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This chapter describes and illustrates how to model communication techniques 
using the blocks in the Communications Blockset. The first section, “Signal 
Support,” discusses the types of signals that this blockset supports. Each 
subsequent section corresponds to one of the core libraries within the 
Communications Blockset. These sections are:

• “Communications Sources” on page 1-7

• “Communications Sinks” on page 1-23

• “Source Coding” on page 1-30

• “Block Coding” on page 1-41

• “Convolutional Coding” on page 1-54

• “Cyclic Redundancy Check Coding” on page 1-69

• “Interleaving” on page 1-72

• “Analog Modulation” on page 1-81

• “Digital Modulation” on page 1-92

• “Channels” on page 1-113

• “RF Impairments” on page 1-119

• “Synchronization” on page 1-130

For descriptions of individual blocks, see their reference entries. For 
background or theoretical information about communications techniques, see 
the works listed in the “Selected Bibliography...” sections that appear in this 
chapter.
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Signal Support
Simulink supports matrix signals in addition to one-dimensional arrays, and 
frame-based signals in addition to sample-based signals. This section describes 
how the Communications Blockset processes certain kinds of matrix and 
frame-based signals. The topics are

• “Signal Terminology”

• “Processing Matrices, Vectors, and Scalars” on page 1-4

• “Processing Frame-Based and Sample-Based Signals” on page 1-6

Signal Terminology
This section defines important terms related to matrix and frame-based 
signals.

Matrices, Vectors, and Scalars
This document uses the unqualified words scalar and vector in ways that 
emphasize a signal’s number of elements, not its strict dimension properties:

• A scalar signal is one that contains a single element. The signal could be a 
one-dimensional array with one element, or a matrix of size 1-by-1.

• A vector signal is one that contains one or more elements, arranged in a 
series. The signal could be a one-dimensional array, a matrix that has 
exactly one column, or a matrix that has exactly one row. The number of 
elements in a vector is called its length or, sometimes, its width.

In cases when it is important for a description or schematic to distinguish 
among different types of scalar signals or different types of vector signals, this 
document mentions the distinctions explicitly. For example, the terms 
one-dimensional array, column vector, and row vector distinguish among three 
types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and 
columns the matrix has. The orientation of a two-dimensional vector is its 
status as either a row vector or column vector. A one-dimensional array has no 
orientation.

A matrix signal that has more than one row and more than one column is called 
a full matrix signal.
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Frame-Based and Sample-Based Signals
In Simulink, each matrix signal has a frame attribute that declares the signal 
to be either frame-based or sample-based, but not both. (A one-dimensional 
array signal is always sample-based, by definition.) Simulink indicates the 
frame attribute visually by using a double connector line in the model window 
instead of a single connector line. In general, Simulink interprets frame-based 
and sample-based signals as follows:

• A frame-based signal in the shape of an M-by-1 (column) matrix represents 
M successive samples from a single time series.

• A frame-based signal in the shape of a 1-by-N (row) matrix represents a 
sample of N independent channels, taken at a single instant in time.

• A sample-based matrix signal might represent a set of bits that collectively 
represent an integer, or a set of symbols that collectively represent a code 
word, or something else other than a fragment of a single time series.

Processing Matrices, Vectors, and Scalars
These rules indicate the shapes of sample-based signals that Communications 
Blockset blocks can process:

• Most blocks do not process matrix signals that have more than one row and 
more than one column.

• In their numerical computations, blocks that process scalars do not 
distinguish between one-dimensional scalars and one-by-one matrices. If the 
block produces a scalar output from a scalar input, then the block preserves 
dimension.

• If a block can process sample-based vectors, then

- The numerical computations do not distinguish between one-dimensional 
arrays, M-by-1 matrices, and 1-by-N matrices.

- The block output preserves dimension and orientation.

- The block treats elements of the input vector as a collection that arises 
naturally from the block’s operation (for example, a collection of symbols 
that jointly represent a codeword), or as samples from independent 
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channels. The block does not assume that the elements of the input vector 
are successive samples from a single time series.

Some blocks process vectors but require them to be frame-based. For more 
information about processing frame-based signals, see “Processing 
Frame-Based and Sample-Based Signals” on page 1-6.

To find out whether a block processes scalar signals, vector signals, or both, 
refer to its entry in the reference section.

Illustrations of Scalar and Vector Processing
The figures below depict the preservation of dimension and orientation when a 
block processes scalars (without oversampling) and vectors. To display signal 
dimensions in your model, turn on the Signal dimensions option in the model 
window’s Format menu.
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Processing Frame-Based and Sample-Based Signals
All one-dimensional arrays are sample-based, but a matrix signal can be either 
frame-based or sample-based. A frame-based signal in the shape of an N-by-1 
matrix represents a series of N successive samples from a single time series. 
The Communications Blockset processes some frame-based signals and is 
compatible with the DSP Blockset. However, the Communications Blockset 
omits some frame-based features, and many blocks are not specifically 
optimized for frame-based processing.

These rules indicate how most Communications Blockset blocks handle 
frame-based matrix signals:

• Most blocks do not process frame-based matrix signals that have more than 
one row and more than one column.

• Most blocks do not process frame-based row vectors and do not support 
multichannel functionality.

• Blocks that process continuous-time signals do not process frame-based 
inputs. Such blocks include the analog modulation blocks and the analog 
phase-locked loop blocks.

• Blocks for which a frame-based multichannel operation would make sense, 
even if the blocks do not currently support such operation, reject 
sample-based vectors because their interpretation is ambiguous.

Frame-based vectors, however, have an unambiguous interpretation. Blocks 
interpret a frame-based row vector as multiple channels at a single instant 
of time, and interpret a frame-based column vector as multiple samples from 
a single time series (that is, a single channel).

• Some blocks, such as the digital baseband modulation blocks, can produce 
multiple output values for each value of a scalar input signal. In such cases, 
a frame-based 1-by-1 matrix input results in a frame-based column vector 
output. By contrast, a sample-based scalar input results in a sample-based 
scalar output with a smaller sample time.
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Communications Sources
Every communication system contains one or more sources. You can find 
sources in Simulink’s Sources library, in the DSP Blockset’s DSP Sources 
library, and in the Communication Blockset’s Comm Sources library.

You can open the Comm Sources library by double-clicking its icon in the main 
Communications Blockset library (commlib), or by typing

commsource2

at the MATLAB prompt.

Blocks in the Comm Sources library can

• Generate controlled sources by reading from a file or by simulating a 
voltage-controlled oscillator (VCO)

• Generate random data

• Generate random noise to simulate channels

• Generate sequences that can be used for spreading or synchronization in a 
communication system.

This section describes these capabilities, considering first random and then 
nonrandom signals.

Controlled Sources
Blocks in the Controlled Sources sublibrary of the Comm Sources library 
simulate nonrandom signals by reading from a file or by simulating a 
voltage-controlled oscillator (VCO):

• The Triggered Read from File block reads a record from a file whenever an 
input trigger signal has a rising edge. You can set up the block to read at 
every rising edge of the trigger, or every kth rising edge of the trigger for a 
positive number k.

• A voltage-controlled oscillator is one part of a phase-locked loop. The 
Voltage-Controlled Oscillator and Discrete-Time VCO blocks implement 
voltage-controlled oscillators. These blocks produce continuous-time and 
discrete-time output signals, respectively. Each block’s output signal is 
sinusoidal, and changes its frequency in response to the amplitude 
variations of the input signal.
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You can open the Controlled Sources sublibrary by double-clicking its icon in 
the main Communications Blockset library (commlib), or by typing

commcontsrcs2p1

at the MATLAB prompt.

Random Data Sources
Blocks in the Data Sources sublibrary of the Comm Sources library generate 
random data to simulate signal sources. You can use blocks in the Data Sources 
sublibrary to generate

• Random bits

• Random integers

In addition, you can use built-in Simulink blocks such as the Random Number 
block as a data source.

You can open the Data Sources sublibrary by double-clicking its icon in the 
main Communications Blockset library (commlib), or by typing

commrandsrcs2p1

at the MATLAB prompt.

Random Bits
The Bernoulli Binary Generator and Binary Error Pattern Generator blocks 
both generate random bits, but differ in the way that you specify the 
distribution of 1s. As a result, the Bernoulli Binary Generator block is suitable 
for representing sources, while the Binary Error Pattern Generator block is 
more appropriate for modeling channel errors.

The Bernoulli Binary Generator block considers each element of the signal to 
be an independent Bernoulli random variable. Also, different elements need 
not be identically distributed. 

The Binary Error Pattern Generator block constructs a random binary signal 
using a two-stage process. First, using information that you provide in the 
block mask, it determines how many 1s will appear. Then it determines where 
to place the required number of 1s, so that each possible arrangement has 
equal probability.
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For example, if you set the Binary vector length parameter to 4, set the 
Probabilities parameter to 1, and clear the Frame-based outputs check box, 
then the block generates binary vectors of length 4, each of which contains 
exactly one 1. You might use these parameters to perturb a binary code that 
consists of 4-bit codewords. Adding the random vector to your code vector 
(modulo 2) would introduce exactly one error into each codeword. Alternatively, 
to perturb each codeword by introducing one error with probability 0.4 and two 
errors with probability 0.6, set the Probabilities parameter to [0.4, 0.6] 
instead of 1.

Note that the Probabilities parameter of the Binary Error Pattern Generator 
block affects only the number of 1s in each vector, not their placement.

Random Integers
The Random Integer Generator and Poisson Integer Generator blocks both 
generate vectors containing random nonnegative integers. The Random 
Integer Generator block uses a uniform distribution on a bounded range that 
you specify in the block mask. The Poisson Integer Generator block uses a 
Poisson distribution to determine its output. In particular, the output can 
include any nonnegative integer. 

Random Noise Generators
Blocks in the Noise Generators sublibrary of the Comm Sources library 
generate random data to simulate channel noise. You can use blocks in the 
Noise Generators sublibrary to generate random real numbers, depending on 
what distribution you want to use. The choices are listed in the following table.

You can open the Noise Generators sublibrary by double-clicking its icon in the 
main Communications Blockset library (commlib), or by typing

Distribution Block

Gaussian Gaussian Noise Generator

Rayleigh Rayleigh Noise Generator

Rician Rician Noise Generator

Uniform on a bounded interval Uniform Noise Generator
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commnoisgen2p1

at the MATLAB prompt.

Sequence Generators
You can use blocks in the Sequence Generators sublibrary of the Comms 
Sources library to generate sequences for spreading or synchronization in a 
communication system. You can open the Sequence Generators sublibrary by 
double-clicking its icon in the main Communications Blockset library 
(commlib), or by typing

commseqgen2p1

at the MATLAB prompt.

Blocks in the Sequence Generators sublibrary generate 

• Pseudorandom sequences

• Orthogonal codes

• Synchronization codes

Pseudorandom Sequences
The following table lists the blocks that generate pseudorandom or 
pseudonoise (PN) sequences. The applications of these sequences range from 
multiple-access spread spectrum communication systems to ranging, 
sychronization, and data scrambling.

All three blocks use shift registers to generate pseudorandom sequences. The 
following is a schematic diagram of a typical shift register. 

Sequence Block

Gold sequences Gold Sequence Generator

Kasami sequences Kasami Sequence Generator

PN sequences PN Sequence Generator
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All r registers in the generator update their values at each time step according 
to the value of the incoming arrow to the shift register. The adders perform 
addition modulo 2. The shift register can be described by a binary polynomial 
in z, grz

r + gr-1zr-1 + ... + g0. The coefficient gi is 1 if there is a connection from 
the ith shift register to the adder, and 0 otherwise. 

The Kasami Sequence Generator block and the PN Sequence Generator block 
use this polynomial description for their Generator polynomial parameter, 
while the Gold Sequence Generator block uses it for the Preferred polynomial 
[1] and Preferred polynomial [2] parameters.

The lower half of the preceding diagram shows how the output sequence can be 
shifted by a positive integer d, by delaying the output for d units of time. This 
is accomplished by a single connection along the dth arrow in the lower half of 
the diagram. 

See “Example: Pseudorandom Sequences” on page 1-12 for an example that 
uses these blocks.

Synchronization Codes
The Barker Code Generator block generates Barker codes to perform 
synchronization. Barker codes are subsets of PN sequences. They are short 
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codes, with a length at most 13, which are low correlation sidelobes. A 
correlation sidelobe is the correlation of a codeword with a time-shifted version 
of itself.

Orthogonal Codes
Orthogonal codes are used in systems in which the receiver is perfectly 
synchronized with the transmitter. For such systems, the despreading 
operation is ideal when orthogonal codes are used for the spreading. For 
example, they are used in the forward link of the IS-95 system, in which the 
base station transmits a pilot signal to help the receiver gain synchronization.

See “Example: Orthogonal Sequences” on page 1-16 for an example that uses 
these blocks.

Sequence Generator Examples
This section presents two example models that illustrate the blocks in the 
Sequence Generator library.

Example: Pseudorandom Sequences
This example describes the autocorrelation properties of the pseudorandom 
sequences generated by the following three blocks:

• PN Sequence Generator

• Gold Sequence Generator

• Kasami Sequence Generator

If you are reading this in the MATLAB Help Browser, click here to open the 
model.

Code Block

Hadamard codes Hadamard Code Generator

OVSF codes OVSF Code Generator

Walsh codes Walsh Code Generator
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The model displays the output sequences of the three blocks in a scope. All 
three blocks have the same Generator polynomial parameter, 
[1 0 0 0 0 1 1], whose digits are the coefficients of the polynomial x6 + x + 1. 
Since this polynomial has degree 6, the output sequence has period 26 - 1 = 63. 

When you run the model, the scope displays two periods of data for each the 
three signals:
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The model also sends the output sequences to the MATLAB workspace as the 
vectors pn, gold, and kas. You can verify the autocorrelation properties of the 
output of the PN Sequence Generator by entering the following code at the 
MATLAB prompt:

x = pn(1:63); % Take one period only
x = 1 - 2.*x; % Convert to bipolar
for i = 1:63  % Determine the cyclic autocorrelation
    corrvec(i) = x' * [x(i:end); x(1:i-1)];
end
corrvals = unique(sort(corrvec)) % Choose the unique values

The code calculates the cyclic autocorrelation of the PN sequence, by taking the 
inner product of one period of the sequence with each of its 63 cyclic rotations, 
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and stores the results in a vector, corrvec, of length 63. The code then sorts the 
entries of corrvec and finds the unique autocorrelation values. The result is

corrvals =
-1    63

The first entry of the vector corrvec is 63, while all other values are -1, as you 
can verify by entering corrvec at the MATLAB prompt. This means that 63 
occurs only by taking the inner product of the sequence pn with an unrotated 
copy of itself. All other inner products have the value -1.

You can analyze the output sequences of the Gold Sequence Generator block 
and the Kasami Sequence Generator block similarly by changing the first line 
of the preceding code to 

x = gold(1:63);

and 

x = kas(1:63);

respectively.

For the Gold and Kasami sequences, the autocorrelation takes on three values. 
For example, the three values for the Gold sequence are

corrvals =
-17    -1    15    63

The three values for the Kasami sequence are

corrvals =
-9    -1     7    63

Of the three types of sequences, the PN sequences are best suited for 
synchronization because the autocorrelation takes on just two values. 
However, the Gold and Kasami sequences provide a larger number of 
sequences with good cross-correlation properties than do the PN sequences.

Also note that the peak value of corrvals for the Kasami sequence is less than 
the peak value for the Gold sequence. In fact, the small set of Kasami sequences 
satisfy the lower bounds for correlation values, and for this reason they are also 
referred to as optimal sequences.



1 Using the Libraries

1-16

Example: Orthogonal Sequences
This example demonstrates the orthogonality of pairs of sequences generated 
using different Code index parameters, for each of the following three blocks:

• Hadamard Code Generator

• Walsh Code Generator

• OVSF Code Generator

If you are reading this in the MATLAB Help Browser, click here to open the 
model.

The model displays the output sequences of the three blocks in a scope. All 
three blocks output sequences of period 64, corresponding to their Code length 
parameters. When you run the model, the scope displays two periods of data for 
each sequence.
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The following code runs the model twice, the first time with the Code index 
parameter of 60 for all three blocks, and the second time with a Code index of 
30. The code then calculates, for each of the three blocks, the cross correlation 
between the sequence generated by the first run with the sequence generated 
by the second run

% Simulate once
set_param('doc_ortho/Hadamard Code Generator', 'index', '60');
set_param('doc_ortho/Walsh Code Generator', 'index', '60');
set_param('doc_ortho/OVSF Code Generator', 'index', '60');
sim('doc_ortho');

% Store the codes
had60 = had(1:64);
walsh60 = walsh(1:64);
ovsf60 = ovsf(1:64);

% Simulate twice
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set_param('doc_ortho/Hadamard Code Generator', 'index', '31');
set_param('doc_ortho/Walsh Code Generator', 'index', '31');
set_param('doc_ortho/OVSF Code Generator', 'index', '31');
sim('doc_ortho');

% Store the codes
had31 = had(1:64);
walsh31 = walsh(1:64);
ovsf31 = ovsf(1:64);

% Calculate the cross-correlation
hadcorr = had60(1:64)'*had31(1:64);
hadcorr
walshcorr = walsh60(1:64)'*walsh31(1:64);
walshcorr
ovsfcorr = ovsf60(1:64)'*ovsf31(1:64);
ovsfcorr

The results are

haddcorr=
0
walshcorr =
0
ovsfcorr =
0

The results show that for each block, the sequence generated by the first run is 
orthogonal to the sequence generated by the second run.

Block Parameters
This section discusses the sample time parameter, seed parameter, and signal 
attribute parameters that are common to many random source blocks, and 
then discusses each category of random source.

Sample Time Parameter for Random Sources
Each of the random source blocks requires you to set a Sample time parameter 
in the block mask. If you configure the block to produce a sample-based signal, 
then this parameter is the time interval between successive updates of the 
signal. If you configure the block to produce a frame-based matrix signal, then 
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the Sample time parameter is the time interval between successive rows of the 
frame-based matrix.

If you use a Simulink Signal Inspection block to query the period of a 
frame-based output from a random source block in the Comm Sources library, 
then note that the Signal Inspection block reports the period of the entire 
frame, not the period of each sample in a given channel of the frame. The 
following equation relates the quantities involved for a single-channel signal.

A seconds/frame = (B seconds/sample)*(S samples/frame)

where

• A is the number shown in the Signal Inspection block after the Tf notation.

• B is the random source block’s Sample time parameter.

• S is the random source block’s Samples per frame parameter.

Seed Parameter
The blocks in the Communication Sources library that generate random data 
require you to set a seed in the block mask. This is the initial seed that the 
random number generator uses when forming its sequence of numbers. You 
should make sure that initial seeds in different blocks in a model have different 
values, so that they generate statistically independent sequences.

Four of the blocks in the Communication Sources library require you to choose 
their seeds according to the following rule, in order to obtain accurate results:

Seed rule:   Set the Initial seed to be a prime number greater than 30.

This rule applies to the following blocks:

• Binary Error Pattern Generator

• Gaussian Noise Generator

• Rayleigh Noise Generator

• Rician Noise Generator

To avoid having to remember whether a block that you are using is on this list, 
you can simply apply the seed rule to all source blocks that have an Initial seed 
parameter.
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You can choose integers that satisfy the seed rule with the randseed function. 
Entering randseed at the MATLAB prompt returns a prime number greater 
than 30. If you choose a constant seed such as randseed(n), where n is some 
positive integer variable, the block produces the same noise sequence each time 
you start the simulation. The sequence will be different from that produced 
with a different constant seed. If you want the noise to be different each time 
you start the simulation, then you can use a varying seed such as 
randseed(cputime).

Signal Attribute Parameters for Random Sources
In most random source blocks, the output can be a frame-based matrix, a 
sample-based row or column vector, or a sample-based one-dimensional array. 
The following table indicates how to set certain block parameters depending on 
the kind of signal you want to generate.

Signal Attributes Parameter Settings

Sample-based, 
one-dimensional

Sample-based row 
vector

Also, any vector parameters in the block should 
be rows, not columns.
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The Frame-based outputs and Interpret vector parameters as 1-D check 
boxes are mutually exclusive, because frame-based signals and 
one-dimensional signals are mutually exclusive. The Samples per frame 
parameter field is active only if the Frame-based outputs check box is 
checked.

Example. The model in the following figure illustrates that one random source 
block can produce various kinds of signals. The annotations in the model 
indicate how each copy of the block is configured. Notice how each block’s 
configuration affects the type of connector line (single or double) and the signal 
dimensions that appear above each connector line. In the case of the Rayleigh 
Noise Generator block, the first two block parameters (Sigma and Initial seed) 
determine the number of channels in the output; for analogous indicators in 
other random source blocks, see their individual reference entries.

Sample-based column 
vector

Also, any vector parameters in the block should 
be columns, not rows.

Frame-based

Also, set Samples per frame to the number of 
samples in each output frame, that is, the 
number of rows in the signal.

Signal Attributes Parameter Settings
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The particular mask parameters depend on the block. See each block’s 
individual entry in the reference section for details.



Communications Sinks

1-23

Communications Sinks
The Communications Blockset provides sinks and display devices that 
facilitate analysis of communication system performance. You can open the 
Comm Sinks library by double-clicking its icon in the main Communications 
Blockset library (commlib), or by typing

commsink2

at the MATLAB prompt.

Sink Features of the Blockset
Blocks in this library can

• Write to a file when trigger events occur

• Compute error statistics

• Plot an eye diagram

• Generate a scatter diagram

• Plot a signal trajectory

This section describes these capabilities. Other sinks are in Simulink’s Sinks 
library and in the DSP Blockset’s DSP Sinks library.

Writing to a File
The Triggered Write to File block writes data to a file whenever an input 
trigger signal has a rising edge. You can set up the block to write at every rising 
edge of the trigger, or at every kth rising edge of the trigger for a positive 
number k. The data can have an ASCII, integer, or floating-point format. If the 
destination file already exists, then this block overwrites it. For more details, 
see the reference page for the Triggered Write to File block.

For untriggered writing of MAT files, use Simulink’s To File block.

Error Statistics
The Error Rate Calculation block compares input data from a transmitter with 
input data from a receiver. It calculates these error statistics:

• Error rate
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• Number of error events

• Total number of input events

The block reports these statistics either as final values in the workspace or as 
running statistics at an output port.

You can use this block either with binary inputs to compute the bit error rate, 
or with symbol inputs to compute the symbol error rate. You can use 
frame-based or sample-based data. Also, if you use frame-based data, then you 
can have the block consider certain samples and ignore others.

The example in the section “Example: Soft-Decision Decoding” on page 1-60 
illustrates the use of the Error Rate Calculation block.

Scopes
The Sinks library contains scopes for viewing three types of signal plots:

• Eye Diagrams

• Scatter Plots

• Signal Trajectories

The following table lists the scope blocks and the plots they generate.

Eye Diagrams
An eye diagram is a simple and convenient tool for studying the effects of 
intersymbol interference and other channel impairments in digital 

Block Name Plots 

Continuous-Time Eye and 
Scatter Diagrams

Eye diagram, scatter plot, or signal trajectory 
of a continuous signal

Discrete-Time Eye 
Diagram Scope

Eye diagram of a discrete signal

Discrete-Time Scatter 
Plot Scope

Scatter plot of a discrete signal

Discrete-Time Signal 
Trajectory Scope

Signal trajectory of a discrete signal



Communications Sinks

1-25

transmission. When this blockset constructs an eye diagram, it plots the 
received signal against time on a fixed-interval axis. At the end of the fixed 
interval, it wraps around to the beginning of the time axis. Thus the diagram 
consists of many overlapping curves. One way to use an eye diagram is to look 
for the place where the “eye” is most widely opened, and use that point as the 
decision point when demapping a demodulated signal to recover a digital 
message.

The following two blocks produce eye diagrams:

• Continuous-Time Eye and Scatter Diagrams, with Diagram type set to Eye 
Diagram

• Discrete-Time Eye Diagram Scope

The first processes continuous-time signals, while the second processes 
discrete-time signals. The blocks also differ in the way you determine the 
decision timing: the Continuous-Time Eye and Scatter Diagrams block draws 
a vertical line to indicate a decision every time a trigger signal has a rising 
edge, whereas the Discrete-Time Eye Diagram Scope block draws a similar line 
periodically according to a mask parameter.

An example appears in “Example: Viewing a Sinusoid” on page 1-26.

Scatter Plots
A scatter plot of a signal plots the signal’s value at its decision points. In the 
best case, the decision points should be at times when the eye of the signal’s eye 
diagram is the most widely open.

The following two blocks produce scatter plots:

• Continuous-Time Eye and Scatter Diagrams, with Diagram type set to 
Scatter Diagram

• Discrete-Time Scatter Plot Scope

Both the Continuous-Time Eye and Scatter Diagrams block and the 
Discrete-Time Scatter Plot Scope block produce scatter plots. The first 
processes continuous-time signals, while the second processes discrete-time 
signals. 

An example appears in “Example: Viewing a Sinusoid” on page 1-26.
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Signal Trajectories
A signal trajectory is a continuous plot of a signal over time. A signal trajectory 
differs from a scatter plot in that the latter displays points on the signal 
trajectory at discrete intervals of time.

The following two blocks produce signal trajectories:

• Continuous-Time Eye and Scatter Diagrams, with Diagram type set to X-Y 
Diagram

• Discrete-Time Signal Trajectory Scope

The Discrete-Time Scatter Plot Scope displays points on the trajectory at 
discrete time intervals, corresponding to the decision points, while the 
Discrete-Time Scatter Plot Scope displays a continuous picture of the signal’s 
trajectory between decision points.

Example: Viewing a Sinusoid
The following model produces a scatter plot and an eye diagram from a complex 
sinusoidal signal. Because the decision time interval is almost, but not exactly, 
an integer multiple of the period of the sinusoid, the eye diagram exhibits drift 
over time. More specifically, successive traces in the eye diagram and 
successive points in the scatter diagram are near each other but do not overlap.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Sine Wave, in the DSP Blockset DSP Sources library (not the Sine Wave 
block in the Simulink Sources library)
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- Set Frequency to .502.

- Set Output complexity to Complex.

- Set Sample time to 1/16.

• Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- Check the box next to Show Plotting Properties.

- Set Samples per symbol to 16.

- Check the box next to Show Figure Properties.

- Set Scope position to figposition([2.5 55 35 35]);.

- Set Figure name to Scatter Plot.

• Discrete-Time Eye Diagram Scope, in the Comm Sinks library

- Check the box next to Show Plotting Properties.

- Set Samples per symbol to 16.

- Check the box next to Show Figure Properties.

- Set Scope position to figposition([42.5 55 35 35]);.

- Set Figure name to Eye Diagram.

Connect the blocks as shown in the preceding figure. Also, from the model 
window’s Simulation menu, choose Simulation parameters; then in the 
Simulation Parameters dialog box, set Stop time to 250. Running the model 
produces the following scatter diagram plot. 
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The points of the scatter plot lie on a circle of radius 1. Note that the points fade 
as time passes. This is because the box next to Color fading is checked in the 
Rendering Properties, which causes the scope to render points more dimly 
the more time that passes after they are plotted. If you clear this box, you see 
a full circle of points.

If you add the Discrete-Time Signal Trajectory Scope block to the model, it 
displays a circular trajectory.
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In the eye diagram, the upper set of traces represents the real part of the signal 
and the lower set of traces represents the imaginary part of the signal.
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Source Coding
Source coding, also known as quantization or signal formatting, is a way of 
processing data in order to reduce redundancy or prepare it for later 
processing. Analog-to-digital conversion and data compression are two 
categories of source coding.

Source coding divides into two basic procedures: source encoding and source 
decoding. Source encoding converts a source signal into a digital signal using a 
quantization method. The symbols in the resulting signal are nonnegative 
integers in some finite range. Source decoding recovers the original 
information from the source coded signal.

For background material on the subject of source coding, see the works listed 
in “Selected Bibliography for Source Coding” on page 1-40.

Source Coding Features of the Blockset
This blockset supports scalar quantization, predictive quantization, 
companders, and differential coding. It does not support vector quantization. 
You can open the Source Coding library by double-clicking its icon in the main 
Communications Blockset library (commlib), or by typing

commsrccod2

at the MATLAB prompt. 

Blocks in the Source Coding library can

• Use a partition and codebook to quantize a signal

• Implement differential pulse code modulation (DPCM)

• Compand a signal using a µ-law or A-law compressor or expander

• Encode or decode a signal using differential coding

Supporting functions in the Communications Toolbox also allow you to 
optimize source coding parameters for a set of training data. See the sections 
“Optimizing Quantization Parameters” and “Optimizing DPCM Parameters” 
in the Communications Toolbox User’s Guide for more information about such 
capabilities.
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Representing Quantization Parameters
Scalar quantization is a process that maps all inputs within a specified range 
to a common value. It maps inputs in a different range of values to a different 
common value. In effect, scalar quantization digitizes an analog signal. Two 
parameters determine a quantization: a partition and a codebook. This section 
describes how blocks represent these parameters.

Partitions
A quantization partition defines several contiguous, nonoverlapping ranges of 
values within the set of real numbers. To specify a partition as a parameter, 
list the distinct endpoints of the different ranges in a vector.

For example, if the partition separates the real number line into the sets

• {x: x ≤ 0}

• {x: 0< x ≤ 1}

• {x: 1 < x ≤ 3}

• {x: 3 < x}

then you can represent the partition as the three-element vector

[0,1,3]

Notice that the length of the partition vector is one less than the number of 
partition intervals.

Codebooks
A codebook tells the quantizer which common value to assign to inputs that fall 
into each range of the partition. Represent a codebook as a vector whose length 
is the same as the number of partition intervals. For example, the vector

[-1,0.5,2,3]

is one possible codebook for the partition [0,1,3].

Quantizing a Signal
This section shows how the Sampled Quantizer Encode, Enabled Quantizer 
Encode, and Quantizer Decode blocks use the partition and codebook 
parameters. (The Enabled Quantizer Encode block does not appear in an 
example, but its behavior is similar to that of the Sampled Quantizer Encode 
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block.) The examples here are analogous to “Scalar Quantization Example 1” 
and “Scalar Quantization Example 2” in the Communications Toolbox 
documentation.

Scalar Quantization Example 1
The figure below shows how the Sampled Quantizer Encode block uses the 
partition and codebook as defined above to map a real vector to a new vector 
whose entries are either -1, 0.5, 2, or 3. In the Scope window, the bottom signal 
is the quantization of the (original) top signal.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Signal From Workspace, in the DSP Blockset DSP Sources library

- Set Signal to [-2.4,-1,-.2,0,.2,1,1.2,1.9,2,2.9,3,3.5]'.

• Sampled Quantizer Encode

- Set Quantization partition to [0, 1, 3].

- Set Quantization codebook to [-1, 0.5, 2, 3].

- Set Input signal vector length to 1.

- Set Sample time to 1.

• Terminator, in the Simulink Signals & Systems library
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• Scope, in the Simulink Sinks library

- After double-clicking the block to open it, click the Parameters icon and 
set Number of axes to 2.

Connect the blocks as shown in the figure. Also, from the model window’s 
Simulation menu, choose Simulation parameters; then in the Simulation 
Parameters dialog box, set Stop time to 12. Running the model produces a 
scope image similar to the one in the figure. (To make the axis ranges and title 
exactly match those in the figure, right-click each plot area in the scope and 
select Axes properties.)

Scalar Quantization Example 2
This example, shown in the figure below, illustrates the nature of scalar 
quantization more clearly. It quantizes a sampled sine wave and plots the 
original (top) and quantized (bottom) signals. The plot contrasts the smooth 
sine curve with the polygonal curve of the quantized signal. The vertical 
coordinate of each flat part of the polygonal curve is a value in the 
Quantization codebook vector.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Sine Wave, in the Simulink Sources library (not the Sine Wave block in the 
DSP Blockset DSP Sources library)
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• Sampled Quantizer Encode

- Set Quantization partition to [-1:.2:1].

- Set Quantization codebook to [-1.2:.2:1].

- Set Input signal vector length to 1.

• Terminator, in the Simulink Signals & Systems library

• Scope, in the Simulink Sinks library

- After double-clicking the block to open it, click the Parameters icon and 
set Number of axes to 2.

Connect the blocks as shown in the figure. Also, from the model window’s 
Simulation menu, choose Simulation parameters; then in the Simulation 
Parameters dialog box, set Stop time to 2*pi. Running the model produces the 
scope image as shown in the figure. (To make the axis ranges and title exactly 
match those in the figure, right-click each plot area in the scope and select Axes 
properties.)

Determining Which Interval Each Input Is in
The Sampled Quantizer Encode block also returns a signal, at the first output 
port, that tells which interval each input is in. For example, the model below 
shows that the input entries lie within the intervals labeled 0, 6, and 5, 
respectively. Here, the 0th interval consists of real numbers less than or equal 
to 3; the 6th interval consists of real numbers greater than 8 but less than or 
equal to 9; and the 5th interval consists of real numbers greater than 7 but less 
than or equal to 8.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Constant, in the Simulink Sources library

- Set Constant value to [2, 9, 8].

• Sampled Quantizer Encode

- Set Quantization partition to [3, 4, 5, 6, 7, 8, 9].
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- Set Quantization codebook to any vector whose length exceeds the 
length of Quantization Partition by one.

- Set Input signal vector length to 3.

• Terminator, in the Simulink Signals & Systems library

• Display, in the Simulink Sinks library

- Drag the bottom edge of the icon to make the display big enough for three 
entries.

Connect the blocks as shown above. Also, from the model window’s Simulation 
menu, choose Simulation parameters; then in the Simulation Parameters 
dialog box, set Stop time to 10. Running the model produces the display 
numbers as shown in the figure.

You can continue this example by branching the first output of the Sampled 
Quantizer Encode block, connecting one branch to the input port of the 
Quantizer Decode block, and connecting the output of the Quantizer Decode 
block to another Display block. If the two source coding blocks’ Quantization 
codebook parameters match, then the output of the Quantizer Decode block 
will be the same as the second output of the Sampled Quantizer Encode block. 
Thus the Quantizer Decode block partially duplicates the functionality of the 
Sampled Quantizer Encode block, but requires different input data and fewer 
parameters.

Implementing Differential Pulse Code Modulation
The quantization in the section “Quantizing a Signal” on page 1-31 requires no 
a priori knowledge about the transmitted signal. In practice, you can often 
make educated guesses about the present signal based on past signal 
transmissions. Using such educated guesses to help quantize a signal is known 
as predictive quantization. The most common predictive quantization method 
is differential pulse code modulation (DPCM). The DPCM Encoder and DPCM 
Decoder blocks can help you implement a DPCM predictive quantizer.

DPCM Terminology
To determine an encoder for such a quantizer, you must supply not only a 
partition and codebook as described in “Representing Quantization 
Parameters” on page 1-31, but also a predictor. The predictor is a function that 
the DPCM encoder uses to produce the educated guess at each step. Instead of 
quantizing x itself, the encoder quantizes the predictive error, which is the 
difference between the educated guess and the actual value. The special case 
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when the numerator is linear and the denominator is 1 is called delta 
modulation.

For more information about how DPCM works, see [1] in “Selected 
Bibliography for Source Coding” on page 1-40, or look underneath the masks of 
the DPCM Encoder and DPCM Decoder blocks.

Representing Predictors
This blockset implements predictors using an IIR filter. Just as you can specify 
a filter using a rational function of z-1, you specify the predictor by giving its 
numerator and denominator. In block masks, the numerator and denominator 
are vectors that list the coefficients in order of ascending powers of z-1.

The numerator’s constant term must be zero. This makes sense conceptually 
because the filter’s output is meant to predict the present signal without 
actually knowing its value.

In most applications, the denominator is the constant function 1.

Coded and Decoded Signals
If you encode a given signal using DPCM, then two resulting signals are the 
quantization index and the quantization-encoded signal. These correspond 
exactly to the two outputs of an ordinary quantization encoder. In both 
instances, the quantization index tells which partition interval a signal lies in, 
and the quantization-encoded signal tells which codebook values correspond to 
those partition intervals.

To use the DPCM Decoder block to recover a message that has been through 
the DPCM Encoder block, connect the quantization index signal, not the 
quantization-encoded signal, to the input port of the DPCM Decoder block.

The DPCM Decoder block outputs two signals. The first output is the 
attempted recovery of the message that first entered the DPCM encoder 
(assuming the encoder and decoder have matching parameters). The second 
output comes directly from the underlying quantization decoder. It represents 
the quantized predictive error, not the recovered message itself.

Example: Using DPCM Encoding and Decoding
A simple special case of DPCM quantizes the difference between the signal’s 
current value and its value at the previous step. Thus the predicted value 
equals the actual value at the previous step. The model below implements this 



Source Coding

1-37

scheme. It encodes a sine wave, decodes it, and plots both the original and 
decoded signals.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Sine Wave, in the DSP Blockset DSP Sources library (not the Sine Wave 
block in the Simulink Sources library)

- Set Frequency to 3.

- Set Sample time to .01.

• DPCM Encoder

- Set Predictor numerator to [0, 1].

- Set Quantization partition to [-10:9]/10.

- Set Quantization codebook to [-10:10]/10.

- Set Sample time to .01.

• DPCM Decoder

- Set Predictor numerator, Quantization codebook, and Sample time to 
the values given for the DPCM Encoder block.

• Terminator, in the Simulink Signals & Systems library

• Scope, in the Simulink Sinks library

- After double-clicking the block to open it, click the Parameters icon and 
set Number of axes to 2.

Connect the blocks as shown in the figure. Also, from the model window’s 
Simulation menu, choose Simulation parameters; then in the Simulation 
Parameters dialog box, set Stop time to 1.

Running the model produces scope images similar to those below. (To make the 
axis ranges and titles exactly match those below, right-click each plot area in 
the scope and select Axes properties.)
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Companding a Signal
In certain applications, such as speech processing, it is common to use a 
logarithm computation, called a compressor, before quantizing. The inverse 
operation of a compressor is called an expander. The combination of a 
compressor and expander is called a compander.

This blockset supports two kinds of companders: µ-law and A-law companders. 
The reference pages for the A-Law Compressor, A-Law Expander, Mu-Law 
Compressor, and Mu-Law Expander blocks list the relevant expander and 
compressor laws.

Example: Using a µ-Law Compander
This example quantizes an exponential signal in two ways and compares the 
resulting mean square distortions. To create the signal in the MATLAB 
workspace, execute these commands:

sig = -4:.1:4;
sig = exp(sig'); % Exponential signal to quantize

Now, the model in the following figure performs two computations. One 
computation uses the Sampled Quantizer Encode block with a partition 
consisting of length-one intervals. The second computation uses the Mu-Law 
Compressor block to implement a µ-law compressor, the Sampled Quantizer 
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Encode block to quantize the compressed data and, finally, the Mu-Law 
Expander block to expand the quantized data.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Signal From Workspace, in the DSP Blockset DSP Sources library

- Set Signal to sig.

• Mu-Law Compressor

- Set Peak signal magnitude to max(sig).

• Mux, in the Simulink Signals & Systems library

• Sampled Quantizer Encode, in the Source Coding library

- Set Quantization partition to 0:floor(max(sig)).

- Set Quantization codebook to 0:ceil(max(sig)).

- Set Sample time to 1.

• Terminator, in the Simulink Signals & Systems library

• Demux, in the Simulink Signals & Systems library

• Mu-Law Expander

- Set Peak signal magnitude to ceil(max(sig)).

• Two copies of To Workspace, in the Simulink Sinks library

- Set Variable name to nocompander and withcompander, respectively, in 
the two copies of this block.

- Set Save format to Array in each of the two copies of this block.

Connect the blocks as shown above. Also, from the model window’s Simulation 
menu, choose Simulation parameters; then in the Simulation Parameters 
dialog box, set Stop time to 80. Run the model, then execute these commands:
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distor = sum((nocompander-sig).^2)/length(sig);
distor2 = sum((withcompander-sig).^2)/length(sig);
[distor distor2]

ans =

    0.5348    0.0397

This output shows that the distortion is smaller for the second scheme. This is 
because equal-length intervals are well suited to the logarithm of the data but 
not as well suited to the data itself. 

Selected Bibliography for Source Coding
[1] Kondoz, A. M. Digital Speech, Chichester, England, John Wiley & Sons, 
1994.

[2] Sklar, Bernard. Digital Communications: Fundamentals and Applications, 
Englewood Cliffs, N.J., Prentice-Hall, 1988.
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Block Coding
Error-control coding techniques detect and possibly correct errors that occur 
when messages are transmitted in a digital communication system. To 
accomplish this, the encoder transmits not only the information symbols but 
also extra redundant symbols. The decoder interprets what it receives, using 
the redundant symbols to detect and possibly correct whatever errors occurred 
during transmission. You might use error-control coding if your transmission 
channel is very noisy or if your data is very sensitive to noise. Depending on the 
nature of the data or noise, you might choose a specific type of error-control 
coding.

Block coding is a special case of error-control coding. Block coding techniques 
maps a fixed number of message symbols to a fixed number of code symbols. A 
block coder treats each block of data independently and is a memoryless device.

Organization of This Section
These topics provide background information:

• “Accessing Block Coding Blocks” on page 1-41

• “Block Coding Features of the Blockset” on page 1-42

• “Communications Toolbox Support Functions” on page 1-43

• “Channel Coding Terminology” on page 1-43

These topics describe how to simulate linear block coding:

• “Data Formats for Block Coding” on page 1-43

• “Using Block Encoders and Decoders Within a Model” on page 1-46

• “Examples of Block Coding” on page 1-46

• “Notes on Specific Block Coding Techniques” on page 1-49

For background material on the subject of block coding, see the works listed in 
“Selected Bibliography for Block Coding” on page 1-53.

Accessing Block Coding Blocks
You can open the Error Detection and Correction library by double-clicking its 
icon in the main Communications Blockset library (commlib), or by typing

commedac2
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at the MATLAB prompt.

Then you can open the Block sublibrary by double-clicking its icon in the Error 
Detection and Correction library, or by typing

commblkcod2

at the MATLAB prompt.

Block Coding Features of the Blockset
The class of block coding techniques includes categories shown in the diagram 
below.

The Communications Blockset supports general linear block codes. It also 
includes blocks that process cyclic, BCH, Hamming, and Reed-Solomon codes 
(which are all special kinds of linear block codes). Blocks in the blockset can 
encode or decode a message using one of the techniques mentioned above. The 
Reed-Solomon and BCH decoders indicate how many errors they detected 
while decoding. The Reed-Solomon coding blocks also let you decide whether to 
use symbols or bits as your data.

Note  The blocks in this blockset are designed for error-control codes that use 
an alphabet having 2 or 2m symbols.

Cyclic codes

Hamming codes

BCH codes

Reed-Solomon codes

Linear block codes
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Communications Toolbox Support Functions
Functions in the Communications Toolbox can support the Communications 
Blockset simulation blocks by

• Determining characteristics of a technique, such as error-correction 
capability or possible message lengths

• Performing lower-level computations associated with a technique, such as

- Computing a truth table

- Computing a generator or parity-check matrix

- Converting between generator and parity-check matrices

- Computing a generator polynomial

For more information about error-control coding capabilities of the 
Communications Toolbox, see the section “Block Coding” in the 
Communications Toolbox User’s Guide.

Channel Coding Terminology
Throughout this section, the information to be encoded consists of message 
symbols and the code that is produced consists of codewords.

Each block of K message symbols is encoded into a codeword that consists of N 
message symbols. K is called the message length, N is called the codeword 
length, and the code is called an [N,K] code.

Data Formats for Block Coding
Each message or codeword is an ordered grouping of symbols. Each block in the 
Block Coding sublibrary processes one word in each time step, as described in 
the following section “Binary Format (All Coding Methods)”. Reed-Solomon 
coding blocks also let you choose between binary and integer data, as described 
in “Integer Format (Reed-Solomon Only)” on page 1-45.

Binary Format (All Coding Methods)
You can structure messages and codewords as binary vector signals, where 
each vector represents a message word or a codeword. At a given time, the 
encoder receives an entire message word, encodes it, and outputs the entire 
codeword. The message and code signals share the same sample time.
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The figure below illustrates this situation. In this example, the encoder 
receives a four-bit message and produces a five-bit codeword at time 0. It 
repeats this process with a new message at time 1.

For all coding techniques except Reed-Solomon using binary input, the message 
vector must have length K and the corresponding code vector has length N. For 
Reed-Solomon codes with binary input, the symbols for the code are binary 
sequences of length M, corresponding to elements of the Galois field GF(2M). In 
this case, the message vector must have length M*K and the corresponding 
code vector has length M*N. The Binary-Input RS Encoder block and the 
Binary-Output RS Decoder block use this format for messages and codewords.

If the input to a block coding block is a frame-based vector, then it must be a 
column vector instead of a row vector.

To produce sample-based messages in the binary format, you can configure the 
Bernoulli Binary Generator block so that its Probability of a zero parameter 
is a vector whose length is that of the signal you want to create. To produce 
frame-based messages in the binary format, you can configure the same block 
so that its Probability of a zero parameter is a scalar and its Samples per 
frame parameter is the length of the signal you want to create.

Using Serial Signals. If you prefer to structure messages and codewords as scalar 
signals, where several samples jointly form a message word or codeword, then 
you can use the Buffer and Unbuffer blocks in the DSP Blockset. Be aware that 
buffering involves latency and multirate processing. See the reference page for 
the Buffer block for more details. If your model computes error rates, the initial 
delay in the coding-buffering combination influences the Receive delay 
parameter in the Error Rate Calculation block. If you are unsure about the 
sample times of signals in your model, selecting Sample time colors from the 
model’s Format menu, or attaching Signal Inspection blocks (from the 
Simulink Signal Attributes library) to connector lines might help.

t=0t=1
t=0t=1

message code

0
1
0
0

0
0
1
1
0

Encoder

0
1
1
0

1
0
1
0
0
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Integer Format (Reed-Solomon Only)
A message word for an [N,K] Reed-Solomon code consists of M*K bits, which 
you can interpret as K symbols between 0 and 2M. The symbols are binary 
sequences of length M, corresponding to elements of the Galois field GF(2M), in 
descending order of powers. The integer format for Reed-Solomon codes lets 
you structure messages and codewords as integer signals instead of binary 
signals. (The input must be a frame-based column vector.)

Note  In this context, Simulink expects the first bit to be the most significant 
bit in the symbol. “First” means the smallest index in a vector or the smallest 
time for a series of scalars.

The following figure illustrates the equivalence between binary and integer 
signals for a Reed-Solomon encoder. The case for the decoder would be similar. 

To produce sample-based messages in the integer format, you can configure the 
Random Integer Generator block so that M-ary number and Initial seed 
parameters are vectors of the desired length and all entries of the M-ary 
number vector are 2M. To produce frame-based messages in the integer 
format, you can configure the same block so that its M-ary number and Initial 
seed parameters are scalars and its Samples per frame parameter is the 
length of the signal you want to create.

Integer format
versus

Binary format

Vector of 5

Vector of 3*5 bits

3
7
1
0
1

0
1
1
1
1
1
0
0
1
0
0
0
0
0
1

three-bit symbols

t = 0 t = 0
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Using Block Encoders and Decoders Within a Model
Once you have configured the coding blocks, a few tips will help you place them 
correctly within your model:

• If a block has multiple outputs, the first one is always the stream of coding 
data.

The Reed-Solomon and BCH blocks have an error counter as a second output.

• Be sure the signal sizes are appropriate for the mask parameters. For 
example, if you use the Binary Cyclic Encoder block and set Message 
length K to 4, the input signal must be a vector of length 4.

If you are unsure about the size of signals in your model, selecting Signal 
dimensions from the model’s Format menu might help.

Examples of Block Coding
This section presents two example models. The first example processes a 
Hamming code using the binary format and the second example processes a 
Reed-Solomon code using the integer format.

Example: Hamming Code in Binary Format
This example shows very simply how to use an encoder and decoder. It 
illustrates the appropriate vector lengths of the code and message signals for 
the coding blocks. Also, because the Error Rate Calculation block accepts only 
scalars or frame-based column vectors as the transmitted and received signals, 
this example uses frame-based column vectors throughout. (It thus avoids 
having to change signal attributes using a block such as Convert 1-D to 2-D.)

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library

- Set Probability of a zero to .5.
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- Set Initial seed to any positive integer scalar, preferably the output of the 
randseed function.

- Check the Frame-based outputs check box.

- Set Samples per frame to 4.

• Hamming Encoder, with default parameter values

• Hamming Decoder, with default parameter values

• Error Rate Calculation, in the Comm Sinks library, with default parameter 
values

Connect the blocks as in the preceding figure. Also, use the Signal dimensions 
feature from the model window’s Format menu. After updating the diagram if 
necessary (Update diagram from the Edit menu), the connector lines show 
relevant signal attributes. The connector lines are double lines to indicate 
frame-based signals, and the annotations next to the lines show that the 
signals are column vectors of appropriate sizes.

Example: Reed-Solomon Code in Integer Format
This example uses a Reed-Solomon code in integer format. It illustrates the 
appropriate vector lengths of the code and message signals for the coding 
blocks. It also exhibits error correction, using a very simplistic way of 
introducing errors into each codeword.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Random Integer Generator, in the Comm Sources library

- Set M-ary number to 15.

- Set Initial seed to any prime number greater than 30, preferably the 
output of the randseed function.
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- Check the Frame-based outputs check box.

- Set Samples per frame to 5.

• Integer-Input RS Encoder

- Set Codeword length N to 15.

- Set Message length K to 5.

• Gain, in the Simulink Math Operations library

- Set Gain to [0; 0; 0; 0; 0; ones(10,1)].

• Integer-Output RS Decoder

- Set Codeword length N to 15.

- Set Message length K to 5.

• Scope, in the Simulink Sinks library. Get two copies of this block.

• Sum, in the Simulink Math Operations library

- Set List of signs to |-+

Connect the blocks as in the preceding figure. Also, from the model window’s 
Simulation menu, choose Simulation parameters; then, in the Simulation 
Parameters dialog box, set Stop time to 500.

The vector length numbers appear on the connecting lines only if you select 
Signal dimensions from the model’s Format menu. Notice that the encoder 
accepts a vector of length 5 (which is K in this case) and produces a vector of 
length 15 (which is N in this case). The decoder does the opposite. Also, the 
Initial seed parameter in the Random Integer Generator block is a vector of 
length 5 because it must generate a message word of length 5.

Running the model produces the scope images below. Your plot of the error 
counts might differ somewhat, depending on your Initial seed value in the 
Random Integer Generator block. (To make the axis range exactly match that 
of the left scope in the figure, right-click the plot area in the scope and select 
Axes properties.)
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The plot on the right is the number of errors that the decoder detected while 
trying to recover the message. Often the number is five because the Gain block 
replaces the first five symbols in each codeword with zeros. However, the 
number of errors is less than five whenever a correct codeword contains one or 
more zeros in the first five places.

The plot on the left is the difference between the original message and the 
recovered message; since the decoder was able to correct all errors that 
occurred, each of the five data streams in the plot is zero.

Notes on Specific Block Coding Techniques
Although the Block Coding sublibrary is somewhat uniform in its look and feel, 
the various coding techniques are not identical. This section describes special 
options and restrictions that apply to parameters and signals for the coding 
technique categories in this sublibrary. You should read the part that applies 
to the coding technique you want to use: generic linear block code, cyclic code, 
Hamming code, BCH code, or Reed-Solomon code.

Number of Errors Before CorrectionDifference Between Original Message and Recovered Message



1 Using the Libraries

1-50

Generic Linear Block Codes
Encoding a message using a generic linear block code requires a generator 
matrix. Decoding the code requires the generator matrix and possibly a truth 
table. In order to use the Binary Linear Encoder and Binary Linear Decoder 
blocks, you must understand the Generator matrix and Error-correction 
truth table parameters.

Generator Matrix. The process of encoding a message into an [N,K] linear block 
code is determined by a K-by-N generator matrix G. Specifically, a 1-by-K 
message vector v is encoded into the 1-by-N codeword vector vG. If G has the 
form [Ik, P] or [P, Ik], where P is some K-by-(N-K) matrix and Ik is the K-by-K 
identity matrix, then G is said to be in standard form. (Some authors, such as 
Clark and Cain [1], use the first standard form, while others, such as Lin and 
Costello [2], use the second.) The linear block coding blocks in this blockset 
require the Generator matrix mask parameter to be in standard form.

Decoding Table. A decoding table tells a decoder how to correct errors that might 
have corrupted the code during transmission. Hamming codes can correct any 
single-symbol error in any codeword. Other codes can correct, or partially 
correct, errors that corrupt more than one symbol in a given codeword.

The Binary Linear Decoder block allows you to specify a decoding table in the 
Error-correction truth table parameter. Represent a decoding table as a 
matrix with N columns and 2N-K rows. Each row gives a correction vector for 
one received codeword vector.

If you do not want to specify a decoding table explicitly, set that parameter to 
0. This causes the block to compute a decoding table using the syndtable 
function in the Communications Toolbox.

Cyclic Codes
For cyclic codes, the codeword length N must have the form 2M-1, where M is 
an integer greater than or equal to 3.

Generator Polynomials. Cyclic codes have special algebraic properties that allow 
a polynomial to determine the coding process completely. This so-called 
generator polynomial is a degree-(N-K) divisor of the polynomial xN-1. Van Lint 
[4] explains how a generator polynomial determines a cyclic code.

The Binary Cyclic Encoder and Binary Cyclic Decoder blocks allow you to 
specify a generator polynomial as the second mask parameter, instead of 
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specifying K there. The blocks represent a generator polynomial using a vector 
that lists the polynomial’s coefficients in order of ascending powers of the 
variable. You can find generator polynomials for cyclic codes using the 
cyclpoly function in the Communications Toolbox.

If you do not want to specify a generator polynomial, set the second mask 
parameter to the value of K.

Hamming Codes
For Hamming codes, the codeword length N must have the form 2M-1, where 
M is an integer greater than or equal to 3. The message length K must equal 
N-M.

Primitive Polynomials. Hamming codes rely on algebraic fields that have 2M 
elements (or, more generally, pM elements for a prime number p). Elements of 
such fields are named relative to a distinguished element of the field that is 
called a primitive element. The minimal polynomial of a primitive element is 
called a primitive polynomial. The Hamming Encoder and Hamming Decoder 
blocks allow you to specify a primitive polynomial for the finite field that they 
use for computations. If you want to specify this polynomial, do so in the second 
mask parameter field. The blocks represent a primitive polynomial using a 
vector that lists the polynomial’s coefficients in order of ascending powers of 
the variable. You can find generator polynomials for Galois fields using the 
gfprimfd function in the Communications Toolbox.

If you do not want to specify a primitive polynomial, set the second mask 
parameter to the value of K.

BCH Codes
For BCH codes, the codeword length N must have the form 2M-1, where M is 
an integer greater than or equal to 3. The message length K can have only 
particular values. To see which values of K are valid for a given N, use the 
bchpoly function in the Communications Toolbox. For example, in the output 
below, the second column lists all possible message lengths that correspond to 
a codeword length of 31. The third column lists the corresponding 
error-correction capabilities.

params = bchpoly(31)

params =
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    31    26     1
    31    21     2
    31    16     3
    31    11     5
    31     6     7

No known analytic formula describes the relationship among the codeword 
length, message length, and error-correction capability for BCH codes.

Error Information. The BCH Decoder block allows you to state the 
error-correction capability of the code as the Error-correction capability T 
parameter. Providing the value here speeds the computation. If you do not 
know the code’s error-correction capability, setting this parameter to zero 
causes the block to calculate the error-correction capability when initializing. 
You can find out the error-correction capability using the bchpoly function in 
the Communications Toolbox.

The BCH Decoder block also returns error-related information during the 
simulation. The second output signal indicates the number of errors that the 
block detected in the input codeword. A negative integer in the second output 
indicates that the block detected more errors than it could correct using the 
coding scheme.

Reed-Solomon Codes
Reed-Solomon codes are useful for correcting errors that occur in bursts. In the 
simplest case, the length of codewords in a Reed-Solomon code is of the form 
N= 2M-1, where the 2M is the number of symbols for the code. The error 
correction capability of a Reed-Solomon code is floor((N-K)/2), where K is the 
length of message words. The difference N-K must be even.

It is sometimes convenient to use a shortened Reed-Solomon code in which N 
is less than 2M-1. In this case, the encoder appends 2M-1-N zero symbols to 
each message word and codeword. The error correction capability of a 
shortened Reed-Solomon code is also floor((N-K)/2)). The Communications 
Blockset Reed-Solomon blocks can implement shortened Reed-Solomon codes.

Effect of Nonbinary Symbols. One difference between Reed-Solomon codes and the 
other codes supported in this blockset is that Reed-Solomon codes process 
symbols in GF(2M) instead of GF(2). Each such symbol is specified by M bits. 
The nonbinary nature of the Reed-Solomon code symbols causes the 
Reed-Solomon blocks to differ from other coding blocks in these ways:
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• You can use the integer format, via the Integer-Input RS Encoder and 
Integer-Output RS Decoder blocks.

• The binary format expects the vector lengths to be an integer multiple of 
M*K (not K) for messages and the same integer M*N (not N) for codewords.

Error Information. The Reed-Solomon decoding blocks (Binary-Output RS 
Decoder and Integer-Output RS Decoder) return error-related information 
during the simulation. The second output signal indicates the number of errors 
that the block detected in the input codeword. A -1 in the second output 
indicates that the block detected more errors than it could correct using the 
coding scheme.

Selected Bibliography for Block Coding
[1] Clark, George C. Jr. and J. Bibb Cain, Error-Correction Coding for Digital 
Communications, New York, Plenum Press, 1981.

[2] Lin, Shu and Daniel J. Costello, Jr., Error Control Coding: Fundamentals 
and Applications, Englewood Cliffs, N.J., Prentice-Hall, 1983.

[3] Peterson, W. Wesley and E. J. Weldon, Jr., Error-correcting Codes, 2nd ed. 
Cambridge, Mass., MIT Press, 1972.

[4] van Lint, J. H. Introduction to Coding Theory, New York, Springer-Verlag, 
1982.
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Convolutional Coding
Convolutional coding is a special case of error-control coding. Unlike a block 
coder, a convolutional coder is not a memoryless device. Even though a 
convolutional coder accepts a fixed number of message symbols and produces a 
fixed number of code symbols, its computations depend not only on the current 
set of input symbols but on some of the previous input symbols.

Organization of This Section
• Describes how to access the Convolutional sublibrary of Error Detection and 

Correction

• Summarizes the software’s capabilities

• Discusses parameters for convolutional coding (polynomial description and 
trellis description)

• Illustrates the use of the coding blocks for a rate 2/3 code

• Explains how to implement a systematic encoder

• Illustrates soft-decision decoding

For background material on the subject of convolutional coding, see the works 
listed in “Selected Bibliography for Convolutional Coding” on page 1-67.

Accessing Convolutional Coding Blocks
You can open the Error Detection and Correction library by double-clicking its 
icon in the main Communications Blockset library (commlib), or by typing

commedac2

at the MATLAB prompt.

Then you can open the Convolutional sublibrary by double-clicking its icon in 
the Error Detection and Correction library, or by typing

commconvcod2

at the MATLAB prompt.
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Convolutional Coding Features of the Blockset
The Communications Blockset supports feedforward or feedback binary 
convolutional codes that can be described by a trellis structure or a set of 
generator polynomials. It uses the Viterbi algorithm to implement 
hard-decision and soft-decision decoding.

The blockset also includes an a posteriori probability decoder, which can be 
useful for processing turbo codes.

Parameters for Convolutional Coding
To process convolutional codes (including turbo codes), use the Convolutional 
Encoder, Viterbi Decoder, and/or APP Decoder blocks in the Convolutional 
sublibrary. If a mask parameter is required in both the encoder and the 
decoder, then use the same value in both blocks.

The blocks in the Convolutional sublibrary assume that you use one of two 
different representations of a convolutional encoder:

• If you design your encoder using a diagram with shift registers and modulo-2 
adders, then you can compute the code generator polynomial matrix and 
subsequently use the poly2trellis function (in the Communications 
Toolbox) to generate the corresponding trellis structure mask parameter 
automatically. For an example, see “Example: A Rate 2/3 Feedforward 
Encoder” on page 1-56.

• If you design your encoder using a trellis diagram, then you can construct the 
trellis structure in MATLAB and use it as the mask parameter.

Details about these representations are in the sections “Polynomial 
Description of a Convolutional Encoder” and “Trellis Description of a 
Convolutional Encoder” in the Communications Toolbox User’s Guide.

Using the Polynomial Description in Blocks
To use the polynomial description with the Convolutional Encoder, Viterbi 
Decoder, or APP Decoder blocks, you can use the utility function poly2trellis, 
from the Communications Toolbox. This function accepts a polynomial 
description and converts it into a trellis description. For example, the following 
command computes the trellis description of an encoder whose constraint 
length is 5 and whose generator polynomials are 35 and 31.

trellis = poly2trellis(5,[35 31]);
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To use this encoder with one of the convolutional coding blocks, simply place a 
poly2trellis command such as

poly2trellis(5,[35 31]);

in the Trellis structure parameter field.

Example: A Rate 2/3 Feedforward Encoder
This example uses the rate 2/3 feedforward convolutional encoder depicted in 
the following figure. The description explains how to determine the coding 
blocks’ parameters from a schematic of a rate 2/3 feedforward encoder. This 
example also illustrates the use of the Error Rate Calculation block with a 
receive delay.

How to Determine Coding Parameters. The Convolutional Encoder and Viterbi 
Decoder blocks can implement this code if their parameters have the 
appropriate values.

The encoder’s constraint length is a vector of length 2 since the encoder has two 
inputs. The elements of this vector indicate the number of bits stored in each 
shift register, including the current input bits. Counting memory spaces in 

z-1

z-1 z-1 z-1

z-1z-1z-1

+

+

+



Convolutional Coding

1-57

each shift register in the diagram and adding one for the current inputs leads 
to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal 
numbers, use the element in the ith row and jth column to indicate how the ith 
input contributes to the jth output. For example, to compute the element in the 
second row and third column, notice that the leftmost and two rightmost 
elements in the second shift register of the diagram feed into the sum that 
forms the third output. Capture this information as the binary number 1011, 
which is equivalent to the octal number 13. The full value of the code generator 
matrix is [27 33 0; 0 5 13].

To use the constraint length and code generator parameters in the 
Convolutional Encoder and Viterbi Decoder blocks, use the poly2trellis 
function to convert those parameters into a trellis structure.

How to Simulate the Encoder. The following model simulates this encoder.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library

- Set Probability of a zero to .5.

- Set Initial seed to any positive integer scalar, preferably the output of the 
randseed function.

- Set Sample time to .5.

- Check the Frame-based outputs check box.

- Set Samples per frame to 2.
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• Convolutional Encoder

- Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).

• Binary Symmetric Channel, in the Channels library

- Set Error probability to 0.02.

- Set Initial seed to any positive integer scalar, preferably the output of the 
randseed function.

- Clear the Output error vector check box.

• Viterbi Decoder

- Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).

- Set Decision type to Hard Decision.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to 68.

- Set Output data to Port.

- Check the Stop simulation check box.

- Set Target number of errors to 100.

• Display, in the Simulink Sinks library

- Drag the bottom edge of the icon to make the display big enough for three 
entries.

Connect the blocks as in the figure. Also, from the model window’s Simulation 
menu, choose Simulation parameters; then in the Simulation Parameters 
dialog box, set Stop time to inf.

Notes on the model. The matrix size annotations appear on the connecting lines 
only if you select Signal Dimensions from the model’s Format menu. Notice 
that the encoder accepts a 2-by-1 frame-based vector and produces a 3-by-1 
frame-based vector, while the decoder does the opposite. The Samples per 
frame parameter in the Bernoulli Binary Generator block is 2 because the 
block must generate a message word of length 2.

Also notice that the Receive delay parameter in the Error Rate Calculation 
block is 68, which is the vector length (2) of the recovered message times the 
Traceback depth value (34) in the Viterbi Decoder block. If you examined the 
transmitted and received signals as matrices in the MATLAB workspace, then 
you would see that the first 34 rows of the recovered message consist of zeros, 
while subsequent rows are the decoded messages. Thus the delay in the 
received signal is 34 vectors of length 2, or 68 samples.
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Running the model produces display output consisting of three numbers. The 
three numbers indicate the error rate, the total number of errors, and the total 
number of comparisons that the Error Rate Calculation block makes during the 
simulation. (The first two numbers vary depending on your Initial seed values 
in the Bernoulli Binary Generator and Binary Symmetric Channel blocks.) The 
simulation stops after 100 errors occur, because Target number of errors is 
set to 100 in the Error Rate Calculation block. Note that the error rate is much 
less than 0.02, the Error probability in the Binary Symmetric Channel block.

Implementing a Systematic Encoder with Feedback 
This section explains how to use the Convolutional Encoder block to implement 
a systematic encoder with feedback. A code is systematic if the actual message 
words appear as part of the code words. The following diagram shows an 
example of a systematic encoder.

To implement this encoder, set the Trellis structure parameter in the 
Convolutional Encoder block to poly2trellis(5, [37 33], 37). This setting 
corresponds to

• Constraint length, 5

• Generator polynomial pair, [37 33]

• Feedback polynomial, 37

The feedback polynomial is represented by the binary vector [1 1 1 1 1], 
corresponding to the upper row of binary digits. These digits indicate 
connections from the outputs of the registers to the adder. Note that the initial 
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1 corresponds to the input bit. The octal representation of the binary number 
11111 is 37. 

To implement a systematic code, set the first generator polynomial to be the 
same as the feedback polynomial in the Trellis structure parameter of the 
Convolutional Encoder block. In this example, both polynomials have the octal 
representation 37.

The second generator polynomial is represented by the binary vector [1 1 0 1 1], 
corresponding to the lower row of binary digits. The octal number 
corresponding to the binary number 11011 is 33.

For more information on setting the mask parameters for the Convolutional 
Encoder block, see “Polynomial Description of a Convolutional Encoder” in the 
Communications Toolbox documentation.

Example: Soft-Decision Decoding
This example creates a rate 1/2 convolutional code. It uses a quantizer and the 
Viterbi Decoder block to perform soft-decision decoding. This description covers 
these topics:

• “Overview of the Simulation” on page 1-60

• “Defining the Convolutional Code” on page 1-61

• “Mapping the Received Data” on page 1-62

• “Decoding the Convolutional Code” on page 1-63

• “Delay in Received Data” on page 1-64

• “Comparing Simulation Results with Theoretical Results” on page 1-64

Overview of the Simulation
The model is in the following figure. To open the model, click here in the 
MATLAB Help browser. The simulation creates a random binary message 
signal, encodes the message into a convolutional code, modulates the code 
using the binary phase shift keying (BPSK) technique, and adds white 
Gaussian noise to the modulated data in order to simulate a noisy channel. 
Then, the simulation prepares the received data for the decoding block and 
decodes. Finally, the simulation compares the decoded information with the 
original message signal in order to compute the bit error rate. The simulation 
ends after processing 100 bit errors or 107 message bits, whichever comes first.
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Defining the Convolutional Code
The feedforward convolutional encoder in this example is depicted below.

The encoder’s constraint length is a scalar since the encoder has one input. The 
value of the constraint length is the number of bits stored in the shift register, 
including the current input. There are six memory registers and the current 
input is one bit. Thus the constraint length of the code is 7.

+

+
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The code generator is a 1-by-2 matrix of octal numbers because the encoder has 
one input and two outputs. The first element in the matrix indicates which 
input values contribute to the first output, and the second element in the 
matrix indicates which input values contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of the 
rightmost and the four leftmost elements in the diagram’s array of input 
values. The seven-digit binary number 1111001 captures this information, and 
is equivalent to the octal number 171. The octal number 171 thus becomes the 
first entry of the code generator matrix. Here, each triplet of bits uses the 
leftmost bit as the most significant bit. The second output corresponds to the 
binary number 1011011, which is equivalent to the octal number 133. The code 
generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the 
block which code to use when processing data. In this case, the poly2trellis 
function, in the Communications Toolbox, converts the constraint length and 
the pair of octal numbers into a valid trellis structure.

Notice that while the message data entering the Convolutional Encoder block 
is a scalar bit stream, the encoded data leaving the block is a stream of binary 
vectors of length 2.

Mapping the Received Data
The received data, that is, the output of the AWGN Channel block, consists of 
complex numbers that are close to -1 and 1. In order to reconstruct the original 
binary message, the receiver part of the model must decode the convolutional 
code. The Viterbi Decoder block in this model expects its input data to be 
integers between 0 and 7. The demodulator, a custom subsystem in this model, 
transforms the received data into a format that the Viterbi Decoder block can 
interpret properly. More specifically, the demodulator subsystem:

• Converts the received data signal to a real signal by removing its imaginary 
part. It is reasonable to assume that the imaginary part of the received data 
does not contain essential information, because the imaginary part of the 
transmitted data is zero (ignoring small roundoff errors) and because the 
channel noise is not very powerful.

• Normalizes the received data by dividing by its running standard deviation 
and then multiplying by -1.

• Quantizes the normalized data using three bits.
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The combination of this mapping and the Viterbi Decoder block’s decision 
mapping reverses the BPSK modulation that the BPSK Modulator Baseband 
block performs on the transmitting side of this model. To examine the 
demodulator subsystem in more detail, double-click the icon labeled 
Soft-Output BPSK Demodulator.

Decoding the Convolutional Code
After the received data is properly mapped to length-2 vectors of 3-bit decision 
values, the Viterbi Decoder block decodes it. The block uses a soft-decision 
algorithm with 23 different input values because the Decision type parameter 
is Soft Decision and the Number of soft decision bits parameter is 3.

Soft-Decision Interpretation of Data. When the Decision type parameter is set to 
Soft Decision, the Viterbi Decoder block requires input values between 0 and 
2b-1, where b is the Number of soft decision bits parameter. The block 
interprets 0 as the most confident decision that the codeword bit is a 0 and 
interprets 2b-1 as the most confident decision that the codeword bit is a 1. The 
values in between these extremes represent less confident decisions. The 
following table lists the interpretations of the eight possible input values for 
this example.

Traceback and Decoding Delay. The Traceback depth parameter in the Viterbi 
Decoder block represents the length of the decoding delay. Typical values for a 

Decision Value Interpretation

0 Most confident 0

1 Second most confident 0

2 Third most confident 0

3 Least confident 0

4 Least confident 1

5 Third most confident 1

6 Second most confident 1

7 Most confident 1
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traceback depth are about five or six times the constraint length, which would 
be 35 or 42 in this example. However, some hardware implementations offer 
options of 48 and 96. This example chooses 48 because that is closer to the 
targets (35 and 42) than 96 is.

Delay in Received Data
The Error Rate Calculation block’s Receive delay parameter is nonzero 
because a given message bit and its corresponding recovered bit are separated 
in time by a nonzero amount of simulation time. The Receive delay parameter 
tells the block which elements of its input signals to compare when checking 
for errors.

In this case, the Receive delay value is 49 samples, which is one more than the 
Traceback depth value (48) in the Viterbi Decoder block. The extra 
one-sample delay comes from the initial delay in the Buffer block. Because the 
Buffer block must collect two scalar samples before it can output one vector, its 
first meaningful output occurs at time 1 second, not time 0.

Comparing Simulation Results with Theoretical Results
This section describes how to compare the bit error rate in this simulation with 
the bit error rate that would theoretically result from unquantized decoding. 
The process includes a few steps, described in these sections:

• “Computing Theoretical Bounds for the Bit Error Rate”

• “Simulating Multiple Times to Collect Bit Error Rates” on page 1-65

Computing Theoretical Bounds for the Bit Error Rate. To calculate theoretical bounds 
for the bit error rate Pb of the convolutional code in this model, you can use this 
estimate based on unquantized-decision decoding:

In this estimate, cd is the sum of bit errors for error events of distance d, and f 
is the free distance of the code. The quantity Pd is the pairwise error 
probability, given by 

Pb cdPd

d f=

∞

∑<
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where R is the code rate of 1/2, and erfc is the MATLAB complementary error 
function, defined by 

Values for the coefficients cd and the free distance f are in published articles 
such as [4]. The free distance for this code is f = 10.

The following commands calculate the values of Pb for Eb/N0 values in the 
range from 1 to 3.5, in increments of 0.5:

EbNoVec = [1:0.5:4.0];
R = 1/2;
% Errs is the vector of sums of bit errors for
% error events at distance d, for d from 10 to 29.
Errs = [36 0 211 0 1404 0 11633 0 77433 0 502690 0,...
        3322763 0 21292910 0 134365911 0 843425871 0]; 
% P is the matrix of pairwise error probilities, for
% Eb/No values in EbNoVec and d from 10 to 29.
P = zeros(20,7); % Initialize.
for d = 10:29
   P(d-9,:) = (1/2)*erfc(sqrt(d*R*10.^(EbNoVec/10)));
end
% Bounds is the vector of upper bounds for the bit error
% rate, for Eb/No values in EbNoVec.
Bounds = Errs*P;

Simulating Multiple Times to Collect Bit Error Rates. You can efficiently vary the 
simulation parameters by using the sim function to run the simulation from 
the MATLAB command line. For example, the following code calculates the bit 
error rate at bit energy-to-noise ratios ranging from 1 dB to 4 dB, in increments 
of 0.5 dB. It collects all bit error rates from these simulations in the matrix 
BERVec. It also plots the bit error rates in a figure window along with the 
theoretical bounds computed in the preceding code fragment.

Pd
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Note  First open the model by clicking here in the MATLAB Help browser. 
Then execute these commands, which might take a few minutes.

% Plot theoretical bounds and set up figure.
figure;
semilogy(EbNoVec,Bounds,'bo',1,NaN,'r*');
xlabel('Eb/No (dB)'); ylabel('Bit Error Rate');
title('Bit Error Rate (BER)');
legend('Theoretical bound on BER','Actual BER');
axis([1 4 1e-5 1]);
hold on;

BERVec = [];
opts = simset('SrcWorkspace','Current',...
   'DstWorkspace','Current');
% Make the noise level variable.
set_param('doc_softdecision/AWGN Channel',...
    'EsNodB','EbNodB+10*log10(1/2)');
% Simulate multiple times.
for n = 1:length(EbNoVec)
    EbNodB = EbNoVec(n);
    sim('doc_softdecision',5000000,opts);
    BERVec(n,:) = BER_Data;
    semilogy(EbNoVec(n),BERVec(n,1),'r*'); % Plot point.
    drawnow;
end
hold off;

Note  The estimate for Pb assumes that the decoder uses unquantized data, 
that is, an infinitely fine quantization. By contrast, the simulation in this 
example uses 8-level (3-bit) quantization. Because of this quantization, the 
simulated bit error rate is not quite as low as the bound when the 
signal-to-noise ratio is high.
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The plot of bit error rate against signal-to-noise ratio follows. The locations of 
your actual BER points might vary because the simulation involves random 
numbers.
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Cyclic Redundancy Check Coding
Cyclic redundancy check (CRC) coding is an error-control coding technique for 
detecting errors that occur when a message is transmitted. Unlike block or 
convolutional codes, CRC codes do not have a built-in error correction 
capability. Instead, when an error is detected in a received message word, the 
receiver requests the sender to retransmit the message word. 

In CRC coding, the transmitter applies a rule to each message word to create 
extra bits, called the checksum, or syndrome, and then appends the checksum 
to the message word. After receiving a transmitted word, the receiver removes 
the appended checksum, applies the same rule to the truncated word, and 
compares the resulting checksum with the received checksum. If the two 
checksums differ, an error has occurred, and the transmitter must resend the 
message word.

Organization of this Section
This section covers the following topics:

• “Accessing CRC Blocks” on page 1-69

• “CRC Coding Features of the Blockset” on page 1-69

• “CRC Algorithm” on page 1-70

Accessing CRC Blocks
You can open the Error Detection and Correction library by double-clicking its 
icon in the main Communications Blockset library (commlib), or by typing

commedac2

at the MATLAB prompt.

Then you can open the CRC sublibrary by double-clicking on its icon in the 
Error Detection and Correction library, or by typing

commcrc2

at the MATLAB prompt.

CRC Coding Features of the Blockset
The CRC library contains four blocks that implement the CRC algorithm:
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• General CRC Generator

• General CRC Syndrome Detector

• CRC-N Generator

• CRC-N Syndrome Detector

The General CRC Generator block computes a checksum for each input frame, 
appends it to the message word, and transmits the result. The General CRC 
Syndrome Detector receives a transmitted word and removes the appended 
checksum. The block then calculates a new checksum, and compares the 
received checksum with the new checksum. The block has two outputs. The 
first is the message word without the received checksum. The second output is 
a boolean error flag, which is 0 if the received checksum agrees with the new 
checksum, and a 1 otherwise.

The CRC-N Generator block and CRC-N Syndrome Detector block are special 
cases of the General CRC Generator block and General CRC Syndrome 
Detector block, which use a predefined CRC-N polynomial, where N is the 
number of bits in the checksum.

CRC Algorithm
The CRC algorithm accepts a binary data frame, corresponding to a polynomial 
M, and appends a checksum of r bits, corresponding to a polynomial C. The 
concatenation of the input frame and the checksum then corresponds to the 
polynomial T = M*xr + C, since multiplying by xr corresponds to shifting the 
input frame r bits to the left. The algorithm chooses the checksum C so that T 
is divisible by a predefined polynomial P of degree r, called the generator 
polynomial. 

The algorithm divides T by P, and sets the checksum equal to the binary vector 
corresponding to the remainder. That is, if T = Q*P + R, where R is a 
polynomial of degree less than r, then the checksum is the binary vector 
corresponding to R. If necessary, the algorithm prepends zeros to the checksum 
so that it has length r.

The General CRC Generator block and the CRC-N Generator block, which 
implement the transmission phase of the CRC algorithm, do the following:

1 Left shift the input data frame by r bits and divide the corresponding 
polynomial by P.
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2 Set the checksum equal to the binary vector of length r, corresponding to the 
remainder from step 1.

3 Append the checksum to the input data frame. The result is the output 
frame.

The General CRC Syndrome Detector block and the CRC-N Syndrome Detector 
block, which implement the detection phase of the CRC algorithm, do the 
following:

1 Remove the checksum from the received input frame.

2 Compute the checksum for the received message word as in the 
transmission phase.

3 Compare the new checksum with the received checksum.

4 Output a 0 if the two checksums agree and a 1 otherwise.

The CRC algorithm uses binary vectors to represent binary polynomials, in 
descending order of powers. For example, the vector [1 1 0 1] represents the 
polynomial x3 + x2 + 1. 

Example
Suppose the input frame is [1 1 0 0 1 1 0]', corresponding to the polynomial 
M = x6 +x 5 + x2 + x, and the generator polynomial is P = x3 + x2 + 1, of degree 
r = 3. By polynomial division, M*x3 = (x6 + x3 + x)*P + x. The remainder is R = 
x, so that the checksum is then [0 1 0]'. Note that an extra 0 is added on the 
left to make the checksum have length 3.
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1. Using the Libraries

Interleaving
An interleaver permutes symbols according to a mapping. A corresponding 
deinterleaver uses the inverse mapping to restore the original sequence of 
symbols. Interleaving and deinterleaving can be useful for reducing errors 
caused by burst errors in a communication system.

You can open the Interleaving library by double-clicking its icon in the main 
Communications Blockset library (commlib), or by typing

comminterleave2

at the MATLAB prompt.

Then you can open the interleaving sublibraries by double-clicking their icons 
in the Interleaving library, or by typing these commands at the MATLAB 
prompt.

commblkintrlv2
commcnvintrlv2

Interleaving Features of the Blockset
This blockset provides interleavers in two broad categories:

• Block interleavers. This category includes matrix, random, algebraic, and 
helical scan interleavers as special cases.

• Convolutional interleavers. This category includes a helical interleaver as a 
special case, as well as a general multiplexed interleaver.

In typical usage of all interleaver/deinterleaver pairs in this blockset, the 
parameters of the deinterleaver match those of the interleaver.

For background information about interleavers, see the works listed in 
“Selected Bibliography for Interleaving” on page 1-80.

Block Interleavers
A block interleaver accepts a set of symbols and rearranges them, without 
repeating or omitting any of the symbols in the set. The number of symbols in 
each set is fixed for a given interleaver. The interleaver’s operation on a set of 
symbols is independent of its operation on all other sets of symbols.
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Types of Block Interleavers
The set of block interleavers in this library includes a general 
interleaver/deinterleaver pair as well as several special cases. Each 
special-case block uses the same computational code that its more general 
counterpart uses, but provides an interface that is more suitable for the special 
case.

The Matrix Interleaver block accomplishes block interleaving by filling a 
matrix with the input symbols row by row and then sending the matrix 
contents to the output port column by column. For example, if the interleaver 
uses a 2-by-3 matrix to do its internal computations, then for an input of 
[1 2 3 4 5 6] the block produces an output of [1 4 2 5 3 6].

The Random Interleaver block chooses a permutation table randomly using the 
Initial seed parameter that you provide in the block mask. By using the same 
Initial seed value in the corresponding Random Deinterleaver block, you can 
restore the permuted symbols to their original ordering.

The Algebraic Interleaver block uses a permutation table that is algebraically 
derived. It supports Takeshita-Costello interleavers and Welch-Costas 
interleavers. These interleavers are described in [4].

Example: Block Interleavers
The following example shows how to use an interleaver to improve the error 
rate when the channel produces bursts of errors.

Before running the model, you must create a binary vector that simulates 
bursts of errors, as described in “Creating the Vector of Errors” on page 1-75. 
The Signal From Workspace block imports this vector from the MATLAB 
workspace into the model, where the Logical Operator block XOR’s it with the 
signal. 
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To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Data Sources sublibrary of the Comm 
Sources library

- Check the box next to Frame-based outputs.

- Set Samples per frame to 4.

• Hamming Encoder, in the Block sublibrary of the Error Detection and 
Correction library. Use default parameters.

• Buffer, in the Buffers sublibrary of the Signal Management library in the 
DSP Blockset

- Set Output buffer size (per channel) to 84.

• Random Interleaver, in the Block sublibrary of the Interleaving library in 
the Communications Blockset.

- Set Number of elements to 84.

• Logical Operator, in the Simulink Math Operations library

- Set Operator to XOR.

• Signal From Workspace, in the DSP Sources library

- Set Signal to errors.

- Set Sample time to 4/7.

- Set Samples per frame to 84.

• Random Deinterleaver, the Block sublibrary of the Interleaving library in 
the Communications Blockset

- Set Number of elements to 84.

• Buffer, in the Buffers sublibrary of the Signal Management library in the 
DSP Blockset

- Set Output buffer size (per channel) to 7.

• Hamming Decoder, in the Block sublibrary of the Error Detection and 
Correction library. Use default parameters.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to (4/7)*84.

- Set Computation delay to 100.

- Set Output data to Port.
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• Display, in the Simulink Sinks library. Use default parameters.

Select Simulation parameters from the model’s Simulation menu and set 
Stop time to length(errors).

Creating the Vector of Errors
Before running the model, use the following code to create a binary vector in 
the MATLAB workspace. The model uses this vector to simulate bursts of 
errors. The vector contains blocks of three 1s, representing bursts of errors, at 
random intervals. The distance between two consecutive blocks of 1s is a 
random integer between 1 and 80. 

errors=zeros(1,10^4);
n=1;
while n<10^4-80;
n=n+floor(79*rand(1))+3;
errors(n:n+2)=[1 1 1];
end

To determine the ratio of the number of 1s to the total number of symbols in 
the vector errors, type

sum(errors)/length(errors)

Your answer should be approximately 3/43, or .0698, since after each sequence 
of three 1s, the expected distance to the next sequence of 1s is 40. 
Consequently, you expect to see three 1s in 43 terms of the sequence. If there 
were no error correction in the model, the bit error rate would be approximately 
.0698.

When you run a simulation with the model, the error rate is approximately 
.019, which shows the improvement due to error correction and interleaving. 
You can see the effect of interleaving by deleting the Random Interleaver and 
Random Deinterleaver blocks from the model, connecting the lines, and 
running another simulation. The bit error rate is higher without interleaving 
because the Hamming code can only correct one error in each code word.

Convolutional Interleavers
A convolutional interleaver consists of a set of shift registers, each with a fixed 
delay. In a typical convolutional interleaver, the delays are nonnegative 
integer multiples of a fixed integer (although a general multiplexed interleaver 



1 Using the Libraries

1-76

allows arbitrary delay values). Each new symbol from the input signal feeds 
into the next shift register and the oldest symbol in that register becomes part 
of the output signal. The schematic below depicts the structure of a 
convolutional interleaver by showing the set of shift registers and their delay 
values D(1), D(2),..., D(N). The blocks in this library have mask parameters 
that indicate the delay for each shift register. The delay is measured in 
samples.

This section discusses

• The types of convolutional interleavers included in the library

• The delay between the original sequence and the restored sequence

• An example that uses a convolutional interleaver

Types of Convolutional Interleavers
The set of convolutional interleavers in this library includes a general 
interleaver/deinterleaver pair as well as several special cases. Each 
special-case block uses the same computational code that its more general 
counterpart uses, but provides an interface that is more suitable for the special 
case.

The most general block in this library is the General Multiplexed Interleaver 
block, which allows arbitrary delay values for the set of shift registers. To 
implement the preceding schematic using this block, you would use an 
Interleaver delay parameter of [D(1); D(2); ...; D(N)].

More specific is the Convolutional Interleaver block, in which the delay value 
for the kth shift register is (k-1) times the block’s Register length step 

OutputInput

z-D(1)

z-D(2)

z-D(N)

The kth shift register holds D(k) symbols, 
where k=1, 2,...,N.
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parameter. The number of shift registers in this block is the value of the Rows 
of shift registers parameter.

Finally, the Helical Interleaver block supports a special case of convolutional 
interleaving that fills an array with symbols in a helical fashion and empties 
the array row by row. To configure this interleaver, use the Number of 
columns of helical array parameter to set the width of the array, and use the 
Group size and Helical array step size parameters to determine how symbols 
are placed in the array. See the reference page for the Helical Interleaver block 
for more details and an example.

Delays of Convolutional Interleavers
After a sequence of symbols passes through a convolutional interleaver and a 
corresponding convolutional deinterleaver, the restored sequence lags behind 
the original sequence. The delay, measured in symbols, between the original 
and restored sequences is

(Number of shift registers) * (Maximum delay among all shift registers)

for the most general multiplexed interleaver. If your model incurs an 
additional delay between the interleaver output and the deinterleaver input, 
then the restored sequence lags behind the original sequence by the sum of the 
additional delay and the amount in the preceding formula.

Note  For proper synchronization, the delay in your model between the 
interleaver output and the deinterleaver input must be an integer multiple of 
the number of shift registers. You can use the Integer Delay block in the DSP 
Blockset to adjust delays manually, if necessary.

Convolutional Interleaver block. In the special case implemented by the 
Convolutional Interleaver/Convolutional Deinterleaver pair, note that the 
number of shift registers is the Rows of shift registers parameter, while the 
maximum delay among all shift registers is

(Register length step)*(Rows of shift registers-1)

Helical Interleaver block. In the special case implemented by the Helical 
Interleaver/Helical Deinterleaver pair, the delay between the restored 
sequence and the original sequence is



1 Using the Libraries

1-78

where C is the Number of columns in helical array parameter, N is the 
Group size parameter, and s is the Helical array step size parameter.

Example: Convolutional Interleavers
The example below illustrates convolutional interleaving and deinterleaving 
using a sequence of consecutive integers. It also illustrates the inherent delay 
and the effect of the interleaving blocks’ initial conditions.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Ramp, in the Simulink Sources library. Use default parameters.

• Zero-Order Hold, in the Simulink Discrete library. Use default parameters.

• Convolutional Interleaver

- Set Rows of shift registers to 3

- Set Initial conditions to [-1 -2 -3]'.

• Convolutional Deinterleaver

- Set Rows of shift registers to 3.

- Set Initial conditions to [-1 -2 -3]'.

• Two copies of To Workspace, in the Simulink Sinks library

- Set Variable name to interleaved and restored, respectively, in the two 
copies of this block.

- Set Save format to Array in each of the two copies of this block.

Connect the blocks as shown in the preceding diagram. Also, from the model 
window’s Simulation menu, choose Simulation parameters; then, in the 

CN s C 1�( )
N

---------------------
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Simulation Parameters dialog box, set Stop time to 20. Run the simulation, 
then execute the following command.

comparison = [[0:20]', interleaved, restored]

comparison =

     0     0    -1
     1    -2    -2
     2    -3    -3
     3     3    -1
     4    -2    -2
     5    -3    -3
     6     6    -1
     7     1    -2
     8    -3    -3
     9     9    -1
    10     4    -2
    11    -3    -3
    12    12     0
    13     7     1
    14     2     2
    15    15     3
    16    10     4
    17     5     5
    18    18     6
    19    13     7
    20     8     8

In this output, the first column contains the original symbol sequence. The 
second column contains the interleaved sequence, while the third column 
contains the restored sequence.

The negative numbers in the interleaved and restored sequences come from the 
interleaving blocks’ initial conditions, not from the original data. The first of 
the original symbols appears in the restored sequence only after a delay of 12 
symbols. The delay of the interleaver-deinterleaver combination is the product 
of the number of shift registers (3) and the maximum delay among all shift 
registers (4).
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Analog Modulation
In most media for communication, only a fixed range of frequencies is available 
for transmission. One way to communicate a message signal whose frequency 
spectrum does not fall within that fixed frequency range, or one that is 
otherwise unsuitable for the channel, is to alter a transmittable signal 
according to the information in your message signal. This alteration is called 
modulation, and it is the modulated signal that you transmit. The receiver 
then recovers the original signal through a process called demodulation. This 
section describes how to modulate and demodulate analog signals with the 
Communications Blockset. After giving instructions for accessing the analog 
modulation blocks, it goes on to discuss these topics:

• “Analog Modulation Features of the Blockset” on page 1-81

• “Baseband Modulated Signals Defined” on page 1-82

• “Representing Signals for Analog Modulation” on page 1-83

• “Timing Issues in Analog Modulation” on page 1-83

• “Filter Design Issues” on page 1-87

Accessing Analog Modulation Blocks
You can open the Modulation library by double-clicking its icon in the main 
Communications Blockset library (commlib), or by typing

commmod2

at the MATLAB prompt.

Then you can open the Analog Baseband and Analog Passband sublibraries by 
double-clicking their icons in the Modulation library or by typing these 
commands at the MATLAB prompt:

commanabbnd2
commanapbnd2

Analog Modulation Features of the Blockset
The following figure shows the modulation techniques that the 
Communications Blockset supports for analog signals. As the figure suggests, 
some categories of techniques include named special cases.
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For a given modulation technique, two ways to simulate modulation techniques 
are called baseband and passband. Baseband simulation, also known as the 
lowpass equivalent method, requires less computation. This blockset supports 
both baseband and passband simulation. This guide recommends and focuses 
more on baseband simulation. For a comparison of baseband simulation and 
passband simulation using example models, see “Comparing Baseband and 
Passband Simulation” on page 2-24.

The modulation and demodulation blocks also let you control such features as 
the initial phase of the modulated signal and post-demodulation filtering.

Baseband Modulated Signals Defined
A baseband representation of a modulated signal is often more convenient for 
simulation than the passband representation is, because modeling a 
high-frequency carrier signal is computationally intensive. Suppose the 
modulated signal has the waveform

where Y1 and Y2 are amplitude terms, fc is the carrier frequency, and θ is the 
carrier signal’s initial phase. A baseband simulation recognizes that this 
equals the real part of

Analog modulation methods

Frequency 
modulation (FM)

Amplitude 
modulation (AM)

Single-sideband 
suppressed-carrier 
(SSB)

Double-sideband 
suppressed-carrier 
(DSB-SC)

Phase 
modulation (PM)

Y1 t( ) 2πfct θ+( )cos Y2 t( ) 2πfct θ+( )sin�

Y1 t( ) jY2 t( )+( )ejθ[ ] e
j2πfct
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and models only the part inside the square brackets. Here j is the square root 
of -1. The complex vector y is a sampling of the complex signal

Representing Signals for Analog Modulation
Analog modulation blocks in this blockset process only sample-based scalar 
signals. The data types of inputs and outputs are depicted in the figure below.

Timing Issues in Analog Modulation
A few timing issues are important for simulating analog modulation with this 
blockset. The following sections illustrate choices of signal sample times and 
simulation step sizes.

Signal Sample Times
All analog demodulators in this blockset produce discrete-time, not 
continuous-time, output. These blocks require you to specify the output sample 
time as a mask parameter. In addition, some analog modulators require you to 
specify the sample time as a mask parameter. Modulators in this category are 
FM Modulator Baseband, FM Modulator Passband, SSB AM Modulator 
Baseband, and SSB AM Modulator Passband.

Example Using a Modulator. In the following figure, both Signal Inspection blocks 
show a sample time of 1 second in their icons. (The display Ts:[1 0] indicates 
a sample time of 1 second and a sample time offset of 0.) Setting the Sample 
time parameter in the FM Modulator Baseband block to 1 is appropriate 
because the input to this block also has a sample time of 1 second.

Y1 t( ) jY2 t( )+( )ejθ

Baseband
Modulator

real complex Baseband
Demodulator

Passband
Modulator

real Passband
Demodulator

real real 

real 
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To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Sine Wave, in the Simulink Sources library (not the Sine Wave block in the 
DSP Blockset DSP Sources library)

- Set Sample time to 1.

• FM Modulator Baseband, in the Analog Baseband sublibrary of the 
Modulation library

- Set Sample time to 1.

• Two copies of Signal Inspection, in the Simulink Signal Attributes library

- Clear all check boxes except Probe sample time.

• Two copies of Terminator, in the Simulink Signals & Systems library.

Connect the blocks as in the figure. Then select Update diagram from the 
model window’s Edit menu, which updates the display on each Signal 
Attributes block’s icon. (Running the model is not particularly instructive 
because it does not represent a complete system.)

Simulation Step Sizes
If you use passband modulation with continuous-time signals, then you need to 
set the simulation step size, based on the carrier frequency. By the Nyquist 
theorem, the simulation sampling rate must be at least twice as large as the 
modulation carrier frequency. Equivalently, the simulation step size must be 
no larger than half the modulation carrier period.

When you begin a new model, Simulink automatically determines the default 
step size. To change the step size from the default to a different value, use this 
procedure:
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1 Select Simulation parameters from the model window’s Simulation menu.

2 Select the Solver panel.

3 Set the Max step size and Initial step size parameters to numerical values 
(that is, not auto) that are appropriate for your model.

In some situations, Simulink automatically corrects a faulty simulation step 
size. For example, if a signal in your model has a sample time of .1 second and 
you set the model’s Max step size parameter to 1, then running the model 
produces this response in the command window.

Warning: Maximum step size (1) is larger than the fastest discrete 
sampling period (0.1) time. Setting maximum step size to 0.1.

Example Using Step Size Relative to Carrier Period. The model below illustrates why 
the simulation step size in a passband simulation must be appropriate for a 
given carrier frequency. The first Scope image shows the correct result of 
modulating a constant signal using double-sideband suppressed-carrier 
amplitude modulation, while the second Scope image shows incorrect results. 
The incorrect results occur because the simulation step size is too large relative 
to the modulation carrier frequency.

In this case, the DSBSC AM Modulator Passband block uses a Carrier 
frequency parameter of 100. That is, the carrier’s period is .01 second and an 
appropriate simulation step size is no larger than .005. Therefore, a simulation 
step size of .01 second is too large to satisfy the Nyquist criterion. However, a 
simulation step size of .001 second is sufficiently small.
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To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather these blocks with their default parameters:

• Constant, in the Simulink Sources library

• DSBSC AM Modulator Passband, in the Analog Passband sublibrary of the 
Modulation library

• Scope, in the Simulink Sinks library

Incorrect results;
simulation step size

simulation step size of 

of .01 is too large

Carrier frequency = 100 Hz

 .001 is small compared
to carrier period

Correct results;
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Connect the blocks as in the figure. Also, from the model window’s Simulation 
menu, choose Simulation parameters; then in the Simulation Parameters 
dialog box, set Stop time to 1.

To generate the correct results as in the first Scope image in the figure, return 
to the Simulation Parameters dialog box and set both the Max step size and 
Initial step size parameters to .001. Then run the model and use the Scope 
window’s zooming tools to study the sinusoidal output curve. You can also 
generate incorrect results, as in the second Scope image in the figure, by 
changing the Max step size and Initial step size parameters to .01 and 
running the model again.

Filter Design Issues
After demodulating, you might want to filter out the carrier signal, especially 
if you are using passband simulation. The Signal Processing Toolbox provides 
functions that can help you design your filter, such as butter, cheby1, cheby2, 
and ellip. Different demodulation methods have different properties, and you 
might need to test your application with several filters before deciding which is 
most suitable. This section mentions two issues that relate to the use of filters: 
cutoff frequency and time lag.

Example: Varying the Filter’s Cutoff Frequency
In many situations, a suitable cutoff frequency is half the carrier frequency. 
Since the carrier frequency must be higher than the bandwidth of the message 
signal, a cutoff frequency chosen in this way limits the bandwidth of the 
message signal. If the cutoff frequency is too high, the carrier frequency may 
not be filtered out. If the cutoff frequency is too low, it might narrow the 
bandwidth of the message signal. 

The following example modulates a sawtooth message signal, demodulates the 
resulting signal using a Butterworth filter, and plots the original and recovered 
signals. The Butterworth filter is implemented within the SSB AM 
Demodulator Passband block.
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Before building the model, first execute this command at the MATLAB prompt:

[num,den] = butter(2,25*.01);

Here, 2 is the order of the Butterworth filter, 25 is the carrier signal frequency, 
and .01 is the sample time of the signal in Simulink. The variables num and den 
represent the numerator and denominator, respectively, of the filter’s transfer 
function. These variables reside in the MATLAB workspace, where Simulink 
can access them during the simulation. The butter function is in the Signal 
Processing Toolbox.

Now to open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Signal Generator, in the Simulink Sources library

- Set Wave form to Sawtooth.

- Set Amplitude to 4.

- Set Frequency to .3.

• Zero-Order Hold, in the Simulink Discrete library

- Set Sample time to .01.

• SSB AM Modulator Passband, in the Analog Passband sublibrary of the 
Modulation library

- Set Carrier frequency to 25.

- Set Time delay for Hilbert transform filter to .1.

- Set Sample time to .01.

• SSB AM Demodulator Passband, in the Analog Passband sublibrary of the 
Modulation library

- Set Carrier frequency to 25.

- Set Lowpass filter numerator to num.

- Set Lowpass filter denominator to den.
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- Set Sample time to .01.

• Scope, in the Simulink Sinks library

- After double-clicking on the block to open it, click the Parameters icon and 
set Number of axes to 2.

Connect the blocks as in the figure. Also, from the model window’s Simulation 
menu, choose Simulation parameters; then in the Simulation Parameters 
dialog box, set Stop time to 10. Running the model produces the following 
scope image. The image reflects the original and recovered signals, with a 
moderate filter cutoff.

Other Filter Cutoffs. To see the effect of a lowpass filter with a higher cutoff 
frequency, type

[num,den] = butter(2,25*.01*3.9);

at the MATLAB prompt and then run the simulation again. The new result is 
the left image in the following figure. The higher cutoff frequency allows the 
carrier signal to interfere with the demodulated signal.

To see the effect of a lowpass filter with a lower cutoff frequency, type

[num,den] = butter(2,25*.01/4);
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at the MATLAB prompt and then run the simulation again. The new result is 
the right image in the figure below. The lower cutoff frequency narrows the 
bandwidth of the demodulated signal.

Example: Time Lag from Filtering
There is invariably a delay between a demodulated signal and the original 
received signal. Both the filter order and the filter parameters directly affect 
the length of this delay. The following example illustrates the delay by plotting 
a signal before modulation and after demodulation. The curve with amplitude 
1 is the original sine wave and the other curve is the recovered signal.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:
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• Sine Wave, in the DSP Blockset DSP Sources library (not the Sine Wave 
block in the Simulink Sources library)

- Set Frequency to 1

• PM Modulator Baseband, in the Analog Baseband sublibrary of the 
Modulation library. Use default parameters.

• PM Demodulator Baseband, in the Analog Baseband sublibrary of the 
Modulation library. Use default parameters.

• Mux, in the Simulink Signals & Systems library

• Scope, in the Simulink Sinks library

Connect the blocks as in the figure. Also, from the model window’s Simulation 
menu, choose Simulation parameters; then in the Simulation Parameters 
dialog box, set Stop time to 5. Running the model produces the following scope 
image.
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Digital Modulation
Like analog modulation, digital modulation alters a transmittable signal 
according to the information in a message signal. However, in this case, the 
message signal is a discrete-time signal that can assume finitely many values. 
This section describes how to modulate and demodulate digital signals with the 
Communications Blockset. After giving instructions for accessing the digital 
modulation blocks, it goes on to discuss these topics:

• “Digital Modulation Features of the Blockset” on page 1-93

• “Representing Signals for Digital Modulation” on page 1-96

• “Delays in Digital Modulation” on page 1-97

• “Upsampled Signals and Rate Changes” on page 1-101

• “Examples of Digital Modulation” on page 1-104

For background material on the subject of digital modulation, see the works 
listed in “Selected Bibliography for Digital Modulation” on page 1-112.

Accessing Digital Modulation Blocks
You can open the Modulation library by double-clicking on icon in the main 
Communications Blockset library (commlib), or by typing

commmod2

at the MATLAB prompt.

Then you can open the Digital Baseband and Digital Passband sublibraries by 
double-clicking on their icons in the Modulation library, or by typing these 
commands at the MATLAB prompt.

commdigbbnd2
commdigpbnd2
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The Digital Baseband and Digital Passband libraries have sublibraries of their 
own. You can open each of these sublibraries by double-clicking on the icon 
listed in the table below, or by typing its name at the MATLAB prompt.

Digital Modulation Features of the Blockset
The figure below shows the modulation techniques that the Communications 
Blockset supports for digital data. All of the methods at the far right are 
implemented in both passband and baseband blocks. For a comparison of 
baseband simulation and passband simulation, see “Comparing Baseband and 
Passband Simulation” on page 2-24.

Table 1-1:  Sublibraries of Digital Baseband and Digital Passband

Kind of Modulation Icon in Digital 
Baseband or Digital 
Passband Library

Name of Sublibrary 
Model

Amplitude modulation AM commdigbbndam2, 
commdigpbndam2

Phase modulation PM commdigbbndpm2, 
commdigpbndpm2

Frequency modulation FM commdigbbndfm2, 
commdigpbndfm2

Continuous phase 
modulation

CPM commdigbbndcpm2, 
commdigpbndcpm2
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General and Specific Modulation Methods
Some digital modulation sublibraries contain blocks that implement special 
cases of a more general technique and are, in fact, special cases of a more 
general block. These special-case blocks use the same computational code that 
their general counterparts use, but provide an interface that is either simpler 
or more suitable for the special case. The table below lists special-case 
modulators, their general counterparts, and the conditions under which the 
two are equivalent. The situation is analogous for demodulators.

Table 1-2:  General and Specific Blocks

General Modulator Specific Modulator Specific Conditions

General QAM 
Modulator Baseband, 
General QAM 
Modulator Passband

Rectangular QAM 
Modulator Baseband, 
Rectangular QAM 
Modulator Passband

Predefined constellation 
containing 2K points on a 
rectangular lattice

Modulation 
methods for 
digital data

Amplitude 
modulation

Phase 
modulation

Frequency 
modulation

Continuous 
phase 
modulation

Pulse amplitude modulation (PAM)

Quadrature amplitude modulation (QAM

Phase shift keying (PSK)

Differential phase shift keying (DPSK)

Gaussian minimum shift keying (GMSK)

Minimum shift keying (MSK)

Frequency shift keying (FSK)

Offset phase shift keying

Continuous phase
frequency shift keying (CPFSK)
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Furthermore, the CPFSK Modulator Baseband and CPFSK Modulator 
Passband blocks are similar to the M-FSK Modulator Baseband and M-FSK 
Modulator Passband blocks, respectively, when the M-FSK blocks use 
continuous phase transitions. However, the M-FSK features of this blockset 
differ from the CPFSK features in their mask interfaces and in the 
demodulator implementations.

M-PSK Modulator 
Baseband

BPSK Modulator 
Baseband

M-ary number 
parameter is 2.

QPSK Modulator 
Baseband

M-ary number 
parameter is 4.

M-DPSK Modulator 
Baseband

DBPSK Modulator 
Baseband

M-ary number 
parameter is 2.

DQPSK Modulator 
Baseband

M-ary number 
parameter is 4.

CPM Modulator 
Baseband, CPM 
Modulator Passband

GMSK Modulator 
Baseband, GMSK 
Modulator Passband

M-ary number 
parameter is 2, 
Frequency pulse shape 
parameter is Gaussian.

MSK Modulator 
Baseband, MSK 
Modulator Passband

M-ary number 
parameter is 2, 
Frequency pulse shape 
parameter is 
Rectangular, Pulse 
length parameter is 1.

CPFSK Modulator 
Baseband, CPFSK 
Modulator Passband

Frequency pulse shape 
parameter is 
Rectangular, Pulse 
length parameter is 1.

Table 1-2:  General and Specific Blocks

General Modulator Specific Modulator Specific Conditions
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Representing Signals for Digital Modulation
All digital modulation blocks process only discrete-time signals. The data types 
of inputs and outputs are depicted in the figure below.

Note  If you are simulating baseband modulation and want to separate the 
in-phase and quadrature components of the complex modulated signal, then 
use the Complex to Real-Imag block in the Simulink Math Operations library.

Binary-Valued and Integer-Valued Signals
Some digital modulation blocks can accept either integers or binary 
representations of such integers. The corresponding demodulation blocks can 
output either integers or their binary representations. This section describes 
how modulation blocks process binary inputs; the case for demodulation blocks 
is the reverse.

If a modulator block’s Input type parameter is set to Bit, then the block 
accepts binary representations of integers between 0 and M-1. It modulates 
each group of K bits, called a binary word. Also, these rules apply to the binary 
input mode:

• For baseband modulation, the input vector length must be an integer 
multiple of K. If the input is frame-based, then it must be a column vector.

• For passband modulation, the input must have length K and must be 
sample-based.

In binary input mode, the Constellation ordering (or Symbol set ordering, 
depending on the type of modulation) parameter indicates how the block maps 

Baseband
Modulator

real complex Baseband
Demodulator

Passband
Modulator

real Passband
Demodulator

real real 

real 
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a group of K input bits to a corresponding integer. If this parameter is set to 
Binary, then the block maps [u(1) u(2) ... u(K)] to the integer

and subsequently behaves as if this integer were the input value. Notice that 
u(1) is the most significant bit.

For example, if M = 8, Constellation ordering (or Symbol set ordering) is set 
to Binary, and the binary input word is [1 1 0], then the block internally 
converts [1 1 0] to the integer 6. The block produces the same output as in the 
case when the input is 6 and the Input type parameter is Integer.

If Constellation ordering (or Symbol set ordering) is set to Gray, then the 
block uses a Gray-coded arrangement. The explicit mapping is described in the 
algorithm section on the reference page for the M-PSK Modulator Baseband 
block.

Delays in Digital Modulation
Digital modulation and demodulation blocks sometimes incur delays between 
their inputs and outputs, depending on their configuration and on properties of 
their signals. The following table lists sources of delay and the situations in 
which they occur.

Note  The situations in the table are not mutually exclusive. If more than one 
situation applies to a given block or model, then the separate delays are 
additive. For example, if a passband demodulator in the AM sublibrary 
processes a sample-based signal and has a Samples per symbol parameter of 
8, then the block’s total delay is two output periods. As another example, if a 
passband OQPSK modulator-demodulator pair has a Baseband samples per 
symbol parameter of 7, then the two blocks together have a total delay of 
three output periods from the demodulator.

u i( )2K i�

i 1=

K

∑
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Table 1-3:  Delays Resulting from Digital Modulation or Demodulation

Modulation or 
Demodulation Type

Situation in Which 
Delay Occurs

Amount of Delay

All demodulators in 
AM, PM, and FM 
sublibraries except 
OQPSK

Sample-based input, 
and Samples per 
symbol or Baseband 
samples per symbol 
parameter is greater 
than 1

One output period

All demodulators in 
CPM sublibrary

Sample-based input, 
D = Traceback length 
parameter

D+1 output periods

Frame-based input, 
D = Traceback length 
parameter

D output periods

All passband 
demodulators except 
OQPSK

Always One output period

OQPSK modulator- 
demodulator baseband 
pair

Frame-based input One output period 

Sample-based input, 
Samples per symbol 
parameter is greater 
than 1

Two output periods

Sample-based input, 
Samples per symbol 
parameter is equal to 1, 
and the model uses a 
fixed-step solver with 
Mode parameter set to 
Auto or MultiTasking

Two output periods
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As a result of delays, data that enters a modulation or demodulation block at 
time T appears in the output at time T+delay. In particular, if your simulation 
computes error statistics or compares transmitted with received data, then it 
must take the delay into account when performing such computations or 
comparisons.

First Output Sample in DPSK Demodulation. In addition to the delays mentioned 
above, the DPSK, DQPSK, and DBPSK demodulators produce output whose 
first sample is unrelated to the input. This is related to the differential 
modulation technique, not the particular implementation of it.

Example: Delays from Demodulation
Demodulation in the model below causes the demodulated signal to lag, 
compared to the unmodulated signal. This delay is typical for sample-based 
data that the modulator upsamples. When computing error statistics, the 
model accounts for the delay by setting the Error Rate Calculation block’s 

OQPSK modulator- 
demodulator baseband 
pair

Sample-based input, 
Samples per symbol 
parameter is equal to 1, 
and the model uses a 
variable-step solver or 
the Mode parameter is 
not set to Auto or 
MultiTasking

One output period

OQPSK modulator- 
demodulator passband 
pair

Sample-based input, 
and Baseband samples 
per symbol parameter 
is equal to 1

One output period

Sample-based input, 
and Baseband samples 
per symbol parameter 
is greater than 1

Two output periods

Table 1-3:  Delays Resulting from Digital Modulation or Demodulation

Modulation or 
Demodulation Type

Situation in Which 
Delay Occurs

Amount of Delay
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Receive delay parameter to 1. If the Receive delay parameter had a different 
value, then the error rate showing at the top of the Display block would be close 
to 1/2.

Note  If this model used the OQPSK method instead of DBPSK, then the 
proper Receive delay parameter would be 2 instead of 1.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Random Integer Generator, in the Data Sources sublibrary of the Comm 
Sources library

- Set M-ary number to 2.

- Set Initial seed to any positive integer scalar, preferably the output of the 
randseed function.

• DBPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband 
sublibrary of Modulation

- Set Samples per symbol to 8.

• AWGN Channel, in the Channels library

- Set Es/No to 4.

• DBPSK Demodulator Baseband, in the PM sublibrary of the Digital 
Baseband sublibrary of Modulation

- Set Samples per symbol to 8.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to 1.

- Set Computation delay to 1.

- Set Output data to Port
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• Display, in the Simulink Sinks library.

- Drag the bottom edge of the icon to make the display big enough for three 
entries.

Connect the blocks as shown above. Also, from the model window’s Simulation 
menu, choose Simulation parameters; then in the Simulation Parameters 
dialog box, set Stop time to 100. Then run the model and observe the error rate 
at the top of the Display block’s icon. Your error rate will vary depending on 
your Initial seed value in the Random Integer Generator block.

Upsampled Signals and Rate Changes
Digital baseband modulation blocks can output an upsampled version of the 
modulated signal, while digital baseband demodulation blocks can accept an 
upsampled version of the modulated signal as input. Each block’s Samples per 
symbol parameter, S, is the upsampling factor in both cases. It must be a 
positive integer. Depending on whether the signal is frame-based or 
sample-based, the block either changes the signal’s vector size or its sample 
time, as the table below indicates. Only the OQPSK blocks deviate from the 
information in the table, in that S is replaced by 2S in the scaling factors.

Table 1-4:  Processing of Upsampled Modulated Data (Except OQPSK Method)

Computation 
Type

Input Frame 
Status

Result

Modulation Frame-based Output vector length is S times the number of integers or 
binary words in the input vector. Output sample time equals 
the input sample time.

Modulation Sample-based Output vector is a scalar. Output sample time is 1/S times the 
input sample time.
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Digital passband blocks can also process upsampled data, but only as an 
intermediate internal format. For more information about this, see the 
description of the Baseband samples per symbol parameter on the reference 
page for any digital passband modulation block. Also note that passband blocks 
process only sample-based data, not frame-based data.

Illustrations of Size or Rate Changes
The following schematics illustrate how a baseband modulator (other than 
OQPSK) upsamples a triplet of frame-based and sample-based integers. In 
both cases, the Samples per symbol parameter is 2.

Demodulation Frame-based Number of integers or binary words in the output vector is 1/S 
times the number of samples in the input vector. Output 
sample time equals the input sample time.

Demodulation Sample-based Output signal contains one integer or one binary word. 
Output sample time is S times the input sample time.

Furthermore, if S > 1 and the demodulator is from the AM, 
PM, or FM sublibrary, then the demodulated signal is delayed 
by one output sample period. There is no delay if S = 1 or if 
the demodulator is from the CPM sublibrary.

Table 1-4:  Processing of Upsampled Modulated Data (Except OQPSK Method) (Continued)

Computation 
Type

Input Frame 
Status

Result
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The following schematics illustrate how a demodulator (other than OQPSK or 
one from the CPM sublibrary) processes three doubly-sampled symbols using 
both frame-based and sample-based inputs. In both cases, the Samples per 
symbol parameter is 2. Notice that the sample-based schematic includes an 
output delay of one sample period.
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Examples of Digital Modulation
This section builds a few simple example models to illustrate the modulation 
methods and how the Communications Blockset allows you to implement them. 
The examples are:

• “DQPSK Signal Constellation Points and Transitions” on page 1-104

• “Rectangular QAM Modulation and Scatter Diagram” on page 1-105

• “Phase Tree for Continuous Phase Modulation” on page 1-107

• “Passband Digital Modulation” on page 1-109

DQPSK Signal Constellation Points and Transitions
The model below plots the output of the DQPSK Modulator Baseband block. 
The image shows the possible transitions from each symbol in the DQPSK 
signal constellation to the next symbol.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Random Integer Generator, in the Data Sources sublibrary of the Comm 
Sources library

- Set M-ary number to 4.

- Set Initial seed to any positive integer scalar, preferably the output of the 
randseed function.

- Set Sample time to .01.

• DQPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband 
sublibrary of Modulation

• Complex to Real-Imag, in the Simulink Math Operations library

• XY Graph, in the Simulink Sinks library
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Use the blocks’ default parameters unless otherwise instructed. Connect the 
blocks as in the figure. Running the model produces the following plot. The plot 
reflects the transitions among the eight DQPSK constellation points.

This plot illustrates π/4-DQPSK modulation, because the default Phase offset 
parameter in the DQPSK Modulator Baseband block is pi/4. To see how the 
phase offset influences the signal constellation, change the Phase offset 
parameter in the DQPSK Modulator Baseband block to pi/8 or another value. 
Run the model again and observe how the plot changes.

Rectangular QAM Modulation and Scatter Diagram
The model below uses the M-QAM Modulator Baseband block to modulate 
random data. After passing the symbols through a noisy channel, the model 
produces a scatter diagram of the noisy data. The diagram suggests what the 
underlying signal constellation looks like and shows that the noise distorts the 
modulated signal from the constellation.
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To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Random Integer Generator, in the Data Sources sublibrary of the Comm 
Sources library

- Set M-ary number to 16

- Set Initial seed to any positive integer scalar, preferably the output of the 
randseed function

- Set Sample time to .1

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital 
Baseband sublibrary of Modulation

- Set Normalization method to Peak Power

• AWGN Channel, in the Channels library

- Set Es/No to 20

- Set Symbol period to .1

• Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- Select Show Plotting Properties

- Set Points displayed to 160

- Set New points per display to 80

- Select Show Figure Properties

- Set Scope position to figposition([2.5 55 35 35]);

- Set Figure name to QAM Scatter Plot

Connect the blocks as in the figure. Also, from the model window’s Simulation 
menu, choose Simulation parameters; then, in the Simulation Parameters 
dialog box, set Stop time to 250. Running the model produces a scatter diagram 
like the following one. Your plot might look somewhat different, depending on 
your Initial seed value in the Random Integer Generator block. Because the 
modulation technique is 16-QAM, the plot shows 16 clusters of points. If there 
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were no noise, the plot would show the 16 exact constellation points instead of 
clusters around the constellation points.

Phase Tree for Continuous Phase Modulation
This example plots a phase tree associated with a continuous phase modulation 
scheme. A phase tree is a diagram that superimposes many curves, each of 
which plots the phase of a modulated signal over time. The distinct curves 
result from different inputs to the modulator.

This example uses the CPM Modulator Baseband block for its numerical 
computations. The block is configured so that it uses a raised cosine filter pulse 
shape. The example also illustrates how you can use Simulink and MATLAB 
together. The example uses MATLAB commands to run a series of simulations 
with different input signals, to collect the simulation results, and to plot the 
full data set.
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The first step of this example is to build the model. To open the completed 
model, click here in the MATLAB Help browser. To build the model, gather and 
configure these blocks:

• DSP Constant, in the DSP Sources library

- Set Constant value to s (which will be in the MATLAB workspace)

- Set Output to Frame-based

- Set Frame period to 1

• CPM Modulator Baseband

- Set M-ary number to 2.

- Set Modulation index to 2/3.

- Set Frequency pulse shape to Raised Cosine.

- Set Pulse length to 2.

• To Workspace, in the Simulink Sinks library

- Set Variable name to x.

- Set Save format to Array.

Do not run the model, because the variable s is not yet defined in the MATLAB 
workspace. Instead, save the model to a directory on your MATLAB path, using 
the filename doc_phasetree.

The second step of this example is to execute these commands in MATLAB.

% Parameters from the CPM Modulator Baseband block
M_ary_number = 2;
modulation_index = 2/3;
pulse_length = 2;
samples_per_symbol = 8;
opts = simset('SrcWorkspace','Current',...
   'DstWorkspace','Current');

L = 5;  % Symbols to display
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pmat = [];
for ip_sig = 0:(M_ary_number^L)-1
    s = de2bi(ip_sig,L,M_ary_number,'left-msb');
    % Apply the mapping of the input symbol to the CPM
    % symbol 0 -> -(M-1), 1 -> -(M-2), etc.
    s = 2*s'+1-M_ary_number;
    sim('doc_phasetree', .9, opts); % Run model to generate x.
    pmat(:,ip_sig+1) = unwrap(angle(x(:))); % Next column of pmat
end;
pmat = pmat/(pi*modulation_index);
t = (0:L*samples_per_symbol-1)'/samples_per_symbol;
plot(t,pmat); figure(gcf); % Plot phase tree.

The resulting plot follows. Each curve represents a different instance of 
simulating the CPM Modulator Baseband block with a distinct (constant) input 
signal.

Passband Digital Modulation
The example below uses passband phase shift keying modulation and displays 
the spectrum of the modulated signal. The M-PSK Modulator Passband block’s 
parameters satisfy necessary requirements for passband simulation because



1 Using the Libraries

1-110

• The input signal’s sampling rate of 10 is less than the carrier frequency of 
100.

• The modulated signal’s sampling rate of 3000 exceeds the sum of twice the 
carrier frequency and twice the input sampling rate.

These requirements are mentioned on the reference page for the M-PSK 
Modulator Passband block.

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Data Sources sublibrary of the Comm 
Sources library.

- Set Probability of a zero to [.5, .5].

- Set Initial seed to any row vector containing 2 positive integers, 
preferably the output of the randseed function.

- Set Sample time to .1.

• M-PSK Modulator Passband, in the PM sublibrary of the Digital Passband 
sublibrary of Modulation

- Set M-ary number to 4.

- Set Input type to Bit.

- Set Symbol period to .1.

- Set Carrier frequency to 1000.

- Set Carrier initial phase to pi/4.

- Set Output sample time to 1/3000.

• Buffer, in the DSP Blockset Buffers sublibrary of the Signal Management 
library

- Set Output buffer size to 1024.

• Magnitude FFT, in the DSP Blockset Power Spectrum Estimation sublibrary 
of the Estimation library



Digital Modulation

1-111

- Check the Inherit FFT length from input dimensions check box.

• Mean, in the DSP Blockset Statistics library

- Check the Running mean check box.

- Set Reset port to None.

• Vector Scope, in the DSP Blockset DSP Sinks library

- Set Input domain to Frequency.

- Check the Axis properties check box.

- Set Frequency range to [-Fs/2...Fs/2].

- Set Maximum Y-limit to 100.

Connect the blocks as in the preceding figure. Also, from the model window’s 
Simulation menu, choose Simulation parameters; then in the Simulation 
Parameters dialog box, set Stop time to 10. Running the model produces the 
following spectral plot.

You might want to vary the modulation technique to see how this plot would 
change. For example, you can try replacing the M-PSK Modulator Passband 
block with the M-DPSK Modulator Passband or OQPSK Modulator Passband 
block.
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1. Using the Libraries

Channels
Communication channels introduce noise, fading, interference, and other 
distortions into the signals that they transmit. Simulating a communication 
system involves modeling a channel based on mathematical descriptions of the 
channel. Different transmission media have different properties and are 
modeled differently. In a simulation, the channel model usually fits directly 
between the transmitter and receiver, as shown below.

Channel Features of the Blockset
This blockset provides several channel models for binary, real, and complex 
signals. You can open the Channels library by double-clicking its icon in the 
main Communications Blockset library (commlib), or by typing

commchan2

at the MATLAB prompt.

This section describes the capabilities of the Channels library’s blocks, by 
considering these channels:

• Additive white Gaussian noise (AWGN) channel

• Rayleigh and Rician fading channels that model real-world mobile 
communication effects

• Binary symmetric channel (BSC)

AWGN Channel
An AWGN channel adds white Gaussian noise to the signal that passes 
through it. Gaussian noise is discussed on the reference page for the Gaussian 
Noise Generator block. The AWGN Channel block can process either 
sample-based or frame-based data, and it lets you specify the variance of the 
noise in one of four ways:

• Directly as a mask parameter

• Directly as an input signal

Channel ReceiverTransmitter
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• Indirectly via a signal-to-noise ratio parameter

• Indirectly via an Es/No parameter

Fading Channels
The Channels library includes Rayleigh and Rician fading blocks that can 
simulate real-world phenomena in mobile communications. These phenomena 
include multipath scattering effects in the Rayleigh case, as well as Doppler 
shifts that arise from relative motion between the transmitter and receiver. 
This section discusses

• How to categorize the possible paths along which a signal can travel from the 
transmitter to the receiver in the situation that you want to model

• How to choose and configure a fading channel block based on the 
categorization

• An example that uses fading channels

Categorizing Signal Paths
The following figure depicts the two types of paths between a moving 
transmitter and a stationary receiver. The solid line is a direct-line-of-sight 
path, which might or might not exist in your situation. Each dotted line is a 
reflected path that the signal travels when it is reflected from one of the shaded 
shapes. The shaded shapes represent obstacles such as buildings or trees.

The situation in the figure is just an example. In general, you should analyze 
your system by considering these questions:

• Are there any reflected paths along which a signal can travel from 
transmitter to receiver? If so, how many?

Transmitter

Receiver

Direct Path

Reflected Path 1
Re

fle
cte

d P
ath

 2
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• Is there a direct path from transmitter to receiver?

• What is the relative motion between the transmitter and receiver?

The first two questions will help you choose which fading channel blocks to use 
in your simulation, while the third question will help you choose appropriate 
parameters for the blocks.

Choosing and Configuring a Fading Channel Block
Once you categorize the types of signal paths in the situation you want to 
model, use the table below to determine the appropriate block (or blocks) for 
your simulation.

If a signal can use more than one reflected path, then a single instance of the 
Multipath Rayleigh Fading Channel block can model all of them 
simultaneously. The number of paths that the block uses is the length of either 
the Delay vector or the Gain vector parameter, whichever length is larger. (If 
both of these parameters are vectors, then they must have the same length; if 
exactly one of these parameters is a scalar, then the block expands it into a 
vector whose size matches that of the other vector parameter.)

The relative motion between the transmitter and receiver influences the values 
of the blocks’ parameters. For more details, see their reference pages, as well 
as the works listed in “Selected Bibliography for Channels” on page 1-118 if 
necessary.

Example: Using Fading Channels
The reference page for the Multipath Rayleigh Fading Channel block includes 
an example that illustrates the channel’s effect on a constant signal.

Another example is the following model, which uses both the Multipath 
Rayleigh Fading Channel and the Rician Fading Channel blocks in parallel. 

Table 1-1:  Choosing a Fading Channel Block Based on Signal Paths

Signal Paths Channel Block

Direct line-of-sight path from transmitter to 
receiver

Rician Fading Channel

One or more reflected paths from 
transmitter to receiver

Multipath Rayleigh Fading 
Channel
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This combination of blocks simulates a mobile communication link in which the 
transmitted signal can travel to the receiver along a direct path as well as along 
three indirect paths. (The number of indirect paths is three because the 
Multipath Rayleigh Fading Channel block’s Gain vector parameter is a vector 
of length three. Although the Delay vector parameter is a scalar, its value is 
applied to each of the three paths.)

To open the completed model, click here in the MATLAB Help browser. To 
build the model, gather and configure these blocks:

• DSP Constant, in the DSP Blockset DSP Sources library

- Set Constant value to j*ones(10000,1).

- Set Output to Frame-based.

- Set Frame period to .01.

• Rician Fading Channel, with default parameter values

• Multipath Rayleigh Fading Channel

- Set Delay vector to [0 2e-6 3e-6].

- Set Gain vector to [0 -3 1].

• Sum, in the Simulink Math library

• To Workspace, in the Simulink directory

- Set Save format to Array.

Connect the blocks as shown above. Also, from the model window’s Simulation 
menu, choose Simulation parameters; then, in the Simulation Parameters 
dialog box, set Stop time to 0.6.
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Note  To reduce execution time by logging less data to the workspace, set the 
Decimation parameter in the To Workspace block to 100. Then the variable 
simout will contain fewer entries, but its graph will look similar.

Run the model. After the simulation stops, plot the faded signal’s power (versus 
sample number) by executing this command at the MATLAB prompt.

simout = simout.'; plot(20*log10(abs(simout(:))))

The resulting plot is shown in the figure below.

Binary Symmetric Channel
Binary error channels process binary signals by adding noise modulo 2. This 
library contains the Binary Symmetric Channel block, which either preserves 
or perturbs each vector element independently. It requires a probability that 
applies independently to each noise element.



1 Using the Libraries

1-118

Selected Bibliography for Channels
[1] Fechtel, Stefan A, “A Novel Approach to Modeling and Efficient Simulation 
of Frequency-Selective Fading Radio Channels,” IEEE Journal on Selected 
Areas in Communications, vol. 11, pp. 422-431, April 1993. 

[2] Jakes, William C., ed., Microwave Mobile Communications, New York, 
IEEE Press, 1974.

[3] Lee, William C. Y. , Mobile Communications Design Fundamentals, 2nd ed., 
New York, Wiley, 1993.

[4] Proakis, John G., Digital Communications, 3rd ed., New York, 
McGraw-Hill, 1995.



RF Impairments

1-119

RF Impairments
The RF Impairments library contains blocks that model impairments to a 
baseband signal caused by the radio frequency (RF) components in the 
receiver. This section describes the blocks in the library, covering the following 
topics:

• Types of RF Impairments the Blocks Model

• Scatter Plot Examples

• Example Using the RF Impairments Library Blocks

Types of RF Impairments the Blocks Model
The blocks in the RF Impairments library can simulate the following types of 
signal impairments:

• Nonlinearity and I/Q imbalances

• Phase/frequency offsets and phase noise

• Receiver thermal noise and free space path loss

Nonlinearity and I/Q Imbalance
The following two blocks model signal impairments due to nonlinear devices or 
imbalances between the in-phase and quadrature components of a modulated 
signal:

• The Memoryless Nonlinearity block models the AM-to-AM and AM-to-PM 
distortion in nonlinear amplifiers. 

• The I/Q Imbalance block models imbalances between the in-phase and 
quadrature components of a signal caused by differences in the physical 
channels carrying the separate components.

These blocks distort both the phase and amplitude of the signal.

Phase/Frequency Offsets and Phase Noise
The RF Impairments library contains two blocks that simulate 
phase/frequency offsets and phase noise:

• The Phase/Frequency Offset block applies phase and frequency offsets to a 
signal. 
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• The Phase Noise block models applies phase noise to a signal.

The Phase/Frequency Offset block and the Phase Noise block alter only the 
phase and frequency of the signal.

Receiver Thermal Noise and Free Space Path Loss
The RF Impairments Library contains two blocks that simulate signal 
impairments due to thermal noise and signal attenuation due to the distance 
from the transmitter to the receiver: 

• The Receiver Thermal Noise block simulates the effects of thermal noise on 
a complex baseband signal. 

• The Free Space Path Loss block simulates the loss of signal power due to the 
distance from the transmitter and signal frequency. 

Scatter Plot Examples
This section presents scatter plots that illustrate how the blocks in the RF 
Impairments library distort a signal modulated by 16-ary quadrature 
amplitude modulation (QAM). The usual 16-ary QAM constellation without 
distortion is shown in the following figure:
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Constellation for 16-QAM

The scatter plots illustrate the effects of the following four blocks:

• Memoryless Nonlinearity Block

• I/Q Imbalance Block

• Phase/Frequency Offset Block

• Phase Noise Block

As the scatter plots show, the first two blocks distort both the magnitude and 
angle of points in the constellation, while the last two alter just the angle.

You can create these scatter plots with models similar to the following, which 
produces the scatter plot for the Memoryless Nonlinearity block:
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16-ary QAM Model

The model uses the Rectangular QAM Modulator Baseband block, from AM in 
the Digital Baseband Modulation sublibrary of the Modulation library. You can 
control the power of the block’s output signal by the Normalization method 
parameter. 

Memoryless Nonlinearity Block
The Memoryless Nonlinearity block applies a nonlinear distortion to the input 
signal. This distortion models the AM-to-AM and AM-to-PM conversions in 
nonlinear amplifiers. The block provides five methods, which you specify by the 
Method parameter, for modeling the nonlinear characteristics of amplifiers:

• Cubic polynomial

• Hyperbolic tangent

• Saleh model

• Ghorbani model

• Rapp model

In the model shown in the preceding figure, the Method parameter is set to 
Ghorbani model. The following figure shows the scatter plot the model 
generates.
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For another example of a scatter plot produced using this block, see the 
reference page for the Memoryless Nonlinearity block.
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I/Q Imbalance Block
You can generate the next scatter plot by replacing the Memoryless 
Nonlinearity block in the 16-ary QAM Model with the I/Q Imbalance block. Set 
the block’s I/Q amplitude imbalance (db) parameter to 10 and the I/Q phase 
imbalance (deg) parameter to 30.

For more examples of scatter plots produced using this block, see the reference 
page for the I/Q Imbalance block.
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Phase/Frequency Offset Block
You can generate the next scatter plot by replacing the Memoryless 
Nonlinearity block in the 16-ary QAM Model with the Phase/Frequency Offset 
block. Set the block’s Frequency offset (Hz) parameter to 0 and the Phase 
offset (deg) parameter to 70.

The Frequency offset (Hz) parameter adds a constant to the phase of the 
signal. The scatter plot corresponds to the standard constellation rotated by a 
fixed angle of 70 degrees. 

The Frequency offset (Hz) parameter determines the rate of change of the 
signal’s phase. In this example, Frequency offset (Hz) is set to 0, so the scatter 
plot always falls on the grid shown in the preceding figure. If you set 
Frequency offset (Hz) to a positive number, the points on the scatter plot fall 
on a rotating grid, corresponding to the standard constellation, which revolves 
at a constant rate in the counterclockwise direction. For an example, see the 
reference page for the Phase/Frequency Offset block.
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Phase Noise Block
You can generate the next scatter plot by replacing the Memoryless 
Nonlinearity block in the 16-ary QAM Model with the Phase Noise block. Set 
the Phase noise level (dBc/Hz) parameter to -60 and the Frequency offset 
(Hz) parameter to 100.

The phase noise adds a random error to the signal’s phase, so that the points 
in the scatter plot are spread in a radial pattern around the constellation 
points.
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Example Using the RF Impairments Library Blocks
The model shown in the following figure simulates RF impairments to a signal 
modulated by differential quaternary phase shift keying (DQPSK). 

Overview of the Model
The model does the following:

• Modulates a random signal using DQPSK modulation.

• Applies impairments to the signal using the blocks from the RF Impairments 
library.
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• Forks the signal into two paths, and processes one path with an automatic 
gain control (AGC) to compensate for the free space path loss and the I/Q 
imbalance.

• Displays the trajectory of the signal with AGC and the trajectory of the 
signal without AGC.

• Demodulates both signals and calculates their error rates.

You can see the effect of the automatic gain by comparing the trajectories of the 
signals with and without AGC, as shown in the following figure.

The trajectory of the signal with AGC more closely matches the undistorted 
trajectory for DQPSK, shown in the figure below, than does than the signal 
without AGC. Consequently, the error rate for the signal with AGC is much 
lower than the error rate for the signal without AGC.

Signal without AGCSignal with AGC
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In this example, the error rate for the demodulated signal without AGC is 
primarily caused by free space path loss and I/Q imbalance. The QPSK 
modulation minimizes the effects of the other impairments. 
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Synchronization
In order to interpret information correctly, a communication receiver must be 
synchronized with the corresponding transmitter. A phase-locked loop, or PLL, 
can help accomplish this synchronization when used in conjunction with other 
components. A PLL is an automatic control system that adjusts the phase of a 
local signal to match the phase of the received signal. The PLL design works 
best for narrowband signals.

Synchronization Features of the Blockset
This blockset contains four phase-locked loop blocks in its Synchronization 
library. You can open the Synchronization library by double-clicking its icon in 
the main Communications Blockset library (commlib), or by typing

commsync2

at the MATLAB prompt.

The following table indicates which block in the Synchronization library 
implements each supported type of PLL.

This section discusses these topics:

• “Overview of PLL Simulation” on page 1-131

• “Implementing an Analog Baseband PLL” on page 1-131

• “Implementing a Digital PLL” on page 1-132

For details about phase-locked loops, see the works listed in “Selected 
Bibliography for Synchronization” on page 1-132.

Table 1-2:  Supported PLLs in Synchronization Library

Type of PLL Block

Analog passband PLL Phase-Locked Loop

Analog baseband PLL Baseband PLL

Linearized analog baseband PLL Linearized Baseband PLL

Digital PLL using a charge pump Charge Pump PLL
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Overview of PLL Simulation
A simple PLL consists of a phase detector, a loop filter, and a voltage-controlled 
oscillator (VCO). For example, the following figure shows how these 
components are arranged for an analog passband PLL. In this case, the phase 
detector is just a multiplier. The signal e(t) is often called the error signal.

Different PLLs use different phase detectors, filters, and VCO characteristics. 
Some of these attributes are built into the PLL blocks in this blockset, while 
others depend on parameters that you set in the block mask:

• You specify the filter’s transfer function in the block mask using the 
Lowpass filter numerator and Lowpass filter denominator parameters. 
Each of these parameters is a vector that lists the coefficients of the 
respective polynomial in order of descending exponents of the variable s. To 
design a filter, you can use functions such as butter, cheby1, and cheby2 in 
the Signal Processing Toolbox.

• You specify the key VCO characteristics in the block mask. All four PLL 
blocks use a VCO input sensitivity parameter. Some blocks also use VCO 
quiescent frequency, VCO initial phase, and VCO output amplitude 
parameters.

• The phase detector for each of the PLL blocks is a feature that you cannot 
change from the block mask.

Implementing an Analog Baseband PLL
Unlike passband models for a phase-locked loop, a baseband model does not 
depend on a carrier frequency. This allows you to use a lower sampling rate in 
the simulation. These two blocks implement analog baseband PLLs:

• Baseband PLL

• Linearized Baseband PLL

VCO

s(t) e(t)

S(t)

Filter
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The linearized model and the nonlinearized model differ in that the linearized 
model uses the approximation

to simplify the computations. This approximation is close when  is near 
zero. Thus, instead of using the input signal and the VCO output signal 
directly, the linearized PLL model uses only their phases.

Implementing a Digital PLL
The charge pump PLL is a classical digital PLL. Unlike the analog PLLs 
mentioned above, the charge pump PLL uses a sequential logic phase detector, 
which is also known as a digital phase detector or a phase/frequency detector.  

Selected Bibliography for Synchronization
[1] Gardner, F. M., “Charge-pump Phase-lock Loops,” IEEE Trans. on 
Communications, vol. 28, pp. 1849-1858, November 1980.

[2] Gardner, F. M., “Phase Accuracy of Charge Pump PLLs,” IEEE Trans. on 
Communications, vol. 30, pp. 2362-2363, October 1982.

[3] Gupta, S. C., “Phase Locked Loops,” Proceedings of the IEEE, vol. 63, pp. 
291-306, February 1975 .

[4] Lindsay, W. C. and C. M. Chie, “A Survey on Digital Phase-Locked Loops,” 
Proceedings of the IEEE, vol. 69, pp. 410-431, April 1981.

[5] Meyr, Heinrich and Gerd Ascheid, Synchronization in Digital 
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This chapter presents several examples that illustrate techniques for modeling 
a full communication system rather than a small fragment of one. Because the 
techniques are mainly relevant in models that involve multiple areas of 
functionality (for example, modulation combined with block coding), the 
examples in this chapter are more complicated than the examples of earlier 
chapters. The topics in this chapter are:

• “Computing Delays” on page 2-3

• “Manipulating Delays” on page 2-14

• “Comparing Baseband and Passband Simulation” on page 2-24

Because the examples in this chapter are larger than those of previous 
chapters, the discussions omit instructions for building the example models. 
You can open prebuilt copies of the models if you want to examine, run, or 
modify them.
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Computing Delays
Some models require you to know how long it takes for data in one portion of a 
model to influence a signal in another portion of a model. For example, when 
configuring an error rate calculator, you must indicate the delay between the 
transmitter and the receiver. If you miscalculate the delay, then the error rate 
calculator processes mismatched pairs of data and consequently returns a 
meaningless result.

This section illustrates the computation of delays in multirate models and in 
models where the total delay in a sequence of blocks comprises multiple delays 
from individual blocks. The section covers the following topics:

• “Sources of Delays” on page 2-4

• “ADSL Demo Model” on page 2-4

• “Punctured Coding Model” on page 2-9

Other References for Delays
Other parts of this documentation set also discuss delays. For information 
about delays in specific types of blocks, see

• “Delays in Digital Modulation” on page 1-97

• “Delays of Convolutional Interleavers” on page 1-77

• Viterbi Decoder block reference page

• Derepeat block reference page

For discussions of delays in simpler examples than the ones in this section, see

• “Building a Frequency-Shift Keying Model” in Getting Started with the 
Communications Blockset. (See “Delays in the Model”.)

• “Example: A Rate 2/3 Feedforward Encoder” on page 1-56

• “Example: Soft-Decision Decoding” on page 1-60. (See “Delay in Received 
Data” on page 1-64.)

• “Example: Delays from Demodulation” on page 1-99
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Sources of Delays
While some blocks are able to determine their current output value using only 
the current input value, other blocks need input values from multiple time 
steps to compute the current output value. In the latter situation, the block 
incurs a delay. An example of this case is when the Derepeat block must 
average five samples from a scalar signal. The block must delay computing the 
average until it has received all five samples.

In general, delays in your model might come from various sources:

• Digital demodulators

• Convolutional interleavers or deinterleavers

• Viterbi Decoder block

• Buffering, downsampling, derepeating, and similar signal operations

• Explicit delay blocks, such as Integer Delay and Variable Integer Delay

• Filters

The following discussions include some of these sources of delay.

ADSL Demo Model
This section examines the asymmetric digital subscriber line (ADSL) 
demonstration model and aims to compute the correct Receive delay 
parameter value in each of two Error Rate Calculation blocks in the model. The 
model includes delays from buffering, convolutional interleaving, and an 
explicit delay block. To open the ADSL demo model, type adsl_sim in the 
MATLAB Command Window.

In the ADSL demo, data follows one of two parallel paths, each of which incurs 
a different delay. One path includes a convolutional interleaver and 
deinterleaver, while the other does not. Near the end of each path is an Error 
Rate Calculation block, whose Receive delay parameter must reflect the delay 
of the given path. The rest of the discussion makes an observation about frame 
periods in the model and then considers separately the path for noninterleaved 
data and the path for interleaved data.

Frame Periods in the Model
Before searching for individual delays, first observe that most signal lines 
throughout the model share the same frame period; to see this, enable the 
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Sample time colors option from the model window’s Format menu. This 
option colors blocks and signals according to their frame periods (or sample 
periods, in the case of sample-based signals). All signal lines at the top level of 
the model are the same color, which means that they share the same frame 
period. As a consequence, frames are a convenient unit for measuring delays in 
the blocks that process these signals. In the computation of the cumulative 
delay along a path, the weighted average (of numbers of frames, weighted by 
each frame’s period) reduces to a sum.

The four icons labeled Scrambler & FEC or Descrambler & FEC are yellow 
because they represent multirate systems. If you double-click any of those 
icons, you can see that inside the subsystems are yellow Buffer blocks whose 
output signals are the same color as the signals at the top level of the model. 
As a consequence, you can use output frames as a unit for measuring delays in 
the Buffer blocks and then add the result to any top-level delays when 
computing the cumulative delay.

Path for Noninterleaved Data
In the transmitter portion of the model, the noninterleaved path is the upper 
branch, shown in yellow below. Similarly, the noninterleaved path in the 
receiver portion of the model is the upper branch. Near the end of the 
noninterleaved path is an Error Rate Calculation block that computes the 
value labeled Non Interleaved BER.

The table below summarizes the delays in the path for noninterleaved data. 
Subsequent paragraphs explain the delays in more detail and explain why the 
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total delay relative to the Error Rate Calculation block is two frames, or 1552 
samples.

Scrambler & FEC. The Scrambler & FEC icon represents the following 
subsystem.

Notice that the subsystem includes an Unbuffer and Buffer pair. Buffering 
scalar data into vectors causes a delay because the block cannot produce fully 
meaningful output until it has received the specified number of samples from 
the scalar input stream. The set of parameters in the Buffer block causes the 
block to incur a delay of 112 samples, which represent one output frame.

Descrambler & FEC. The noninterleaved path in the receiver portion of the model 
contains a corresponding Descrambler & FEC subsystem, which also contains 
a Buffer block. Like the transmitter’s Buffer block, the receiver’s Buffer block 
incurs a delay of one output frame.

Summing the Delays. No other blocks in the noninterleaved path of the demo 
cause any delays. Adding the two one-frame delays from the two Buffer blocks 
indicates that the total delay in the noninterleaved path is two frames.

Block Delay, in Output 
Samples from 
Individual Block

Delay, in 
Frames

Delay, in Input 
Samples to Error Rate 
Calculation Block

Buffer, in 
Scrambler & 
FEC subsystem

112 1 776

Buffer, in 
Descrambler & 
FEC subsystem

112 1 776

Total N/A 2 1552
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Total Delay Relative to Error Rate Calculation Block. The Error Rate Calculation block 
that computes the value labeled Non Interleaved BER requires a Receive 
delay parameter value that is equivalent to two frames. The Receive delay 
parameter is measured in samples and each input frame to the Error Rate 
Calculation block contains 776 samples. Also, the frame period at the Buffer 
block’s outport equals the frame period at the Error Rate Calculation block’s 
inport. Therefore, the correct value for the Receive delay parameter is 1552 
samples.

Path for Interleaved Data
In the transmitter portion of the model, the interleaved path is the lower 
branch, shown in yellow below. Similarly, the interleaved path in the receiver 
portion of the model is the lower branch. Near the end of the interleaved path 
is an Error Rate Calculation block that computes the value labeled 
Interleaved BER.

The following table summarizes the delays in the path for noninterleaved data. 
Subsequent paragraphs explain the delays in more detail and explain why the 
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total delay relative to the Error Rate Calculation block is three frames, or 2328 
samples.

Buffer Blocks. Like the noninterleaved path, the interleaved path contains a 
Buffer block in the transmitter and another Buffer block in the receiver. 
Together, these blocks cause a delay of two frames.

Interleaving. Unlike the noninterleaved path, the interleaved path contains a 
Convolutional Interleaver block in the transmitter and a Convolutional 
Deinterleaver block in the receiver. The delay of the interleaver/deinterleaver 
pair is the product of the Rows of shift registers parameter, the Register 
length step parameter, and one less than the Rows of shift registers 
parameter. In this case, the delay of the interleaver/deinterleaver pair turns 
out to be 5*2*4 = 40 samples.

Integer Delay Block. The receiver portion of the interleaved path also contains an 
Integer Delay block, whose purpose is explained in “Aligning Words of a Block 
Code” on page 2-17. This block explicitly causes a delay of 800 samples having 
the same sample time as the 40 samples of delay from the 

Block Delay, in 
Output Samples 
from Individual 
Block

Delay, in 
Frames

Delay, in Input 
Samples to Error 
Rate Calculation 
Block

Buffer, inside 
Scrambler & FEC 
subsystem

112 1 776

Buffer, inside 
Descrambler & 
FEC subsystem

112 1 776

Convolutional 
Interleaver and 
Convolutional 
Deinterleaver pair

40 1 (combined) 776 (combined)

Integer Delay 800

Total N/A 3 2328
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interleaver/deinterleaver pair. Therefore, the total delay from interleaving, 
deinterleaving, and the explicit delay is 840 samples. These 840 samples make 
up one frame of data leaving the Integer Delay block.

Summing the Delays. No other blocks in the interleaved path of the demo cause 
any delays. Adding the delays from the Buffer blocks, the 
interleaver/deinterleaver pair, and the Integer Delay block indicates that the 
total delay in the interleaved path is three frames.

Total Delay Relative to Error Rate Calculation Block. The Error Rate Calculation block 
that computes the value labeled Interleaved BER requires a Receive delay 
parameter value that is equivalent to three frames. The Receive delay 
parameter is measured in samples and each input frame to the Error Rate 
Calculation block contains 776 samples. Also, the frame rate at the outports of 
all delay-causing blocks in the interleaved path equals the frame rate at the 
inport of the Error Rate Calculation block. Therefore, the correct value for the 
Receive delay parameter is 2328 samples.

Punctured Coding Model
This section discusses a punctured coding model that includes delays from 
decoding, downsampling, and filtering. Two Error Rate Calculation blocks in 
the model work correctly if and only if their Receive delay parameters 
accurately reflect the delays in the model. To open the model, type punctdoc in 
the MATLAB Command Window.
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Frame Periods in the Model
Before searching for individual delays, first enable the Sample time colors 
option from the model window’s Format menu. Notice that only the rightmost 
portion of the model differs in color from the rest of the model. This means that 
all signals and blocks in the model except those in the rightmost edge share the 
same frame period. As a consequence, frames at this predominant frame rate 
are a convenient unit for measuring delays in the blocks that process these 
signals. In the computation of the cumulative delay along a path, the weighted 
average (of numbers of frames, weighted by each frame’s period) reduces to a 
sum.

The yellow blocks represent multirate systems, while the AWGN Channel 
block and the Rx Filter block run at a higher frame rate than most other blocks 
in the model.

Inner Error Rate Block
The block labeled Inner Error Rate, located near the center of the model, is a 
copy of the Error Rate Calculation block from the Sinks library. It computes the 
bit error rate for the portion of the model that excludes the punctured 
convolutional code. In the portion of the model between this block’s two input 
signals, delays come from the Tx Filter, Rx Filter, and Downsample blocks, as 
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summarized in the following table. This section explains why the Inner Error 
Rate block’s Receive delay parameter is the total delay value of 16.

Tx Filter Block. The block labeled Tx Filter is a copy of the FIR Interpolation 
block in the DSP Blockset. It upsamples the input signal by a factor of 8 and 
applies a square-root raised cosine filter. The value of the block’s FIR filter 
coefficients parameter is

rcosine(1, 8, 'sqrt', 0.5, 3)

where the ratio 3/1 indicates that the delay caused by the filter is 3 times the 
sample period (not frame period) of the signal before upsampling. Because the 
input signal is not upsampled and is a 2-sample frame at the model’s 
predominant frame rate, the delay is equivalent to 3/2 frames at the 
predominant frame rate.

Rx Filter Block. The block labeled Rx Filter is another copy of the FIR 
Interpolation block, but it differs from the Tx Filter block in that its 
Interpolation factor parameter is 1 instead of 8. The values of that parameter 
differ in the two filter blocks because the Tx Filter block needs to upsample the 
signal to prepare for transmission along the channel, while the Rx Filter 
processes a signal that is already upsampled and that needs no further 
upsampling. Thus the Rx Filter block merely applies a square-root raised 
cosine filter without upsampling its input data. As in the case of the Tx Filter 
block, the delay caused by the Rx Filter block is 3 times the sample period (not 
frame period) of the signal without upsampling. The frame rate without 
upsampling is just the model’s predominant frame rate, so the delay of the Rx 

Block Delay, in 
Samples at 
Individual Block

Delay, in Frames 
at Predominant 
Frame Rate

Delay, in Input 
Samples to Inner 
Error Rate Block

Tx Filter 3 3/2 6

Rx Filter 3 (relative to 
input of Tx Filter 
block)

3/2 6

Downsample 2 1 4

Total N/A 4 16
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Filter block is the same as that of the Tx Filter block. That is, the delay is 
equivalent to 3/2 frames at the predominant frame rate.

Downsample Block. The Downsample block reduces the frame rate of the filtered 
received data. Its delay is one output frame, as stated on the reference page for 
the Downsample block. Because the frame rate at the outport equals the 
model’s predominant frame rate, the delay of the Downsample block is one 
frame at the predominant frame rate.

Summing the Delays. No other blocks in the portion of the model between the 
Inner Error Rate block’s two input signals cause any delays. Adding the two 
3/2-frame delays from the two filter blocks with the one-frame delay from the 
Downsample block indicates that the total delay in this portion of the model is 
four frames.

Total Delay Relative to Inner Error Rate Block. The Inner Error Rate block requires a 
Receive delay parameter value that is equivalent to four frames. The Receive 
delay parameter is measured in samples and each input frame to the Inner 
Error Rate block contains four samples. Therefore, the correct value for the 
Receive delay parameter is 16 samples.

Outer Error Rate Block
The block labeled Outer Error Rate, located near the center of the model, is a 
copy of the Error Rate Calculation block from the Sinks library. It computes the 
bit error rate for the entire model, including the punctured convolutional code. 
Delays come from the Tx Filter, Rx Filter, Downsample, and Viterbi Decoder 
blocks, as summarized in the table below. This section explains why the Outer 
Error Rate block’s Receive delay parameter is the total delay value of 108.

Block Delay, in 
Samples at 
Individual Block

Delay, in Frames 
at Predominant 
Frame Rate

Delay, in Input 
Samples to Outer 
Error Rate Block

Tx Filter 3 3/2 9/2

Rx Filter 3 (relative to 
input of Tx Filter 
block)

3/2 9/2

Downsample 2 1 3
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Filter and Downsample Blocks. The Tx Filter, Rx Filter, and Downsample blocks 
have a combined delay of four frames at the model’s predominant frame rate. 
For details, see “Inner Error Rate Block” on page 2-10.

Viterbi Decoder Block. The Viterbi Decoder block decodes the convolutional code, 
and the algorithm’s use of traceback path causes a delay. The block processes 
a frame-based signal and has the Operation mode set to Continuous. 
Therefore, the delay, measured in output samples, is equal to the Traceback 
depth parameter value of 96. (The delay amount is stated on the reference page 
for the Viterbi Decoder block.) Because the output of the Viterbi Decoder block 
is precisely one of the inputs to the Outer Error Rate block, it is easier to 
consider the delay to be 96 samples rather than to convert it to an equivalent 
number of frames.

Total Delay Relative to Outer Error Rate Block. The Outer Error Rate block requires a 
Receive delay parameter value that is equivalent to four frames plus 96 
samples. The Receive delay parameter is measured in samples and each input 
frame to the Outer Error Rate block contains three samples. Therefore, the 
correct value for the Receive delay parameter is 4*3+96 = 108 samples.

Note  The Outer Error Rate block accounts for the 4-frame delay from 
filtering and downsampling by expressing it as 12 samples when computing 
the Receive delay parameter. Recall that the Inner Error Rate block accounts 
for the same 4-frame delay but expresses it as 16 samples, not 12. The 
expressions differ because the two error rate blocks express delays in terms of 
samples rather than frames, yet process signals of different sizes.

Viterbi 
Decoder

96 32 96

Total N/A 36 108

Block Delay, in 
Samples at 
Individual Block

Delay, in Frames 
at Predominant 
Frame Rate

Delay, in Input 
Samples to Outer 
Error Rate Block
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Manipulating Delays
Some models require you not only to compute delays but to manipulate them. 
For example, if a model incurs a delay between a block encoder and its 
corresponding decoder, the decoder might misinterpret the boundaries 
between the code words that it receives and, consequently, return meaningless 
results. More generally, such a situation can arise when the path between 
paired components of a block-oriented operation (such as interleaving, block 
coding, or bit-to-integer conversions) includes a delay-causing operation (such 
as those listed in “Sources of Delays” on page 2-4). To avoid this problem, you 
can insert an additional delay of an appropriate amount between the encoder 
and decoder. If the model also computes an error rate, then the additional delay 
affects that process as described in “Computing Delays” on page 2-3. This 
section uses examples to illustrate the purpose, methods, and implications of 
manipulating delays in a variety of circumstances. The subsections are:

• “Delays and Alignment Problems” on page 2-14

• “Aligning Words of a Block Code” on page 2-17

• “Aligning Words for Interleaving” on page 2-19

• “Aligning Words of a Concatenated Code” on page 2-21

Delays and Alignment Problems
This section illustrates the sensitivity of block-oriented operations to delays, 
using a small model that aims to capture the essence of the problem in a simple 
form. Open the model by typing alignmentdoc in the MATLAB Command 
Window. Then run the simulation so that the Display blocks show relevant 
values.
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In this model, two coding blocks create and decode a block code. Two copies of 
the Integer Delay block create a delay between the encoder and decoder. The 
two Integer Delay blocks have different purposes in this illustrative model:

• The Inherent Delay block represents any delay-causing blocks that might 
occur in a model between the encoder and decoder. See “Sources of Delays” 
on page 2-4 for a list of possibilities that might occur in a more realistic 
model.

• The Added Delay block is an explicit delay that you insert to produce an 
appropriate amount of total delay between the encoder and decoder. For 
example, the adsl_sim model contains an Integer Delay block that serves 
this purpose.

Observing the Problem
By default, the Delay parameters in the Inherent Delay and Added Delay 
blocks are set to 1 and 0, respectively. This represents the situation in which 
some operation causes a one-bit delay between the encoder and decoder, but 
you have not yet tried to compensate for it. The total delay between the encoder 
and decoder is one bit. You can see from the blocks labeled Word and Delayed 
Word that the code word that leaves the encoder is shifted downward by one bit 
by the time it enters the decoder. The decoder receives a signal in which the 
boundary of the code word is at the second bit in the frame, instead of 
coinciding with the beginning of the frame. That is, the code words and the 
frames that hold them are not aligned with each other. 
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This nonalignment is problematic because the Hamming Decoder block 
assumes that each frame begins a new code word. As a result, it tries to decode 
a word that consists of the last bit of one output frame from the encoder 
followed by the first six bits of the next output frame from the encoder. You can 
see from the Error Rate Display block that the error rate from this decoding 
operation is close to 1/2. That is, the decoder rarely recovers the original 
message correctly.

To use an analogy, suppose someone corrupts a paragraph of prose by moving 
each period symbol from the end of the sentence to the end of the first word of 
the next sentence. If you try to read such a paragraph while assuming that a 
new sentence begins after a period, then you misunderstand the start and end 
of each sentence. As a result, you might fail to understand the meaning of the 
paragraph.

To see how delays of different amounts affect the decoder’s performance, vary 
the values of the Delay parameter in the Added Delay block and the Receive 
delay parameter in the Error Rate Calculation block and then run the 
simulation again. Many combinations of parameter values produce error rates 
that are close to 1/2. Furthermore, if you examine the transmitted and received 
data by typing

[tx rx]

in the MATLAB Command Window, then you might not detect any correlation 
between the transmitted and received data.

Correcting the Delays
Some combinations of parameter values produce error rates of zero because the 
delays are appropriate for the system. For example:

• In the Added Delay block, set Delay to 6.

• In the Error Rate Calculation block, set Receive delay to 4.

• Run the simulation.

• Enter [tx rx] in the MATLAB Command Window.

The top number in the Error Rate Display block shows that the error rate is 
zero. That is, the decoder recovered each transmitted message correctly. 
However, the Word and Displayed Word blocks do not show matching values. 
It is not immediately clear how the encoder’s output and the decoder’s input are 
related to each other. To clarify the matter, examine the output in the 
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MATLAB Command Window. Notice that the sequence along the first column 
(tx) appears in the second column (rx) four rows later. To confirm this, enter

isequal(tx(1:end-4),rx(5:end))

in the MATLAB Command Window and observe that the result is 1 (true). This 
last command tests whether the first column matches a shifted version of the 
second column. Shifting the MATLAB vector rx by four rows corresponds to the 
Error Rate Calculation block’s behavior when its Receive delay parameter is 
set to 4.

To summarize, these special values of the Delay and Receive delay 
parameters work for these reasons:

• Combined, the Inherent Delay and Added Delay blocks delay the encoded 
signal by a full code word rather than by a partial code word. Thus the 
decoder is correct in its assumption that a code word boundary falls at the 
beginning of an input frame, and decodes the words correctly. However, the 
delay in the encoded signal causes each recovered message to appear one 
word later; that is, four bits later.

• The Error Rate Calculation block compensates for the one-word delay in the 
system by comparing each word of the transmitted signal with the data four 
bits later in the received signal. In this way, it correctly concludes that the 
decoder’s error rate is zero.

Note  These are not the only parameter values that produce error rates of 
zero. Because the code in this model is a (7, 4) block code and the inherent 
delay value is 1, you can set the Delay and Receive delay parameters to 7k-1 
and 4k, respectively, for any positive integer k. It is important that the sum of 
the inherent delay (1) and the added delay (7k-1) is a multiple of the code 
word length (7).

Aligning Words of a Block Code
The ADSL demo, discussed in “ADSL Demo Model” on page 2-4, illustrates the 
need to manipulate the delay in a model so that each frame of data that enters 
a block decoder has a code word boundary at the beginning of the frame. The 
need arises because the path between a block encoder and block decoder 
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includes a delay-causing convolutional interleaving operation. This section 
explains why the model uses an Integer Delay block to manipulate the delay 
between the convolutional deinterleaver and the block decoder, and why the 
Integer Delay block is configured as it is. To open the ADSL demo model, type 
adsl_sim in the MATLAB Command Window.

Misalignment of Code Words
Notice in the ADSL demo that the Convolutional Interleaver and 
Convolutional Deinterleaver blocks appear after the Scrambler & FEC 
subsystems but before the Descrambler & FEC subsystems. These two 
subsystems contain blocks that perform Reed-Solomon coding, and the coding 
blocks expect each frame of input data to start on a new word rather than in 
the middle of a word.

As discussed in “Path for Interleaved Data” on page 2-7, the delay of the 
interleaver/deinterleaver pair is 40 samples. However, the input to the 
Descrambler & FEC subsystem is a frame of size 840, and 40 is not a multiple 
of 840. Consequently, the signal that exits the Convolutional Deinterleaver 
block is a frame whose first entry does not represent the beginning of a new 
code word. As described in “Observing the Problem” on page 2-15, this 
misalignment, between code words and the frames that contain them, hinders 
the decoder.

Inserting a Delay to Correct the Alignment
The ADSL demo solves the problem by moving the word boundary from the 
41st sample of the 840-sample frame to the first sample of a successive frame. 
Moving the word boundary is equivalent to delaying the signal. To this end, the 
demo contains an Integer Delay block between the Convolutional 
Deinterleaver block and the Descrambler & FEC subsystem.

The Delay parameter in the Integer Delay block is 800 because that is the 
minimum number of samples required to shift the 41st sample of one 
840-sample frame to the first sample of the next 840-sample frame. In other 
words, the sum of the inherent 40-sample delay (from the 



Manipulating Delays

2-19

interleaving/deinterleaving process) and the artificial 800-sample delay is a 
full frame of data, not a partial frame.

Note that this 800-sample delay has implications for other parts of the model, 
specifically, the Receive delay parameter in one of the Error Rate Calculation 
blocks. For details about how the delay influences the value of that parameter, 
see “Path for Interleaved Data” on page 2-7.

Aligning Words for Interleaving
This section describes an example that manipulates the delay before a 
deinterleaver, because the path between the interleaver and deinterleaver 
includes a delay from demodulation. To open the model, type gmskintdoc in the 
MATLAB Command Window.

The model includes block coding, helical interleaving, and GMSK modulation. 
The table below summarizes the individual block delays in the model.

Block Delay, in Output 
Samples from 
Individual Block

Reference

GMSK 
Demodulator 
Baseband

16 “Delays in Digital 
Modulation” on page 1-97
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Misalignment of Interleaved Words
The demodulation process in this model causes a delay between the interleaver 
and deinterleaver. Because the deinterleaver expects each frame of input data 
to start on a new word, it is important to ensure that the total delay between 
the interleaver and deinterleaver includes one or more full frames but no 
partial frames.

The delay of the demodulator is 16 output samples. However, the input to the 
Helical Deinterleaver block is a frame of size 21, and 16 is not a multiple of 21. 
Consequently, the signal that exits the GMSK Demodulator Baseband block is 
a frame whose first entry does not represent the beginning of a new word. As 
described in “Observing the Problem” on page 2-15, this misalignment, 
between words and the frames that contain them, hinders the deinterleaver.

Inserting a Delay to Correct the Alignment
The model moves the word boundary from the 17th sample of the 21-sample 
frame to the first sample of the next frame. Moving the word boundary is 
equivalent to delaying the signal by 5 samples. The Integer Delay block 
between the GMSK Demodulator Baseband block and the Helical 
Deinterleaver block accomplishes such a delay. The Integer Delay block has its 
Delay parameter set to 5.

Combining the effects of the demodulator and the Integer Delay block, the total 
delay between the interleaver and deinterleaver is a full 21-sample frame of 
data, not a partial frame.

Checking Alignment of Block Code Words
The interleaver and deinterleaver cause a combined delay of 42 samples 
measured at the output from the Helical Deinterleaver block. Because the 
delayed output from the deinterleaver goes next to a Reed-Solomon decoder 
and because the decoder expects each frame of input data to start on a new 

Helical 
Deinterleaver

42 “Delays of Convolutional 
Interleavers” on page 1-77

Integer Delay 5 Integer Delay reference page

Block Delay, in Output 
Samples from 
Individual Block

Reference
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word, it is important to ensure that the total delay between the encoder and 
decoder includes one or more full frames but no partial frames.

In this case, the 42-sample delay is exactly two frames. Therefore, it is not 
necessary to insert an Integer Delay block between the Helical Deinterleaver 
block and the Binary-Output RS Decoder block.

Computing Delays to Configure the Error Rate Calculation Blocks
The model contains two Error Rate Calculation blocks, labeled Channel Error 
Rate and System Error Rate. Each of these blocks has a Receive delay 
parameter that must reflect the delay of the path between the block’s Tx and 
Rx signals. The table below explains the Receive delay values in the two 
blocks.

Aligning Words of a Concatenated Code
This section describes an example that manipulates the delay between the two 
portions of a concatenated code decoder, because the first portion includes a 
delay from Viterbi decoding while the second portion expects frame boundaries 
to coincide with word boundaries. To open the model, type concatdoc in the 
MATLAB Command Window. It uses the block and convolutional codes from 
the dvbt_sim demo, but simplifies the overall design a great deal.

Block Receive delay 
Value

Reason

Channel 
Error Rate

16 Delay of GMSK Demodulator Baseband 
block, in samples

System 
Error Rate

15*3 Three fifteen-sample frames: one frame 
from the GMSK Demodulator Baseband 
and Integer Delay blocks, and two frames 
from the interleaver/deinterleaver pair
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The model includes a shortened block code and a punctured convolutional code. 
All signals and blocks in the model share the same frame period. The following 
table summarizes the individual block delays in the model.

Misalignment of Block Code Words
The Viterbi decoding process in this model causes a delay between the Integer 
to Bit Converter block and the Bit to Integer Converter block. Because the 
latter block expects each frame of input data to start on a new 8-bit word, it is 
important to ensure that the total delay between the two converter blocks 
includes one or more full frames but no partial frames.

The delay of the Viterbi Decoder block is 136 output samples. However, the 
input to the Bit to Integer Converter block is a frame of size 1632. 
Consequently, the signal that exits the Viterbi Decoder block is a frame whose 
first entry does not represent the beginning of a new word. As described in 
“Observing the Problem” on page 2-15, this misalignment, between words and 
the frames that contain them, hinders the converter block.

Block Delay, in Output Samples from Individual Block

Viterbi Decoder 136

Integer Delay 1496 (that is, 1632 - 136)
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Note  The outer decoder in this model (Integer-Output RS Decoder) also 
expects each frame of input data to start on a new code word. Therefore, the 
misalignment issue in this model affects many concatenated code designs, not 
just those that convert between binary-valued and integer-valued signals.

Inserting a Delay to Correct the Alignment
The model moves the word boundary from the 137th sample of the 1632-sample 
frame to the first sample of the next frame. Moving the word boundary is 
equivalent to delaying the signal by 1632-136 samples. The Integer Delay block 
between the Viterbi Decoder block and the Bit to Integer Converter block 
accomplishes such a delay. The Integer Delay block has its Delay parameter 
set to 1496.

Combining the effects of the Viterbi Decoder block and the Integer Delay block, 
the total delay between the interleaver and deinterleaver is a full 1632-sample 
frame of data, not a partial frame.

Computing Delays to Configure the Error Rate Calculation Blocks
The model contains two Error Rate Calculation blocks, labeled Inner Error 
Rate and Outer Error Rate. Each of these blocks has a Receive delay 
parameter that must reflect the delay of the path between the block’s Tx and 
Rx signals. The table below explains the Receive delay values in the two 
blocks.

Block Receive 
delay Value

Reason

Inner 
Error Rate

136 Delay of Viterbi Decoder block, in samples

Outer 
Error Rate

188 One 188-sample frame, from the combination 
of the inherent delay of the Viterbi Decoder 
block and the added delay of the Integer 
Delay block
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Comparing Baseband and Passband Simulation
This section uses a pair of examples to illustrate the differences between 
baseband and passband methods for conducting BER analysis. This section 
presents the passband case first because it might be more familiar to you. 
However, the equivalent baseband simulation, presented second, offers many 
advantages over the passband simulation. Compared to the passband 
simulation, the baseband simulation

• Takes much less time to process the same number of symbols. Furthermore, 
baseband simulation can use frame-based processing to make the simulation 
even faster.

• Achieves the same error rate.

• Is less likely to suffer from poor choices of parameters.

This discussion comprises these sections:

• “Running a Passband Simulation” on page 2-24

• “Running an Equivalent Baseband Simulation” on page 2-25

• “Generating Error Curves” on page 2-26

• “Speed of Baseband Versus Passband Models” on page 2-28

• “Comparing Baseband and Passband Signals” on page 2-30

• “Troubleshooting a Passband Simulation” on page 2-32

To learn the mathematical differences between baseband and passband 
representations of a signal, see “Baseband Modulated Signals Defined” on 
page 1-82 or a basic communications textbook.

Running a Passband Simulation
This section introduces a passband simulation model that shows the error rate 
of QPSK modulation over an AWGN channel with a varying noise level. The 
example in the next section, “Running an Equivalent Baseband Simulation” on 
page 2-25, achieves the same objective but runs more quickly because it uses 
baseband simulation.

To open the passband example model, type pbmoddoc in the MATLAB 
Command Window. Then you can run the simulation by choosing Start from 
the model window’s Simulation menu.
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Running an Equivalent Baseband Simulation
To open a baseband simulation that computes the same error rates as in the 
passband model of the previous section, type bbmoddoc in the MATLAB 
Command Window. Then you can run the simulation by choosing Start from 
the model window’s Simulation menu.
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Complex Baseband Modulated Signal
Notice that the signal lines from the M-PSK Modulator Baseband block to the 
AWGN Channel block, and from the AWGN Channel block to the M-PSK 
Demodulator Baseband block have an annotation that says double (c). The 
(c) portion indicates that the baseband modulated signal is a complex signal, 
not a real signal. By contrast, the unmodulated signal is a real signal. The 
meaning of the complex modulated signal appears in “Baseband Modulated 
Signals Defined” on page 1-82.

Differences Between the Passband and Baseband Examples
The differences in construction between this model and the passband model, 
pbmoddoc, of the previous section are

• This model uses baseband modulation blocks (M-PSK Modulator Baseband, 
M-PSK Demodulator Baseband) instead of passband modulation blocks.

• The two To Workspace blocks in this model use variable names that differ 
from those in the passband model, so that the data sets from the two models 
do not conflict with each other.

• The Error Rate Calculation block in this model uses a Receive delay 
parameter of 0 instead of 1, because baseband demodulation causes no delay, 
while passband demodulation causes a one-sample delay.

Performance differences between the two models are discussed in “Speed of 
Baseband Versus Passband Models” on page 2-28.

Generating Error Curves
To plot error rates as a function of noise level using the baseband simulation, 
execute the following code in MATLAB. The plot includes both the theoretical 
error rates and the error rates from running the simulation.

modelname='bbmoddoc';

EbNoVec = [0:8];
EsNoVec = EbNoVec + 10*log10(2);
numsims = length(EsNoVec);
SERVec = zeros(numsims,3);

% Set up model so it runs until 100 errors occur.
% Also, remove Display block so model runs more quickly.
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load_system(modelname);
set_param(gcs,'StopTime','inf');
set_param([gcs '/Error Rate Calculation'],'stop','on');
delete_line(modelname,'Error Rate Calculation/1','Display/1')
delete_block([modelname '/Display'])

% For each noise level, run the model and save the error data.
for n = 1:numsims
    modex_EsNodB = EsNoVec(n);
    disp(['Iteration #' num2str(n) ' of ' num2str(numsims)]);
    sim(modelname);
    SERVec(n,:) = base_ser_data;
end

% Revert to original parameters in model.
close_system(modelname,0); % Close without saving changes.
open_system(modelname);

% Compute theoretical values.
linEbNoVec = 10 .^ (0.1 .* EbNoVec);
temp = 0.5.*erfc((sqrt(2.*linEbNoVec))./sqrt(2));
ser = temp.*(2 - temp);

% Plot actual and theoretical values on one graph.
figure;
semilogy(EbNoVec,SERVec(:,1),'r-*',EbNoVec,ser,'b-x');
legend('Actual','Theoretical');
xlabel('Eb/No (dB)'); ylabel('Error Rate');
title('Symbol Error Rates for QPSK');

The figure below shows the error curves. Notice that the values from the 
baseband simulation agree with the theoretical values.



2 Modeling Communication Systems

2-28

Using the Passband Model to Generate Error Curves
If you want to generate error curves using the passband model, you can use the 
preceding code after making these modifications:

• Change the definition modelname='bbmoddoc'; to modelname='pbmoddoc';.

• Change the variable name base_ser_data to pass_ser_data.

Note  The code might take a long time to complete its computations and 
produce the plot.

The resulting plot looks very similar to the plot produced using the baseband 
model, because baseband and passband simulation are equivalent for this 
purpose.

Speed of Baseband Versus Passband Models
The passband and baseband models produce error rates that differ from each 
other by less than 1%. However, the passband model takes a significantly 
longer time to process the same amount of data. Although the actual speed 
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depends on your system, the relative times in the tables below can serve as a 
guide. Each table shows the approximate clock time that simulations take to 
run, expressed as a multiple of the clock time that the model bbmoddoc takes to 
run. Notice these general trends:

• Baseband simulation is considerably faster than passband simulation. The 
difference in speed is especially dramatic when the carrier frequency in the 
passband simulation is high.

• Baseband simulation using large frames is faster than baseband simulation 
that does not use frames.

To time simulations on your own computer, use the functions tic, toc, and sim.

Relative Clock Times Corresponding to 1 Second of Simulation Time

Simulation Relative Time

bbmoddoc (baseband) 1

pbmoddoc (passband) 52

pbmoddoc (passband), after multiplying carrier frequency 
and modulated signal sample time by 10 and 1/10, 
respectively

916

Relative Clock Times Corresponding to 3 Seconds of Simulation Time

Simulation Relative Time

bbmoddoc (baseband) 1

pbmoddoc (passband) 100

bbmoddoc (baseband), using frame-based processing with 
512-sample frames

0.28
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Comparing Baseband and Passband Signals
This section discusses the relationship between the baseband and passband 
models pbmoddoc and bbmoddoc. In particular, it shows that even though the 
baseband modulated signal is a complex-valued signal and not a real-valued 
sinusoid, it is equivalent to the real sinusoid that the passband model 
processes. While the section “Baseband Modulated Signals Defined” on 
page 1-82 gives a theoretical description of the equivalence between baseband 
and passband signals, this discussion uses a more hands-on approach; using 
the example model, this discussion shows how the baseband algorithm forms 
part of the passband algorithm and how the conversion from baseband to 
passband representation occurs.

Baseband Algorithm Within the Passband Algorithm
One way to see how the passband and baseband modulator blocks are related 
to each other is to look inside the passband algorithm. Open the passband 
model by typing pbmoddoc in the MATLAB Command Window and then follow 
these instructions to open the subsystem that the passband modulator block 
represents:

1 In the top of the model window, click the M-PSK Modulator Passband block.

2 From the model window’s Edit menu, choose Look under mask.

Relative Clock Times to Execute Code as in “Generating Error Curves”

Simulation Relative Time

bbmoddoc (baseband) 1

pbmoddoc (passband) 100

bbmoddoc (baseband), using frame-based processing with 
512-sample frames

.30
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If you double-click the M-PSK icon in the subsystem and look in the title bar of 
the dialog box, then you can see that the block is the M-PSK Modulator 
Baseband block from the digital baseband phase modulation library of the 
blockset. This indicates that the baseband algorithm forms a part of the 
passband algorithm.

Conversion from Baseband to Passband Representation
The Frequency Up-Converter block represents another part of the passband 
modulation algorithm. This block converts a baseband modulated signal into 
an equivalent passband modulated signal. To see the conversion in more detail, 
follow these instructions:

1 In the subsystem window, click the Frequency Up-Converter block.

2 From the model window’s Edit menu, choose Look under mask.

Studying this block diagram from left to right, you can see that it multiplies the 
real and imaginary parts of the baseband modulated signal by

and

2 2πfct θ+( )cos
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respectively, and then adds the results together. Here  and θ are the Carrier 

frequency and Carrier initial phase parameters, respectively, in the M-PSK 
Modulator Passband block. The result of this process is the real-valued 
sinusoidal signal that you would expect from a passband modulator.

Troubleshooting a Passband Simulation
Passband modulation can be difficult to use because it requires you to choose 
appropriate values for carrier-related parameters and because it requires 
Simulink to sample signals at a high sampling rate. These factors can reduce 
the accuracy and speed of a passband simulation. The speed is particularly 
noticeable if you need to process large amounts of data before the results are 
meaningful. These sections offer tips that might help you improve the accuracy 
and/or speed of your simulation:

• “Use Baseband Simulation”

• “Decrease the Sample Time” on page 2-33

• “Increase the Carrier Frequency” on page 2-34

• “Use the Simulink Accelerator to Increase Speed” on page 2-34

Use Baseband Simulation
Converting your model to a baseband simulation might improve the 
simulation’s accuracy and/or speed substantially. Baseband modulation blocks 
do not use carrier-related parameters and, therefore, do not suffer from poor 
choices of such parameters. If you use baseband simulation, you can safely 
ignore the following sections, “Decrease the Sample Time” and “Increase the 
Carrier Frequency”.

Also, baseband simulations usually run faster than passband simulations 
because baseband simulations do not involve sampling a carrier signal at a 
high rate. The difference in speed might be dramatic.

Frame-based processing, which is available with baseband but not passband 
blocks, might further speed your baseband simulation. You can typically 
experiment with frame-based processing by varying parameters in the source 
blocks, while most other blocks in the model can remain as they are. For 
example, you can switch to frame-based processing in the example model 

2� 2πfct θ+( )sin

fc
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bbmoddoc by changing two parameters in the Random Integer Generator block. 
Specifically, check the Frame-based outputs check box and set the Samples 
per frame parameter to an integer greater than 1 (such as 20).

Many algorithms can be simulated adequately at baseband. For example, to 
model the carrier frequency offset in a baseband simulation, multiply the 
transmitted baseband signal by a complex sinusoid. Because this sinusoid 
would typically have a much lower frequency than the carrier frequency, such 
a model is still less computationally intensive to simulate than an equivalent 
passband simulation would be.

Some situations require passband simulation, such as investigating the effects 
of radio frequency distortion. Even in such cases, you might be able to model 
part of the system at baseband initially and then switch to passband when you 
focus on the aspects of the system that require passband simulation.

Decrease the Sample Time
If you get results from a passband simulation that do not seem to match 
theoretical results, it could be that the sampling rate of the passband 
modulated signal is not sufficiently high. The sampling rate is the reciprocal of 
the sample time. You should decrease the sample time of the passband 
modulated signal, run the simulation again, and check the results. This sample 
time is the Output sample time parameter in digital passband modulator 
blocks and the Input sample time parameter in digital passband demodulator 
blocks.

After you decrease the sample time, the simulation might run more slowly.

Example of Excessive Sample Time of Modulated Signal. In the example model 
pbmoddoc, the sample time of the modulated signal is modex_Td, while the 
sample time of the unmodulated signal is modex_Ts. If you assign

modex_Td = modex_Ts/32;

in the MATLAB Command Window and run the simulation, the error rate 
shown in the Display block is over 0.0066. This error rate is more than 
one-third greater than it was before making this parameter change. The 
simulation results no longer agree with the theoretical expected results 
because the sample time modex_Td is too large compared to the sample time of 
the data. More specifically, the poorly chosen sample times cause aliasing of 
the signal spectrum in the frequency domain.
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Increase the Carrier Frequency
If you get results from a passband simulation that do not seem to match 
theoretical results, it could be that the carrier frequency for passband 
modulation is not sufficiently high relative to the sampling frequency of the 
unmodulated signal. You should increase the Carrier frequency parameter of 
the modulator and demodulator blocks, run the simulation again, and check 
the results.

After you increase the carrier frequency, you might need to increase the 
sampling rate of the passband modulated signal to compensate.

Example of Insufficient Carrier Frequency. In the example model pbmoddoc, the 
carrier frequency of the modulated signal is modex_fc. Suppose you make the 
carrier frequency (modex_fc) four times the sampling frequency of the 
unmodulated signal (modex_Ts), and then use the inequalities on the 
modulation block’s reference page to determine a threshold value for the 
modulated signal’s sampling rate. For example, you might choose

modex_fc = 4/modex_Ts;
modex_Td = modex_Ts/12;

These parameter values satisfy the inequalities and the simulation runs 
relatively quickly. However, the parameter values cause the model to produce 
an error rate of over 0.016, which is more than twice the theoretical expected 
result.

Note  Although satisfying certain inequalities involving the passband 
modulation block’s parameters is necessary for the block to operate, that alone 
is not sufficient for the block to produce meaningful results.

Use the Simulink Accelerator to Increase Speed
If you have access to the Simulink Accelerator, you can use it to make your 
simulation run more quickly. The Simulink Accelerator is part of the Simulink 
Performance Tools product.



 

3

Demonstration Models

Punctured Convolutional Coding Demo    .   .   .   .   .   .   .   3-2

Adaptive Equalization Demo    .   .   .   .   .   .   .   .   .   .   .   .   3-9

CPM Phase Tree Demo   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 3-11

GMSK vs. MSK Demo  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 3-14

Filtered QPSK vs. MSK  .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 3-16

Rayleigh Fading Channel Demo  .   .   .   .   .   .   .   .   .   .   . 3-17

Gray Coded 8-PSK Demo   .   .   .   .   .   .   .   .   .   .   .   .   .   . 3-18

Discrete Multitone Signaling Demo    .   .   .   .   .   .   .   .   . 3-29

Iterative Decoding of a Serially Concatenated 
Convolutional Code (SCCC) - Demo   .   .   .   .   .   .   . 3-31

Phase Noise Effects in 256-QAM - Demo    .   .   .   .   .   .   . 3-36

PLL-Based Frequency Synthesis Demo .   .   .   .   .   .   .   . 3-38

256-Channel ADSL Demo   .   .   .   .   .   .   .   .   .   .   .   .   .   . 3-50

Bluetooth Voice Transmission Demo  .   .   .   .   .   .   .   .   . 3-53

Digital Video Broadcasting Demo   .   .   .   .   .   .   .   .   .   . 3-56

HiperLAN/2 Demo    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 3-59

RF Satellite Link Demo  .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 3-61

WCDMA Coding and Multiplexing Demo   .   .   .   .   .   .   . 3-70

WCDMA End-to-End Physical Layer Demo   .   .   .   .   .   . 3-71

WCDMA Spreading and Modulation Demo   .   .   .   .   .   . 3-79



3 Demonstration Models

3-2

Punctured Convolutional Coding Demo
The complexity of a Viterbi decoder increases rapidly with the code rate. 
Puncturing is a technique that allows the encoding and decoding of higher rate 
codes using standard rate 1/2 encoders and decoders. This example, 
tstconvcod, demonstrates how to use the Convolutional Encoder and Viterbi 
Decoder blocks to simulate a punctured coding system. 

The example is somewhat similar to the one that appears in “Example: 
Soft-Decision Decoding” on page 1-60, which demonstrates convolutional 
coding without puncturing. The present example contains two blocks related to 
puncturing: Puncture and Insert Zero.

This description of the demo includes these topics:

• “Structure of the Demo” on page 3-2

• “Generating Random Data” on page 3-3

• “Convolutional Encoding” on page 3-3

• “Puncturing” on page 3-4

• “Transmitting Data” on page 3-4

• “Demodulating” on page 3-5

• “Inserting Zeros” on page 3-5

• “Viterbi Decoding” on page 3-6

• “Calculating the Error Rate” on page 3-6

• “Evaluating Results” on page 3-6

• “Bibliography” on page 3-8

Structure of the Demo
This example contains these blocks from the Communications Toolbox.

Communications 
Blockset Block

Purpose in Example

Bernoulli Binary 
Generator

Create random bits to use as message.

Convolutional Encoder Encode message using the convolutional coding technique.
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You can get detailed information on each of these blocks by clicking on the 
name of the block above. 

Generating Random Data
The Bernoulli Binary Generator block, in the Data Sources sublibrary of the 
Comm Sources library, produces the information source for this simulation. 
The block generates a frame of three random bits at each sample time. The 
Samples per frame parameter determines the number of rows of the ouput 
frame.

Note:  The size of the output frame must be compatible with the length of the 
Puncture vector parameter in the Puncture block. See the section 
“Puncturing” for more details.

Convolutional Encoding
The Convolutional Encoder, in the Convolutional sublibrary of the Error 
Detection and Correction library, encodes the data from the Bernoulli Binary 
Generator. This demo uses the same code as detailed in “Example: 
Soft-Decision Decoding” on page 1-60.

Puncture Remove bits from the output of the Convolutional Encoder.

BPSK Modulator 
Baseband

Modulate encoded message to prepare for transmission.

AWGN Channel Transmit data, adding random numbers to simulate a noisy 
channel.

Insert Zero Insert zeros to substitute for bits removed by the Puncture block.

Viterbi Decoder Decode the convolutional code using the Viterbi algorithm.

Error Rate Calculation Compute the proportion of discrepancies between original and 
recovered messages.

Communications 
Blockset Block

Purpose in Example
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Puncturing
The Puncture block, in the Sequence Operations sublibrary of the Basic Comm 
Functions library, carries out the puncturing. The Puncture block periodically 
removes bits from the encoded bit stream, thereby increasing the code rate. 

The puncture pattern is specified by the Puncture vector parameter in the 
mask. The puncture vector is a binary column vector. A one indicates that the 
bit in the corresponding position of the input vector is sent to the output vector, 
while a zero indicates that the bit is removed. 

For example, to create a rate 3/4 code from the rate 1/2, constraint length 7 
convolutional code, the optimal puncture vector is [1 1 0 1 1 0].' (where the 
.' after the vector indicates the transpose). Bits in positions 1, 2, 4 and 5 are 
transmitted, while bits in positions 3 and 6 are removed. Now, for every 3 bits 
of input, the punctured code generates 4 bits of output (as opposed to the 6 bits 
produced before puncturing). This makes the rate 3/4.

Note  In frame-based processing, the length of the puncture vector must 
divide the length of the input frame.

In this example, the output from the Bernoulli Binary Generator is a column 
vector of length 3. Since the rate 1/2 Convolutional Encoder doubles the length 
of each vector, the input to the Puncture block is a vector of length 6. Therefore, 
the length of the puncture vector must divide 6. 

Transmitting Data
The AWGN Channel block, from the Channels library, simulates transmission 
over a noisy channel. The parameters for the block are set in the mask as 
follows:

• The Mode parameter for this block is set to Signal to noise ratio (Es/No) 
mode.

• The Es/No parameter is set to 2 dB. This value typically is changed from one 
simulation run to the next.

• The preceding modulation block generates unit power signals, so the Input 
signal power is set to 1 watt.

• The Symbol period is set to 0.75 seconds because the code has rate 3/4.
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Demodulating
In this simulation, the Viterbi Decoder block is set to accept unquantized 
inputs. The BPSK Demodulator block produces hard decisions, so it cannot be 
used for demodulation in this model. Instead, the simulation passes the 
channel output through a Simulink Complex to Real-Imag block that extracts 
the real part of the complex samples.

Inserting Zeros
The Insert Zero block substitutes zeros for the bits that were removed by the 
Puncture block. Because the punctured bits are not transmitted, there is no 
information to indicate their values. Since BPSK is an antipodal modulation 
format, and 0 lies half way between +1 and -1, you can insert zeros in place of 
the punctured bits. 

The locations of the inserted zeros is determined by the Insert zero vector 
parameter in the mask. The insert zero vector is a binary column vector, which 
will usually be the same as the puncture vector. Each 1 in the insert zero vector 
indicates that the block should place the next element of the input vector into 
the output vector (at the position of the 1). Each 0 indicates that the block 
should place a 0 into the output vector (at the position of the the 0). This 
replaces the punctured bits with zeros.

Note  In frame-based processing, the length of the Insert zero vector value 
must divide the length of an input frame.

Data Delay
In this example, there is no data delay between the Puncture block and the 
Insert Zero block. However, if you introduce another block into the model 
between the Puncture block and the Insert Zero block that produces a delay, 
then the Insert Zero block might insert zeros in locations other than where the 
Puncture block removed bits. To correct this, you should also place an Integer 
Delay block, in the Signal Operations library of the DSP Blockset, immediately 
before the Insert Zero block. Set the Delay (samples) parameter of the Integer 
Delay block to an integer such that the total delay between the Puncture block 
and the Insert Zero block (including the Delay block) is a multiple of the length 
of the Insert zero vector parameter. 
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For example, if there is a delay of 20, and the length of the insert zero vector is 
6, then the Delay (samples) parameter should be 4. This makes the total delay 
24, which is a multiple of 6, and brings the Insert Zero block into phase with 
the Puncture block.

Viterbi Decoding
The Viterbi Decoder block, in the Convolutional sublibrary of the Error 
Detection and Correction library, is configured to decode the same rate 1/2 code 
specified in the Convolutional Encoder block.

In this example, the decision type is set to Unquantized. For codes without 
puncturing, you would normally set the Traceback depth for this code to a 
value close to 40. However, for decoding punctured codes, a higher value is 
required to give the decoder enough data to resolve the ambiguities introduced 
by the inserted erasures.

Calculating the Error Rate
The Error Rate Calculation block, in the Comm Sinks library, compares the 
decoded bits to the original source bits. The output of the Error Rate 
Calculation block is a three-element vector containing the calculated bit error 
rate (BER), the number of errors observed, and the number of bits processed.

In the mask for this block, the Receive delay parameter is set to 96, because 
the Traceback depth value of 96 in the Viterbi Decoder block creates a delay 
of 96. If there were other blocks in the model that created delays, the Receive 
delay would equal the sum of all the delays.

BER simulations typically run until a minimum number of errors have 
occurred, or until the simulation processes a maximum number of bits. The 
Error Rate Calculation block uses its Stop simulation mode to set these limits 
and to control the duration of the simulation.

Evaluating Results
Generating a bit error rate curve requires multiple simulations. You can 
perform multiple simulations from the command line using the sim command. 
To do this:

• Change the value of the Es/No parameter in the AWGN Channel block mask 
from a constant to the variable EsNodB. 
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• Run the following code to generate the data for plotting the BER curve.

CodeRate = 0.75;
EbNoVec = [2:.2:10];
EsNoVec = EbNoVec + 10*log10(CodeRate);
BERVec = zeros(length(EsNoVec),3);
for n=1:length(EsNoVec),

EsNodB = EsNoVec(n);
sim('tstconvcod');
BERVec(n,:) = BER_Data;

end

To confirm the validity of the results, compare them to an established 
performance bound. The bit error rate performance of a rate  
punctured code is bounded above by the expression

In this expression, erfc denotes the complementary error function, r is the code 
rate, and both dfree and wd are dependent on the particular code. For the rate 
3/4 code of this example, dfree = 5, w5 = 42, w6 = 201, w7 = 1492, and so on. See 
reference [1] for more details.

The following commands compute an approximation of this bound in MATLAB 
using the first seven terms of the summation.

dist = [5:11];
nerr = [42 201 1492 10469 62935 379644 2253373];
CodeRate = 3/4;
EbNo_dB = [2:.02:10];
EbNo = 10.0.^(EbNo_dB/10);
arg = sqrt(CodeRate*EbNo'*dist);
bound = nerr*(1/6)*erfc(arg)';

The figure below shows simulation results and bounds for the rate 3/4 
punctured code in this example, as well as other punctured codes of rates 2/3 
and 7/8 derived from the same original constraint length 7 rate 1/2 code. The 
puncture patterns for these other rates are listed in reference [1]. The 
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simulations used to generate the data for this plot were set to stop after 1000 
errors or 40 million bits, whichever came first.

In each case, the results agree well with the theoretical bounds. In some cases, 
at the lower bit error rates, the simulation results appear to indicate error 
rates slightly above the bound. This is not a result of simulation variance, since 
over 500 bit errors were observed at even the lowest bit error rate value. 
Rather, this is a result of the finite traceback depth in the decoder.

Bibliography
[1] Yasuda, Y., K. Kashiki, and Y. Hirata, “High Rate Punctured Convolutional 
Codes for Soft Decision Viterbi Decoding,” IEEE Transactions on 
Communications, Vol. COM-32, pp. 315-319, March 1984.



Adaptive Equalization Demo

3-9

3. Demonstration Models

Adaptive Equalization Demo
The Adaptive Equalization demo, eq_sim, demonstrates the behaviors of 
several algorithms that are commonly used in communications: 

• Least Mean-Square (LMS) 

• Recursive Least-Squares (RLS)

• Constant Modulus Algorithm (CMA)

To select any of these algorithms and to set up the parameters corresponding 
to each algorithm, double click the block in the model labeled “Initial Settings.”

The Least Mean-Square (LMS) algorithm tries to minimize the mean square 
error (MSE) by using instantaneous values of the error. 

Both the LMS and RLS algorithms use a sequence of symbol estimation errors 
to drive the equalizer weight adaptation. The error is given by the difference 
between the equalizer's output symbol and the so-called desired symbol. The 
algorithms operate in one of two modes: 

• Training mode, in which the desired symbol sequence exactly matches the 
transmitted symbol sequence (i.e., the receiver has knowledge of the 
transmitted data in this mode).

• Decision-directed mode, in which the "desired" symbols are derived from the 
output of the decision device.

In the demo, a manual switch controls these modes of operation. To toggle the 
mode, double-click the block.

To overcome some of the disadvantages of the LMS algorithms, researchers 
have proposed different modifications of the algorithms that can be used under 
different scenarios. Several of these algorithms have been implemented in the 
model: Sign LMS, Normalized LMS (NLMS), Variable Step-size LMS 
(VSLMS), and Leaky LMS.  

The Recursive Least-Squares (RLS) algorithm uses a deterministic approach 
instead of stochastic as in the case of the LMS to update the coefficients. By 
increasing the computational complexity and risk of instability, the RLS 
achieves faster convergence than the LMS. 

Finally, the Constant Modulus Algorithm (CMA), or Godard Algorithm, 
belongs to the family of blind equalization. It is mainly used when no 
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knowledge of the input sequence is available and only statistics of the source 
are known. 

When the number of coefficients and the number of points in the constellation 
are equal to 2, the trajectory over the MSE and the CMA cost functions are 
presented when the simulation is stopped. To select the initial conditions over 
the cost function, double-click the block labeled “Plot Cost Function.”

For more information on the LMS adaptive filter or channel equalization, see 
the following references:

[1] Haykin, S., Adaptive Filter Theory, Third Ed., Prentice Hall, 1996.

[2] Farhang-Boroujeny, B. Adaptive Filters – Theory and Applications, John 
Wiley & Sons, 1999.

[3] Johnson, C. R., et al., “Blind Equalization Using the Constant Modulus 
Criterion: A Review,” Proc. IEEE, Vol. 86, No. 10, Oct. 1998.
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CPM Phase Tree Demo

The CPM Phase Tree demo, cpmphasetree, illustrates a way to use the Dis-
crete-Time Eye Diagram Scope block to view the phase trajectory, phase tree, 
and instantaneous frequency of a CPM modulated signal. This document 
highlights these aspects of the demo:

• “Structure of the demo” on page 3-11

• “Variables” on page 3-11

• “Visible Results of the Demo” on page 3-12

Structure of the demo
This demo uses various Communications Blockset, DSP Blockset and Simulink 
blocks to model a baseband CPM signal. The demo includes the following 
blocks:

• Random Integer block, which provides a source of uniformly distributed 
random integers in the range [0, M-1], where M is the constellation size of 
the CPM signal

• Integer to Bit Converter block

• CPM Modulator Baseband block

• Complex to Magnitude-Angle Converter block

• Phase Unwrap block

• Zero-Order Hold block

• Discrete Transfer Function block

• Gain block

• Four copies of the Discrete-Time Eye Diagram Scope block

Variables
When the model is loaded, cpmphasetree_init.m is called to create several 
variables in the MATLAB workspace, using the PreLoadFcn model callback 
parameter.
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Visible Results of the Demo
When you run the demo, the four Discrete-Time Eye Diagram Scope blocks in 
the model show how the CPM signal changes over time:

• The block labeled “Modulated Signal” displays the in-phase and quadrature 
signals. Double-click the block to open the scope.

The modulated signal is easy to see in the eye diagram only when the 
Modulation index parameter in the CPM Modulator Baseband block is set 
to 0.5.  If you set the Modulation index to another value, for example 2/3, 
the features of the modulated signal are difficult to decipher for this more 
complex modulation.   Unwrapping the phase and plotting it is another way 
to illustrate these more complex CPM modulated signals. 

• The block labeled “Phase Trajectory” displays the CPM phase. Double-click 
the block to open the scope.

The Phase Trajectory Eye Diagram Scope block reveals that the signal phase 
is also difficult to view because it drifts with the data input to the modulator.

• The block labeled “Phase Tree” displays the phase tree of the signal.

The CPM phase is processed by a few simple blocks to make the CPM pulse 
shaping easier to view.  This processing holds the phase at the beginning of 
the symbol interval and subtracts it from the signal.  This resets the phase 
to zero every three symbols.  The resulting plot shows the many phase 
trajectories that can be taken by the signal from any given symbol epoch. 

• The block labeled “Instantaneous Frequency” displays the instantaneous 
fequency of the signal.

The CPM phase is differentiated to produce the frequency deviation of the 
signal.   Viewing the CPM frequency signal enables you to observe the 
frequency deviation qualitatively, as well as make quantitative observations, 
such as measuring peak frequency deviation.

Experimenting with the Demo
To learn more about the demo, try changing the following parameters in the 
CPM Modulator Baseband block:

• Change Pulse length to one of the values 1, 2, ... 6. 

• Change Frequency pulse shape to one of the other settings, such as Raised 
Cosine or Gaussian.
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You can observe the effect of changing these parameters on the phase tree and 
instantaneous frequency of the modulated signal.
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GMSK vs. MSK Demo

The GMSK vs. MSK demo, gmskvsmsk, visually compares Gaussian minimum 
shift keying (GMSK) and minimum shift keying (MSK) modulation schemes. 
This document highlights these aspects of the demo:

• “Structure of the Demo” on page 3-14

• “Visible Results of the Demo” on page 3-14

Structure of the Demo
This demo uses various Communications and DSP Blockset blocks to model 
GMSK and MSK modulation schemes. The demo includes the following blocks:

• Random Integer block, which provides a source of uniformly distributed 
random integers in the range [0, M-1], where M is the constellation size of 
the GMSK or MSK signal

• Unipolar to Bipolar Converter block

• GMSK Modulator Baseband block

• MSK Modulator Baseband block

• AWGN Channel block

• Two copies of the Discrete-Time Eye Diagram Scope block

• Two copies of the Discrete-Time Signal Trajectory Scope block

Visible Results of the Demo
The demo illustrate the difference between the two modulation schemes. The 
Discrete-Time Eye Diagram Scope blocks show the eye diagrams of GMSK and 
MSK signals corrupted by noise.  The eye diagrams show the similarity 
between the GMSK and MSK signals when you set the Pulse length of the 
GMSK Modulator Baseband block to 1.  Setting the Pulse length to 3 or 5 
enables you to view the difference that a partial response modulation can have 
on the eye diagram.  The number of paths increases demonstrating that the 
CPM waveform depends on values of the previous symbols as well as the 
present symbol.   You can change the pulse length to 2 or 4, but you should 
change the Phase offset to pi/4 for a better view of the modulated signal. In 
order to more clearly view the Gaussian pulse shape, you must use 
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instrumentation that enables you to view the phase of the signal, as in 
described in “CPM Phase Tree Demo” on page 3-11.  
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Filtered QPSK vs. MSK Demo
The QPSK vs. MSK demo, qpskvsmsk, enables you to visually compare filtered 
quadrature phase shift keying (QPSK) and minimum shift keying (MSK) 
modulation schemes. This document highlights these aspects of the demo:

• “Structure of the Demo” on page 3-16

• “Visible Results of the Demo” on page 3-16

Structure of the Demo
This demo uses various Communications and DSP Blockset blocks to model 
Filtered QPSK and MSK modulation schemes. The demo includes the following 
blocks:

• Sources of uniformly distributed random integers in the range [0, M-1], 
where M is the constellation size of the modulation scheme. Two sources are 
required since QPSK is a quaternary modulation method while MSK is a 
binary modulation method.

• A Baseband QPSK Modulator block

• A Baseband MSK Modulator block

• FIR Interpolator block that implements raised cosine filtering

• A Unipolar to Bipolar Converter block

• An Additive White Gaussian Noise (AWGN) Channel  block

• Eye Diagram blocks

Visible Results of the Demo
The demo include these visual aids to illustrate the difference between the two 
modulation schemes:

Eye Diagram blocks that show the eye diagrams of Filtered QPSK and MSK 
signals plus noise.  In FQPSK, the value of both the inphase and quadrature 
components of the signal are permitted to change at any symbol interval.   
However, for MSK, the symbol interval is half that for QPSK but the inphase 
and quadrature components change values in alternate symbol epochs.   
Therefore, the ideal samping time for QPSK is  0.5, 1.5, 2.5, … while the ideal 
sampling period for MSK is 0.5, 1.5, 2.5, … for the inphase signal and 1, 2, 3 … 
for the quadrature signal. 
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Rayleigh Fading Channel Demo
The Rayleigh Fading model, rayleighfading, illustrates the effect of 
multipath Rayleigh fading on a signal modulated by quadrature phase shift 
keying (QPSK). The following aspects of the demo are described:

• “Structure of the Demo”

• “Visible Results”

Structure of the Demo
This demo uses various Communications and DSP Blockset blocks to model 
multi-path Rayleigh fading. The demo includes the following blocks:

• Random Integer block, which provides source of uniformly distributed 
random integers in the range [0, M-1], where M is the M-ary number

• QPSK Modulator Baseband

• Multipath Rayleigh Fading Channel

• FIR Interpolation block, which implements raised cosine filtering

• Discrete-Time Scatter Plot Scope

Visible Results
The scatter plot illustrates the effect of fading on the signal constellation. The 
channel is presently set to contain two paths.  However, you can change this by 
varying the number of elements and their values in the delay and gain vectors.  
In addition, the Maximum Doppler shift (Hz) parameter in the Multipath 
Rayleigh Fading Channel block changes the fading pattern.   The amplitude 
values for each path are drawn from the Rayleigh distribution while the 
Doppler values are drawn from the Doppler spectrum from the Jakes channel 
model.
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Gray Coded 8-PSK Demo
Gray coding is a technique often used in multilevel modulation schemes to 
minimize the bit error rate by ordering modulation symbols so that the binary 
representations of adjacent symbols differ by only one bit. This demo simulates 
a communications link using Gray-coded 8-PSK modulation.

The sections that follow discuss the execution of the model and the variables 
used in the model. The section “Learning More About the Gray Coding Demo” 
on page 3-26 discusses some ways you can modify the model and compare its 
results with theoretical values.

Note  For more information about how parts of the model work, click on 
blocks within the figure below.
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How the Model Executes
This model executes in the following sequence:

1 The Random Integer Generator block serves as the source, producing a 
sequence of integers.

2 The Integer to Bit Converter block converts each integer into a 
corresponding binary representation.

3 The M-PSK Modulator Baseband block modulates the data in complex 
envelope format, using a Gray-coded constellation ordering.

4 The AWGN Channel block adds white Gaussian noise to the modulated 
data.

5 The M-PSK Demodulator Baseband block demodulates the corrupted data.

6 The Bit to Integer Converter block converts each binary representation to a 
corresponding integer.

7 One copy of the Error Rate Calculation block (labeled Error Rate 
Calculation1 in this model) compares the demodulated integer data with the 
original source data, yielding symbol error statistics.

8 Another copy of the Error Rate Calculation library block (labeled Error Rate 
Calculation2 in this model) compares the demodulated binary data with the 
binary representations of the source data, yielding bit error statistics.

Variables in the Model
Loading this model automatically defines in the MATLAB workspace five 
variables that are used in the demo’s blocks and subsystems. To clarify the 
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discussion of the individual blocks and subsystems, the variables’ meanings 
and values are listed in the table below:

Components of the Gray Coding Demo
This section discusses the purpose, behavior, and relevant parameters of each 
top-level component within the demo model. This section covers components in 
the order in which they process data in the simulation.

Random Integer Generator
The Random Integer Generator block produces random data that is used as the 
information in this simulation. This block generates one 100-symbol frame of 
integers in the range 0 to M-1 every Tsym seconds.

Table 3-1:  Preset Variables in the Gray Coding Demo

Name Meaning Value

M Symbol set size 8

Tsym Symbol period 0.2 s

Tsample Sample period 0.01 s

Tmax Simulation stop time 10,000 s

EbNodB Ratio of energy per bit to noise power 
spectral density (Eb/No)

3 dB
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Integer-to-Bit Conversion
The Integer to Bit Converter block converts integer symbols to their equivalent 
binary representations. Its parameter is the number of bits in each integer.

Gray Coded M-PSK Modulation
The M-PSK Modulator Baseband block:

• Accepts binary-valued inputs that represent integers between 0 and M-1

• Maps binary representations to constellation points using a Gray-coded 
ordering

• Produces unit-magnitude complex phasor outputs, with evenly spaced 
phases between 0 and 2π(M-1)/M
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The table indicates which binary representations in the input correspond to 
which phasors in the output. The second column of the table is an intermediate 
representation that the block uses in its computations.

The table below sorts the first two columns of the table above, according to the 
output values. This sorting makes it clearer that the overall effect of this 
subsystem is a Gray code mapping as shown in the figure below. Notice that 
the numbers in the second column of the table below appear in 
counterclockwise order in the figure.

Modulator Input Gray-Coded 
Ordering

Modulator Output

000 0

001 1

010 3

011 2

100 7

101 6

110 4

111 5

Modulator Output Modulator Input

000

001

011

010

110

111

e0

ejπ 4⁄

ej3π 4⁄

ejπ 2⁄ ej2π 4⁄=

ej7π 4⁄

ej3π 2⁄ ej6π 4⁄=

ejπ ej4π 4⁄=

ej5π 4⁄

e0

ejπ 4⁄

ejπ 2⁄ ej2π 4⁄=

ej3π 4⁄

ejπ ej4π 4⁄=

ej5π 4⁄
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AWGN Channel
The AWGN Channel library block simulates transmission over a noisy 
channel.  Its Signal to noise ratio (Es/No) mode uses these quantities to 
determine the variance:

• Es/No, the ratio of energy per symbol to noise power spectral density

• The input signal power

• The symbol period

101

100

Modulator Output Modulator Input

ej3π 2⁄ ej6π 4⁄=

ej7π 4⁄

0 (000)

4 (100)

5 (101)

7 (111)

6 (110)

2 (010)

3 (011)

1 (001)
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The values for these parameters are chosen as follows:

• The Es/No parameter is computed from the workspace variables EbNodB and 
M. The conversion from bit energy to symbol energy reflects the fact that each 
symbol carries log2(M) bits of information.

• The signal power is 1 watt because the M-PSK Modulator Baseband block 
produces unit power signals.

• The symbol period of the channel is set to Tsym.

Gray Coded MPSK Demodulation
The M-PSK Demodulator Baseband block mirrors the Gray-coded modulation 
process. Notice that corresponding parameters in the modulator and 
demodulator blocks have the same values.

Bit-to-Integer Conversion
The Bit to Integer Converter block converts binary representations of symbols 
to their integer equivalents. Its parameter is the number of bits in each integer.
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Error Rate Calculation
The Error Rate Calculation block compares demodulated symbols to original 
source symbols to compute the error rate. This model uses two Error Rate 
Calculation blocks, one to compute the symbol error rate and the other to 
compute the bit error rate. Both blocks use the parameter values shown below.

Symbol Error Details and Bit Error Details
Simulink’s Display block shows the running error statistics throughout the 
simulation. Each Display block in the diagram lists three numbers, which 
represent:

• The symbol or bit error rate

• The total number of errors

• The total number of comparisons that the Error Rate Calculation block made
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Sending Data to the MATLAB Workspace
Simulink’s To Workspace block sends the complete set of error statistics to the 
MATLAB workspace. When the simulation ends, the MATLAB variables SER 
and BER are both three-column matrices whose columns represent these 
quantities at each time step:

• The symbol or bit error rate

• The total number of errors

• The total number of comparisons that the Error Rate Calculation block made

Learning More About the Gray Coding Demo
To learn more about a particular library block in this model, see its reference 
page in the Communications Blockset documentation. If you have the model 
open, then you can click the Help button in the block’s dialog box to display the 
reference page.

The rest of this section indicates how you can analyze the data that the demo 
produces to compare theoretical performance with simulation performance.

Data Analysis Using the Demo
The theoretical symbol error probability of MPSK is given by

where erfc is the complementary error function, Es/No is the ratio of energy in 
a symbol to noise power spectral density, and M is the number of symbols.

To determine the bit error probability, the symbol error probability, PE, needs 
to be converted to its bit error equivalent. There is no general formula for the 
symbol to bit error conversion. Upper and lower limits are nevertheless easy to 
establish. The actual bit error probability, Pb, can be shown to be bounded by

The lower limit corresponds to the case where the symbols have undergone 
Gray coding. The upper limit corresponds to the case of pure binary coding.
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Simulation Results. To test the Gray code modulation scheme in this model, 
simulate the tstgraycod model for a range of Eb/No values. Because increasing 
the value of Eb/No lowers the number of errors produced, the length of each 
simulation must be increased to ensure that the statistics of the errors remain 
stable.

Using the sim command to run a Simulink simulation from the MATLAB 
command window, the following code generates data for symbol error rate and 
bit error rate curves. It considers Eb/No values in the range 0 dB to 12 dB, in 
steps of 2 dB.

M = 8;
Tsym = 0.2;
Tsample = 0.01;
BERVec = [];
SERVec = [];
EbNoVec = [0:2:12];
TVec = [1000 1000 1000 15000 20000 100000 100000]*Tsym;
for n=1:length(EbNoVec);
   Tmax = TVec(n);
   EbNodB = EbNoVec(n);
   sim('tstgraycod');
   SERVec(n,:) = SER;
   BERVec(n,:) = BER;
end;

After simulating for the full set of Eb/No values, you can plot the results using 
these commands:

semilogy(EbNoVec,SERVec(:,1),'o',EbNoVec,BERVec(:,1),'*'); 
legend('Symbol error rate','Bit error rate');
xlabel('Eb/No (dB)'); ylabel('Error Probability');
title('Symbol and Bit Error Probability');
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Comparison with Pure Binary Coding and Theory. As a further exercise, you can plot 
the theoretical curves on the same axes with the simulation results. You can 
also compare Gray coding with pure binary coding, by modifying the M-PSK 
Modulator Baseband and M-PSK Demodulator Baseband blocks so that their 
Constellation ordering parameters are Binary instead of Gray.
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Discrete Multitone Signaling Demo
The Discrete Multitone Signaling demo, dmt_sim, models a modulation 
technique that is part of the asymmetric digital subscriber line (ADSL) 
technology for transmitting data and multimedia information over telephone 
lines. The discrete multitone (DMT) signaling technique divides the channel 
into many subchannels and modulates each one individually. This document 
highlights these aspects of the demo:

• Structure of the demo, and use of Communications Blockset blocks

• An alternative model for the DMT technique, dmt_sim_alt

Structure of the Demo
This demo uses various Communications Blockset blocks to model DMT 
signaling. To see how the modulation or demodulation blocks are arranged, 
first open the DMT Modulator or DMT Demodulator systems at the top level of 
the model, and then look under the mask of the Modulator Bank or 
Demodulator Bank subsystems. Notice that each of the 16 Modulator Bank 
icons represents a set of 16 Rectangular QAM Modulator Baseband blocks. The 
DMT technique allocates different numbers of bits to different subchannels. 
Each copy of the modulator block acts as a distinct subchannel, and uses the 
256-element vector b in the MATLAB workspace to determine the M-ary 
number parameter that is appropriate for that subchannel.

The demo also includes:

• A plot of the number of bits that each of the 256 subchannels transmits. To 
see this plot, double-click on the icon labeled, “Load and Plot Bit Allocation 
Vector.”

• A plot of the spectrum of the transmitted signal.

• A display icon that shows the bit error rate, the number of bit errors, and the 
total number of bits processed.

• Frame-based processing, so that the simulation processes many bits in each 
time step. The double connector lines between blocks indicate frame-based 
signals.
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Discrete Multitone Signaling Demo, Alternative 
Form
The model dmt_sim_alt illustrates an alternative way to model discrete 
multitone signaling. Because it uses fewer blocks, it loads and initializes more 
quickly. To see how the alternative version uses fewer blocks, compare the 
alternative DMT Modulator subsystem with the original DMT Modulator 
subsystem.

Original: 256 Modulator Blocks
In the original form, each of 16 Modulator Bank icons represents a set of 16 
modulator blocks. The system has 256 modulator blocks in total. This 
arrangement closely resembles the definition of 256-channel DMT signaling.

Alternative: Ten Modulator Blocks
In the alternative form, ten modulator blocks implement the ten different 
signal constellations in this modulation scheme. The system sends selected bits 
to the modulator block that is appropriate for them. This approach deviates 
from the specified definition of frame-based signals, however, because a frame 
of bits that enters one of the modulator blocks is not a set of successive samples 
from a time series. If you use an approach like this in your own models, first be 
sure that you understand the possible implications. (Refer to the online 
documentation for the Communications Blockset for more information about 
the definition of frame-based signals.)

For more information about other aspects of dmt_sim_alt, see “Discrete 
Multitone Signaling Demo” and the original dmt_sim demo.

Selected Bibliography
[1] Maxwell, Kim. “Asymmetric Digital Subscriber Line: Interim Technology 
for the Next Forty Years.” IEEE Communications Magazine, October 1996. 
100-106.
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Iterative Decoding of a Serially Concatenated 
Convolutional Code (SCCC) - Demo

Note  This demo presents technology covered under U.S. Patent Number 
6,023,783, “Hybrid concatenated codes and iterative decoding,” assigned to the 
California Institute of Technology. The end user of this product is hereby 
granted a limited license to use this demo solely for the purpose of assessing 
possible commercial and educational applications of the technology. Any other 
use or modification of this demo may constitute a violation of this and/or other 
patents.

The sccc_sim demo illustrates how to use an iterative process to decode a 
serially concatenated convolutional code. This document highlights these 
aspects of the demo:

• Structure of the demo

• Creating a serially concatenated code

• Decoding using an iterative process

• Visible results of the demo

Structure of the Demo
To summarize briefly, the simulation generates information bits, encodes them 
using a serially concatenated convolutional code, and transmits the coded 
information along a noisy channel. The simulation then decodes the received 
coded information using an iterative decoding process, and computes error 
statistics based on different numbers of iterations. Throughout the simulation, 
the error rates appear in a Display block.

Variables in the Demo
When you open the demo, it loads several variables into the MATLAB 
workspace. Note that this operation overwrites variables in the workspace that 
have the same names. If you accidentally delete this model’s variables and 
need to recreate them, open the Global Parameters block’s mask and then press 
OK.
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The Global Parameters block lets you vary the values of some variables that 
the model uses. The table below indicates their names and meanings.

Creating a Serially Concatenated Code
The encoding portion of the demo uses a Convolutional Encoder block to encode 
a data frame, a Random Interleaver block to shuffle the bits in the code words, 
and another Convolutional Encoder block to encode the interleaved bits. 
Because these blocks are connected in series with each other, the resulting code 
is called a serially concatenated code.

Together, these blocks encode the 1024-bit data frame into a 3072-bit frame 
representing a concatenated code. These sizes depend on the model’s Block 
size parameter (See the Global Parameters block.). The code rate of the 
concatenated code is 1/3.

In general, the purpose of interleaving is to protect code words from burst 
errors in a noisy channel. A burst error that corrupts interleaved data actually 
has a small effect on each of several code words, rather than a large effect on 
any one code word. The smaller the error in an individual code word, the 
greater the chance that the decoder can recover the information correctly.

Convolutional Encoding Details
The two instances of the Convolutional Encoder block use their Trellis 
structure parameters to specify the convolutional codes. The table below lists 

Name Meaning

Eb/No Eb/N0 for channel noise, measured in dB; used to compute 
the variance of the channel noise

Block size The number of bits in each frame of uncoded data

Number of 
iterations

The number of iterations to use when decoding

Seed The initial seed in the Random Interleaver and Random 
Deinterleaver blocks
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the polynomials that define each of the two convolutional codes. The second 
encoder has two inputs and uses two rows of memory registers.

Decoding Using an Iterative Process
The decoding portion of this demo consists of two APP Decoder blocks, a 
Random Deinterleaver block, and several other blocks. Together, these blocks 
form a loop and operate at a rate six times that of the encoding portion of the 
demo. The loop structure and higher rate combine to make the decoding portion 
an iterative process. Using multiple iterations improves the decoding 
performance. You can control the number of iterations by setting the Number 
of iterations parameter in the model’s Global Parameters block. The default 
number of iterations is six.

Computations in Each Iteration
In each iteration, the decoding portion of the demo decodes the inner 
convolutional code, deinterleaves the result, and decodes the outer 
convolutional code. The outer decoder’s L(u) output signal represents the 
updated likelihoods of original message bits (that is, input bits to the outer 
encoder).

The looping strategy in this demo enables the inner decoder to benefit in the 
next iteration from the outer decoder’s work. To understand how the loop 
works, first recall the meanings of these signals:

Outer 
Convolutional 
Code

Inner Convolutional Code

Generator 
Polynomials

1 + D + D2 and 
1 + D2

First row: 1 + D + D2, 0, and 1 + D2

Second row: 0, 1 + D + D2, and 1 + D

Feedback 
Polynomials

1 + D + D2 1 + D + D2 for each row

Constraint 
Lengths

3 3 for each row

Code Rate 1/2 2/3
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• The outer decoder’s L(c) output signal represents the updated likelihoods of 
code bits from the outer encoder

• The inner decoder’s L(u) input represents the likelihoods of input bits to the 
inner encoder

The feedback loop recognizes that the primary distinction between these two 
signals is in the interleaving operation that occurs between the outer and inner 
encoders. Therefore, the loop interleaves the L(c) output of the outer decoder to 
replicate that interleaving operation, delays the interleaved data to ensure 
that the inner decoder’s two input ports represent data from the same time 
steps, and resets the L(u) input to the inner decoder to zero after every six 
iterations.

Results of the Iterative Loop
The result of decoding is a 1024-element frame whose elements indicate the 
likelihood that each of the 1024 message bits was a zero or a one. A nonnegative 
element indicates that the message bit was probably a one, and a negative 
element indicates that the message bit was probably a zero. The Hard Decision 
block converts nonnegative and negative values to ones and zeros, respectively, 
so that the results have the same form as the original uncoded binary data.

Visible Results of the Demo
The demo includes a large Display block that shows error rates after comparing 
the received data with the transmitted data. The number of error rates in the 
display is the number of iterations in the decoding process. The first error rate 
reflects the performance of a decoding process that uses one iteration, the 
second error rate reflects the performance of a decoding process that uses two 
iterations, and so on. The series of error rates shows that the error rate 
generally decreases as the number of iterations increases.

Selected Bibliography
[1] Benedetto, S., D. Divsalar, G. Montorsi, and F. Pollara. “Serial 
Concatenation of Interleaved Codes: Performance Analysis, Design, and 
Iterative Decoding.” JPL TDA Progress Report, vol. 42-126, August 1996. [This 
electronic journal is available at 
http://tmo.jpl.nasa.gov/tmo/progress_report/42-126/title.htm.]
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Iterative Decoding. U. S. Patent No. 6,023,783, Feb. 8, 2000.

[3] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer 
Academic Publishers, 1999.
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Phase Noise Effects in 256-QAM - Demo
The phasenoise_sim demo illustrates the effect of a receiver’s phase noise on 
256-ary quadrature amplitude modulation (QAM). A QAM modulation scheme 
with a large number of constellation points is relatively sensitive to phase 
noise. This document highlights these aspects of the demo:

• Overall structure of the demo

• Visible results of the demo

Structure of the Demo
This demo uses various Communications Blockset blocks to model a QAM 
transceiver with phase noise. The demo contains only a small number of blocks, 
including:

• A source of integers between 0 and 255

• A baseband 256-QAM modulator

• An additive white Gaussian noise (AWGN) channel

• A source of phase noise

• A baseband 256-QAM demodulator

• An error statistic calculator

• A display icon that shows the error statistics while the simulation runs

• A scatter plot that shows the received signal, including the phase noise

Phase Noise Block
The Phase Noise block shifts the phase of the received signal by a random 
amount. You can adjust the variance of the random phase shift by adjusting the 
Phase noise level parameter in the Phase Noise block’s mask.

Visible Results of the Demo
The demo includes these visual ways to understand its performance:

• A display icon that shows the running error statistics for the system. These 
statistics are the error rate, the number of errors detected, and the total 
number of symbols compared.
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• A scatter plot that shows the received signal, including both the white 
Gaussian noise and the phase noise. Near each constellation point is a 
cluster of points. Near constellation points that are far from zero, the cluster 
is close to an arc. The arc shape is an effect of phase noise.

• A figure that shows bit error rates for this system with various levels of 
phase noise. To see the figure, double-click on the Display Figure icon in the 
demo. Each curve in the plot shows the bit error rate as a function of Eb/No 
in the AWGN channel, for a fixed amount of phase noise.

To create plots like this yourself, you can run the simulation multiple times, 
varying the parameters and recording the numerical results. An efficient 
way to do this is to replace key parameters in the model with variables, 
insert a To Workspace block for recording error statistics, and then to run the 
simulation using a loop in a MATLAB script. For more information about 
this technique, see the sim function, and the “Learning More About the Gray 
Coding Demo” section.
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3. Demonstration Models

PLL-Based Frequency Synthesis Demo
This example shows how to simulate a phase-locked loop (PLL) frequency 
synthesizer. The model multiplies the frequency (fr) of a reference signal by a 
constant N/M, to produce a synthesized signal whose frequency is fr*N/M. A 
feedback loop maintains the frequency of the synthesized signal at this level.

To open the model, type freqsyn_sim at the MATLAB prompt (or click here if 
you are reading this in the MATLAB Help browser). In addition to the model 
window, three Scope windows open, labelled “Control Signal”, “Synthesized 
Signal” and “Reference Signal”.

Variables in the Model
When you load the model, it creates several variables, using the PostLoadFcn 
model callback parameter. Besides the variables N and M, there are:

• fr = frequency of the reference signal
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• fq = quiescent frequency in the Voltage-Controlled Oscillator (VCO) block

• sen = Voltage-Controlled Oscillator input sensitivity

The model initially assigns values to these variables as follows: N = 10, M = 3, 
fr = 30 MHz, fq = 30 MHz and sen = 40 MHz/V. The frequency of the 
synthesized signal will then be 100 MHz. After running the simulation with 
these values, you can later change them by typing new values at the MATLAB 
prompt, if you want to experiment with the model.

Note  These are the same variables as those in the Fractional N-Frequency 
Synthesis demo, but they are assigned different initial values. If you change 
the values of these variables at the MATLAB command line, use the same 
upper and lower case letters in the variable names as given above.

Running the Simulation
When you run the simulation, you see signals appear in the three Scope 
windows, as shown below. 

The control signal, which the Voltage-Controlled Oscillator block uses to 
maintain the frequency of the synthesized signal, initially fluctuates for about 
10 microseconds, but then stabilizes to a constant value of 7/4. This occurs 
when the model reaches a steady state – that is, when the frequency of the 
synthesized signal is close to 100 MHz. Similarly, the synthesized signal 
oscillates back and forth at first, but then stabilizes to a square pulse of 
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frequency 100 MHz. The reference signal is a square pulse of frequency 30 
MHz.

The Display block at the lower right of the model window displays the 
frequency of the synthesized signal, as shown in the figure below.

Blocks in the Model
The following table lists the most important blocks in the model and describes 
their purpose.

Pulse Generator
The Pulse Generator block, from the Simulink Sources library, generates the 
reference signal. The block produces a periodic pulse train. Double-click on the 
block to open the mask, as shown below.

Block Purpose in Example

Pulse Generator Generates the reference signal, which is a periodic pulse train.

Logical Operator (XOR) XOR’s the frequency-divided reference signal with the 
frequency-divided synthesized signal.

Analog Filter Design Uses a lowpass Butterworth filter to generate the control signal 
(along with the Gain block) and filter out high frequencies.

Gain Multiplies the signal by a constant.

Voltage-Controlled 
Oscillator

Controls the frequency of the synthesized signal, by means of the 
input control signal.
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The variable fr, initially set to 30 MHz, denotes the frequency of the pulse 
train. The period of the pulse train is 1/fr, which you can see in the Period 
parameter box. 

The recommended way to change the value of the period is to change the value 
of the variable fr in the MATLAB Command Window. This way the new value 
of fr will be updated in all the blocks whose parameters are set using the 
variable fr.

Divide Frequency by M
The Divide Frequency by M subsystem divides the frequency of the reference 
signal by the variable M. With the default values of the variables, the output 
of the block is a pulse train of frequency 10 MHz, called the frequency-divided 
reference signal.

Notice that there is also a Divide Frequency by N subsytem, which divides the 
frequency of the synthesized signal by the variable N. The output of this 
subsystem is called the frequency-divided synthesized signal.
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You can change the divisor in these subsystems by changing the value of M or 
N at the MATLAB prompt.

Phase Detector
The Logical Operator block, from the Simulink Math library, functions as a 
phase detector. It compares the frequencies of the frequency-divided reference 
signal and the frequency-divided synthesized signal. Since the block’s 
Operator parameter is set to XOR in the mask, the output signal is 0 where 
the two input signals are equal, and 1 where they are not equal.

At steady state, the signal is a pulse train with frequency of 20 MHz. The 
reason for this is that both inputs to the block have a frequency of 10 MHz, but 
they are out of phase by 1/4 of their period. As a result, the XOR’ed signal is a 
periodic pulse train with frequency 20 MHz.

You can compare the two input signals to the Phase Detector with the output 
signal by clicking on their respective Scope blocks, as shown below.

Analog Filter Design
The Analog Filter Design block filters high frequencies out of the signal coming 
from the phase detector. The block uses a lowpass Butterworth filter. You can 
use a higher order filter or another filter type to improve the stability of the 
synthesized signal.
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In the steady state of the model, the amplitude of the block’s output signal will 
be approximately constant, with a value of .5. This is the average value of the 
output from the phase detector. 

Gain Block
A Gain block, from the Simulink Math library, multiplies the output signal 
from the Analog Filter Design block by a constant to produce the control signal. 

The Gain parameter in the mask is set to . This expression 

ensures that when the model is at steady state, the frequency of the 
synthesized signal will remain at 100 MHz, even if you make changes to the 
variables fq and sen.

For the default values of the variables, the gain is equal to 7/2. Thus, in the 
steady state of the model, the output of the Gain block is approximately 
constant, with a value of 7/4.

Voltage-Controlled Oscillator
The Voltage-Controlled Oscillator block generates the synthesized signal 
(along with Convert to Square Wave subsystem) and adjusts the frequency of 
the synthesized signal according to the Voltage-Controlled Oscillator input 
signal.

When the control signal is close to its steady state value of 7/4, the 
Voltage-Controlled Oscillator block generates a signal whose frequency is close 
to fr*N/M, which is 100 MHz for the model’s pre-assigned parameters. If the 
output frequency drops, the control signal will rise, boosting the frequency of 
the output signal. If the output frequency rises, the control signal will fall, 
lowering the output frequency.

Double-click on the Voltage-Controlled Oscillator block to open the mask.

fr
N
M
---⋅ fq� 

  2
sen
----------⋅
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The Oscillation frequency parameter is just the quiescent frequency, fq. The 
difference between the block’s output signal frequency and the oscillation 
frequency is proportional to the input signal, interpreted as voltage. The 
oscillation frequency is set to the variable fq, which is initially assigned a value 
of 30 MHz. You can change this value in the Oscillation frequency dialog box, 
or by changing the value of fq at the MATLAB prompt.

The Input sensitivity parameter scales the input voltage, and thus controls 
the shift from the oscillation frequency. The units of the parameter are Hertz 
per volt. The input sensitivity is set to the variable sen, which is initially 
assigned a value of 40 MHz/V.

Changing the values of fq and sen will not affect the steady-state frequency of 
the synthesized signal, because the corresponding change to the gain value 
exactly compensates for the change.

Simulation Parameters
You can control the simulation parameters by selecting Simulation 
Parameters from the Simulation menu in the model window. This brings up 
the dialog box shown below.
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The Max step size parameter determines the maximum step size that 
Simulink’s variable-step solver uses to do calculations. This is set to half the 
period of the synthesized signal. In general, the Max step size should be less 
than the smallest period of all signals occurring in the model.
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3. Demonstration Models

Fractional-N Frequency Synthesis Demo
This example shows how to simulate a phase-locked fractional-N frequency 
synthesizer. The model multiplies the frequency, Fr, of a reference signal by a 
constant n+m, to produce a synthesized signal of frequency Fr*(n+m). A 
feedback loop maintains the frequency of the synthesized signal at this level.

This example is similar to the “Fractional-N Frequency Synthesis Demo” on 
page 3-46, which produces a synthesized signal of frequency fr*N/M, where N 
and M are integers. In this example, n is an integer and m is a fraction between 
0 and 1. There are several advantages to this approach, since it enables you to 
approximate the frequency of the synthesized signal with relatively small 
values for n and m. It also enables you to use a larger reference frequency. See 
the “Reference” on page 3-49 for more information.

To open the model, type fracsyn_sim at the MATLAB prompt (or click here if 
you are reading this in the MATLAB Help browser). In addition to the model 
window, shown below, this opens two Scope windows, labelled “Control Signal” 
and “Synthesized Signal.”
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Variables in the Model
When you load the model, it creates three variables besides n and m:

• Fr = frequency of the reference signal

• Fq = quiescent frequency in the Voltage-Controlled Oscillator (VCO) block

• Sen = Voltage-Controlled Oscillator input sensitivity

Note  If you change the values of these variables at the MATLAB command 
line, use the same upper and lower case letters in the variable names as given 
above. The variables in the Phase-Locked Frequency Synthesis demo have 
similar names, but with different cases. 

The model initially assigns values to these variables as follows: n = 10, m = .3, 
Fr = 10 MHz, Fq = 90 MHz and Sen = 10 MHz/V. The frequency of the 
synthesized signal at the model’s steady state is then 103 MHz. After running 
the simulation with these values, you can later change them by typing new 
values at the MATLAB prompt, if you want to experiment with the model.

Blocks and Subsystems in the Model
Most of the blocks in this model function in the same way as they do in the 
“PLL-Based Frequency Synthesis Demo” on page 3-38. You can refer to the 
documentation for that model for more information about these blocks 
function. There are two subsystems in this example that are not present in the 
Phase-Locked Frequency Synthesis demo. They are labeled “Accumulator” and 
“Divide Frequency.”

Accumulator
The Accumulator subsystem repeatedly adds the constant m to a cumulative 
sum. While the sum is less than 1, the output labelled “Carry” is 0. At a time 
step when the sum becomes greater than or equal to 1, the carry output is 1 and 
the cumulative sum is reset to its fractional part. The fraction of the time when 
the carry output is 1 is equal to m, while the fraction of the time when it is 0 is 
equal to 1-m.
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Divide Frequency
The Divide Frequency subsystem divides the frequency of the synthesized 
signal by n when the output of the Accumulator subsystem is 0, and divides it 
by n+1 when the output is 1. As a result, the average amount that frequency is 
divided by is

(1-m)n + m(n+1) = n + m = 10.3

The line leading out of the Divide Frequency subsystem is labeled “Divided 
synthesized.” At steady state, when the frequency of the synthesized signal is 
103 MHz, the divided synthesized signal has an average frequency of 10 Mhz.

Phase Detector
The Logical Operator block, from the Simulink Math library, functions as a 
phase detector. It applies the XOR operation to the frequencies of the reference 
signal and the frequency of the output from the Divide Frequency subsystem. 
The block’s output, labeled “Phase difference,” is 0 where the two input signals 
are equal, and 1 where they are not equal.

At steady state, the block’s output is a pulse train with frequency of 20 MHz. 
The reason for this is that both inputs to the block have an average frequency 
of 10 MHz, but they are out of phase by 1/4 of their period. As a result, the 
XOR’ed signal is a periodic pulse train with an average frequency of 20 MHz.

You can view the signals these blocks generate by double-clicking on the block 
labeled “Scope” at the top of the model window.

Running a Simulation
When you run a simulation, two scope windows appear, as shown below. 
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The left-hand scope displays the control signal, which the Voltage-Controlled 
Oscillator block uses to maintain the frequency of the synthesized signal. The 
right-hand scope displays the synthesized signal.

Reference
For further information on phase-locked frequency synthesis, see William F. 
Egan, Frequency Synthesis by Phase Lock, Second Ed. John Wiley & Sons, N.Y.
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3. Demonstration Models

256-Channel ADSL Demo
The 256-Channel ADSL demo, adsl_sim, models part of the asymmetric digital 
subscriber line (ADSL) technology for transmitting data and multimedia 
information over telephone lines. It illustrates a downstream path from the 
central office to the end user. It incorporates the discrete multitone (DMT) 
signaling modulation technique, which is the focus of the dmt_sim demo. This 
document highlights these aspects of the adsl_sim demo:

• Structure of the demo

• Transmitting data

• Processing received data

• Displaying error statistics

Alternatively, an animated tour of an ADSL model is at 
http://www.mathworks.com/products/dsp_comm/demos.shtml. Use this link 
if you are reading this in the MATLAB Help browser.

Structure of the Demo
The model generates random binary data frames, transmits them according to 
the ADSL specification, simulates a telephone line using an FIR filter of length 
101 and the AWGN Channel block, tries to recover the information from the 
received data, and computes error statistics. The model uses frame-based 
processing, thereby processing many bits in each time step. The double 
connector lines between blocks indicate frame-based signals.

Because these processes involve many blocks, the demo uses subsystems to 
organize some groups of blocks, and it uses Goto/From block pairs and colored 
regions to make the block diagram visually neater.

Transmitting Data
The transmitter portion of the model, shaded in blue at the top of the model, 
contains two parallel paths. One path (the fast buffer) processes the first 776 
bits of each 1552-bit data frame, while the other path (the interleaved buffer) 
processes the last 776 bits of each data frame. Each path appends eight cyclic 
redundancy check (CRC) bits to its 776-bit frame, scrambles the bits, and 
encodes them using a shortened Reed-Solomon code. The scrambling and 
encoding operations interpret the bits as integers between 0 and 127. In the 
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second path but not the first, a Convolutional Interleaver block interleaves the 
encoded data. This interleaving operation increases the second path’s 
resistance to burst errors but also its latency. Finally, the data from the two 
routes are concatenated and modulated. Data from the fast buffer is modulated 
to the low frequency subcarriers, while data from the interleaved buffer is 
modulated to the high frequency subcarriers, according the bit allocation vector 
b. This demo assumes that the bit allocation vector is known and uses the 
vector to calculate the channel. Type get_param('adsl_sim', 'preLoadFcn') 
to see the calculations involved. For more information about the DMT 
Modulator block in this demo, see “Discrete Multitone Signaling Demo”.

Processing Received Data
The receiver attempts to undo each operation that the receiver performed. 
Much of the receiver’s design is straightforward; for example, to undo the 
actions of the Convolutional Interleaver block, use a Convolutional 
Deinterleaver block with the same mask parameters. The frequency domain 
equalizer in the DMT Demodulator subsystem mitigates the channel 
distortion.

Aligning Frames to Account for Delays
One subtle point in the receiver portion is the Integer Delay block that follows 
the Convolutional Deinterleaver block. This Integer Delay block delays the 
deinterleaved data by 800 samples. Because the delay between the original and 
restored sequences is 40 samples (5 shift registers times a maximum delay of 
2*(5-1) samples among all shift registers), the extra 800-sample delay ensures 
that bits are properly aligned in the 840-bit frame.

Displaying Error Statistics
Two display icons show error statistics for comparisons between the 
transmitted and received data in the two paths (with and without 
interleaving). Two other display icons show error statistics based on the CRC 
bits, where any nonzero bit among the eight CRC bits indicates a frame error.

In each of the display icons, the error statistics consist of the bit error rate, the 
number of bit errors, and the total number of bits processed.



3 Demonstration Models

3-52

Selected Bibliography
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Bluetooth Voice Transmission Demo
The Bluetooth Voice Transmission demo, bluetooth_voice, models part of a 
Bluetooth system. Bluetooth is a short-range radio link technology that 
operates in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band. The 
demo modulates the signal using Gaussian frequency shift keying (GFSK) over 
a radio channel with maximum capacity of 1Mbps. 

The demo uses frequency hopping over a 79 MHz frequency range to avoid 
interference with other devices transmitting in the band. In this scheme, the 
sender divides transmission time into 625 microsecond slots, and uses a new 
hop frequency for each slot. Although the data rate is only 1Mbps, a much 
larger bandwidth of 79MHz is required to simulate the frequency hopping 
effects.

This document highlights the following aspects of the Bluetooth Voice 
Transmission demo:

• “Structure of the Demo”

• “Mask Variables”

• “Results and Display”

Structure of the Demo
The demo contains the following elements:

• Master transmitter, 

• Radio channel

• IEEE 802.11b interferer

• Slave receiver, 

• Bit error rate (BER) display

• Instrumentation. 

The transmitter subsystem performs speech coding, buffering, framing, header 
error control (HEC), forward error correction (FEC), GFSK modulation, and 
frequency hopping. Channel effects modeled include thermal noise, path loss 
and interference. The Free Space Path Loss block, from the RF Impairments 
library, models path loss. The IEEE 802.11b interferer is a masked subsystem 
that opens up a mask dialog for user input on double-clicks. Mean packet rate, 
packet length, power and frequency location in the ISM band can be specified 
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in the mask dialog. The Slave Receiver recovers speech from the transmitted 
signal, performing all the complementary operations that the transmitter does, 
but in reverse order.. 

The demo makes extensive use of frame-based processing, which can propagate 
large frames of samples at each execution step, allowing for much faster 
simulation of digital systems. The double connector lines between the blocks 
indicate frame-based signals.

The demo also uses subsystems to organize groups of blocks, and it uses 
Goto/From block pairs and colored regions to make the block diagram visually 
neater.

Mask Variables 
You can open the Model Parameters mask dialog by double-clicking the block 
labeled “Double-click to select Model Parameters.” In the mask dialog, you can 
specify 

• The high-quality voice (HV) packet type in the HV Packet type field 

• The initial slot pair type in the Initial Slot Pair for HV3 field

When you load the model, the bluetooth_init.m executes, creating several 
variables in the MATLAB workspace by using the PreLoadFcn model callback 
parameter.

Results and Display
To examine the performance of the demo, double-click the switches to bring up 
error rate display and instrumentation.

The error rate display shows three types of error rates:

• Raw bit error rate

• Residual bit error rate

• Frame error rate (FER)

The raw bit error rate displays the inconsistencies between the bits in the 
transmitted signal and the received signal. Frame error rate refers to the ratio 
of frame failure to the total number of frames. Frame failure, caused by noise 
and interference, is determined if the HEC fails to match the header info or if 
less than 57 bits are correct in the access code. If the frame fails, this is 
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captured by a zero-valued Frame OK signal, which is used in the FER 
calculation as well as to exclude bad frames from the residual BER calculation.

The Instrumentation brings up the spectrum of the transmitted Bluetooth 
signal (narrow-band) with IEEE 802.11b interference. The timing diagram for 
the Bluetooth and interferer slots is also available. A dynamic plot of packet 
frequency versus time is shown by the Spectrogram plot. The thin lines are the 
Bluetooth transmissions, while the larger, more colorful blocks are the 
interferer slots. Most of the time, due to frequency hopping, there is not much 
overlap of these slots. In a few cases, the signals do collide, as the Spectrogram 
plot clearly shows.

Reference
[1] http://www.bluetooth.com
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Digital Video Broadcasting Demo
The Digital Video Broadcasting demo, dvbt_sim, models part of the ETSI 
(European Telecommunications Standards Institute) EN 300 744 standard for 
terrestrial transmission of digital television signals. The standard prescribes 
the transmitter design and sets minimum performance requirements for the 
receiver. The purpose of this demo is to:

• Model the transmitter in its “2k mode,” as prescribed in the standard

• Model one possible receiver design

• Generate error statistics that will help determine whether the receiver 
model satisfies the performance requirements

This document highlights these aspects of the demo:

• The overall structure of the demo, which mimics the block diagram 
schematic in the standard

• Variables in the demo

• Design of the receiver portion of the demo

• Visible results of the demo

Structure of the Demo
Using a list and a schematic, the standard shows the major processes that the 
data undergoes. The top row of blocks in the demo mimics the structure of the 
schematic, by including subsystems that perform such major processes. The 
table below shows which subsystems correspond to processes from the 
schematic.

Process in Schematic Subystem or Block in Demo

Outer coder (204, 188) Shortened Reed-Solomon 
Encoder

Outer interleaver Convolutional Interleaver I=12

Inner coder Rate 3/4 Punctured Convolutional 
Code

Inner interleaver DVB-T Inner Interleaver
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The bottom row of icons in the demo represent subsystems that make up the 
receiver. The demo also includes a source of random data, a channel model, 
error statistic calculators, and several sinks.

Variables in the Demo
When you load the model, it creates several variables in the MATLAB 
workspace, using the PreLoadFcn model callback parameter.

To see how MATLAB computes the values of these variables, see the script 
dvbt_table_gen.m.

Design of the Receiver
The standard does not specify how to implement the receiver, although some 
inverse operations, such as deinterleaving, are clearly defined. This demo 
illustrates one possible receiver design by using these features:

• A 64-QAM demapper that makes soft decisions, producing a set of six real 
numbers for each complex number in its input. These six numbers represent 
soft decisions on the real and imaginary components’ first bit, second bit, and 

Mapper DVB-T 64-QAM Mapper

OFDM OFDM Transmitter

Variable Purpose in Demo

Ts Sample time of random integer source

dvb_bit_int_table Table for Bit Interleaver and Bit Deinterleaver

dvb_sym_int_table Table for Symbol Interleaver and Symbol 
Deinterleaver

dvbt_qam Signal constellation for 64-QAM mapping

Process in Schematic Subystem or Block in Demo
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third bit. The Viterbi Decoder subsystem interprets the soft-decision 
numbers and uses them to decode the punctured convolutional code properly.

To examine the exact mapping more closely, see the DVB-T 64-QAM 
Demapper subsystem, as well as the dvbt_qam variable in the MATLAB 
workspace.

• A traceback depth of 136 in the Viterbi Decoder library block. This library 
block appears within the top-level Viterbi Decoder subsystem.

Visible Results of the Demo
To examine the performance of the demo, use the sink blocks that are included 
in it, listed in the table below.

Selected Bibliography
[1] ETSI Standard EN 300 744: Digital Video Broadcasting (DVB); Framing 
structure, channel coding and modulation for digital terrestrial television. 
Valbonne, France: European Telecommunications Standards Institute, 1997.

Icon or Window What it Shows

Leftmost Display icon Error statistics for the entire 
system

Rightmost Display icon Error statistics for the inner coder

Spectrum Scope window Spectrum of the received OFDM 
signal

Delayed Scatter Plot window Scatter plot of the received 64-QAM 
signal
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HiperLAN/2 Demo
The HIPERLAN/2 demo, hiperlan2, models part of HIPERLAN/2 (high 
performance radio local area network), European (ETSI) Standard for 
high-rate wireless LANs. It employs Orthogonal Frequency Division 
Multiplexing (OFDM) that operates in the 5GHz band and offers raw data 
rates up to 54 Mbps. The model shows transmitter side coding and modulation 
for the 16 QAM, ¾ code rate mode with a corresponding ideal receiver chain 
and AWGN channel. This document highlights these aspects of the demo:

• The overall structure of the demo

• Visible results and display of the demo

Structure of the demo
The demonstration contains components that model the essential features of 
the HiperLAN/2 standard.  The top row of blocks contains the transmitter 
components while the bottom row contains the receiver components. The table 
below shows which blocks and subsystems correspond to processes from the 
standard.

The demo also includes the Bernoulli Binary Generator block as a data source, 
the AWGN Channel block to simulate noise, and the Error Rate Calculation 
block and Display block to show error statistics. 

Process in Standard Block or Subsystem in the Demo

FEC Coding Convolutional Encoder and P2 Puncture

Data interleaving Matrix Interleaver and General Block 
Interleaver

Signal constellations and 
mapping

Normalize

Modulation technique 
(OFDM)

OFDM Transmitter and OFDM Receiver
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Visible Results and Display
To examine the performance of the demo, use the sink blocks that are included 
in it, listed in the table below:

The Spectrum Scope and the Scatter Plot after OFDM Receiver are visible 
upon running the demo.  The  Scatter Plot after normalization can be viewed 
by double-clicking on the ‘Transmitted Signal’ Scatter Plot block

References
[1] ETSI TS 101 475 V1.2.2 (2001-02) Broadband Radio Access Networks 
(BRAN): HIPERLAN Type 2: Physical (PHY) Layer. Available on 
http://www.etsi.org

Icon or Window What it Shows

Display icon Error statistics for the entire system

Spectrum Scope window Flat-top spectrum of the OFDM signal

Scatter Plot after normalization Scatter plot of transmitted 16QAM signal

Scatter Plot after OFDM 
Receiver

Scatter plot of received 16QAM signal
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RF Satellite Link Demo
This RF Satellite Link demo, rf_satlink, presents the simulation of a satellite 
link with blocks from the Communications Blockset’s RF Impairments Library 
(red blocks).  These blocks simulate the following impairments:

• Free space path loss

• Receiver thermal noise

• Memoryless nonlinearity

• Phase noise

• In phase and quadrature imbalances

• Phase/frequency offsets

If you are familiar with Simulink and RF impairments, double-click the block 
labeled “RF Link Demo: Settings” in the lower left corner of the demo and 
follow the suggested scenarios.  

By modeling the gains and losses on the link, this model is an implementation 
of the link budget calculations that determine if a downlink can be closed with 
a a given bit error rate (BER).  The gain and loss blocks, including the Free 
Space Path Loss block and the Receiver Thermal Noise block, determine the 
data rate that can be supported on the link in an additive white Gaussian noise 
channel.  The demonstration contains additional RF impairment blocks such 
as the Memoryless Nonlinearity, I/Q Imbalance, Phase Noise, 
Phase/Frequency Offset, and  I/Q Imbalance blocks so you can view the effect 
of the corresponding impairments on the link.  The description of this demo is 
divided into the following sections:

• “Structure of the demo” on page 3-61

• “Mask Parameters” on page 3-63

• “Results and Displays” on page 3-66

• “Experimenting with the Demo” on page 3-66

• “Selected Bibliography” on page 3-69

Structure of the demo
The demo highlights both the satellite link model and signal instrumentation.  
The model consists of a Satellite Downlink Transmitter, Downlink Path, and 
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Ground Station Downlink Receiver. The blocks that comprise each of these 
sections are:

• Satellite Downlink Transmitter

- Random Integer Generator – Creates a random data stream. 

- Rectangular QAM Modulator Baseband – Maps the data stream to 
16-QAM constellation. 

- FIR Interpolator (RRC Tx. Filter) – Upsamples and shapes the modulated 
signal using the square root raised cosine pulse shape. 

- Memoryless Nonlinearity (High Power Amplifier) – Model of a traveling 
wave tube amplifier (TWTA) using the Saleh model. 

- Gain (Tx. Dish Antenna Gain) – Gain of the transmitter parabolic dish 
antenna on the satellite. 

• Downlink Path

- Free Space Path Loss (Downlink Path) – Attenuates the signal by the free 
space path loss. 

- Phase/Frequency Offset (Doppler and Phase Error) – Rotates the signal to 
model phase and Doppler error on the link.

• Ground Station Downlink Receiver

- Receiver Thermal Noise (Satellite Receiver System Temp) – Adds white 
Gaussian noise that represents the effective system temperature of the 
receiver. 

- Gain (Rx. Dish Antenna Gain) – Gain of the receiver parabolic dish 
antenna at the ground station. 

- Phase Noise – Introduces random phase perturbations that result from 
‘1/f’ or phase flicker noise. 

- I/Q Imbalance – Introduces DC offset, amplitude imbalance, or phase 
imbalance to the signal. 

- DC Removal (DC Offset Comp.) – Estimates and removes the DC offset 
from the signal.  Compensates for the DC offset in the I/Q Imbalance block. 

- Magnitude AGC / I and Q AGC (Select AGC) – Automatic Gain Control 
Compensates the gain of both inphase and quadrature components of the 
signal either jointly or independently.

- Phase/Frequency Offset (Doppler and Phase Compensation) – Rotates the 
signal to represent correction of phase and Doppler error on the link.  This 
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block is a static block that simply corrects using the same values as the 
Phase/Frequency Offset block.

- FIR Interpolator (RRC Rx. Filter) and Downsample – Matched filter the 
modulated signal using the square root raised cosine pulse shape. 

- Rectangular QAM Demodulator Baseband - Demaps the data stream from 
the 16-QAM constellation space. 

Mask Parameters
Double-click the block labeled “RF Link Demo: Settings” in the lower left corner 
of the model window to view the paramater settings for the demo.   All of the 
mask parameters are tunable.  The demo is updated when you click OK or 
Apply.   The parameters are:

• Satellite altitude (km) – The distance between the satellite and the ground 
station. Changing this parameter updates the Free Space Path Loss block.  
The default setting is 35600.

• Frequency (MHz) – The carrier frequency of the link. Changing this 
parameter updates the Free Space Path Loss block. The default setting is 
8000.

• Transmit and receive antenna sizes (m) – The first element in the vector 
represents the transmit antenna diameter and is used to calculate the gain 
in the Tx Dish Antenna Gain block. The second element represents the 
receive antenna diameter and us used to calculate the gain in the Rx Dish 
Antenna Gain block.  The default setting is [2 2].

• Noise temperature (K) – Allows you to select from three effective receiver 
system noise temperatures.  The select noise temperature changes the Noise 
Temperature of the Receiver Thermal Noise block.  The default setting is 0 
K.  The choices are:

- 0 (no noise) – Use this setting to view the other RF impairments without 
the perturbing effects of noise. 

- 20 (very low noise level) – Use this setting to view how easily a low level 
of noise can, when combined with other RF impairments, degrade the 
performance of the link. 

- 290 (typical noise level) – Use this setting to view how a typical quiet 
satellite receiver operates.
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• HPA backoff level – Allows you to select from three backoff levels.  This 
parameter is used to determine how close the satellite high power amplifier 
is driven to saturation.  The selected backoff is used to set the input and 
output gain of the Memoryless Nonlinearity block. The default setting is 30 
dB  (negligible nonlinearity).  The choices are:

- 30 dB  (negligible nonlinearity) – Sets the average input power to 30 
decibels below the input power that causes amplifier saturation (i.e. the 
point at which the gain curve becomes flat)  This causes negligible 
AM-to-AM and AM-to-PM conversion.  AM-to-AM conversion is an 
indication of the amplitude nonlinearity varies with the signal magnitude.   
AM-to-PM conversion is a measure of how the phase nonlinearity varies 
with signal magnitude

- 7 dB  (moderate nonlinearity) – Sets the average input power to 7 
decibels below the input power that causes amplifier saturation. This 
causes moderate AM-to-AM and AM-to-PM conversion. 

- 1 dB  (severe nonlinearity) – Sets the average input power to 1 decibel 
below the input power that causes amplifier saturation. . This causes 
severe AM-to-AM and AM-to-PM conversion.  

• Phase correction - Allows you to select from three phase offset values to 
correct for the average AM-to-PM conversion in the High Power Amplifier.  
The selection updates the Phase/Frequency Offset (Doppler and Phase 
Compensation) block.  The default setting is None.  The choices are:

- None – No correction. Use to view uncorrected AM-to-PM conversion. 

- Correct for moderate HPA AM-to-PM – Corrects for average AM-to-PM 
distortion when the HPA backoff is set to 7 dB

- Correct for severe HPA AM-to-PM – Corrects for average AM-to-PM 
distortion when the HPA backoff is set to 1 dB

• Doppler error – Allows you to select from three values of Doppler on the link 
and the corresponding correction, if any.  The selection updates the 
Phase/Frequency Offset (Doppler and Phase Error) and Phase/Frequency 
Offset (Doppler and Phase Compensation) blocks.  The default setting is 
None. The choices are:

- None  - No Doppler on the link and no correction. 

- Doppler (0.7 Hz - uncorrected) – Adds 0.7 Hz Doppler with no correction 
at the receiver.
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- Doppler (3 Hz - corrected) – Adds 3 Hz Doppler with the corresponding 
correction at the receiver, -3 Hz.

• Phase noise – Allows you to select from three values of phase noise at the 
receiver.  The selection updates the Phase Noise block.  The default setting 
is Negligible (-100 dBc/Hz @ 100 Hz).  The choices are:

- Negligible (-100 dBc/Hz @ 100 Hz) – Almost no phase noise. 

- Low  (-55 dBc/Hz @ 100 Hz) – Enough phase noise to be visible in both the 
spectral and I/Q domains, and cause additional errors when combined with 
thermal noise or other RF impairments. 

- High  (-48 dBc/Hz @ 100 Hz) – Enough phase noise to cause errors without 
the addition of thermal noise or other RF impairments.

• I/Q imbalance – Allows you to select from five types of inphase and 
quadrature imbalances at the receiver. The selection updates the I/Q 
Imbalance block.  The default setting is None. The choices are;

- None – No imbalances

- Amplitude imbalance (3 dB) – Applies a 1.5 dB gain to the inphase signal 
and a -1.5 dB gain to the quadrature signal. 

- Phase imbalance (20 deg) – Rotates the inphase signal by 10 degrees and 
the quadrature signal by –10 degrees.

- In-phase DC offset (2e-6) – Adds a DC offset of 2e-6 to the inphase signal 
amplitude. This offset will change the received signal scatter plot, but will 
not cause errors on the link unless combined with thermal noise or other 
RF impairments.

- Quadrature DC offset (1e-5) – Adds a DC offset of 1e-5 to the quadrature 
signal amplitude.  This offset will cause errors on the link even when not 
combined with thermal noise or another RF impairment.  This offset also 
causes a DC spike in the received signal spectrum. 

• DC offset compensation – Allows you to enable or disable the DC Offset 
block.  The selection updates the DC Removal block.  The default setting is 
Disabled.

• AGC type – Allows you select the automatic gain control for the link.  The 
selection updates the Select AGC block, which is labeled Magnitude AGC or 
I and Q AGC, depending on whether you select Magnitude only or 
Independent I and Q, respectively.  The default setting is Magnitude only.
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- Magnitude only - Compensates the gain of both inphase and quadrature 
components of the signal by estimating only the magnitude of the signal.

- Independent I and Q - Compensates the gain of the inphase signal using 
an estimate of the inphase signal magnitude and the quadrature 
component using an estimate of the quadrature signal magnitude.

Results and Displays
When you run this demo, the following displays are available to you:

• Bit error rate (BER) display – In the lower right corner of the model is a 
display of the BER of the model.  The BER computation is reset every 5000 
symbols to allow you to view the impact of the changes in the model without 
having to restart the model. 

• Spectrum Scope – Double-clicking on this block to turn the switch to the ON 
position allows you to view the spectrum of the modulated/filtered signal 
(blue) and the received signal before demodulation (red).  If both spectra are 
identical, then the display will show one green spectrum.  Comparing these 
spectra allows you to view the effect of the following RF impairments:

- Spectral regrowth due to HPA nonlinearities caused by the Memoryless 
Nonlinearity block,

- Thermal noise caused by the Receiver Thermal Noise block, and

- Phase flicker (i.e. 1/f noise) caused by the Phase Noise block. 

• End to End Constellation – Double-clicking this block to turn the switch to 
the ON position allows you to view the scatter plots of the signal after QAM 
modulation (blue) and before QAM demodulation (red).  Comparing these 
scatter plots allows you to view the impact of all of the RF impairments on 
the received signal and the effectiveness of the compensations. 

• Constellation Before and After HPA– Double-clicking this block to turn the 
switch to the ON position allows you to view the constellation before and 
after the HPA (blue and red respectively).  Comparing these plots allows you 
to view the effect that the nonlinear HPA behavior has on the signal. 

Experimenting with the Demo
This section describes some ways that you can change the demo parameters, in 
order to experiment with the effects of the blocks from the RF Impairments 
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library and other blocks in the demo.  The following lists some suggested 
scenarios along with the changes from the default settings:

• Link gains and losses – Change Noise temperature to 290 (typical noise 
level) or to 20 (very low noise level).  Change the value of the Satellite 
altitude (km) or Satellite frequency (MHz) parameters to change the free 
space path loss.   In addition, increase or decrease the Transmit and receive 
antenna size (m) parameter to increase or decrease the received signal 
power.  You can view the changes in the received constellation in the received 
signal scatter plot scope and the changes in received power in the spectrum 
scope.  In cases where the change in signal power is large (greater than 10 
dB), the AGC filter causes the received power (after the AGC) to oscillate 
before settling to the final value. 

• Raised cosine pulse shaping – Make sure Noise temperature is set to 0 (no 
noise).  Turn on the Constellation Before and After HPA instrumentation.  
Observe that the square-root raised cosine filtering results in intersymbol 
interference (ISI).  This results in the points being scattered loosely around 
ideal constellation points, which you can see in the After HPA scatter plot.  
The square-root raised cosine filter in the receiver, in conjunction with the 
transmit filter, control the ISI, which you can see in the received signal 
scatter plot. 

• HPA AM-to-AM conversion and AM-to-PM conversion – Change the HPA 
backoff level parameter to 7 dB (moderate nonlineartity) and observe the 
AM-to-AM and AM-to-PM conversions by comparing the Transmit RRC 
filtered signal scatter plot with the RRC signal after HPA scatter plot.  Note 
how the AM-to-AM conversion varies according to the different signal 
amplitudes.  You can also view the effect of this conversion on the received 
signal in the received signal scatter plot.  In addition, you can observe the 
spectral regrowth in the received signal spectrum scope.  You can view the 
AM-to-PM conversion compensation in the receiver by setting the Phase 
correction parameter to Correct for moderate HPA AM-to-PM.  You can 
also view the phase change in the received signal in the received signal 
scatter plot scope. 

Change the HPA backoff level parameter to 1 dB (severe nonlinearity) 
and observe from the scopes that the AM-to-AM and AM-to-PM conversion 
and spectral regrowth have increased.  You can view the AM-to-PM 
conversion to compensate in the receiver by setting the Phase correction to 
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Correct for severe HPA AM-to-PM.  You can view the phase change in the 
received signal scatter plot scope.

• Phase noise plus AM-to-AM conversion – Set the Phase Noise parameter to 
High and observe the increased variance in the tangential direction in the 
received signal scatter plot.  Also note that this level of phase noise is 
sufficient to cause errors in an otherwise error-free channel.  Set the Phase 
Noise to Low and observe that the variance in the tangential direction has 
decreased somewhat.  Also note that this level of phase noise is not sufficient 
to cause errors.   Now, set the HPA backoff level parameter to 7dB 
(moderate nonlinearity) and the Phase correction to Correct for 
moderate HPA AM-to-PM conversion.  Note that even though the 
corrected, moderate HPA nonlinearity and the moderate phase noise do not 
cause bit errors when applied individually, they do cause bit errors when 
applied together.  

• DC offset and DC offset compensation – Set the I/Q Imbalance parameter to 
In-phase DC offset (2e-6) and view the shift of the constellation in the 
received signal scatter plot. Set DC offset compensation to Enabled and 
view the received signal scatter plot to view how the DC offset block 
estimates the DC offset value and removes it from the signal. Set DC offset 
compensation to Disabled and change I/Q imbalance to Quadrature DC 
offset (1e-5).   View the changes in received signal scatter plot for a large DC 
offset and the DC spike in the received signal spectrum. Set DC offset 
compensation to Enabled and view the received signal scatter plot and 
spectrum scope to see how the DC component is removed. 

• Amplitude imbalance and AGC type – Set the I/Q Imbalance parameter to 
Amplitude imbalance (3 dB) to view the effect of unbalanced I and Q gains 
in the received signal scatter plot.  Set the AGC type parameter to 
Independent I and Q to demonstrate how the independent I and Q AGC 
compensate for the amplitude imbalance. 

• Doppler and Doppler compensation – Set Doppler error to 0.7 Hz 
(uncorrected) to demonstrate the effect of uncorrected Doppler on the 
received signal scatter plot.  Set the Doppler error to 3 Hz corrected to 
demonstrate the effect of correcting the Doppler on a link. Without changing 
the Doppler error setting, repeat the following scenarios:

- DC offset and DC offset compensation 
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- Amplitude imbalance and AGC type

to view the effects that occur when DC offset and amplitude imbalances 
occur in circuits that do not have a constant phase reference.  

Selected Bibliography
[1] “Frequency-Independent and Frequency-Dependent Nonlinear Models of 
TWT Amplifiers”, Adel A. M. Saleh, IEEE Transactions on Communications, 
Vol. COM-29, No. 11, November 1981. 

[2] Kasdin, N.J., "Discrete Simulation of Colored Noise and Stochastic 
Processes and 1/(f^alpha); Power Law Noise Generation," The Proceedings of 
the IEEE, May, 1995, Vol. 83, No. 5

[3] “Discrete Simulation of Power Law Noise”, N. Jeremy Kasdin and Todd 
Walter, 1992 IEEE Frequency Control Symposium.

[4] Digital Communications, Fundamentals and Applications, Bernard Sklar, 
Prentice Hall, Englewood Cliffs, NJ, copyright 1988. 



3 Demonstration Models

3-70

WCDMA Coding and Multiplexing Demo
The WCDMA Coding and Multiplexing demo, wcdma_muxandcoding, presents a 
simulation of the multiplexing and channel decoding structure for the 
frequency division duplex (FDD) downlink as specified by the Third Generation 
Partnership Project (3GPP), Release 1999. The demo comprises half of the 
model described in “WCDMA End-to-End Physical Layer Demo” on page 3-71.
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WCDMA End-to-End Physical Layer Demo
The WCDMA End-to-End Physical Layer Demo, wcdma_phlayer, models part 
of the frequency division duplex (FDD) downlink physical layer of the third 
generation wireless communication system known as wideband code division 
multiple access (WCDMA). 

WCDMA is one of five air-interfaces for the next generation of wireless 
communications being developed within the framework of the International 
Mobile Telecommunications (IMT)-2000, as defined by the International 
Telecommunication Union (ITU). The WCDMA technology is officially known 
as IMT-2000 Direct Spread.

The specifications of the WCDMA system are being developed by the Third 
Generation Partnership Project (3GPP), Release 1999, which is a joint effort 
between standards bodies from Europe, Japan, Korea, USA, and China.

The WCDMA air interface is a direct spread technology. This means that it 
spreads encoded user data at a relatively low rate over a much wider 
bandwidth (5 MHz), using a sequence of pseudo-random units called chips at 
much higher rate (3.84 Mcps). By assigning a unique code to each user, the 
receiver, which has knowledge of the code of the intended user, can successfully 
separate the desired signal from the received waveform.

This document highlights the following aspects of the demo:

• “Overall Structure of the Physical Layer” on page 3-71

• “Parameters in the Demo” on page 3-74

• “Visible Results of the Demo” on page 3-77

• “References” on page 3-78

Overall Structure of the Physical Layer
The physical layer is in charge of providing transport support to the data 
generated at higher layers. This data is exchanged between the higher layers 
and the physical layer in the form of transport channels. There can be up to 
eight transport channels processed simultaneously. Each transport channel 
has associated a different transport format that contains information of how 
the data needs to be processed by the physical layer. The physical layer 
processes this data before sending it to channel.
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The are seven main subsystems in the model, whose functions are summarized 
in the following table.

WCDMA DL Tx Channel Coding Scheme
The WCDMA DL Tx Channel Coding Scheme subsystem processes each 
transport channel independently according to the transport format parameters 
associated to it. This subsystem implements the following functions: 

• Cyclic redundancy code (CRC) attachment 

• Transport block concatenation and segmentation 

• Channel encoding

• Rate matching

• First interleaving 

• Radio frame segmentation

The different transport channels are then combined together to generate a 
coded combined transport channel (CCTrCH). The CCTrCH is then sent to the 
WCDMA Tx Physical Mapping subsystem. 

Subsystem Function

WCDMA DL Tx Channel 
Coding Scheme

Transport channel encoding and 
multiplexing

WCDMA Tx Physical Channel 
Mapping

Physical channel mapping

WCDMA BS Tx Antenna Modulation and spreading

WCDMA Channel Model Channel model

WCDMA UE Rx Antenna Despreading and demodulation

WCDMA Rx Physical Channel 
Demapping

Physical channel demapping

WCDMA DL Rx Channel 
Decoding Scheme

Transport channel demultiplexing and 
decoding
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WCDMA Tx Physical Mapping
This subsystem implements the following functions:

• Physical channel segmentation 

• Second interleaver 

• Slot builder

The output of this subsystem constitutes a dedicated physical channel (DPCH), 
which is passed to the WCDMA BS Tx Antenna Spreading and Modulation 
subsystem.

WCDMA BS Tx Antenna Spreading and Modulation
The WCDMA BS Tx Antenna Spreading and Modulation subsystem performs 
the following functions: 

• Modulation 

• Spreading by a real-valued orthogonal variable spreading factor (OVSF) code

• Scrambling by a complex-valued Gold code sequence

• Power weighting

• Pulse shaping

WCDMA Channel Model
The WCDMA Channel Model subsystem simulates a wireless link channel 
containing additive white Gaussian noise (AWGN) and, if selected, a set of 
multipath propagation conditions. You can modify the multipath profile with 
the Propagation conditions environment parameter, as described in 
“Propagation conditions environment” on page 3-77

WCDMA UE Rx Antenna
The received signal at the WCDMA UE Rx Antenna subsystem is the sum of 
attenuated and delayed versions of the transmitted signals due to the so-called 
multipath propagation introduced by the channel. At the receiver side, a RAKE 
receiver is implemented to resolve and compensate for such effect. A Rake 
receiver consists of several rake fingers each of them associated to a different 
received component. Each rake finger is made of chip correlators to perform the 
despreading, channel estimation to gauge the channel and a derotator that 
using the knowledge provided by the channel estimator corrects the phase of 
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the data symbol. The subsystem coherently combines the output of the 
different rake fingers to recover the energy across the different delays.

WCDMA RX Physical Channel Demapping and Channel Decoding Scheme
The WCDMA RX Physical Channel Demapping and the WCDMA DL Rx 
Channel Decoding Scheme subsystem decode the signal by performing the 
inverse of the functions of the WCDMA DL Tx Channel Coding Scheme 
subsystem, as described above.

Parameters in the Demo
You can view or change parameters in the model by double-clicking the block 
labeled "WCDMA Demo: Initial Settings." This displays the Block Parameters 
dialog.

The Power for [DPCH, P-CPICH, PICH, PCCPCH, SCH] in dB parameter 
consists of a row vector containing the powers in decibels corresponding to the 
the different physical channels.

The Show Transport Channel Settings check box enables you to specify the 
parameters corresponding to the WCDMA Tx Channel Coding Scheme 
subsystem, the WCDMA Tx PhCh Mapping subsystem, and its corresponding 
subsystems at the receiver side. When the box is selected, the dialog displays 
the following parameters:
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Parameter Description

DL Measurement 
channels

The down link (DL) measurement channels. There 
are four channels whose settings are specified by 
the standard:

• 12.2 Kbps
• 64 Kbps
• 144 Kbps
• 384 Kbps

If you select one of these channels, the parameters 
listed below are greyed out. To change these 
parameter settings, select User Defined.

Transport block set 
size

Integer row vector representing the transport 
block set size as defined by the standard 
associated to each transport channel. 

Transport block size Integer row vector representing the transport 
bock size as defined by the standard associated to 
each transport channel.

TTI in ms Integer row vector representing the transmission 
time interval (TTI) in ms as defined by the 
standard associated to each transport channel.

CRC Size Integer row vector representing the CRC size in 
number of bits associated to each transport 
channel.

Type of error 
Protection

Integer row vector representing the coding 
scheme associated to each transport channel. The 
different options are: 

• 1 for no coding

• 2 for convolutional encoding 

• 3 for turbo coding.
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The Show Antenna Settings check box enables you to specify the parameters 
corresponding to the WCDMA BS Tx Antenna and WCDMA UE Rx Antenna 
subsystems. When the box is checked, the dialog displays the following 
parameters:

Rate matching 
attribute

Integer row vector representing the rate matching 
attribute as defined by the standard associated to 
each transport channel

Position of TrCH in 
radio frame

Sets the position of the transport channels in the 
radio frame to be Fixed or Flexible as defined by 
the standard

Number of PhCH Integer from 1 to 3 corresponding to the number of 
physical channels used. 

Slot format (0..16) Sets the corresponding slot format parameter as 
defined by the standard.

Parameter Description

DPCH Code number Integer number from 0 to the value of the 
spreading factor minus 1 corresponding to 
the index of the orthogonal code assigned to 
the DPCH channel.

Scrambling code Vector of two elements corresponding to the 
index of the Scrambling Code assigned to 
the Base Station.

Number of filter taps for 
RRC

Number of filter coefficients for the 
root-raised cosine filter.

Parameter Description
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The Show Channel Model Settings check box enables you to specify the 
parameters corresponding to the WCDMA Channel Model subsystem:

Visible Results of the Demo
The following blocks calculate various error rates in the demo:

• BLER (Block Error Rate) Calculation shows the block error rate of the 
combined transport channels.

• BER (Bit Error Rate) Calculation shows the results of the BER computation 
block associated to each transport channel separately.

Number of coefficients for 
channel estimation filters

Number of filter coefficients for low pass 
filter implemented in channel estimation.

Oversampling factor Integer value corresponding to the number 
of samples per symbol

Parameter Description

Propagation conditions 
environment

Selects between the different pre-built 
propagation conditions environments.

Number of enable fingers Integer from 1 to 4 that sets the number 
of enable fingers

SNR (in dB) Value of the signal to noise ratio in 
decibels.

Relative delay of Rx signals 
(in s)

Vector corresponding to the delay (in s) 
of the different paths.

Average Power of Rx signals 
(in dB)

Vector corresponding to the Power (in 
dB) of the different path.

Speed of Terminal (in Km/h) Value of the speed of the UE (User 
Equipment) in Km/h

Parameter Description
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The following scopes display the signal in various ways. To view the scopes, 
double-click on the switches when the simulation is running:

- Time Scopes shows the bit stream before spreading, after spreading and 
after combining the different weighted physical channels. It shows both 
the real and the imaginary part separately. It also displays both the real 
and the imaginary part of the output of the channel estimator for the first 
rake finger.

- Power spectrum shows the power spectrum of the signal before spreading, 
after spreading, after pulse shaping and at the input of the receiver 
antenna.

- Scatter plots show the constellation at signal at the output of the data 
correlator, after phase derotation and after amplitude correction.

References
[1] http://www.3gpp.org
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WCDMA Spreading and Modulation Demo
The WCDMA Spreading and Modulation demo, wcdma_spreadandmod, 
simulates spreading and modulation for an FDD downlink DPCH channel as 
specified by Third Generation Partnership Project (3GPP), Release 1999. The 
demo comprises half of the model described in “WCDMA End-to-End Physical 
Layer Demo” on page 3-71.
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