detecting errors caused by noise.

Channel Noise Model

We encourage you to build the model for yourself, as this is the best way to
learn how to use the Communications Blockset.

This section gives an overview of the model, and explains how to

• Select blocks for the model

• Set parameters in the model

• Connect the blocks

• Run the model

Overview of the Model
The channel noise model generates a random binary signal, and then switches
the symbols 0 and 1 in the signal, according to a specified error probability, to
simulate a channel with noise. The model then calculates the error rate and
displays the result. The model contains the following components.

Source
The source for the signal in this model is the Bernoulli Binary Generator block,
which generates a random binary sequence.

2 Building Models

2-28

The Channel
The Binary Symmetric Channel block simulates a channel with noise. The
block introduces random errors to the signal by changing a 0 to a 1 or the
reverse, with a probability specified by the Error probability parameter in the
block’s mask.

Error Rate Calculation
The Error Rate Calculation block calculates the error rate of the channel. The
block has two input ports, labeled Tx, for the transmitted signal, and Rx, for
the received signal. The block compares the two signals and checks for errors.
The output of the block is a vector with three entries:

• Bit error rate, which you expect to be approximately .01, since this is the
probability of error in the channel

• Number of errors

• Total number of bits that are transmitted

Display
The Display block displays the output of the Error Rate Calculation block, as
described in “Displaying the Error Rate” on page 2-7.

Selecting Blocks for the Channel Noise Model
To build the model, first move its blocks into a new model window, as follows:

1 Type commstartup at the MATLAB prompt to set simulation parameters for
the model.

2 Type simulink at the MATLAB prompt to open the Simulink Library
Browser.

3 From the File menu, select New, and then Model. This opens a new model
window.

4 Drag the following blocks from the Simulink Library Browser into the model
window:

- Bernoulli Binary Generator block, from the Data Sources sublibrary of the
Comm Sources library

- Binary Symmetric Channel block, from the Channels library

Building a Channel Noise Model

2-29

- Error Rate Calculation block, from the Comm Sinks library

- Display block, from the Simulink Sinks library

Setting Parameters in the Channel Noise Model
To set block parameters in the channel noise model, do the following:

1 Double-click the Binary Symmetric Channel block and make the following
changes to the default parameters in the block’s mask:

- Set Error probability to 0.01.

- Clear the box next to Output error vector. This removes the block’s lower
output port, which is not needed for this model.

2 Double-click the Error Rate Calculation block and make the following
changes to the default parameters in the block’s mask:

- Set Output data to Port to create an output port for the block.

- Select the box next to Stop simulation.

Clear this box

Check this box

Set Output Data to Port

2 Building Models

2-30

Selecting the box next to Stop simulation causes the simulation to stop after
the target number of errors occurs or the maximum number of symbols is
reached.

Initial Seeds
The Bernoulli Binary Generator block and the Binary Symmetric Channel
block both use a random number generator to generate random sequences of
bits. In both blocks, the Initial seed parameter initializes the random
sequence. The initial seeds in the two blocks should have different values to
ensure that the source signal and the channel noise are statistically
independent. In general, initial seeds should have a different values in all
blocks that have an Initial seed parameter.

Connecting the Blocks
Next, connect the blocks as shown in the following figure. Make sure to connect
the arrow from the Binary Symmetric Channel block to the input port labeled
Rx on the Error Rate Calculation block. To learn how to do this, see “Connecting
Blocks” on page 2-16.

The next section explains how to draw the upper branch line in the model.

Drawing a Branch Line
The upper line leading from the Bernoulli Binary Generator block to the Error
Rate Calculation block, shown in the following figure, is called a branch line.
Branch lines carry the same signal to more than one block.

To draw the branch line:

1 Right-click the line between the Bernoulli Random Generator block and the
Binary Symmetric Channel block.

Building a Channel Noise Model

2-31

2 Move the mouse pointer to the input port labeled Tx on the Error Rate
Calculation block, while pressing the right mouse button.

3 Release the mouse button. The end of the branch line should connect to the
input port of the Error Rate Calculation block.

4 Click the horizontal section of the branch line and drag it upward until the
line is above the Binary Symmetric Channel block.

The model should now appear as in the following figure.

Running the Channel Noise Model
To run the model, select Start from the Simulation menu. After a few seconds,
the model will stop automatically.

To see all three boxes in the Display block, you must enlarge the block slightly,
as follows:

1 Select the Display block and move the mouse pointer to one of the lower
corners of the block, so that a diagonal arrow appears on the corner, as
shown.

2 Drag the corner of the block down with the mouse until three windows
appear, as shown.

2 Building Models

2-32

The Display block displays the following information:

• The bit error rate

• The number of errors

• The total number of bits that are transmitted

Note that the exact values that appear will vary, depending on the Initial seed
parameters in the Bernoulli Binary Generator block and the Binary Symmetric
Channel block.

Since the Target number of errors in the mask for the Error Rate Calculation
block is set to 100, the simulation stops when 100 errors have been detected.

To save the model, select Save from the File menu, type a name for the model,
such as channelnoise, in the File name field, and click Save.

Reducing the Error Rate Using a Hamming Code

2-33

Reducing the Error Rate Using a Hamming Code
This section describes how to reduce the error rate in the model shown in the
figure Channel Noise Model on page 2-27 by adding an error-correcting code.
The following figure shows an example that uses a Hamming code.

Hamming Code Model

The section explains how to

• Build the model

• Use the Hamming Encoder and Decoder blocks

• Set parameters in the model

• Label the Display block

• Run the model

• Display frame sizes

• Add a scope to the model

• Set parameters in the new model

• Observe channel errors with the scope

We encourage you to build the model for yourself. Alternatively, to open a
completed version of the model, type hammingdoc at the MATLAB prompt.

Building the Hamming Code Model
You can build the Hamming code model by adding blocks to the model shown
in the figure Channel Noise Model on page 2-27. To do so:

2 Building Models

2-34

1 Type channeldoc at the MATLAB prompt to open the channel noise model.
Then save the model as my_hamming in the directory where you keep your
work files. See “Saving a Model” on page 2-24.

2 Drag the following two Communications Blockset blocks from the Simulink
Library Browser into the model window:

- Hamming Encoder block, from the Block sublibrary of the Error Detection
and Correction library

- Hamming Decoder block, from the Block sublibrary of the Error Detection
and Correction library

3 Click the right border of the model and drag it to the right to widen the
model window.

4 Move the Binary Symmetric Channel block, the Error Rate Calculation
block, and the Display block to the right by clicking and dragging. This
creates more space between the Binary Symmetric Channel block and the
blocks next to it. The model should now look like the following figure.

5 Click the Hamming Encoder block and drag it on top of the line between the
Bernoulli Binary Generator block and the Binary Symmetric Channel block,
to the right of the branch point, as shown in the following figure. Then
release the mouse button. The Hamming Encoder block should
automatically connect to the line from the Bernoulli Binary Generator block
to the Binary Symmetric Channel block.

Reducing the Error Rate Using a Hamming Code

2-35

6 Click the Hamming Decoder block and drag it on top of the line between the
Binary Symmetric Channel block and the Error Rate Calculation block.

Hamming Encoder and Decoder
The Hamming Encoder block encodes the data before it is sent through the
channel. The default code is the [7,4] Hamming code, which encodes message
words of length 4 into code words of length 7. As a result, the block converts
frames of size 4 into frames of size 7. The code can correct one error in each
transmitted code word.

For an [n,k] code, the input to the Hamming Encoder block must consist of
vectors of size k. In this example, k=4.

The Hamming Decoder block decodes the data after it is sent through the
channel. If at most one error is created in a code word by the channel, the block
decodes the word correctly. However, if more than one error occurs, the
Hamming Decoder block might decode incorrectly.

To learn more about the block coding features of the Communications Blockset,
see the section “Block Coding” in the online documentation for the
Communications Blockset.

Setting Parameters in the Hamming Code Model
Double-click the Bernoulli Binary Generator block and make the following
changes to the parameter settings in the block’s mask, as shown in the
following figure:

1 Select the box next to Frame-based outputs in the mask for the Bernoulli
Binary Generator block.

2 Building Models

2-36

2 Set Samples per frame to 4. This converts the output of the block into
frames of size 4, in order to meet the input requirement of the Hamming
Encoder Block. See “Frames and Frame-Based Processing” on page 2-25 for
more information about frames.

Note Many Communications Blockset blocks, such as the Hamming Encoder
block, require their input to be a vector of a specific size. If you connect a
source block, such as the Bernoulli Binary Generator block, to one of these
blocks, you should select the box next to Frame-based outputs in the mask
for the source, and set Samples per frame to the required value.

Labeling the Display Block
You can change the label that appears below a block to make it more
informative. For example, to change the label below the Display block to “Error
Rate Display,” first select the label with the mouse. This causes a box to appear
around the text. Then enter the changes to the text in the box.

Running the Hamming Code Model
To run the model, select Start from the Simulation model. The model
terminates after 100 errors occur. The error rate, displayed in the top window
of the Display block, is approximately .001. Note that you get slightly different
results if you change the Initial seed parameters in the model or run a
simulation for a different length of time.

Reducing the Error Rate Using a Hamming Code

2-37

You expect an error rate of approximately .001 for the following reason. The
probability of two or more errors occurring in a code word of length 7 is

If the code words with two or more errors were decoded randomly, you would
expect about half the bits in the decoded message words to be incorrect. This
indicates that .001 is a reasonable value for the bit error rate.

To obtain a lower error rate for the same probability of error, you can try using
a Hamming code with larger parameters. To do this, change the parameters
Code word length and Message length in the Hamming Encoder and Decoder
block masks. You also have to make the appropriate changes to the parameters
of the Bernoulli Binary Generator block and the Binary Symmetric Channel
block.

Displaying Frame Sizes
You can display the sizes of data frames in different parts of the model by
selecting Signal dimensions from the Format menu at the top of the model
window. This is shown in the following figure. Note that the line leading out of
the Bernoulli Binary Generator block is labeled [4x1], indicating that its
output consists of column vectors of size 4. Since the Hamming Encoder block
uses a [7,4] code, it converts frames of size 4 into frames of size 7, so its output
is labeled [7x1].

Displaying Frame Sizes

Adding a Scope to the Model
To display the channel errors produced by the Binary Symmetric Channel
block, you can add a Scope block to the model. This is a good way to see whether

1 0.99()7 7 0.99()6 0.01()�� 0.002=

2 Building Models

2-38

your model is functioning correctly. The example shown in the following figure
shows where to insert the Scope block into the model.

To build this model from the one shown in the figure Hamming Code Model on
page 2-33:

1 Drag the following blocks from the Simulink Library Browser into the model
window:

- Relational Operator block from the Simulink Math Operations library

- Scope block from the Simulink Sinks library

- Two copies of the Unbuffer block from the Buffers sublibrary of the DSP
Signal Management library

2 Double-click the Binary Symmetric Channel block to open its mask, and
check the box next to Output error vector. This creates a second output
port for the block, which carries the error vector.

3 Connect the blocks as shown in the preceding figure. To learn how to do this,
see “Connecting Blocks” on page 2-16 and “Drawing a Branch Line” on
page 2-30.

Reducing the Error Rate Using a Hamming Code

2-39

Setting Parameters in the Expanded Model
Make the following changes to the parameters for the blocks you added to the
model.

Error Rate Calculation Block
Double-click the Error Rate Calculation block and clear the box next to Stop
simulation in the block’s mask.

Scope Block
The Scope block displays the channel errors and uncorrected errors. To
configure the block:

1 Double-click the block to open the scope.

2 Click the Parameters button on the toolbar.

3 Set Number of axes to 2.

4 Set Time range to 5000.

5 Click the Data history tab.

6 Type 30000 in the Limit data points to last field.

7 Click OK.

The scope should now appear as shown.

2 Building Models

2-40

To configure the axes:

1 Right-click the vertical axis at the left side of the upper scope.

2 In the context menu, select Axes properties.

3 In the Y-min field type -1.

4 In the Y-max field type 2.

5 Click OK.

6 Repeat the same steps for the vertical axis of the lower scope.

7 Widen the scope window until it is roughly three times as wide as it is high.
You can do this by clicking the right border of the window and dragging the
border to the right, while pressing the mouse button.

Relational Operator
Set Relational Operator to ~= in the block’s mask. The Relational Operator
block compares the transmitted signal, coming from the Bernoulli Random
Generator block, with the received signal, coming from the Hamming Decoder
block. The block outputs a 0 when the two signals agree and a 1 when they
disagree.

Reducing the Error Rate Using a Hamming Code

2-41

Observing Channel Errors with the Scope
When you run the model, the Scope block displays the error data. At the end of
each five thousand time steps, the scope appears as shown in the following
figure. The scope then clears the displayed data and displays the next five
thousand data points.

Scope with Model Running

The upper scope shows the channel errors generated by the Binary Symmetric
Channel block. The lower scope shows errors that are not corrected by channel
coding.

Click the Stop button on the toolbar at the top of the model window to stop the
scope.

To zoom in on the scope so that you can see individual errors, first click the
middle magnifying glass button at the top left of the Scope window. Then click
one of the lines in the lower scope. This zooms in horizontally on the line.
Continue clicking the lines in the lower scope until the horizontal scale is fine
enough to detect individual errors. A typical example of what you might see is
shown in the figure below.

2 Building Models

2-42

Zooming in on the Scope

The wider rectangular pulse in the middle of the upper scope represents two
1s. These two errors, which occur in a single code word, are not corrected. This
accounts for the uncorrected errors in the lower scope. The narrower
rectangular pulse to the right of the upper scope represents a single error,
which is corrected.

When you are done observing the errors, selecting Stop from the Simulation
menu.

“Sending Signal and Error Data to the Workspace” on page 3-4 explains how to
send the error data to the MATLAB workspace for more detailed analysis.

Modeling a Channel with Modulation

2-43

Modeling a Channel with Modulation
The Binary Symmetric Channel block, which simulates a channel with noise,
is useful for building models of channel coding. For other types of applications,
you might want to construct a more realistic model of a channel. For example,
you can add modulation and demodulation, and replace the Binary Symmetric
Channel block with an AWGN Channel block, which adds white Gaussian
noise to the channel. This following figure shows an example that uses binary
phase shift keying (BPSK).

BPSK Modulation Model

This section explains how to

• Build the model

• Set parameters in the model

• Run the model

The section also explains binary phase shift keying.

We encourage you to build the model for yourself. Alternatively, to open a
completed version of the model, type bpskdoc at the MATLAB prompt.

Building the BPSK Model
You can build the BPSK model from the one shown in the figure Channel Noise
Model on page 2-27. To build the model:

1 Type channeldoc at the MATLAB prompt to open the channel noise model,
and then save the model as my_bpsk in the directory where you keep your
work files.

2 Building Models

2-44

2 Delete the Binary Symmetric Channel block from the model by
right-clicking the block and selecting Clear.

3 Move the following blocks from the Simulink Library Browser into the model
window, and insert them into the model as shown in the following figure:

- BPSK Modulator Baseband block, from PM in the Digital Baseband
Modulation sublibrary of the Modulation library

- AWGN Channel block, from the Channels library

- BPSK Demodulator Baseband block, from PM in the Digital Baseband
Modulation sublibrary of the Modulation library

The model should now appear as in the figure below.

Binary Phase Shift Keying
The BPSK Modulator and Demodulator Baseband blocks implement binary
phase shift keying (BPSK) modulation. BPSK is a method for modulating a
binary signal onto a complex waveform by shifting the phase of the complex
signal. In digital baseband BPSK, the symbols 0 and 1 are modulated to the
complex numbers exp(jt) and -exp(jt), respectively, where t is a fixed angle. In
this example, t = 0, so these numbers are just 1 and -1.

You can set the value of t in the Phase offset parameter in the masks for the
BPSK Modulator Baseband block and the BPSK Demodulator Baseband block.
The default value is 0.

To learn more about the digital modulation features of the Communications
Blockset, see “Digital Modulation” in the online Communications Blockset
documentation.

Modeling a Channel with Modulation

2-45

Setting Parameters in the BPSK Model
To set block parameters in the BPSK model, do the following:

1 Double-click the AWGN Channel block and set Es/No to 4.2.

2 Double-click the Error Rate Calculation block and make the following
changes to the default parameters in the block’s mask:

- Set Output data to Port.

- Check the box next to Stop simulation.

Running the BPSK Model
When you run the model, the Display block shows an error rate of
approximately 0.01, the same as in the channel noise model. The BPSK model
uses the BPSK Modulator Baseband, the AWGN Channel, and the BPSK
Demodulator Baseband blocks to simulate a channel with noise. This provides
a more realistic model of a channel than using just the Binary Symmetric
Channel block. You can also model other types of channel noise using blocks
from the Communications Blockset Channels library.

2 Building Models

2-46

Reducing the Error Rate with a Cyclic Code
You can improve the error rate in the model shown in the figure BPSK
Modulation Model on page 2-43 by adding channel coding. An example that
uses a binary cyclic code is shown in the following figure.

Cyclic Code Model

This section explains how to

• Build the model

• Set parameters in the model

• Run the model

• Set the symbol period

• Display frame sizes and frame periods

Building the Cyclic Code Model
You can build the cyclic code model by adding blocks to the model shown in the
figure BPSK Modulation Model on page 2-43. To do so:

1 Type bpskdoc at the MATLAB prompt to open the BPSK model. Then save
the model as my_cyclic in the directory where you keep your work files.

2 Drag the following two Communications Blockset blocks from the Simulink
Library Browser into the model window:

- Binary Cyclic Encoder block, from the Block sublibrary of the Error
Detection and Correction library

- Binary Cyclic Decoder block, from the Block sublibrary of the Error
Detection and Correction library

Reducing the Error Rate with a Cyclic Code

2-47

3 Widen the model window and connect the blocks as in the following figure.

Binary Cyclic Encoder and Decoder
The Binary Cyclic Encoder block implements a binary cyclic code. The block
has the following parameter settings:

• Codeword length 4

• Message length 7

The code rate is given by

This example uses a rate 4 / 7 code. The codeword length N must have the form
2M - 1, where M is an integer greater than or equal to 3. The input to the block
must have the same size as the setting for Message length.

The Binary Cyclic Decoder block decodes the signal after it passes through the
channel. The block should have the same parameter settings as the Binary
Cyclic Encoder block.

Setting Parameters in the Cyclic Code Model
Make the following changes to the parameter settings for the BPSK model,
described in “Setting Parameters in the BPSK Model” on page 2-45:

1 Double-click the Bernoulli Binary Generator block and make the following
changes to the default parameters in the block’s mask.

- Check the box next to Frame-based outputs.

Code rate Codeword length
Message length
---=

2 Building Models

2-48

- Set Samples per frame to 4 to match the input requirement of the Binary
Cyclic Encoder Block.

2 Double-click the Binary Cyclic Encoder block and set Codeword Length N
to 7. Make the same change in the Binary Cyclic Decoder block.

3 Double-click the AWGN Channel block and make the following changes to
the default parameters in the block’s mask.

- Set Symbol period to 4/7. With this setting, the AWGN channel block
produce the same amount of noise per symbol as in the BPSK model
without coding. This enables you to evaluate the improvement in bit error
rate due to channel coding. For more information on setting Symbol
period, see “Setting the Symbol Period” on page 2-48.

- Set Es/No to 4.2.

Running the Cyclic Code Model
When you run the model, the bit error rate is approximately one tenth the error
rate in the model shown in the figure BPSK Modulation Model on page 2-43,
which does not have channel coding.

Double-click the AWGN Channel block and change Es/No to 2.05. Now when
you run the model, the bit error rate is approximately the same as that in the
BPSK model. This means that the coding gain from the cyclic code at this bit
error rate is 4.2 - 2.05 = 2.15 dB.

Setting the Symbol Period
To compare the cyclic code model to the BPSK model, which does not have
channel coding, the ratio of energy per information symbol to noise spectral
density, , should be the same in both models. You can use the Symbol
period parameter in the AWGN Channel block to adjust the amount of channel
noise so that is the same as in the model without coding. Since the
cyclic code has rate 4/7, you set the Symbol period to 4/7.

In general, set the Symbol period to k/n if there are k information symbols for
each n channel symbols. Both channel coding and modulation with more than
two channel symbols require a change to the Symbol period.

Eb N0⁄

Eb N0⁄

Reducing the Error Rate with a Cyclic Code

2-49

Note that Es/No, the ratio of energy per channel symbol to noise spectral
density, is not the same as . To convert between the two, use the
formula

where k/n is the ratio of information symbols to channel symbols. Changing
the Symbol period to k/n has the same effect as subtracting from
the Es/No parameter.

Using a Probe Block to Determine Symbol Period
If you are unsure how to set the Symbol period, you can find the correct value
using a Probe block. To do so:

1 Drag the following blocks from the Simulink Library Browser into the cyclic
code model window:

- Probe block, from the Simulink Signal Attributes library

- Two copies of the Terminator block, from the Simulink Sinks library

2 Double-click the Probe block to display its mask.

3 Clear the boxes next to Probe complex signal and Probe signal
dimensions and check the boxes next to Probe width and Probe sample
time. This reduces the number of output ports in the block to two.

4 Connect the blocks as shown in the following figure.

5 Select Update diagram from the Edit menu.

The model should now appear as shown in the following diagram.

Eb N0⁄

Eb N0⁄ Es N0⁄ 10 k n⁄()log+=

10 k n⁄log

2 Building Models

2-50

The number after W in the Probe block tells you the frame size, which in this
case is 7. The first number after Tf tells you the frame period, which is 4. You
can determine the symbol period by the following formula.

In this example, the symbol period is 4 / 7.

When the signal is sample-based, the second value in the Probe block is the
sample time, rather than the frame period.

symbol period frame period
frame size
-----------------------------------=

Building a Frequency-Shift Keying Model

2-51

Building a Frequency-Shift Keying Model
Frequency-shift keying (FSK) is a standard modulation technique in which a
digital signal is modulated onto a sinusoidal carrier whose frequency shifts
between different values. The Bell Telephone System first used this technique
in their Model 103 modem. The model shown in the following figure is an
example of passband FSK.

FSK Model

This section explains how to

• Build the model

• Set parameters in the model

• Run the model

The section also explains

• Delays in the model and how to find the delay

• Multirate models

• Using sample time colors to check sample times

To open a completed version of the model, type fskdoc at the MATLAB prompt.

2 Building Models

2-52

Building the FSK Model
You can build the FSK model by adding blocks to the model shown in the figure
Channel Noise Model on page 2-27. To open the channel noise model, type
channeldoc at the MATLAB prompt. Then save the model as my_fsk in the
directory where you keep your work files. See “Saving a Model” on page 2-24.

You need to add the following blocks to the model.

M-FSK Modulator and Demodulator Passband
The M-FSK Modulator Passband block, from FM in the Digital Passband
sublibrary of the Modulation library, modulates the binary signal onto a
sinusoidal carrier of 10000 Hz. The block modulates a 0 by shifting the
frequency of the carrier up to 10500 Hz, and a 1 by shifting the frequency down
to 9500 Hz.

The M-FSK Demodulator Passband block, from FM in the Digital Passband
sublibrary of the Modulation library, demodulates the signal.

Relational Operator
The Relational Operator block, from the Simulink Math Operations library,
compares the transmitted signal, from the Bernoulli Binary Generator block,
with the received signal, from the M-FSK Demodulator Passband block. The
block outputs a 0 when the two signals agree, and a 1 when they differ.

Spectrum Scope
The Spectrum Scope block, from the DSP Sinks library, calculates the fast
Fourier transform (FFT) of the signal and displays its spectrum. When you run
the model, a scope appears, as in the figure FSK Spectrum on page 2-56.

Scope
The Scope block, from the Simulink Sinks library, displays the transmitted
signal, the received signal, and the output of the Relational Operator block. To
create three input ports for the block:

1 Double-click the block to open the scope.

2 Click the Parameters button on the toolbar.

3 Set Number of axes to 3.

Building a Frequency-Shift Keying Model

2-53

4 Set Time range to 1.

5 Click OK.

To set the limits on the vertical axes:

1 Right-click the vertical axis at the left side of the upper scope.

2 In the context menu, select Axes properties.

3 In the Y-min field type -1.

4 In the Y-max field type 2.

5 Click OK.

Repeat these steps for the middle and lower vertical axes.

Integer Delay
The Integer Delay Block, from the DSP Blockset Signal Operations library,
delays the transmitted signal so that it can be accurately compared with the
received signal. Its purpose is explained further in “Delays in the Model” on
page 2-57.

Drag these blocks into the model window and connect them as shown in the
figure FSK Model on page 2-51. The next section explains how to set the
parameters for these blocks.

Setting Parameters in the FSK Model
Make the following changes to the default parameter settings in the masks for
the blocks:

1 Double-click the Bernoulli Binary Generator block and make the following
changes to the default parameters in the block’s mask:

- Set Probability of a zero to 0.5.

- Set Sample time to 1/1200.

2 Double-click the M-FSK Modulator Passband block and make the following
changes to the default parameters in the block’s mask:

2 Building Models

2-54

- Set M-ary number to 2. This specifies the number of frequencies in the
modulated signal.

- Set Frequency separation to 1000. This specifies the separation between
the two frequencies of the modulated signal.

- Set Symbol period to 1/1200 to match the Sample time in the Bernoulli
Binary Generator block.

- Set Baseband samples per symbol to 5. This causes the block to
oversample the incoming signal. Oversampling increases the sampling
rate by a factor of 5, thereby raising the sampling rate above the Nyquist
rate. This enables the Spectrum Scope block to generate a more accurate
picture.

- Set Carrier frequency to 10000. This specifies the frequency of the
carrier.

- Set Output sample time to 1/30000.

3 Double-click the M-FSK Demodulator Passband block and make the same
changes to the block’s default parameters as for the M-FSK Modulator
Passband block. Set Input sample time to 1/30000 to match the Output
sample time of the M-FSK Modulator Passband block.

4 Double-click the AWGN Channel block and set Symbol period to 1/1200, to
match the Symbol period in the M-FSK Modulator Passband block.

5 Double-click the Spectrum Scope block and make the following changes to
the default parameters in the block’s mask:

- Check the box next to Buffer input. This converts the input into frames so
that the block can calculate the FFT.

- Set Buffer size to 1024.

- Set Buffer overlap to 256.

- Set Number of spectral averages to 20.

- Check the box next to Axis properties.

- Set Minimum Y-limit to -40.

- Set Maximum Y-limit to 20.

These settings rescale the y-axis.

Building a Frequency-Shift Keying Model

2-55

6 Double-click the Integer Delay block and change Delay to 6 in the block’s
mask. The Integer Delay block delays the transmitted signal by the number
of sample periods specified by the Delay parameter. For more information
about delays, see the section “Delays in the Model” on page 2-57.

7 Double-click the Error Rate Calculation block and make the following
changes to the default parameters in the block’s mask:

- Set Receive delay to 6.

- Set Output data to Port.

Running the FSK Model
Set the Stop time parameter to 15 and run the model.

Displaying the Signal’s Spectrum in the Spectrum Scope
The Spectrum Scope displays the spectrum of the modulated signal, as shown
in the following figure.

2 Building Models

2-56

FSK Spectrum

Note the peaks at 9500 Hz and 10500 Hz, representing the integers 1 and 0,
respectively. The peaks outside the range 9500 to 10500 Hz are side lobes,
which are not relevant to the display.

Displaying the Errors in the Scope
Double-click the Scope block to open the scope, as shown in the following figure.

Building a Frequency-Shift Keying Model

2-57

Displaying Errors in the Scope

The top window displays the transmitted signal. The middle window displays
the received signal. The bottom scope displays a 0 where the two signals agree
and a 1 where they differ.

Delays in the Model
Due to the way they process data, some blocks cause a signal to be delayed as
it passes through a model. For example, there is a delay of 6 symbol periods
between the input signal to the M-FSK Modulator Passband block and the
output signal from the M-FSK Demodulator Passband block. As a result, there
is a delay of 6 symbol periods between the transmitted and received signals in
the FSK model.

To calculate the bit error rate correctly, you need to introduce an additional
delay of 6 seconds to the transmitted signal to synchronize it with the received
signal. You can do this directly in the mask for the Error Rate Calculation block
by setting the Receive delay to 6.

For the same reason, you need to synchronize the transmitted and received
signals before they enter the Relational Operator block. In this case, you must
use an Integer Delay block, which delays a signal by the number of sample
periods specified by the Delay parameter. Set the Delay to 6. This is indicated
by the exponent -6 on the block. The delay synchronizes the transmitted signal
with the received signal so that the Relational Operator block can compare
them correctly.

2 Building Models

2-58

Note If the Error Rate Calculation block in a model gives an error rate close
to .5 for a random binary signal, you might not have taken into account delays
in the model. The block is probably comparing two unsynchronized signals.

Several blocks in the Communications Blockset Modulation library produce
delays. A list of these is given in “Delays in Digital Modulation” in Using the
Communications Blockset. The Viterbi Decoder block, from the Convolutional
sublibrary of the Error Detection and Correction library, also produces a delay
equal to its Traceback depth parameter – see the section “Viterbi Decoder” on
page 2-64.

Finding the Delay in the Model
In constructing this model, to set the parameters for the Error Rate Calculation
block and Delay block correctly, you need to know the delay between the
transmitted and received signals. You can sometimes determine this delay
from the parameters of the blocks between the transmitted and received
signals. But if you are unable to determine the delay in this way, you can do so
with the xcorr function, from the Signal Processing Toolbox, which finds the
cross correlation between the signal and shifts of its delayed version.

To use the xcorr function, you must modify the model slightly as follows:

1 Set the Es/No parameter of the AWGN Channel block to 100. This
essentially removes all noise from the model.

2 Drag a Signal To Workspace block, from the DSP Sinks library, into the
model window.

3 Connect the line leading out of the Bernoulli Binary Generator block to the
Signal To Workspace block. You can do this by right-clicking the line and
moving the mouse pointer to the input port of the Signal To Workspace block
while pressing the mouse button.

4 Double-click the Signal To Workspace block to open its mask, and change
the Variable name parameter to Tx.

Building a Frequency-Shift Keying Model

2-59

5 Drag another Signal To Workspace block, from the DSP Sinks library, into
the model window and connect it to the line leading out of the M-FSK
Demodulator Passband block.

6 Double-click the second Signal To Workspace block into the model window
and change the Variable name parameter to Rx.

7 Pull down the Simulation menu and select Simulation parameters. Set
Stop time to 1.

When you are done, the model should appear as in the following figure.

Determining the Delay in the FSK Model

Running the model sends the transmitted and received signals to the
workspace as vectors called Tx and Rx, respectively. To find the delay between
Tx and Rx, type the following commands at the MATLAB prompt.

[m,index]=max(xcorr(Rx,Tx));
L=length(Tx);

2 Building Models

2-60

delay=index-L

MATLAB should return delay=6, which is the correct value of the delay.

The xcorr function calculates the correlations between Tx and Rx when the two
vectors are shifted in all possible ways that overlap. The maximum correlation
occurs at the shifted distance corresponding to the true delay.

You can test whether you have found the correct value for the delay by using
the MATLAB isequal command, which returns a 1 when two vectors are
equal, and a 0 when they differ. To do so, at the MATLAB prompt type

isequal(Tx(1:L-delay),Rx(delay+1:L))

MATLAB returns a 1 if the number of symbols Tx and Rx are offset by is delay.

If you use this procedure and MATLAB returns a 0 to the isequal command,
it might indicate that there is still noise present in the model.

Multirate Models
The model shown in the figure FSK Model on page 2-51 differs from the earlier
models in that it contains signals with different sample times. The Bernoulli
Binary Generator block has a sample time of 1/1200. The M-FSK Modulator
Passband block receives this signal and upsamples it at a rate of five samples
per symbol. As a result, the sample time of the block’s output signal is 1/6000.
A model that contains signals with different sample times is called a multirate
model.

The multiple sample times present in this model do not affect the bit error rate
of a simulation. But you should be aware that in other models, sample times
can affect the results of a simulation. This is usually the case when different
signals are combined. See “Setting Sample Times and Samples per Frame” on
page 3-15 for an example of this.

Using Sample Time Colors to Check Sample Times
You can easily check whether there are different sample times in a model by
selecting Sample time colors from the Format menu. Then select Update
diagram from the Edit menu. When you do this, blocks and lines in the model
are colored according to their sample times.

Red blocks and lines indicate the fastest sample time in the model. Green
indicates the second fastest sample time. Yellow blocks contain signals with

Building a Frequency-Shift Keying Model

2-61

different sample times. If all sample times in the model are the same, all blocks
and lines are colored red. For more information on sample time colors, see the
Simulink documentation.

For frame-based signals, the colors correspond to the frame periods of the
signals rather than sample times.

If you need to determine the actual sample time of a signal, you can use a Probe
block as described in “Building a Frequency-Shift Keying Model” on page 2-51.

2 Building Models

2-62

Building a Convolutional Code Model
The following model simulates the use of convolutional coding to send a signal
through a channel with noise.

Convolutional Code Model

This section explains how to

• Build the model

• Set block parameters

• Run the model

It also explains the new blocks in the model.

To open a completed version of the model, type convdoc at the MATLAB
prompt.

Building the Convolutional Code Model
You can build the convolutional code model by adding blocks to the model
shown in the figure Channel Noise Model on page 2-27.

To build the model:

1 Type channeldoc at the MATLAB Help browser to open the channel noise
model. Then save the model as my_conv in the directory where you keep your
work files.

2 Delete the Binary Symmetric Channel block.

Building a Convolutional Code Model

2-63

3 Drag the following blocks from the Simulink Library Browser into the model
window, and connect them as shown in the figure Convolutional Code Model
on page 2-62:

- Convolutional Encoder, from the Convolutional sublibrary of the Error
Detection and Correction library

- BPSK Modulator Baseband, from PM in the Digital Baseband Modulation
sublibrary of the Modulation library

- Complex to Real-Imag, from the Simulink Math Operations library

- Viterbi Decoder, from the Convolutional sublibrary of the Error Detection
and Correction library

Blocks in the Model
The model contains the following new blocks.

Convolutional Encoder
The Convolutional Encoder block encodes the signal from the Bernoulli Binary
Generator. The example uses the industry standard rate 1/2 convolutional
code, with constraint length 7, defined by the following diagram.

Convolutional Encoder Schematic Block Diagram

2 Building Models

2-64

The encoder structure is described by a pair of binary numbers, having the
same length as the code’s constraint length, that specify the connections from
the delay cells to modulo-2 addition nodes. The binary number for the upper
addition node is 1111001. A 1 indicates that the bit in the corresponding delay
cell (reading from left to right) is sent to the addition node, and a 0 indicates
that the bit is not sent. The binary number for the lower addition node is
1011011. Converting these two binary numbers to octal gives the pair
[171,133]. You can enter this pair into the block’s mask by typing
poly2trellis(7, [171 133]) in the field for Trellis Structure.

To learn more about the convolutional coding features of the Communications
Blockset, see “Convolutional Coding” in the online Communications Blockset
documentation.

Complex to Real-Imag
The Complex to Real-Imag block, labeled Re(u), receives the complex signal
and outputs its real part. Since the output BPSK Modulator Baseband block
has zero complex part, all of the signal is carried by the real part. You can set
this option by selecting Real in the Output parameter field in the mask. It is
not necessary to demodulate the signal, because the Viterbi Decoder block can
accept unquantized inputs.

Viterbi Decoder
The Viterbi Decoder block decodes the signal using the Viterbi algorithm. The
Decision Type parameter is set to Unquantized so that the block can accept
real numbers from the Complex to Real-Imag block. The Traceback depth
parameter, which is set to 96, is the number of branches in the trellis that the
block uses to construct each traceback path. This produces a delay of 96
between the input and output of the block. For more information on delays, see
“Finding the Delay in the Model” on page 2-58.

For an example of a convolutional coding model that uses soft-decision
decoding, see the section “Example: Soft-Decision Decoding” in the online
Communications Blockset documentation.

Setting Parameters in the Convolutional Code Model
To set parameters in the convolutional code model, do the following:

1 Double-click the Bernoulli Binary Generator block and check the box next to
Frame-based outputs in the block’s mask.

Building a Convolutional Code Model

2-65

2 Double-click the AWGN Channel block and make the following changes to
the default parameters in the block’s mask:

- Set Es/No to -1.

- Set Symbol period to 1/2. Since the code rate is 1/2, this setting causes
the block to produce the same amount of noise per channel symbol as it
would without channel coding. For more information, see “Setting the
Symbol Period” on page 2-48.

3 Double-click the Error Rate Calculation block and make the following
changes to the default parameters in the block’s mask:

- Set Receive delay to 96. The Viterbi Decoder block creates a delay of 96,
due to its Traceback depth setting.

- Check the box next to Stop simulation.

- Set Target number of errors to 100.

Running the Convolutional Code Model
When you run the model, you observe an error rate of approximately .003.

You can compare this model with the one shown in the figure Cyclic Code
Model on page 2-46. To do so, change the Es/No parameter in the AWGN
channel block to 4.2, so that the two models have the same amount of channel
noise. Now when you run the convolutional code model, the error rate is 0.

2 Building Models

2-66

3
Using the Communications
Blockset with MATLAB

Introduction . 3-2

Sending Data to the MATLAB Workspace 3-3

Running Simulations from the Command Line 3-8

Importing Data from the MATLAB Workspace 3-12

Learning More 3-17

3 Using the Communications Blockset with MATLAB

3-2

Introduction
This chapter describes how to use MATLAB to extend the capabilities of the
Communications Blockset. The chapter explains how to run simulations from
the command line, and how to run multiple simulations. It also explains how
to transfer data between a model and the MATLAB workspace.

This chapter covers the following topics:

• “Sending Data to the MATLAB Workspace” on page 3-3 shows how to send
the results of simulations from a model to the MATLAB workspace. The
section also explains how you can use MATLAB to analyze the data.

• “Running Simulations from the Command Line” on page 3-8 shows how to
run models from the MATLAB command line, and how to run multiple
simulations with varying parameters. The section also shows how to plot the
results of multiple simulations.

• “Importing Data from the MATLAB Workspace” on page 3-12 shows how to
import data from the workspace into a model. This enables you to run
simulations on data that you create in the workspace or import from outside
MATLAB. You can also create specific error patterns, such as burst errors,
and import them into a model, in order to test error correction codes.

• “Learning More” on page 3-17 describes other sources of information about
the Communications Blockset.

Sending Data to the MATLAB Workspace

3-3

Sending Data to the MATLAB Workspace
This section explains how to send data from a Simulink model to the MATLAB
workspace so you can analyze the results of simulations in greater detail.

This section explains how to

• Use a Signal To Workspace block

• Configure the Signal To Workspace block

• View the error rate data in the workspace

• Send the signal and error data to the workspace

• View the signal and error data in the workspace

• Analyze the data

Using a Signal To Workspace Block
You can use a Signal To Workspace block, from the DSP Sinks library, to send
data to the MATLAB workspace as a vector. For example, you can send the
error rate data from the Hamming code model, described in the section
“Reducing the Error Rate Using a Hamming Code” on page 2-33. To insert a
Signal to Workspace block into the model:

1 Type hammingdoc at the MATLAB Help browser to open the model.

2 Drag a Signal To Workspace block from the DSP Sinks library into the
model window and connect it as shown in the following figure.

Hamming Code Model with a Signal To Workspace Block

3 Using the Communications Blockset with MATLAB

3-4

Configuring the Signal To Workspace Block
To configure the Signal to Workspace block:

1 Double-click the block to display its mask.

2 Type hammcode_BER in the Variable name field.

3 Type 1 in the Limit data points to last field. This limits the output vector
to the values at the final time step of the simulation.

4 Click OK.

When you run a simulation, the model sends the output of the Error Rate
Calculation block to the workspace as a vector of size 3, called hamming_BER.
The entries of this vector are the same as those shown by the Error Rate
Display block.

Viewing the Error Rate Data in the Workspace
After running a simulation, you can view the output of the Signal to Workspace
block by typing the following commands at the MATLAB prompt.

format short e
hammcode_BER

The vector output is the following.

hammcode_BER =
5.4066e-003 1.0000e+002 1.8496e+004

The command format short e displays the entries of the vector in exponential
form. The entries are as follows:

• The first entry is the error rate.

• The second entry is the total number of errors.

• The third entry is the total number of comparisons made.

Sending Signal and Error Data to the Workspace
To analyze the error correction performance of the Hamming code, you can
send the transmitted signal, the received signal, and the error vectors, created

Sending Data to the MATLAB Workspace

3-5

by the Binary Symmetric Channel block, to the workspace. An example of this
is shown in the following figure.

Sending Signal and Error Data to the Workspace

You can build this model from the one shown in the figure Hamming Code
Model on page 2-33. To build the model:

1 Type hammingdoc to open the model.

2 Double-click the Binary Symmetric Channel block to open its mask, and
check the box next to Output error vector. This creates an output port for
the error data.

3 Drag three Signal To Workspace blocks from the DSP Sinks library into the
model window and connect them as shown in the preceding figure.

4 Double-click the left Signal To Workspace block.

- Type Tx in the Variable name field in the block’s mask. The block sends
the transmitted signal to the workspace as an array called Tx.

- In the Frames field, select Log frames separately (3-D array). This
preserves each frame as a separate column of the array Tx.

- Click OK.

5 Double-click the middle Signal To Workspace block:

- Type errors in the Variable name field.

3 Using the Communications Blockset with MATLAB

3-6

- In the Frames field, select Log frames separately (3-D array).

- Click OK.

6 Double-click the right Signal To Workspace block:

- Type Rx in the Variable name field.

- In the Frames field, select Log frames separately (3-D array).

- Click OK.

Viewing the Signal and Error Data in the Workspace
After running a simulation, you can display individual frames of data. For
example, to display the tenth frame of Tx, at the MATLAB prompt type

Tx(:,:,10)

This returns a column vector of length 4, corresponding to the length of a
message word. Usually, you should not type Tx by itself, as this displays the
entire transmitted signal, which is very large.

To display the corresponding frame of errors, type

errors(:,:,10)

This returns a column vector of length 7, corresponding to the length of a code
word.

To display frames one through five of the transmitted signal, type

Tx(:,:,1:5)

Analyzing Signal and Error Data
You can use MATLAB to analyze the data from a simulation. For example, to
identify the differences between the transmitted and received signals, type

diffs=Tx∼ =Rx;

The vector diffs is the XOR of the vectors Tx and Rx. A 1 in diffs indicates
that Tx and Rx differ at that position.

You can determine the indices of frames corresponding to message words that
are incorrectly decoded with the following MATLAB command.

error_indices=find(diffs);

Sending Data to the MATLAB Workspace

3-7

A 1 in the vector not_equal indicates that there is at least one difference
between the corresponding frame of Tx and Rx. The vector error_indices
records the indices where Tx and Rx differ. To view the first incorrectly decoded
word, type

Tx(:,:,error_indices(1))

To view the corresponding frame of errors, type

errors(:,:,error_indices(1))

You can analyze this data to determine the error patterns that lead to incorrect
decoding.

3 Using the Communications Blockset with MATLAB

3-8

Running Simulations from the Command Line
This section describes how to run simulations from the command line using the
sim command. This is especially useful for running multiple simulations on a
model, as described in the next section.

The section explains how to

• Run a single simulation

• Run multiple simulations

• Set parameters in the model

• Plot the results of multiple simulations

Running a Single Simulation
As an example, to run the phase noise model, described in “Running a Simulink
Model” on page 2-4, from the command line, type

sim('phasenoise_sim')

at the MATLAB prompt. This runs the model in the background without
opening the model window. While the simulation is running, the MATLAB
prompt is unavailable and you cannot enter another MATLAB command.

Note To stop a simulation that you are running from the command line,
press Ctrl+C on the keyboard when the MATLAB window is active.

After the simulation stops, the prompt reappears. You can then view the
results of the simulation by typing phasenoise_sim to open the model.

It is not necessary to open the model window when running a simulation from
the command line. Usually you want to send the results of the simulation to the
MATLAB workspace, for example, if you are running multiple simulations on
a single model.

You can also specify simulation parameters from the command line. For
example, the command

sim('phasenoise_sim', 1000);

Running Simulations from the Command Line

3-9

runs the model with a Stop time of 1000. This overrides the Stop time setting
in the Simulation parameters dialog box. For more information on running
simulations, see the Simulink documentation.

Running Multiple Simulations
You can run multiple simulations, with different parameters, from the
command line using a MATLAB script. For example, you might want to run the
phase noise model with varying amounts of channel noise. To do this, first type
phasenoise_sim to open the model.

Drag a Signal To Workspace block from the DSP Sinks library into the model
window and connect it as shown in the following figure.

Phase Noise Model with a Signal To Workspace Block

Setting Parameters in the Phase Noise Model
To set parameters in the model, do the following:

1 Select Simulation parameters in the Simulation menu and set Stop time
to inf.

2 Double-click the AWGN Channel block and set Es/No to
EbNodB+10*log10(8) in the block’s mask. The variable EbNodB represents
bit energy to noise ratio. The term 10*log10(8) converts EsNodB to Es/No,
which is the symbol energy to noise ratio. The term 8 is present because
there are eight bits per channel symbol in 256-QAM.

3 Double-click the Phase Noise block and set Phase noise level (dBc/Hz) to
-66.

3 Using the Communications Blockset with MATLAB

3-10

4 Double-click the Error Rate Calculation block and make the following
changes to the default parameters in the block’s mask:

- Check the box next to Stop simulation.

- Type 100 in the Target number of errors field.

- Set Maximum number of symbols to 10^5.

5 Double-click the Signal To Workspace block and make the following changes
to the default parameters in the block’s mask:

- Set Variable name to phase_BER.

- Set Limit data points to last to 1.

6 Type the following command at the MATLAB prompt.

EbNoVec=20:.2:21;

This creates the vector

EbNoVec =
20.0000 20.2000 20.4000 20.6000 20.8000 21.0000

You can now run six simulations, with Es/No parameter values given by these
vector entries plus 10 log(8). The following script runs the simulations in a loop
and stores the results in a matrix called BER_Vec. The simulations might take
several minutes to run.

BER_Vec=[];
for n=1:length(EbNoVec);

EbNodB=EbNoVec(n);
sim('phasenoise_sim');
BER_Vec(n,:)=phase_BER;

end;

When the simulations have ended and the prompt reappears, type the
following at the MATLAB prompt.

format short e
BER_Vec

This displays the results in a matrix. Each row is the output of the Error
Calculation Block for a single simulation. Notice that the first column, which
gives the error rates for the six simulations, decreases. This is because the

Running Simulations from the Command Line

3-11

noise level decreases as EbNodB increases. The last column gives the number of
symbols processed in each simulation.

Plotting the Results of Multiple Simulations
You can plot the results of both sets of simulations by entering the following
commands.

semilogy(EbNoVec,BER_Vec(:,1),'*');
xlabel('Eb/No (dB)');ylabel('BER');
title('Phase Noise Performance of 256-QAM');
legend('Phase noise level: -66 dBc/Hz');

The resulting plot is shown in the following figure.

This is a part of the plot shown in “Displaying a Plot of Phase Noise” on
page 2-9, corresponding to phase noise of degree 1 and Eb/No values between
20 and 21.

3 Using the Communications Blockset with MATLAB

3-12

Importing Data from the MATLAB Workspace
This section explains how to import data into a model directly from the
MATLAB workspace using the Signal From Workspace block, from the DSP
Sources library. This is useful for simulating different kinds of signals and
noise.

The section explains how to

• Simulate a signal by importing data

• Simulate noise by importing data

• Create error patterns in the workspace

• Set sample times and samples-per-frame

Simulating a Signal by Importing Data
To import a signal that you create in the workspace, you can use a Signal From
Workspace block as a source. An example is the model shown in the following
figure. This model is the same as the one shown in the figure Channel Noise
Model on page 2-27, except that the Bernoulli Binary Generator block has been
replaced with a Signal From Workspace block.

Importing a Signal from the Workspace

To build this model:

1 Type channeldoc at the MATLAB prompt to open the channel noise model.
Then save it under a different name in the directory where you keep your
work files.

2 Replace the Bernoulli Binary Generator block with a Signal From
Workspace block from the DSP Sources library.

Importing Data from the MATLAB Workspace

3-13

3 In the Signal from Workspace block’s mask, change the Signal parameter to
data (or another variable name).

Before using the model, you must define the vector data in the MATLAB
workspace. For example, type data=randint(1,10^4); at the MATLAB
prompt. This defines data as a random binary vector of length 104.

Next, select Simulation parameters from the Simulation menu and set the
Stop time parameter to length(data). When you run a simulation, the model
imports the random vector data into the model.

You can change the vector data in the MATLAB workspace to simulate a less
random signal, or import a signal from outside MATLAB.

Simulating Noise with Imported Data
You can also use the Signal From Workspace block to simulate channel noise
with specific error patterns, in order to test the performance of an error
correcting code. An example of this is shown in the following figure.

Using Data from the Workspace to Simulate Errors

This example is similar to the model shown in the figure Hamming Code Model
on page 2-33, but instead of using the Binary Symmetric Channel block to
simulate noise, the model imports error data from the workspace.

3 Using the Communications Blockset with MATLAB

3-14

To build this model:

1 Type hammingdoc at the MATLAB prompt to open the Hamming code model.
Then save the model under a different name in the directory where you store
your work files.

2 Delete the Binary Symmetric Channel block from the model.

3 Drag the following blocks into the model window:

- A Signal From Workspace block, from the DSP Sources library

- A Logical Operator block, from the Simulink Math Operations library

4 Connect these blocks as shown in the preceding figure.

5 In the Simulation menu, select Simulation Parameters to open the
Simulation Parameters dialog box.

6 In the Solver pane, type length(errors) in the Stop time field.

7 Click OK.

8 Double-click the Signal From Workspace block and make the following
changes to the default parameters in the block’s mask:

- Set Signal to errors.

- Set Sample time to 4/7.

- Set Samples per frame to 7, to match the frame size of the signal coming
out of the Hamming Encoder block.

9 Double-click the Logical Operator block and set Operator to XOR in the
block’s mask.

Simulating Noise with Specified Error Patterns
To use the model in the figure Using Data from the Workspace to Simulate
Errors on page 3-13, you must first create a binary vector called errors in the
workspace to represent errors in the channel. A 1 in the vector represents an
error in the channel, while a 0 represents no error. When you run a simulation,
the Logical Operator block performs the XOR operation on the vector errors
and the signal.

Importing Data from the MATLAB Workspace

3-15

For example, to create a vector of length 7x104 that contains exactly one 1 in
each sequence of entries from 7n + 1 to 7(n + 1), enter the following at the
MATLAB prompt.

errors=[];
for n=1:10^4

p=randperm(7);
v=[1 0 0 0 0 0 0];
errors=[errors v(p)];

end

The function randperm generates a random permutation of the numbers one
through seven. The vector v(p) applies the permutation to the entries of the
vector v, which has exactly one entry that is 1. The result is that the vector
errors contains exactly one entry that is 1 in each sequence from 7n + 1 to
7(n+1).

Running a Simulation with Imported Error Data
When you run a simulation, the bit error rate is zero because the Hamming
code can correct one error in each code word.

To test the code with an error vector that creates two errors in each code word,
just change the vector v to v=[1 1 0 0 0 0 0] in the preceding code.

Setting Sample Times and Samples per Frame
It is important to set the Sample time and Samples per frame parameters
correctly in the Signal From Workspace block, so that the block has the same
frame size and frame period as the Hamming Encoder block. This ensures that
errors coming from the Signal From Workspace block are synchronized with
channel symbols coming from the Hamming Encoder block. To determine the
correct sample time, use the following relationship.

The frame size of the signal coming from the Hamming Encoder block is 7. You
set the frame size by the Codeword length parameter in the block’s mask. So
you should set the Samples per frame parameter in the Signal From
Workspace block to 7.

Sample time Frame period
Samples per frame
---=

3 Using the Communications Blockset with MATLAB

3-16

The frame period of the Hamming Encoder block is 4, because the Bernoulli
Binary Generator block has a Sample time of 1, and a Samples per frame of
4. So you should set the Sample time parameter in the Signal From Workspace
block to 4/7 so that the frame period of the block is 4.

If you are not sure what the frame sizes and frame periods of signals in the
model are, you can display them using a Probe block, as described in “Building
a Frequency-Shift Keying Model” on page 2-51. To do this, attach two Probe
blocks, one to the line leading out of the Hamming Encoder block and one to the
line leading out of the Signal From Workspace block. In the masks for both
Probe blocks, clear the boxes next to Probe complex signal and Probe signal
dimensions. Next, attach Terminator blocks to the output ports of the Probe
blocks. Then select Update diagram from the Edit menu. The model should
appear as in the following figure.

Figure 3-1: Hamming Code Model with Probe Blocks

Both Probe blocks should display a frame size of 7 and a frame period of 4.

A quick way to check whether the frame periods of two signals are the same is
to select Sample time colors from the Format menu. See “Using Sample Time
Colors to Check Sample Times” on page 2-60.

Learning More

3-17

Learning More
You can learn more about the Communications Blockset from the following
sources.

Online Help
To find online documentation, select Full Product Family Help from the Help
menu in the MATLAB desktop. This launches the Help browser. For a more
detailed explanation of any of the topics covered in this book, see the
documentation listed under Communications Blockset in the left pane of the
Help browser.

Besides this book, Getting Started with the Communications Blockset, the
online documentation contains the following topics:

• Using the Libraries describes each of the core libraries of the blockset.

• Modeling Communication Systems illustrates techniques for modeling a full
communication system.

• Blocks - By Category—Provides descriptions of the Communications
Blockset libraries and lists the blocks in them

• Blocks - Alphabetical List—Provides a detailed description of the blocks in
the Communications Blockset in alphabetical order.

The Help Navigator, in the left pane of the Help browser, supports string
searches. You can specify strings and the online manuals that you want to
search. To begin a search, click the Search tab. To view the index for the
documentation, click the Index tab.

Demos
To see more Communications Blockset examples, type

demo

at the MATLAB prompt. This opens the MATLAB Demo window. Double-click
Blocksets and then select Communications to list the available demos.

3 Using the Communications Blockset with MATLAB

3-18

The MathWorks Online
To read the documentation for the Communications Blockset on the
MathWorks Web site, point your Web browser to

www.mathworks.com/access/helpdesk/help/helpdesk.shtml

I-1

Index

A
adding noise to models 2-21

B
binary phase shift keying (BPSK) 2-44
block libraries 2-14
block masks 2-8
block parameters 2-8
blocks

connecting 2-16
labeling 2-36
moving into model 2-15

BPSK modulation example 2-43
building models 2-12

C
channel coding 2-27
channel noise example 2-27
commstartup 2-12
connecting blocks 2-16
constellation 2-6
continuous signals 2-25
convolutional code example 2-62
convolutional encoder 2-63
cyclic code example 2-46

D
delays 2-57

calculating 2-58
demos 2-10
discrete signals 2-25
drawing a branch line 2-30

E
error rate

displaying 2-7
errors

displaying in a scope 2-37
simulating by importing data 3-14

F
frame-based processing 2-25
frames 2-25

displaying sizes of 2-37
frequency-shift keying (FSK) 2-51
FSK model 2-51

H
Hamming code example 2-33
Help Navigator 3-17

I
importing data from MATLAB workspace 3-12

L
labeling

blocks 2-36
learning more 3-17
Library Browser 2-14

M
MathWorks Web site 3-18
models

building 2-12
multirate 2-60

Index

I-2

running 2-20
saving 2-24

moving blocks into a model 2-15
multirate models 2-60

O
online help 3-17

P
plotting results of multiple simulations 3-11

Q
quadrature amplitude modulation (QAM) 2-6

R
running simulations 2-6

S
sample time colors 2-60
sample times 2-25

setting 3-15
sample-based processing 2-25
samples per frame 2-25

setting 3-15
saving models 2-24
sending data to MATLAB workspace 3-3
signals

continuous 2-25
discrete 2-25
displaying in a scope 2-21
simulating by importing data 3-12

simulation parameters 2-19
simulations

plotting results of 3-11
running 2-6
running from command line 3-8

Simulink libraries 2-14
Simulink Library Browser 2-14
symbol periods 2-48

	Introduction
	What Is the Communications Blockset?
	Related Products List
	Required Software
	Using This Guide
	Who Should Read This Guide?
	How to Use This Guide

	Building Models
	Introduction
	New Simulink Users
	Building Models of Communication Systems

	Running a Simulink Model
	Opening the Model
	Overview of the Model
	Quadrature Amplitude Modulation
	Running a Simulation
	Displaying the Error Rate
	Setting Block Parameters
	Displaying a Plot of Phase Noise
	More Demos

	Building a Simple Model
	The Basic Steps
	Using commstartup to Set Simulation Parameters
	Opening a New Model Window
	Opening Block Libraries
	Moving Blocks into the Model Window
	Connecting Blocks
	Setting Block Parameters
	Setting Simulation Parameters
	Running the Model
	Adding Noise to the Model
	Saving a Model
	Frames and Frame-Based Processing
	Discrete Signals and Sample Times
	Continuous Signals

	Building a Channel Noise Model
	Overview of the Model
	Selecting Blocks for the Channel Noise Model
	Setting Parameters in the Channel Noise Model
	Connecting the Blocks
	Running the Channel Noise Model

	Reducing the Error Rate Using a Hamming Code
	Building the Hamming Code Model
	Hamming Encoder and Decoder
	Setting Parameters in the Hamming Code Model
	Labeling the Display Block
	Running the Hamming Code Model
	Displaying Frame Sizes
	Adding a Scope to the Model
	Setting Parameters in the Expanded Model
	Observing Channel Errors with the Scope

	Modeling a Channel with Modulation
	Building the BPSK Model
	Binary Phase Shift Keying
	Setting Parameters in the BPSK Model
	Running the BPSK Model

	Reducing the Error Rate with a Cyclic Code
	Building the Cyclic Code Model
	Setting Parameters in the Cyclic Code Model
	Running the Cyclic Code Model
	Setting the Symbol Period
	Using a Probe Block to Determine Symbol Period

	Building a Frequency-Shift Keying Model
	Building the FSK Model
	Setting Parameters in the FSK Model
	Running the FSK Model
	Delays in the Model
	Finding the Delay in the Model
	Multirate Models
	Using Sample Time Colors to Check Sample Times

	Building a Convolutional Code Model
	Building the Convolutional Code Model
	Blocks in the Model
	Setting Parameters in the Convolutional Code Model
	Running the Convolutional Code Model

	Using the Communications Blockset with MATLAB
	Introduction
	Sending Data to the MATLAB Workspace
	Using a Signal To Workspace Block
	Configuring the Signal To Workspace Block
	Viewing the Error Rate Data in the Workspace
	Sending Signal and Error Data to the Workspace
	Viewing the Signal and Error Data in the Workspace
	Analyzing Signal and Error Data

	Running Simulations from the Command Line
	Running a Single Simulation
	Running Multiple Simulations
	Setting Parameters in the Phase Noise Model
	Plotting the Results of Multiple Simulations

	Importing Data from the MATLAB Workspace
	Simulating a Signal by Importing Data
	Simulating Noise with Imported Data
	Simulating Noise with Specified Error Patterns
	Setting Sample Times and Samples per Frame

	Learning More
	Online Help
	Demos
	The MathWorks Online

	Index

