
Modeling

Simulation

Implementation

Using the Communications Blockset
Version 2

For Use with Simulink®

Communications
Blockset

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Using the Communications Blockset
 COPYRIGHT 2001-2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: June 2001 Online only New for Version 2.0.1 (Release 12.1)
July 2002 Online only Revised for Version 2.5 (Release 13)

i

Contents

1
Using the Libraries

Signal Support . 1-3
Signal Terminology . 1-3
Processing Matrices, Vectors, and Scalars 1-4
Processing Frame-Based and Sample-Based Signals 1-6

Communications Sources . 1-7
Controlled Sources . 1-7
Random Data Sources . 1-8
Random Noise Generators . 1-9
Sequence Generators . 1-10
Sequence Generator Examples . 1-12
Block Parameters . 1-18

Communications Sinks . 1-23
Sink Features of the Blockset . 1-23
Writing to a File . 1-23
Error Statistics . 1-23
Scopes . 1-24
Example: Viewing a Sinusoid . 1-26

Source Coding . 1-30
Source Coding Features of the Blockset 1-30
Representing Quantization Parameters 1-31
Quantizing a Signal . 1-31
Implementing Differential Pulse Code Modulation 1-35
Companding a Signal . 1-38
Selected Bibliography for Source Coding 1-40

Block Coding . 1-41
Organization of This Section . 1-41
Accessing Block Coding Blocks . 1-41
Block Coding Features of the Blockset 1-42
Communications Toolbox Support Functions 1-43
Channel Coding Terminology . 1-43

ii Contents

Data Formats for Block Coding . 1-43
Using Block Encoders and Decoders Within a Model 1-46
Examples of Block Coding . 1-46
Notes on Specific Block Coding Techniques 1-49
Selected Bibliography for Block Coding 1-53

Convolutional Coding . 1-54
Organization of This Section . 1-54
Accessing Convolutional Coding Blocks 1-54
Convolutional Coding Features of the Blockset 1-55
Parameters for Convolutional Coding . 1-55
Example: A Rate 2/3 Feedforward Encoder 1-56
Implementing a Systematic Encoder with Feedback 1-59
Example: Soft-Decision Decoding . 1-60
Selected Bibliography for Convolutional Coding 1-67

Cyclic Redundancy Check Coding . 1-69
Organization of this Section . 1-69
Accessing CRC Blocks . 1-69
CRC Coding Features of the Blockset . 1-69
CRC Algorithm . 1-70

Interleaving . 1-72
Interleaving Features of the Blockset . 1-72
Block Interleavers . 1-72
Convolutional Interleavers . 1-75
Selected Bibliography for Interleaving 1-80

Analog Modulation . 1-81
Accessing Analog Modulation Blocks . 1-81
Analog Modulation Features of the Blockset 1-81
Baseband Modulated Signals Defined 1-82
Representing Signals for Analog Modulation 1-83
Timing Issues in Analog Modulation . 1-83
Filter Design Issues . 1-87

Digital Modulation . 1-92
Accessing Digital Modulation Blocks . 1-92
Digital Modulation Features of the Blockset 1-93

iii

Representing Signals for Digital Modulation 1-96
Delays in Digital Modulation . 1-97
Upsampled Signals and Rate Changes 1-101
Examples of Digital Modulation . 1-104
Selected Bibliography for Digital Modulation 1-112

Channels . 1-113
Channel Features of the Blockset . 1-113
AWGN Channel . 1-113
Fading Channels . 1-114
Binary Symmetric Channel . 1-117
Selected Bibliography for Channels . 1-118

RF Impairments . 1-119
Types of RF Impairments the Blocks Model 1-119
Scatter Plot Examples . 1-120
Example Using the RF Impairments Library Blocks 1-127

Synchronization . 1-130
Synchronization Features of the Blockset 1-130
Overview of PLL Simulation . 1-131
Implementing an Analog Baseband PLL 1-131
Implementing a Digital PLL . 1-132
Selected Bibliography for Synchronization 1-132

2
Modeling Communication Systems

Computing Delays . 2-3
Other References for Delays . 2-3
Sources of Delays . 2-4
ADSL Demo Model . 2-4
Punctured Coding Model . 2-9

Manipulating Delays . 2-14
Delays and Alignment Problems . 2-14
Aligning Words of a Block Code . 2-17

iv Contents

Aligning Words for Interleaving . 2-19
Aligning Words of a Concatenated Code 2-21

Comparing Baseband and Passband Simulation 2-24
Running a Passband Simulation . 2-24
Running an Equivalent Baseband Simulation 2-25
Generating Error Curves . 2-26
Speed of Baseband Versus Passband Models 2-28
Comparing Baseband and Passband Signals 2-30
Troubleshooting a Passband Simulation 2-32

3
Demonstration Models

Punctured Convolutional Coding Demo 3-2
Structure of the Demo . 3-2
Generating Random Data . 3-3
Convolutional Encoding . 3-3
Puncturing . 3-4
Transmitting Data . 3-4
Demodulating . 3-5
Inserting Zeros . 3-5
Viterbi Decoding . 3-6
Calculating the Error Rate . 3-6
Evaluating Results . 3-6
Bibliography . 3-8

Adaptive Equalization Demo . 3-9

CPM Phase Tree Demo . 3-11
Structure of the demo . 3-11
Variables . 3-11
Visible Results of the Demo . 3-12
Experimenting with the Demo . 3-12

GMSK vs. MSK Demo . 3-14
Structure of the Demo . 3-14

v

Visible Results of the Demo . 3-14

Filtered QPSK vs. MSK Demo . 3-16
Structure of the Demo . 3-16
Visible Results of the Demo . 3-16

Rayleigh Fading Channel Demo . 3-17
Structure of the Demo . 3-17
Visible Results . 3-17

Gray Coded 8-PSK Demo . 3-18
How the Model Executes . 3-19
Variables in the Model . 3-19
Components of the Gray Coding Demo 3-20
Learning More About the Gray Coding Demo 3-26

Discrete Multitone Signaling Demo . 3-29
Structure of the Demo . 3-29
Discrete Multitone Signaling Demo, Alternative Form 3-30
Selected Bibliography . 3-30

Iterative Decoding of a Serially Concatenated
Convolutional Code (SCCC) - Demo . 3-31

Structure of the Demo . 3-31
Creating a Serially Concatenated Code 3-32
Decoding Using an Iterative Process . 3-33
Visible Results of the Demo . 3-34
Selected Bibliography . 3-34

Phase Noise Effects in 256-QAM - Demo 3-36
Structure of the Demo . 3-36
Visible Results of the Demo . 3-36

PLL-Based Frequency Synthesis Demo 3-38
Variables in the Model . 3-38
Running the Simulation . 3-39
Blocks in the Model . 3-40
Pulse Generator . 3-40
Divide Frequency by M . 3-41

vi Contents

Phase Detector . 3-42
Analog Filter Design . 3-42
Gain Block . 3-43
Voltage-Controlled Oscillator . 3-43
Simulation Parameters . 3-44

Fractional-N Frequency Synthesis Demo 3-46
Variables in the Model . 3-47
Blocks and Subsystems in the Model . 3-47
Phase Detector . 3-48
Running a Simulation . 3-48
Reference . 3-49

256-Channel ADSL Demo . 3-50
Structure of the Demo . 3-50
Transmitting Data . 3-50
Processing Received Data . 3-51
Displaying Error Statistics . 3-51
Selected Bibliography . 3-52

Bluetooth Voice Transmission Demo 3-53
Structure of the Demo . 3-53
Mask Variables . 3-54
Results and Display . 3-54
Reference . 3-55

Digital Video Broadcasting Demo . 3-56
Structure of the Demo . 3-56
Variables in the Demo . 3-57
Design of the Receiver . 3-57
Visible Results of the Demo . 3-58
Selected Bibliography . 3-58

HiperLAN/2 Demo . 3-59
Structure of the demo . 3-59
Visible Results and Display . 3-60
References . 3-60

RF Satellite Link Demo . 3-61

vii

Structure of the demo . 3-61
Mask Parameters . 3-63
Results and Displays . 3-66
Experimenting with the Demo . 3-66
Selected Bibliography . 3-69

WCDMA Coding and Multiplexing Demo 3-70

WCDMA End-to-End Physical Layer Demo 3-71
Overall Structure of the Physical Layer 3-71
Parameters in the Demo . 3-74
Visible Results of the Demo . 3-77
References . 3-78

WCDMA Spreading and Modulation Demo 3-79

viii Contents

Signal Support 1-3

Communications Sources 1-7

Communications Sinks 1-23

Source Coding 1-30

Block Coding 1-41

Convolutional Coding 1-54

Cyclic Redundancy Check Coding 1-69

Interleaving . 1-72

Analog Modulation 1-81

Digital Modulation 1-92

Channels . 1-113

RF Impairments 1-119

Synchronization 1-130

1

Using the Libraries

1 Using the Libraries

1-2

This chapter describes and illustrates how to model communication techniques
using the blocks in the Communications Blockset. The first section, “Signal
Support,” discusses the types of signals that this blockset supports. Each
subsequent section corresponds to one of the core libraries within the
Communications Blockset. These sections are:

• “Communications Sources” on page 1-7

• “Communications Sinks” on page 1-23

• “Source Coding” on page 1-30

• “Block Coding” on page 1-41

• “Convolutional Coding” on page 1-54

• “Cyclic Redundancy Check Coding” on page 1-69

• “Interleaving” on page 1-72

• “Analog Modulation” on page 1-81

• “Digital Modulation” on page 1-92

• “Channels” on page 1-113

• “RF Impairments” on page 1-119

• “Synchronization” on page 1-130

For descriptions of individual blocks, see their reference entries. For
background or theoretical information about communications techniques, see
the works listed in the “Selected Bibliography...” sections that appear in this
chapter.

Signal Support

1-3

Signal Support
Simulink supports matrix signals in addition to one-dimensional arrays, and
frame-based signals in addition to sample-based signals. This section describes
how the Communications Blockset processes certain kinds of matrix and
frame-based signals. The topics are

• “Signal Terminology”

• “Processing Matrices, Vectors, and Scalars” on page 1-4

• “Processing Frame-Based and Sample-Based Signals” on page 1-6

Signal Terminology
This section defines important terms related to matrix and frame-based
signals.

Matrices, Vectors, and Scalars
This document uses the unqualified words scalar and vector in ways that
emphasize a signal’s number of elements, not its strict dimension properties:

• A scalar signal is one that contains a single element. The signal could be a
one-dimensional array with one element, or a matrix of size 1-by-1.

• A vector signal is one that contains one or more elements, arranged in a
series. The signal could be a one-dimensional array, a matrix that has
exactly one column, or a matrix that has exactly one row. The number of
elements in a vector is called its length or, sometimes, its width.

In cases when it is important for a description or schematic to distinguish
among different types of scalar signals or different types of vector signals, this
document mentions the distinctions explicitly. For example, the terms
one-dimensional array, column vector, and row vector distinguish among three
types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and
columns the matrix has. The orientation of a two-dimensional vector is its
status as either a row vector or column vector. A one-dimensional array has no
orientation.

A matrix signal that has more than one row and more than one column is called
a full matrix signal.

1 Using the Libraries

1-4

Frame-Based and Sample-Based Signals
In Simulink, each matrix signal has a frame attribute that declares the signal
to be either frame-based or sample-based, but not both. (A one-dimensional
array signal is always sample-based, by definition.) Simulink indicates the
frame attribute visually by using a double connector line in the model window
instead of a single connector line. In general, Simulink interprets frame-based
and sample-based signals as follows:

• A frame-based signal in the shape of an M-by-1 (column) matrix represents
M successive samples from a single time series.

• A frame-based signal in the shape of a 1-by-N (row) matrix represents a
sample of N independent channels, taken at a single instant in time.

• A sample-based matrix signal might represent a set of bits that collectively
represent an integer, or a set of symbols that collectively represent a code
word, or something else other than a fragment of a single time series.

Processing Matrices, Vectors, and Scalars
These rules indicate the shapes of sample-based signals that Communications
Blockset blocks can process:

• Most blocks do not process matrix signals that have more than one row and
more than one column.

• In their numerical computations, blocks that process scalars do not
distinguish between one-dimensional scalars and one-by-one matrices. If the
block produces a scalar output from a scalar input, then the block preserves
dimension.

• If a block can process sample-based vectors, then

- The numerical computations do not distinguish between one-dimensional
arrays, M-by-1 matrices, and 1-by-N matrices.

- The block output preserves dimension and orientation.

- The block treats elements of the input vector as a collection that arises
naturally from the block’s operation (for example, a collection of symbols
that jointly represent a codeword), or as samples from independent

Signal Support

1-5

channels. The block does not assume that the elements of the input vector
are successive samples from a single time series.

Some blocks process vectors but require them to be frame-based. For more
information about processing frame-based signals, see “Processing
Frame-Based and Sample-Based Signals” on page 1-6.

To find out whether a block processes scalar signals, vector signals, or both,
refer to its entry in the reference section.

Illustrations of Scalar and Vector Processing
The figures below depict the preservation of dimension and orientation when a
block processes scalars (without oversampling) and vectors. To display signal
dimensions in your model, turn on the Signal dimensions option in the model
window’s Format menu.

1 Using the Libraries

1-6

Processing Frame-Based and Sample-Based Signals
All one-dimensional arrays are sample-based, but a matrix signal can be either
frame-based or sample-based. A frame-based signal in the shape of an N-by-1
matrix represents a series of N successive samples from a single time series.
The Communications Blockset processes some frame-based signals and is
compatible with the DSP Blockset. However, the Communications Blockset
omits some frame-based features, and many blocks are not specifically
optimized for frame-based processing.

These rules indicate how most Communications Blockset blocks handle
frame-based matrix signals:

• Most blocks do not process frame-based matrix signals that have more than
one row and more than one column.

• Most blocks do not process frame-based row vectors and do not support
multichannel functionality.

• Blocks that process continuous-time signals do not process frame-based
inputs. Such blocks include the analog modulation blocks and the analog
phase-locked loop blocks.

• Blocks for which a frame-based multichannel operation would make sense,
even if the blocks do not currently support such operation, reject
sample-based vectors because their interpretation is ambiguous.

Frame-based vectors, however, have an unambiguous interpretation. Blocks
interpret a frame-based row vector as multiple channels at a single instant
of time, and interpret a frame-based column vector as multiple samples from
a single time series (that is, a single channel).

• Some blocks, such as the digital baseband modulation blocks, can produce
multiple output values for each value of a scalar input signal. In such cases,
a frame-based 1-by-1 matrix input results in a frame-based column vector
output. By contrast, a sample-based scalar input results in a sample-based
scalar output with a smaller sample time.

Communications Sources

1-7

Communications Sources
Every communication system contains one or more sources. You can find
sources in Simulink’s Sources library, in the DSP Blockset’s DSP Sources
library, and in the Communication Blockset’s Comm Sources library.

You can open the Comm Sources library by double-clicking its icon in the main
Communications Blockset library (commlib), or by typing

commsource2

at the MATLAB prompt.

Blocks in the Comm Sources library can

• Generate controlled sources by reading from a file or by simulating a
voltage-controlled oscillator (VCO)

• Generate random data

• Generate random noise to simulate channels

• Generate sequences that can be used for spreading or synchronization in a
communication system.

This section describes these capabilities, considering first random and then
nonrandom signals.

Controlled Sources
Blocks in the Controlled Sources sublibrary of the Comm Sources library
simulate nonrandom signals by reading from a file or by simulating a
voltage-controlled oscillator (VCO):

• The Triggered Read from File block reads a record from a file whenever an
input trigger signal has a rising edge. You can set up the block to read at
every rising edge of the trigger, or every kth rising edge of the trigger for a
positive number k.

• A voltage-controlled oscillator is one part of a phase-locked loop. The
Voltage-Controlled Oscillator and Discrete-Time VCO blocks implement
voltage-controlled oscillators. These blocks produce continuous-time and
discrete-time output signals, respectively. Each block’s output signal is
sinusoidal, and changes its frequency in response to the amplitude
variations of the input signal.

1 Using the Libraries

1-8

You can open the Controlled Sources sublibrary by double-clicking its icon in
the main Communications Blockset library (commlib), or by typing

commcontsrcs2p1

at the MATLAB prompt.

Random Data Sources
Blocks in the Data Sources sublibrary of the Comm Sources library generate
random data to simulate signal sources. You can use blocks in the Data Sources
sublibrary to generate

• Random bits

• Random integers

In addition, you can use built-in Simulink blocks such as the Random Number
block as a data source.

You can open the Data Sources sublibrary by double-clicking its icon in the
main Communications Blockset library (commlib), or by typing

commrandsrcs2p1

at the MATLAB prompt.

Random Bits
The Bernoulli Binary Generator and Binary Error Pattern Generator blocks
both generate random bits, but differ in the way that you specify the
distribution of 1s. As a result, the Bernoulli Binary Generator block is suitable
for representing sources, while the Binary Error Pattern Generator block is
more appropriate for modeling channel errors.

The Bernoulli Binary Generator block considers each element of the signal to
be an independent Bernoulli random variable. Also, different elements need
not be identically distributed.

The Binary Error Pattern Generator block constructs a random binary signal
using a two-stage process. First, using information that you provide in the
block mask, it determines how many 1s will appear. Then it determines where
to place the required number of 1s, so that each possible arrangement has
equal probability.

Communications Sources

1-9

For example, if you set the Binary vector length parameter to 4, set the
Probabilities parameter to 1, and clear the Frame-based outputs check box,
then the block generates binary vectors of length 4, each of which contains
exactly one 1. You might use these parameters to perturb a binary code that
consists of 4-bit codewords. Adding the random vector to your code vector
(modulo 2) would introduce exactly one error into each codeword. Alternatively,
to perturb each codeword by introducing one error with probability 0.4 and two
errors with probability 0.6, set the Probabilities parameter to [0.4, 0.6]
instead of 1.

Note that the Probabilities parameter of the Binary Error Pattern Generator
block affects only the number of 1s in each vector, not their placement.

Random Integers
The Random Integer Generator and Poisson Integer Generator blocks both
generate vectors containing random nonnegative integers. The Random
Integer Generator block uses a uniform distribution on a bounded range that
you specify in the block mask. The Poisson Integer Generator block uses a
Poisson distribution to determine its output. In particular, the output can
include any nonnegative integer.

Random Noise Generators
Blocks in the Noise Generators sublibrary of the Comm Sources library
generate random data to simulate channel noise. You can use blocks in the
Noise Generators sublibrary to generate random real numbers, depending on
what distribution you want to use. The choices are listed in the following table.

You can open the Noise Generators sublibrary by double-clicking its icon in the
main Communications Blockset library (commlib), or by typing

Distribution Block

Gaussian Gaussian Noise Generator

Rayleigh Rayleigh Noise Generator

Rician Rician Noise Generator

Uniform on a bounded interval Uniform Noise Generator

1 Using the Libraries

1-10

commnoisgen2p1

at the MATLAB prompt.

Sequence Generators
You can use blocks in the Sequence Generators sublibrary of the Comms
Sources library to generate sequences for spreading or synchronization in a
communication system. You can open the Sequence Generators sublibrary by
double-clicking its icon in the main Communications Blockset library
(commlib), or by typing

commseqgen2p1

at the MATLAB prompt.

Blocks in the Sequence Generators sublibrary generate

• Pseudorandom sequences

• Orthogonal codes

• Synchronization codes

Pseudorandom Sequences
The following table lists the blocks that generate pseudorandom or
pseudonoise (PN) sequences. The applications of these sequences range from
multiple-access spread spectrum communication systems to ranging,
sychronization, and data scrambling.

All three blocks use shift registers to generate pseudorandom sequences. The
following is a schematic diagram of a typical shift register.

Sequence Block

Gold sequences Gold Sequence Generator

Kasami sequences Kasami Sequence Generator

PN sequences PN Sequence Generator

Communications Sources

1-11

All r registers in the generator update their values at each time step according
to the value of the incoming arrow to the shift register. The adders perform
addition modulo 2. The shift register can be described by a binary polynomial
in z, grz

r + gr-1zr-1 + ... + g0. The coefficient gi is 1 if there is a connection from
the ith shift register to the adder, and 0 otherwise.

The Kasami Sequence Generator block and the PN Sequence Generator block
use this polynomial description for their Generator polynomial parameter,
while the Gold Sequence Generator block uses it for the Preferred polynomial
[1] and Preferred polynomial [2] parameters.

The lower half of the preceding diagram shows how the output sequence can be
shifted by a positive integer d, by delaying the output for d units of time. This
is accomplished by a single connection along the dth arrow in the lower half of
the diagram.

See “Example: Pseudorandom Sequences” on page 1-12 for an example that
uses these blocks.

Synchronization Codes
The Barker Code Generator block generates Barker codes to perform
synchronization. Barker codes are subsets of PN sequences. They are short

m mm

+

g 1g r-1
g r-2

+ +

g r
g 0

Output

0r-1 r-2

1 Using the Libraries

1-12

codes, with a length at most 13, which are low correlation sidelobes. A
correlation sidelobe is the correlation of a codeword with a time-shifted version
of itself.

Orthogonal Codes
Orthogonal codes are used in systems in which the receiver is perfectly
synchronized with the transmitter. For such systems, the despreading
operation is ideal when orthogonal codes are used for the spreading. For
example, they are used in the forward link of the IS-95 system, in which the
base station transmits a pilot signal to help the receiver gain synchronization.

See “Example: Orthogonal Sequences” on page 1-16 for an example that uses
these blocks.

Sequence Generator Examples
This section presents two example models that illustrate the blocks in the
Sequence Generator library.

Example: Pseudorandom Sequences
This example describes the autocorrelation properties of the pseudorandom
sequences generated by the following three blocks:

• PN Sequence Generator

• Gold Sequence Generator

• Kasami Sequence Generator

If you are reading this in the MATLAB Help Browser, click here to open the
model.

Code Block

Hadamard codes Hadamard Code Generator

OVSF codes OVSF Code Generator

Walsh codes Walsh Code Generator

Communications Sources

1-13

The model displays the output sequences of the three blocks in a scope. All
three blocks have the same Generator polynomial parameter,
[1 0 0 0 0 1 1], whose digits are the coefficients of the polynomial x6 + x + 1.
Since this polynomial has degree 6, the output sequence has period 26 - 1 = 63.

When you run the model, the scope displays two periods of data for each the
three signals:

1 Using the Libraries

1-14

The model also sends the output sequences to the MATLAB workspace as the
vectors pn, gold, and kas. You can verify the autocorrelation properties of the
output of the PN Sequence Generator by entering the following code at the
MATLAB prompt:

x = pn(1:63); % Take one period only
x = 1 - 2.*x; % Convert to bipolar
for i = 1:63 % Determine the cyclic autocorrelation
 corrvec(i) = x' * [x(i:end); x(1:i-1)];
end
corrvals = unique(sort(corrvec)) % Choose the unique values

The code calculates the cyclic autocorrelation of the PN sequence, by taking the
inner product of one period of the sequence with each of its 63 cyclic rotations,

Communications Sources

1-15

and stores the results in a vector, corrvec, of length 63. The code then sorts the
entries of corrvec and finds the unique autocorrelation values. The result is

corrvals =
-1 63

The first entry of the vector corrvec is 63, while all other values are -1, as you
can verify by entering corrvec at the MATLAB prompt. This means that 63
occurs only by taking the inner product of the sequence pn with an unrotated
copy of itself. All other inner products have the value -1.

You can analyze the output sequences of the Gold Sequence Generator block
and the Kasami Sequence Generator block similarly by changing the first line
of the preceding code to

x = gold(1:63);

and

x = kas(1:63);

respectively.

For the Gold and Kasami sequences, the autocorrelation takes on three values.
For example, the three values for the Gold sequence are

corrvals =
-17 -1 15 63

The three values for the Kasami sequence are

corrvals =
-9 -1 7 63

Of the three types of sequences, the PN sequences are best suited for
synchronization because the autocorrelation takes on just two values.
However, the Gold and Kasami sequences provide a larger number of
sequences with good cross-correlation properties than do the PN sequences.

Also note that the peak value of corrvals for the Kasami sequence is less than
the peak value for the Gold sequence. In fact, the small set of Kasami sequences
satisfy the lower bounds for correlation values, and for this reason they are also
referred to as optimal sequences.

1 Using the Libraries

1-16

Example: Orthogonal Sequences
This example demonstrates the orthogonality of pairs of sequences generated
using different Code index parameters, for each of the following three blocks:

• Hadamard Code Generator

• Walsh Code Generator

• OVSF Code Generator

If you are reading this in the MATLAB Help Browser, click here to open the
model.

The model displays the output sequences of the three blocks in a scope. All
three blocks output sequences of period 64, corresponding to their Code length
parameters. When you run the model, the scope displays two periods of data for
each sequence.

Communications Sources

1-17

The following code runs the model twice, the first time with the Code index
parameter of 60 for all three blocks, and the second time with a Code index of
30. The code then calculates, for each of the three blocks, the cross correlation
between the sequence generated by the first run with the sequence generated
by the second run

% Simulate once
set_param('doc_ortho/Hadamard Code Generator', 'index', '60');
set_param('doc_ortho/Walsh Code Generator', 'index', '60');
set_param('doc_ortho/OVSF Code Generator', 'index', '60');
sim('doc_ortho');

% Store the codes
had60 = had(1:64);
walsh60 = walsh(1:64);
ovsf60 = ovsf(1:64);

% Simulate twice

1 Using the Libraries

1-18

set_param('doc_ortho/Hadamard Code Generator', 'index', '31');
set_param('doc_ortho/Walsh Code Generator', 'index', '31');
set_param('doc_ortho/OVSF Code Generator', 'index', '31');
sim('doc_ortho');

% Store the codes
had31 = had(1:64);
walsh31 = walsh(1:64);
ovsf31 = ovsf(1:64);

% Calculate the cross-correlation
hadcorr = had60(1:64)'*had31(1:64);
hadcorr
walshcorr = walsh60(1:64)'*walsh31(1:64);
walshcorr
ovsfcorr = ovsf60(1:64)'*ovsf31(1:64);
ovsfcorr

The results are

haddcorr=
0
walshcorr =
0
ovsfcorr =
0

The results show that for each block, the sequence generated by the first run is
orthogonal to the sequence generated by the second run.

Block Parameters
This section discusses the sample time parameter, seed parameter, and signal
attribute parameters that are common to many random source blocks, and
then discusses each category of random source.

Sample Time Parameter for Random Sources
Each of the random source blocks requires you to set a Sample time parameter
in the block mask. If you configure the block to produce a sample-based signal,
then this parameter is the time interval between successive updates of the
signal. If you configure the block to produce a frame-based matrix signal, then

Communications Sources

1-19

the Sample time parameter is the time interval between successive rows of the
frame-based matrix.

If you use a Simulink Signal Inspection block to query the period of a
frame-based output from a random source block in the Comm Sources library,
then note that the Signal Inspection block reports the period of the entire
frame, not the period of each sample in a given channel of the frame. The
following equation relates the quantities involved for a single-channel signal.

A seconds/frame = (B seconds/sample)*(S samples/frame)

where

• A is the number shown in the Signal Inspection block after the Tf notation.

• B is the random source block’s Sample time parameter.

• S is the random source block’s Samples per frame parameter.

Seed Parameter
The blocks in the Communication Sources library that generate random data
require you to set a seed in the block mask. This is the initial seed that the
random number generator uses when forming its sequence of numbers. You
should make sure that initial seeds in different blocks in a model have different
values, so that they generate statistically independent sequences.

Four of the blocks in the Communication Sources library require you to choose
their seeds according to the following rule, in order to obtain accurate results:

Seed rule: Set the Initial seed to be a prime number greater than 30.

This rule applies to the following blocks:

• Binary Error Pattern Generator

• Gaussian Noise Generator

• Rayleigh Noise Generator

• Rician Noise Generator

To avoid having to remember whether a block that you are using is on this list,
you can simply apply the seed rule to all source blocks that have an Initial seed
parameter.

1 Using the Libraries

1-20

You can choose integers that satisfy the seed rule with the randseed function.
Entering randseed at the MATLAB prompt returns a prime number greater
than 30. If you choose a constant seed such as randseed(n), where n is some
positive integer variable, the block produces the same noise sequence each time
you start the simulation. The sequence will be different from that produced
with a different constant seed. If you want the noise to be different each time
you start the simulation, then you can use a varying seed such as
randseed(cputime).

Signal Attribute Parameters for Random Sources
In most random source blocks, the output can be a frame-based matrix, a
sample-based row or column vector, or a sample-based one-dimensional array.
The following table indicates how to set certain block parameters depending on
the kind of signal you want to generate.

Signal Attributes Parameter Settings

Sample-based,
one-dimensional

Sample-based row
vector

Also, any vector parameters in the block should
be rows, not columns.

Communications Sources

1-21

The Frame-based outputs and Interpret vector parameters as 1-D check
boxes are mutually exclusive, because frame-based signals and
one-dimensional signals are mutually exclusive. The Samples per frame
parameter field is active only if the Frame-based outputs check box is
checked.

Example. The model in the following figure illustrates that one random source
block can produce various kinds of signals. The annotations in the model
indicate how each copy of the block is configured. Notice how each block’s
configuration affects the type of connector line (single or double) and the signal
dimensions that appear above each connector line. In the case of the Rayleigh
Noise Generator block, the first two block parameters (Sigma and Initial seed)
determine the number of channels in the output; for analogous indicators in
other random source blocks, see their individual reference entries.

Sample-based column
vector

Also, any vector parameters in the block should
be columns, not rows.

Frame-based

Also, set Samples per frame to the number of
samples in each output frame, that is, the
number of rows in the signal.

Signal Attributes Parameter Settings

1 Using the Libraries

1-22

The particular mask parameters depend on the block. See each block’s
individual entry in the reference section for details.

Communications Sinks

1-23

Communications Sinks
The Communications Blockset provides sinks and display devices that
facilitate analysis of communication system performance. You can open the
Comm Sinks library by double-clicking its icon in the main Communications
Blockset library (commlib), or by typing

commsink2

at the MATLAB prompt.

Sink Features of the Blockset
Blocks in this library can

• Write to a file when trigger events occur

• Compute error statistics

• Plot an eye diagram

• Generate a scatter diagram

• Plot a signal trajectory

This section describes these capabilities. Other sinks are in Simulink’s Sinks
library and in the DSP Blockset’s DSP Sinks library.

Writing to a File
The Triggered Write to File block writes data to a file whenever an input
trigger signal has a rising edge. You can set up the block to write at every rising
edge of the trigger, or at every kth rising edge of the trigger for a positive
number k. The data can have an ASCII, integer, or floating-point format. If the
destination file already exists, then this block overwrites it. For more details,
see the reference page for the Triggered Write to File block.

For untriggered writing of MAT files, use Simulink’s To File block.

Error Statistics
The Error Rate Calculation block compares input data from a transmitter with
input data from a receiver. It calculates these error statistics:

• Error rate

1 Using the Libraries

1-24

• Number of error events

• Total number of input events

The block reports these statistics either as final values in the workspace or as
running statistics at an output port.

You can use this block either with binary inputs to compute the bit error rate,
or with symbol inputs to compute the symbol error rate. You can use
frame-based or sample-based data. Also, if you use frame-based data, then you
can have the block consider certain samples and ignore others.

The example in the section “Example: Soft-Decision Decoding” on page 1-60
illustrates the use of the Error Rate Calculation block.

Scopes
The Sinks library contains scopes for viewing three types of signal plots:

• Eye Diagrams

• Scatter Plots

• Signal Trajectories

The following table lists the scope blocks and the plots they generate.

Eye Diagrams
An eye diagram is a simple and convenient tool for studying the effects of
intersymbol interference and other channel impairments in digital

Block Name Plots

Continuous-Time Eye and
Scatter Diagrams

Eye diagram, scatter plot, or signal trajectory
of a continuous signal

Discrete-Time Eye
Diagram Scope

Eye diagram of a discrete signal

Discrete-Time Scatter
Plot Scope

Scatter plot of a discrete signal

Discrete-Time Signal
Trajectory Scope

Signal trajectory of a discrete signal

Communications Sinks

1-25

transmission. When this blockset constructs an eye diagram, it plots the
received signal against time on a fixed-interval axis. At the end of the fixed
interval, it wraps around to the beginning of the time axis. Thus the diagram
consists of many overlapping curves. One way to use an eye diagram is to look
for the place where the “eye” is most widely opened, and use that point as the
decision point when demapping a demodulated signal to recover a digital
message.

The following two blocks produce eye diagrams:

• Continuous-Time Eye and Scatter Diagrams, with Diagram type set to Eye
Diagram

• Discrete-Time Eye Diagram Scope

The first processes continuous-time signals, while the second processes
discrete-time signals. The blocks also differ in the way you determine the
decision timing: the Continuous-Time Eye and Scatter Diagrams block draws
a vertical line to indicate a decision every time a trigger signal has a rising
edge, whereas the Discrete-Time Eye Diagram Scope block draws a similar line
periodically according to a mask parameter.

An example appears in “Example: Viewing a Sinusoid” on page 1-26.

Scatter Plots
A scatter plot of a signal plots the signal’s value at its decision points. In the
best case, the decision points should be at times when the eye of the signal’s eye
diagram is the most widely open.

The following two blocks produce scatter plots:

• Continuous-Time Eye and Scatter Diagrams, with Diagram type set to
Scatter Diagram

• Discrete-Time Scatter Plot Scope

Both the Continuous-Time Eye and Scatter Diagrams block and the
Discrete-Time Scatter Plot Scope block produce scatter plots. The first
processes continuous-time signals, while the second processes discrete-time
signals.

An example appears in “Example: Viewing a Sinusoid” on page 1-26.

1 Using the Libraries

1-26

Signal Trajectories
A signal trajectory is a continuous plot of a signal over time. A signal trajectory
differs from a scatter plot in that the latter displays points on the signal
trajectory at discrete intervals of time.

The following two blocks produce signal trajectories:

• Continuous-Time Eye and Scatter Diagrams, with Diagram type set to X-Y
Diagram

• Discrete-Time Signal Trajectory Scope

The Discrete-Time Scatter Plot Scope displays points on the trajectory at
discrete time intervals, corresponding to the decision points, while the
Discrete-Time Scatter Plot Scope displays a continuous picture of the signal’s
trajectory between decision points.

Example: Viewing a Sinusoid
The following model produces a scatter plot and an eye diagram from a complex
sinusoidal signal. Because the decision time interval is almost, but not exactly,
an integer multiple of the period of the sinusoid, the eye diagram exhibits drift
over time. More specifically, successive traces in the eye diagram and
successive points in the scatter diagram are near each other but do not overlap.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Sine Wave, in the DSP Blockset DSP Sources library (not the Sine Wave
block in the Simulink Sources library)

Communications Sinks

1-27

- Set Frequency to .502.

- Set Output complexity to Complex.

- Set Sample time to 1/16.

• Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- Check the box next to Show Plotting Properties.

- Set Samples per symbol to 16.

- Check the box next to Show Figure Properties.

- Set Scope position to figposition([2.5 55 35 35]);.

- Set Figure name to Scatter Plot.

• Discrete-Time Eye Diagram Scope, in the Comm Sinks library

- Check the box next to Show Plotting Properties.

- Set Samples per symbol to 16.

- Check the box next to Show Figure Properties.

- Set Scope position to figposition([42.5 55 35 35]);.

- Set Figure name to Eye Diagram.

Connect the blocks as shown in the preceding figure. Also, from the model
window’s Simulation menu, choose Simulation parameters; then in the
Simulation Parameters dialog box, set Stop time to 250. Running the model
produces the following scatter diagram plot.

1 Using the Libraries

1-28

The points of the scatter plot lie on a circle of radius 1. Note that the points fade
as time passes. This is because the box next to Color fading is checked in the
Rendering Properties, which causes the scope to render points more dimly
the more time that passes after they are plotted. If you clear this box, you see
a full circle of points.

If you add the Discrete-Time Signal Trajectory Scope block to the model, it
displays a circular trajectory.

Communications Sinks

1-29

In the eye diagram, the upper set of traces represents the real part of the signal
and the lower set of traces represents the imaginary part of the signal.

1 Using the Libraries

1-30

Source Coding
Source coding, also known as quantization or signal formatting, is a way of
processing data in order to reduce redundancy or prepare it for later
processing. Analog-to-digital conversion and data compression are two
categories of source coding.

Source coding divides into two basic procedures: source encoding and source
decoding. Source encoding converts a source signal into a digital signal using a
quantization method. The symbols in the resulting signal are nonnegative
integers in some finite range. Source decoding recovers the original
information from the source coded signal.

For background material on the subject of source coding, see the works listed
in “Selected Bibliography for Source Coding” on page 1-40.

Source Coding Features of the Blockset
This blockset supports scalar quantization, predictive quantization,
companders, and differential coding. It does not support vector quantization.
You can open the Source Coding library by double-clicking its icon in the main
Communications Blockset library (commlib), or by typing

commsrccod2

at the MATLAB prompt.

Blocks in the Source Coding library can

• Use a partition and codebook to quantize a signal

• Implement differential pulse code modulation (DPCM)

• Compand a signal using a µ-law or A-law compressor or expander

• Encode or decode a signal using differential coding

Supporting functions in the Communications Toolbox also allow you to
optimize source coding parameters for a set of training data. See the sections
“Optimizing Quantization Parameters” and “Optimizing DPCM Parameters”
in the Communications Toolbox User’s Guide for more information about such
capabilities.

Source Coding

1-31

Representing Quantization Parameters
Scalar quantization is a process that maps all inputs within a specified range
to a common value. It maps inputs in a different range of values to a different
common value. In effect, scalar quantization digitizes an analog signal. Two
parameters determine a quantization: a partition and a codebook. This section
describes how blocks represent these parameters.

Partitions
A quantization partition defines several contiguous, nonoverlapping ranges of
values within the set of real numbers. To specify a partition as a parameter,
list the distinct endpoints of the different ranges in a vector.

For example, if the partition separates the real number line into the sets

• {x: x ≤ 0}

• {x: 0< x ≤ 1}

• {x: 1 < x ≤ 3}

• {x: 3 < x}

then you can represent the partition as the three-element vector

[0,1,3]

Notice that the length of the partition vector is one less than the number of
partition intervals.

Codebooks
A codebook tells the quantizer which common value to assign to inputs that fall
into each range of the partition. Represent a codebook as a vector whose length
is the same as the number of partition intervals. For example, the vector

[-1,0.5,2,3]

is one possible codebook for the partition [0,1,3].

Quantizing a Signal
This section shows how the Sampled Quantizer Encode, Enabled Quantizer
Encode, and Quantizer Decode blocks use the partition and codebook
parameters. (The Enabled Quantizer Encode block does not appear in an
example, but its behavior is similar to that of the Sampled Quantizer Encode

1 Using the Libraries

1-32

block.) The examples here are analogous to “Scalar Quantization Example 1”
and “Scalar Quantization Example 2” in the Communications Toolbox
documentation.

Scalar Quantization Example 1
The figure below shows how the Sampled Quantizer Encode block uses the
partition and codebook as defined above to map a real vector to a new vector
whose entries are either -1, 0.5, 2, or 3. In the Scope window, the bottom signal
is the quantization of the (original) top signal.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Signal From Workspace, in the DSP Blockset DSP Sources library

- Set Signal to [-2.4,-1,-.2,0,.2,1,1.2,1.9,2,2.9,3,3.5]'.

• Sampled Quantizer Encode

- Set Quantization partition to [0, 1, 3].

- Set Quantization codebook to [-1, 0.5, 2, 3].

- Set Input signal vector length to 1.

- Set Sample time to 1.

• Terminator, in the Simulink Signals & Systems library

Source Coding

1-33

• Scope, in the Simulink Sinks library

- After double-clicking the block to open it, click the Parameters icon and
set Number of axes to 2.

Connect the blocks as shown in the figure. Also, from the model window’s
Simulation menu, choose Simulation parameters; then in the Simulation
Parameters dialog box, set Stop time to 12. Running the model produces a
scope image similar to the one in the figure. (To make the axis ranges and title
exactly match those in the figure, right-click each plot area in the scope and
select Axes properties.)

Scalar Quantization Example 2
This example, shown in the figure below, illustrates the nature of scalar
quantization more clearly. It quantizes a sampled sine wave and plots the
original (top) and quantized (bottom) signals. The plot contrasts the smooth
sine curve with the polygonal curve of the quantized signal. The vertical
coordinate of each flat part of the polygonal curve is a value in the
Quantization codebook vector.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Sine Wave, in the Simulink Sources library (not the Sine Wave block in the
DSP Blockset DSP Sources library)

1 Using the Libraries

1-34

• Sampled Quantizer Encode

- Set Quantization partition to [-1:.2:1].

- Set Quantization codebook to [-1.2:.2:1].

- Set Input signal vector length to 1.

• Terminator, in the Simulink Signals & Systems library

• Scope, in the Simulink Sinks library

- After double-clicking the block to open it, click the Parameters icon and
set Number of axes to 2.

Connect the blocks as shown in the figure. Also, from the model window’s
Simulation menu, choose Simulation parameters; then in the Simulation
Parameters dialog box, set Stop time to 2*pi. Running the model produces the
scope image as shown in the figure. (To make the axis ranges and title exactly
match those in the figure, right-click each plot area in the scope and select Axes
properties.)

Determining Which Interval Each Input Is in
The Sampled Quantizer Encode block also returns a signal, at the first output
port, that tells which interval each input is in. For example, the model below
shows that the input entries lie within the intervals labeled 0, 6, and 5,
respectively. Here, the 0th interval consists of real numbers less than or equal
to 3; the 6th interval consists of real numbers greater than 8 but less than or
equal to 9; and the 5th interval consists of real numbers greater than 7 but less
than or equal to 8.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Constant, in the Simulink Sources library

- Set Constant value to [2, 9, 8].

• Sampled Quantizer Encode

- Set Quantization partition to [3, 4, 5, 6, 7, 8, 9].

Source Coding

1-35

- Set Quantization codebook to any vector whose length exceeds the
length of Quantization Partition by one.

- Set Input signal vector length to 3.

• Terminator, in the Simulink Signals & Systems library

• Display, in the Simulink Sinks library

- Drag the bottom edge of the icon to make the display big enough for three
entries.

Connect the blocks as shown above. Also, from the model window’s Simulation
menu, choose Simulation parameters; then in the Simulation Parameters
dialog box, set Stop time to 10. Running the model produces the display
numbers as shown in the figure.

You can continue this example by branching the first output of the Sampled
Quantizer Encode block, connecting one branch to the input port of the
Quantizer Decode block, and connecting the output of the Quantizer Decode
block to another Display block. If the two source coding blocks’ Quantization
codebook parameters match, then the output of the Quantizer Decode block
will be the same as the second output of the Sampled Quantizer Encode block.
Thus the Quantizer Decode block partially duplicates the functionality of the
Sampled Quantizer Encode block, but requires different input data and fewer
parameters.

Implementing Differential Pulse Code Modulation
The quantization in the section “Quantizing a Signal” on page 1-31 requires no
a priori knowledge about the transmitted signal. In practice, you can often
make educated guesses about the present signal based on past signal
transmissions. Using such educated guesses to help quantize a signal is known
as predictive quantization. The most common predictive quantization method
is differential pulse code modulation (DPCM). The DPCM Encoder and DPCM
Decoder blocks can help you implement a DPCM predictive quantizer.

DPCM Terminology
To determine an encoder for such a quantizer, you must supply not only a
partition and codebook as described in “Representing Quantization
Parameters” on page 1-31, but also a predictor. The predictor is a function that
the DPCM encoder uses to produce the educated guess at each step. Instead of
quantizing x itself, the encoder quantizes the predictive error, which is the
difference between the educated guess and the actual value. The special case

1 Using the Libraries

1-36

when the numerator is linear and the denominator is 1 is called delta
modulation.

For more information about how DPCM works, see [1] in “Selected
Bibliography for Source Coding” on page 1-40, or look underneath the masks of
the DPCM Encoder and DPCM Decoder blocks.

Representing Predictors
This blockset implements predictors using an IIR filter. Just as you can specify
a filter using a rational function of z-1, you specify the predictor by giving its
numerator and denominator. In block masks, the numerator and denominator
are vectors that list the coefficients in order of ascending powers of z-1.

The numerator’s constant term must be zero. This makes sense conceptually
because the filter’s output is meant to predict the present signal without
actually knowing its value.

In most applications, the denominator is the constant function 1.

Coded and Decoded Signals
If you encode a given signal using DPCM, then two resulting signals are the
quantization index and the quantization-encoded signal. These correspond
exactly to the two outputs of an ordinary quantization encoder. In both
instances, the quantization index tells which partition interval a signal lies in,
and the quantization-encoded signal tells which codebook values correspond to
those partition intervals.

To use the DPCM Decoder block to recover a message that has been through
the DPCM Encoder block, connect the quantization index signal, not the
quantization-encoded signal, to the input port of the DPCM Decoder block.

The DPCM Decoder block outputs two signals. The first output is the
attempted recovery of the message that first entered the DPCM encoder
(assuming the encoder and decoder have matching parameters). The second
output comes directly from the underlying quantization decoder. It represents
the quantized predictive error, not the recovered message itself.

Example: Using DPCM Encoding and Decoding
A simple special case of DPCM quantizes the difference between the signal’s
current value and its value at the previous step. Thus the predicted value
equals the actual value at the previous step. The model below implements this

Source Coding

1-37

scheme. It encodes a sine wave, decodes it, and plots both the original and
decoded signals.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Sine Wave, in the DSP Blockset DSP Sources library (not the Sine Wave
block in the Simulink Sources library)

- Set Frequency to 3.

- Set Sample time to .01.

• DPCM Encoder

- Set Predictor numerator to [0, 1].

- Set Quantization partition to [-10:9]/10.

- Set Quantization codebook to [-10:10]/10.

- Set Sample time to .01.

• DPCM Decoder

- Set Predictor numerator, Quantization codebook, and Sample time to
the values given for the DPCM Encoder block.

• Terminator, in the Simulink Signals & Systems library

• Scope, in the Simulink Sinks library

- After double-clicking the block to open it, click the Parameters icon and
set Number of axes to 2.

Connect the blocks as shown in the figure. Also, from the model window’s
Simulation menu, choose Simulation parameters; then in the Simulation
Parameters dialog box, set Stop time to 1.

Running the model produces scope images similar to those below. (To make the
axis ranges and titles exactly match those below, right-click each plot area in
the scope and select Axes properties.)

1 Using the Libraries

1-38

Companding a Signal
In certain applications, such as speech processing, it is common to use a
logarithm computation, called a compressor, before quantizing. The inverse
operation of a compressor is called an expander. The combination of a
compressor and expander is called a compander.

This blockset supports two kinds of companders: µ-law and A-law companders.
The reference pages for the A-Law Compressor, A-Law Expander, Mu-Law
Compressor, and Mu-Law Expander blocks list the relevant expander and
compressor laws.

Example: Using a µ-Law Compander
This example quantizes an exponential signal in two ways and compares the
resulting mean square distortions. To create the signal in the MATLAB
workspace, execute these commands:

sig = -4:.1:4;
sig = exp(sig'); % Exponential signal to quantize

Now, the model in the following figure performs two computations. One
computation uses the Sampled Quantizer Encode block with a partition
consisting of length-one intervals. The second computation uses the Mu-Law
Compressor block to implement a µ-law compressor, the Sampled Quantizer

Source Coding

1-39

Encode block to quantize the compressed data and, finally, the Mu-Law
Expander block to expand the quantized data.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Signal From Workspace, in the DSP Blockset DSP Sources library

- Set Signal to sig.

• Mu-Law Compressor

- Set Peak signal magnitude to max(sig).

• Mux, in the Simulink Signals & Systems library

• Sampled Quantizer Encode, in the Source Coding library

- Set Quantization partition to 0:floor(max(sig)).

- Set Quantization codebook to 0:ceil(max(sig)).

- Set Sample time to 1.

• Terminator, in the Simulink Signals & Systems library

• Demux, in the Simulink Signals & Systems library

• Mu-Law Expander

- Set Peak signal magnitude to ceil(max(sig)).

• Two copies of To Workspace, in the Simulink Sinks library

- Set Variable name to nocompander and withcompander, respectively, in
the two copies of this block.

- Set Save format to Array in each of the two copies of this block.

Connect the blocks as shown above. Also, from the model window’s Simulation
menu, choose Simulation parameters; then in the Simulation Parameters
dialog box, set Stop time to 80. Run the model, then execute these commands:

1 Using the Libraries

1-40

distor = sum((nocompander-sig).^2)/length(sig);
distor2 = sum((withcompander-sig).^2)/length(sig);
[distor distor2]

ans =

 0.5348 0.0397

This output shows that the distortion is smaller for the second scheme. This is
because equal-length intervals are well suited to the logarithm of the data but
not as well suited to the data itself.

Selected Bibliography for Source Coding
[1] Kondoz, A. M. Digital Speech, Chichester, England, John Wiley & Sons,
1994.

[2] Sklar, Bernard. Digital Communications: Fundamentals and Applications,
Englewood Cliffs, N.J., Prentice-Hall, 1988.

Block Coding

1-41

Block Coding
Error-control coding techniques detect and possibly correct errors that occur
when messages are transmitted in a digital communication system. To
accomplish this, the encoder transmits not only the information symbols but
also extra redundant symbols. The decoder interprets what it receives, using
the redundant symbols to detect and possibly correct whatever errors occurred
during transmission. You might use error-control coding if your transmission
channel is very noisy or if your data is very sensitive to noise. Depending on the
nature of the data or noise, you might choose a specific type of error-control
coding.

Block coding is a special case of error-control coding. Block coding techniques
maps a fixed number of message symbols to a fixed number of code symbols. A
block coder treats each block of data independently and is a memoryless device.

Organization of This Section
These topics provide background information:

• “Accessing Block Coding Blocks” on page 1-41

• “Block Coding Features of the Blockset” on page 1-42

• “Communications Toolbox Support Functions” on page 1-43

• “Channel Coding Terminology” on page 1-43

These topics describe how to simulate linear block coding:

• “Data Formats for Block Coding” on page 1-43

• “Using Block Encoders and Decoders Within a Model” on page 1-46

• “Examples of Block Coding” on page 1-46

• “Notes on Specific Block Coding Techniques” on page 1-49

For background material on the subject of block coding, see the works listed in
“Selected Bibliography for Block Coding” on page 1-53.

Accessing Block Coding Blocks
You can open the Error Detection and Correction library by double-clicking its
icon in the main Communications Blockset library (commlib), or by typing

commedac2

1 Using the Libraries

1-42

at the MATLAB prompt.

Then you can open the Block sublibrary by double-clicking its icon in the Error
Detection and Correction library, or by typing

commblkcod2

at the MATLAB prompt.

Block Coding Features of the Blockset
The class of block coding techniques includes categories shown in the diagram
below.

The Communications Blockset supports general linear block codes. It also
includes blocks that process cyclic, BCH, Hamming, and Reed-Solomon codes
(which are all special kinds of linear block codes). Blocks in the blockset can
encode or decode a message using one of the techniques mentioned above. The
Reed-Solomon and BCH decoders indicate how many errors they detected
while decoding. The Reed-Solomon coding blocks also let you decide whether to
use symbols or bits as your data.

Note The blocks in this blockset are designed for error-control codes that use
an alphabet having 2 or 2m symbols.

Cyclic codes

Hamming codes

BCH codes

Reed-Solomon codes

Linear block codes

Block Coding

1-43

Communications Toolbox Support Functions
Functions in the Communications Toolbox can support the Communications
Blockset simulation blocks by

• Determining characteristics of a technique, such as error-correction
capability or possible message lengths

• Performing lower-level computations associated with a technique, such as

- Computing a truth table

- Computing a generator or parity-check matrix

- Converting between generator and parity-check matrices

- Computing a generator polynomial

For more information about error-control coding capabilities of the
Communications Toolbox, see the section “Block Coding” in the
Communications Toolbox User’s Guide.

Channel Coding Terminology
Throughout this section, the information to be encoded consists of message
symbols and the code that is produced consists of codewords.

Each block of K message symbols is encoded into a codeword that consists of N
message symbols. K is called the message length, N is called the codeword
length, and the code is called an [N,K] code.

Data Formats for Block Coding
Each message or codeword is an ordered grouping of symbols. Each block in the
Block Coding sublibrary processes one word in each time step, as described in
the following section “Binary Format (All Coding Methods)”. Reed-Solomon
coding blocks also let you choose between binary and integer data, as described
in “Integer Format (Reed-Solomon Only)” on page 1-45.

Binary Format (All Coding Methods)
You can structure messages and codewords as binary vector signals, where
each vector represents a message word or a codeword. At a given time, the
encoder receives an entire message word, encodes it, and outputs the entire
codeword. The message and code signals share the same sample time.

1 Using the Libraries

1-44

The figure below illustrates this situation. In this example, the encoder
receives a four-bit message and produces a five-bit codeword at time 0. It
repeats this process with a new message at time 1.

For all coding techniques except Reed-Solomon using binary input, the message
vector must have length K and the corresponding code vector has length N. For
Reed-Solomon codes with binary input, the symbols for the code are binary
sequences of length M, corresponding to elements of the Galois field GF(2M). In
this case, the message vector must have length M*K and the corresponding
code vector has length M*N. The Binary-Input RS Encoder block and the
Binary-Output RS Decoder block use this format for messages and codewords.

If the input to a block coding block is a frame-based vector, then it must be a
column vector instead of a row vector.

To produce sample-based messages in the binary format, you can configure the
Bernoulli Binary Generator block so that its Probability of a zero parameter
is a vector whose length is that of the signal you want to create. To produce
frame-based messages in the binary format, you can configure the same block
so that its Probability of a zero parameter is a scalar and its Samples per
frame parameter is the length of the signal you want to create.

Using Serial Signals. If you prefer to structure messages and codewords as scalar
signals, where several samples jointly form a message word or codeword, then
you can use the Buffer and Unbuffer blocks in the DSP Blockset. Be aware that
buffering involves latency and multirate processing. See the reference page for
the Buffer block for more details. If your model computes error rates, the initial
delay in the coding-buffering combination influences the Receive delay
parameter in the Error Rate Calculation block. If you are unsure about the
sample times of signals in your model, selecting Sample time colors from the
model’s Format menu, or attaching Signal Inspection blocks (from the
Simulink Signal Attributes library) to connector lines might help.

t=0t=1
t=0t=1

message code

0
1
0
0

0
0
1
1
0

Encoder

0
1
1
0

1
0
1
0
0

Block Coding

1-45

Integer Format (Reed-Solomon Only)
A message word for an [N,K] Reed-Solomon code consists of M*K bits, which
you can interpret as K symbols between 0 and 2M. The symbols are binary
sequences of length M, corresponding to elements of the Galois field GF(2M), in
descending order of powers. The integer format for Reed-Solomon codes lets
you structure messages and codewords as integer signals instead of binary
signals. (The input must be a frame-based column vector.)

Note In this context, Simulink expects the first bit to be the most significant
bit in the symbol. “First” means the smallest index in a vector or the smallest
time for a series of scalars.

The following figure illustrates the equivalence between binary and integer
signals for a Reed-Solomon encoder. The case for the decoder would be similar.

To produce sample-based messages in the integer format, you can configure the
Random Integer Generator block so that M-ary number and Initial seed
parameters are vectors of the desired length and all entries of the M-ary
number vector are 2M. To produce frame-based messages in the integer
format, you can configure the same block so that its M-ary number and Initial
seed parameters are scalars and its Samples per frame parameter is the
length of the signal you want to create.

Integer format
versus

Binary format

Vector of 5

Vector of 3*5 bits

3
7
1
0
1

0
1
1
1
1
1
0
0
1
0
0
0
0
0
1

three-bit symbols

t = 0 t = 0

1 Using the Libraries

1-46

Using Block Encoders and Decoders Within a Model
Once you have configured the coding blocks, a few tips will help you place them
correctly within your model:

• If a block has multiple outputs, the first one is always the stream of coding
data.

The Reed-Solomon and BCH blocks have an error counter as a second output.

• Be sure the signal sizes are appropriate for the mask parameters. For
example, if you use the Binary Cyclic Encoder block and set Message
length K to 4, the input signal must be a vector of length 4.

If you are unsure about the size of signals in your model, selecting Signal
dimensions from the model’s Format menu might help.

Examples of Block Coding
This section presents two example models. The first example processes a
Hamming code using the binary format and the second example processes a
Reed-Solomon code using the integer format.

Example: Hamming Code in Binary Format
This example shows very simply how to use an encoder and decoder. It
illustrates the appropriate vector lengths of the code and message signals for
the coding blocks. Also, because the Error Rate Calculation block accepts only
scalars or frame-based column vectors as the transmitted and received signals,
this example uses frame-based column vectors throughout. (It thus avoids
having to change signal attributes using a block such as Convert 1-D to 2-D.)

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library

- Set Probability of a zero to .5.

Block Coding

1-47

- Set Initial seed to any positive integer scalar, preferably the output of the
randseed function.

- Check the Frame-based outputs check box.

- Set Samples per frame to 4.

• Hamming Encoder, with default parameter values

• Hamming Decoder, with default parameter values

• Error Rate Calculation, in the Comm Sinks library, with default parameter
values

Connect the blocks as in the preceding figure. Also, use the Signal dimensions
feature from the model window’s Format menu. After updating the diagram if
necessary (Update diagram from the Edit menu), the connector lines show
relevant signal attributes. The connector lines are double lines to indicate
frame-based signals, and the annotations next to the lines show that the
signals are column vectors of appropriate sizes.

Example: Reed-Solomon Code in Integer Format
This example uses a Reed-Solomon code in integer format. It illustrates the
appropriate vector lengths of the code and message signals for the coding
blocks. It also exhibits error correction, using a very simplistic way of
introducing errors into each codeword.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Comm Sources library

- Set M-ary number to 15.

- Set Initial seed to any prime number greater than 30, preferably the
output of the randseed function.

1 Using the Libraries

1-48

- Check the Frame-based outputs check box.

- Set Samples per frame to 5.

• Integer-Input RS Encoder

- Set Codeword length N to 15.

- Set Message length K to 5.

• Gain, in the Simulink Math Operations library

- Set Gain to [0; 0; 0; 0; 0; ones(10,1)].

• Integer-Output RS Decoder

- Set Codeword length N to 15.

- Set Message length K to 5.

• Scope, in the Simulink Sinks library. Get two copies of this block.

• Sum, in the Simulink Math Operations library

- Set List of signs to |-+

Connect the blocks as in the preceding figure. Also, from the model window’s
Simulation menu, choose Simulation parameters; then, in the Simulation
Parameters dialog box, set Stop time to 500.

The vector length numbers appear on the connecting lines only if you select
Signal dimensions from the model’s Format menu. Notice that the encoder
accepts a vector of length 5 (which is K in this case) and produces a vector of
length 15 (which is N in this case). The decoder does the opposite. Also, the
Initial seed parameter in the Random Integer Generator block is a vector of
length 5 because it must generate a message word of length 5.

Running the model produces the scope images below. Your plot of the error
counts might differ somewhat, depending on your Initial seed value in the
Random Integer Generator block. (To make the axis range exactly match that
of the left scope in the figure, right-click the plot area in the scope and select
Axes properties.)

Block Coding

1-49

The plot on the right is the number of errors that the decoder detected while
trying to recover the message. Often the number is five because the Gain block
replaces the first five symbols in each codeword with zeros. However, the
number of errors is less than five whenever a correct codeword contains one or
more zeros in the first five places.

The plot on the left is the difference between the original message and the
recovered message; since the decoder was able to correct all errors that
occurred, each of the five data streams in the plot is zero.

Notes on Specific Block Coding Techniques
Although the Block Coding sublibrary is somewhat uniform in its look and feel,
the various coding techniques are not identical. This section describes special
options and restrictions that apply to parameters and signals for the coding
technique categories in this sublibrary. You should read the part that applies
to the coding technique you want to use: generic linear block code, cyclic code,
Hamming code, BCH code, or Reed-Solomon code.

Number of Errors Before CorrectionDifference Between Original Message and Recovered Message

1 Using the Libraries

1-50

Generic Linear Block Codes
Encoding a message using a generic linear block code requires a generator
matrix. Decoding the code requires the generator matrix and possibly a truth
table. In order to use the Binary Linear Encoder and Binary Linear Decoder
blocks, you must understand the Generator matrix and Error-correction
truth table parameters.

Generator Matrix. The process of encoding a message into an [N,K] linear block
code is determined by a K-by-N generator matrix G. Specifically, a 1-by-K
message vector v is encoded into the 1-by-N codeword vector vG. If G has the
form [Ik, P] or [P, Ik], where P is some K-by-(N-K) matrix and Ik is the K-by-K
identity matrix, then G is said to be in standard form. (Some authors, such as
Clark and Cain [1], use the first standard form, while others, such as Lin and
Costello [2], use the second.) The linear block coding blocks in this blockset
require the Generator matrix mask parameter to be in standard form.

Decoding Table. A decoding table tells a decoder how to correct errors that might
have corrupted the code during transmission. Hamming codes can correct any
single-symbol error in any codeword. Other codes can correct, or partially
correct, errors that corrupt more than one symbol in a given codeword.

The Binary Linear Decoder block allows you to specify a decoding table in the
Error-correction truth table parameter. Represent a decoding table as a
matrix with N columns and 2N-K rows. Each row gives a correction vector for
one received codeword vector.

If you do not want to specify a decoding table explicitly, set that parameter to
0. This causes the block to compute a decoding table using the syndtable
function in the Communications Toolbox.

Cyclic Codes
For cyclic codes, the codeword length N must have the form 2M-1, where M is
an integer greater than or equal to 3.

Generator Polynomials. Cyclic codes have special algebraic properties that allow
a polynomial to determine the coding process completely. This so-called
generator polynomial is a degree-(N-K) divisor of the polynomial xN-1. Van Lint
[4] explains how a generator polynomial determines a cyclic code.

The Binary Cyclic Encoder and Binary Cyclic Decoder blocks allow you to
specify a generator polynomial as the second mask parameter, instead of

Block Coding

1-51

specifying K there. The blocks represent a generator polynomial using a vector
that lists the polynomial’s coefficients in order of ascending powers of the
variable. You can find generator polynomials for cyclic codes using the
cyclpoly function in the Communications Toolbox.

If you do not want to specify a generator polynomial, set the second mask
parameter to the value of K.

Hamming Codes
For Hamming codes, the codeword length N must have the form 2M-1, where
M is an integer greater than or equal to 3. The message length K must equal
N-M.

Primitive Polynomials. Hamming codes rely on algebraic fields that have 2M
elements (or, more generally, pM elements for a prime number p). Elements of
such fields are named relative to a distinguished element of the field that is
called a primitive element. The minimal polynomial of a primitive element is
called a primitive polynomial. The Hamming Encoder and Hamming Decoder
blocks allow you to specify a primitive polynomial for the finite field that they
use for computations. If you want to specify this polynomial, do so in the second
mask parameter field. The blocks represent a primitive polynomial using a
vector that lists the polynomial’s coefficients in order of ascending powers of
the variable. You can find generator polynomials for Galois fields using the
gfprimfd function in the Communications Toolbox.

If you do not want to specify a primitive polynomial, set the second mask
parameter to the value of K.

BCH Codes
For BCH codes, the codeword length N must have the form 2M-1, where M is
an integer greater than or equal to 3. The message length K can have only
particular values. To see which values of K are valid for a given N, use the
bchpoly function in the Communications Toolbox. For example, in the output
below, the second column lists all possible message lengths that correspond to
a codeword length of 31. The third column lists the corresponding
error-correction capabilities.

params = bchpoly(31)

params =

1 Using the Libraries

1-52

 31 26 1
 31 21 2
 31 16 3
 31 11 5
 31 6 7

No known analytic formula describes the relationship among the codeword
length, message length, and error-correction capability for BCH codes.

Error Information. The BCH Decoder block allows you to state the
error-correction capability of the code as the Error-correction capability T
parameter. Providing the value here speeds the computation. If you do not
know the code’s error-correction capability, setting this parameter to zero
causes the block to calculate the error-correction capability when initializing.
You can find out the error-correction capability using the bchpoly function in
the Communications Toolbox.

The BCH Decoder block also returns error-related information during the
simulation. The second output signal indicates the number of errors that the
block detected in the input codeword. A negative integer in the second output
indicates that the block detected more errors than it could correct using the
coding scheme.

Reed-Solomon Codes
Reed-Solomon codes are useful for correcting errors that occur in bursts. In the
simplest case, the length of codewords in a Reed-Solomon code is of the form
N= 2M-1, where the 2M is the number of symbols for the code. The error
correction capability of a Reed-Solomon code is floor((N-K)/2), where K is the
length of message words. The difference N-K must be even.

It is sometimes convenient to use a shortened Reed-Solomon code in which N
is less than 2M-1. In this case, the encoder appends 2M-1-N zero symbols to
each message word and codeword. The error correction capability of a
shortened Reed-Solomon code is also floor((N-K)/2)). The Communications
Blockset Reed-Solomon blocks can implement shortened Reed-Solomon codes.

Effect of Nonbinary Symbols. One difference between Reed-Solomon codes and the
other codes supported in this blockset is that Reed-Solomon codes process
symbols in GF(2M) instead of GF(2). Each such symbol is specified by M bits.
The nonbinary nature of the Reed-Solomon code symbols causes the
Reed-Solomon blocks to differ from other coding blocks in these ways:

Block Coding

1-53

• You can use the integer format, via the Integer-Input RS Encoder and
Integer-Output RS Decoder blocks.

• The binary format expects the vector lengths to be an integer multiple of
M*K (not K) for messages and the same integer M*N (not N) for codewords.

Error Information. The Reed-Solomon decoding blocks (Binary-Output RS
Decoder and Integer-Output RS Decoder) return error-related information
during the simulation. The second output signal indicates the number of errors
that the block detected in the input codeword. A -1 in the second output
indicates that the block detected more errors than it could correct using the
coding scheme.

Selected Bibliography for Block Coding
[1] Clark, George C. Jr. and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Lin, Shu and Daniel J. Costello, Jr., Error Control Coding: Fundamentals
and Applications, Englewood Cliffs, N.J., Prentice-Hall, 1983.

[3] Peterson, W. Wesley and E. J. Weldon, Jr., Error-correcting Codes, 2nd ed.
Cambridge, Mass., MIT Press, 1972.

[4] van Lint, J. H. Introduction to Coding Theory, New York, Springer-Verlag,
1982.

1 Using the Libraries

1-54

Convolutional Coding
Convolutional coding is a special case of error-control coding. Unlike a block
coder, a convolutional coder is not a memoryless device. Even though a
convolutional coder accepts a fixed number of message symbols and produces a
fixed number of code symbols, its computations depend not only on the current
set of input symbols but on some of the previous input symbols.

Organization of This Section
• Describes how to access the Convolutional sublibrary of Error Detection and

Correction

• Summarizes the software’s capabilities

• Discusses parameters for convolutional coding (polynomial description and
trellis description)

• Illustrates the use of the coding blocks for a rate 2/3 code

• Explains how to implement a systematic encoder

• Illustrates soft-decision decoding

For background material on the subject of convolutional coding, see the works
listed in “Selected Bibliography for Convolutional Coding” on page 1-67.

Accessing Convolutional Coding Blocks
You can open the Error Detection and Correction library by double-clicking its
icon in the main Communications Blockset library (commlib), or by typing

commedac2

at the MATLAB prompt.

Then you can open the Convolutional sublibrary by double-clicking its icon in
the Error Detection and Correction library, or by typing

commconvcod2

at the MATLAB prompt.

Convolutional Coding

1-55

Convolutional Coding Features of the Blockset
The Communications Blockset supports feedforward or feedback binary
convolutional codes that can be described by a trellis structure or a set of
generator polynomials. It uses the Viterbi algorithm to implement
hard-decision and soft-decision decoding.

The blockset also includes an a posteriori probability decoder, which can be
useful for processing turbo codes.

Parameters for Convolutional Coding
To process convolutional codes (including turbo codes), use the Convolutional
Encoder, Viterbi Decoder, and/or APP Decoder blocks in the Convolutional
sublibrary. If a mask parameter is required in both the encoder and the
decoder, then use the same value in both blocks.

The blocks in the Convolutional sublibrary assume that you use one of two
different representations of a convolutional encoder:

• If you design your encoder using a diagram with shift registers and modulo-2
adders, then you can compute the code generator polynomial matrix and
subsequently use the poly2trellis function (in the Communications
Toolbox) to generate the corresponding trellis structure mask parameter
automatically. For an example, see “Example: A Rate 2/3 Feedforward
Encoder” on page 1-56.

• If you design your encoder using a trellis diagram, then you can construct the
trellis structure in MATLAB and use it as the mask parameter.

Details about these representations are in the sections “Polynomial
Description of a Convolutional Encoder” and “Trellis Description of a
Convolutional Encoder” in the Communications Toolbox User’s Guide.

Using the Polynomial Description in Blocks
To use the polynomial description with the Convolutional Encoder, Viterbi
Decoder, or APP Decoder blocks, you can use the utility function poly2trellis,
from the Communications Toolbox. This function accepts a polynomial
description and converts it into a trellis description. For example, the following
command computes the trellis description of an encoder whose constraint
length is 5 and whose generator polynomials are 35 and 31.

trellis = poly2trellis(5,[35 31]);

1 Using the Libraries

1-56

To use this encoder with one of the convolutional coding blocks, simply place a
poly2trellis command such as

poly2trellis(5,[35 31]);

in the Trellis structure parameter field.

Example: A Rate 2/3 Feedforward Encoder
This example uses the rate 2/3 feedforward convolutional encoder depicted in
the following figure. The description explains how to determine the coding
blocks’ parameters from a schematic of a rate 2/3 feedforward encoder. This
example also illustrates the use of the Error Rate Calculation block with a
receive delay.

How to Determine Coding Parameters. The Convolutional Encoder and Viterbi
Decoder blocks can implement this code if their parameters have the
appropriate values.

The encoder’s constraint length is a vector of length 2 since the encoder has two
inputs. The elements of this vector indicate the number of bits stored in each
shift register, including the current input bits. Counting memory spaces in

z-1

z-1 z-1 z-1

z-1z-1z-1

+

+

+

Convolutional Coding

1-57

each shift register in the diagram and adding one for the current inputs leads
to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal
numbers, use the element in the ith row and jth column to indicate how the ith
input contributes to the jth output. For example, to compute the element in the
second row and third column, notice that the leftmost and two rightmost
elements in the second shift register of the diagram feed into the sum that
forms the third output. Capture this information as the binary number 1011,
which is equivalent to the octal number 13. The full value of the code generator
matrix is [27 33 0; 0 5 13].

To use the constraint length and code generator parameters in the
Convolutional Encoder and Viterbi Decoder blocks, use the poly2trellis
function to convert those parameters into a trellis structure.

How to Simulate the Encoder. The following model simulates this encoder.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library

- Set Probability of a zero to .5.

- Set Initial seed to any positive integer scalar, preferably the output of the
randseed function.

- Set Sample time to .5.

- Check the Frame-based outputs check box.

- Set Samples per frame to 2.

1 Using the Libraries

1-58

• Convolutional Encoder

- Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).

• Binary Symmetric Channel, in the Channels library

- Set Error probability to 0.02.

- Set Initial seed to any positive integer scalar, preferably the output of the
randseed function.

- Clear the Output error vector check box.

• Viterbi Decoder

- Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).

- Set Decision type to Hard Decision.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to 68.

- Set Output data to Port.

- Check the Stop simulation check box.

- Set Target number of errors to 100.

• Display, in the Simulink Sinks library

- Drag the bottom edge of the icon to make the display big enough for three
entries.

Connect the blocks as in the figure. Also, from the model window’s Simulation
menu, choose Simulation parameters; then in the Simulation Parameters
dialog box, set Stop time to inf.

Notes on the model. The matrix size annotations appear on the connecting lines
only if you select Signal Dimensions from the model’s Format menu. Notice
that the encoder accepts a 2-by-1 frame-based vector and produces a 3-by-1
frame-based vector, while the decoder does the opposite. The Samples per
frame parameter in the Bernoulli Binary Generator block is 2 because the
block must generate a message word of length 2.

Also notice that the Receive delay parameter in the Error Rate Calculation
block is 68, which is the vector length (2) of the recovered message times the
Traceback depth value (34) in the Viterbi Decoder block. If you examined the
transmitted and received signals as matrices in the MATLAB workspace, then
you would see that the first 34 rows of the recovered message consist of zeros,
while subsequent rows are the decoded messages. Thus the delay in the
received signal is 34 vectors of length 2, or 68 samples.

Convolutional Coding

1-59

Running the model produces display output consisting of three numbers. The
three numbers indicate the error rate, the total number of errors, and the total
number of comparisons that the Error Rate Calculation block makes during the
simulation. (The first two numbers vary depending on your Initial seed values
in the Bernoulli Binary Generator and Binary Symmetric Channel blocks.) The
simulation stops after 100 errors occur, because Target number of errors is
set to 100 in the Error Rate Calculation block. Note that the error rate is much
less than 0.02, the Error probability in the Binary Symmetric Channel block.

Implementing a Systematic Encoder with Feedback
This section explains how to use the Convolutional Encoder block to implement
a systematic encoder with feedback. A code is systematic if the actual message
words appear as part of the code words. The following diagram shows an
example of a systematic encoder.

To implement this encoder, set the Trellis structure parameter in the
Convolutional Encoder block to poly2trellis(5, [37 33], 37). This setting
corresponds to

• Constraint length, 5

• Generator polynomial pair, [37 33]

• Feedback polynomial, 37

The feedback polynomial is represented by the binary vector [1 1 1 1 1],
corresponding to the upper row of binary digits. These digits indicate
connections from the outputs of the registers to the adder. Note that the initial

+

+

z-1 z-1z-1 z-1

Second output

First output (systematic)

Input

1 1 111

1 1 0 1 1

1 Using the Libraries

1-60

1 corresponds to the input bit. The octal representation of the binary number
11111 is 37.

To implement a systematic code, set the first generator polynomial to be the
same as the feedback polynomial in the Trellis structure parameter of the
Convolutional Encoder block. In this example, both polynomials have the octal
representation 37.

The second generator polynomial is represented by the binary vector [1 1 0 1 1],
corresponding to the lower row of binary digits. The octal number
corresponding to the binary number 11011 is 33.

For more information on setting the mask parameters for the Convolutional
Encoder block, see “Polynomial Description of a Convolutional Encoder” in the
Communications Toolbox documentation.

Example: Soft-Decision Decoding
This example creates a rate 1/2 convolutional code. It uses a quantizer and the
Viterbi Decoder block to perform soft-decision decoding. This description covers
these topics:

• “Overview of the Simulation” on page 1-60

• “Defining the Convolutional Code” on page 1-61

• “Mapping the Received Data” on page 1-62

• “Decoding the Convolutional Code” on page 1-63

• “Delay in Received Data” on page 1-64

• “Comparing Simulation Results with Theoretical Results” on page 1-64

Overview of the Simulation
The model is in the following figure. To open the model, click here in the
MATLAB Help browser. The simulation creates a random binary message
signal, encodes the message into a convolutional code, modulates the code
using the binary phase shift keying (BPSK) technique, and adds white
Gaussian noise to the modulated data in order to simulate a noisy channel.
Then, the simulation prepares the received data for the decoding block and
decodes. Finally, the simulation compares the decoded information with the
original message signal in order to compute the bit error rate. The simulation
ends after processing 100 bit errors or 107 message bits, whichever comes first.

Convolutional Coding

1-61

Defining the Convolutional Code
The feedforward convolutional encoder in this example is depicted below.

The encoder’s constraint length is a scalar since the encoder has one input. The
value of the constraint length is the number of bits stored in the shift register,
including the current input. There are six memory registers and the current
input is one bit. Thus the constraint length of the code is 7.

+

+

z-1 z-1z-1z-1z-1z-1

Second output

First output

Input

1 Using the Libraries

1-62

The code generator is a 1-by-2 matrix of octal numbers because the encoder has
one input and two outputs. The first element in the matrix indicates which
input values contribute to the first output, and the second element in the
matrix indicates which input values contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of the
rightmost and the four leftmost elements in the diagram’s array of input
values. The seven-digit binary number 1111001 captures this information, and
is equivalent to the octal number 171. The octal number 171 thus becomes the
first entry of the code generator matrix. Here, each triplet of bits uses the
leftmost bit as the most significant bit. The second output corresponds to the
binary number 1011011, which is equivalent to the octal number 133. The code
generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the
block which code to use when processing data. In this case, the poly2trellis
function, in the Communications Toolbox, converts the constraint length and
the pair of octal numbers into a valid trellis structure.

Notice that while the message data entering the Convolutional Encoder block
is a scalar bit stream, the encoded data leaving the block is a stream of binary
vectors of length 2.

Mapping the Received Data
The received data, that is, the output of the AWGN Channel block, consists of
complex numbers that are close to -1 and 1. In order to reconstruct the original
binary message, the receiver part of the model must decode the convolutional
code. The Viterbi Decoder block in this model expects its input data to be
integers between 0 and 7. The demodulator, a custom subsystem in this model,
transforms the received data into a format that the Viterbi Decoder block can
interpret properly. More specifically, the demodulator subsystem:

• Converts the received data signal to a real signal by removing its imaginary
part. It is reasonable to assume that the imaginary part of the received data
does not contain essential information, because the imaginary part of the
transmitted data is zero (ignoring small roundoff errors) and because the
channel noise is not very powerful.

• Normalizes the received data by dividing by its running standard deviation
and then multiplying by -1.

• Quantizes the normalized data using three bits.

Convolutional Coding

1-63

The combination of this mapping and the Viterbi Decoder block’s decision
mapping reverses the BPSK modulation that the BPSK Modulator Baseband
block performs on the transmitting side of this model. To examine the
demodulator subsystem in more detail, double-click the icon labeled
Soft-Output BPSK Demodulator.

Decoding the Convolutional Code
After the received data is properly mapped to length-2 vectors of 3-bit decision
values, the Viterbi Decoder block decodes it. The block uses a soft-decision
algorithm with 23 different input values because the Decision type parameter
is Soft Decision and the Number of soft decision bits parameter is 3.

Soft-Decision Interpretation of Data. When the Decision type parameter is set to
Soft Decision, the Viterbi Decoder block requires input values between 0 and
2b-1, where b is the Number of soft decision bits parameter. The block
interprets 0 as the most confident decision that the codeword bit is a 0 and
interprets 2b-1 as the most confident decision that the codeword bit is a 1. The
values in between these extremes represent less confident decisions. The
following table lists the interpretations of the eight possible input values for
this example.

Traceback and Decoding Delay. The Traceback depth parameter in the Viterbi
Decoder block represents the length of the decoding delay. Typical values for a

Decision Value Interpretation

0 Most confident 0

1 Second most confident 0

2 Third most confident 0

3 Least confident 0

4 Least confident 1

5 Third most confident 1

6 Second most confident 1

7 Most confident 1

1 Using the Libraries

1-64

traceback depth are about five or six times the constraint length, which would
be 35 or 42 in this example. However, some hardware implementations offer
options of 48 and 96. This example chooses 48 because that is closer to the
targets (35 and 42) than 96 is.

Delay in Received Data
The Error Rate Calculation block’s Receive delay parameter is nonzero
because a given message bit and its corresponding recovered bit are separated
in time by a nonzero amount of simulation time. The Receive delay parameter
tells the block which elements of its input signals to compare when checking
for errors.

In this case, the Receive delay value is 49 samples, which is one more than the
Traceback depth value (48) in the Viterbi Decoder block. The extra
one-sample delay comes from the initial delay in the Buffer block. Because the
Buffer block must collect two scalar samples before it can output one vector, its
first meaningful output occurs at time 1 second, not time 0.

Comparing Simulation Results with Theoretical Results
This section describes how to compare the bit error rate in this simulation with
the bit error rate that would theoretically result from unquantized decoding.
The process includes a few steps, described in these sections:

• “Computing Theoretical Bounds for the Bit Error Rate”

• “Simulating Multiple Times to Collect Bit Error Rates” on page 1-65

Computing Theoretical Bounds for the Bit Error Rate. To calculate theoretical bounds
for the bit error rate Pb of the convolutional code in this model, you can use this
estimate based on unquantized-decision decoding:

In this estimate, cd is the sum of bit errors for error events of distance d, and f
is the free distance of the code. The quantity Pd is the pairwise error
probability, given by

Pb cdPd

d f=

∞

∑<

Convolutional Coding

1-65

where R is the code rate of 1/2, and erfc is the MATLAB complementary error
function, defined by

Values for the coefficients cd and the free distance f are in published articles
such as [4]. The free distance for this code is f = 10.

The following commands calculate the values of Pb for Eb/N0 values in the
range from 1 to 3.5, in increments of 0.5:

EbNoVec = [1:0.5:4.0];
R = 1/2;
% Errs is the vector of sums of bit errors for
% error events at distance d, for d from 10 to 29.
Errs = [36 0 211 0 1404 0 11633 0 77433 0 502690 0,...
 3322763 0 21292910 0 134365911 0 843425871 0];
% P is the matrix of pairwise error probilities, for
% Eb/No values in EbNoVec and d from 10 to 29.
P = zeros(20,7); % Initialize.
for d = 10:29
 P(d-9,:) = (1/2)*erfc(sqrt(d*R*10.^(EbNoVec/10)));
end
% Bounds is the vector of upper bounds for the bit error
% rate, for Eb/No values in EbNoVec.
Bounds = Errs*P;

Simulating Multiple Times to Collect Bit Error Rates. You can efficiently vary the
simulation parameters by using the sim function to run the simulation from
the MATLAB command line. For example, the following code calculates the bit
error rate at bit energy-to-noise ratios ranging from 1 dB to 4 dB, in increments
of 0.5 dB. It collects all bit error rates from these simulations in the matrix
BERVec. It also plots the bit error rates in a figure window along with the
theoretical bounds computed in the preceding code fragment.

Pd
1
2
---erfc dR

Eb
N0

 
 
 

=

erfc x() 2
π
------- e t� 2

x

∞

∫= dt

1 Using the Libraries

1-66

Note First open the model by clicking here in the MATLAB Help browser.
Then execute these commands, which might take a few minutes.

% Plot theoretical bounds and set up figure.
figure;
semilogy(EbNoVec,Bounds,'bo',1,NaN,'r*');
xlabel('Eb/No (dB)'); ylabel('Bit Error Rate');
title('Bit Error Rate (BER)');
legend('Theoretical bound on BER','Actual BER');
axis([1 4 1e-5 1]);
hold on;

BERVec = [];
opts = simset('SrcWorkspace','Current',...
 'DstWorkspace','Current');
% Make the noise level variable.
set_param('doc_softdecision/AWGN Channel',...
 'EsNodB','EbNodB+10*log10(1/2)');
% Simulate multiple times.
for n = 1:length(EbNoVec)
 EbNodB = EbNoVec(n);
 sim('doc_softdecision',5000000,opts);
 BERVec(n,:) = BER_Data;
 semilogy(EbNoVec(n),BERVec(n,1),'r*'); % Plot point.
 drawnow;
end
hold off;

Note The estimate for Pb assumes that the decoder uses unquantized data,
that is, an infinitely fine quantization. By contrast, the simulation in this
example uses 8-level (3-bit) quantization. Because of this quantization, the
simulated bit error rate is not quite as low as the bound when the
signal-to-noise ratio is high.

Convolutional Coding

1-67

The plot of bit error rate against signal-to-noise ratio follows. The locations of
your actual BER points might vary because the simulation involves random
numbers.

Selected Bibliography for Convolutional Coding
[1] Benedetto, Sergio and Guido Montorsi, “Performance of Continuous and
Blockwise Decoded Turbo Codes,” IEEE Communications Letters, vol. 1,
pp.77-79, May 1997.

[2] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara, “A Soft-Input
Soft-Output Maximum A Posterior (MAP) Module to Decode Parallel and
Serial Concatenated Codes,” JPL TMO Progress Report, vol. 42-127, November
1996. [This electronic journal is available at
http://tmo.jpl.nasa.gov/tmo/progress_report/index.html.]

[3] Clark, George C. Jr. and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[4] Frenger, P., P. Orten, and T. Ottosson, “Convolution Codes with Optimum
Distance Spectrum,” IEEE Communications Letters, vol. 3, pp. 317-319,
November 1999.

1 Using the Libraries

1-68

[5] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data
Communications Principles, New York: Plenum, 1992.

[6] Heller, Jerrold A. and Irwin Mark Jacobs, “Viterbi Decoding for Satellite
and Space Communication,” IEEE Transactions on Communication
Technology, vol. COM-19, pp. 835-848, October 1971.

[7] Viterbi, Andrew J., “An Intuitive Justification and a Simplified
Implementation of the MAP Decoder for Convolutional Codes,” IEEE Journal
on Selected Areas in Communications, vol. 16, pp. 260-264, February 1998.

Cyclic Redundancy Check Coding

1-69

Cyclic Redundancy Check Coding
Cyclic redundancy check (CRC) coding is an error-control coding technique for
detecting errors that occur when a message is transmitted. Unlike block or
convolutional codes, CRC codes do not have a built-in error correction
capability. Instead, when an error is detected in a received message word, the
receiver requests the sender to retransmit the message word.

In CRC coding, the transmitter applies a rule to each message word to create
extra bits, called the checksum, or syndrome, and then appends the checksum
to the message word. After receiving a transmitted word, the receiver removes
the appended checksum, applies the same rule to the truncated word, and
compares the resulting checksum with the received checksum. If the two
checksums differ, an error has occurred, and the transmitter must resend the
message word.

Organization of this Section
This section covers the following topics:

• “Accessing CRC Blocks” on page 1-69

• “CRC Coding Features of the Blockset” on page 1-69

• “CRC Algorithm” on page 1-70

Accessing CRC Blocks
You can open the Error Detection and Correction library by double-clicking its
icon in the main Communications Blockset library (commlib), or by typing

commedac2

at the MATLAB prompt.

Then you can open the CRC sublibrary by double-clicking on its icon in the
Error Detection and Correction library, or by typing

commcrc2

at the MATLAB prompt.

CRC Coding Features of the Blockset
The CRC library contains four blocks that implement the CRC algorithm:

1 Using the Libraries

1-70

• General CRC Generator

• General CRC Syndrome Detector

• CRC-N Generator

• CRC-N Syndrome Detector

The General CRC Generator block computes a checksum for each input frame,
appends it to the message word, and transmits the result. The General CRC
Syndrome Detector receives a transmitted word and removes the appended
checksum. The block then calculates a new checksum, and compares the
received checksum with the new checksum. The block has two outputs. The
first is the message word without the received checksum. The second output is
a boolean error flag, which is 0 if the received checksum agrees with the new
checksum, and a 1 otherwise.

The CRC-N Generator block and CRC-N Syndrome Detector block are special
cases of the General CRC Generator block and General CRC Syndrome
Detector block, which use a predefined CRC-N polynomial, where N is the
number of bits in the checksum.

CRC Algorithm
The CRC algorithm accepts a binary data frame, corresponding to a polynomial
M, and appends a checksum of r bits, corresponding to a polynomial C. The
concatenation of the input frame and the checksum then corresponds to the
polynomial T = M*xr + C, since multiplying by xr corresponds to shifting the
input frame r bits to the left. The algorithm chooses the checksum C so that T
is divisible by a predefined polynomial P of degree r, called the generator
polynomial.

The algorithm divides T by P, and sets the checksum equal to the binary vector
corresponding to the remainder. That is, if T = Q*P + R, where R is a
polynomial of degree less than r, then the checksum is the binary vector
corresponding to R. If necessary, the algorithm prepends zeros to the checksum
so that it has length r.

The General CRC Generator block and the CRC-N Generator block, which
implement the transmission phase of the CRC algorithm, do the following:

1 Left shift the input data frame by r bits and divide the corresponding
polynomial by P.

Cyclic Redundancy Check Coding

1-71

2 Set the checksum equal to the binary vector of length r, corresponding to the
remainder from step 1.

3 Append the checksum to the input data frame. The result is the output
frame.

The General CRC Syndrome Detector block and the CRC-N Syndrome Detector
block, which implement the detection phase of the CRC algorithm, do the
following:

1 Remove the checksum from the received input frame.

2 Compute the checksum for the received message word as in the
transmission phase.

3 Compare the new checksum with the received checksum.

4 Output a 0 if the two checksums agree and a 1 otherwise.

The CRC algorithm uses binary vectors to represent binary polynomials, in
descending order of powers. For example, the vector [1 1 0 1] represents the
polynomial x3 + x2 + 1.

Example
Suppose the input frame is [1 1 0 0 1 1 0]', corresponding to the polynomial
M = x6 +x 5 + x2 + x, and the generator polynomial is P = x3 + x2 + 1, of degree
r = 3. By polynomial division, M*x3 = (x6 + x3 + x)*P + x. The remainder is R =
x, so that the checksum is then [0 1 0]'. Note that an extra 0 is added on the
left to make the checksum have length 3.

1 Using the Libraries

1-72

1. Using the Libraries

Interleaving
An interleaver permutes symbols according to a mapping. A corresponding
deinterleaver uses the inverse mapping to restore the original sequence of
symbols. Interleaving and deinterleaving can be useful for reducing errors
caused by burst errors in a communication system.

You can open the Interleaving library by double-clicking its icon in the main
Communications Blockset library (commlib), or by typing

comminterleave2

at the MATLAB prompt.

Then you can open the interleaving sublibraries by double-clicking their icons
in the Interleaving library, or by typing these commands at the MATLAB
prompt.

commblkintrlv2
commcnvintrlv2

Interleaving Features of the Blockset
This blockset provides interleavers in two broad categories:

• Block interleavers. This category includes matrix, random, algebraic, and
helical scan interleavers as special cases.

• Convolutional interleavers. This category includes a helical interleaver as a
special case, as well as a general multiplexed interleaver.

In typical usage of all interleaver/deinterleaver pairs in this blockset, the
parameters of the deinterleaver match those of the interleaver.

For background information about interleavers, see the works listed in
“Selected Bibliography for Interleaving” on page 1-80.

Block Interleavers
A block interleaver accepts a set of symbols and rearranges them, without
repeating or omitting any of the symbols in the set. The number of symbols in
each set is fixed for a given interleaver. The interleaver’s operation on a set of
symbols is independent of its operation on all other sets of symbols.

Interleaving

1-73

Types of Block Interleavers
The set of block interleavers in this library includes a general
interleaver/deinterleaver pair as well as several special cases. Each
special-case block uses the same computational code that its more general
counterpart uses, but provides an interface that is more suitable for the special
case.

The Matrix Interleaver block accomplishes block interleaving by filling a
matrix with the input symbols row by row and then sending the matrix
contents to the output port column by column. For example, if the interleaver
uses a 2-by-3 matrix to do its internal computations, then for an input of
[1 2 3 4 5 6] the block produces an output of [1 4 2 5 3 6].

The Random Interleaver block chooses a permutation table randomly using the
Initial seed parameter that you provide in the block mask. By using the same
Initial seed value in the corresponding Random Deinterleaver block, you can
restore the permuted symbols to their original ordering.

The Algebraic Interleaver block uses a permutation table that is algebraically
derived. It supports Takeshita-Costello interleavers and Welch-Costas
interleavers. These interleavers are described in [4].

Example: Block Interleavers
The following example shows how to use an interleaver to improve the error
rate when the channel produces bursts of errors.

Before running the model, you must create a binary vector that simulates
bursts of errors, as described in “Creating the Vector of Errors” on page 1-75.
The Signal From Workspace block imports this vector from the MATLAB
workspace into the model, where the Logical Operator block XOR’s it with the
signal.

1 Using the Libraries

1-74

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Data Sources sublibrary of the Comm
Sources library

- Check the box next to Frame-based outputs.

- Set Samples per frame to 4.

• Hamming Encoder, in the Block sublibrary of the Error Detection and
Correction library. Use default parameters.

• Buffer, in the Buffers sublibrary of the Signal Management library in the
DSP Blockset

- Set Output buffer size (per channel) to 84.

• Random Interleaver, in the Block sublibrary of the Interleaving library in
the Communications Blockset.

- Set Number of elements to 84.

• Logical Operator, in the Simulink Math Operations library

- Set Operator to XOR.

• Signal From Workspace, in the DSP Sources library

- Set Signal to errors.

- Set Sample time to 4/7.

- Set Samples per frame to 84.

• Random Deinterleaver, the Block sublibrary of the Interleaving library in
the Communications Blockset

- Set Number of elements to 84.

• Buffer, in the Buffers sublibrary of the Signal Management library in the
DSP Blockset

- Set Output buffer size (per channel) to 7.

• Hamming Decoder, in the Block sublibrary of the Error Detection and
Correction library. Use default parameters.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to (4/7)*84.

- Set Computation delay to 100.

- Set Output data to Port.

Interleaving

1-75

• Display, in the Simulink Sinks library. Use default parameters.

Select Simulation parameters from the model’s Simulation menu and set
Stop time to length(errors).

Creating the Vector of Errors
Before running the model, use the following code to create a binary vector in
the MATLAB workspace. The model uses this vector to simulate bursts of
errors. The vector contains blocks of three 1s, representing bursts of errors, at
random intervals. The distance between two consecutive blocks of 1s is a
random integer between 1 and 80.

errors=zeros(1,10^4);
n=1;
while n<10^4-80;
n=n+floor(79*rand(1))+3;
errors(n:n+2)=[1 1 1];
end

To determine the ratio of the number of 1s to the total number of symbols in
the vector errors, type

sum(errors)/length(errors)

Your answer should be approximately 3/43, or .0698, since after each sequence
of three 1s, the expected distance to the next sequence of 1s is 40.
Consequently, you expect to see three 1s in 43 terms of the sequence. If there
were no error correction in the model, the bit error rate would be approximately
.0698.

When you run a simulation with the model, the error rate is approximately
.019, which shows the improvement due to error correction and interleaving.
You can see the effect of interleaving by deleting the Random Interleaver and
Random Deinterleaver blocks from the model, connecting the lines, and
running another simulation. The bit error rate is higher without interleaving
because the Hamming code can only correct one error in each code word.

Convolutional Interleavers
A convolutional interleaver consists of a set of shift registers, each with a fixed
delay. In a typical convolutional interleaver, the delays are nonnegative
integer multiples of a fixed integer (although a general multiplexed interleaver

1 Using the Libraries

1-76

allows arbitrary delay values). Each new symbol from the input signal feeds
into the next shift register and the oldest symbol in that register becomes part
of the output signal. The schematic below depicts the structure of a
convolutional interleaver by showing the set of shift registers and their delay
values D(1), D(2),..., D(N). The blocks in this library have mask parameters
that indicate the delay for each shift register. The delay is measured in
samples.

This section discusses

• The types of convolutional interleavers included in the library

• The delay between the original sequence and the restored sequence

• An example that uses a convolutional interleaver

Types of Convolutional Interleavers
The set of convolutional interleavers in this library includes a general
interleaver/deinterleaver pair as well as several special cases. Each
special-case block uses the same computational code that its more general
counterpart uses, but provides an interface that is more suitable for the special
case.

The most general block in this library is the General Multiplexed Interleaver
block, which allows arbitrary delay values for the set of shift registers. To
implement the preceding schematic using this block, you would use an
Interleaver delay parameter of [D(1); D(2); ...; D(N)].

More specific is the Convolutional Interleaver block, in which the delay value
for the kth shift register is (k-1) times the block’s Register length step

OutputInput

z-D(1)

z-D(2)

z-D(N)

The kth shift register holds D(k) symbols,
where k=1, 2,...,N.

Interleaving

1-77

parameter. The number of shift registers in this block is the value of the Rows
of shift registers parameter.

Finally, the Helical Interleaver block supports a special case of convolutional
interleaving that fills an array with symbols in a helical fashion and empties
the array row by row. To configure this interleaver, use the Number of
columns of helical array parameter to set the width of the array, and use the
Group size and Helical array step size parameters to determine how symbols
are placed in the array. See the reference page for the Helical Interleaver block
for more details and an example.

Delays of Convolutional Interleavers
After a sequence of symbols passes through a convolutional interleaver and a
corresponding convolutional deinterleaver, the restored sequence lags behind
the original sequence. The delay, measured in symbols, between the original
and restored sequences is

(Number of shift registers) * (Maximum delay among all shift registers)

for the most general multiplexed interleaver. If your model incurs an
additional delay between the interleaver output and the deinterleaver input,
then the restored sequence lags behind the original sequence by the sum of the
additional delay and the amount in the preceding formula.

Note For proper synchronization, the delay in your model between the
interleaver output and the deinterleaver input must be an integer multiple of
the number of shift registers. You can use the Integer Delay block in the DSP
Blockset to adjust delays manually, if necessary.

Convolutional Interleaver block. In the special case implemented by the
Convolutional Interleaver/Convolutional Deinterleaver pair, note that the
number of shift registers is the Rows of shift registers parameter, while the
maximum delay among all shift registers is

(Register length step)*(Rows of shift registers-1)

Helical Interleaver block. In the special case implemented by the Helical
Interleaver/Helical Deinterleaver pair, the delay between the restored
sequence and the original sequence is

1 Using the Libraries

1-78

where C is the Number of columns in helical array parameter, N is the
Group size parameter, and s is the Helical array step size parameter.

Example: Convolutional Interleavers
The example below illustrates convolutional interleaving and deinterleaving
using a sequence of consecutive integers. It also illustrates the inherent delay
and the effect of the interleaving blocks’ initial conditions.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Ramp, in the Simulink Sources library. Use default parameters.

• Zero-Order Hold, in the Simulink Discrete library. Use default parameters.

• Convolutional Interleaver

- Set Rows of shift registers to 3

- Set Initial conditions to [-1 -2 -3]'.

• Convolutional Deinterleaver

- Set Rows of shift registers to 3.

- Set Initial conditions to [-1 -2 -3]'.

• Two copies of To Workspace, in the Simulink Sinks library

- Set Variable name to interleaved and restored, respectively, in the two
copies of this block.

- Set Save format to Array in each of the two copies of this block.

Connect the blocks as shown in the preceding diagram. Also, from the model
window’s Simulation menu, choose Simulation parameters; then, in the

CN s C 1�()
N

Interleaving

1-79

Simulation Parameters dialog box, set Stop time to 20. Run the simulation,
then execute the following command.

comparison = [[0:20]', interleaved, restored]

comparison =

 0 0 -1
 1 -2 -2
 2 -3 -3
 3 3 -1
 4 -2 -2
 5 -3 -3
 6 6 -1
 7 1 -2
 8 -3 -3
 9 9 -1
 10 4 -2
 11 -3 -3
 12 12 0
 13 7 1
 14 2 2
 15 15 3
 16 10 4
 17 5 5
 18 18 6
 19 13 7
 20 8 8

In this output, the first column contains the original symbol sequence. The
second column contains the interleaved sequence, while the third column
contains the restored sequence.

The negative numbers in the interleaved and restored sequences come from the
interleaving blocks’ initial conditions, not from the original data. The first of
the original symbols appears in the restored sequence only after a delay of 12
symbols. The delay of the interleaver-deinterleaver combination is the product
of the number of shift registers (3) and the maximum delay among all shift
registers (4).

1 Using the Libraries

1-80

Selected Bibliography for Interleaving
[1] Berlekamp, E. R. and P. Tong, “Improved Interleavers for Algebraic Block
Codes,” U. S. Patent 4559625, Dec. 17, 1985.

[2] Clark, George C. Jr. and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[3] Forney, G. D. Jr., “Burst-Correcting Codes for the Classic Bursty Channel,”
IEEE Transactions on Communications, vol. COM-19, October 1971, pp.
772-781.

[4] Heegard, Chris and Stephen B. Wicker, Turbo Coding, Boston, Kluwer
Academic Publishers, 1999.

[5] Ramsey, J. L, “Realization of Optimum Interleavers,” IEEE Transactions on
Information Theory, IT-16 (3), May 1970, pp. 338-345.

[6] Takeshita, O. Y. and D. J. Costello, Jr., “New Classes Of Algebraic
Interleavers for Turbo-Codes,” Proc. 1998 IEEE International Symposium on
Information Theory, Boston, August, 1998, pp. 419.

Analog Modulation

1-81

Analog Modulation
In most media for communication, only a fixed range of frequencies is available
for transmission. One way to communicate a message signal whose frequency
spectrum does not fall within that fixed frequency range, or one that is
otherwise unsuitable for the channel, is to alter a transmittable signal
according to the information in your message signal. This alteration is called
modulation, and it is the modulated signal that you transmit. The receiver
then recovers the original signal through a process called demodulation. This
section describes how to modulate and demodulate analog signals with the
Communications Blockset. After giving instructions for accessing the analog
modulation blocks, it goes on to discuss these topics:

• “Analog Modulation Features of the Blockset” on page 1-81

• “Baseband Modulated Signals Defined” on page 1-82

• “Representing Signals for Analog Modulation” on page 1-83

• “Timing Issues in Analog Modulation” on page 1-83

• “Filter Design Issues” on page 1-87

Accessing Analog Modulation Blocks
You can open the Modulation library by double-clicking its icon in the main
Communications Blockset library (commlib), or by typing

commmod2

at the MATLAB prompt.

Then you can open the Analog Baseband and Analog Passband sublibraries by
double-clicking their icons in the Modulation library or by typing these
commands at the MATLAB prompt:

commanabbnd2
commanapbnd2

Analog Modulation Features of the Blockset
The following figure shows the modulation techniques that the
Communications Blockset supports for analog signals. As the figure suggests,
some categories of techniques include named special cases.

1 Using the Libraries

1-82

For a given modulation technique, two ways to simulate modulation techniques
are called baseband and passband. Baseband simulation, also known as the
lowpass equivalent method, requires less computation. This blockset supports
both baseband and passband simulation. This guide recommends and focuses
more on baseband simulation. For a comparison of baseband simulation and
passband simulation using example models, see “Comparing Baseband and
Passband Simulation” on page 2-24.

The modulation and demodulation blocks also let you control such features as
the initial phase of the modulated signal and post-demodulation filtering.

Baseband Modulated Signals Defined
A baseband representation of a modulated signal is often more convenient for
simulation than the passband representation is, because modeling a
high-frequency carrier signal is computationally intensive. Suppose the
modulated signal has the waveform

where Y1 and Y2 are amplitude terms, fc is the carrier frequency, and θ is the
carrier signal’s initial phase. A baseband simulation recognizes that this
equals the real part of

Analog modulation methods

Frequency
modulation (FM)

Amplitude
modulation (AM)

Single-sideband
suppressed-carrier
(SSB)

Double-sideband
suppressed-carrier
(DSB-SC)

Phase
modulation (PM)

Y1 t() 2πfct θ+()cos Y2 t() 2πfct θ+()sin�

Y1 t() jY2 t()+()ejθ[] e
j2πfct

Analog Modulation

1-83

and models only the part inside the square brackets. Here j is the square root
of -1. The complex vector y is a sampling of the complex signal

Representing Signals for Analog Modulation
Analog modulation blocks in this blockset process only sample-based scalar
signals. The data types of inputs and outputs are depicted in the figure below.

Timing Issues in Analog Modulation
A few timing issues are important for simulating analog modulation with this
blockset. The following sections illustrate choices of signal sample times and
simulation step sizes.

Signal Sample Times
All analog demodulators in this blockset produce discrete-time, not
continuous-time, output. These blocks require you to specify the output sample
time as a mask parameter. In addition, some analog modulators require you to
specify the sample time as a mask parameter. Modulators in this category are
FM Modulator Baseband, FM Modulator Passband, SSB AM Modulator
Baseband, and SSB AM Modulator Passband.

Example Using a Modulator. In the following figure, both Signal Inspection blocks
show a sample time of 1 second in their icons. (The display Ts:[1 0] indicates
a sample time of 1 second and a sample time offset of 0.) Setting the Sample
time parameter in the FM Modulator Baseband block to 1 is appropriate
because the input to this block also has a sample time of 1 second.

Y1 t() jY2 t()+()ejθ

Baseband
Modulator

real complex Baseband
Demodulator

Passband
Modulator

real Passband
Demodulator

real real

real

1 Using the Libraries

1-84

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Sine Wave, in the Simulink Sources library (not the Sine Wave block in the
DSP Blockset DSP Sources library)

- Set Sample time to 1.

• FM Modulator Baseband, in the Analog Baseband sublibrary of the
Modulation library

- Set Sample time to 1.

• Two copies of Signal Inspection, in the Simulink Signal Attributes library

- Clear all check boxes except Probe sample time.

• Two copies of Terminator, in the Simulink Signals & Systems library.

Connect the blocks as in the figure. Then select Update diagram from the
model window’s Edit menu, which updates the display on each Signal
Attributes block’s icon. (Running the model is not particularly instructive
because it does not represent a complete system.)

Simulation Step Sizes
If you use passband modulation with continuous-time signals, then you need to
set the simulation step size, based on the carrier frequency. By the Nyquist
theorem, the simulation sampling rate must be at least twice as large as the
modulation carrier frequency. Equivalently, the simulation step size must be
no larger than half the modulation carrier period.

When you begin a new model, Simulink automatically determines the default
step size. To change the step size from the default to a different value, use this
procedure:

Analog Modulation

1-85

1 Select Simulation parameters from the model window’s Simulation menu.

2 Select the Solver panel.

3 Set the Max step size and Initial step size parameters to numerical values
(that is, not auto) that are appropriate for your model.

In some situations, Simulink automatically corrects a faulty simulation step
size. For example, if a signal in your model has a sample time of .1 second and
you set the model’s Max step size parameter to 1, then running the model
produces this response in the command window.

Warning: Maximum step size (1) is larger than the fastest discrete
sampling period (0.1) time. Setting maximum step size to 0.1.

Example Using Step Size Relative to Carrier Period. The model below illustrates why
the simulation step size in a passband simulation must be appropriate for a
given carrier frequency. The first Scope image shows the correct result of
modulating a constant signal using double-sideband suppressed-carrier
amplitude modulation, while the second Scope image shows incorrect results.
The incorrect results occur because the simulation step size is too large relative
to the modulation carrier frequency.

In this case, the DSBSC AM Modulator Passband block uses a Carrier
frequency parameter of 100. That is, the carrier’s period is .01 second and an
appropriate simulation step size is no larger than .005. Therefore, a simulation
step size of .01 second is too large to satisfy the Nyquist criterion. However, a
simulation step size of .001 second is sufficiently small.

1 Using the Libraries

1-86

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather these blocks with their default parameters:

• Constant, in the Simulink Sources library

• DSBSC AM Modulator Passband, in the Analog Passband sublibrary of the
Modulation library

• Scope, in the Simulink Sinks library

Incorrect results;
simulation step size

simulation step size of

of .01 is too large

Carrier frequency = 100 Hz

 .001 is small compared
to carrier period

Correct results;

Analog Modulation

1-87

Connect the blocks as in the figure. Also, from the model window’s Simulation
menu, choose Simulation parameters; then in the Simulation Parameters
dialog box, set Stop time to 1.

To generate the correct results as in the first Scope image in the figure, return
to the Simulation Parameters dialog box and set both the Max step size and
Initial step size parameters to .001. Then run the model and use the Scope
window’s zooming tools to study the sinusoidal output curve. You can also
generate incorrect results, as in the second Scope image in the figure, by
changing the Max step size and Initial step size parameters to .01 and
running the model again.

Filter Design Issues
After demodulating, you might want to filter out the carrier signal, especially
if you are using passband simulation. The Signal Processing Toolbox provides
functions that can help you design your filter, such as butter, cheby1, cheby2,
and ellip. Different demodulation methods have different properties, and you
might need to test your application with several filters before deciding which is
most suitable. This section mentions two issues that relate to the use of filters:
cutoff frequency and time lag.

Example: Varying the Filter’s Cutoff Frequency
In many situations, a suitable cutoff frequency is half the carrier frequency.
Since the carrier frequency must be higher than the bandwidth of the message
signal, a cutoff frequency chosen in this way limits the bandwidth of the
message signal. If the cutoff frequency is too high, the carrier frequency may
not be filtered out. If the cutoff frequency is too low, it might narrow the
bandwidth of the message signal.

The following example modulates a sawtooth message signal, demodulates the
resulting signal using a Butterworth filter, and plots the original and recovered
signals. The Butterworth filter is implemented within the SSB AM
Demodulator Passband block.

1 Using the Libraries

1-88

Before building the model, first execute this command at the MATLAB prompt:

[num,den] = butter(2,25*.01);

Here, 2 is the order of the Butterworth filter, 25 is the carrier signal frequency,
and .01 is the sample time of the signal in Simulink. The variables num and den
represent the numerator and denominator, respectively, of the filter’s transfer
function. These variables reside in the MATLAB workspace, where Simulink
can access them during the simulation. The butter function is in the Signal
Processing Toolbox.

Now to open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Signal Generator, in the Simulink Sources library

- Set Wave form to Sawtooth.

- Set Amplitude to 4.

- Set Frequency to .3.

• Zero-Order Hold, in the Simulink Discrete library

- Set Sample time to .01.

• SSB AM Modulator Passband, in the Analog Passband sublibrary of the
Modulation library

- Set Carrier frequency to 25.

- Set Time delay for Hilbert transform filter to .1.

- Set Sample time to .01.

• SSB AM Demodulator Passband, in the Analog Passband sublibrary of the
Modulation library

- Set Carrier frequency to 25.

- Set Lowpass filter numerator to num.

- Set Lowpass filter denominator to den.

Analog Modulation

1-89

- Set Sample time to .01.

• Scope, in the Simulink Sinks library

- After double-clicking on the block to open it, click the Parameters icon and
set Number of axes to 2.

Connect the blocks as in the figure. Also, from the model window’s Simulation
menu, choose Simulation parameters; then in the Simulation Parameters
dialog box, set Stop time to 10. Running the model produces the following
scope image. The image reflects the original and recovered signals, with a
moderate filter cutoff.

Other Filter Cutoffs. To see the effect of a lowpass filter with a higher cutoff
frequency, type

[num,den] = butter(2,25*.01*3.9);

at the MATLAB prompt and then run the simulation again. The new result is
the left image in the following figure. The higher cutoff frequency allows the
carrier signal to interfere with the demodulated signal.

To see the effect of a lowpass filter with a lower cutoff frequency, type

[num,den] = butter(2,25*.01/4);

1 Using the Libraries

1-90

at the MATLAB prompt and then run the simulation again. The new result is
the right image in the figure below. The lower cutoff frequency narrows the
bandwidth of the demodulated signal.

Example: Time Lag from Filtering
There is invariably a delay between a demodulated signal and the original
received signal. Both the filter order and the filter parameters directly affect
the length of this delay. The following example illustrates the delay by plotting
a signal before modulation and after demodulation. The curve with amplitude
1 is the original sine wave and the other curve is the recovered signal.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

Analog Modulation

1-91

• Sine Wave, in the DSP Blockset DSP Sources library (not the Sine Wave
block in the Simulink Sources library)

- Set Frequency to 1

• PM Modulator Baseband, in the Analog Baseband sublibrary of the
Modulation library. Use default parameters.

• PM Demodulator Baseband, in the Analog Baseband sublibrary of the
Modulation library. Use default parameters.

• Mux, in the Simulink Signals & Systems library

• Scope, in the Simulink Sinks library

Connect the blocks as in the figure. Also, from the model window’s Simulation
menu, choose Simulation parameters; then in the Simulation Parameters
dialog box, set Stop time to 5. Running the model produces the following scope
image.

1 Using the Libraries

1-92

Digital Modulation
Like analog modulation, digital modulation alters a transmittable signal
according to the information in a message signal. However, in this case, the
message signal is a discrete-time signal that can assume finitely many values.
This section describes how to modulate and demodulate digital signals with the
Communications Blockset. After giving instructions for accessing the digital
modulation blocks, it goes on to discuss these topics:

• “Digital Modulation Features of the Blockset” on page 1-93

• “Representing Signals for Digital Modulation” on page 1-96

• “Delays in Digital Modulation” on page 1-97

• “Upsampled Signals and Rate Changes” on page 1-101

• “Examples of Digital Modulation” on page 1-104

For background material on the subject of digital modulation, see the works
listed in “Selected Bibliography for Digital Modulation” on page 1-112.

Accessing Digital Modulation Blocks
You can open the Modulation library by double-clicking on icon in the main
Communications Blockset library (commlib), or by typing

commmod2

at the MATLAB prompt.

Then you can open the Digital Baseband and Digital Passband sublibraries by
double-clicking on their icons in the Modulation library, or by typing these
commands at the MATLAB prompt.

commdigbbnd2
commdigpbnd2

Digital Modulation

1-93

The Digital Baseband and Digital Passband libraries have sublibraries of their
own. You can open each of these sublibraries by double-clicking on the icon
listed in the table below, or by typing its name at the MATLAB prompt.

Digital Modulation Features of the Blockset
The figure below shows the modulation techniques that the Communications
Blockset supports for digital data. All of the methods at the far right are
implemented in both passband and baseband blocks. For a comparison of
baseband simulation and passband simulation, see “Comparing Baseband and
Passband Simulation” on page 2-24.

Table 1-1: Sublibraries of Digital Baseband and Digital Passband

Kind of Modulation Icon in Digital
Baseband or Digital
Passband Library

Name of Sublibrary
Model

Amplitude modulation AM commdigbbndam2,
commdigpbndam2

Phase modulation PM commdigbbndpm2,
commdigpbndpm2

Frequency modulation FM commdigbbndfm2,
commdigpbndfm2

Continuous phase
modulation

CPM commdigbbndcpm2,
commdigpbndcpm2

1 Using the Libraries

1-94

General and Specific Modulation Methods
Some digital modulation sublibraries contain blocks that implement special
cases of a more general technique and are, in fact, special cases of a more
general block. These special-case blocks use the same computational code that
their general counterparts use, but provide an interface that is either simpler
or more suitable for the special case. The table below lists special-case
modulators, their general counterparts, and the conditions under which the
two are equivalent. The situation is analogous for demodulators.

Table 1-2: General and Specific Blocks

General Modulator Specific Modulator Specific Conditions

General QAM
Modulator Baseband,
General QAM
Modulator Passband

Rectangular QAM
Modulator Baseband,
Rectangular QAM
Modulator Passband

Predefined constellation
containing 2K points on a
rectangular lattice

Modulation
methods for
digital data

Amplitude
modulation

Phase
modulation

Frequency
modulation

Continuous
phase
modulation

Pulse amplitude modulation (PAM)

Quadrature amplitude modulation (QAM

Phase shift keying (PSK)

Differential phase shift keying (DPSK)

Gaussian minimum shift keying (GMSK)

Minimum shift keying (MSK)

Frequency shift keying (FSK)

Offset phase shift keying

Continuous phase
frequency shift keying (CPFSK)

Digital Modulation

1-95

Furthermore, the CPFSK Modulator Baseband and CPFSK Modulator
Passband blocks are similar to the M-FSK Modulator Baseband and M-FSK
Modulator Passband blocks, respectively, when the M-FSK blocks use
continuous phase transitions. However, the M-FSK features of this blockset
differ from the CPFSK features in their mask interfaces and in the
demodulator implementations.

M-PSK Modulator
Baseband

BPSK Modulator
Baseband

M-ary number
parameter is 2.

QPSK Modulator
Baseband

M-ary number
parameter is 4.

M-DPSK Modulator
Baseband

DBPSK Modulator
Baseband

M-ary number
parameter is 2.

DQPSK Modulator
Baseband

M-ary number
parameter is 4.

CPM Modulator
Baseband, CPM
Modulator Passband

GMSK Modulator
Baseband, GMSK
Modulator Passband

M-ary number
parameter is 2,
Frequency pulse shape
parameter is Gaussian.

MSK Modulator
Baseband, MSK
Modulator Passband

M-ary number
parameter is 2,
Frequency pulse shape
parameter is
Rectangular, Pulse
length parameter is 1.

CPFSK Modulator
Baseband, CPFSK
Modulator Passband

Frequency pulse shape
parameter is
Rectangular, Pulse
length parameter is 1.

Table 1-2: General and Specific Blocks

General Modulator Specific Modulator Specific Conditions

1 Using the Libraries

1-96

Representing Signals for Digital Modulation
All digital modulation blocks process only discrete-time signals. The data types
of inputs and outputs are depicted in the figure below.

Note If you are simulating baseband modulation and want to separate the
in-phase and quadrature components of the complex modulated signal, then
use the Complex to Real-Imag block in the Simulink Math Operations library.

Binary-Valued and Integer-Valued Signals
Some digital modulation blocks can accept either integers or binary
representations of such integers. The corresponding demodulation blocks can
output either integers or their binary representations. This section describes
how modulation blocks process binary inputs; the case for demodulation blocks
is the reverse.

If a modulator block’s Input type parameter is set to Bit, then the block
accepts binary representations of integers between 0 and M-1. It modulates
each group of K bits, called a binary word. Also, these rules apply to the binary
input mode:

• For baseband modulation, the input vector length must be an integer
multiple of K. If the input is frame-based, then it must be a column vector.

• For passband modulation, the input must have length K and must be
sample-based.

In binary input mode, the Constellation ordering (or Symbol set ordering,
depending on the type of modulation) parameter indicates how the block maps

Baseband
Modulator

real complex Baseband
Demodulator

Passband
Modulator

real Passband
Demodulator

real real

real

Digital Modulation

1-97

a group of K input bits to a corresponding integer. If this parameter is set to
Binary, then the block maps [u(1) u(2) ... u(K)] to the integer

and subsequently behaves as if this integer were the input value. Notice that
u(1) is the most significant bit.

For example, if M = 8, Constellation ordering (or Symbol set ordering) is set
to Binary, and the binary input word is [1 1 0], then the block internally
converts [1 1 0] to the integer 6. The block produces the same output as in the
case when the input is 6 and the Input type parameter is Integer.

If Constellation ordering (or Symbol set ordering) is set to Gray, then the
block uses a Gray-coded arrangement. The explicit mapping is described in the
algorithm section on the reference page for the M-PSK Modulator Baseband
block.

Delays in Digital Modulation
Digital modulation and demodulation blocks sometimes incur delays between
their inputs and outputs, depending on their configuration and on properties of
their signals. The following table lists sources of delay and the situations in
which they occur.

Note The situations in the table are not mutually exclusive. If more than one
situation applies to a given block or model, then the separate delays are
additive. For example, if a passband demodulator in the AM sublibrary
processes a sample-based signal and has a Samples per symbol parameter of
8, then the block’s total delay is two output periods. As another example, if a
passband OQPSK modulator-demodulator pair has a Baseband samples per
symbol parameter of 7, then the two blocks together have a total delay of
three output periods from the demodulator.

u i()2K i�

i 1=

K

∑

1 Using the Libraries

1-98

Table 1-3: Delays Resulting from Digital Modulation or Demodulation

Modulation or
Demodulation Type

Situation in Which
Delay Occurs

Amount of Delay

All demodulators in
AM, PM, and FM
sublibraries except
OQPSK

Sample-based input,
and Samples per
symbol or Baseband
samples per symbol
parameter is greater
than 1

One output period

All demodulators in
CPM sublibrary

Sample-based input,
D = Traceback length
parameter

D+1 output periods

Frame-based input,
D = Traceback length
parameter

D output periods

All passband
demodulators except
OQPSK

Always One output period

OQPSK modulator-
demodulator baseband
pair

Frame-based input One output period

Sample-based input,
Samples per symbol
parameter is greater
than 1

Two output periods

Sample-based input,
Samples per symbol
parameter is equal to 1,
and the model uses a
fixed-step solver with
Mode parameter set to
Auto or MultiTasking

Two output periods

Digital Modulation

1-99

As a result of delays, data that enters a modulation or demodulation block at
time T appears in the output at time T+delay. In particular, if your simulation
computes error statistics or compares transmitted with received data, then it
must take the delay into account when performing such computations or
comparisons.

First Output Sample in DPSK Demodulation. In addition to the delays mentioned
above, the DPSK, DQPSK, and DBPSK demodulators produce output whose
first sample is unrelated to the input. This is related to the differential
modulation technique, not the particular implementation of it.

Example: Delays from Demodulation
Demodulation in the model below causes the demodulated signal to lag,
compared to the unmodulated signal. This delay is typical for sample-based
data that the modulator upsamples. When computing error statistics, the
model accounts for the delay by setting the Error Rate Calculation block’s

OQPSK modulator-
demodulator baseband
pair

Sample-based input,
Samples per symbol
parameter is equal to 1,
and the model uses a
variable-step solver or
the Mode parameter is
not set to Auto or
MultiTasking

One output period

OQPSK modulator-
demodulator passband
pair

Sample-based input,
and Baseband samples
per symbol parameter
is equal to 1

One output period

Sample-based input,
and Baseband samples
per symbol parameter
is greater than 1

Two output periods

Table 1-3: Delays Resulting from Digital Modulation or Demodulation

Modulation or
Demodulation Type

Situation in Which
Delay Occurs

Amount of Delay

1 Using the Libraries

1-100

Receive delay parameter to 1. If the Receive delay parameter had a different
value, then the error rate showing at the top of the Display block would be close
to 1/2.

Note If this model used the OQPSK method instead of DBPSK, then the
proper Receive delay parameter would be 2 instead of 1.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Data Sources sublibrary of the Comm
Sources library

- Set M-ary number to 2.

- Set Initial seed to any positive integer scalar, preferably the output of the
randseed function.

• DBPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband
sublibrary of Modulation

- Set Samples per symbol to 8.

• AWGN Channel, in the Channels library

- Set Es/No to 4.

• DBPSK Demodulator Baseband, in the PM sublibrary of the Digital
Baseband sublibrary of Modulation

- Set Samples per symbol to 8.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to 1.

- Set Computation delay to 1.

- Set Output data to Port

Digital Modulation

1-101

• Display, in the Simulink Sinks library.

- Drag the bottom edge of the icon to make the display big enough for three
entries.

Connect the blocks as shown above. Also, from the model window’s Simulation
menu, choose Simulation parameters; then in the Simulation Parameters
dialog box, set Stop time to 100. Then run the model and observe the error rate
at the top of the Display block’s icon. Your error rate will vary depending on
your Initial seed value in the Random Integer Generator block.

Upsampled Signals and Rate Changes
Digital baseband modulation blocks can output an upsampled version of the
modulated signal, while digital baseband demodulation blocks can accept an
upsampled version of the modulated signal as input. Each block’s Samples per
symbol parameter, S, is the upsampling factor in both cases. It must be a
positive integer. Depending on whether the signal is frame-based or
sample-based, the block either changes the signal’s vector size or its sample
time, as the table below indicates. Only the OQPSK blocks deviate from the
information in the table, in that S is replaced by 2S in the scaling factors.

Table 1-4: Processing of Upsampled Modulated Data (Except OQPSK Method)

Computation
Type

Input Frame
Status

Result

Modulation Frame-based Output vector length is S times the number of integers or
binary words in the input vector. Output sample time equals
the input sample time.

Modulation Sample-based Output vector is a scalar. Output sample time is 1/S times the
input sample time.

1 Using the Libraries

1-102

Digital passband blocks can also process upsampled data, but only as an
intermediate internal format. For more information about this, see the
description of the Baseband samples per symbol parameter on the reference
page for any digital passband modulation block. Also note that passband blocks
process only sample-based data, not frame-based data.

Illustrations of Size or Rate Changes
The following schematics illustrate how a baseband modulator (other than
OQPSK) upsamples a triplet of frame-based and sample-based integers. In
both cases, the Samples per symbol parameter is 2.

Demodulation Frame-based Number of integers or binary words in the output vector is 1/S
times the number of samples in the input vector. Output
sample time equals the input sample time.

Demodulation Sample-based Output signal contains one integer or one binary word.
Output sample time is S times the input sample time.

Furthermore, if S > 1 and the demodulator is from the AM,
PM, or FM sublibrary, then the demodulated signal is delayed
by one output sample period. There is no delay if S = 1 or if
the demodulator is from the CPM sublibrary.

Table 1-4: Processing of Upsampled Modulated Data (Except OQPSK Method) (Continued)

Computation
Type

Input Frame
Status

Result

Digital Modulation

1-103

The following schematics illustrate how a demodulator (other than OQPSK or
one from the CPM sublibrary) processes three doubly-sampled symbols using
both frame-based and sample-based inputs. In both cases, the Samples per
symbol parameter is 2. Notice that the sample-based schematic includes an
output delay of one sample period.

2

0
4

1
1
-1
-1
j
j

04 j 1 1-1

t=0t=1 t=0t=1

Output sample time = Input sample time
Output length = 2* (# of input integers)

Output sample time = (Input sample
time)/2
Output length = # of input integers

t=1/2

Frame-Based Upsampling

Sample-Based Upsampling

-1j

t=2

2

t=2

Modulator

Modulator

Frame-based column vectors

Sample-based scalars in input and

0

2

0
4

1
1

-1
-1
j
j

041 1-1

t=0t=1t=0t=1

Output sample time = Input sample
time

Output sample time = 2*(Input sample
time)
Scalar input and output
First output element represents delay

t=1/2

Frame-Based Upsampled Input

Sample-Based Upsampled Input

-1

t=2

2

t=2

j j

t=3
(delay)

Demodulator

Demodulator

Frame-based column vectors

1 Using the Libraries

1-104

Examples of Digital Modulation
This section builds a few simple example models to illustrate the modulation
methods and how the Communications Blockset allows you to implement them.
The examples are:

• “DQPSK Signal Constellation Points and Transitions” on page 1-104

• “Rectangular QAM Modulation and Scatter Diagram” on page 1-105

• “Phase Tree for Continuous Phase Modulation” on page 1-107

• “Passband Digital Modulation” on page 1-109

DQPSK Signal Constellation Points and Transitions
The model below plots the output of the DQPSK Modulator Baseband block.
The image shows the possible transitions from each symbol in the DQPSK
signal constellation to the next symbol.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Data Sources sublibrary of the Comm
Sources library

- Set M-ary number to 4.

- Set Initial seed to any positive integer scalar, preferably the output of the
randseed function.

- Set Sample time to .01.

• DQPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband
sublibrary of Modulation

• Complex to Real-Imag, in the Simulink Math Operations library

• XY Graph, in the Simulink Sinks library

Digital Modulation

1-105

Use the blocks’ default parameters unless otherwise instructed. Connect the
blocks as in the figure. Running the model produces the following plot. The plot
reflects the transitions among the eight DQPSK constellation points.

This plot illustrates π/4-DQPSK modulation, because the default Phase offset
parameter in the DQPSK Modulator Baseband block is pi/4. To see how the
phase offset influences the signal constellation, change the Phase offset
parameter in the DQPSK Modulator Baseband block to pi/8 or another value.
Run the model again and observe how the plot changes.

Rectangular QAM Modulation and Scatter Diagram
The model below uses the M-QAM Modulator Baseband block to modulate
random data. After passing the symbols through a noisy channel, the model
produces a scatter diagram of the noisy data. The diagram suggests what the
underlying signal constellation looks like and shows that the noise distorts the
modulated signal from the constellation.

1 Using the Libraries

1-106

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Data Sources sublibrary of the Comm
Sources library

- Set M-ary number to 16

- Set Initial seed to any positive integer scalar, preferably the output of the
randseed function

- Set Sample time to .1

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital
Baseband sublibrary of Modulation

- Set Normalization method to Peak Power

• AWGN Channel, in the Channels library

- Set Es/No to 20

- Set Symbol period to .1

• Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- Select Show Plotting Properties

- Set Points displayed to 160

- Set New points per display to 80

- Select Show Figure Properties

- Set Scope position to figposition([2.5 55 35 35]);

- Set Figure name to QAM Scatter Plot

Connect the blocks as in the figure. Also, from the model window’s Simulation
menu, choose Simulation parameters; then, in the Simulation Parameters
dialog box, set Stop time to 250. Running the model produces a scatter diagram
like the following one. Your plot might look somewhat different, depending on
your Initial seed value in the Random Integer Generator block. Because the
modulation technique is 16-QAM, the plot shows 16 clusters of points. If there

Digital Modulation

1-107

were no noise, the plot would show the 16 exact constellation points instead of
clusters around the constellation points.

Phase Tree for Continuous Phase Modulation
This example plots a phase tree associated with a continuous phase modulation
scheme. A phase tree is a diagram that superimposes many curves, each of
which plots the phase of a modulated signal over time. The distinct curves
result from different inputs to the modulator.

This example uses the CPM Modulator Baseband block for its numerical
computations. The block is configured so that it uses a raised cosine filter pulse
shape. The example also illustrates how you can use Simulink and MATLAB
together. The example uses MATLAB commands to run a series of simulations
with different input signals, to collect the simulation results, and to plot the
full data set.

1 Using the Libraries

1-108

The first step of this example is to build the model. To open the completed
model, click here in the MATLAB Help browser. To build the model, gather and
configure these blocks:

• DSP Constant, in the DSP Sources library

- Set Constant value to s (which will be in the MATLAB workspace)

- Set Output to Frame-based

- Set Frame period to 1

• CPM Modulator Baseband

- Set M-ary number to 2.

- Set Modulation index to 2/3.

- Set Frequency pulse shape to Raised Cosine.

- Set Pulse length to 2.

• To Workspace, in the Simulink Sinks library

- Set Variable name to x.

- Set Save format to Array.

Do not run the model, because the variable s is not yet defined in the MATLAB
workspace. Instead, save the model to a directory on your MATLAB path, using
the filename doc_phasetree.

The second step of this example is to execute these commands in MATLAB.

% Parameters from the CPM Modulator Baseband block
M_ary_number = 2;
modulation_index = 2/3;
pulse_length = 2;
samples_per_symbol = 8;
opts = simset('SrcWorkspace','Current',...
 'DstWorkspace','Current');

L = 5; % Symbols to display

Digital Modulation

1-109

pmat = [];
for ip_sig = 0:(M_ary_number^L)-1
 s = de2bi(ip_sig,L,M_ary_number,'left-msb');
 % Apply the mapping of the input symbol to the CPM
 % symbol 0 -> -(M-1), 1 -> -(M-2), etc.
 s = 2*s'+1-M_ary_number;
 sim('doc_phasetree', .9, opts); % Run model to generate x.
 pmat(:,ip_sig+1) = unwrap(angle(x(:))); % Next column of pmat
end;
pmat = pmat/(pi*modulation_index);
t = (0:L*samples_per_symbol-1)'/samples_per_symbol;
plot(t,pmat); figure(gcf); % Plot phase tree.

The resulting plot follows. Each curve represents a different instance of
simulating the CPM Modulator Baseband block with a distinct (constant) input
signal.

Passband Digital Modulation
The example below uses passband phase shift keying modulation and displays
the spectrum of the modulated signal. The M-PSK Modulator Passband block’s
parameters satisfy necessary requirements for passband simulation because

1 Using the Libraries

1-110

• The input signal’s sampling rate of 10 is less than the carrier frequency of
100.

• The modulated signal’s sampling rate of 3000 exceeds the sum of twice the
carrier frequency and twice the input sampling rate.

These requirements are mentioned on the reference page for the M-PSK
Modulator Passband block.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Data Sources sublibrary of the Comm
Sources library.

- Set Probability of a zero to [.5, .5].

- Set Initial seed to any row vector containing 2 positive integers,
preferably the output of the randseed function.

- Set Sample time to .1.

• M-PSK Modulator Passband, in the PM sublibrary of the Digital Passband
sublibrary of Modulation

- Set M-ary number to 4.

- Set Input type to Bit.

- Set Symbol period to .1.

- Set Carrier frequency to 1000.

- Set Carrier initial phase to pi/4.

- Set Output sample time to 1/3000.

• Buffer, in the DSP Blockset Buffers sublibrary of the Signal Management
library

- Set Output buffer size to 1024.

• Magnitude FFT, in the DSP Blockset Power Spectrum Estimation sublibrary
of the Estimation library

Digital Modulation

1-111

- Check the Inherit FFT length from input dimensions check box.

• Mean, in the DSP Blockset Statistics library

- Check the Running mean check box.

- Set Reset port to None.

• Vector Scope, in the DSP Blockset DSP Sinks library

- Set Input domain to Frequency.

- Check the Axis properties check box.

- Set Frequency range to [-Fs/2...Fs/2].

- Set Maximum Y-limit to 100.

Connect the blocks as in the preceding figure. Also, from the model window’s
Simulation menu, choose Simulation parameters; then in the Simulation
Parameters dialog box, set Stop time to 10. Running the model produces the
following spectral plot.

You might want to vary the modulation technique to see how this plot would
change. For example, you can try replacing the M-PSK Modulator Passband
block with the M-DPSK Modulator Passband or OQPSK Modulator Passband
block.

1 Using the Libraries

1-112

Selected Bibliography for Digital Modulation
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital Phase
Modulation, New York, Plenum Press, 1986.

[2] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation
of Communication Systems, New York, Plenum Press, 1992.

[3] Pawula, R. F., “On M-ary DPSK Transmission Over Terrestrial and
Satellite Channels,” IEEE Transactions on Communications, vol. COM-32,
July 1984, pp. 752-761.

[4] Smith, Joel G., “Odd-Bit Quadrature Amplitude-Shift Keying,” IEEE
Transactions on Communications, vol. COM-23, March 1975, pp. 385-389.

Channels

1-113

1. Using the Libraries

Channels
Communication channels introduce noise, fading, interference, and other
distortions into the signals that they transmit. Simulating a communication
system involves modeling a channel based on mathematical descriptions of the
channel. Different transmission media have different properties and are
modeled differently. In a simulation, the channel model usually fits directly
between the transmitter and receiver, as shown below.

Channel Features of the Blockset
This blockset provides several channel models for binary, real, and complex
signals. You can open the Channels library by double-clicking its icon in the
main Communications Blockset library (commlib), or by typing

commchan2

at the MATLAB prompt.

This section describes the capabilities of the Channels library’s blocks, by
considering these channels:

• Additive white Gaussian noise (AWGN) channel

• Rayleigh and Rician fading channels that model real-world mobile
communication effects

• Binary symmetric channel (BSC)

AWGN Channel
An AWGN channel adds white Gaussian noise to the signal that passes
through it. Gaussian noise is discussed on the reference page for the Gaussian
Noise Generator block. The AWGN Channel block can process either
sample-based or frame-based data, and it lets you specify the variance of the
noise in one of four ways:

• Directly as a mask parameter

• Directly as an input signal

Channel ReceiverTransmitter

1 Using the Libraries

1-114

• Indirectly via a signal-to-noise ratio parameter

• Indirectly via an Es/No parameter

Fading Channels
The Channels library includes Rayleigh and Rician fading blocks that can
simulate real-world phenomena in mobile communications. These phenomena
include multipath scattering effects in the Rayleigh case, as well as Doppler
shifts that arise from relative motion between the transmitter and receiver.
This section discusses

• How to categorize the possible paths along which a signal can travel from the
transmitter to the receiver in the situation that you want to model

• How to choose and configure a fading channel block based on the
categorization

• An example that uses fading channels

Categorizing Signal Paths
The following figure depicts the two types of paths between a moving
transmitter and a stationary receiver. The solid line is a direct-line-of-sight
path, which might or might not exist in your situation. Each dotted line is a
reflected path that the signal travels when it is reflected from one of the shaded
shapes. The shaded shapes represent obstacles such as buildings or trees.

The situation in the figure is just an example. In general, you should analyze
your system by considering these questions:

• Are there any reflected paths along which a signal can travel from
transmitter to receiver? If so, how many?

Transmitter

Receiver

Direct Path

Reflected Path 1
Re

fle
cte

d P
ath

 2

Channels

1-115

• Is there a direct path from transmitter to receiver?

• What is the relative motion between the transmitter and receiver?

The first two questions will help you choose which fading channel blocks to use
in your simulation, while the third question will help you choose appropriate
parameters for the blocks.

Choosing and Configuring a Fading Channel Block
Once you categorize the types of signal paths in the situation you want to
model, use the table below to determine the appropriate block (or blocks) for
your simulation.

If a signal can use more than one reflected path, then a single instance of the
Multipath Rayleigh Fading Channel block can model all of them
simultaneously. The number of paths that the block uses is the length of either
the Delay vector or the Gain vector parameter, whichever length is larger. (If
both of these parameters are vectors, then they must have the same length; if
exactly one of these parameters is a scalar, then the block expands it into a
vector whose size matches that of the other vector parameter.)

The relative motion between the transmitter and receiver influences the values
of the blocks’ parameters. For more details, see their reference pages, as well
as the works listed in “Selected Bibliography for Channels” on page 1-118 if
necessary.

Example: Using Fading Channels
The reference page for the Multipath Rayleigh Fading Channel block includes
an example that illustrates the channel’s effect on a constant signal.

Another example is the following model, which uses both the Multipath
Rayleigh Fading Channel and the Rician Fading Channel blocks in parallel.

Table 1-1: Choosing a Fading Channel Block Based on Signal Paths

Signal Paths Channel Block

Direct line-of-sight path from transmitter to
receiver

Rician Fading Channel

One or more reflected paths from
transmitter to receiver

Multipath Rayleigh Fading
Channel

1 Using the Libraries

1-116

This combination of blocks simulates a mobile communication link in which the
transmitted signal can travel to the receiver along a direct path as well as along
three indirect paths. (The number of indirect paths is three because the
Multipath Rayleigh Fading Channel block’s Gain vector parameter is a vector
of length three. Although the Delay vector parameter is a scalar, its value is
applied to each of the three paths.)

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• DSP Constant, in the DSP Blockset DSP Sources library

- Set Constant value to j*ones(10000,1).

- Set Output to Frame-based.

- Set Frame period to .01.

• Rician Fading Channel, with default parameter values

• Multipath Rayleigh Fading Channel

- Set Delay vector to [0 2e-6 3e-6].

- Set Gain vector to [0 -3 1].

• Sum, in the Simulink Math library

• To Workspace, in the Simulink directory

- Set Save format to Array.

Connect the blocks as shown above. Also, from the model window’s Simulation
menu, choose Simulation parameters; then, in the Simulation Parameters
dialog box, set Stop time to 0.6.

Channels

1-117

Note To reduce execution time by logging less data to the workspace, set the
Decimation parameter in the To Workspace block to 100. Then the variable
simout will contain fewer entries, but its graph will look similar.

Run the model. After the simulation stops, plot the faded signal’s power (versus
sample number) by executing this command at the MATLAB prompt.

simout = simout.'; plot(20*log10(abs(simout(:))))

The resulting plot is shown in the figure below.

Binary Symmetric Channel
Binary error channels process binary signals by adding noise modulo 2. This
library contains the Binary Symmetric Channel block, which either preserves
or perturbs each vector element independently. It requires a probability that
applies independently to each noise element.

1 Using the Libraries

1-118

Selected Bibliography for Channels
[1] Fechtel, Stefan A, “A Novel Approach to Modeling and Efficient Simulation
of Frequency-Selective Fading Radio Channels,” IEEE Journal on Selected
Areas in Communications, vol. 11, pp. 422-431, April 1993.

[2] Jakes, William C., ed., Microwave Mobile Communications, New York,
IEEE Press, 1974.

[3] Lee, William C. Y. , Mobile Communications Design Fundamentals, 2nd ed.,
New York, Wiley, 1993.

[4] Proakis, John G., Digital Communications, 3rd ed., New York,
McGraw-Hill, 1995.

RF Impairments

1-119

RF Impairments
The RF Impairments library contains blocks that model impairments to a
baseband signal caused by the radio frequency (RF) components in the
receiver. This section describes the blocks in the library, covering the following
topics:

• Types of RF Impairments the Blocks Model

• Scatter Plot Examples

• Example Using the RF Impairments Library Blocks

Types of RF Impairments the Blocks Model
The blocks in the RF Impairments library can simulate the following types of
signal impairments:

• Nonlinearity and I/Q imbalances

• Phase/frequency offsets and phase noise

• Receiver thermal noise and free space path loss

Nonlinearity and I/Q Imbalance
The following two blocks model signal impairments due to nonlinear devices or
imbalances between the in-phase and quadrature components of a modulated
signal:

• The Memoryless Nonlinearity block models the AM-to-AM and AM-to-PM
distortion in nonlinear amplifiers.

• The I/Q Imbalance block models imbalances between the in-phase and
quadrature components of a signal caused by differences in the physical
channels carrying the separate components.

These blocks distort both the phase and amplitude of the signal.

Phase/Frequency Offsets and Phase Noise
The RF Impairments library contains two blocks that simulate
phase/frequency offsets and phase noise:

• The Phase/Frequency Offset block applies phase and frequency offsets to a
signal.

1 Using the Libraries

1-120

• The Phase Noise block models applies phase noise to a signal.

The Phase/Frequency Offset block and the Phase Noise block alter only the
phase and frequency of the signal.

Receiver Thermal Noise and Free Space Path Loss
The RF Impairments Library contains two blocks that simulate signal
impairments due to thermal noise and signal attenuation due to the distance
from the transmitter to the receiver:

• The Receiver Thermal Noise block simulates the effects of thermal noise on
a complex baseband signal.

• The Free Space Path Loss block simulates the loss of signal power due to the
distance from the transmitter and signal frequency.

Scatter Plot Examples
This section presents scatter plots that illustrate how the blocks in the RF
Impairments library distort a signal modulated by 16-ary quadrature
amplitude modulation (QAM). The usual 16-ary QAM constellation without
distortion is shown in the following figure:

RF Impairments

1-121

Constellation for 16-QAM

The scatter plots illustrate the effects of the following four blocks:

• Memoryless Nonlinearity Block

• I/Q Imbalance Block

• Phase/Frequency Offset Block

• Phase Noise Block

As the scatter plots show, the first two blocks distort both the magnitude and
angle of points in the constellation, while the last two alter just the angle.

You can create these scatter plots with models similar to the following, which
produces the scatter plot for the Memoryless Nonlinearity block:

1 Using the Libraries

1-122

16-ary QAM Model

The model uses the Rectangular QAM Modulator Baseband block, from AM in
the Digital Baseband Modulation sublibrary of the Modulation library. You can
control the power of the block’s output signal by the Normalization method
parameter.

Memoryless Nonlinearity Block
The Memoryless Nonlinearity block applies a nonlinear distortion to the input
signal. This distortion models the AM-to-AM and AM-to-PM conversions in
nonlinear amplifiers. The block provides five methods, which you specify by the
Method parameter, for modeling the nonlinear characteristics of amplifiers:

• Cubic polynomial

• Hyperbolic tangent

• Saleh model

• Ghorbani model

• Rapp model

In the model shown in the preceding figure, the Method parameter is set to
Ghorbani model. The following figure shows the scatter plot the model
generates.

RF Impairments

1-123

For another example of a scatter plot produced using this block, see the
reference page for the Memoryless Nonlinearity block.

1 Using the Libraries

1-124

I/Q Imbalance Block
You can generate the next scatter plot by replacing the Memoryless
Nonlinearity block in the 16-ary QAM Model with the I/Q Imbalance block. Set
the block’s I/Q amplitude imbalance (db) parameter to 10 and the I/Q phase
imbalance (deg) parameter to 30.

For more examples of scatter plots produced using this block, see the reference
page for the I/Q Imbalance block.

RF Impairments

1-125

Phase/Frequency Offset Block
You can generate the next scatter plot by replacing the Memoryless
Nonlinearity block in the 16-ary QAM Model with the Phase/Frequency Offset
block. Set the block’s Frequency offset (Hz) parameter to 0 and the Phase
offset (deg) parameter to 70.

The Frequency offset (Hz) parameter adds a constant to the phase of the
signal. The scatter plot corresponds to the standard constellation rotated by a
fixed angle of 70 degrees.

The Frequency offset (Hz) parameter determines the rate of change of the
signal’s phase. In this example, Frequency offset (Hz) is set to 0, so the scatter
plot always falls on the grid shown in the preceding figure. If you set
Frequency offset (Hz) to a positive number, the points on the scatter plot fall
on a rotating grid, corresponding to the standard constellation, which revolves
at a constant rate in the counterclockwise direction. For an example, see the
reference page for the Phase/Frequency Offset block.

1 Using the Libraries

1-126

Phase Noise Block
You can generate the next scatter plot by replacing the Memoryless
Nonlinearity block in the 16-ary QAM Model with the Phase Noise block. Set
the Phase noise level (dBc/Hz) parameter to -60 and the Frequency offset
(Hz) parameter to 100.

The phase noise adds a random error to the signal’s phase, so that the points
in the scatter plot are spread in a radial pattern around the constellation
points.

RF Impairments

1-127

Example Using the RF Impairments Library Blocks
The model shown in the following figure simulates RF impairments to a signal
modulated by differential quaternary phase shift keying (DQPSK).

Overview of the Model
The model does the following:

• Modulates a random signal using DQPSK modulation.

• Applies impairments to the signal using the blocks from the RF Impairments
library.

1 Using the Libraries

1-128

• Forks the signal into two paths, and processes one path with an automatic
gain control (AGC) to compensate for the free space path loss and the I/Q
imbalance.

• Displays the trajectory of the signal with AGC and the trajectory of the
signal without AGC.

• Demodulates both signals and calculates their error rates.

You can see the effect of the automatic gain by comparing the trajectories of the
signals with and without AGC, as shown in the following figure.

The trajectory of the signal with AGC more closely matches the undistorted
trajectory for DQPSK, shown in the figure below, than does than the signal
without AGC. Consequently, the error rate for the signal with AGC is much
lower than the error rate for the signal without AGC.

Signal without AGCSignal with AGC

RF Impairments

1-129

In this example, the error rate for the demodulated signal without AGC is
primarily caused by free space path loss and I/Q imbalance. The QPSK
modulation minimizes the effects of the other impairments.

1 Using the Libraries

1-130

Synchronization
In order to interpret information correctly, a communication receiver must be
synchronized with the corresponding transmitter. A phase-locked loop, or PLL,
can help accomplish this synchronization when used in conjunction with other
components. A PLL is an automatic control system that adjusts the phase of a
local signal to match the phase of the received signal. The PLL design works
best for narrowband signals.

Synchronization Features of the Blockset
This blockset contains four phase-locked loop blocks in its Synchronization
library. You can open the Synchronization library by double-clicking its icon in
the main Communications Blockset library (commlib), or by typing

commsync2

at the MATLAB prompt.

The following table indicates which block in the Synchronization library
implements each supported type of PLL.

This section discusses these topics:

• “Overview of PLL Simulation” on page 1-131

• “Implementing an Analog Baseband PLL” on page 1-131

• “Implementing a Digital PLL” on page 1-132

For details about phase-locked loops, see the works listed in “Selected
Bibliography for Synchronization” on page 1-132.

Table 1-2: Supported PLLs in Synchronization Library

Type of PLL Block

Analog passband PLL Phase-Locked Loop

Analog baseband PLL Baseband PLL

Linearized analog baseband PLL Linearized Baseband PLL

Digital PLL using a charge pump Charge Pump PLL

Synchronization

1-131

Overview of PLL Simulation
A simple PLL consists of a phase detector, a loop filter, and a voltage-controlled
oscillator (VCO). For example, the following figure shows how these
components are arranged for an analog passband PLL. In this case, the phase
detector is just a multiplier. The signal e(t) is often called the error signal.

Different PLLs use different phase detectors, filters, and VCO characteristics.
Some of these attributes are built into the PLL blocks in this blockset, while
others depend on parameters that you set in the block mask:

• You specify the filter’s transfer function in the block mask using the
Lowpass filter numerator and Lowpass filter denominator parameters.
Each of these parameters is a vector that lists the coefficients of the
respective polynomial in order of descending exponents of the variable s. To
design a filter, you can use functions such as butter, cheby1, and cheby2 in
the Signal Processing Toolbox.

• You specify the key VCO characteristics in the block mask. All four PLL
blocks use a VCO input sensitivity parameter. Some blocks also use VCO
quiescent frequency, VCO initial phase, and VCO output amplitude
parameters.

• The phase detector for each of the PLL blocks is a feature that you cannot
change from the block mask.

Implementing an Analog Baseband PLL
Unlike passband models for a phase-locked loop, a baseband model does not
depend on a carrier frequency. This allows you to use a lower sampling rate in
the simulation. These two blocks implement analog baseband PLLs:

• Baseband PLL

• Linearized Baseband PLL

VCO

s(t) e(t)

S(t)

Filter

1 Using the Libraries

1-132

The linearized model and the nonlinearized model differ in that the linearized
model uses the approximation

to simplify the computations. This approximation is close when is near
zero. Thus, instead of using the input signal and the VCO output signal
directly, the linearized PLL model uses only their phases.

Implementing a Digital PLL
The charge pump PLL is a classical digital PLL. Unlike the analog PLLs
mentioned above, the charge pump PLL uses a sequential logic phase detector,
which is also known as a digital phase detector or a phase/frequency detector.

Selected Bibliography for Synchronization
[1] Gardner, F. M., “Charge-pump Phase-lock Loops,” IEEE Trans. on
Communications, vol. 28, pp. 1849-1858, November 1980.

[2] Gardner, F. M., “Phase Accuracy of Charge Pump PLLs,” IEEE Trans. on
Communications, vol. 30, pp. 2362-2363, October 1982.

[3] Gupta, S. C., “Phase Locked Loops,” Proceedings of the IEEE, vol. 63, pp.
291-306, February 1975 .

[4] Lindsay, W. C. and C. M. Chie, “A Survey on Digital Phase-Locked Loops,”
Proceedings of the IEEE, vol. 69, pp. 410-431, April 1981.

[5] Meyr, Heinrich and Gerd Ascheid, Synchronization in Digital
Communications, vol. 1, New York, John Wiley & Sons, 1990.

θ t()∆()sin θ t()∆≅

θ t()∆

Computing Delays 2-3
Other References for Delays 2-3
Sources of Delays 2-4
ADSL Demo Model 2-4
Punctured Coding Model 2-9

Manipulating Delays 2-14
Delays and Alignment Problems 2-14
Aligning Words of a Block Code 2-17
Aligning Words for Interleaving 2-19
Aligning Words of a Concatenated Code 2-21

Comparing Baseband and Passband Simulation 2-24
Running a Passband Simulation 2-24
Running an Equivalent Baseband Simulation 2-25
Generating Error Curves 2-26
Speed of Baseband Versus Passband Models 2-28
Comparing Baseband and Passband Signals 2-30
Troubleshooting a Passband Simulation 2-32

2
Modeling Communication
Systems

2 Modeling Communication Systems

2-2

This chapter presents several examples that illustrate techniques for modeling
a full communication system rather than a small fragment of one. Because the
techniques are mainly relevant in models that involve multiple areas of
functionality (for example, modulation combined with block coding), the
examples in this chapter are more complicated than the examples of earlier
chapters. The topics in this chapter are:

• “Computing Delays” on page 2-3

• “Manipulating Delays” on page 2-14

• “Comparing Baseband and Passband Simulation” on page 2-24

Because the examples in this chapter are larger than those of previous
chapters, the discussions omit instructions for building the example models.
You can open prebuilt copies of the models if you want to examine, run, or
modify them.

Computing Delays

2-3

Computing Delays
Some models require you to know how long it takes for data in one portion of a
model to influence a signal in another portion of a model. For example, when
configuring an error rate calculator, you must indicate the delay between the
transmitter and the receiver. If you miscalculate the delay, then the error rate
calculator processes mismatched pairs of data and consequently returns a
meaningless result.

This section illustrates the computation of delays in multirate models and in
models where the total delay in a sequence of blocks comprises multiple delays
from individual blocks. The section covers the following topics:

• “Sources of Delays” on page 2-4

• “ADSL Demo Model” on page 2-4

• “Punctured Coding Model” on page 2-9

Other References for Delays
Other parts of this documentation set also discuss delays. For information
about delays in specific types of blocks, see

• “Delays in Digital Modulation” on page 1-97

• “Delays of Convolutional Interleavers” on page 1-77

• Viterbi Decoder block reference page

• Derepeat block reference page

For discussions of delays in simpler examples than the ones in this section, see

• “Building a Frequency-Shift Keying Model” in Getting Started with the
Communications Blockset. (See “Delays in the Model”.)

• “Example: A Rate 2/3 Feedforward Encoder” on page 1-56

• “Example: Soft-Decision Decoding” on page 1-60. (See “Delay in Received
Data” on page 1-64.)

• “Example: Delays from Demodulation” on page 1-99

2 Modeling Communication Systems

2-4

Sources of Delays
While some blocks are able to determine their current output value using only
the current input value, other blocks need input values from multiple time
steps to compute the current output value. In the latter situation, the block
incurs a delay. An example of this case is when the Derepeat block must
average five samples from a scalar signal. The block must delay computing the
average until it has received all five samples.

In general, delays in your model might come from various sources:

• Digital demodulators

• Convolutional interleavers or deinterleavers

• Viterbi Decoder block

• Buffering, downsampling, derepeating, and similar signal operations

• Explicit delay blocks, such as Integer Delay and Variable Integer Delay

• Filters

The following discussions include some of these sources of delay.

ADSL Demo Model
This section examines the asymmetric digital subscriber line (ADSL)
demonstration model and aims to compute the correct Receive delay
parameter value in each of two Error Rate Calculation blocks in the model. The
model includes delays from buffering, convolutional interleaving, and an
explicit delay block. To open the ADSL demo model, type adsl_sim in the
MATLAB Command Window.

In the ADSL demo, data follows one of two parallel paths, each of which incurs
a different delay. One path includes a convolutional interleaver and
deinterleaver, while the other does not. Near the end of each path is an Error
Rate Calculation block, whose Receive delay parameter must reflect the delay
of the given path. The rest of the discussion makes an observation about frame
periods in the model and then considers separately the path for noninterleaved
data and the path for interleaved data.

Frame Periods in the Model
Before searching for individual delays, first observe that most signal lines
throughout the model share the same frame period; to see this, enable the

Computing Delays

2-5

Sample time colors option from the model window’s Format menu. This
option colors blocks and signals according to their frame periods (or sample
periods, in the case of sample-based signals). All signal lines at the top level of
the model are the same color, which means that they share the same frame
period. As a consequence, frames are a convenient unit for measuring delays in
the blocks that process these signals. In the computation of the cumulative
delay along a path, the weighted average (of numbers of frames, weighted by
each frame’s period) reduces to a sum.

The four icons labeled Scrambler & FEC or Descrambler & FEC are yellow
because they represent multirate systems. If you double-click any of those
icons, you can see that inside the subsystems are yellow Buffer blocks whose
output signals are the same color as the signals at the top level of the model.
As a consequence, you can use output frames as a unit for measuring delays in
the Buffer blocks and then add the result to any top-level delays when
computing the cumulative delay.

Path for Noninterleaved Data
In the transmitter portion of the model, the noninterleaved path is the upper
branch, shown in yellow below. Similarly, the noninterleaved path in the
receiver portion of the model is the upper branch. Near the end of the
noninterleaved path is an Error Rate Calculation block that computes the
value labeled Non Interleaved BER.

The table below summarizes the delays in the path for noninterleaved data.
Subsequent paragraphs explain the delays in more detail and explain why the

2 Modeling Communication Systems

2-6

total delay relative to the Error Rate Calculation block is two frames, or 1552
samples.

Scrambler & FEC. The Scrambler & FEC icon represents the following
subsystem.

Notice that the subsystem includes an Unbuffer and Buffer pair. Buffering
scalar data into vectors causes a delay because the block cannot produce fully
meaningful output until it has received the specified number of samples from
the scalar input stream. The set of parameters in the Buffer block causes the
block to incur a delay of 112 samples, which represent one output frame.

Descrambler & FEC. The noninterleaved path in the receiver portion of the model
contains a corresponding Descrambler & FEC subsystem, which also contains
a Buffer block. Like the transmitter’s Buffer block, the receiver’s Buffer block
incurs a delay of one output frame.

Summing the Delays. No other blocks in the noninterleaved path of the demo
cause any delays. Adding the two one-frame delays from the two Buffer blocks
indicates that the total delay in the noninterleaved path is two frames.

Block Delay, in Output
Samples from
Individual Block

Delay, in
Frames

Delay, in Input
Samples to Error Rate
Calculation Block

Buffer, in
Scrambler &
FEC subsystem

112 1 776

Buffer, in
Descrambler &
FEC subsystem

112 1 776

Total N/A 2 1552

Computing Delays

2-7

Total Delay Relative to Error Rate Calculation Block. The Error Rate Calculation block
that computes the value labeled Non Interleaved BER requires a Receive
delay parameter value that is equivalent to two frames. The Receive delay
parameter is measured in samples and each input frame to the Error Rate
Calculation block contains 776 samples. Also, the frame period at the Buffer
block’s outport equals the frame period at the Error Rate Calculation block’s
inport. Therefore, the correct value for the Receive delay parameter is 1552
samples.

Path for Interleaved Data
In the transmitter portion of the model, the interleaved path is the lower
branch, shown in yellow below. Similarly, the interleaved path in the receiver
portion of the model is the lower branch. Near the end of the interleaved path
is an Error Rate Calculation block that computes the value labeled
Interleaved BER.

The following table summarizes the delays in the path for noninterleaved data.
Subsequent paragraphs explain the delays in more detail and explain why the

2 Modeling Communication Systems

2-8

total delay relative to the Error Rate Calculation block is three frames, or 2328
samples.

Buffer Blocks. Like the noninterleaved path, the interleaved path contains a
Buffer block in the transmitter and another Buffer block in the receiver.
Together, these blocks cause a delay of two frames.

Interleaving. Unlike the noninterleaved path, the interleaved path contains a
Convolutional Interleaver block in the transmitter and a Convolutional
Deinterleaver block in the receiver. The delay of the interleaver/deinterleaver
pair is the product of the Rows of shift registers parameter, the Register
length step parameter, and one less than the Rows of shift registers
parameter. In this case, the delay of the interleaver/deinterleaver pair turns
out to be 5*2*4 = 40 samples.

Integer Delay Block. The receiver portion of the interleaved path also contains an
Integer Delay block, whose purpose is explained in “Aligning Words of a Block
Code” on page 2-17. This block explicitly causes a delay of 800 samples having
the same sample time as the 40 samples of delay from the

Block Delay, in
Output Samples
from Individual
Block

Delay, in
Frames

Delay, in Input
Samples to Error
Rate Calculation
Block

Buffer, inside
Scrambler & FEC
subsystem

112 1 776

Buffer, inside
Descrambler &
FEC subsystem

112 1 776

Convolutional
Interleaver and
Convolutional
Deinterleaver pair

40 1 (combined) 776 (combined)

Integer Delay 800

Total N/A 3 2328

Computing Delays

2-9

interleaver/deinterleaver pair. Therefore, the total delay from interleaving,
deinterleaving, and the explicit delay is 840 samples. These 840 samples make
up one frame of data leaving the Integer Delay block.

Summing the Delays. No other blocks in the interleaved path of the demo cause
any delays. Adding the delays from the Buffer blocks, the
interleaver/deinterleaver pair, and the Integer Delay block indicates that the
total delay in the interleaved path is three frames.

Total Delay Relative to Error Rate Calculation Block. The Error Rate Calculation block
that computes the value labeled Interleaved BER requires a Receive delay
parameter value that is equivalent to three frames. The Receive delay
parameter is measured in samples and each input frame to the Error Rate
Calculation block contains 776 samples. Also, the frame rate at the outports of
all delay-causing blocks in the interleaved path equals the frame rate at the
inport of the Error Rate Calculation block. Therefore, the correct value for the
Receive delay parameter is 2328 samples.

Punctured Coding Model
This section discusses a punctured coding model that includes delays from
decoding, downsampling, and filtering. Two Error Rate Calculation blocks in
the model work correctly if and only if their Receive delay parameters
accurately reflect the delays in the model. To open the model, type punctdoc in
the MATLAB Command Window.

2 Modeling Communication Systems

2-10

Frame Periods in the Model
Before searching for individual delays, first enable the Sample time colors
option from the model window’s Format menu. Notice that only the rightmost
portion of the model differs in color from the rest of the model. This means that
all signals and blocks in the model except those in the rightmost edge share the
same frame period. As a consequence, frames at this predominant frame rate
are a convenient unit for measuring delays in the blocks that process these
signals. In the computation of the cumulative delay along a path, the weighted
average (of numbers of frames, weighted by each frame’s period) reduces to a
sum.

The yellow blocks represent multirate systems, while the AWGN Channel
block and the Rx Filter block run at a higher frame rate than most other blocks
in the model.

Inner Error Rate Block
The block labeled Inner Error Rate, located near the center of the model, is a
copy of the Error Rate Calculation block from the Sinks library. It computes the
bit error rate for the portion of the model that excludes the punctured
convolutional code. In the portion of the model between this block’s two input
signals, delays come from the Tx Filter, Rx Filter, and Downsample blocks, as

Computing Delays

2-11

summarized in the following table. This section explains why the Inner Error
Rate block’s Receive delay parameter is the total delay value of 16.

Tx Filter Block. The block labeled Tx Filter is a copy of the FIR Interpolation
block in the DSP Blockset. It upsamples the input signal by a factor of 8 and
applies a square-root raised cosine filter. The value of the block’s FIR filter
coefficients parameter is

rcosine(1, 8, 'sqrt', 0.5, 3)

where the ratio 3/1 indicates that the delay caused by the filter is 3 times the
sample period (not frame period) of the signal before upsampling. Because the
input signal is not upsampled and is a 2-sample frame at the model’s
predominant frame rate, the delay is equivalent to 3/2 frames at the
predominant frame rate.

Rx Filter Block. The block labeled Rx Filter is another copy of the FIR
Interpolation block, but it differs from the Tx Filter block in that its
Interpolation factor parameter is 1 instead of 8. The values of that parameter
differ in the two filter blocks because the Tx Filter block needs to upsample the
signal to prepare for transmission along the channel, while the Rx Filter
processes a signal that is already upsampled and that needs no further
upsampling. Thus the Rx Filter block merely applies a square-root raised
cosine filter without upsampling its input data. As in the case of the Tx Filter
block, the delay caused by the Rx Filter block is 3 times the sample period (not
frame period) of the signal without upsampling. The frame rate without
upsampling is just the model’s predominant frame rate, so the delay of the Rx

Block Delay, in
Samples at
Individual Block

Delay, in Frames
at Predominant
Frame Rate

Delay, in Input
Samples to Inner
Error Rate Block

Tx Filter 3 3/2 6

Rx Filter 3 (relative to
input of Tx Filter
block)

3/2 6

Downsample 2 1 4

Total N/A 4 16

2 Modeling Communication Systems

2-12

Filter block is the same as that of the Tx Filter block. That is, the delay is
equivalent to 3/2 frames at the predominant frame rate.

Downsample Block. The Downsample block reduces the frame rate of the filtered
received data. Its delay is one output frame, as stated on the reference page for
the Downsample block. Because the frame rate at the outport equals the
model’s predominant frame rate, the delay of the Downsample block is one
frame at the predominant frame rate.

Summing the Delays. No other blocks in the portion of the model between the
Inner Error Rate block’s two input signals cause any delays. Adding the two
3/2-frame delays from the two filter blocks with the one-frame delay from the
Downsample block indicates that the total delay in this portion of the model is
four frames.

Total Delay Relative to Inner Error Rate Block. The Inner Error Rate block requires a
Receive delay parameter value that is equivalent to four frames. The Receive
delay parameter is measured in samples and each input frame to the Inner
Error Rate block contains four samples. Therefore, the correct value for the
Receive delay parameter is 16 samples.

Outer Error Rate Block
The block labeled Outer Error Rate, located near the center of the model, is a
copy of the Error Rate Calculation block from the Sinks library. It computes the
bit error rate for the entire model, including the punctured convolutional code.
Delays come from the Tx Filter, Rx Filter, Downsample, and Viterbi Decoder
blocks, as summarized in the table below. This section explains why the Outer
Error Rate block’s Receive delay parameter is the total delay value of 108.

Block Delay, in
Samples at
Individual Block

Delay, in Frames
at Predominant
Frame Rate

Delay, in Input
Samples to Outer
Error Rate Block

Tx Filter 3 3/2 9/2

Rx Filter 3 (relative to
input of Tx Filter
block)

3/2 9/2

Downsample 2 1 3

Computing Delays

2-13

Filter and Downsample Blocks. The Tx Filter, Rx Filter, and Downsample blocks
have a combined delay of four frames at the model’s predominant frame rate.
For details, see “Inner Error Rate Block” on page 2-10.

Viterbi Decoder Block. The Viterbi Decoder block decodes the convolutional code,
and the algorithm’s use of traceback path causes a delay. The block processes
a frame-based signal and has the Operation mode set to Continuous.
Therefore, the delay, measured in output samples, is equal to the Traceback
depth parameter value of 96. (The delay amount is stated on the reference page
for the Viterbi Decoder block.) Because the output of the Viterbi Decoder block
is precisely one of the inputs to the Outer Error Rate block, it is easier to
consider the delay to be 96 samples rather than to convert it to an equivalent
number of frames.

Total Delay Relative to Outer Error Rate Block. The Outer Error Rate block requires a
Receive delay parameter value that is equivalent to four frames plus 96
samples. The Receive delay parameter is measured in samples and each input
frame to the Outer Error Rate block contains three samples. Therefore, the
correct value for the Receive delay parameter is 4*3+96 = 108 samples.

Note The Outer Error Rate block accounts for the 4-frame delay from
filtering and downsampling by expressing it as 12 samples when computing
the Receive delay parameter. Recall that the Inner Error Rate block accounts
for the same 4-frame delay but expresses it as 16 samples, not 12. The
expressions differ because the two error rate blocks express delays in terms of
samples rather than frames, yet process signals of different sizes.

Viterbi
Decoder

96 32 96

Total N/A 36 108

Block Delay, in
Samples at
Individual Block

Delay, in Frames
at Predominant
Frame Rate

Delay, in Input
Samples to Outer
Error Rate Block

2 Modeling Communication Systems

2-14

Manipulating Delays
Some models require you not only to compute delays but to manipulate them.
For example, if a model incurs a delay between a block encoder and its
corresponding decoder, the decoder might misinterpret the boundaries
between the code words that it receives and, consequently, return meaningless
results. More generally, such a situation can arise when the path between
paired components of a block-oriented operation (such as interleaving, block
coding, or bit-to-integer conversions) includes a delay-causing operation (such
as those listed in “Sources of Delays” on page 2-4). To avoid this problem, you
can insert an additional delay of an appropriate amount between the encoder
and decoder. If the model also computes an error rate, then the additional delay
affects that process as described in “Computing Delays” on page 2-3. This
section uses examples to illustrate the purpose, methods, and implications of
manipulating delays in a variety of circumstances. The subsections are:

• “Delays and Alignment Problems” on page 2-14

• “Aligning Words of a Block Code” on page 2-17

• “Aligning Words for Interleaving” on page 2-19

• “Aligning Words of a Concatenated Code” on page 2-21

Delays and Alignment Problems
This section illustrates the sensitivity of block-oriented operations to delays,
using a small model that aims to capture the essence of the problem in a simple
form. Open the model by typing alignmentdoc in the MATLAB Command
Window. Then run the simulation so that the Display blocks show relevant
values.

Manipulating Delays

2-15

In this model, two coding blocks create and decode a block code. Two copies of
the Integer Delay block create a delay between the encoder and decoder. The
two Integer Delay blocks have different purposes in this illustrative model:

• The Inherent Delay block represents any delay-causing blocks that might
occur in a model between the encoder and decoder. See “Sources of Delays”
on page 2-4 for a list of possibilities that might occur in a more realistic
model.

• The Added Delay block is an explicit delay that you insert to produce an
appropriate amount of total delay between the encoder and decoder. For
example, the adsl_sim model contains an Integer Delay block that serves
this purpose.

Observing the Problem
By default, the Delay parameters in the Inherent Delay and Added Delay
blocks are set to 1 and 0, respectively. This represents the situation in which
some operation causes a one-bit delay between the encoder and decoder, but
you have not yet tried to compensate for it. The total delay between the encoder
and decoder is one bit. You can see from the blocks labeled Word and Delayed
Word that the code word that leaves the encoder is shifted downward by one bit
by the time it enters the decoder. The decoder receives a signal in which the
boundary of the code word is at the second bit in the frame, instead of
coinciding with the beginning of the frame. That is, the code words and the
frames that hold them are not aligned with each other.

2 Modeling Communication Systems

2-16

This nonalignment is problematic because the Hamming Decoder block
assumes that each frame begins a new code word. As a result, it tries to decode
a word that consists of the last bit of one output frame from the encoder
followed by the first six bits of the next output frame from the encoder. You can
see from the Error Rate Display block that the error rate from this decoding
operation is close to 1/2. That is, the decoder rarely recovers the original
message correctly.

To use an analogy, suppose someone corrupts a paragraph of prose by moving
each period symbol from the end of the sentence to the end of the first word of
the next sentence. If you try to read such a paragraph while assuming that a
new sentence begins after a period, then you misunderstand the start and end
of each sentence. As a result, you might fail to understand the meaning of the
paragraph.

To see how delays of different amounts affect the decoder’s performance, vary
the values of the Delay parameter in the Added Delay block and the Receive
delay parameter in the Error Rate Calculation block and then run the
simulation again. Many combinations of parameter values produce error rates
that are close to 1/2. Furthermore, if you examine the transmitted and received
data by typing

[tx rx]

in the MATLAB Command Window, then you might not detect any correlation
between the transmitted and received data.

Correcting the Delays
Some combinations of parameter values produce error rates of zero because the
delays are appropriate for the system. For example:

• In the Added Delay block, set Delay to 6.

• In the Error Rate Calculation block, set Receive delay to 4.

• Run the simulation.

• Enter [tx rx] in the MATLAB Command Window.

The top number in the Error Rate Display block shows that the error rate is
zero. That is, the decoder recovered each transmitted message correctly.
However, the Word and Displayed Word blocks do not show matching values.
It is not immediately clear how the encoder’s output and the decoder’s input are
related to each other. To clarify the matter, examine the output in the

Manipulating Delays

2-17

MATLAB Command Window. Notice that the sequence along the first column
(tx) appears in the second column (rx) four rows later. To confirm this, enter

isequal(tx(1:end-4),rx(5:end))

in the MATLAB Command Window and observe that the result is 1 (true). This
last command tests whether the first column matches a shifted version of the
second column. Shifting the MATLAB vector rx by four rows corresponds to the
Error Rate Calculation block’s behavior when its Receive delay parameter is
set to 4.

To summarize, these special values of the Delay and Receive delay
parameters work for these reasons:

• Combined, the Inherent Delay and Added Delay blocks delay the encoded
signal by a full code word rather than by a partial code word. Thus the
decoder is correct in its assumption that a code word boundary falls at the
beginning of an input frame, and decodes the words correctly. However, the
delay in the encoded signal causes each recovered message to appear one
word later; that is, four bits later.

• The Error Rate Calculation block compensates for the one-word delay in the
system by comparing each word of the transmitted signal with the data four
bits later in the received signal. In this way, it correctly concludes that the
decoder’s error rate is zero.

Note These are not the only parameter values that produce error rates of
zero. Because the code in this model is a (7, 4) block code and the inherent
delay value is 1, you can set the Delay and Receive delay parameters to 7k-1
and 4k, respectively, for any positive integer k. It is important that the sum of
the inherent delay (1) and the added delay (7k-1) is a multiple of the code
word length (7).

Aligning Words of a Block Code
The ADSL demo, discussed in “ADSL Demo Model” on page 2-4, illustrates the
need to manipulate the delay in a model so that each frame of data that enters
a block decoder has a code word boundary at the beginning of the frame. The
need arises because the path between a block encoder and block decoder

2 Modeling Communication Systems

2-18

includes a delay-causing convolutional interleaving operation. This section
explains why the model uses an Integer Delay block to manipulate the delay
between the convolutional deinterleaver and the block decoder, and why the
Integer Delay block is configured as it is. To open the ADSL demo model, type
adsl_sim in the MATLAB Command Window.

Misalignment of Code Words
Notice in the ADSL demo that the Convolutional Interleaver and
Convolutional Deinterleaver blocks appear after the Scrambler & FEC
subsystems but before the Descrambler & FEC subsystems. These two
subsystems contain blocks that perform Reed-Solomon coding, and the coding
blocks expect each frame of input data to start on a new word rather than in
the middle of a word.

As discussed in “Path for Interleaved Data” on page 2-7, the delay of the
interleaver/deinterleaver pair is 40 samples. However, the input to the
Descrambler & FEC subsystem is a frame of size 840, and 40 is not a multiple
of 840. Consequently, the signal that exits the Convolutional Deinterleaver
block is a frame whose first entry does not represent the beginning of a new
code word. As described in “Observing the Problem” on page 2-15, this
misalignment, between code words and the frames that contain them, hinders
the decoder.

Inserting a Delay to Correct the Alignment
The ADSL demo solves the problem by moving the word boundary from the
41st sample of the 840-sample frame to the first sample of a successive frame.
Moving the word boundary is equivalent to delaying the signal. To this end, the
demo contains an Integer Delay block between the Convolutional
Deinterleaver block and the Descrambler & FEC subsystem.

The Delay parameter in the Integer Delay block is 800 because that is the
minimum number of samples required to shift the 41st sample of one
840-sample frame to the first sample of the next 840-sample frame. In other
words, the sum of the inherent 40-sample delay (from the

Manipulating Delays

2-19

interleaving/deinterleaving process) and the artificial 800-sample delay is a
full frame of data, not a partial frame.

Note that this 800-sample delay has implications for other parts of the model,
specifically, the Receive delay parameter in one of the Error Rate Calculation
blocks. For details about how the delay influences the value of that parameter,
see “Path for Interleaved Data” on page 2-7.

Aligning Words for Interleaving
This section describes an example that manipulates the delay before a
deinterleaver, because the path between the interleaver and deinterleaver
includes a delay from demodulation. To open the model, type gmskintdoc in the
MATLAB Command Window.

The model includes block coding, helical interleaving, and GMSK modulation.
The table below summarizes the individual block delays in the model.

Block Delay, in Output
Samples from
Individual Block

Reference

GMSK
Demodulator
Baseband

16 “Delays in Digital
Modulation” on page 1-97

2 Modeling Communication Systems

2-20

Misalignment of Interleaved Words
The demodulation process in this model causes a delay between the interleaver
and deinterleaver. Because the deinterleaver expects each frame of input data
to start on a new word, it is important to ensure that the total delay between
the interleaver and deinterleaver includes one or more full frames but no
partial frames.

The delay of the demodulator is 16 output samples. However, the input to the
Helical Deinterleaver block is a frame of size 21, and 16 is not a multiple of 21.
Consequently, the signal that exits the GMSK Demodulator Baseband block is
a frame whose first entry does not represent the beginning of a new word. As
described in “Observing the Problem” on page 2-15, this misalignment,
between words and the frames that contain them, hinders the deinterleaver.

Inserting a Delay to Correct the Alignment
The model moves the word boundary from the 17th sample of the 21-sample
frame to the first sample of the next frame. Moving the word boundary is
equivalent to delaying the signal by 5 samples. The Integer Delay block
between the GMSK Demodulator Baseband block and the Helical
Deinterleaver block accomplishes such a delay. The Integer Delay block has its
Delay parameter set to 5.

Combining the effects of the demodulator and the Integer Delay block, the total
delay between the interleaver and deinterleaver is a full 21-sample frame of
data, not a partial frame.

Checking Alignment of Block Code Words
The interleaver and deinterleaver cause a combined delay of 42 samples
measured at the output from the Helical Deinterleaver block. Because the
delayed output from the deinterleaver goes next to a Reed-Solomon decoder
and because the decoder expects each frame of input data to start on a new

Helical
Deinterleaver

42 “Delays of Convolutional
Interleavers” on page 1-77

Integer Delay 5 Integer Delay reference page

Block Delay, in Output
Samples from
Individual Block

Reference

Manipulating Delays

2-21

word, it is important to ensure that the total delay between the encoder and
decoder includes one or more full frames but no partial frames.

In this case, the 42-sample delay is exactly two frames. Therefore, it is not
necessary to insert an Integer Delay block between the Helical Deinterleaver
block and the Binary-Output RS Decoder block.

Computing Delays to Configure the Error Rate Calculation Blocks
The model contains two Error Rate Calculation blocks, labeled Channel Error
Rate and System Error Rate. Each of these blocks has a Receive delay
parameter that must reflect the delay of the path between the block’s Tx and
Rx signals. The table below explains the Receive delay values in the two
blocks.

Aligning Words of a Concatenated Code
This section describes an example that manipulates the delay between the two
portions of a concatenated code decoder, because the first portion includes a
delay from Viterbi decoding while the second portion expects frame boundaries
to coincide with word boundaries. To open the model, type concatdoc in the
MATLAB Command Window. It uses the block and convolutional codes from
the dvbt_sim demo, but simplifies the overall design a great deal.

Block Receive delay
Value

Reason

Channel
Error Rate

16 Delay of GMSK Demodulator Baseband
block, in samples

System
Error Rate

15*3 Three fifteen-sample frames: one frame
from the GMSK Demodulator Baseband
and Integer Delay blocks, and two frames
from the interleaver/deinterleaver pair

2 Modeling Communication Systems

2-22

The model includes a shortened block code and a punctured convolutional code.
All signals and blocks in the model share the same frame period. The following
table summarizes the individual block delays in the model.

Misalignment of Block Code Words
The Viterbi decoding process in this model causes a delay between the Integer
to Bit Converter block and the Bit to Integer Converter block. Because the
latter block expects each frame of input data to start on a new 8-bit word, it is
important to ensure that the total delay between the two converter blocks
includes one or more full frames but no partial frames.

The delay of the Viterbi Decoder block is 136 output samples. However, the
input to the Bit to Integer Converter block is a frame of size 1632.
Consequently, the signal that exits the Viterbi Decoder block is a frame whose
first entry does not represent the beginning of a new word. As described in
“Observing the Problem” on page 2-15, this misalignment, between words and
the frames that contain them, hinders the converter block.

Block Delay, in Output Samples from Individual Block

Viterbi Decoder 136

Integer Delay 1496 (that is, 1632 - 136)

Manipulating Delays

2-23

Note The outer decoder in this model (Integer-Output RS Decoder) also
expects each frame of input data to start on a new code word. Therefore, the
misalignment issue in this model affects many concatenated code designs, not
just those that convert between binary-valued and integer-valued signals.

Inserting a Delay to Correct the Alignment
The model moves the word boundary from the 137th sample of the 1632-sample
frame to the first sample of the next frame. Moving the word boundary is
equivalent to delaying the signal by 1632-136 samples. The Integer Delay block
between the Viterbi Decoder block and the Bit to Integer Converter block
accomplishes such a delay. The Integer Delay block has its Delay parameter
set to 1496.

Combining the effects of the Viterbi Decoder block and the Integer Delay block,
the total delay between the interleaver and deinterleaver is a full 1632-sample
frame of data, not a partial frame.

Computing Delays to Configure the Error Rate Calculation Blocks
The model contains two Error Rate Calculation blocks, labeled Inner Error
Rate and Outer Error Rate. Each of these blocks has a Receive delay
parameter that must reflect the delay of the path between the block’s Tx and
Rx signals. The table below explains the Receive delay values in the two
blocks.

Block Receive
delay Value

Reason

Inner
Error Rate

136 Delay of Viterbi Decoder block, in samples

Outer
Error Rate

188 One 188-sample frame, from the combination
of the inherent delay of the Viterbi Decoder
block and the added delay of the Integer
Delay block

2 Modeling Communication Systems

2-24

Comparing Baseband and Passband Simulation
This section uses a pair of examples to illustrate the differences between
baseband and passband methods for conducting BER analysis. This section
presents the passband case first because it might be more familiar to you.
However, the equivalent baseband simulation, presented second, offers many
advantages over the passband simulation. Compared to the passband
simulation, the baseband simulation

• Takes much less time to process the same number of symbols. Furthermore,
baseband simulation can use frame-based processing to make the simulation
even faster.

• Achieves the same error rate.

• Is less likely to suffer from poor choices of parameters.

This discussion comprises these sections:

• “Running a Passband Simulation” on page 2-24

• “Running an Equivalent Baseband Simulation” on page 2-25

• “Generating Error Curves” on page 2-26

• “Speed of Baseband Versus Passband Models” on page 2-28

• “Comparing Baseband and Passband Signals” on page 2-30

• “Troubleshooting a Passband Simulation” on page 2-32

To learn the mathematical differences between baseband and passband
representations of a signal, see “Baseband Modulated Signals Defined” on
page 1-82 or a basic communications textbook.

Running a Passband Simulation
This section introduces a passband simulation model that shows the error rate
of QPSK modulation over an AWGN channel with a varying noise level. The
example in the next section, “Running an Equivalent Baseband Simulation” on
page 2-25, achieves the same objective but runs more quickly because it uses
baseband simulation.

To open the passband example model, type pbmoddoc in the MATLAB
Command Window. Then you can run the simulation by choosing Start from
the model window’s Simulation menu.

Comparing Baseband and Passband Simulation

2-25

Running an Equivalent Baseband Simulation
To open a baseband simulation that computes the same error rates as in the
passband model of the previous section, type bbmoddoc in the MATLAB
Command Window. Then you can run the simulation by choosing Start from
the model window’s Simulation menu.

2 Modeling Communication Systems

2-26

Complex Baseband Modulated Signal
Notice that the signal lines from the M-PSK Modulator Baseband block to the
AWGN Channel block, and from the AWGN Channel block to the M-PSK
Demodulator Baseband block have an annotation that says double (c). The
(c) portion indicates that the baseband modulated signal is a complex signal,
not a real signal. By contrast, the unmodulated signal is a real signal. The
meaning of the complex modulated signal appears in “Baseband Modulated
Signals Defined” on page 1-82.

Differences Between the Passband and Baseband Examples
The differences in construction between this model and the passband model,
pbmoddoc, of the previous section are

• This model uses baseband modulation blocks (M-PSK Modulator Baseband,
M-PSK Demodulator Baseband) instead of passband modulation blocks.

• The two To Workspace blocks in this model use variable names that differ
from those in the passband model, so that the data sets from the two models
do not conflict with each other.

• The Error Rate Calculation block in this model uses a Receive delay
parameter of 0 instead of 1, because baseband demodulation causes no delay,
while passband demodulation causes a one-sample delay.

Performance differences between the two models are discussed in “Speed of
Baseband Versus Passband Models” on page 2-28.

Generating Error Curves
To plot error rates as a function of noise level using the baseband simulation,
execute the following code in MATLAB. The plot includes both the theoretical
error rates and the error rates from running the simulation.

modelname='bbmoddoc';

EbNoVec = [0:8];
EsNoVec = EbNoVec + 10*log10(2);
numsims = length(EsNoVec);
SERVec = zeros(numsims,3);

% Set up model so it runs until 100 errors occur.
% Also, remove Display block so model runs more quickly.

Comparing Baseband and Passband Simulation

2-27

load_system(modelname);
set_param(gcs,'StopTime','inf');
set_param([gcs '/Error Rate Calculation'],'stop','on');
delete_line(modelname,'Error Rate Calculation/1','Display/1')
delete_block([modelname '/Display'])

% For each noise level, run the model and save the error data.
for n = 1:numsims
 modex_EsNodB = EsNoVec(n);
 disp(['Iteration #' num2str(n) ' of ' num2str(numsims)]);
 sim(modelname);
 SERVec(n,:) = base_ser_data;
end

% Revert to original parameters in model.
close_system(modelname,0); % Close without saving changes.
open_system(modelname);

% Compute theoretical values.
linEbNoVec = 10 .^ (0.1 .* EbNoVec);
temp = 0.5.*erfc((sqrt(2.*linEbNoVec))./sqrt(2));
ser = temp.*(2 - temp);

% Plot actual and theoretical values on one graph.
figure;
semilogy(EbNoVec,SERVec(:,1),'r-*',EbNoVec,ser,'b-x');
legend('Actual','Theoretical');
xlabel('Eb/No (dB)'); ylabel('Error Rate');
title('Symbol Error Rates for QPSK');

The figure below shows the error curves. Notice that the values from the
baseband simulation agree with the theoretical values.

2 Modeling Communication Systems

2-28

Using the Passband Model to Generate Error Curves
If you want to generate error curves using the passband model, you can use the
preceding code after making these modifications:

• Change the definition modelname='bbmoddoc'; to modelname='pbmoddoc';.

• Change the variable name base_ser_data to pass_ser_data.

Note The code might take a long time to complete its computations and
produce the plot.

The resulting plot looks very similar to the plot produced using the baseband
model, because baseband and passband simulation are equivalent for this
purpose.

Speed of Baseband Versus Passband Models
The passband and baseband models produce error rates that differ from each
other by less than 1%. However, the passband model takes a significantly
longer time to process the same amount of data. Although the actual speed

Comparing Baseband and Passband Simulation

2-29

depends on your system, the relative times in the tables below can serve as a
guide. Each table shows the approximate clock time that simulations take to
run, expressed as a multiple of the clock time that the model bbmoddoc takes to
run. Notice these general trends:

• Baseband simulation is considerably faster than passband simulation. The
difference in speed is especially dramatic when the carrier frequency in the
passband simulation is high.

• Baseband simulation using large frames is faster than baseband simulation
that does not use frames.

To time simulations on your own computer, use the functions tic, toc, and sim.

Relative Clock Times Corresponding to 1 Second of Simulation Time

Simulation Relative Time

bbmoddoc (baseband) 1

pbmoddoc (passband) 52

pbmoddoc (passband), after multiplying carrier frequency
and modulated signal sample time by 10 and 1/10,
respectively

916

Relative Clock Times Corresponding to 3 Seconds of Simulation Time

Simulation Relative Time

bbmoddoc (baseband) 1

pbmoddoc (passband) 100

bbmoddoc (baseband), using frame-based processing with
512-sample frames

0.28

2 Modeling Communication Systems

2-30

Comparing Baseband and Passband Signals
This section discusses the relationship between the baseband and passband
models pbmoddoc and bbmoddoc. In particular, it shows that even though the
baseband modulated signal is a complex-valued signal and not a real-valued
sinusoid, it is equivalent to the real sinusoid that the passband model
processes. While the section “Baseband Modulated Signals Defined” on
page 1-82 gives a theoretical description of the equivalence between baseband
and passband signals, this discussion uses a more hands-on approach; using
the example model, this discussion shows how the baseband algorithm forms
part of the passband algorithm and how the conversion from baseband to
passband representation occurs.

Baseband Algorithm Within the Passband Algorithm
One way to see how the passband and baseband modulator blocks are related
to each other is to look inside the passband algorithm. Open the passband
model by typing pbmoddoc in the MATLAB Command Window and then follow
these instructions to open the subsystem that the passband modulator block
represents:

1 In the top of the model window, click the M-PSK Modulator Passband block.

2 From the model window’s Edit menu, choose Look under mask.

Relative Clock Times to Execute Code as in “Generating Error Curves”

Simulation Relative Time

bbmoddoc (baseband) 1

pbmoddoc (passband) 100

bbmoddoc (baseband), using frame-based processing with
512-sample frames

.30

Comparing Baseband and Passband Simulation

2-31

If you double-click the M-PSK icon in the subsystem and look in the title bar of
the dialog box, then you can see that the block is the M-PSK Modulator
Baseband block from the digital baseband phase modulation library of the
blockset. This indicates that the baseband algorithm forms a part of the
passband algorithm.

Conversion from Baseband to Passband Representation
The Frequency Up-Converter block represents another part of the passband
modulation algorithm. This block converts a baseband modulated signal into
an equivalent passband modulated signal. To see the conversion in more detail,
follow these instructions:

1 In the subsystem window, click the Frequency Up-Converter block.

2 From the model window’s Edit menu, choose Look under mask.

Studying this block diagram from left to right, you can see that it multiplies the
real and imaginary parts of the baseband modulated signal by

and

2 2πfct θ+()cos

2 Modeling Communication Systems

2-32

respectively, and then adds the results together. Here and θ are the Carrier

frequency and Carrier initial phase parameters, respectively, in the M-PSK
Modulator Passband block. The result of this process is the real-valued
sinusoidal signal that you would expect from a passband modulator.

Troubleshooting a Passband Simulation
Passband modulation can be difficult to use because it requires you to choose
appropriate values for carrier-related parameters and because it requires
Simulink to sample signals at a high sampling rate. These factors can reduce
the accuracy and speed of a passband simulation. The speed is particularly
noticeable if you need to process large amounts of data before the results are
meaningful. These sections offer tips that might help you improve the accuracy
and/or speed of your simulation:

• “Use Baseband Simulation”

• “Decrease the Sample Time” on page 2-33

• “Increase the Carrier Frequency” on page 2-34

• “Use the Simulink Accelerator to Increase Speed” on page 2-34

Use Baseband Simulation
Converting your model to a baseband simulation might improve the
simulation’s accuracy and/or speed substantially. Baseband modulation blocks
do not use carrier-related parameters and, therefore, do not suffer from poor
choices of such parameters. If you use baseband simulation, you can safely
ignore the following sections, “Decrease the Sample Time” and “Increase the
Carrier Frequency”.

Also, baseband simulations usually run faster than passband simulations
because baseband simulations do not involve sampling a carrier signal at a
high rate. The difference in speed might be dramatic.

Frame-based processing, which is available with baseband but not passband
blocks, might further speed your baseband simulation. You can typically
experiment with frame-based processing by varying parameters in the source
blocks, while most other blocks in the model can remain as they are. For
example, you can switch to frame-based processing in the example model

2� 2πfct θ+()sin

fc

Comparing Baseband and Passband Simulation

2-33

bbmoddoc by changing two parameters in the Random Integer Generator block.
Specifically, check the Frame-based outputs check box and set the Samples
per frame parameter to an integer greater than 1 (such as 20).

Many algorithms can be simulated adequately at baseband. For example, to
model the carrier frequency offset in a baseband simulation, multiply the
transmitted baseband signal by a complex sinusoid. Because this sinusoid
would typically have a much lower frequency than the carrier frequency, such
a model is still less computationally intensive to simulate than an equivalent
passband simulation would be.

Some situations require passband simulation, such as investigating the effects
of radio frequency distortion. Even in such cases, you might be able to model
part of the system at baseband initially and then switch to passband when you
focus on the aspects of the system that require passband simulation.

Decrease the Sample Time
If you get results from a passband simulation that do not seem to match
theoretical results, it could be that the sampling rate of the passband
modulated signal is not sufficiently high. The sampling rate is the reciprocal of
the sample time. You should decrease the sample time of the passband
modulated signal, run the simulation again, and check the results. This sample
time is the Output sample time parameter in digital passband modulator
blocks and the Input sample time parameter in digital passband demodulator
blocks.

After you decrease the sample time, the simulation might run more slowly.

Example of Excessive Sample Time of Modulated Signal. In the example model
pbmoddoc, the sample time of the modulated signal is modex_Td, while the
sample time of the unmodulated signal is modex_Ts. If you assign

modex_Td = modex_Ts/32;

in the MATLAB Command Window and run the simulation, the error rate
shown in the Display block is over 0.0066. This error rate is more than
one-third greater than it was before making this parameter change. The
simulation results no longer agree with the theoretical expected results
because the sample time modex_Td is too large compared to the sample time of
the data. More specifically, the poorly chosen sample times cause aliasing of
the signal spectrum in the frequency domain.

2 Modeling Communication Systems

2-34

Increase the Carrier Frequency
If you get results from a passband simulation that do not seem to match
theoretical results, it could be that the carrier frequency for passband
modulation is not sufficiently high relative to the sampling frequency of the
unmodulated signal. You should increase the Carrier frequency parameter of
the modulator and demodulator blocks, run the simulation again, and check
the results.

After you increase the carrier frequency, you might need to increase the
sampling rate of the passband modulated signal to compensate.

Example of Insufficient Carrier Frequency. In the example model pbmoddoc, the
carrier frequency of the modulated signal is modex_fc. Suppose you make the
carrier frequency (modex_fc) four times the sampling frequency of the
unmodulated signal (modex_Ts), and then use the inequalities on the
modulation block’s reference page to determine a threshold value for the
modulated signal’s sampling rate. For example, you might choose

modex_fc = 4/modex_Ts;
modex_Td = modex_Ts/12;

These parameter values satisfy the inequalities and the simulation runs
relatively quickly. However, the parameter values cause the model to produce
an error rate of over 0.016, which is more than twice the theoretical expected
result.

Note Although satisfying certain inequalities involving the passband
modulation block’s parameters is necessary for the block to operate, that alone
is not sufficient for the block to produce meaningful results.

Use the Simulink Accelerator to Increase Speed
If you have access to the Simulink Accelerator, you can use it to make your
simulation run more quickly. The Simulink Accelerator is part of the Simulink
Performance Tools product.

3

Demonstration Models

Punctured Convolutional Coding Demo 3-2

Adaptive Equalization Demo 3-9

CPM Phase Tree Demo 3-11

GMSK vs. MSK Demo 3-14

Filtered QPSK vs. MSK 3-16

Rayleigh Fading Channel Demo 3-17

Gray Coded 8-PSK Demo 3-18

Discrete Multitone Signaling Demo 3-29

Iterative Decoding of a Serially Concatenated
Convolutional Code (SCCC) - Demo 3-31

Phase Noise Effects in 256-QAM - Demo 3-36

PLL-Based Frequency Synthesis Demo 3-38

256-Channel ADSL Demo 3-50

Bluetooth Voice Transmission Demo 3-53

Digital Video Broadcasting Demo 3-56

HiperLAN/2 Demo 3-59

RF Satellite Link Demo 3-61

WCDMA Coding and Multiplexing Demo 3-70

WCDMA End-to-End Physical Layer Demo 3-71

WCDMA Spreading and Modulation Demo 3-79

3 Demonstration Models

3-2

Punctured Convolutional Coding Demo
The complexity of a Viterbi decoder increases rapidly with the code rate.
Puncturing is a technique that allows the encoding and decoding of higher rate
codes using standard rate 1/2 encoders and decoders. This example,
tstconvcod, demonstrates how to use the Convolutional Encoder and Viterbi
Decoder blocks to simulate a punctured coding system.

The example is somewhat similar to the one that appears in “Example:
Soft-Decision Decoding” on page 1-60, which demonstrates convolutional
coding without puncturing. The present example contains two blocks related to
puncturing: Puncture and Insert Zero.

This description of the demo includes these topics:

• “Structure of the Demo” on page 3-2

• “Generating Random Data” on page 3-3

• “Convolutional Encoding” on page 3-3

• “Puncturing” on page 3-4

• “Transmitting Data” on page 3-4

• “Demodulating” on page 3-5

• “Inserting Zeros” on page 3-5

• “Viterbi Decoding” on page 3-6

• “Calculating the Error Rate” on page 3-6

• “Evaluating Results” on page 3-6

• “Bibliography” on page 3-8

Structure of the Demo
This example contains these blocks from the Communications Toolbox.

Communications
Blockset Block

Purpose in Example

Bernoulli Binary
Generator

Create random bits to use as message.

Convolutional Encoder Encode message using the convolutional coding technique.

Punctured Convolutional Coding Demo

3-3

You can get detailed information on each of these blocks by clicking on the
name of the block above.

Generating Random Data
The Bernoulli Binary Generator block, in the Data Sources sublibrary of the
Comm Sources library, produces the information source for this simulation.
The block generates a frame of three random bits at each sample time. The
Samples per frame parameter determines the number of rows of the ouput
frame.

Note: The size of the output frame must be compatible with the length of the
Puncture vector parameter in the Puncture block. See the section
“Puncturing” for more details.

Convolutional Encoding
The Convolutional Encoder, in the Convolutional sublibrary of the Error
Detection and Correction library, encodes the data from the Bernoulli Binary
Generator. This demo uses the same code as detailed in “Example:
Soft-Decision Decoding” on page 1-60.

Puncture Remove bits from the output of the Convolutional Encoder.

BPSK Modulator
Baseband

Modulate encoded message to prepare for transmission.

AWGN Channel Transmit data, adding random numbers to simulate a noisy
channel.

Insert Zero Insert zeros to substitute for bits removed by the Puncture block.

Viterbi Decoder Decode the convolutional code using the Viterbi algorithm.

Error Rate Calculation Compute the proportion of discrepancies between original and
recovered messages.

Communications
Blockset Block

Purpose in Example

3 Demonstration Models

3-4

Puncturing
The Puncture block, in the Sequence Operations sublibrary of the Basic Comm
Functions library, carries out the puncturing. The Puncture block periodically
removes bits from the encoded bit stream, thereby increasing the code rate.

The puncture pattern is specified by the Puncture vector parameter in the
mask. The puncture vector is a binary column vector. A one indicates that the
bit in the corresponding position of the input vector is sent to the output vector,
while a zero indicates that the bit is removed.

For example, to create a rate 3/4 code from the rate 1/2, constraint length 7
convolutional code, the optimal puncture vector is [1 1 0 1 1 0].' (where the
.' after the vector indicates the transpose). Bits in positions 1, 2, 4 and 5 are
transmitted, while bits in positions 3 and 6 are removed. Now, for every 3 bits
of input, the punctured code generates 4 bits of output (as opposed to the 6 bits
produced before puncturing). This makes the rate 3/4.

Note In frame-based processing, the length of the puncture vector must
divide the length of the input frame.

In this example, the output from the Bernoulli Binary Generator is a column
vector of length 3. Since the rate 1/2 Convolutional Encoder doubles the length
of each vector, the input to the Puncture block is a vector of length 6. Therefore,
the length of the puncture vector must divide 6.

Transmitting Data
The AWGN Channel block, from the Channels library, simulates transmission
over a noisy channel. The parameters for the block are set in the mask as
follows:

• The Mode parameter for this block is set to Signal to noise ratio (Es/No)
mode.

• The Es/No parameter is set to 2 dB. This value typically is changed from one
simulation run to the next.

• The preceding modulation block generates unit power signals, so the Input
signal power is set to 1 watt.

• The Symbol period is set to 0.75 seconds because the code has rate 3/4.

Punctured Convolutional Coding Demo

3-5

Demodulating
In this simulation, the Viterbi Decoder block is set to accept unquantized
inputs. The BPSK Demodulator block produces hard decisions, so it cannot be
used for demodulation in this model. Instead, the simulation passes the
channel output through a Simulink Complex to Real-Imag block that extracts
the real part of the complex samples.

Inserting Zeros
The Insert Zero block substitutes zeros for the bits that were removed by the
Puncture block. Because the punctured bits are not transmitted, there is no
information to indicate their values. Since BPSK is an antipodal modulation
format, and 0 lies half way between +1 and -1, you can insert zeros in place of
the punctured bits.

The locations of the inserted zeros is determined by the Insert zero vector
parameter in the mask. The insert zero vector is a binary column vector, which
will usually be the same as the puncture vector. Each 1 in the insert zero vector
indicates that the block should place the next element of the input vector into
the output vector (at the position of the 1). Each 0 indicates that the block
should place a 0 into the output vector (at the position of the the 0). This
replaces the punctured bits with zeros.

Note In frame-based processing, the length of the Insert zero vector value
must divide the length of an input frame.

Data Delay
In this example, there is no data delay between the Puncture block and the
Insert Zero block. However, if you introduce another block into the model
between the Puncture block and the Insert Zero block that produces a delay,
then the Insert Zero block might insert zeros in locations other than where the
Puncture block removed bits. To correct this, you should also place an Integer
Delay block, in the Signal Operations library of the DSP Blockset, immediately
before the Insert Zero block. Set the Delay (samples) parameter of the Integer
Delay block to an integer such that the total delay between the Puncture block
and the Insert Zero block (including the Delay block) is a multiple of the length
of the Insert zero vector parameter.

3 Demonstration Models

3-6

For example, if there is a delay of 20, and the length of the insert zero vector is
6, then the Delay (samples) parameter should be 4. This makes the total delay
24, which is a multiple of 6, and brings the Insert Zero block into phase with
the Puncture block.

Viterbi Decoding
The Viterbi Decoder block, in the Convolutional sublibrary of the Error
Detection and Correction library, is configured to decode the same rate 1/2 code
specified in the Convolutional Encoder block.

In this example, the decision type is set to Unquantized. For codes without
puncturing, you would normally set the Traceback depth for this code to a
value close to 40. However, for decoding punctured codes, a higher value is
required to give the decoder enough data to resolve the ambiguities introduced
by the inserted erasures.

Calculating the Error Rate
The Error Rate Calculation block, in the Comm Sinks library, compares the
decoded bits to the original source bits. The output of the Error Rate
Calculation block is a three-element vector containing the calculated bit error
rate (BER), the number of errors observed, and the number of bits processed.

In the mask for this block, the Receive delay parameter is set to 96, because
the Traceback depth value of 96 in the Viterbi Decoder block creates a delay
of 96. If there were other blocks in the model that created delays, the Receive
delay would equal the sum of all the delays.

BER simulations typically run until a minimum number of errors have
occurred, or until the simulation processes a maximum number of bits. The
Error Rate Calculation block uses its Stop simulation mode to set these limits
and to control the duration of the simulation.

Evaluating Results
Generating a bit error rate curve requires multiple simulations. You can
perform multiple simulations from the command line using the sim command.
To do this:

• Change the value of the Es/No parameter in the AWGN Channel block mask
from a constant to the variable EsNodB.

Punctured Convolutional Coding Demo

3-7

• Run the following code to generate the data for plotting the BER curve.

CodeRate = 0.75;
EbNoVec = [2:.2:10];
EsNoVec = EbNoVec + 10*log10(CodeRate);
BERVec = zeros(length(EsNoVec),3);
for n=1:length(EsNoVec),

EsNodB = EsNoVec(n);
sim('tstconvcod');
BERVec(n,:) = BER_Data;

end

To confirm the validity of the results, compare them to an established
performance bound. The bit error rate performance of a rate
punctured code is bounded above by the expression

In this expression, erfc denotes the complementary error function, r is the code
rate, and both dfree and wd are dependent on the particular code. For the rate
3/4 code of this example, dfree = 5, w5 = 42, w6 = 201, w7 = 1492, and so on. See
reference [1] for more details.

The following commands compute an approximation of this bound in MATLAB
using the first seven terms of the summation.

dist = [5:11];
nerr = [42 201 1492 10469 62935 379644 2253373];
CodeRate = 3/4;
EbNo_dB = [2:.02:10];
EbNo = 10.0.^(EbNo_dB/10);
arg = sqrt(CodeRate*EbNo'*dist);
bound = nerr*(1/6)*erfc(arg)';

The figure below shows simulation results and bounds for the rate 3/4
punctured code in this example, as well as other punctured codes of rates 2/3
and 7/8 derived from the same original constraint length 7 rate 1/2 code. The
puncture patterns for these other rates are listed in reference [1]. The

r n 1�() n⁄=

Pb
1

2 n 1�()
--------------------- wderfc rd Eb N0⁄()()

d dfree=

∞

∑≤

3 Demonstration Models

3-8

simulations used to generate the data for this plot were set to stop after 1000
errors or 40 million bits, whichever came first.

In each case, the results agree well with the theoretical bounds. In some cases,
at the lower bit error rates, the simulation results appear to indicate error
rates slightly above the bound. This is not a result of simulation variance, since
over 500 bit errors were observed at even the lowest bit error rate value.
Rather, this is a result of the finite traceback depth in the decoder.

Bibliography
[1] Yasuda, Y., K. Kashiki, and Y. Hirata, “High Rate Punctured Convolutional
Codes for Soft Decision Viterbi Decoding,” IEEE Transactions on
Communications, Vol. COM-32, pp. 315-319, March 1984.

Adaptive Equalization Demo

3-9

3. Demonstration Models

Adaptive Equalization Demo
The Adaptive Equalization demo, eq_sim, demonstrates the behaviors of
several algorithms that are commonly used in communications:

• Least Mean-Square (LMS)

• Recursive Least-Squares (RLS)

• Constant Modulus Algorithm (CMA)

To select any of these algorithms and to set up the parameters corresponding
to each algorithm, double click the block in the model labeled “Initial Settings.”

The Least Mean-Square (LMS) algorithm tries to minimize the mean square
error (MSE) by using instantaneous values of the error.

Both the LMS and RLS algorithms use a sequence of symbol estimation errors
to drive the equalizer weight adaptation. The error is given by the difference
between the equalizer's output symbol and the so-called desired symbol. The
algorithms operate in one of two modes:

• Training mode, in which the desired symbol sequence exactly matches the
transmitted symbol sequence (i.e., the receiver has knowledge of the
transmitted data in this mode).

• Decision-directed mode, in which the "desired" symbols are derived from the
output of the decision device.

In the demo, a manual switch controls these modes of operation. To toggle the
mode, double-click the block.

To overcome some of the disadvantages of the LMS algorithms, researchers
have proposed different modifications of the algorithms that can be used under
different scenarios. Several of these algorithms have been implemented in the
model: Sign LMS, Normalized LMS (NLMS), Variable Step-size LMS
(VSLMS), and Leaky LMS.

The Recursive Least-Squares (RLS) algorithm uses a deterministic approach
instead of stochastic as in the case of the LMS to update the coefficients. By
increasing the computational complexity and risk of instability, the RLS
achieves faster convergence than the LMS.

Finally, the Constant Modulus Algorithm (CMA), or Godard Algorithm,
belongs to the family of blind equalization. It is mainly used when no

3 Demonstration Models

3-10

knowledge of the input sequence is available and only statistics of the source
are known.

When the number of coefficients and the number of points in the constellation
are equal to 2, the trajectory over the MSE and the CMA cost functions are
presented when the simulation is stopped. To select the initial conditions over
the cost function, double-click the block labeled “Plot Cost Function.”

For more information on the LMS adaptive filter or channel equalization, see
the following references:

[1] Haykin, S., Adaptive Filter Theory, Third Ed., Prentice Hall, 1996.

[2] Farhang-Boroujeny, B. Adaptive Filters – Theory and Applications, John
Wiley & Sons, 1999.

[3] Johnson, C. R., et al., “Blind Equalization Using the Constant Modulus
Criterion: A Review,” Proc. IEEE, Vol. 86, No. 10, Oct. 1998.

CPM Phase Tree Demo

3-11

CPM Phase Tree Demo

The CPM Phase Tree demo, cpmphasetree, illustrates a way to use the Dis-
crete-Time Eye Diagram Scope block to view the phase trajectory, phase tree,
and instantaneous frequency of a CPM modulated signal. This document
highlights these aspects of the demo:

• “Structure of the demo” on page 3-11

• “Variables” on page 3-11

• “Visible Results of the Demo” on page 3-12

Structure of the demo
This demo uses various Communications Blockset, DSP Blockset and Simulink
blocks to model a baseband CPM signal. The demo includes the following
blocks:

• Random Integer block, which provides a source of uniformly distributed
random integers in the range [0, M-1], where M is the constellation size of
the CPM signal

• Integer to Bit Converter block

• CPM Modulator Baseband block

• Complex to Magnitude-Angle Converter block

• Phase Unwrap block

• Zero-Order Hold block

• Discrete Transfer Function block

• Gain block

• Four copies of the Discrete-Time Eye Diagram Scope block

Variables
When the model is loaded, cpmphasetree_init.m is called to create several
variables in the MATLAB workspace, using the PreLoadFcn model callback
parameter.

3 Demonstration Models

3-12

Visible Results of the Demo
When you run the demo, the four Discrete-Time Eye Diagram Scope blocks in
the model show how the CPM signal changes over time:

• The block labeled “Modulated Signal” displays the in-phase and quadrature
signals. Double-click the block to open the scope.

The modulated signal is easy to see in the eye diagram only when the
Modulation index parameter in the CPM Modulator Baseband block is set
to 0.5. If you set the Modulation index to another value, for example 2/3,
the features of the modulated signal are difficult to decipher for this more
complex modulation. Unwrapping the phase and plotting it is another way
to illustrate these more complex CPM modulated signals.

• The block labeled “Phase Trajectory” displays the CPM phase. Double-click
the block to open the scope.

The Phase Trajectory Eye Diagram Scope block reveals that the signal phase
is also difficult to view because it drifts with the data input to the modulator.

• The block labeled “Phase Tree” displays the phase tree of the signal.

The CPM phase is processed by a few simple blocks to make the CPM pulse
shaping easier to view. This processing holds the phase at the beginning of
the symbol interval and subtracts it from the signal. This resets the phase
to zero every three symbols. The resulting plot shows the many phase
trajectories that can be taken by the signal from any given symbol epoch.

• The block labeled “Instantaneous Frequency” displays the instantaneous
fequency of the signal.

The CPM phase is differentiated to produce the frequency deviation of the
signal. Viewing the CPM frequency signal enables you to observe the
frequency deviation qualitatively, as well as make quantitative observations,
such as measuring peak frequency deviation.

Experimenting with the Demo
To learn more about the demo, try changing the following parameters in the
CPM Modulator Baseband block:

• Change Pulse length to one of the values 1, 2, ... 6.

• Change Frequency pulse shape to one of the other settings, such as Raised
Cosine or Gaussian.

CPM Phase Tree Demo

3-13

You can observe the effect of changing these parameters on the phase tree and
instantaneous frequency of the modulated signal.

3 Demonstration Models

3-14

GMSK vs. MSK Demo

The GMSK vs. MSK demo, gmskvsmsk, visually compares Gaussian minimum
shift keying (GMSK) and minimum shift keying (MSK) modulation schemes.
This document highlights these aspects of the demo:

• “Structure of the Demo” on page 3-14

• “Visible Results of the Demo” on page 3-14

Structure of the Demo
This demo uses various Communications and DSP Blockset blocks to model
GMSK and MSK modulation schemes. The demo includes the following blocks:

• Random Integer block, which provides a source of uniformly distributed
random integers in the range [0, M-1], where M is the constellation size of
the GMSK or MSK signal

• Unipolar to Bipolar Converter block

• GMSK Modulator Baseband block

• MSK Modulator Baseband block

• AWGN Channel block

• Two copies of the Discrete-Time Eye Diagram Scope block

• Two copies of the Discrete-Time Signal Trajectory Scope block

Visible Results of the Demo
The demo illustrate the difference between the two modulation schemes. The
Discrete-Time Eye Diagram Scope blocks show the eye diagrams of GMSK and
MSK signals corrupted by noise. The eye diagrams show the similarity
between the GMSK and MSK signals when you set the Pulse length of the
GMSK Modulator Baseband block to 1. Setting the Pulse length to 3 or 5
enables you to view the difference that a partial response modulation can have
on the eye diagram. The number of paths increases demonstrating that the
CPM waveform depends on values of the previous symbols as well as the
present symbol. You can change the pulse length to 2 or 4, but you should
change the Phase offset to pi/4 for a better view of the modulated signal. In
order to more clearly view the Gaussian pulse shape, you must use

GMSK vs. MSK Demo

3-15

instrumentation that enables you to view the phase of the signal, as in
described in “CPM Phase Tree Demo” on page 3-11.

3 Demonstration Models

3-16

Filtered QPSK vs. MSK Demo
The QPSK vs. MSK demo, qpskvsmsk, enables you to visually compare filtered
quadrature phase shift keying (QPSK) and minimum shift keying (MSK)
modulation schemes. This document highlights these aspects of the demo:

• “Structure of the Demo” on page 3-16

• “Visible Results of the Demo” on page 3-16

Structure of the Demo
This demo uses various Communications and DSP Blockset blocks to model
Filtered QPSK and MSK modulation schemes. The demo includes the following
blocks:

• Sources of uniformly distributed random integers in the range [0, M-1],
where M is the constellation size of the modulation scheme. Two sources are
required since QPSK is a quaternary modulation method while MSK is a
binary modulation method.

• A Baseband QPSK Modulator block

• A Baseband MSK Modulator block

• FIR Interpolator block that implements raised cosine filtering

• A Unipolar to Bipolar Converter block

• An Additive White Gaussian Noise (AWGN) Channel block

• Eye Diagram blocks

Visible Results of the Demo
The demo include these visual aids to illustrate the difference between the two
modulation schemes:

Eye Diagram blocks that show the eye diagrams of Filtered QPSK and MSK
signals plus noise. In FQPSK, the value of both the inphase and quadrature
components of the signal are permitted to change at any symbol interval.
However, for MSK, the symbol interval is half that for QPSK but the inphase
and quadrature components change values in alternate symbol epochs.
Therefore, the ideal samping time for QPSK is 0.5, 1.5, 2.5, … while the ideal
sampling period for MSK is 0.5, 1.5, 2.5, … for the inphase signal and 1, 2, 3 …
for the quadrature signal.

Rayleigh Fading Channel Demo

3-17

Rayleigh Fading Channel Demo
The Rayleigh Fading model, rayleighfading, illustrates the effect of
multipath Rayleigh fading on a signal modulated by quadrature phase shift
keying (QPSK). The following aspects of the demo are described:

• “Structure of the Demo”

• “Visible Results”

Structure of the Demo
This demo uses various Communications and DSP Blockset blocks to model
multi-path Rayleigh fading. The demo includes the following blocks:

• Random Integer block, which provides source of uniformly distributed
random integers in the range [0, M-1], where M is the M-ary number

• QPSK Modulator Baseband

• Multipath Rayleigh Fading Channel

• FIR Interpolation block, which implements raised cosine filtering

• Discrete-Time Scatter Plot Scope

Visible Results
The scatter plot illustrates the effect of fading on the signal constellation. The
channel is presently set to contain two paths. However, you can change this by
varying the number of elements and their values in the delay and gain vectors.
In addition, the Maximum Doppler shift (Hz) parameter in the Multipath
Rayleigh Fading Channel block changes the fading pattern. The amplitude
values for each path are drawn from the Rayleigh distribution while the
Doppler values are drawn from the Doppler spectrum from the Jakes channel
model.

3 Demonstration Models

3-18

Gray Coded 8-PSK Demo
Gray coding is a technique often used in multilevel modulation schemes to
minimize the bit error rate by ordering modulation symbols so that the binary
representations of adjacent symbols differ by only one bit. This demo simulates
a communications link using Gray-coded 8-PSK modulation.

The sections that follow discuss the execution of the model and the variables
used in the model. The section “Learning More About the Gray Coding Demo”
on page 3-26 discusses some ways you can modify the model and compare its
results with theoretical values.

Note For more information about how parts of the model work, click on
blocks within the figure below.

Gray Coded 8-PSK Demo

3-19

How the Model Executes
This model executes in the following sequence:

1 The Random Integer Generator block serves as the source, producing a
sequence of integers.

2 The Integer to Bit Converter block converts each integer into a
corresponding binary representation.

3 The M-PSK Modulator Baseband block modulates the data in complex
envelope format, using a Gray-coded constellation ordering.

4 The AWGN Channel block adds white Gaussian noise to the modulated
data.

5 The M-PSK Demodulator Baseband block demodulates the corrupted data.

6 The Bit to Integer Converter block converts each binary representation to a
corresponding integer.

7 One copy of the Error Rate Calculation block (labeled Error Rate
Calculation1 in this model) compares the demodulated integer data with the
original source data, yielding symbol error statistics.

8 Another copy of the Error Rate Calculation library block (labeled Error Rate
Calculation2 in this model) compares the demodulated binary data with the
binary representations of the source data, yielding bit error statistics.

Variables in the Model
Loading this model automatically defines in the MATLAB workspace five
variables that are used in the demo’s blocks and subsystems. To clarify the

3 Demonstration Models

3-20

discussion of the individual blocks and subsystems, the variables’ meanings
and values are listed in the table below:

Components of the Gray Coding Demo
This section discusses the purpose, behavior, and relevant parameters of each
top-level component within the demo model. This section covers components in
the order in which they process data in the simulation.

Random Integer Generator
The Random Integer Generator block produces random data that is used as the
information in this simulation. This block generates one 100-symbol frame of
integers in the range 0 to M-1 every Tsym seconds.

Table 3-1: Preset Variables in the Gray Coding Demo

Name Meaning Value

M Symbol set size 8

Tsym Symbol period 0.2 s

Tsample Sample period 0.01 s

Tmax Simulation stop time 10,000 s

EbNodB Ratio of energy per bit to noise power
spectral density (Eb/No)

3 dB

Gray Coded 8-PSK Demo

3-21

Integer-to-Bit Conversion
The Integer to Bit Converter block converts integer symbols to their equivalent
binary representations. Its parameter is the number of bits in each integer.

Gray Coded M-PSK Modulation
The M-PSK Modulator Baseband block:

• Accepts binary-valued inputs that represent integers between 0 and M-1

• Maps binary representations to constellation points using a Gray-coded
ordering

• Produces unit-magnitude complex phasor outputs, with evenly spaced
phases between 0 and 2π(M-1)/M

3 Demonstration Models

3-22

The table indicates which binary representations in the input correspond to
which phasors in the output. The second column of the table is an intermediate
representation that the block uses in its computations.

The table below sorts the first two columns of the table above, according to the
output values. This sorting makes it clearer that the overall effect of this
subsystem is a Gray code mapping as shown in the figure below. Notice that
the numbers in the second column of the table below appear in
counterclockwise order in the figure.

Modulator Input Gray-Coded
Ordering

Modulator Output

000 0

001 1

010 3

011 2

100 7

101 6

110 4

111 5

Modulator Output Modulator Input

000

001

011

010

110

111

e0

ejπ 4⁄

ej3π 4⁄

ejπ 2⁄ ej2π 4⁄=

ej7π 4⁄

ej3π 2⁄ ej6π 4⁄=

ejπ ej4π 4⁄=

ej5π 4⁄

e0

ejπ 4⁄

ejπ 2⁄ ej2π 4⁄=

ej3π 4⁄

ejπ ej4π 4⁄=

ej5π 4⁄

Gray Coded 8-PSK Demo

3-23

AWGN Channel
The AWGN Channel library block simulates transmission over a noisy
channel. Its Signal to noise ratio (Es/No) mode uses these quantities to
determine the variance:

• Es/No, the ratio of energy per symbol to noise power spectral density

• The input signal power

• The symbol period

101

100

Modulator Output Modulator Input

ej3π 2⁄ ej6π 4⁄=

ej7π 4⁄

0 (000)

4 (100)

5 (101)

7 (111)

6 (110)

2 (010)

3 (011)

1 (001)

3 Demonstration Models

3-24

The values for these parameters are chosen as follows:

• The Es/No parameter is computed from the workspace variables EbNodB and
M. The conversion from bit energy to symbol energy reflects the fact that each
symbol carries log2(M) bits of information.

• The signal power is 1 watt because the M-PSK Modulator Baseband block
produces unit power signals.

• The symbol period of the channel is set to Tsym.

Gray Coded MPSK Demodulation
The M-PSK Demodulator Baseband block mirrors the Gray-coded modulation
process. Notice that corresponding parameters in the modulator and
demodulator blocks have the same values.

Bit-to-Integer Conversion
The Bit to Integer Converter block converts binary representations of symbols
to their integer equivalents. Its parameter is the number of bits in each integer.

Gray Coded 8-PSK Demo

3-25

Error Rate Calculation
The Error Rate Calculation block compares demodulated symbols to original
source symbols to compute the error rate. This model uses two Error Rate
Calculation blocks, one to compute the symbol error rate and the other to
compute the bit error rate. Both blocks use the parameter values shown below.

Symbol Error Details and Bit Error Details
Simulink’s Display block shows the running error statistics throughout the
simulation. Each Display block in the diagram lists three numbers, which
represent:

• The symbol or bit error rate

• The total number of errors

• The total number of comparisons that the Error Rate Calculation block made

3 Demonstration Models

3-26

Sending Data to the MATLAB Workspace
Simulink’s To Workspace block sends the complete set of error statistics to the
MATLAB workspace. When the simulation ends, the MATLAB variables SER
and BER are both three-column matrices whose columns represent these
quantities at each time step:

• The symbol or bit error rate

• The total number of errors

• The total number of comparisons that the Error Rate Calculation block made

Learning More About the Gray Coding Demo
To learn more about a particular library block in this model, see its reference
page in the Communications Blockset documentation. If you have the model
open, then you can click the Help button in the block’s dialog box to display the
reference page.

The rest of this section indicates how you can analyze the data that the demo
produces to compare theoretical performance with simulation performance.

Data Analysis Using the Demo
The theoretical symbol error probability of MPSK is given by

where erfc is the complementary error function, Es/No is the ratio of energy in
a symbol to noise power spectral density, and M is the number of symbols.

To determine the bit error probability, the symbol error probability, PE, needs
to be converted to its bit error equivalent. There is no general formula for the
symbol to bit error conversion. Upper and lower limits are nevertheless easy to
establish. The actual bit error probability, Pb, can be shown to be bounded by

The lower limit corresponds to the case where the symbols have undergone
Gray coding. The upper limit corresponds to the case of pure binary coding.

PE M() erfc
Es
N0
------- π

M
----- 
 sin

 
 
 

=

PE M()
M2log

------------------ Pb
M 2⁄
M 1�
--------------PE M()≤ ≤

Gray Coded 8-PSK Demo

3-27

Simulation Results. To test the Gray code modulation scheme in this model,
simulate the tstgraycod model for a range of Eb/No values. Because increasing
the value of Eb/No lowers the number of errors produced, the length of each
simulation must be increased to ensure that the statistics of the errors remain
stable.

Using the sim command to run a Simulink simulation from the MATLAB
command window, the following code generates data for symbol error rate and
bit error rate curves. It considers Eb/No values in the range 0 dB to 12 dB, in
steps of 2 dB.

M = 8;
Tsym = 0.2;
Tsample = 0.01;
BERVec = [];
SERVec = [];
EbNoVec = [0:2:12];
TVec = [1000 1000 1000 15000 20000 100000 100000]*Tsym;
for n=1:length(EbNoVec);
 Tmax = TVec(n);
 EbNodB = EbNoVec(n);
 sim('tstgraycod');
 SERVec(n,:) = SER;
 BERVec(n,:) = BER;
end;

After simulating for the full set of Eb/No values, you can plot the results using
these commands:

semilogy(EbNoVec,SERVec(:,1),'o',EbNoVec,BERVec(:,1),'*');
legend('Symbol error rate','Bit error rate');
xlabel('Eb/No (dB)'); ylabel('Error Probability');
title('Symbol and Bit Error Probability');

3 Demonstration Models

3-28

Comparison with Pure Binary Coding and Theory. As a further exercise, you can plot
the theoretical curves on the same axes with the simulation results. You can
also compare Gray coding with pure binary coding, by modifying the M-PSK
Modulator Baseband and M-PSK Demodulator Baseband blocks so that their
Constellation ordering parameters are Binary instead of Gray.

Discrete Multitone Signaling Demo

3-29

Discrete Multitone Signaling Demo
The Discrete Multitone Signaling demo, dmt_sim, models a modulation
technique that is part of the asymmetric digital subscriber line (ADSL)
technology for transmitting data and multimedia information over telephone
lines. The discrete multitone (DMT) signaling technique divides the channel
into many subchannels and modulates each one individually. This document
highlights these aspects of the demo:

• Structure of the demo, and use of Communications Blockset blocks

• An alternative model for the DMT technique, dmt_sim_alt

Structure of the Demo
This demo uses various Communications Blockset blocks to model DMT
signaling. To see how the modulation or demodulation blocks are arranged,
first open the DMT Modulator or DMT Demodulator systems at the top level of
the model, and then look under the mask of the Modulator Bank or
Demodulator Bank subsystems. Notice that each of the 16 Modulator Bank
icons represents a set of 16 Rectangular QAM Modulator Baseband blocks. The
DMT technique allocates different numbers of bits to different subchannels.
Each copy of the modulator block acts as a distinct subchannel, and uses the
256-element vector b in the MATLAB workspace to determine the M-ary
number parameter that is appropriate for that subchannel.

The demo also includes:

• A plot of the number of bits that each of the 256 subchannels transmits. To
see this plot, double-click on the icon labeled, “Load and Plot Bit Allocation
Vector.”

• A plot of the spectrum of the transmitted signal.

• A display icon that shows the bit error rate, the number of bit errors, and the
total number of bits processed.

• Frame-based processing, so that the simulation processes many bits in each
time step. The double connector lines between blocks indicate frame-based
signals.

3 Demonstration Models

3-30

Discrete Multitone Signaling Demo, Alternative
Form
The model dmt_sim_alt illustrates an alternative way to model discrete
multitone signaling. Because it uses fewer blocks, it loads and initializes more
quickly. To see how the alternative version uses fewer blocks, compare the
alternative DMT Modulator subsystem with the original DMT Modulator
subsystem.

Original: 256 Modulator Blocks
In the original form, each of 16 Modulator Bank icons represents a set of 16
modulator blocks. The system has 256 modulator blocks in total. This
arrangement closely resembles the definition of 256-channel DMT signaling.

Alternative: Ten Modulator Blocks
In the alternative form, ten modulator blocks implement the ten different
signal constellations in this modulation scheme. The system sends selected bits
to the modulator block that is appropriate for them. This approach deviates
from the specified definition of frame-based signals, however, because a frame
of bits that enters one of the modulator blocks is not a set of successive samples
from a time series. If you use an approach like this in your own models, first be
sure that you understand the possible implications. (Refer to the online
documentation for the Communications Blockset for more information about
the definition of frame-based signals.)

For more information about other aspects of dmt_sim_alt, see “Discrete
Multitone Signaling Demo” and the original dmt_sim demo.

Selected Bibliography
[1] Maxwell, Kim. “Asymmetric Digital Subscriber Line: Interim Technology
for the Next Forty Years.” IEEE Communications Magazine, October 1996.
100-106.

Iterative Decoding of a Serially Concatenated Convolutional Code (SCCC) - Demo

3-31

Iterative Decoding of a Serially Concatenated
Convolutional Code (SCCC) - Demo

Note This demo presents technology covered under U.S. Patent Number
6,023,783, “Hybrid concatenated codes and iterative decoding,” assigned to the
California Institute of Technology. The end user of this product is hereby
granted a limited license to use this demo solely for the purpose of assessing
possible commercial and educational applications of the technology. Any other
use or modification of this demo may constitute a violation of this and/or other
patents.

The sccc_sim demo illustrates how to use an iterative process to decode a
serially concatenated convolutional code. This document highlights these
aspects of the demo:

• Structure of the demo

• Creating a serially concatenated code

• Decoding using an iterative process

• Visible results of the demo

Structure of the Demo
To summarize briefly, the simulation generates information bits, encodes them
using a serially concatenated convolutional code, and transmits the coded
information along a noisy channel. The simulation then decodes the received
coded information using an iterative decoding process, and computes error
statistics based on different numbers of iterations. Throughout the simulation,
the error rates appear in a Display block.

Variables in the Demo
When you open the demo, it loads several variables into the MATLAB
workspace. Note that this operation overwrites variables in the workspace that
have the same names. If you accidentally delete this model’s variables and
need to recreate them, open the Global Parameters block’s mask and then press
OK.

3 Demonstration Models

3-32

The Global Parameters block lets you vary the values of some variables that
the model uses. The table below indicates their names and meanings.

Creating a Serially Concatenated Code
The encoding portion of the demo uses a Convolutional Encoder block to encode
a data frame, a Random Interleaver block to shuffle the bits in the code words,
and another Convolutional Encoder block to encode the interleaved bits.
Because these blocks are connected in series with each other, the resulting code
is called a serially concatenated code.

Together, these blocks encode the 1024-bit data frame into a 3072-bit frame
representing a concatenated code. These sizes depend on the model’s Block
size parameter (See the Global Parameters block.). The code rate of the
concatenated code is 1/3.

In general, the purpose of interleaving is to protect code words from burst
errors in a noisy channel. A burst error that corrupts interleaved data actually
has a small effect on each of several code words, rather than a large effect on
any one code word. The smaller the error in an individual code word, the
greater the chance that the decoder can recover the information correctly.

Convolutional Encoding Details
The two instances of the Convolutional Encoder block use their Trellis
structure parameters to specify the convolutional codes. The table below lists

Name Meaning

Eb/No Eb/N0 for channel noise, measured in dB; used to compute
the variance of the channel noise

Block size The number of bits in each frame of uncoded data

Number of
iterations

The number of iterations to use when decoding

Seed The initial seed in the Random Interleaver and Random
Deinterleaver blocks

Iterative Decoding of a Serially Concatenated Convolutional Code (SCCC) - Demo

3-33

the polynomials that define each of the two convolutional codes. The second
encoder has two inputs and uses two rows of memory registers.

Decoding Using an Iterative Process
The decoding portion of this demo consists of two APP Decoder blocks, a
Random Deinterleaver block, and several other blocks. Together, these blocks
form a loop and operate at a rate six times that of the encoding portion of the
demo. The loop structure and higher rate combine to make the decoding portion
an iterative process. Using multiple iterations improves the decoding
performance. You can control the number of iterations by setting the Number
of iterations parameter in the model’s Global Parameters block. The default
number of iterations is six.

Computations in Each Iteration
In each iteration, the decoding portion of the demo decodes the inner
convolutional code, deinterleaves the result, and decodes the outer
convolutional code. The outer decoder’s L(u) output signal represents the
updated likelihoods of original message bits (that is, input bits to the outer
encoder).

The looping strategy in this demo enables the inner decoder to benefit in the
next iteration from the outer decoder’s work. To understand how the loop
works, first recall the meanings of these signals:

Outer
Convolutional
Code

Inner Convolutional Code

Generator
Polynomials

1 + D + D2 and
1 + D2

First row: 1 + D + D2, 0, and 1 + D2

Second row: 0, 1 + D + D2, and 1 + D

Feedback
Polynomials

1 + D + D2 1 + D + D2 for each row

Constraint
Lengths

3 3 for each row

Code Rate 1/2 2/3

3 Demonstration Models

3-34

• The outer decoder’s L(c) output signal represents the updated likelihoods of
code bits from the outer encoder

• The inner decoder’s L(u) input represents the likelihoods of input bits to the
inner encoder

The feedback loop recognizes that the primary distinction between these two
signals is in the interleaving operation that occurs between the outer and inner
encoders. Therefore, the loop interleaves the L(c) output of the outer decoder to
replicate that interleaving operation, delays the interleaved data to ensure
that the inner decoder’s two input ports represent data from the same time
steps, and resets the L(u) input to the inner decoder to zero after every six
iterations.

Results of the Iterative Loop
The result of decoding is a 1024-element frame whose elements indicate the
likelihood that each of the 1024 message bits was a zero or a one. A nonnegative
element indicates that the message bit was probably a one, and a negative
element indicates that the message bit was probably a zero. The Hard Decision
block converts nonnegative and negative values to ones and zeros, respectively,
so that the results have the same form as the original uncoded binary data.

Visible Results of the Demo
The demo includes a large Display block that shows error rates after comparing
the received data with the transmitted data. The number of error rates in the
display is the number of iterations in the decoding process. The first error rate
reflects the performance of a decoding process that uses one iteration, the
second error rate reflects the performance of a decoding process that uses two
iterations, and so on. The series of error rates shows that the error rate
generally decreases as the number of iterations increases.

Selected Bibliography
[1] Benedetto, S., D. Divsalar, G. Montorsi, and F. Pollara. “Serial
Concatenation of Interleaved Codes: Performance Analysis, Design, and
Iterative Decoding.” JPL TDA Progress Report, vol. 42-126, August 1996. [This
electronic journal is available at
http://tmo.jpl.nasa.gov/tmo/progress_report/42-126/title.htm.]

Iterative Decoding of a Serially Concatenated Convolutional Code (SCCC) - Demo

3-35

[2] Divsalar, Dariush and Fabrizio Pollara. Hybrid Concatenated Codes and
Iterative Decoding. U. S. Patent No. 6,023,783, Feb. 8, 2000.

[3] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer
Academic Publishers, 1999.

3 Demonstration Models

3-36

Phase Noise Effects in 256-QAM - Demo
The phasenoise_sim demo illustrates the effect of a receiver’s phase noise on
256-ary quadrature amplitude modulation (QAM). A QAM modulation scheme
with a large number of constellation points is relatively sensitive to phase
noise. This document highlights these aspects of the demo:

• Overall structure of the demo

• Visible results of the demo

Structure of the Demo
This demo uses various Communications Blockset blocks to model a QAM
transceiver with phase noise. The demo contains only a small number of blocks,
including:

• A source of integers between 0 and 255

• A baseband 256-QAM modulator

• An additive white Gaussian noise (AWGN) channel

• A source of phase noise

• A baseband 256-QAM demodulator

• An error statistic calculator

• A display icon that shows the error statistics while the simulation runs

• A scatter plot that shows the received signal, including the phase noise

Phase Noise Block
The Phase Noise block shifts the phase of the received signal by a random
amount. You can adjust the variance of the random phase shift by adjusting the
Phase noise level parameter in the Phase Noise block’s mask.

Visible Results of the Demo
The demo includes these visual ways to understand its performance:

• A display icon that shows the running error statistics for the system. These
statistics are the error rate, the number of errors detected, and the total
number of symbols compared.

Phase Noise Effects in 256-QAM - Demo

3-37

• A scatter plot that shows the received signal, including both the white
Gaussian noise and the phase noise. Near each constellation point is a
cluster of points. Near constellation points that are far from zero, the cluster
is close to an arc. The arc shape is an effect of phase noise.

• A figure that shows bit error rates for this system with various levels of
phase noise. To see the figure, double-click on the Display Figure icon in the
demo. Each curve in the plot shows the bit error rate as a function of Eb/No
in the AWGN channel, for a fixed amount of phase noise.

To create plots like this yourself, you can run the simulation multiple times,
varying the parameters and recording the numerical results. An efficient
way to do this is to replace key parameters in the model with variables,
insert a To Workspace block for recording error statistics, and then to run the
simulation using a loop in a MATLAB script. For more information about
this technique, see the sim function, and the “Learning More About the Gray
Coding Demo” section.

3 Demonstration Models

3-38

3. Demonstration Models

PLL-Based Frequency Synthesis Demo
This example shows how to simulate a phase-locked loop (PLL) frequency
synthesizer. The model multiplies the frequency (fr) of a reference signal by a
constant N/M, to produce a synthesized signal whose frequency is fr*N/M. A
feedback loop maintains the frequency of the synthesized signal at this level.

To open the model, type freqsyn_sim at the MATLAB prompt (or click here if
you are reading this in the MATLAB Help browser). In addition to the model
window, three Scope windows open, labelled “Control Signal”, “Synthesized
Signal” and “Reference Signal”.

Variables in the Model
When you load the model, it creates several variables, using the PostLoadFcn
model callback parameter. Besides the variables N and M, there are:

• fr = frequency of the reference signal

PLL-Based Frequency Synthesis Demo

3-39

• fq = quiescent frequency in the Voltage-Controlled Oscillator (VCO) block

• sen = Voltage-Controlled Oscillator input sensitivity

The model initially assigns values to these variables as follows: N = 10, M = 3,
fr = 30 MHz, fq = 30 MHz and sen = 40 MHz/V. The frequency of the
synthesized signal will then be 100 MHz. After running the simulation with
these values, you can later change them by typing new values at the MATLAB
prompt, if you want to experiment with the model.

Note These are the same variables as those in the Fractional N-Frequency
Synthesis demo, but they are assigned different initial values. If you change
the values of these variables at the MATLAB command line, use the same
upper and lower case letters in the variable names as given above.

Running the Simulation
When you run the simulation, you see signals appear in the three Scope
windows, as shown below.

The control signal, which the Voltage-Controlled Oscillator block uses to
maintain the frequency of the synthesized signal, initially fluctuates for about
10 microseconds, but then stabilizes to a constant value of 7/4. This occurs
when the model reaches a steady state – that is, when the frequency of the
synthesized signal is close to 100 MHz. Similarly, the synthesized signal
oscillates back and forth at first, but then stabilizes to a square pulse of

3 Demonstration Models

3-40

frequency 100 MHz. The reference signal is a square pulse of frequency 30
MHz.

The Display block at the lower right of the model window displays the
frequency of the synthesized signal, as shown in the figure below.

Blocks in the Model
The following table lists the most important blocks in the model and describes
their purpose.

Pulse Generator
The Pulse Generator block, from the Simulink Sources library, generates the
reference signal. The block produces a periodic pulse train. Double-click on the
block to open the mask, as shown below.

Block Purpose in Example

Pulse Generator Generates the reference signal, which is a periodic pulse train.

Logical Operator (XOR) XOR’s the frequency-divided reference signal with the
frequency-divided synthesized signal.

Analog Filter Design Uses a lowpass Butterworth filter to generate the control signal
(along with the Gain block) and filter out high frequencies.

Gain Multiplies the signal by a constant.

Voltage-Controlled
Oscillator

Controls the frequency of the synthesized signal, by means of the
input control signal.

PLL-Based Frequency Synthesis Demo

3-41

The variable fr, initially set to 30 MHz, denotes the frequency of the pulse
train. The period of the pulse train is 1/fr, which you can see in the Period
parameter box.

The recommended way to change the value of the period is to change the value
of the variable fr in the MATLAB Command Window. This way the new value
of fr will be updated in all the blocks whose parameters are set using the
variable fr.

Divide Frequency by M
The Divide Frequency by M subsystem divides the frequency of the reference
signal by the variable M. With the default values of the variables, the output
of the block is a pulse train of frequency 10 MHz, called the frequency-divided
reference signal.

Notice that there is also a Divide Frequency by N subsytem, which divides the
frequency of the synthesized signal by the variable N. The output of this
subsystem is called the frequency-divided synthesized signal.

3 Demonstration Models

3-42

You can change the divisor in these subsystems by changing the value of M or
N at the MATLAB prompt.

Phase Detector
The Logical Operator block, from the Simulink Math library, functions as a
phase detector. It compares the frequencies of the frequency-divided reference
signal and the frequency-divided synthesized signal. Since the block’s
Operator parameter is set to XOR in the mask, the output signal is 0 where
the two input signals are equal, and 1 where they are not equal.

At steady state, the signal is a pulse train with frequency of 20 MHz. The
reason for this is that both inputs to the block have a frequency of 10 MHz, but
they are out of phase by 1/4 of their period. As a result, the XOR’ed signal is a
periodic pulse train with frequency 20 MHz.

You can compare the two input signals to the Phase Detector with the output
signal by clicking on their respective Scope blocks, as shown below.

Analog Filter Design
The Analog Filter Design block filters high frequencies out of the signal coming
from the phase detector. The block uses a lowpass Butterworth filter. You can
use a higher order filter or another filter type to improve the stability of the
synthesized signal.

PLL-Based Frequency Synthesis Demo

3-43

In the steady state of the model, the amplitude of the block’s output signal will
be approximately constant, with a value of .5. This is the average value of the
output from the phase detector.

Gain Block
A Gain block, from the Simulink Math library, multiplies the output signal
from the Analog Filter Design block by a constant to produce the control signal.

The Gain parameter in the mask is set to . This expression

ensures that when the model is at steady state, the frequency of the
synthesized signal will remain at 100 MHz, even if you make changes to the
variables fq and sen.

For the default values of the variables, the gain is equal to 7/2. Thus, in the
steady state of the model, the output of the Gain block is approximately
constant, with a value of 7/4.

Voltage-Controlled Oscillator
The Voltage-Controlled Oscillator block generates the synthesized signal
(along with Convert to Square Wave subsystem) and adjusts the frequency of
the synthesized signal according to the Voltage-Controlled Oscillator input
signal.

When the control signal is close to its steady state value of 7/4, the
Voltage-Controlled Oscillator block generates a signal whose frequency is close
to fr*N/M, which is 100 MHz for the model’s pre-assigned parameters. If the
output frequency drops, the control signal will rise, boosting the frequency of
the output signal. If the output frequency rises, the control signal will fall,
lowering the output frequency.

Double-click on the Voltage-Controlled Oscillator block to open the mask.

fr
N
M
---⋅ fq� 

  2
sen
----------⋅

3 Demonstration Models

3-44

The Oscillation frequency parameter is just the quiescent frequency, fq. The
difference between the block’s output signal frequency and the oscillation
frequency is proportional to the input signal, interpreted as voltage. The
oscillation frequency is set to the variable fq, which is initially assigned a value
of 30 MHz. You can change this value in the Oscillation frequency dialog box,
or by changing the value of fq at the MATLAB prompt.

The Input sensitivity parameter scales the input voltage, and thus controls
the shift from the oscillation frequency. The units of the parameter are Hertz
per volt. The input sensitivity is set to the variable sen, which is initially
assigned a value of 40 MHz/V.

Changing the values of fq and sen will not affect the steady-state frequency of
the synthesized signal, because the corresponding change to the gain value
exactly compensates for the change.

Simulation Parameters
You can control the simulation parameters by selecting Simulation
Parameters from the Simulation menu in the model window. This brings up
the dialog box shown below.

PLL-Based Frequency Synthesis Demo

3-45

The Max step size parameter determines the maximum step size that
Simulink’s variable-step solver uses to do calculations. This is set to half the
period of the synthesized signal. In general, the Max step size should be less
than the smallest period of all signals occurring in the model.

3 Demonstration Models

3-46

3. Demonstration Models

Fractional-N Frequency Synthesis Demo
This example shows how to simulate a phase-locked fractional-N frequency
synthesizer. The model multiplies the frequency, Fr, of a reference signal by a
constant n+m, to produce a synthesized signal of frequency Fr*(n+m). A
feedback loop maintains the frequency of the synthesized signal at this level.

This example is similar to the “Fractional-N Frequency Synthesis Demo” on
page 3-46, which produces a synthesized signal of frequency fr*N/M, where N
and M are integers. In this example, n is an integer and m is a fraction between
0 and 1. There are several advantages to this approach, since it enables you to
approximate the frequency of the synthesized signal with relatively small
values for n and m. It also enables you to use a larger reference frequency. See
the “Reference” on page 3-49 for more information.

To open the model, type fracsyn_sim at the MATLAB prompt (or click here if
you are reading this in the MATLAB Help browser). In addition to the model
window, shown below, this opens two Scope windows, labelled “Control Signal”
and “Synthesized Signal.”

Fractional-N Frequency Synthesis Demo

3-47

Variables in the Model
When you load the model, it creates three variables besides n and m:

• Fr = frequency of the reference signal

• Fq = quiescent frequency in the Voltage-Controlled Oscillator (VCO) block

• Sen = Voltage-Controlled Oscillator input sensitivity

Note If you change the values of these variables at the MATLAB command
line, use the same upper and lower case letters in the variable names as given
above. The variables in the Phase-Locked Frequency Synthesis demo have
similar names, but with different cases.

The model initially assigns values to these variables as follows: n = 10, m = .3,
Fr = 10 MHz, Fq = 90 MHz and Sen = 10 MHz/V. The frequency of the
synthesized signal at the model’s steady state is then 103 MHz. After running
the simulation with these values, you can later change them by typing new
values at the MATLAB prompt, if you want to experiment with the model.

Blocks and Subsystems in the Model
Most of the blocks in this model function in the same way as they do in the
“PLL-Based Frequency Synthesis Demo” on page 3-38. You can refer to the
documentation for that model for more information about these blocks
function. There are two subsystems in this example that are not present in the
Phase-Locked Frequency Synthesis demo. They are labeled “Accumulator” and
“Divide Frequency.”

Accumulator
The Accumulator subsystem repeatedly adds the constant m to a cumulative
sum. While the sum is less than 1, the output labelled “Carry” is 0. At a time
step when the sum becomes greater than or equal to 1, the carry output is 1 and
the cumulative sum is reset to its fractional part. The fraction of the time when
the carry output is 1 is equal to m, while the fraction of the time when it is 0 is
equal to 1-m.

3 Demonstration Models

3-48

Divide Frequency
The Divide Frequency subsystem divides the frequency of the synthesized
signal by n when the output of the Accumulator subsystem is 0, and divides it
by n+1 when the output is 1. As a result, the average amount that frequency is
divided by is

(1-m)n + m(n+1) = n + m = 10.3

The line leading out of the Divide Frequency subsystem is labeled “Divided
synthesized.” At steady state, when the frequency of the synthesized signal is
103 MHz, the divided synthesized signal has an average frequency of 10 Mhz.

Phase Detector
The Logical Operator block, from the Simulink Math library, functions as a
phase detector. It applies the XOR operation to the frequencies of the reference
signal and the frequency of the output from the Divide Frequency subsystem.
The block’s output, labeled “Phase difference,” is 0 where the two input signals
are equal, and 1 where they are not equal.

At steady state, the block’s output is a pulse train with frequency of 20 MHz.
The reason for this is that both inputs to the block have an average frequency
of 10 MHz, but they are out of phase by 1/4 of their period. As a result, the
XOR’ed signal is a periodic pulse train with an average frequency of 20 MHz.

You can view the signals these blocks generate by double-clicking on the block
labeled “Scope” at the top of the model window.

Running a Simulation
When you run a simulation, two scope windows appear, as shown below.

Fractional-N Frequency Synthesis Demo

3-49

The left-hand scope displays the control signal, which the Voltage-Controlled
Oscillator block uses to maintain the frequency of the synthesized signal. The
right-hand scope displays the synthesized signal.

Reference
For further information on phase-locked frequency synthesis, see William F.
Egan, Frequency Synthesis by Phase Lock, Second Ed. John Wiley & Sons, N.Y.

3 Demonstration Models

3-50

3. Demonstration Models

256-Channel ADSL Demo
The 256-Channel ADSL demo, adsl_sim, models part of the asymmetric digital
subscriber line (ADSL) technology for transmitting data and multimedia
information over telephone lines. It illustrates a downstream path from the
central office to the end user. It incorporates the discrete multitone (DMT)
signaling modulation technique, which is the focus of the dmt_sim demo. This
document highlights these aspects of the adsl_sim demo:

• Structure of the demo

• Transmitting data

• Processing received data

• Displaying error statistics

Alternatively, an animated tour of an ADSL model is at
http://www.mathworks.com/products/dsp_comm/demos.shtml. Use this link
if you are reading this in the MATLAB Help browser.

Structure of the Demo
The model generates random binary data frames, transmits them according to
the ADSL specification, simulates a telephone line using an FIR filter of length
101 and the AWGN Channel block, tries to recover the information from the
received data, and computes error statistics. The model uses frame-based
processing, thereby processing many bits in each time step. The double
connector lines between blocks indicate frame-based signals.

Because these processes involve many blocks, the demo uses subsystems to
organize some groups of blocks, and it uses Goto/From block pairs and colored
regions to make the block diagram visually neater.

Transmitting Data
The transmitter portion of the model, shaded in blue at the top of the model,
contains two parallel paths. One path (the fast buffer) processes the first 776
bits of each 1552-bit data frame, while the other path (the interleaved buffer)
processes the last 776 bits of each data frame. Each path appends eight cyclic
redundancy check (CRC) bits to its 776-bit frame, scrambles the bits, and
encodes them using a shortened Reed-Solomon code. The scrambling and
encoding operations interpret the bits as integers between 0 and 127. In the

256-Channel ADSL Demo

3-51

second path but not the first, a Convolutional Interleaver block interleaves the
encoded data. This interleaving operation increases the second path’s
resistance to burst errors but also its latency. Finally, the data from the two
routes are concatenated and modulated. Data from the fast buffer is modulated
to the low frequency subcarriers, while data from the interleaved buffer is
modulated to the high frequency subcarriers, according the bit allocation vector
b. This demo assumes that the bit allocation vector is known and uses the
vector to calculate the channel. Type get_param('adsl_sim', 'preLoadFcn')
to see the calculations involved. For more information about the DMT
Modulator block in this demo, see “Discrete Multitone Signaling Demo”.

Processing Received Data
The receiver attempts to undo each operation that the receiver performed.
Much of the receiver’s design is straightforward; for example, to undo the
actions of the Convolutional Interleaver block, use a Convolutional
Deinterleaver block with the same mask parameters. The frequency domain
equalizer in the DMT Demodulator subsystem mitigates the channel
distortion.

Aligning Frames to Account for Delays
One subtle point in the receiver portion is the Integer Delay block that follows
the Convolutional Deinterleaver block. This Integer Delay block delays the
deinterleaved data by 800 samples. Because the delay between the original and
restored sequences is 40 samples (5 shift registers times a maximum delay of
2*(5-1) samples among all shift registers), the extra 800-sample delay ensures
that bits are properly aligned in the 840-bit frame.

Displaying Error Statistics
Two display icons show error statistics for comparisons between the
transmitted and received data in the two paths (with and without
interleaving). Two other display icons show error statistics based on the CRC
bits, where any nonzero bit among the eight CRC bits indicates a frame error.

In each of the display icons, the error statistics consist of the bit error rate, the
number of bit errors, and the total number of bits processed.

3 Demonstration Models

3-52

Selected Bibliography
[1] Bingham, John A. C. ADSL, VDSL, and Multicarrier Modulation. Wiley:
New York, 2000.

[2] ITU-T Recommendation G.992.1 Asymmetric Digital Subscriber Line
(ADSL) Transceivers. Geneva: Telecommunication Standardization Sector of
International Telecommunication Union, 1999.

[3] Maxwell, Kim. “Asymmetric Digital Subscriber Line: Interim Technology
for the Next Forty Years.” IEEE Communications Magazine, October 1996.
100-106.

Bluetooth Voice Transmission Demo

3-53

Bluetooth Voice Transmission Demo
The Bluetooth Voice Transmission demo, bluetooth_voice, models part of a
Bluetooth system. Bluetooth is a short-range radio link technology that
operates in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band. The
demo modulates the signal using Gaussian frequency shift keying (GFSK) over
a radio channel with maximum capacity of 1Mbps.

The demo uses frequency hopping over a 79 MHz frequency range to avoid
interference with other devices transmitting in the band. In this scheme, the
sender divides transmission time into 625 microsecond slots, and uses a new
hop frequency for each slot. Although the data rate is only 1Mbps, a much
larger bandwidth of 79MHz is required to simulate the frequency hopping
effects.

This document highlights the following aspects of the Bluetooth Voice
Transmission demo:

• “Structure of the Demo”

• “Mask Variables”

• “Results and Display”

Structure of the Demo
The demo contains the following elements:

• Master transmitter,

• Radio channel

• IEEE 802.11b interferer

• Slave receiver,

• Bit error rate (BER) display

• Instrumentation.

The transmitter subsystem performs speech coding, buffering, framing, header
error control (HEC), forward error correction (FEC), GFSK modulation, and
frequency hopping. Channel effects modeled include thermal noise, path loss
and interference. The Free Space Path Loss block, from the RF Impairments
library, models path loss. The IEEE 802.11b interferer is a masked subsystem
that opens up a mask dialog for user input on double-clicks. Mean packet rate,
packet length, power and frequency location in the ISM band can be specified

3 Demonstration Models

3-54

in the mask dialog. The Slave Receiver recovers speech from the transmitted
signal, performing all the complementary operations that the transmitter does,
but in reverse order..

The demo makes extensive use of frame-based processing, which can propagate
large frames of samples at each execution step, allowing for much faster
simulation of digital systems. The double connector lines between the blocks
indicate frame-based signals.

The demo also uses subsystems to organize groups of blocks, and it uses
Goto/From block pairs and colored regions to make the block diagram visually
neater.

Mask Variables
You can open the Model Parameters mask dialog by double-clicking the block
labeled “Double-click to select Model Parameters.” In the mask dialog, you can
specify

• The high-quality voice (HV) packet type in the HV Packet type field

• The initial slot pair type in the Initial Slot Pair for HV3 field

When you load the model, the bluetooth_init.m executes, creating several
variables in the MATLAB workspace by using the PreLoadFcn model callback
parameter.

Results and Display
To examine the performance of the demo, double-click the switches to bring up
error rate display and instrumentation.

The error rate display shows three types of error rates:

• Raw bit error rate

• Residual bit error rate

• Frame error rate (FER)

The raw bit error rate displays the inconsistencies between the bits in the
transmitted signal and the received signal. Frame error rate refers to the ratio
of frame failure to the total number of frames. Frame failure, caused by noise
and interference, is determined if the HEC fails to match the header info or if
less than 57 bits are correct in the access code. If the frame fails, this is

Bluetooth Voice Transmission Demo

3-55

captured by a zero-valued Frame OK signal, which is used in the FER
calculation as well as to exclude bad frames from the residual BER calculation.

The Instrumentation brings up the spectrum of the transmitted Bluetooth
signal (narrow-band) with IEEE 802.11b interference. The timing diagram for
the Bluetooth and interferer slots is also available. A dynamic plot of packet
frequency versus time is shown by the Spectrogram plot. The thin lines are the
Bluetooth transmissions, while the larger, more colorful blocks are the
interferer slots. Most of the time, due to frequency hopping, there is not much
overlap of these slots. In a few cases, the signals do collide, as the Spectrogram
plot clearly shows.

Reference
[1] http://www.bluetooth.com

3 Demonstration Models

3-56

Digital Video Broadcasting Demo
The Digital Video Broadcasting demo, dvbt_sim, models part of the ETSI
(European Telecommunications Standards Institute) EN 300 744 standard for
terrestrial transmission of digital television signals. The standard prescribes
the transmitter design and sets minimum performance requirements for the
receiver. The purpose of this demo is to:

• Model the transmitter in its “2k mode,” as prescribed in the standard

• Model one possible receiver design

• Generate error statistics that will help determine whether the receiver
model satisfies the performance requirements

This document highlights these aspects of the demo:

• The overall structure of the demo, which mimics the block diagram
schematic in the standard

• Variables in the demo

• Design of the receiver portion of the demo

• Visible results of the demo

Structure of the Demo
Using a list and a schematic, the standard shows the major processes that the
data undergoes. The top row of blocks in the demo mimics the structure of the
schematic, by including subsystems that perform such major processes. The
table below shows which subsystems correspond to processes from the
schematic.

Process in Schematic Subystem or Block in Demo

Outer coder (204, 188) Shortened Reed-Solomon
Encoder

Outer interleaver Convolutional Interleaver I=12

Inner coder Rate 3/4 Punctured Convolutional
Code

Inner interleaver DVB-T Inner Interleaver

Digital Video Broadcasting Demo

3-57

The bottom row of icons in the demo represent subsystems that make up the
receiver. The demo also includes a source of random data, a channel model,
error statistic calculators, and several sinks.

Variables in the Demo
When you load the model, it creates several variables in the MATLAB
workspace, using the PreLoadFcn model callback parameter.

To see how MATLAB computes the values of these variables, see the script
dvbt_table_gen.m.

Design of the Receiver
The standard does not specify how to implement the receiver, although some
inverse operations, such as deinterleaving, are clearly defined. This demo
illustrates one possible receiver design by using these features:

• A 64-QAM demapper that makes soft decisions, producing a set of six real
numbers for each complex number in its input. These six numbers represent
soft decisions on the real and imaginary components’ first bit, second bit, and

Mapper DVB-T 64-QAM Mapper

OFDM OFDM Transmitter

Variable Purpose in Demo

Ts Sample time of random integer source

dvb_bit_int_table Table for Bit Interleaver and Bit Deinterleaver

dvb_sym_int_table Table for Symbol Interleaver and Symbol
Deinterleaver

dvbt_qam Signal constellation for 64-QAM mapping

Process in Schematic Subystem or Block in Demo

3 Demonstration Models

3-58

third bit. The Viterbi Decoder subsystem interprets the soft-decision
numbers and uses them to decode the punctured convolutional code properly.

To examine the exact mapping more closely, see the DVB-T 64-QAM
Demapper subsystem, as well as the dvbt_qam variable in the MATLAB
workspace.

• A traceback depth of 136 in the Viterbi Decoder library block. This library
block appears within the top-level Viterbi Decoder subsystem.

Visible Results of the Demo
To examine the performance of the demo, use the sink blocks that are included
in it, listed in the table below.

Selected Bibliography
[1] ETSI Standard EN 300 744: Digital Video Broadcasting (DVB); Framing
structure, channel coding and modulation for digital terrestrial television.
Valbonne, France: European Telecommunications Standards Institute, 1997.

Icon or Window What it Shows

Leftmost Display icon Error statistics for the entire
system

Rightmost Display icon Error statistics for the inner coder

Spectrum Scope window Spectrum of the received OFDM
signal

Delayed Scatter Plot window Scatter plot of the received 64-QAM
signal

HiperLAN/2 Demo

3-59

HiperLAN/2 Demo
The HIPERLAN/2 demo, hiperlan2, models part of HIPERLAN/2 (high
performance radio local area network), European (ETSI) Standard for
high-rate wireless LANs. It employs Orthogonal Frequency Division
Multiplexing (OFDM) that operates in the 5GHz band and offers raw data
rates up to 54 Mbps. The model shows transmitter side coding and modulation
for the 16 QAM, ¾ code rate mode with a corresponding ideal receiver chain
and AWGN channel. This document highlights these aspects of the demo:

• The overall structure of the demo

• Visible results and display of the demo

Structure of the demo
The demonstration contains components that model the essential features of
the HiperLAN/2 standard. The top row of blocks contains the transmitter
components while the bottom row contains the receiver components. The table
below shows which blocks and subsystems correspond to processes from the
standard.

The demo also includes the Bernoulli Binary Generator block as a data source,
the AWGN Channel block to simulate noise, and the Error Rate Calculation
block and Display block to show error statistics.

Process in Standard Block or Subsystem in the Demo

FEC Coding Convolutional Encoder and P2 Puncture

Data interleaving Matrix Interleaver and General Block
Interleaver

Signal constellations and
mapping

Normalize

Modulation technique
(OFDM)

OFDM Transmitter and OFDM Receiver

3 Demonstration Models

3-60

Visible Results and Display
To examine the performance of the demo, use the sink blocks that are included
in it, listed in the table below:

The Spectrum Scope and the Scatter Plot after OFDM Receiver are visible
upon running the demo. The Scatter Plot after normalization can be viewed
by double-clicking on the ‘Transmitted Signal’ Scatter Plot block

References
[1] ETSI TS 101 475 V1.2.2 (2001-02) Broadband Radio Access Networks
(BRAN): HIPERLAN Type 2: Physical (PHY) Layer. Available on
http://www.etsi.org

Icon or Window What it Shows

Display icon Error statistics for the entire system

Spectrum Scope window Flat-top spectrum of the OFDM signal

Scatter Plot after normalization Scatter plot of transmitted 16QAM signal

Scatter Plot after OFDM
Receiver

Scatter plot of received 16QAM signal

RF Satellite Link Demo

3-61

RF Satellite Link Demo
This RF Satellite Link demo, rf_satlink, presents the simulation of a satellite
link with blocks from the Communications Blockset’s RF Impairments Library
(red blocks). These blocks simulate the following impairments:

• Free space path loss

• Receiver thermal noise

• Memoryless nonlinearity

• Phase noise

• In phase and quadrature imbalances

• Phase/frequency offsets

If you are familiar with Simulink and RF impairments, double-click the block
labeled “RF Link Demo: Settings” in the lower left corner of the demo and
follow the suggested scenarios.

By modeling the gains and losses on the link, this model is an implementation
of the link budget calculations that determine if a downlink can be closed with
a a given bit error rate (BER). The gain and loss blocks, including the Free
Space Path Loss block and the Receiver Thermal Noise block, determine the
data rate that can be supported on the link in an additive white Gaussian noise
channel. The demonstration contains additional RF impairment blocks such
as the Memoryless Nonlinearity, I/Q Imbalance, Phase Noise,
Phase/Frequency Offset, and I/Q Imbalance blocks so you can view the effect
of the corresponding impairments on the link. The description of this demo is
divided into the following sections:

• “Structure of the demo” on page 3-61

• “Mask Parameters” on page 3-63

• “Results and Displays” on page 3-66

• “Experimenting with the Demo” on page 3-66

• “Selected Bibliography” on page 3-69

Structure of the demo
The demo highlights both the satellite link model and signal instrumentation.
The model consists of a Satellite Downlink Transmitter, Downlink Path, and

3 Demonstration Models

3-62

Ground Station Downlink Receiver. The blocks that comprise each of these
sections are:

• Satellite Downlink Transmitter

- Random Integer Generator – Creates a random data stream.

- Rectangular QAM Modulator Baseband – Maps the data stream to
16-QAM constellation.

- FIR Interpolator (RRC Tx. Filter) – Upsamples and shapes the modulated
signal using the square root raised cosine pulse shape.

- Memoryless Nonlinearity (High Power Amplifier) – Model of a traveling
wave tube amplifier (TWTA) using the Saleh model.

- Gain (Tx. Dish Antenna Gain) – Gain of the transmitter parabolic dish
antenna on the satellite.

• Downlink Path

- Free Space Path Loss (Downlink Path) – Attenuates the signal by the free
space path loss.

- Phase/Frequency Offset (Doppler and Phase Error) – Rotates the signal to
model phase and Doppler error on the link.

• Ground Station Downlink Receiver

- Receiver Thermal Noise (Satellite Receiver System Temp) – Adds white
Gaussian noise that represents the effective system temperature of the
receiver.

- Gain (Rx. Dish Antenna Gain) – Gain of the receiver parabolic dish
antenna at the ground station.

- Phase Noise – Introduces random phase perturbations that result from
‘1/f’ or phase flicker noise.

- I/Q Imbalance – Introduces DC offset, amplitude imbalance, or phase
imbalance to the signal.

- DC Removal (DC Offset Comp.) – Estimates and removes the DC offset
from the signal. Compensates for the DC offset in the I/Q Imbalance block.

- Magnitude AGC / I and Q AGC (Select AGC) – Automatic Gain Control
Compensates the gain of both inphase and quadrature components of the
signal either jointly or independently.

- Phase/Frequency Offset (Doppler and Phase Compensation) – Rotates the
signal to represent correction of phase and Doppler error on the link. This

RF Satellite Link Demo

3-63

block is a static block that simply corrects using the same values as the
Phase/Frequency Offset block.

- FIR Interpolator (RRC Rx. Filter) and Downsample – Matched filter the
modulated signal using the square root raised cosine pulse shape.

- Rectangular QAM Demodulator Baseband - Demaps the data stream from
the 16-QAM constellation space.

Mask Parameters
Double-click the block labeled “RF Link Demo: Settings” in the lower left corner
of the model window to view the paramater settings for the demo. All of the
mask parameters are tunable. The demo is updated when you click OK or
Apply. The parameters are:

• Satellite altitude (km) – The distance between the satellite and the ground
station. Changing this parameter updates the Free Space Path Loss block.
The default setting is 35600.

• Frequency (MHz) – The carrier frequency of the link. Changing this
parameter updates the Free Space Path Loss block. The default setting is
8000.

• Transmit and receive antenna sizes (m) – The first element in the vector
represents the transmit antenna diameter and is used to calculate the gain
in the Tx Dish Antenna Gain block. The second element represents the
receive antenna diameter and us used to calculate the gain in the Rx Dish
Antenna Gain block. The default setting is [2 2].

• Noise temperature (K) – Allows you to select from three effective receiver
system noise temperatures. The select noise temperature changes the Noise
Temperature of the Receiver Thermal Noise block. The default setting is 0
K. The choices are:

- 0 (no noise) – Use this setting to view the other RF impairments without
the perturbing effects of noise.

- 20 (very low noise level) – Use this setting to view how easily a low level
of noise can, when combined with other RF impairments, degrade the
performance of the link.

- 290 (typical noise level) – Use this setting to view how a typical quiet
satellite receiver operates.

3 Demonstration Models

3-64

• HPA backoff level – Allows you to select from three backoff levels. This
parameter is used to determine how close the satellite high power amplifier
is driven to saturation. The selected backoff is used to set the input and
output gain of the Memoryless Nonlinearity block. The default setting is 30
dB (negligible nonlinearity). The choices are:

- 30 dB (negligible nonlinearity) – Sets the average input power to 30
decibels below the input power that causes amplifier saturation (i.e. the
point at which the gain curve becomes flat) This causes negligible
AM-to-AM and AM-to-PM conversion. AM-to-AM conversion is an
indication of the amplitude nonlinearity varies with the signal magnitude.
AM-to-PM conversion is a measure of how the phase nonlinearity varies
with signal magnitude

- 7 dB (moderate nonlinearity) – Sets the average input power to 7
decibels below the input power that causes amplifier saturation. This
causes moderate AM-to-AM and AM-to-PM conversion.

- 1 dB (severe nonlinearity) – Sets the average input power to 1 decibel
below the input power that causes amplifier saturation. . This causes
severe AM-to-AM and AM-to-PM conversion.

• Phase correction - Allows you to select from three phase offset values to
correct for the average AM-to-PM conversion in the High Power Amplifier.
The selection updates the Phase/Frequency Offset (Doppler and Phase
Compensation) block. The default setting is None. The choices are:

- None – No correction. Use to view uncorrected AM-to-PM conversion.

- Correct for moderate HPA AM-to-PM – Corrects for average AM-to-PM
distortion when the HPA backoff is set to 7 dB

- Correct for severe HPA AM-to-PM – Corrects for average AM-to-PM
distortion when the HPA backoff is set to 1 dB

• Doppler error – Allows you to select from three values of Doppler on the link
and the corresponding correction, if any. The selection updates the
Phase/Frequency Offset (Doppler and Phase Error) and Phase/Frequency
Offset (Doppler and Phase Compensation) blocks. The default setting is
None. The choices are:

- None - No Doppler on the link and no correction.

- Doppler (0.7 Hz - uncorrected) – Adds 0.7 Hz Doppler with no correction
at the receiver.

RF Satellite Link Demo

3-65

- Doppler (3 Hz - corrected) – Adds 3 Hz Doppler with the corresponding
correction at the receiver, -3 Hz.

• Phase noise – Allows you to select from three values of phase noise at the
receiver. The selection updates the Phase Noise block. The default setting
is Negligible (-100 dBc/Hz @ 100 Hz). The choices are:

- Negligible (-100 dBc/Hz @ 100 Hz) – Almost no phase noise.

- Low (-55 dBc/Hz @ 100 Hz) – Enough phase noise to be visible in both the
spectral and I/Q domains, and cause additional errors when combined with
thermal noise or other RF impairments.

- High (-48 dBc/Hz @ 100 Hz) – Enough phase noise to cause errors without
the addition of thermal noise or other RF impairments.

• I/Q imbalance – Allows you to select from five types of inphase and
quadrature imbalances at the receiver. The selection updates the I/Q
Imbalance block. The default setting is None. The choices are;

- None – No imbalances

- Amplitude imbalance (3 dB) – Applies a 1.5 dB gain to the inphase signal
and a -1.5 dB gain to the quadrature signal.

- Phase imbalance (20 deg) – Rotates the inphase signal by 10 degrees and
the quadrature signal by –10 degrees.

- In-phase DC offset (2e-6) – Adds a DC offset of 2e-6 to the inphase signal
amplitude. This offset will change the received signal scatter plot, but will
not cause errors on the link unless combined with thermal noise or other
RF impairments.

- Quadrature DC offset (1e-5) – Adds a DC offset of 1e-5 to the quadrature
signal amplitude. This offset will cause errors on the link even when not
combined with thermal noise or another RF impairment. This offset also
causes a DC spike in the received signal spectrum.

• DC offset compensation – Allows you to enable or disable the DC Offset
block. The selection updates the DC Removal block. The default setting is
Disabled.

• AGC type – Allows you select the automatic gain control for the link. The
selection updates the Select AGC block, which is labeled Magnitude AGC or
I and Q AGC, depending on whether you select Magnitude only or
Independent I and Q, respectively. The default setting is Magnitude only.

3 Demonstration Models

3-66

- Magnitude only - Compensates the gain of both inphase and quadrature
components of the signal by estimating only the magnitude of the signal.

- Independent I and Q - Compensates the gain of the inphase signal using
an estimate of the inphase signal magnitude and the quadrature
component using an estimate of the quadrature signal magnitude.

Results and Displays
When you run this demo, the following displays are available to you:

• Bit error rate (BER) display – In the lower right corner of the model is a
display of the BER of the model. The BER computation is reset every 5000
symbols to allow you to view the impact of the changes in the model without
having to restart the model.

• Spectrum Scope – Double-clicking on this block to turn the switch to the ON
position allows you to view the spectrum of the modulated/filtered signal
(blue) and the received signal before demodulation (red). If both spectra are
identical, then the display will show one green spectrum. Comparing these
spectra allows you to view the effect of the following RF impairments:

- Spectral regrowth due to HPA nonlinearities caused by the Memoryless
Nonlinearity block,

- Thermal noise caused by the Receiver Thermal Noise block, and

- Phase flicker (i.e. 1/f noise) caused by the Phase Noise block.

• End to End Constellation – Double-clicking this block to turn the switch to
the ON position allows you to view the scatter plots of the signal after QAM
modulation (blue) and before QAM demodulation (red). Comparing these
scatter plots allows you to view the impact of all of the RF impairments on
the received signal and the effectiveness of the compensations.

• Constellation Before and After HPA– Double-clicking this block to turn the
switch to the ON position allows you to view the constellation before and
after the HPA (blue and red respectively). Comparing these plots allows you
to view the effect that the nonlinear HPA behavior has on the signal.

Experimenting with the Demo
This section describes some ways that you can change the demo parameters, in
order to experiment with the effects of the blocks from the RF Impairments

RF Satellite Link Demo

3-67

library and other blocks in the demo. The following lists some suggested
scenarios along with the changes from the default settings:

• Link gains and losses – Change Noise temperature to 290 (typical noise
level) or to 20 (very low noise level). Change the value of the Satellite
altitude (km) or Satellite frequency (MHz) parameters to change the free
space path loss. In addition, increase or decrease the Transmit and receive
antenna size (m) parameter to increase or decrease the received signal
power. You can view the changes in the received constellation in the received
signal scatter plot scope and the changes in received power in the spectrum
scope. In cases where the change in signal power is large (greater than 10
dB), the AGC filter causes the received power (after the AGC) to oscillate
before settling to the final value.

• Raised cosine pulse shaping – Make sure Noise temperature is set to 0 (no
noise). Turn on the Constellation Before and After HPA instrumentation.
Observe that the square-root raised cosine filtering results in intersymbol
interference (ISI). This results in the points being scattered loosely around
ideal constellation points, which you can see in the After HPA scatter plot.
The square-root raised cosine filter in the receiver, in conjunction with the
transmit filter, control the ISI, which you can see in the received signal
scatter plot.

• HPA AM-to-AM conversion and AM-to-PM conversion – Change the HPA
backoff level parameter to 7 dB (moderate nonlineartity) and observe the
AM-to-AM and AM-to-PM conversions by comparing the Transmit RRC
filtered signal scatter plot with the RRC signal after HPA scatter plot. Note
how the AM-to-AM conversion varies according to the different signal
amplitudes. You can also view the effect of this conversion on the received
signal in the received signal scatter plot. In addition, you can observe the
spectral regrowth in the received signal spectrum scope. You can view the
AM-to-PM conversion compensation in the receiver by setting the Phase
correction parameter to Correct for moderate HPA AM-to-PM. You can
also view the phase change in the received signal in the received signal
scatter plot scope.

Change the HPA backoff level parameter to 1 dB (severe nonlinearity)
and observe from the scopes that the AM-to-AM and AM-to-PM conversion
and spectral regrowth have increased. You can view the AM-to-PM
conversion to compensate in the receiver by setting the Phase correction to

3 Demonstration Models

3-68

Correct for severe HPA AM-to-PM. You can view the phase change in the
received signal scatter plot scope.

• Phase noise plus AM-to-AM conversion – Set the Phase Noise parameter to
High and observe the increased variance in the tangential direction in the
received signal scatter plot. Also note that this level of phase noise is
sufficient to cause errors in an otherwise error-free channel. Set the Phase
Noise to Low and observe that the variance in the tangential direction has
decreased somewhat. Also note that this level of phase noise is not sufficient
to cause errors. Now, set the HPA backoff level parameter to 7dB
(moderate nonlinearity) and the Phase correction to Correct for
moderate HPA AM-to-PM conversion. Note that even though the
corrected, moderate HPA nonlinearity and the moderate phase noise do not
cause bit errors when applied individually, they do cause bit errors when
applied together.

• DC offset and DC offset compensation – Set the I/Q Imbalance parameter to
In-phase DC offset (2e-6) and view the shift of the constellation in the
received signal scatter plot. Set DC offset compensation to Enabled and
view the received signal scatter plot to view how the DC offset block
estimates the DC offset value and removes it from the signal. Set DC offset
compensation to Disabled and change I/Q imbalance to Quadrature DC
offset (1e-5). View the changes in received signal scatter plot for a large DC
offset and the DC spike in the received signal spectrum. Set DC offset
compensation to Enabled and view the received signal scatter plot and
spectrum scope to see how the DC component is removed.

• Amplitude imbalance and AGC type – Set the I/Q Imbalance parameter to
Amplitude imbalance (3 dB) to view the effect of unbalanced I and Q gains
in the received signal scatter plot. Set the AGC type parameter to
Independent I and Q to demonstrate how the independent I and Q AGC
compensate for the amplitude imbalance.

• Doppler and Doppler compensation – Set Doppler error to 0.7 Hz
(uncorrected) to demonstrate the effect of uncorrected Doppler on the
received signal scatter plot. Set the Doppler error to 3 Hz corrected to
demonstrate the effect of correcting the Doppler on a link. Without changing
the Doppler error setting, repeat the following scenarios:

- DC offset and DC offset compensation

RF Satellite Link Demo

3-69

- Amplitude imbalance and AGC type

to view the effects that occur when DC offset and amplitude imbalances
occur in circuits that do not have a constant phase reference.

Selected Bibliography
[1] “Frequency-Independent and Frequency-Dependent Nonlinear Models of
TWT Amplifiers”, Adel A. M. Saleh, IEEE Transactions on Communications,
Vol. COM-29, No. 11, November 1981.

[2] Kasdin, N.J., "Discrete Simulation of Colored Noise and Stochastic
Processes and 1/(f^alpha); Power Law Noise Generation," The Proceedings of
the IEEE, May, 1995, Vol. 83, No. 5

[3] “Discrete Simulation of Power Law Noise”, N. Jeremy Kasdin and Todd
Walter, 1992 IEEE Frequency Control Symposium.

[4] Digital Communications, Fundamentals and Applications, Bernard Sklar,
Prentice Hall, Englewood Cliffs, NJ, copyright 1988.

3 Demonstration Models

3-70

WCDMA Coding and Multiplexing Demo
The WCDMA Coding and Multiplexing demo, wcdma_muxandcoding, presents a
simulation of the multiplexing and channel decoding structure for the
frequency division duplex (FDD) downlink as specified by the Third Generation
Partnership Project (3GPP), Release 1999. The demo comprises half of the
model described in “WCDMA End-to-End Physical Layer Demo” on page 3-71.

WCDMA End-to-End Physical Layer Demo

3-71

WCDMA End-to-End Physical Layer Demo
The WCDMA End-to-End Physical Layer Demo, wcdma_phlayer, models part
of the frequency division duplex (FDD) downlink physical layer of the third
generation wireless communication system known as wideband code division
multiple access (WCDMA).

WCDMA is one of five air-interfaces for the next generation of wireless
communications being developed within the framework of the International
Mobile Telecommunications (IMT)-2000, as defined by the International
Telecommunication Union (ITU). The WCDMA technology is officially known
as IMT-2000 Direct Spread.

The specifications of the WCDMA system are being developed by the Third
Generation Partnership Project (3GPP), Release 1999, which is a joint effort
between standards bodies from Europe, Japan, Korea, USA, and China.

The WCDMA air interface is a direct spread technology. This means that it
spreads encoded user data at a relatively low rate over a much wider
bandwidth (5 MHz), using a sequence of pseudo-random units called chips at
much higher rate (3.84 Mcps). By assigning a unique code to each user, the
receiver, which has knowledge of the code of the intended user, can successfully
separate the desired signal from the received waveform.

This document highlights the following aspects of the demo:

• “Overall Structure of the Physical Layer” on page 3-71

• “Parameters in the Demo” on page 3-74

• “Visible Results of the Demo” on page 3-77

• “References” on page 3-78

Overall Structure of the Physical Layer
The physical layer is in charge of providing transport support to the data
generated at higher layers. This data is exchanged between the higher layers
and the physical layer in the form of transport channels. There can be up to
eight transport channels processed simultaneously. Each transport channel
has associated a different transport format that contains information of how
the data needs to be processed by the physical layer. The physical layer
processes this data before sending it to channel.

3 Demonstration Models

3-72

The are seven main subsystems in the model, whose functions are summarized
in the following table.

WCDMA DL Tx Channel Coding Scheme
The WCDMA DL Tx Channel Coding Scheme subsystem processes each
transport channel independently according to the transport format parameters
associated to it. This subsystem implements the following functions:

• Cyclic redundancy code (CRC) attachment

• Transport block concatenation and segmentation

• Channel encoding

• Rate matching

• First interleaving

• Radio frame segmentation

The different transport channels are then combined together to generate a
coded combined transport channel (CCTrCH). The CCTrCH is then sent to the
WCDMA Tx Physical Mapping subsystem.

Subsystem Function

WCDMA DL Tx Channel
Coding Scheme

Transport channel encoding and
multiplexing

WCDMA Tx Physical Channel
Mapping

Physical channel mapping

WCDMA BS Tx Antenna Modulation and spreading

WCDMA Channel Model Channel model

WCDMA UE Rx Antenna Despreading and demodulation

WCDMA Rx Physical Channel
Demapping

Physical channel demapping

WCDMA DL Rx Channel
Decoding Scheme

Transport channel demultiplexing and
decoding

WCDMA End-to-End Physical Layer Demo

3-73

WCDMA Tx Physical Mapping
This subsystem implements the following functions:

• Physical channel segmentation

• Second interleaver

• Slot builder

The output of this subsystem constitutes a dedicated physical channel (DPCH),
which is passed to the WCDMA BS Tx Antenna Spreading and Modulation
subsystem.

WCDMA BS Tx Antenna Spreading and Modulation
The WCDMA BS Tx Antenna Spreading and Modulation subsystem performs
the following functions:

• Modulation

• Spreading by a real-valued orthogonal variable spreading factor (OVSF) code

• Scrambling by a complex-valued Gold code sequence

• Power weighting

• Pulse shaping

WCDMA Channel Model
The WCDMA Channel Model subsystem simulates a wireless link channel
containing additive white Gaussian noise (AWGN) and, if selected, a set of
multipath propagation conditions. You can modify the multipath profile with
the Propagation conditions environment parameter, as described in
“Propagation conditions environment” on page 3-77

WCDMA UE Rx Antenna
The received signal at the WCDMA UE Rx Antenna subsystem is the sum of
attenuated and delayed versions of the transmitted signals due to the so-called
multipath propagation introduced by the channel. At the receiver side, a RAKE
receiver is implemented to resolve and compensate for such effect. A Rake
receiver consists of several rake fingers each of them associated to a different
received component. Each rake finger is made of chip correlators to perform the
despreading, channel estimation to gauge the channel and a derotator that
using the knowledge provided by the channel estimator corrects the phase of

3 Demonstration Models

3-74

the data symbol. The subsystem coherently combines the output of the
different rake fingers to recover the energy across the different delays.

WCDMA RX Physical Channel Demapping and Channel Decoding Scheme
The WCDMA RX Physical Channel Demapping and the WCDMA DL Rx
Channel Decoding Scheme subsystem decode the signal by performing the
inverse of the functions of the WCDMA DL Tx Channel Coding Scheme
subsystem, as described above.

Parameters in the Demo
You can view or change parameters in the model by double-clicking the block
labeled "WCDMA Demo: Initial Settings." This displays the Block Parameters
dialog.

The Power for [DPCH, P-CPICH, PICH, PCCPCH, SCH] in dB parameter
consists of a row vector containing the powers in decibels corresponding to the
the different physical channels.

The Show Transport Channel Settings check box enables you to specify the
parameters corresponding to the WCDMA Tx Channel Coding Scheme
subsystem, the WCDMA Tx PhCh Mapping subsystem, and its corresponding
subsystems at the receiver side. When the box is selected, the dialog displays
the following parameters:

WCDMA End-to-End Physical Layer Demo

3-75

Parameter Description

DL Measurement
channels

The down link (DL) measurement channels. There
are four channels whose settings are specified by
the standard:

• 12.2 Kbps
• 64 Kbps
• 144 Kbps
• 384 Kbps

If you select one of these channels, the parameters
listed below are greyed out. To change these
parameter settings, select User Defined.

Transport block set
size

Integer row vector representing the transport
block set size as defined by the standard
associated to each transport channel.

Transport block size Integer row vector representing the transport
bock size as defined by the standard associated to
each transport channel.

TTI in ms Integer row vector representing the transmission
time interval (TTI) in ms as defined by the
standard associated to each transport channel.

CRC Size Integer row vector representing the CRC size in
number of bits associated to each transport
channel.

Type of error
Protection

Integer row vector representing the coding
scheme associated to each transport channel. The
different options are:

• 1 for no coding

• 2 for convolutional encoding

• 3 for turbo coding.

3 Demonstration Models

3-76

The Show Antenna Settings check box enables you to specify the parameters
corresponding to the WCDMA BS Tx Antenna and WCDMA UE Rx Antenna
subsystems. When the box is checked, the dialog displays the following
parameters:

Rate matching
attribute

Integer row vector representing the rate matching
attribute as defined by the standard associated to
each transport channel

Position of TrCH in
radio frame

Sets the position of the transport channels in the
radio frame to be Fixed or Flexible as defined by
the standard

Number of PhCH Integer from 1 to 3 corresponding to the number of
physical channels used.

Slot format (0..16) Sets the corresponding slot format parameter as
defined by the standard.

Parameter Description

DPCH Code number Integer number from 0 to the value of the
spreading factor minus 1 corresponding to
the index of the orthogonal code assigned to
the DPCH channel.

Scrambling code Vector of two elements corresponding to the
index of the Scrambling Code assigned to
the Base Station.

Number of filter taps for
RRC

Number of filter coefficients for the
root-raised cosine filter.

Parameter Description

WCDMA End-to-End Physical Layer Demo

3-77

The Show Channel Model Settings check box enables you to specify the
parameters corresponding to the WCDMA Channel Model subsystem:

Visible Results of the Demo
The following blocks calculate various error rates in the demo:

• BLER (Block Error Rate) Calculation shows the block error rate of the
combined transport channels.

• BER (Bit Error Rate) Calculation shows the results of the BER computation
block associated to each transport channel separately.

Number of coefficients for
channel estimation filters

Number of filter coefficients for low pass
filter implemented in channel estimation.

Oversampling factor Integer value corresponding to the number
of samples per symbol

Parameter Description

Propagation conditions
environment

Selects between the different pre-built
propagation conditions environments.

Number of enable fingers Integer from 1 to 4 that sets the number
of enable fingers

SNR (in dB) Value of the signal to noise ratio in
decibels.

Relative delay of Rx signals
(in s)

Vector corresponding to the delay (in s)
of the different paths.

Average Power of Rx signals
(in dB)

Vector corresponding to the Power (in
dB) of the different path.

Speed of Terminal (in Km/h) Value of the speed of the UE (User
Equipment) in Km/h

Parameter Description

3 Demonstration Models

3-78

The following scopes display the signal in various ways. To view the scopes,
double-click on the switches when the simulation is running:

- Time Scopes shows the bit stream before spreading, after spreading and
after combining the different weighted physical channels. It shows both
the real and the imaginary part separately. It also displays both the real
and the imaginary part of the output of the channel estimator for the first
rake finger.

- Power spectrum shows the power spectrum of the signal before spreading,
after spreading, after pulse shaping and at the input of the receiver
antenna.

- Scatter plots show the constellation at signal at the output of the data
correlator, after phase derotation and after amplitude correction.

References
[1] http://www.3gpp.org

WCDMA Spreading and Modulation Demo

3-79

WCDMA Spreading and Modulation Demo
The WCDMA Spreading and Modulation demo, wcdma_spreadandmod,
simulates spreading and modulation for an FDD downlink DPCH channel as
specified by Third Generation Partnership Project (3GPP), Release 1999. The
demo comprises half of the model described in “WCDMA End-to-End Physical
Layer Demo” on page 3-71.

3 Demonstration Models

3-80

I-1

Index

A
A-law companders 1-38
amplitude modulation (AM)

example model 1-87
analog modulation libraries 1-81
analog-to-digital conversion 1-30

B
baseband simulation 1-82

compared to passband 2-24
signals in 1-82

binary codes 1-42
binary numbers, order of digits and 1-45
binary vector format 1-43
block coding

features 1-42
methods supported in blockset 1-42
techniques for 1-42
terminology and notation 1-43

block coding library 1-41
block interleaving library 1-72

C
Channel Coding library 1-41
Channels library 1-113
code generator matrices

representing 1-50
codebooks

representing 1-31
codewords

definition 1-43
representing 1-43

column vector signals 1-3
Comm Sinks library 1-23
Comm Sources library 1-7

companders 1-38
example 1-38

compression of data 1-30
compressors 1-38

example 1-38
converting analog to digital 1-30
convolutional coding

delays 1-56
convolutional coding library 1-54
convolutional interleaving library 1-75

D
data compression 1-30
decision timing

and eye diagrams 1-25
and scatter diagrams 1-25

delays
from analog demodulator’s filter 1-90
in convolutional coding 1-56
in digital modulation 1-97
in example model 1-64
in interleaving 1-77
in serial-signal channel coding 1-44

delta modulation 1-35
example 1-36
parameters 1-31

demodulation 1-81
diagrams

example 1-26
eye 1-24
scatter 1-25

differential pulse code modulation (DPCM) 1-35
example 1-36
parameters 1-31

digital modulation libraries 1-92

Index

I-2

DPCM 1-35
example 1-36
parameters 1-31

E
erasure insertion 3-5
error, predictive 1-35
error-correction capability

of Hamming codes 1-50
of Reed-Solomon codes 1-52

examples
analog modulation timing 1-83
companders 1-38
continuous phase modulation 1-107
convolutional coding 1-56
convolutional decoding 1-60
convolutional interleaving 1-78
delays from filtering 1-90
delays in digital demodulation 1-99
differential pulse code modulation 1-36
eye and scatter diagrams 1-26
fading channels 1-115
filter cutoffs 1-87
Hamming coding 1-46
passband digital modulation 1-109
quantization 1-32
quantized sine wave 1-33
Reed-Solomon coding 1-47
scatter diagrams 1-105
signal constellations 1-104

expanders 1-38
example 1-38

eye diagrams 1-24
example 1-26

F
filters, post-demodulation

choosing cutoff frequency 1-87
designing 1-87
resulting time lag 1-90

frame attribute 1-4
frame-based signals, definition of 1-4
full matrix signal, definition of 1-3

G
generator matrices 1-50

H
Hamming codes 1-50

I
integer format for messages and codewords 1-45
interleaving delays 1-77
Interleaving library 1-72

L
linear predictors 1-36

M
messages

definition 1-43
representing 1-43

modulation
analog 1-81
definition of 1-81
delta 1-35

example 1-36

Index

I-3

differential pulse code. See differential pulse
code modulation

digital 1-92
Modulation library 1-81
mu-law companders 1-38

example 1-38

N
nonbinary codes 1-42

Reed-Solomon 1-52

O
one-dimensional arrays, definition of 1-3
order of digits in binary numbers 1-45
orientations, of vector signals 1-3

P
π/4 DQPSK modulation 1-104
partitions 1-31
passband simulation 1-82

compared to baseband 2-24
phase modulation (PM) example 1-90
pi/4 DQPSK modulation 1-104
PLLs 1-130
predictive error 1-35
predictive quantization 1-35

example 1-36
features 1-30
parameters 1-31

predictors 1-35

Q
quantization

coding 1-34
example 1-32
features 1-30
parameters 1-31
predictive 1-35

example 1-36
vector 1-30

R
random signals 1-8
randseed 1-20
representing

codebooks 1-31
codewords 1-43
generator matrices 1-50
messages 1-43
partitions 1-31
predictors 1-36
quantization parameters 1-31
truth tables 1-50

row vector signals 1-3

S
sample times

in sources 1-18
sample-based signals, definition of 1-4
scalar quantization

coding 1-34
example 1-32
features 1-30
parameters 1-31

scalar signals
definition of 1-3

scatter diagrams 1-25
example 1-26

Index

I-4

signal formatting features 1-30
sinks library 1-23
sizes, of matrix signals 1-3
source coding features 1-30
Source Coding library 1-30
sources library 1-7
synchronization 1-130
Synchronization library 1-130

T
timing, decision

and eye diagrams 1-25
and scatter diagrams 1-25

truth tables 1-50

V
vector quantization 1-30
vector signals, definition of 1-3

	Using the Libraries
	Signal Support
	Signal Terminology
	Matrices, Vectors, and Scalars
	Frame-Based and Sample-Based Signals

	Processing Matrices, Vectors, and Scalars
	Illustrations of Scalar and Vector Processing

	Processing Frame-Based and Sample-Based Signals

	Communications Sources
	Controlled Sources
	Random Data Sources
	Random Bits
	Random Integers

	Random Noise Generators
	Sequence Generators
	Pseudorandom Sequences
	Synchronization Codes
	Orthogonal Codes

	Sequence Generator Examples
	Example: Pseudorandom Sequences
	Example: Orthogonal Sequences

	Block Parameters
	Sample Time Parameter for Random Sources
	Seed Parameter
	Signal Attribute Parameters for Random Sources
	Example

	Communications Sinks
	Sink Features of the Blockset
	Writing to a File
	Error Statistics
	Scopes
	Eye Diagrams
	Scatter Plots
	Signal Trajectories

	Example: Viewing a Sinusoid

	Source Coding
	Source Coding Features of the Blockset
	Representing Quantization Parameters
	Partitions
	Codebooks

	Quantizing a Signal
	Scalar Quantization Example 1
	Scalar Quantization Example 2
	Determining Which Interval Each Input Is in

	Implementing Differential Pulse Code Modulation
	DPCM Terminology
	Representing Predictors
	Coded and Decoded Signals
	Example: Using DPCM Encoding and Decoding

	Companding a Signal
	Example: Using a m-Law Compander

	Selected Bibliography for Source Coding

	Block Coding
	Organization of This Section
	Accessing Block Coding Blocks
	Block Coding Features of the Blockset
	Communications Toolbox Support Functions
	Channel Coding Terminology
	Data Formats for Block Coding
	Binary Format (All Coding Methods)
	Using Serial Signals

	Integer Format (Reed-Solomon Only)

	Using Block Encoders and Decoders Within a Model
	Examples of Block Coding
	Example: Hamming Code in Binary Format
	Example: Reed-Solomon Code in Integer Format

	Notes on Specific Block Coding Techniques
	Generic Linear Block Codes
	Generator Matrix
	Decoding Table

	Cyclic Codes
	Generator Polynomials

	Hamming Codes
	Primitive Polynomials

	BCH Codes
	Error Information

	Reed-Solomon Codes
	Effect of Nonbinary Symbols
	Error Information

	Selected Bibliography for Block Coding

	Convolutional Coding
	Organization of This Section
	Accessing Convolutional Coding Blocks
	Convolutional Coding Features of the Blockset
	Parameters for Convolutional Coding
	Using the Polynomial Description in Blocks

	Example: A Rate 2/3 Feedforward Encoder
	How to Determine Coding Parameters
	How to Simulate the Encoder
	Notes on the model

	Implementing a Systematic Encoder with Feedback
	Example: Soft-Decision Decoding
	Overview of the Simulation
	Defining the Convolutional Code
	Mapping the Received Data
	Decoding the Convolutional Code
	Soft-Decision Interpretation of Data
	Traceback and Decoding Delay

	Delay in Received Data
	Comparing Simulation Results with Theoretical Results
	Computing Theoretical Bounds for the Bit Error Rate
	Simulating Multiple Times to Collect Bit Error Rates

	Selected Bibliography for Convolutional Coding

	Cyclic Redundancy Check Coding
	Organization of this Section
	Accessing CRC Blocks
	CRC Coding Features of the Blockset
	CRC Algorithm

	Interleaving
	Interleaving Features of the Blockset
	Block Interleavers
	Types of Block Interleavers
	Example: Block Interleavers

	Convolutional Interleavers
	Types of Convolutional Interleavers
	Delays of Convolutional Interleavers
	Convolutional Interleaver block
	Helical Interleaver block

	Example: Convolutional Interleavers

	Selected Bibliography for Interleaving

	Analog Modulation
	Accessing Analog Modulation Blocks
	Analog Modulation Features of the Blockset
	Baseband Modulated Signals Defined
	Representing Signals for Analog Modulation
	Timing Issues in Analog Modulation
	Signal Sample Times
	Example Using a Modulator

	Simulation Step Sizes
	Example Using Step Size Relative to Carrier Period

	Filter Design Issues
	Example: Varying the Filter’s Cutoff Frequency
	Other Filter Cutoffs

	Example: Time Lag from Filtering

	Digital Modulation
	Accessing Digital Modulation Blocks
	Digital Modulation Features of the Blockset
	General and Specific Modulation Methods

	Representing Signals for Digital Modulation
	Binary-Valued and Integer-Valued Signals

	Delays in Digital Modulation
	First Output Sample in DPSK Demodulation
	Example: Delays from Demodulation

	Upsampled Signals and Rate Changes
	Illustrations of Size or Rate Changes

	Examples of Digital Modulation
	DQPSK Signal Constellation Points and Transitions
	Rectangular QAM Modulation and Scatter Diagram
	Phase Tree for Continuous Phase Modulation
	Passband Digital Modulation

	Selected Bibliography for Digital Modulation

	Channels
	Channel Features of the Blockset
	AWGN Channel
	Fading Channels
	Categorizing Signal Paths
	Choosing and Configuring a Fading Channel Block
	Example: Using Fading Channels

	Binary Symmetric Channel
	Selected Bibliography for Channels

	RF Impairments
	Types of RF Impairments the Blocks Model
	Nonlinearity and I/Q Imbalance
	Phase/Frequency Offsets and Phase Noise
	Receiver Thermal Noise and Free Space Path Loss

	Scatter Plot Examples
	Memoryless Nonlinearity Block
	I/Q Imbalance Block
	Phase/Frequency Offset Block
	Phase Noise Block

	Example Using the RF Impairments Library Blocks
	Overview of the Model

	Synchronization
	Synchronization Features of the Blockset
	Overview of PLL Simulation
	Implementing an Analog Baseband PLL
	Implementing a Digital PLL
	Selected Bibliography for Synchronization

	Modeling Communication Systems
	Computing Delays
	Other References for Delays
	Sources of Delays
	ADSL Demo Model
	Frame Periods in the Model
	Path for Noninterleaved Data
	Scrambler & FEC
	Descrambler & FEC
	Summing the Delays
	Total Delay Relative to Error Rate Calculation Block

	Path for Interleaved Data
	Buffer Blocks
	Interleaving
	Integer Delay Block
	Summing the Delays
	Total Delay Relative to Error Rate Calculation Block

	Punctured Coding Model
	Frame Periods in the Model
	Inner Error Rate Block
	Tx Filter Block
	Rx Filter Block
	Downsample Block
	Summing the Delays
	Total Delay Relative to Inner Error Rate Block

	Outer Error Rate Block
	Filter and Downsample Blocks
	Viterbi Decoder Block
	Total Delay Relative to Outer Error Rate Block

	Manipulating Delays
	Delays and Alignment Problems
	Observing the Problem
	Correcting the Delays

	Aligning Words of a Block Code
	Misalignment of Code Words
	Inserting a Delay to Correct the Alignment

	Aligning Words for Interleaving
	Misalignment of Interleaved Words
	Inserting a Delay to Correct the Alignment
	Checking Alignment of Block Code Words
	Computing Delays to Configure the Error Rate Calculation Blocks

	Aligning Words of a Concatenated Code
	Misalignment of Block Code Words
	Inserting a Delay to Correct the Alignment
	Computing Delays to Configure the Error Rate Calculation Blocks

	Comparing Baseband and Passband Simulation
	Running a Passband Simulation
	Running an Equivalent Baseband Simulation
	Complex Baseband Modulated Signal
	Differences Between the Passband and Baseband Examples

	Generating Error Curves
	Using the Passband Model to Generate Error Curves

	Speed of Baseband Versus Passband Models
	Comparing Baseband and Passband Signals
	Baseband Algorithm Within the Passband Algorithm
	Conversion from Baseband to Passband Representation

	Troubleshooting a Passband Simulation
	Use Baseband Simulation
	Decrease the Sample Time
	Example of Excessive Sample Time of Modulated Signal

	Increase the Carrier Frequency
	Example of Insufficient Carrier Frequency

	Use the Simulink Accelerator to Increase Speed

	Demonstration Models
	Punctured Convolutional Coding Demo
	Structure of the Demo
	Generating Random Data
	Convolutional Encoding
	Puncturing
	Transmitting Data
	Demodulating
	Inserting Zeros
	Data Delay

	Viterbi Decoding
	Calculating the Error Rate
	Evaluating Results
	Bibliography

	Adaptive Equalization Demo
	CPM Phase Tree Demo
	Structure of the demo
	Variables
	Visible Results of the Demo
	Experimenting with the Demo

	GMSK vs. MSK Demo
	Structure of the Demo
	Visible Results of the Demo

	Filtered QPSK vs. MSK Demo
	Structure of the Demo
	Visible Results of the Demo

	Rayleigh Fading Channel Demo
	Structure of the Demo
	Visible Results

	Gray Coded 8-PSK Demo
	How the Model Executes
	Variables in the Model
	Components of the Gray Coding Demo
	Random Integer Generator
	Integer-to-Bit Conversion
	Gray Coded M-PSK Modulation
	AWGN Channel
	Gray Coded MPSK Demodulation
	Bit-to-Integer Conversion
	Error Rate Calculation
	Symbol Error Details and Bit Error Details
	Sending Data to the MATLAB Workspace

	Learning More About the Gray Coding Demo
	Data Analysis Using the Demo
	Simulation Results
	Comparison with Pure Binary Coding and Theory

	Discrete Multitone Signaling Demo
	Structure of the Demo
	Discrete Multitone Signaling Demo, Alternative Form
	Original: 256 Modulator Blocks
	Alternative: Ten Modulator Blocks

	Selected Bibliography

	Iterative Decoding of a Serially Concatenated Convolutional Code (SCCC) - Demo
	Structure of the Demo
	Variables in the Demo

	Creating a Serially Concatenated Code
	Convolutional Encoding Details

	Decoding Using an Iterative Process
	Computations in Each Iteration
	Results of the Iterative Loop

	Visible Results of the Demo
	Selected Bibliography

	Phase Noise Effects in 256-QAM - Demo
	Structure of the Demo
	Phase Noise Block

	Visible Results of the Demo

	PLL-Based Frequency Synthesis Demo
	Variables in the Model
	Running the Simulation
	Blocks in the Model
	Pulse Generator
	Divide Frequency by M
	Phase Detector
	Analog Filter Design
	Gain Block
	Voltage-Controlled Oscillator
	Simulation Parameters

	Fractional-N Frequency Synthesis Demo
	Variables in the Model
	Blocks and Subsystems in the Model
	Accumulator
	Divide Frequency

	Phase Detector
	Running a Simulation
	Reference

	256-Channel ADSL Demo
	Structure of the Demo
	Transmitting Data
	Processing Received Data
	Aligning Frames to Account for Delays

	Displaying Error Statistics
	Selected Bibliography

	Bluetooth Voice Transmission Demo
	Structure of the Demo
	Mask Variables
	Results and Display
	Reference

	Digital Video Broadcasting Demo
	Structure of the Demo
	Variables in the Demo
	Design of the Receiver
	Visible Results of the Demo
	Selected Bibliography

	HiperLAN/2 Demo
	Structure of the demo
	Visible Results and Display
	References

	RF Satellite Link Demo
	Structure of the demo
	Mask Parameters
	Results and Displays
	Experimenting with the Demo
	Selected Bibliography

	WCDMA Coding and Multiplexing Demo
	WCDMA End-to-End Physical Layer Demo
	Overall Structure of the Physical Layer
	WCDMA DL Tx Channel Coding Scheme
	WCDMA Tx Physical Mapping
	WCDMA BS Tx Antenna Spreading and Modulation
	WCDMA Channel Model
	WCDMA UE Rx Antenna
	WCDMA RX Physical Channel Demapping and Channel Decoding Scheme

	Parameters in the Demo
	Visible Results of the Demo
	References

	WCDMA Spreading and Modulation Demo

	Index

