
Computation

Visualization

Programming

For Use with MATLAB®

User’s Guide
Version 1

GARCH Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

GARCH Toolbox User’s Guide
 COPYRIGHT 1999 - 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 1999 First printing New for Version 1.0 (Release 11)
November 2000 Online only Revised for Version 1.0.1 (Release 12)
July 2002 Online only Revised for Version 1.0.2 (Release 13)

Contents
Preface

Using This Guide . vi

Related Products . vii

Typographical Conventions . ix

1
Introduction

What Is the GARCH Toolbox? . 1-2

Software Requirements and Compatibility 1-3

Expected Background . 1-4

Technical Conventions . 1-5

2
Tutorial

GARCH Overview . 2-3
Introducing GARCH . 2-3
Using GARCH to Model Financial Time Series 2-4

GARCH Toolbox Overview . 2-11
Models for the Conditional Mean and Variance 2-11
Conventions and Clarifications . 2-12
i

ii Contents
The Default Model . 2-15

Analysis and Estimation Example Using the Default
Model . 2-17

Pre-Estimation Analysis . 2-17
Parameter Estimation . 2-24
Post-Estimation Analysis . 2-28

The GARCH Specification Structure 2-33
Purpose of the Specification Structure 2-33
Contents of the Specification Structure 2-34
Valid Model Specifications . 2-36
Accessing Specification Structures . 2-37
Using the Specification Structure for Estimation, Simulation,
and Forecasting . 2-40

Simulation . 2-42
Simulating Sample Paths . 2-42
Transients in the Simulation Process . 2-46
A General Simulation Example . 2-51

Forecasting . 2-55
Computing a Forecast . 2-55
Computing Root Mean Square Errors (RMSE) 2-61
Asymptotic Behavior for Long-Range Forecast Horizons 2-62

Conditional Mean Models with Regression Components . 2-63
Incorporating a Regression Model in an Estimation 2-63
Simulation and Inference Using a Regression Component . . . 2-69
Forecasting Using a Regression Component 2-69
Regression in a Monte Carlo Framework 2-72

Model Selection and Analysis . 2-74
Likelihood Ratio Tests . 2-74
Akaike and Bayesian Information Criteria 2-77
Equality Constraints and Parameter Significance 2-79
Equality Constraints and Initial Parameter Estimates 2-85

Recommendations and Suggestions . 2-87

Simplicity/Parsimony . 2-87
Convergence Issues . 2-89
Initial Parameter Estimates . 2-93
Boundary Constraints and Statistical Inferences 2-96
Data Size and Quality . 2-99

3
Function Reference

Functions – By Category . 3-2
GARCH Modeling . 3-2
GARCH Innovations Inference . 3-2
Log-Likelihood Objective Functions . 3-2
Statistics and Tests . 3-2
GARCH Specification Structure Interface Functions 3-3
Helpers and Utilities . 3-3
Graphics . 3-3

Functions — Alphabetical List . 3-4

A
Glossary

B
Bibliography

Index
iii

iv Contents

Preface

The Preface includes these sections:

Using This Guide (p. vi) Explains the organization of this guide.

Related Products (p. vii) Lists products that may be relevant to the kinds of tasks
you can perform with the GARCH Toolbox.

Typographical Conventions (p. ix) Describes the typographical conventions used in this
guide.

 Preface

vi
Using This Guide
“Introduction” introduces the GARCH Toolbox, lists toolboxes required by
GARCH, and describes the intended audience as well as the use of common
mathematical terms.

“Tutorial” provides a brief overview of GARCH, then demonstrates the use of
the GARCH Toolbox by estimating GARCH model parameters, and performing
pre- and post-estimation analysis. Chapter 1 continues with discussions of
simulation, forecasting, and regression, as well as model selection and
analysis.

“Function Reference” describes the individual functions that comprise the
GARCH Toolbox. The description of each function includes a synopsis of the
function syntax, as well as a complete explanation of its arguments and
operation. It may also include examples and references to additional reading
material.

“Glossary” defines terms associated with modeling the volatility of economic
time series.

“Bibliography” lists published materials that support concepts implemented in
the GARCH Toolbox.

Related Products
Related Products
The MathWorks provides several products that are related to the kinds of tasks
you can perform with the GARCH Toolbox.

For more information about any of these products, see either:

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Note The toolboxes listed below all include functions that extend MATLAB’s
capabilities. The blocksets all include blocks that extend Simulink’s
capabilities.

Product Description

Curve Fitting Toolbox Perform model fitting and analysis

Database Toolbox Exchange data with relational databases

Datafeed Toolbox Acquire real-time financial data from data
service providers

Excel Link Use MATLAB with Microsoft Excel

Financial Derivatives
Toolbox

Model and analyze fixed-income derivatives
and securities

Financial Time Series
Toolbox

Analyze and manage financial time series data

Financial Toolbox Model financial data and develop financial
analysis algorithms

MATLAB Compiler Convert MATLAB M-files to C and C++ code
vii

 Preface

vii
MATLAB Report
Generator

Automatically generate documentation for
MATLAB applications and data

MATLAB Runtime
Server

Deploy runtime versions of MATLAB
applications

MATLAB Web Server Use MATLAB with HTML Web applications

Optimization Toolbox Solve standard and large-scale optimization
problems

Simulink Report
Generator

Automatically generate documentation for
Simulink and Stateflow models

Statistics Toolbox Apply statistical algorithms and probability
models

Product Description
i

Typographical Conventions
Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, and user input

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')
ix

 Preface

x

1

Introduction

This Introduction includes these sections:

What Is the GARCH Toolbox? (p. 1-2) Introduces the GARCH Toolbox, and describes its
intended use and its capabilities.

Software Requirements and
Compatibility (p. 1-3)

Lists other MathWorks toolboxes and version
compatibility required by the GARCH Toolbox.

Expected Background (p. 1-4) Describes the intended audience for this product.

Technical Conventions (p. 1-5) Describes the use of common mathematical terms in this
guide. See the “Glossary” for definitions of
GARCH-specific terms.

1 Introduction

1-2
What Is the GARCH Toolbox?
MATLAB and the GARCH Toolbox provide an integrated computing
environment for modeling the volatility of univariate economic time series. The
GARCH Toolbox uses a general ARMAX/GARCH composite model to perform
simulation, forecasting, and parameter estimation of univariate time series in
the presence of conditional heteroscedasticity. Supporting functions perform
tasks such as pre- and post-estimation diagnostic testing, hypothesis testing of
residuals, model order selection, and time series transformations. Graphics
capabilities let you plot correlation functions and visually compare matched
innovations, volatility, and return series.

More specifically, you can:

• Perform Monte Carlo simulation of univariate returns, innovations, and
conditional volatilities

• Specify conditional mean models of general ARMAX form and conditional
models of general GARCH form for univariate asset returns

• Estimate parameters of general ARMAX/GARCH composite models via the
maximum likelihood method

• Generate minimum mean square error forecasts of the conditional mean and
conditional variance of univariate return series

• Perform pre- and post-estimation diagnostic and hypothesis testing, such as
Engle’s ARCH test, Ljung-Box Q-statistic test, likelihood ratio tests, and
AIC/BIC model order selection

• Perform graphical correlation analysis, including auto-correlation,
cross-correlation, and partial auto-correlation

• Convert price/return series to return/price series, and transform finite-order
ARMA models to infinite-order AR and MA models

Software Requirements and Compatibility
Software Requirements and Compatibility
The GARCH Toolbox requires the Statistics and Optimization Toolboxes.
However, you need not read those manuals before reading this one.

The GARCH Toolbox Version 1.0.2 is compatible with Release 11, including
MATLAB Version 5.3, Statistics Toolbox Version 2.2, and Optimization
Toolbox 2.0, and later.
1-3

1 Introduction

1-4
Expected Background
This guide is a practical introduction to the GARCH Toolbox. In general, it
assumes you are familiar with the basic concepts of General Autoregressive
Conditional Heteroscedasticity (GARCH) modeling.

In designing the GARCH Toolbox and this manual, we assume your title is
similar to one of these:

• Analyst, quantitative analyst

• Risk manager

• Portfolio manager

• Fund manager, asset manager

• Economist

• Financial engineer

• Trader

• Student, professor, or other academic

We also assume your background, education, training, and responsibilities
match some aspects of this profile:

• Finance, economics, perhaps accounting

• Engineering, mathematics, physics, other quantitative sciences

• Bachelor’s degree minimum; MS or MBA likely; Ph.D. perhaps; CFA

• Comfortable with probability, statistics, and algebra

• May understand linear or matrix algebra, calculus, and differential
equations

• Previously doing traditional programming (C, Fortran, etc.)

• May be responsible for instruments or analyses involving large sums of
money

• Perhaps new to MATLAB

Technical Conventions
Technical Conventions
This user’s guide uses the following definitions and descriptions:

• The size of an array describes the dimensions of the array. If a matrix has m
rows and n columns, its size is m-by-n. If two arrays are the same size, their
dimensions are the same.

If two vectors are of the same size, then they not only have the same length,
but they also have the same orientation.

• The length of a vector indicates only the number of elements in the vector. If
the length of a vector is n, it could be a 1-by-n (row) vector or an n-by-1
(column) vector. Two vectors of length n, one a row vector and the other a
column vector, do not necessarily have the same size.

• The rows of a time series matrix correspond to a time index and the columns
correspond to sample paths, independent realizations, or individual time
series. In any given column, the first row contains the oldest observation and
the last row contains the most recent observation.

• Time series vectors and matrices are time-tagged series of asset returns. If
you have a price series, the GARCH Toolbox lets you convert it to a return
series using either continuous compounding or periodic compounding.

• Continuous compounding is the default compounding method of the GARCH
Toolbox. The results of some GARCH Toolbox functions are approximate for
periodic compounding, but exact for continuous compounding. Using
continuous compounding when moving between prices and returns, ensures
exact results regardless of the function.

• The GARCH Toolbox assumes that return series are stationary processes.
The price-to-return transformation generally guarantees a stable data set
for GARCH modeling.

• The term conditional implies explicit dependence on a past sequence of
observations. The term unconditional is more concerned with long-term
behavior of a time series and assumes no explicit knowledge of the past.

See the “Glossary” for general term definitions.
1-5

1 Introduction

1-6

2

Tutorial

The Tutorial includes these sections:

GARCH Overview (p. 2-3) Introduces GARCH and the characteristics of GARCH
models that are commonly associated with financial time
series.

GARCH Toolbox Overview (p. 2-11) Discusses allowable models for describing conditional mean
and variance to the GARCH Toolbox and presents the
default model that is used as the basis of discussion in this
manual.

Analysis and Estimation Example
Using the Default Model (p. 2-17)

The example in this section uses the GARCH Toolbox
default model to examine the equity series of a hypothetical
company.

The GARCH Specification Structure
(p. 2-33)

Explains the purpose and contents of the specification
structure, as well as how to use it for estimation, simulation,
and forecasting.

Simulation (p. 2-42) Shows you how to simulate sample paths for return series,
innovations, and conditional standard deviation processes. It
also examine transient effects in the simulation process.

Forecasting (p. 2-55) Uses the estimated default model and the same hypothetical
company to demonstrate the use of forecasting.

Conditional Mean Models with
Regression Components (p. 2-63)

Discusses the incorporation of a regression component in an
estimation, and its use in simulation, inference, and
forecasting.

2 Tutorial

2-2
Model Selection and Analysis
(p. 2-74)

Explains the use of likelihood ratio tests and Akaike and
Bayesian criteria for model selection. It also discusses the
setting of equality constraints as a way of assessing
parameter significance, and the effect of equality constraints
on initial parameter estimates.

Recommendations and Suggestions
(p. 2-87)

Provides general recommendations to make it easier for you
to use the GARCH Toolbox

GARCH Overview
GARCH Overview
This section:

• Introduces GARCH

• Introduces the characteristics of GARCH models that are commonly
associated with financial time series

Introducing GARCH
GARCH stands for Generalized Autoregressive Conditional
Heteroscedasticity. Loosely speaking, you can think of heteroscedasticity as
time-varying variance (i.e., volatility). Conditional implies a dependence on the
observations of the immediate past, and autoregressive describes a feedback
mechanism that incorporates past observations into the present. GARCH then
is a mechanism that includes past variances in the explanation of future
variances. More specifically, GARCH is a time series modeling technique that
uses past variances and past variance forecasts to forecast future variances.

In this manual, whenever a time series is said to have GARCH effects, the
series is heteroskedastic, i.e., its variances vary with time. If its variances
remain constant with time, the series is homoskedastic.

Why Use GARCH?
GARCH modeling builds on advances in the understanding and modeling of
volatility in the last decade. It takes into account excess kurtosis (i.e. fat tail
behavior) and volatility clustering, two important characteristics of financial
time series. It provides accurate forecasts of variances and covariances of asset
returns through its ability to model time-varying conditional variances. As a
consequence, you can apply GARCH models to such diverse fields as risk
management, portfolio management and asset allocation, option pricing,
foreign exchange, and the term structure of interest rates.

You can find highly significant GARCH effects in equity markets, not only for
individual stocks, but for stock portfolios and indices, and equity futures
markets as well [5]. These effects are important in such areas as value-at-risk
(VaR) and other risk management applications that concern the efficient
allocation of capital. You can use GARCH models to examine the relationship
between long- and short-term interest rates. As the uncertainty for rates over
various horizons changes through time, you can also apply GARCH models in
2-3

2 Tutorial

2-4
the analysis of time-varying risk premiums [5]. Foreign exchange markets,
which couple highly persistent periods of volatility and tranquility with
significant fat tail behavior [5], are particularly well suited for GARCH
modeling.

Note Bollerslev [4] developed GARCH as a generalization of Engle’s [8]
original ARCH volatility modeling technique. Bollerslev designed GARCH to
offer a more parsimonious model (i.e., using fewer parameters) that lessens
the computational burden.

GARCH Limitations
Although GARCH models are useful across a wide range of applications, they
do have limitations:

• GARCH models are only part of a solution. Although GARCH models are
usually applied to return series, financial decisions are rarely based solely on
expected returns and volatilities.

• GARCH models are parametric specifications that operate best under
relatively stable market conditions [11]. Although GARCH is explicitly
designed to model time-varying conditional variances, GARCH models often
fail to capture highly irregular phenomena, including wild market
fluctuations (e.g., crashes and subsequent rebounds), and other highly
unanticipated events that can lead to significant structural change.

• GARCH models often fail to fully capture the fat tails observed in asset
return series. Heteroscedasticity explains some of the fat tail behavior, but
typically not all of it. Fat tail distributions, such as student-t, have been
applied in GARCH modeling, but often the choice of distribution is a matter
of trial and error.

Using GARCH to Model Financial Time Series
GARCH models account for certain characteristics that are commonly
associated with financial time series:

• Fat tails

• Volatility clustering

GARCH Overview
Probability distributions for asset returns often exhibit fatter tails than the
standard normal, or Gaussian, distribution. The fat tail phenomenon is known
as excess kurtosis. Time series that exhibit a fat tail distribution are often
referred to as leptokurtic. The blue (or dashed) line in Figure 2-1, A Plot
Showing Excess Kurtosis illustrates excess kurtosis. The red (or solid) line
illustrates a Gaussian distribution.

Figure 2-1: A Plot Showing Excess Kurtosis

In addition, financial time series usually exhibit a characteristic known as
volatility clustering, in which large changes tend to follow large changes, and
small changes tend to follow small changes (see Figure 2-2, A Plot Showing
Volatility Clustering). In either case, the changes from one period to the next
are typically of unpredictable sign. Volatility clustering, or persistence,
suggests a time series model in which successive disturbances, although
uncorrelated, are nonetheless serially dependent.
2-5

2 Tutorial

2-6
Figure 2-2: A Plot Showing Volatility Clustering

Volatility clustering (a type of heteroscedasticity) accounts for some but not all
of the fat tail effect (or excess kurtosis) typically observed in financial data. A
part of the fat tail effect can also result from the presence of non-Gaussian
asset return distributions that just happen to have fat tails.

This section also discusses:

• Correlation in Financial Time Series

• Conditional Variances

• Serial Dependence in Innovations

• Homoskedasticity of the Unconditional Variance

Correlation in Financial Time Series
If you treat a financial time series as a sequence of random observations, this
random sequence, or stochastic process, may exhibit some degree of correlation
from one observation to the next. You can use this correlation structure to
predict future values of the process based on the past history of observations.
Exploiting the correlation structure, if any, allows you to decompose the time
series into a deterministic component (i.e., the forecast), and a random
component (i.e., the error, or uncertainty, associated with the forecast).

GARCH Overview
Eq. (2-1) uses these components to represent a univariate model of an observed
time series yt.

(2-1)

In this equation:

• f(t – 1, X) represents the deterministic component of the current return as a
function of any information known at time t – 1, including past innovations
{εt - 1, εt - 2, …}, past observations {yt - 1, yt - 2, …}, and any other relevant
explanatory time series data, X.

• εt is the random component. It represents the innovation in the mean of yt.
Note that you can also interpret the random disturbance, or shock, εt, as the
single-period-ahead forecast error.

Conditional Variances
The key insight of GARCH lies in the distinction between conditional and
unconditional variances of the innovations process {εt}. The term conditional
implies explicit dependence on a past sequence of observations. The term
unconditional is more concerned with long-term behavior of a time series and
assumes no explicit knowledge of the past.

GARCH models characterize the conditional distribution of εt by imposing
serial dependence on the conditional variance of the innovations. Specifically,
the variance model imposed by GARCH, conditional on the past, is given by

(2-2)

where

(2-3)

Given the form of Eq. (2-2) and Eq. (2-3), you can see that σt
2 is the forecast of

the next period’s variance, given the past sequence of variance forecasts, σt-i
2,

and past realizations of the variance itself, εt-j
2.

When P = 0, the GARCH(0,Q) model of Eq. (2-3) becomes Eq. (2-4), the original
ARCH(Q) model introduced by Engle [8].

yt f t 1– X,() εt+=

Vart 1– yt() Et 1– εt
2() σt

2
= =

σt
2 κ Giσt i–

2

i 1=

P

∑ Ajεt j–
2

j 1=

Q

∑+ +=
2-7

2 Tutorial

2-8
(2-4)

Eq. (2-3) and Eq. (2-4) are referred to as GARCH(P,Q) and ARCH(Q) variance
models, respectively. Note that when P = Q = 0, the variance process is simply
white noise with variance κ.

Parsimonious Parameterization. In practice, you often need a large lag Q for ARCH
modeling, and this requires that you estimate a large number of parameters.
To reduce the computational burden, Bollerslev [4] extended Engle’s ARCH
model by including past conditional variances. This results in a more
parsimonious representation of the conditional variance process.

Volatility Clustering. Eq. (2-3) and Eq. (2-4) mimic the volatility clustering
phenomenon. Large disturbances, positive or negative, become part of the
information set used to construct the variance forecast of the next period's
disturbance. In this manner, large shocks of either sign are allowed to persist,
and can influence the volatility forecasts for several periods. The lag lengths P
and Q, as well the magnitudes of the coefficients Gi and Aj, determine the
degree of persistence. Note that the basic GARCH(P,Q) model of Eq. (2-3) is a
symmetric variance process, in that the sign of the disturbance is ignored.

Serial Dependence in Innovations
A common assumption when modeling financial time series is that the forecast
errors (i.e., the innovations) are zero-mean random disturbances uncorrelated
from one period to the next.

As mentioned above, although successive innovations are uncorrelated, they
are not independent. In fact, an explicit generating mechanism for a
GARCH(P,Q) innovations process, {εt}, is

(2-5)

where σt is the conditional standard deviation given by the square root of
Eq. (2-3), and zt is a standardized, independent, identically distributed (i.i.d.)

σt
2 κ Ajεt j–

2

j 1=

Q

∑+=

E εtεT{ } 0= t T≠
t T=σt

2
=

εt σtzt=

GARCH Overview
random draw from some specified probability distribution. The GARCH
literature uses several distributions to model GARCH processes, but the vast
majority of research assumes the standard normal (i.e., Gaussian) density such
that εt ~ N(0, σt

2). Reflecting this, Eq. (2-5) illustrates that a GARCH
innovations process {εt} simply rescales an i.i.d process {zt} such that the
conditional standard deviation incorporates the serial dependence of Eq. (2-3).
Equivalently, Eq. (2-5) also states that a standardized GARCH disturbance,
εt/σt, is itself an i.i.d. random variable zt.

Notice that GARCH models are consistent with various forms of efficient
market theory, which state that asset returns observed in the past cannot
improve the forecasts of asset returns in the future. Since GARCH innovations
{εt} are serially uncorrelated, GARCH modeling does not violate efficient
market theory.

Homoskedasticity of the Unconditional Variance
The GARCH Toolbox imposes the following parameter constraints on the
conditional variance parameters.

(2-6)

The first constraint, a stationarity constraint, is necessary and sufficient for
the existence of a finite, time-independent variance of the innovations process
{εt}. The remaining constraints are sufficient to ensure that the conditional
variance {σt

2} is strictly positive.

When the conditional variance parameters satisfy the inequalities in Eq. (2-6),
the unconditional variance (i.e., time-independent, or long-run variance
expectation) of the innovations process {εt} is

Gi
i 1=

P

∑ Aj
j 1=

Q

∑+ 1<

κ 0>

Gi 0≥ i 1 2 … P, , ,=

Aj 0≥ j 1 2 … Q, , ,=
2-9

2 Tutorial

2-1
(2-7)

Although Eq. (2-3) shows that the conditional variance of εt changes with time,
Eq. (2-7) shows that the unconditional variance is constant (i.e.,
homoskedastic).

σ2
E εt

2() κ

1 Gi
i 1=

P

∑– Aj
j 1=

Q

∑–

---= =
0

GARCH Toolbox Overview
GARCH Toolbox Overview
This section discusses:

• Models for the Conditional Mean and Variance

Allowable models for describing conditional mean and variance to the
GARCH Toolbox

• Conventions and Clarifications

MATLAB constructs and financial concepts as they are used in this manual

• The Default Model

The default model that is used as the basis of discussion in this manual

Models for the Conditional Mean and Variance
The GARCH Toolbox allows a flexible model description of the conditional
mean, using a general ARMAX form. ARMAX models encompass
autoregressive (AR), moving average (MA), and regression (X) models, in any
combination. Specifically, the toolbox allows a general ARMAX(R,M,Nx) form
for the conditional mean

(2-8)

where X is an explanatory regression matrix in which each column is a time
series and X(t,k) denotes the tth row and kth column.

The GARCH Toolbox models the conditional variance as a standard GARCH
process with Gaussian innovations. It allows a general GARCH(P,Q) form with
Gaussian innovations for the conditional variance

(2-9)

yt C ARiyt i–
i 1=

R

∑ εt MAjεt j–

j 1=

M

∑ βkX t k,()
k 1=

Nx

∑+ + + +=

σt
2 κ Giσt i–

2

i 1=

P

∑ Ajεt j–
2

j 1=

Q

∑+ +=
2-11

2 Tutorial

2-1
Note This GARCH model is based on Bollerslev’s original paper [4], and also
includes Engle’s original ARCH model [8] as a special case.

Conventions and Clarifications

Rows, Columns, Length, and Size
MATLAB operates as a large-scale, array-based processor, which makes it
ideally suited for time series modeling and analysis. This manual imparts
specific meanings to the words length and size in discussing arrays.

Matrices. A matrix is an m-by-n array in which m is the number of rows and n
is the number of columns. By convention, the rows (i.e., the m-dimension) of a
time series matrix correspond to a time index. In any given column, the first
row contains the oldest observation and the last row contains the most recent
observation. Columns (i.e., the n-dimension) correspond to sample paths,
independent realizations, or individual time series.

Let A be a 100-by-5 time series matrix generated to support a Monte Carlo
simulation experiment. In this case, A has 100 observations for each of five
independent sample paths (or equivalently, five realizations of some
underlying univariate random process in which each column is a realization of
an individual time series). In this case, the size of A is 100-by-5. If some other
matrix, B, is the same size as A, then B is also a 100-by-5 matrix.

Since the current release of the GARCH Toolbox addresses univariate models
only, matrices usually represent multiple realizations of a univariate time
series (as opposed to a single realization of a multivariate time series).
Whenever a GARCH Toolbox function detects the presence of an input matrix
of size m-by-n, it assumes that m is the number of time-tagged observations
and n is the number of realizations.

Vectors. The length of a time series vector represents only the number of
observations the vector contains. It does not indicate whether the vector is a
row or column vector, i.e. it does not indicate the vector’s size. For example, a
time series vector of length 10 can be a row vector (i.e., a 1-by-10 matrix) or a
column vector (i.e., a 10-by-1 matrix).
2

GARCH Toolbox Overview
When a function detects a time series vector, row or column, it assumes that
the vector represents a single realization of a univariate time series, and the
length of the vector is the number of observations.

Note Although most functions can process either row or column vectors, you
can avoid confusing input/output arguments if you format single realizations
of a univariate time series as column vectors. Using column vectors also
makes it easier for you to display data in the MATLAB command window.

Precision
The GARCH Toolbox performs all its calculations in double precision. Select
File > Preferences... > General > Numeric Format to set the numeric format
for your displays. The default is Short.

Prices, Returns, and Compounding
The GARCH Toolbox assumes that time series vectors and matrices are
time-tagged series of observations. If you have a price series, the toolbox lets
you convert it to a return series using either continuous compounding or
periodic compounding in accord with Eq. (2-10) and Eq. (2-11).

If you denote successive price observations made at time t and t+1 as Pt and
Pt+1, respectively, continuous compounding transforms a price series {Pt} into
a return series {yt} as

(2-10)

Periodic compounding defines the transformation as

(2-11)

Continuous compounding is the default compounding method of the GARCH
Toolbox, and is the preferred method for most of continuous-time finance. Since
GARCH modeling is typically based on relatively high frequency data (i.e.,
daily or weekly observations), the difference between the two methods is
usually small. However, there are some toolbox functions whose results are

yt
Pt 1+

Pt
-------------log Pt 1+log Ptlog–= =

yt
Pt 1+ Pt–

Pt

Pt 1+

Pt
------------- 1–= =
2-13

2 Tutorial

2-1
approximations for periodic compounding, but exact for continuous
compounding. If you adopt the continuous compounding default convention
when moving between prices and returns, all toolbox functions produce exact
results.

Stationary and Nonstationary Time Series
Figure 2-3, Typical Equity Price Series illustrates a typical equity price series.
Notice that there appears to be no long-run average level about which the
series evolves. This is evidence of a nonstationary time series.

Figure 2-3: Typical Equity Price Series

Figure 2-4, Continuously Compounded Returns Associated with the Price
Series, however, illustrates the continuously compounded returns associated
with the same price series. In contrast, the returns appear to be quite stable
over time, and the transformation from prices to returns has produced a
stationary time series.
4

GARCH Toolbox Overview
Figure 2-4: Continuously Compounded Returns Associated with the Price
Series

The GARCH Toolbox assumes that return series are stationary processes. This
may seem limiting, but the price-to-return transformation is common and
generally guarantees a stable data set for GARCH modeling.

The Default Model
The GARCH Toolbox default model is the simple (yet common) conditional
mean model with GARCH(1,1) Gaussian innovations, based on Eq. (2-8) and
Eq. (2-9).

(2-12)

(2-13)

In the conditional mean model, Eq. (2-12), the returns, yt, consist of a simple
constant, plus an uncorrelated, white noise disturbance, εt. This model is often
sufficient to describe the conditional mean in a financial return series. Most
financial return series do not require the comprehensiveness that an ARMAX
model provides.

In the conditional variance model, Eq. (2-13), the variance forecast, σt
2,

consists of a constant plus a weighted average of last period's forecast, σt-1
2,

yt C εt+=

σt
2 κ G1σt 1–

2
A1εt 1–

2
+ +=
2-15

2 Tutorial

2-1
and last period's squared disturbance, εt-1
2. Although financial return series,

as defined in Eq. (2-10) and Eq. (2-11), typically exhibit little correlation, the
squared returns often indicate significant correlation and persistence. This
implies correlation in the variance process, and is an indication that the data
is a candidate for GARCH modeling.

Although simplistic, the default model shown in Eq. (2-12) and Eq. (2-13) has
several benefits:

• It represents a parsimonious model that requires you to estimate only four
parameters (C, κ, G1, and A1). According to Box and Jenkins [7], the fewer
parameters to estimate, the less that can go wrong. Elaborate models often
fail to offer real benefits when forecasting (see Hamilton [12], page 109).

• The simple GARCH(1,1) model captures most of the variability in most
return series. Small lags for P and Q are common in empirical applications.
Typically, GARCH(1,1), GARCH(2,1), or GARCH(1,2) models are adequate
for modeling volatilities even over long sample periods (see Bollerslev, Chou,
and Kroner [5], pages 10 and 22).
6

Analysis and Estimation Example Using the Default Model
Analysis and Estimation Example Using the Default Model
The example in this section uses the GARCH Toolbox default model to examine
the equity series of a hypothetical company, the XYZ Corporation. It uses the
default model to estimate the parameters needed to model the series.
Specifically, the example:

1 Performs a pre-estimation analysis to determine if the data is
heteroskedastic and can be modeled using GARCH

2 Estimates the parameters for the default model

3 Performs a post-estimation analysis to confirm that the default model
explains the heteroscedasticity present in the data

Note Due to platform differences, the estimation results you obtain when you
recreate the examples in this chapter may differ from those shown in the text.
These differences will propagate through any subsequent examples that use
the estimation results as input, and may cause the numerical output of some
examples to differ markedly from the text. These differences, however, do not
affect the outcome of the examples.

Pre-Estimation Analysis
The pre-estimation analysis:

1 Loads the raw data: daily closing prices

2 Converts the prices to a return series

3 Checks for correlation

4 Quantifies the correlation

Load the Raw Data: Daily Closing Prices
Start by loading the MATLAB binary file xyz.mat, and examining its contents
using the whos command.
2-17

2 Tutorial

2-1
load xyz
whos
 Name Size Bytes Class

 prices 2001x1 16008 double array

Grand total is 2001 elements using 16008 bytes

The whos command lists all the variables in the current workspace, together
with information about their size, bytes, and class.

The data you loaded from xyz.mat consists of a single column vector, prices,
of length 2001. This vector contains the daily closing prices of the XYZ
Corporation. Use the MATLAB plot function to examine the data (see plot in
the online MATLAB Function Reference).

plot([0:2000], prices)
ylabel('Share Price')
title('Daily Closing Prices')

Figure 2-5: Daily Closing Prices of the XYZ Corporation

The plot shown in Figure 2-5, Daily Closing Prices of the XYZ Corporation is
the same as the one shown in Figure 2-3, Typical Equity Price Series.
8

Analysis and Estimation Example Using the Default Model
Convert the Prices to a Return Series
Because GARCH modeling assumes a return series, you need to convert the
prices to returns. Use the utility function price2ret, and then examine the
result.

xyz = price2ret(prices);
whos
 Name Size Bytes Class

 prices 2001x1 16008 double array
 xyz 2000x1 16000 double array

Grand total is 4001 elements using 32008 bytes

The workspace information shows both the 2001-point price series and the
2000-point return series derived from it.

Now, use the MATLAB plot function to see the return series.

plot(xyz)
ylabel('Return')
title('Daily Returns')

Figure 2-6: Raw Return Series Based on Daily Closing Prices
2-19

2 Tutorial

2-2
The results, shown in Figure 2-6, Raw Return Series Based on Daily Closing
Prices, are the same as those shown in Figure 2-4, Continuously Compounded
Returns Associated with the Price Series. Notice the presence of volatility
clustering in the raw return series.

Check for Correlation

In the Return Series. You can check qualitatively for correlation in the raw return
series by calling the functions autocorr and parcorr to examine the sample
autocorrelation function (ACF) and partial-autocorrelation (PACF) function,
respectively.

autocorr(xyz)

Figure 2-7: ACF with Bounds for the Raw Return Series

The autocorr function computes and displays the sample ACF of the returns,
along with the upper and lower standard deviation confidence bounds, based
on the assumption that all autocorrelations are zero beyond lag zero.

parcorr(xyz)
0

Analysis and Estimation Example Using the Default Model
Figure 2-8: PACF with Bounds for the Raw Return Series

Similarly, the parcorr function displays the sample PACF with upper and
lower confidence bounds.

Since the individual ACF values can have large variances and can also be
autocorrelated, you should view the sample ACF and PACF with care (see Box,
Jenkins, Reinsel [7], pages 34 and 186). However, as preliminary identification
tools, the ACF and PACF provide some indication of the broad correlation
characteristics of the returns. From Figure 2-7, ACF with Bounds for the Raw
Return Series and Figure 2-8, PACF with Bounds for the Raw Return Series,
there is no real indication that you need to use any correlation structure in the
conditional mean. Also, notice the similarity between the graphs.

In the Squared Returns. Although the ACF of the observed returns exhibits little
correlation, the ACF of the squared returns may still indicate significant
correlation and persistence in the second-order moments. Check this by
plotting the ACF of the squared returns.

autocorr(xyz.^2)
2-21

2 Tutorial

2-2
Figure 2-9: ACF of the Squared Returns

Figure 2-9, ACF of the Squared Returns shows that, although the returns
themselves are largely uncorrelated, the variance process exhibits some
correlation. This is consistent with the earlier discussion in the section, “The
Default Model” on page 2-15. Note that the ACF shown in Figure 2-9, ACF of
the Squared Returns appears to die out slowly, indicating the possibility of a
variance process close to being nonstationary.

Note The syntax in the preceding command, an operator preceded by the dot
operator (.), indicates that the operation is performed on an
element-by-element basis. In the preceding command, xyz.^2 indicates that
each element of the vector xyz is squared.

Quantify the Correlation
You can quantify the preceding qualitative checks for correlation using formal
hypothesis tests, such as the Ljung-Box-Pierce Q-test and Engle's ARCH test.
2

Analysis and Estimation Example Using the Default Model
The function lbqtest implements the Ljung-Box-Pierce Q-test for a departure
from randomness based on the ACF of the data. The Q-test is most often used
as a post-estimation lack-of-fit test applied to the fitted innovations (i.e.,
residuals). In this case, however, you can also use it as part of the pre-fit
analysis because the default model assumes that returns are just a simple
constant plus a pure innovations process. Under the null hypothesis of no serial
correlation, the Q-test statistic is asymptotically Chi-Square distributed (see
Box, Jenkins, Reinsel [7], page 314).

The function archtest implements Engle's test for the presence of ARCH
effects. Under the null hypothesis that a time series is a random sequence of
Gaussian disturbances (i.e., no ARCH effects exist), this test statistic is also
asymptotically Chi-Square distributed (see Engle [8], pages 999-1000).

Both functions return identical outputs. The first output, H, is a Boolean
decision flag. H = 0 implies that no significant correlation exists (i.e., do not
reject the null hypothesis). H = 1 means that significant correlation exists (i.e.,
reject the null hypothesis). The remaining outputs are the P-value (pValue),
the test statistic (Stat), and the critical value of the Chi-Square distribution
(CriticalValue).

Ljung-Box-Pierce Q-Test. Using lbqtest, you can verify, at least approximately,
that no significant correlation is present in the raw returns when tested for up
to 10, 15, and 20 lags of the ACF at the 0.05 level of significance.

[H, pValue, Stat, CriticalValue] = lbqtest(xyz-mean(xyz), [10 15
20]', 0.05);
[H pValue Stat CriticalValue]
ans =
 0 0.2996 11.7869 18.3070
 0 0.2791 17.6943 24.9958
 0 0.1808 25.5616 31.4104

However, there is significant serial correlation in the squared returns when
you test them with the same inputs.

[H, pValue, Stat, CriticalValue] = lbqtest((xyz-mean(xyz)).^2,
[10 15 20]', 0.05);
[H pValue Stat CriticalValue]
ans =
 1.0000 0 177.5937 18.3070
 1.0000 0 263.9325 24.9958
2-23

2 Tutorial

2-2
 1.0000 0 385.6907 31.4104

Engle's ARCH Test. You can also perform Engle’s ARCH test using the function
archtest. This test also shows significant evidence in support of GARCH
effects (i.e heteroscedasticity).

[H, pValue, Stat, CriticalValue] = archtest(xyz-mean(xyz), [10 15
20]', 0.05);
[H pValue Stat CriticalValue]
ans =
 1.0000 0 107.6171 18.3070
 1.0000 0 127.1083 24.9958
 1.0000 0 159.6543 31.4104

Each of these examples extracts the sample mean from the actual returns. This
is consistent with the definition of the conditional mean equation of the default
model, in which the innovations process is εt = yt - C, and C is the mean of yt.

Parameter Estimation
The parameter estimation:

1 Estimates the model parameters

2 Examines the estimated GARCH model

Estimate the Model Parameters
The presence of heteroscedasticity, shown in the previous analysis, indicates
that GARCH modeling is appropriate. Use the estimation function garchfit to
estimate the model parameters. Assume the default GARCH model described
in the section “The Default Model” on page 2-15. This only requires that you
specify the return series of interest as an argument to the function garchfit.

Note Because the default value of the Display parameter in the specification
structure is on, garchfit prints diagnostic, optimization, and summary
information to the MATLAB command window in the example below. (See
fmincon in the Optimization Toolbox for information about the optimization
information.)
4

Analysis and Estimation Example Using the Default Model
[coeff, errors, LLF, innovations, sigma, summary] =
garchfit(xyz);

%%%
 Diagnostic Information

Number of variables: 4

Functions
 Objective: garchllfn
 Gradient: finite-differencing
 Hessian: finite-differencing (or
Quasi-Newton)
 Nonlinear constraints: garchnlc
 Gradient of nonlinear constraints: finite-differencing

Constraints
 Number of nonlinear inequality constraints: 0
 Number of nonlinear equality constraints: 0

 Number of linear inequality constraints: 1
 Number of linear equality constraints: 0
 Number of lower bound constraints: 4
 Number of upper bound constraints: 0

Algorithm selected
 medium-scale

%%%
 End diagnostic information

 max Directional
 Iter F-count f(x) constraint Step-size derivative
Procedure
 1 5 -5921.94 -1.684e-005 1 -7.92e+004
 2 34 -5921.94 -1.684e-005 1.19e-007 -553
 3 43 -5924.42 -1.474e-005 0.125 -31.2
 4 49 -5936.16 -6.996e-021 1 -288
 5 57 -5960.62 0 0.25 -649
 6 68 -5961.45 -4.723e-006 0.0313 -17.3
2-25

2 Tutorial

2-2
 7 75 -5963.18 -2.361e-006 0.5 -28.6
 8 81 -5968.24 0 1 -55
 9 90 -5970.54 -6.016e-007 0.125 -196
 10 103 -5970.84 -1.244e-006 0.00781 -16.1
 11 110 -5972.77 -9.096e-007 0.5 -34.4
 12 126 -5972.77 -9.354e-007 0.000977 -24.5
 13 134 -5973.29 -1.05e-006 0.25 -4.97
 14 141 -5973.95 -6.234e-007 0.5 -1.99
 15 147 -5974.21 -1.002e-006 1 -0.641
 16 153 -5974.57 -9.028e-007 1 -0.0803
 17 159 -5974.59 -8.054e-007 1 -0.0293
 18 165 -5974.6 -8.305e-007 1 -0.0039
 19 172 -5974.6 -8.355e-007 0.5 -0.000964
 20 192 -5974.6 -8.355e-007 -6.1e-005 -0.000646
 21 212 -5974.6 -8.355e-007 -6.1e-005 -0.000996
Hessian modified twice
 22 219 -5974.6 -8.361e-007 0.5 -0.000184
 23 239 -5974.6 -8.361e-007 -6.1e-005 -0.00441
Hessian modified twice
Optimization terminated successfully:
 Search direction less than 2*options.TolX and
 maximum constraint violation is less than options.TolCon
 No Active Constraints

Examine the Estimated GARCH Model
Now that the estimation is complete, you can display the parameter estimates
and their standard errors using the function garchdisp,

garchdisp(coeff, errors)

 Number of Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00049183 0.00025585 1.9223
 K 8.2736e-007 2.7446e-007 3.0145
 GARCH(1) 0.96283 0.0051557 186.7500
 ARCH(1) 0.03178 0.004416 7.1965
6

Analysis and Estimation Example Using the Default Model
If you substitute these estimates in the definition of the default model,
Eq. (2-12) and Eq. (2-13), the estimation process implies that the constant
conditional mean/GARCH(1,1) conditional variance model that best fits the
observed data is

where G1 = GARCH(1) = 0.96283 and A1 = ARCH(1) = 0.03178. In addition,
C = C = 0.00049183 and κ = K = 8.2736e-007.
Figure 2-10, GARCH(1,1) Log-Likelihood Contours for the XYZ Corporation
shows the log-likelihood contours of the default GARCH(1,1) model fit to the
returns of the XYZ Corporation. The contour data is generated by the GARCH
Toolbox demonstration function garch11grid. This function evaluates the
log-likelihood function on a grid in the G1-A1 plane, holding the parameters C
and κ fixed at their maximum likelihood estimates of 0.00049183 and
8.2736e-007, respectively.

The contours confirm the printed garchfit results above. The maximum
log-likelihood value, LLF = 5974.6, occurs at the coordinates G1 = GARCH(1) =
0.96283 and A1 = ARCH(1) = 0.03178.

The figure also reveals a highly negative correlation between the estimates of
the G1 and A1 parameters of the GARCH(1,1) model. This implies that a small
change in the estimate of the G1 parameter is nearly compensated for by a
corresponding change of opposite sign in the A1 parameter.

yt 0.00049183 εt+=

σt
2

8.2736e 007– 0.96283σt 1–
2

0.03178εt 1–
2

+ +=
2-27

2 Tutorial

2-2
Figure 2-10: GARCH(1,1) Log-Likelihood Contours for the XYZ Corporation

Note If you view this manual on the Web, the color-coded bar at the right of
the figure indicates the height of the log-likelihood surface above the
GARCH(1,1) plane.

Post-Estimation Analysis
The post_estimation analysis:

1 Compares the residuals, conditional standard deviations, and returns

2 Plots and compares correlation of the standardized innovations

3 Quantifies and compares correlation of the standardized innovations
8

Analysis and Estimation Example Using the Default Model
Compare the Residuals, Conditional Standard Deviations, and Returns
In addition to the parameter estimates and standard errors, garchfit also
returns the optimized log-likelihood function value (LLF), the residuals
(innovations), and conditional standard deviations (sigma). Use the function
garchplot to inspect the relationship between the innovations (i.e., residuals)
derived from the fitted model, the corresponding conditional standard
deviations, and the observed returns. garchplot displays the tiered plot shown
in Figure 2-11, Comparison of Innovations, Conditional Standard Deviations
and Observed Returns.

garchplot(innovations, sigma, xyz)

Figure 2-11: Comparison of Innovations, Conditional Standard Deviations
and Observed Returns
2-29

2 Tutorial

2-3
Notice in Figure 2-11, Comparison of Innovations, Conditional Standard
Deviations and Observed Returns that both the innovations (top plot) and the
returns (bottom plot) exhibit volatility clustering. Also, notice that the sum,
G1 + A1 = 0.96283 + 0.03178, is 0.99461, which is close to the integrated,
nonstationary boundary given by Eq. (2-6).

Plot and Compare Correlation of the Standardized Innovations
Although the fitted innovations exhibit volatility clustering (Figure 2-11,
Comparison of Innovations, Conditional Standard Deviations and Observed
Returns), if you plot of the standardized innovations (the innovations divided
by their conditional standard deviation), they appear generally stable with
little clustering.

plot(innovations./sigma)
ylabel('Innovation')
title('Standardized Innovations')

Figure 2-12: Standardized Innovations

If you plot the ACF of the squared standardized innovations (Figure 2-13, ACF
of the Squared Standardized Innovations), they also show no correlation.

autocorr((innovations./sigma).^2)
0

Analysis and Estimation Example Using the Default Model
Figure 2-13: ACF of the Squared Standardized Innovations

Now compare the ACF of the squared standardized innovations (Figure 2-13,
ACF of the Squared Standardized Innovations) to the ACF of the squared
returns prior to fitting the default model (Figure 2-9, ACF of the Squared
Returns). The comparison shows that the default model explains sufficiently
the heteroscedasticity in the raw returns.

Quantify and Compare Correlation of the Standardized Innovations
Compare the results below of the Q-test and the ARCH test with the results of
these same tests in the pre-estimation analysis. In the pre-estimation analysis,
both the Q-test and the ARCH test indicate a rejection (H = 1 with pValue = 0)
of their respective null hypotheses, showing significant evidence in support of
GARCH effects. In the post-estimate analysis, using standardized innovations
based on the estimated model, these same tests indicate acceptance (H = 0 with
highly significant pValues) of their respective null hypotheses and confirm the
explanatory power of the default model.

[H, pValue, Stat, CriticalValue] =
lbqtest((innovations./sigma).^2,[10 15 20]',0.05);
[H pValue Stat CriticalValue]
2-31

2 Tutorial

2-3
ans =
 0 0.8632 5.3966 18.3070
 0 0.9328 7.7677 24.9958
 0 0.9819 9.0843 31.4104

[H, pValue, Stat, CriticalValue] =
archtest(innovations./sigma,[10 15 20]',0.05);
[H pValue Stat CriticalValue]
ans =
 0 0.8883 5.0428 18.3070
 0 0.8765 9.0200 24.9958
 0 0.9521 10.7657 31.4104
2

The GARCH Specification Structure
The GARCH Specification Structure
This section discusses:

• Purpose of the Specification Structure

• Contents of the Specification Structure

• Valid Model Specifications

• Accessing Specification Structures

• Using the Specification Structure for Estimation, Simulation, and
Forecasting

Purpose of the Specification Structure
Situations may arise in which you need more direct control of the analysis than
is provided by the default model,

(See “Analysis and Estimation Example Using the Default Model” on
page 2-17.) For example, you may want to estimate the parameters of more
elaborate conditional mean or variance models, perform Monte Carlo
simulation, perform what-if analyses, or forecast time series.

The GARCH Toolbox maintains the parameters that define a model in a
GARCH specification structure. In the default model example, garchfit
creates the specification structure, coeff, and stores the model orders and
estimated parameters of the default model in it. For more complex models,
however, such as those required for the tasks listed above, you must specify the
necessary parameters and store them in a specification structure.

The specification structure, coeff (from the default model example) represents
the following default model estimated by garchfit.

yt C εt+=

σt
2 κ G1σt 1–

2
A1εt 1–

2
+ +=

yt 0.00049183 εt+=

σt
2

8.2736e 007– 0.96283σt 1–
2

0.03178εt 1–
2

+ +=
2-33

2 Tutorial

2-3
“Contents of the Specification Structure” on page 2-34 shows the specification
structure for the default model.

Contents of the Specification Structure
This example shows the contents of the specification structure. It is the
specification structure, coeff, for the default model. The term to the left of the
colon (:) is the parameter name.

coeff
coeff =
 Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
 R: 0
 M: 0
 P: 1
 Q: 1
 Distribution: 'Gaussian'
 C: 4.9183e-004
 AR: []
 MA: []
 Regress: []
 K: 8.2736e-007
 GARCH: 0.9628
 ARCH: 0.0318
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

The specification structure parameters of interest in this discussion are
Comment, R, M, P, Q, C, AR, MA, Regress, K, GARCH, and ARCH. (See the garchset
reference page for a complete description of the GARCH specification structure
parameters.) This section discusses:

• The Comment Field

• Equation Variables and Parameter Names

• Interpreting the Specification Structure
4

The GARCH Specification Structure
The Comment Field
The Comment field summarizes the ARMAX and GARCH models used for the
conditional mean and variance equations in the default model example. The
Comment value 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)' describes the
default model in terms of the general ARMAX(R,M,Nx) form for the conditional
mean, where R = M = Nx = 0

(2-14)

and the general GARCH(P,Q) form with Gaussian innovations for the
conditional variance, where P = Q = 1.

(2-15)

By default, garchfit and garchset generate the Comment field automatically
Although you can set the value of the Comment field, it offers such a convenient
summary that The MathWorks discourages your doing so. However, if you do
specify your own comment, the GARCH Toolbox recognizes this and does not
override your comment.

Equation Variables and Parameter Names
For the most part, the names of specification structure parameters that define
the ARMAX/GARCH models reflect the variable names of their corresponding
components in Eq. (2-14) and Eq. (2-15):

• R and M represent the order of the ARMA(R,M) model.

• P and Q represent the order of the GARCH(P,Q) model.

• AR represents the coefficient vector ARi.

• MA represents the coefficient vector MAj.

• GARCH represents the coefficient vector Gi.

• ARCH represents the coefficient vector Aj.

• C and K represent the constants C and κ, respectively.

yt C ARiyt i–
i 1=

R

∑ εt MAjεt j–

j 1=

M

∑ βkX t k,()
k 1=

Nx

∑+ + + +=

σt
2 κ Giσt i–

2

i 1=

P

∑ Ajεt j–
2

j 1=

Q

∑+ +=
2-35

2 Tutorial

2-3
Unlike the other components of these equations, X has no representation in the
GARCH specification structure. X is an optional matrix of returns that some
toolbox functions use as explanatory variables in the regression component of
the conditional mean. For example, X could contain return series of a suitable
market index collected over the same period as y. Toolbox functions that allow
the use of a regression matrix provide a separate argument by which you can
specify it. In the specification structure, Regress represents the coefficient
vector of X, βk.

Interpreting the Specification Structure
In the specification structure, coeff, for the default model example, the AR, MA,
and Regress fields are empty matrices ([]). This is because the default mean
equation is an ARMAX(0,0,0) model, where R = M = Nx = 0, and AR, MA, and
Regress are R-, M-, and Nx-element vectors, respectively.

The GARCH and ARCH fields are both scalars set to their respective estimated
values. They are scalars because the default variance equation is a
GARCH(1,1) model, where P = 1 lag of the past conditional variance and Q = 1
lag of the past squared innovations.

C and K are the constants of the mean and variance equations, respectively.
Their values were estimated by garchfit.

Valid Model Specifications
The specification structure you provide as input to all functions except
garchfit must contain a complete model specification. That is, the orders of
the ARMA and GARCH models must agree with the lengths of their
corresponding coefficient vectors. Specifically, the value of R must be the same
as the length of the vector AR, and M must be the same as the length of MA. The
value of P must be the same as the length of the vector GARCH, and Q must be
the same as the length of ARCH.

Only garchfit can accept as input a specification structure in which some or
all of the model orders (R, M, P, or Q) are greater than 0 and the coefficient
vectors are empty ([]). During the estimation process, garchfit creates
appropriate coefficient vectors whose lengths correspond to the specified model
orders.
6

The GARCH Specification Structure
Accessing Specification Structures
This section discusses:

• Using garchset to Create a Specification Structure

• Retrieving Specification Structure Values

• Accessing Fields Directly

Using garchset to Create a Specification Structure
The function garchset provides various options for creating and modifying a
specification structure. Each of the following commands uses a different
garchset syntax to create identical specification structures for the default
model.

spec = garchset('R', 0, 'm', 0, 'P', 1, 'Q', 1);
spec = garchset('p', 1, 'Q', 1);
spec = garchset('R', 0, 'M', 0); spec = garchset(spec, 'P', 1,
'Q', 1);
spec = garchset;

The first command explicitly sets all model orders: R, M, P, and Q. This command
illustrates the most basic garchset calling syntax. It specifies the structure
fields as parameter/value pairs, in which the parameter name is a MATLAB
character string enclosed in single quotes, followed by its corresponding value.
When calling garchset, you only need to type the leading characters that
uniquely identify the parameter. As illustrated here, case is ignored for
parameter names.

The second command sets model orders for a GARCH(1,1) variance process
only, and relies on the ARMAX(0,0,?) default for the mean. The third command
creates an initial structure, and then updates the existing structure with
additional parameter/value pairs. The last command, with no input
arguments, creates a structure for the default model. The last command also
implies that the following commands produce exactly the same estimation
results.

[coeff, errors, LLF, innovations, sigma] = garchfit(xyz);
[coeff, errors, LLF, innovations, sigma] = garchfit(garchset,
xyz);
2-37

2 Tutorial

2-3
Retrieving Specification Structure Values
The function garchget retrieves the values contained in specification structure
fields.

Use garchget to retrieve the estimated coefficients from coeff. Then use
garchset to write those coefficients to a new specification structure, spec, that
is almost identical to coeff. For both garchget and garchset, you only need to
type the leading characters that uniquely identify the parameter. Case is
ignored for parameter names.

C = garchget(coeff, 'C') % Use a separate garchget call to
 % get each estimated coefficient.
C =
 4.9183e-004

K = garchget(coeff, 'K')

K =
 8.2736e-007

G = garchget(coeff, 'GARCH')

G =
 0.9628

A = garchget(coeff, 'ARCH')

A =
 0.0318
 % Use garchset to create a new
 % structure, spec.
spec = garchset('C', C, 'K', K, 'GARCH', G, 'ARCH', A)

spec =
 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
 R: 0
 M: 0
 P: 1
 Q: 1
 Distribution: 'Gaussian'
8

The GARCH Specification Structure
 C: 4.9183e-004
 AR: []
 MA: []
 Regress: []
 K: 8.2736e-007
 GARCH: 0.9628
 ARCH: 0.0318
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

In this example, garchset automatically generates the first six fields (i.e.,
Comment, R, M, P, Q, and Distribution). Specifically, garchset infers the
comment and model orders (R, M, P, Q) from the corresponding coefficient vectors
(AR, MA, ARCH, GARCH). The converse is not true. If you specify only the model
orders, garchset creates the coefficient vectors as empty matrices ([]). If you
later call garchfit, it estimates the coefficient vectors for models of the order
you specify, and updates the AR, MA, ARCH, and GARCH fields with these values.

Note The only difference between the coeff and spec structures above lies
in their Comment fields. In coeff, garchfit explicitly sets the number of
explanatory (i.e., regression) variables in the Comment field of coeff to 0. This
is because coeff represents an actual model whose conditional mean has no
regression component. On the other hand, garchset inserts a '?' because it has
no knowledge when it creates spec, whether you will include a regression
component when you call garchfit to estimate the model parameters.

Accessing Fields Directly
In addition to using garchset and garchget to access the values of specification
structure fields, you can also manipulate the fields of a structure directly. For
example, the commands

garchget(spec, 'P')
2-39

2 Tutorial

2-4
spec.P

both retrieve the order P in the structure spec. Similarly, the commands

spec = garchset(spec, 'P', 3)
spec.P = 3

both write the order P = 3.

The first command in each case uses a GARCH Toolbox function to retrieve or
write the value of a field. In this case the toolbox performs error checking (e.g.,
to ensure compatibility between inputs and guarantee that ARMA models are
stationary/invertible). You also have the convenience of partial field names and
case insensitivity.

In each case, the second command manipulates the structure directly.
Although this approach does not support partial field names and case
insensitivity, it can be convenient when you work interactively at the MATLAB
command line. However, it does not provide error checking. For this reason,
you should avoid manipulating a specification structure directly when writing
code.

Note that the call to garchset above fails in your example workspace because
the corresponding coefficient vector, GARCH, has only one element. Setting
spec.P = 3 directly succeeds but leaves you with an inconsistent specification
structure.

Using the Specification Structure for Estimation,
Simulation, and Forecasting
The three functions, garchfit, garchpred, and garchsim, comprise the core
analysis and modeling routines of the GARCH Toolbox. These three functions
operate on the GARCH specification structure. Table 2-1, GARCH
Specification Structure Use describes each function’s use of the GARCH
specification structure.
0

The GARCH Specification Structure
Table 2-1: GARCH Specification Structure Use

Function Description Use of GARCH Specification Structure

garchfit Estimates the parameters of a
conditional mean specification of
ARMAX form and a conditional
variance specification of GARCH
form.

Input . Optionally accepts a GARCH
specification structure as input. If the
structure contains the model orders but no
coefficient vectors (C, AR, MA, Regress, K,
ARCH, GARCH), garchfit uses maximum
likelihood to estimate the coefficients for an
ARMAX/GARCH model of the specified
orders. If the structure contains coefficient
vectors, garchfit uses them as initial
estimates for further refinement. If you
provide no specification structure, garchfit
assumes, and returns, a specification
structure for the default model.

Output. Returns a specification structure
that contains a fully specified
ARMAX/GARCH model.

garchpred Provides
minimum-mean-square-error
(MMSE) forecasts of the
conditional mean and standard
deviation of a return series, for a
specified number of periods into
the future.

Input. Requires a GARCH specification
structure that contains the coefficient
vectors for the model for which garchpred is
to forecast the conditional mean and
standard deviation.

Output. garchpred does not modify or return
the specification structure.

garchsim Uses Monte Carlo methods to
simulates sample paths for
return series, innovations, and
conditional standard deviation
processes.

Input. Requires a GARCH specification
structure that contains the coefficient
vectors for the model for which garchsim is
to simulate sample paths.

Output. garchsim does not modify or return
the specification structure.
2-41

2 Tutorial

2-4
Simulation
This section shows you how to:

• Simulate sample paths, using the simulation function garchsim, for return
series, innovations, and conditional standard deviation processes

• Examine transient effects in the simulation process

It also provides a general simulation example.

Simulating Sample Paths
The section “Analysis and Estimation Example Using the Default Model” on
page 2-17 models the equity series of a hypothetical company, the XYZ
Corporation, using the default model. This section uses the resulting model

to simulate sample paths, using the simulation function garchsim, for return
series, innovations, and conditional standard deviation processes. You can
think of garchsim as a filter that you can use to generate a (possibly) correlated
return series {yt} from a white noise input series {εt}.

Use the following commands to restore your workspace if necessary. This
example omits the estimation output to save space.

load xyz
xyz = price2ret(prices);
[coeff, errors, LLF, innovations, sigma] = garchfit(xyz);
coeff
coeff =
 Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
 R: 0
 M: 0
 P: 1
 Q: 1
 Distribution: 'Gaussian'
 C: 4.9183e-004
 AR: []

yt 0.00049183 εt+=

σt
2

8.2736e 007– 0.96283σt 1–
2

0.03178εt 1–
2

+ +=
2

Simulation
 MA: []
 Regress: []
 K: 8.2736e-007
 GARCH: 0.9628
 ARCH: 0.0318
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

Using Default Inputs
Now call garchsim to simulate sample paths using the model in coeff. This
command accepts garchsim defaults for:

• The number of sample paths (i.e. realizations) to generate: 1

• The number of observations to generate for each path: 100

• The random number generator seed: 0

[e,s,y] = garchsim(coeff);

whos e s y
 Name Size Bytes Class

 e 100x1 800 double array
 s 100x1 800 double array
 y 100x1 800 double array

Grand total is 300 elements using 2400 bytes

The result is a single realization (i.e., one sample path) of 100 observations
each for the innovations {εt}, conditional standard deviations {σt}, and returns
{yt} processes. These processes are designated by the output variables e, s, and
y, respectively.
2-43

2 Tutorial

2-4
Simulating a Much Longer Path
However, accurate GARCH modeling typically requires a few years worth of
data. If there are 250 trading days per year, 1000 observations would be a more
useful sample.

[e,s,y] = garchsim(coeff, 1000);
whos e s y
 Name Size Bytes Class

 e 1000x1 8000 double array
 s 1000x1 8000 double array
 y 1000x1 8000 double array

Grand total is 3000 elements using 24000 bytes

The result is a single realization of 1000 observations (roughly four years of
data) for each of {εt}, {σt}, and {yt}. Plot the garchsim output data to see what it
looks like.

garchplot(e,s,y)
4

Simulation
Figure 2-14: A Single Realization of 1000 Observations

Simulating Multiple Paths
However, Monte Carlo simulation requires multiple independent paths. Use
the same model to simulate 1000 paths of 200 observations each.

[e,s,y] = garchsim(coeff, 200, 1000);
whos e s y
 Name Size Bytes Class

 e 200x1000 1600000 double array
 s 200x1000 1600000 double array
 y 200x1000 1600000 double array
2-45

2 Tutorial

2-4
Grand total is 600000 elements using 4800000 bytes

In this example, {εt}, {σt}, and {yt} are 200-by-1000 element matrices. These are
relatively large arrays, and demand large chunks of memory. In fact, because
of the way the GARCH Toolbox manages transients, simulating this data
requires more memory than the 4800000 bytes indicated above.

Transients in the Simulation Process

Automatic Minimization of Transient Effects
The function garchsim generates stable output processes in (approximately)
steady-state by attempting to eliminate transients in the data it simulates.
garchsim first estimates the number of observations needed for the transients
to decay to some arbitrarily small value, and then generates a number of
observations equal to the sum of this estimated value and the number you
request. garchsim then ignores the estimated number of initial samples needed
for the transients to decay sufficiently and returns only the requested number
of later observations.

To do this, garchsim interprets the simulated GARCH(P,Q) conditional
variance process as an ARMA(max(P,Q),P) model for the squared innovations
(see, for example, Bollerslev [4], p.310). It then interprets this
ARMA(max(P,Q),P) model as the correlated output of a linear filter and
estimates its impulse response by finding the magnitude of the largest
eigenvalue of its auto-regressive polynomial. Based on this eigenvalue,
garchsim estimates the number of observations needed for the magnitude of
the impulse response (which begins at 1) to decay below 0.01 (i.e., 1 percent).
If the conditional mean has an ARMA(R,M) component, then garchsim also
estimates its impulse response.

Depending on the values of the parameters in the simulated conditional mean
and variance models, you may need long pre-sample periods for the transients
to die out. Although the simulation outputs may be relatively small matrices,
the initial computation of these transients can result in a large memory burden
and seriously impact performance. In the previous example, which simulates
three 200-by-1000 element arrays, intermediate storage is required for far
more than 200 observations.
6

Simulation
Further Minimization of Transient Effects
If you suspect transients persist in the simulated data garchsim returns, you
can oversample and delete observations from the beginning of each series. For
example, suppose you would like to simulate 10 independent paths of 1000
observations each for {εt}, {σt}, and {yt} starting from a known scalar random
number seed (12345). Start by generating 1200 observations, then further
minimize the effect of transients by retaining only the last 1000 observations
of interest.

[e,s,y] = garchsim(coeff, 1200, 10, 12345);
whos e s y
 Name Size Bytes Class

 e 1200x10 96000 double array
 s 1200x10 96000 double array
 y 1200x10 96000 double array

Grand total is 36000 elements using 288000 bytes

e = e(end-999:end, :);
s = s(end-999:end, :);
y = y(end-999:end, :);

whos e s y
 Name Size Bytes Class

 e 1000x10 80000 double array
 s 1000x10 80000 double array
 y 1000x10 80000 double array

Grand total is 30000 elements using 240000 bytes

Note The example above also illustrates how to specify a random number
generator seed. If you do not specify a seed, as in the example in “Simulating
Multiple Paths” on page 2-45, the default seed is 0 (the MATLAB initial state).
2-47

2 Tutorial

2-4
Understanding Transient Effects
The example in this section builds on the example in the section “Further
Minimization of Transient Effects” on page 2-47. The previous example
simulated 10 independent paths of 1000 observations each for {εt}, {σt}, and {yt}
and returned its outputs in the variables e, s, and y respectively. This example
uses the GARCH Toolbox inference function garchinfer to infer {εt} and {σt}
from the simulated return series y. It then compares the steady-state
simulated innovations and conditional standard deviation processes with the
inferred innovations and conditional standard deviation processes.

Essentially, garchsim uses an ARMA model as a linear filter to transform an
uncorrelated input innovations process {εt} into a correlated output returns
process {yt}. Use the function garchinfer to reverse this process by inferring
innovations {εt} and standard deviation {σt} processes from the observations in
{yt}

[eInferred, sInferred] = garchinfer(coeff, y);

where eInferred and sInferred are the inferred innovations and conditional
standard deviations, respectively. Notice that when you query the workspace,
eInferred and sInferred are the same size as the simulated returns matrix y

whos eInferred sInferred y
 Name Size Bytes Class

 eInferred 1000x10 80000 double array
 sInferred 1000x10 80000 double array
 y 1000x10 80000 double array

Grand total is 30000 elements using 240000 bytes

Now compare the steady-state, simulated processes with their inferred
counterparts by examining the third trial (i.e., the third column of each
matrix). Note that there is nothing special about the third column, and the
following comparisons hold for all columns.

First, create two matrices, eData and sData, to store the row numbers, the
simulated and inferred series, and the difference between the two.

eData = [[1:length(e)]' e(:,3) eInferred(:,3)
[e(:,3)-eInferred(:,3)]];
sData = [[1:length(s)]' s(:,3) sInferred(:,3)
[s(:,3)-sInferred(:,3)]];
8

Simulation
whos eData sData
 Name Size Bytes Class

 eData 1000x4 32000 double array
 sData 1000x4 32000 double array

Grand total is 8000 elements using 64000 bytes

Now, print the first 10 rows of eData and sData, using the fprintf command
to format the printed output, and examine the observations.

Note Depending on your platform, the innovations (e, eInferred) and
standard deviations (s, sInferred) may differ in value from those shown
below. This has little effect on the calculated differences, which continue to
demonstrate the convergence shown in the last column.

fprintf('%4d %12.8f %12.8f %12.8f\n', eData(1:10,:)')
 1 -0.00111887 -0.00111887 0.00000000
 2 -0.01022535 -0.01022535 0.00000000
 3 -0.01391679 -0.01391679 0.00000000
 4 0.00769383 0.00769383 0.00000000
 5 0.00284161 0.00284161 0.00000000
 6 0.00837156 0.00837156 0.00000000
 7 -0.01022153 -0.01022153 0.00000000
 8 -0.00064348 -0.00064348 0.00000000
 9 0.00769471 0.00769471 0.00000000
 10 -0.00011629 -0.00011629 -0.00000000

fprintf('%4d %12.8f %12.8f %12.8f\n', sData(1:10,:)')
 1 0.01176309 0.01532522 -0.00356213
 2 0.01157993 0.01506653 -0.00348661
 3 0.01154388 0.01492360 -0.00337972
 4 0.01163145 0.01488014 -0.00324869
 5 0.01153130 0.01469346 -0.00316216
 6 0.01136278 0.01445537 -0.00309258
 7 0.01128578 0.01429146 -0.00300569
 8 0.01125978 0.01417048 -0.00291070
2-49

2 Tutorial

2-5
 9 0.01108652 0.01393485 -0.00284832
 10 0.01100236 0.01377214 -0.00276979

Notice that the difference between the simulated and inferred innovations is
effectively zero immediately, whereas the standard deviations appear to
converge slowly. If you examine every 25th observation of the standard
deviations, through the 400th observation, the convergence is more obvious.

fprintf('%4d %12.8f %12.8f %12.8f\n', sData(25:25:400,:)')
 25 0.01060556 0.01230273 -0.00169717
 50 0.01167755 0.01230644 -0.00062889
 75 0.01290505 0.01312981 -0.00022476
 100 0.01228385 0.01237591 -0.00009206
 125 0.01256986 0.01260484 -0.00003498
 150 0.01292421 0.01293742 -0.00001321
 175 0.01212655 0.01213201 -0.00000546
 200 0.01155697 0.01155919 -0.00000222
 225 0.01409612 0.01409683 -0.00000071
 250 0.01468410 0.01468437 -0.00000026
 275 0.01336617 0.01336628 -0.00000011
 300 0.01138117 0.01138123 -0.00000005
 325 0.01414220 0.01414222 -0.00000002
 350 0.01312882 0.01312883 -0.00000001
 375 0.01494447 0.01494447 -0.00000000
 400 0.01704352 0.01704352 -0.00000000

The innovations processes of the default model converge immediately because
the default model assumes a simple constant in the conditional mean equation
(i.e., there is no correlation in the conditional mean). However, the
GARCH(1,1) default conditional variance equation is highly persistent (recall
that the GARCH and ARCH parameter estimates are 0.9628 and 0.0318,
respectively).

Note The fprintf function lets you control the specific formatting of printed
data. This example uses it to print the first 10 rows of eData and sData. It
prints each innovation and difference value in fixed point notation, in a field of
at least 12 digits, with 8 digits of precision. (See fprintf in the online
MATLAB Function Reference.)
0

Simulation
A General Simulation Example
This simulation example is more general than the previous one that used the
default model, GARCH(1,1). It uses an ARMA(2,1) model to express correlation
in the conditional mean. The example:

1 Defines an ARMA(2,1)/GARCH(1,1) model

2 Uses the model to simulate 2000 observations for return series, innovations,
and conditional standard deviation processes

3 Infers the innovations and standard deviations for the simulated return
series

4 Compares the simulated and inferred innovations for the first 20
observations

Create the Model
Start by creating an ARMA(2,1)/GARCH(1,1) composite model with repeated
calls to garchset.

spec = garchset;
spec = garchset(spec, 'R', 2, 'M', 1);
spec = garchset(spec, 'C', 0, 'AR', [0.6 0.2], 'MA', 0.4);
spec = garchset(spec, 'K', 0.00001, 'GARCH', 0.8, 'ARCH', 0.1)
spec =
 Comment: 'Mean: ARMAX(2,1,?); Variance: GARCH(1,1)'
 R: 2
 M: 1
 P: 1
 Q: 1
 Distribution: 'Gaussian'
 C: 0
 AR: [0.6000 0.2000]
 MA: 0.4000
 Regress: []
 K: 1.0000e-005
 GARCH: 0.8000
 ARCH: 0.1000
 FixC: []
 FixAR: []
2-51

2 Tutorial

2-5
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

If you substitute the coefficient vectors from this specification structure in
Eq. (2-8) and Eq. (2-9) you get the following ARMA(2,1) and GARCH(1,1)
models. These are the models this example simulates.

Simulate and Infer the Innovations
Use this model to simulate 2000 observations in a return series, and their
corresponding innovations and standard deviations. Then use garchinfer to
infer innovations and standard deviations from the simulated return series.

[e,s,y] = garchsim(spec, 2000);
[eInferred, sInferred] = garchinfer(spec, y);

You can think of the simulation engine garchsim as a filter that generates a
(possibly) correlated return series {yt} from a white noise input series {εt}.
garchinfer reverses this process by inferring innovations {εt} and standard
deviation {σt} processes from the observations in {yt}.

However, garchinfer is a convenience function that only provides a
user-friendly interface to the log-likelihood objective function, garchllfn. So,
in fact, garchllfn is the inverse (i.e., whitening) filter associated with the
simulation engine, because it infers the white noise process from the observed
return series. (See the section “Understanding Transient Effects” on
page 2-48.)

Note garchfit also calls the log-likelihood objective function, garchllfn, to
infer the innovations and standard deviations.

yt 0 0.6yt 1– 0.2yt 2– εt 0.4εt 1–+ + + +=

σt
2

0.00001 0.8σt 1–
2

0.1εt 1–
2

+ +=
2

Simulation
Compare Simulated and Inferred Innovations
Now compare the simulated and inferred innovations for the first 20
observations. Notice that, after a few observations, the difference between the
simulated and inferred innovations is insignificant.

eData = [[1:length(e)]' e eInferred [e-eInferred]];
fprintf('%4d %12.8f %12.8f %12.8f\n', eData(1:20,:)')
 1 -0.00836573 0.00000000 -0.00836573
 2 -0.01976087 0.00000000 -0.01976087
 3 -0.00063568 -0.00854003 0.00790435
 4 -0.01022288 -0.00706114 -0.00316174
 5 0.00621509 0.00495039 0.00126470
 6 0.00496725 0.00547313 -0.00050588
 7 0.01596937 0.01576702 0.00020235
 8 0.00610852 0.00618946 -0.00008094
 9 -0.00640740 -0.00643977 0.00003238
 10 0.00367566 0.00368861 -0.00001295
 11 -0.00936189 -0.00936707 0.00000518
 12 -0.00018263 -0.00018056 -0.00000207
 13 -0.00043157 -0.00043240 0.00000083
 14 0.00000037 0.00000070 -0.00000033
 15 -0.00264566 -0.00264579 0.00000013
 16 0.00890411 0.00890416 -0.00000005
 17 -0.01577120 -0.01577122 0.00000002
 18 0.00409658 0.00409659 -0.00000001
 19 0.00825279 0.00825278 0.00000000
 20 0.00672859 0.00672859 -0.00000000

In the example above, the difference between the simulated and inferred
innovations (e - eInferred) illustrates the transient effects introduced by the
inference. When garchsim generates data, it generates sufficient initial data,
which it then discards, to allow transients to decay to some arbitrarily small
value (see “Automatic Minimization of Transient Effects” on page 2-46).
However, the inference function garchinfer (an interface to the log-likelihood
objective function, garchllfn) must infer the innovations and conditional
standard deviations directly from the observed returns. This can introduce
transient effects.

That the first R = 2 rows of the inferred innovations are 0, illustrates the link
between simulation, inference, and estimation in the GARCH Toolbox. This
2-53

2 Tutorial

2-5
fact is also directly related to the manner in which maximum likelihood
estimation is performed.

Maximum Likelihood Estimation
Forming the log-likelihood objective function involves a two-step process:

1 garchllfn uses the conditional mean specification of ARMAX form shown in
Eq. (2-16) to infer the innovations from the observed returns. This equation
is derived from Eq. (2-8) by solving for εt.

(2-16)

To infer the innovations, garchllfn uses the Box and Jenkins conditional
approach, which conditions the recursion on the initial R observations of yt,
setting the initial values of εt to 0 (see Hamilton [12], page 132, or Box,
Jenkins, and Reinsel [7], page 237). Note that for the default model,
R = M = 0, and no transients are induced due to this initialization.

2 garchllfn must then infer the conditional variances from the squared
innovations as illustrated in Eq. (2-9), which is replicated here.

This step initializes the recursion by setting the first max(P,Q) observations
of both σt

2 and εt
2 to the sample variance of the innovations inferred from

the first step (see Hamilton [12], pages 666-667, or Bollerslev [4], page 316).

εt C– yt ARiyt i–
i 1=

R

∑– MAjεt j–

j 1=

M

∑– βkX t k,()
k 1=

Nx

∑–+=

σt
2 κ Giσt i–

2

i 1=

P

∑ Ajεt j–
2

j 1=

Q

∑+ +=
4

Forecasting
Forecasting
This section uses the estimated default model and the XYZ Corporation, from
the section “Simulation” on page 2-42, to demonstrate the use of the forecasting
function garchpred.

garchpred computes minimum-mean-square-error (MMSE) forecasts of the
conditional mean and conditional standard deviation of the returns {yt} in each
period over a user-specified forecast horizon.

Specifically, this section discusses:

• Computing a Forecast

• Computing Root Mean Square Errors (RMSE)

• Asymptotic Behavior for Long-Range Forecast Horizons

Note Example results in this section are printed in Short E numeric format
for readability. Select File > Preferences... > General > Short E before
starting the example to duplicate these printed results.

Computing a Forecast
This section discusses:

• Using Default Inputs

• Forecasting Over a Longer Horizon

• Long-Range Forecasting

• Forecasting Returns Over Multiple Periods

If the variables for the estimated model no longer exist in your workspace, then
use the following commands to load the data and regenerate the estimation
results of the default model. This example omits the estimation output to save
space.

yt 0.00049183 εt+=

σt
2

8.2736e 007– 0.96283σt 1–
2

0.03178εt 1–
2

+ +=
2-55

2 Tutorial

2-5
load xyz
xyz = price2ret(prices);
[coeff, errors, LLF, innovations, sigma] = garchfit(xyz);

Using Default Inputs
Now call garchpred to compute the conditional mean and standard deviation
return forecasts for the XYZ Corporation using the default model parameter
estimates. Provide the specification structure coeff (the output of garchfit)
and the XYZ Corporation return series xyz, as input. Accept the garchpred
default (1) for the number of forecast periods.

[sFcast, yFcast] = garchpred(coeff, xyz);
[sFcast, yFcast]

ans =

 1.1670e-002 4.9183e-004

The result consists of the MMSE forecasts of the conditional standard
deviations and the conditional mean of the return series xyz for a one-period
default horizon.

Note garchpred allows the use of a time series regression matrix and an
associated time series matrix of forecasted explanatory data. If you specify no
regression matrix, the conditional mean has no regression component. See the
section “Conditional Mean Models with Regression Components” on page 2-63
for information about using regression models.

Forecasting Over a Longer Horizon
To obtain information about asymptotic behavior, you need to forecast for more
more than a single period. Use the following command to forecast the
conditional mean and standard deviation in each period of a 10-period forecast
horizon.

[sFcast, yFcast] = garchpred(coeff, xyz, 10);
[sFcast, yFcast]
ans =
 1.1670e-002 4.9183e-004
6

Forecasting
 1.1674e-002 4.9183e-004
 1.1678e-002 4.9183e-004
 1.1682e-002 4.9183e-004
 1.1686e-002 4.9183e-004
 1.1690e-002 4.9183e-004
 1.1694e-002 4.9183e-004
 1.1697e-002 4.9183e-004
 1.1701e-002 4.9183e-004
 1.1705e-002 4.9183e-004

The results show that the default model forecast of the conditional mean is
always C = 0.00049183. This is true for any forecast horizon because the
expected value of any innovation, εt, is 0.

In contrast, the conditional standard deviation forecast changes from period to
period and approaches the unconditional standard deviation of {εt}, given by
the square root of Eq. (2-7).

(2-17)

For this example, you can calculate the unconditional standard deviation of {εt}
as

s0 = sqrt(coeff.K/(1 - sum([coeff.GARCH(:) ; coeff.ARCH(:)])))
s0 =
 1.2393e-002

Plot the conditional standard deviations, sigma, derived from the fitted
returns. The plot reveals that the most recent values of σt fall below this
long-run, asymptotic value.

plot(sigma)
title('Fitted Conditional Standard Deviations: XYZ Corporation')

σ κ

1 Gi
i 1=

P

∑– Aj
j 1=

Q

∑–

---=
2-57

2 Tutorial

2-5
Figure 2-15: Fitted Conditional Standard Deviations

Long-Range Forecasting
That the most recent values of σt fall below 1.2393e-002 indicates that the
long-range forecast of σt approaches this value from below. Confirm this by
forecasting the standard deviations out 1000 periods, then plotting the
forecasts (blue, dashed) and asymptotic value (red, solid) on the same graph.

sFcast = garchpred(coeff, xyz, 1000);
plot(sFcast, 'blue--')
hold('on')
plot([0 length(sFcast)], [s0 s0], 'red')
title('Standard Deviation Forecasts and Asymptotic Value: XYZ
Corporation')
8

Forecasting
Figure 2-16: Standard Deviation Forecasts and Asymptotic Value

You can see from Figure 2-16, Standard Deviation Forecasts and Asymptotic
Value that it takes a very long time for the forecast to reach its steady-state
value. This is consistent with the high degree of persistence in the volatility
process for the XYZ Corporation (see Figure 2-9, ACF of the Squared Returns).

Forecasting Returns Over Multiple Periods
In addition to computing conditional mean and volatility forecasts on a
per-period basis, garchpred also computes volatility forecasts of returns for
assets held for multiple periods. For example, to forecast the standard
deviation of the return you would obtain if you purchased XYZ stock today and
sold it 10 days from now,

[sFcast, yFcast, sTotal] = garchpred(coeff, xyz, 10);
[sFcast, sTotal]
ans =
 1.1670e-002 1.1670e-002
 1.1674e-002 1.6506e-002
 1.1678e-002 2.0220e-002
 1.1682e-002 2.3352e-002
2-59

2 Tutorial

2-6
 1.1686e-002 2.6112e-002
 1.1690e-002 2.8609e-002
 1.1694e-002 3.0907e-002
 1.1697e-002 3.3047e-002
 1.1701e-002 3.5057e-002
 1.1705e-002 3.6959e-002

The vector sTotal (the second column above) represents the standard
deviation forecasts of returns when the asset is held for multiple periods. The
first element contains the standard deviation of the return expected if XYZ
stock were held for one period, the second element contains the standard
deviation of the return expected if XYZ stock were held for two periods, and so
on. The last element contains the volatility forecast of the expected return if
XYZ were purchased today and held for 10 periods.

If you convert the standard deviations sFcast and sTotal to variances by
squaring each element, you can see an interesting relationship between the
cumulative sum of sFcast.^2 and sTotal.^2.

[cumsum(sFcast.^2) sTotal.^2]
ans =
 1.3618e-004 1.3618e-004
 2.7246e-004 2.7246e-004
 4.0883e-004 4.0883e-004
 5.4530e-004 5.4530e-004
 6.8185e-004 6.8185e-004
 8.1850e-004 8.1850e-004
 9.5524e-004 9.5524e-004
 1.0921e-003 1.0921e-003
 1.2290e-003 1.2290e-003
 1.3660e-003 1.3660e-003

Although not exactly equivalent, this relationship in the presence of
heteroscedasticity is similar to the familiar square-root-of-time rule for
converting constant variances of uncorrelated returns expressed on a
per-period basis to a variance over multiple periods. This relationship between
sFcast and sTotal holds for the default conditional mean model only (i.e., the
relationship is valid for uncorrelated returns).

Note that the calculation of sTotal is strictly correct for continuously
compounded returns only, and is an approximation for periodically
compounded returns.
0

Forecasting
Note The sTotal output of garchpred is not available for conditional mean
models with regression components.

Computing Root Mean Square Errors (RMSE)
 You can also use garchpred to calculate the root mean square errors (RMSE)
associated with the conditional mean forecasts in yFcast.

[sFcast, yFcast, sTotal, yRMSE] = garchpred(coeff, xyz, 10);
[yFcast, yRMSE]
ans =
 4.9183e-004 1.1670e-002
 4.9183e-004 1.1674e-002
 4.9183e-004 1.1678e-002
 4.9183e-004 1.1682e-002
 4.9183e-004 1.1686e-002
 4.9183e-004 1.1690e-002
 4.9183e-004 1.1694e-002
 4.9183e-004 1.1697e-002
 4.9183e-004 1.1701e-002
 4.9183e-004 1.1705e-002

The first column above contains the minimum mean square error (MMSE)
forecasts of the conditional mean of the returns in each of the first 10 periods
(from the section “Forecasting Over a Longer Horizon” on page 2-56). The
second column contains the standard error of the corresponding forecast (see
Baillie & Bollerslev [1], equation 19, page 96). You can use these results to
construct approximate confidence intervals for conditional mean forecasts,
with the approximation becoming more accurate during periods of relatively
stable volatility (see Baillie & Bollerslev [1], and Bollerslev, Engle, and Nelson
[6]). As heteroscedasticity in returns disappears (i.e., as the returns approach
the homoskedastic, or constant variance, limit), the approximation is exact and
you can apply the Box & Jenkins confidence bounds (see Box, Jenkins, and
Reinsel [7], pages 133-145).
2-61

2 Tutorial

2-6
Note The yRMSE output of garchpred is not available for conditional mean
models with regression components.

Asymptotic Behavior for Long-Range Forecast
Horizons
If you are working with long-range forecast horizons, the following asymptotic
behaviors hold for the outputs of garchpred:

• As mentioned earlier in this section, the conditional standard deviation
forecast (i.e., the first garchpred output, sFcast) approaches the
unconditional standard deviation of {εt} given by the square root of Eq. (2-7).

• GARCH effects do not affect the MMSE forecast of the conditional mean (i.e.,
the second garchpred output, yFcast). The forecast approaches the
unconditional mean of {yt} as in the constant variance case. That is, the
presence of GARCH effects introduces dependence in the variance process,
and only affects the uncertainty of the mean forecast, leaving the mean
forecast itself unchanged.

• The mean-square-error of the conditional mean (i.e., the square of the fourth
garchpred output, yRMSE.^2) approaches the unconditional variance of {yt}.
2

Conditional Mean Models with Regression Components
Conditional Mean Models with Regression Components
The GARCH Toolbox allows conditional mean models with regression
components, i.e., of general ARMAX(R,M,Nx) form.

Conditional mean models with a regression component introduce additional
complexity in the sense that the GARCH Toolbox has no way of knowing what
the explanatory data represents or how it was generated. This is in contrast to
ARMA models, which have an explicit forecasting mechanism and well-defined
stationarity/invertibility requirements.

All the primary functions in the GARCH Toolbox (i.e., garchfit, garchinfer,
garchpred, and garchsim) accept an optional regression matrix X, which
represents X in the equation above. You must ensure that the regression
matrix you provide is valid and you must:

• Collect and format the past history of explanatory data you include in X

• As needed, forecast X into the future to form XF

This section discusses:

• Incorporating a Regression Model in an Estimation

• Simulation and Inference Using a Regression Component

• Forecasting Using a Regression Component

• Regression in a Monte Carlo Framework

Incorporating a Regression Model in an Estimation
This section uses the asymptotic equivalence of auto-regressive models and
linear regression models to illustrate the use of a regression component in the
GARCH Toolbox. The example is presented in two parts:

• Fitting an AR/GARCH Model to a Simulated Return Series

• Fitting a Regression Model to the Same Return Series

yt C ARiyt i–
i 1=

R

∑ εt MAjεt j–

j 1=

M

∑ βkX t k,()
k 1=

Nx

∑+ + + +=
2-63

2 Tutorial

2-6
Fitting an AR/GARCH Model to a Simulated Return Series
This section defines a specification structure for an AR/GARCH model, and
then uses that model to fit a simulated return series to the defined model.

Define the AR/GARCH Model. Start by creating a specification structure for an
AR(2)/GARCH(1,1) composite model with successive calls to garchset. Set the
Display flag to off to suppress the optimization details that garchfit
normally prints to the screen.

spec = garchset('K', 0.005, 'GARCH', 0.7, 'ARCH', 0.1);
spec = garchset(spec, 'C', 0);
spec = garchset(spec, 'R', 2, 'AR', [0.5 -0.8]);
spec = garchset(spec, 'Regress', [0.5 -0.8])
spec = garchset(spec, 'Display', 'off');

spec =
 Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,1)'
 R: 2
 M: 0
 P: 1
 Q: 1
 Distribution: 'Gaussian'
 C: 0
 AR: [0.5000 -0.8000]
 MA: []
 Regress: [0.5000 -0.8000]
 K: 0.0050
 GARCH: 0.7000
 ARCH: 0.1000
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

Notice that in this specification structure, spec:
4

Conditional Mean Models with Regression Components
• The model order fields R, M, P, and Q are consistent with the number of
coefficients in the AR, MA, GARCH, and ARCH vectors, respectively.

• Although the Regress field indicates two regression coefficients, the Comment
field still contains a question mark as a placeholder for the number of
explanatory variables.

• There is no model order field for the Regress vector, analogous to the R, M, P,
and Q orders of an ARMA(R,M)/GARCH(P,Q) model.

Fit the Model to a Simulated Return Series. Simulate 2000 observations of the
innovations, conditional standard deviations, and returns for the
AR(2)/GARCH(1,1) process defined in spec. Use the model defined in spec to
estimate the parameters of the simulated return series and then compare the
parameter estimates to the original coefficients in spec.

[e,s,y] = garchsim(spec, 2000);
[coeff, errors] = garchfit(spec, y);
garchdisp(coeff, errors)

 Number of Parameters Estimated: 6

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -0.00045653 0.0034627 -0.1318
 AR(1) 0.50256 0.013926 36.0875
 AR(2) -0.80022 0.013987 -57.2134
 K 0.0049947 0.0019528 2.5577
 GARCH(1) 0.71232 0.094514 7.5366
 ARCH(1) 0.082964 0.022582 3.6740

The estimated parameters, shown in the Value column, are quite close to the
original coefficients in spec.

Because you specified no explanatory regression matrix as input to garchsim
and garchfit, these functions ignore the regression coefficients (Regress).
Display the Comment field of the resulting garchfit output structure. It shows
a 0 for the order of the regression component.

comment = garchget(coeff, 'Comment')
comment =
2-65

2 Tutorial

2-6
Mean: ARMAX(2,0,0); Variance: GARCH(1,1)

Fitting a Regression Model to the Same Return Series
To illustrate the use of a regression matrix, fit the return series y, an AR(2)
process in the mean, to a regression model with two explanatory variables. The
regression matrix consists of the first- and second-order lags of the simulated
return series y.

Remove AR Component. First, remove the AR component from the specification
structure.

spec = garchset(spec, 'R', 0, 'AR', [])
spec =
 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
 R: 0
 M: 0
 P: 1
 Q: 1
 Distribution: 'Gaussian'
 C: 0
 AR: []
 MA: []
 Regress: [0.5000 -0.8000]
 K: 0.0050
 GARCH: 0.7000
 ARCH: 0.1000
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

Create the Regression Matrix. Create a regression matrix of first- and second-order
lags using the simulated returns vector y as input. Examine the first 10 rows
of y and the corresponding rows of the lags.

X = lagmatrix(y, [1 2]);
[y(1:10) X(1:10,:)]
6

Conditional Mean Models with Regression Components
ans =
 0.0562 NaN NaN
 0.0183 0.0562 NaN
 -0.0024 0.0183 0.0562
 -0.1506 -0.0024 0.0183
 -0.3937 -0.1506 -0.0024
 -0.0867 -0.3937 -0.1506
 0.1075 -0.0867 -0.3937
 0.2225 0.1075 -0.0867
 0.1044 0.2225 0.1075
 0.1288 0.1044 0.2225

A NaN (an IEEE arithmetic standard for Not-a-Number) in the resulting matrix
X indicates the presence of a missing observation. If you use X to fit a regression
model to y, garchfit produces an error.

[coeff, errors] = garchfit(spec, y, X);
??? Error using ==> garchfit
 Regression matrix 'X' has insufficient number of observations.

The error occurs because there are fewer valid rows (i.e., those rows without a
NaN) in the regression matrix X than there are observations in y. The returns
vector y has 2000 observations but the most recent number of valid
observations in X is only 1998.

You can do one of two things to enable you to proceed. For a return series of this
size it makes little difference which option you choose:

• Strip off the first two observations in y

• Replace all NaNs in X with some reasonable value

This example continues by replacing all NaNs with the sample mean of y. Use
the MATLAB function isnan to identify NaNs and the function mean to compute
the mean of y.

X(isnan(X)) = mean(y);
[y(1:10), X(1:10,:)]
ans =
 0.0562 0.0004 0.0004
 0.0183 0.0562 0.0004
 -0.0024 0.0183 0.0562
 -0.1506 -0.0024 0.0183
2-67

2 Tutorial

2-6
 -0.3937 -0.1506 -0.0024
 -0.0867 -0.3937 -0.1506
 0.1075 -0.0867 -0.3937
 0.2225 0.1075 -0.0867
 0.1044 0.2225 0.1075
 0.1288 0.1044 0.2225

Note If the number of valid rows in X exceeds the number of observations in
y, then garchfit includes in the estimation only the most recent rows of X,
equal to the number of observations in y.

Fit the Regression Model. Now that the explanatory regression matrix X is
compatible with the return series vector y, use garchfit to estimate the model
coefficients for the return series using the regression matrix and display the
results.

[coeffX, errorsX] = garchfit(spec, y, X);
garchdisp (coeffX, errorsX)

 Number of Parameters Estimated: 6

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -0.00044818 0.0034618 -0.1295
 Regress(1) 0.50257 0.01392 36.1049
 Regress(2) -0.8002 0.013981 -57.2344
 K 0.0050529 0.0019709 2.5637
 GARCH(1) 0.70955 0.095315 7.4443
 ARCH(1) 0.083293 0.022664 3.6751

These estimation results are similar to those shown for the AR model in the
section “Fitting an AR/GARCH Model to a Simulated Return Series” on
page 2-64. This similarity illustrates the asymptotic equivalence of
auto-regressive models and linear regression models.

By illustrating the extra steps involved in formatting the explanatory matrix,
this part of the example also highlights the additional complexity involved in
modeling conditional means with regression components.
8

Conditional Mean Models with Regression Components
Simulation and Inference Using a Regression
Component
Including a regression component with garchsim and garchinfer is similar to
including one with garchfit.

For example, the following command simulates a single realization of 2000
observations of the innovations, conditional standard deviations, and returns.
It uses the initial MATLAB default state as a random number generator seed,
and incorporates the regression matrix X.

[e,s,y] = garchsim(spec, 2000, 1, [], X);

You can also use the same regression matrix X to infer the innovations and
conditional standard deviations from the returns.

[eInfer, sInfer] = garchinfer(spec, y, X);

Forecasting Using a Regression Component
Inclusion of a regression component in forecasting is also similar to including
one in an estimation. However, in addition to the explanatory data, you must
consider the use of forecasted explanatory data.

This section discusses:

• Forecasted Explanatory Data

• Generating the Forecasted Explanatory Data

• Ordinary Least Squares Regression

Forecasted Explanatory Data
If you want to forecast the conditional mean of a return series y in each period
of a 10-period forecast horizon, the correct calling syntax for garchpred is

[sFcast, yFcast] = garchpred(spec, y, 10, X, XF);

where X is the same regression matrix shown above, and XF is a regression
matrix of forecasted explanatory data. In fact, XF represents a projection into
the future of the same explanatory data found in X. Note that the command
above produces an error if you execute it in your current workspace because XF
is missing.
2-69

2 Tutorial

2-7
XF must have the same number of columns as X. In each column of XF, the first
row contains the one-period-ahead forecast, the second row the
two-period-ahead forecast, and so on. If you specify XF, the number of rows
(forecasts) in each column of must equal or exceed the forecast horizon. When
the number of forecasts in XF exceeds the 10-period forecast horizon, garchpred
uses only the first 10 forecasts. If XF is empty ([]) or missing, the conditional
mean forecast has no regression component.

You should use the same regression matrix X when calling garchpred that you
used for simulation and/or estimation. This is because garchpred requires a
complete conditional mean specification to correctly infer the innovations {εt}
from the observed return series {yt}.

Forecasting the Conditional Standard Deviation. If you only need to forecast the
conditional standard deviation (i.e., sFcast), XF is unnecessary. This is true
even if you included the matrix X in the simulation and/or estimation process.

For example, you would use the following syntax to forecast only the
conditional standard deviation of the return series y over a 10-period forecast
horizon

sFcast = garchpred(spec, y, 10, X);

Forecasting the Conditional Mean. If you specify X, you must also specify XF to
forecast the conditional mean (i.e., yFcast).

For example, to forecast the conditional mean of the return series y over a
10-period forecast horizon,

[sFcast yFcast] = garchpred(spec, y, 10, X, XF);

The forecasted explanatory data, XF, does not affect the standard deviation
forecast. Note that this command produces an error if you execute it in your
current workspace because XF is missing.

Generating the Forecasted Explanatory Data
Typically, the regression matrix X contains the observed returns of a suitable
market index, collected over the same time interval as the observed data of
interest. In this case, X is most likely a vector, corresponding to a single
explanatory variable, and you must devise some way of generating the forecast
of X (i.e., XF).
0

Conditional Mean Models with Regression Components
One approach, using the GARCH Toolbox, is to first use garchfit to fit a
suitable ARMA(R,M) model to the returns in X, then use garchpred to forecast
the market index returns into the future. Specifically, since you’re not
interested in fitting the volatility of X, you can simplify the estimation process
by assuming a constant conditional variance model, i.e.
ARMA(R,M)/GARCH(0,0).

Ordinary Least Squares Regression
The following example illustrates an ordinary least squares regression by
simulating a return series that scales the returns of the XYZ Corporation. It
also provides an example of a constant conditional variance model. A model like
this might, for example, represent a leveraged position in the common stock of
the XYZ Corporation.

First, create a specification structure. Set the Display flag to off to suppress
the optimization details that garchfit normally prints to the screen.

spec = garchset('Display', 'off');
spec = garchset(spec, 'P', 0, 'Q', 0);
spec = garchset(spec, 'C', 0, 'Regress', 1.2, 'K', 0.00015)
spec =
 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(0,0)'
 R: 0
 M: 0
 P: 0
 Q: 0
 Distribution: 'Gaussian'
 C: 0
 AR: []
 MA: []
 Regress: 1.2000
 K: 1.5000e-004
 GARCH: []
 ARCH: []
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
2-71

2 Tutorial

2-7
 FixARCH: []
 Optimization: [1x1 struct]

Now, simulate a single realization of 2000 observations, fit the model, and
examine the results

[e, s, y] = garchsim(spec, 2000, 1, [], xyz);
[coeff, errors] = garchfit(spec, y, xyz);
garchdisp(coeff, errors)

 Number of Parameters Estimated: 3

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -5.5043e-006 0.0002711 -0.0203
 Regress(1) 1.2402 0.020454 60.6304
 K 0.0001464 4.6871e-006 31.2345

These estimation results are just the ordinary least squares (OLS) regression
results. In fact, in the absence of GARCH effects and assuming Gaussian
innovations, maximum likelihood estimation and least squares regression are
the same thing.

Note This example is shown purely for illustration purposes. Although you
can use the GARCH Toolbox to perform OLS, it is computationally inefficient
and is not recommended.

Regression in a Monte Carlo Framework
In the general case, the functions garchsim, garchinfer, and garchpred
process multiple realizations (i.e., sample paths) of univariate time series. That
is, the outputs of garchsim, as well as the observed return series input to
garchpred and garchinfer, can be matrices in which each column represents
an independent realization. garchfit is different, in that the input observed
return series of interest must be a vector (i.e., a single realization).

When simulating, inferring, and forecasting multiple realizations, the
appropriate toolbox function applies a given regression matrix X to each
2

Conditional Mean Models with Regression Components
realization of a univariate time series. For example, in the following command,
garchsim applies a given X matrix to all 10 columns of the output series {εt},
{σt}, and {yt}.

[e,s,y] = garchsim(spec, 100, 10, [], X);

In a true Monte Carlo simulation of the above process, including a regression
component, you would call garchsim inside a loop 10 times, once for each path.
Each iteration would pass in a unique realization of X and produce
single-column outputs.
2-73

2 Tutorial

2-7
Model Selection and Analysis
The GARCH Toolbox offers a number of model selection tools.

The section “Analysis and Estimation Example Using the Default Model” on
page 2-17 illustrates the use of the autocorrelation (autocorr) and partial
autocorrelation (parcorr) functions as qualitative guides in the process of
model selection and assessment. It also introduces the archtest and lbqtest
hypothesis testing functions.

This section discusses:

• Likelihood Ratio Tests (lratiotest)

• Akaike and Bayesian Information Criteria (aicbic)

• Equality Constraints and Parameter Significance

• Equality Constraints and Initial Parameter Estimates

The examples that follow again rely on the daily returns of the XYZ
Corporation. If the variables no longer exist in your MATLAB workspace, you
can recreate them with the commands,

load xyz
xyz = price2ret(prices);

Likelihood Ratio Tests
The section “Analysis and Estimation Example Using the Default Model” on
page 2-17 demonstrates that the default GARCH(1,1) model explains most of
the variability of the returns of the XYZ Corporation. This example uses the
function lratiotest to determine if evidence exists to support the use of a
GARCH(2,1) model.

The example first fits the return series of the XYZ Corporation to the default
GARCH(1,1) model. It then overfits the same series using the following, more
elaborate, GARCH(2,1) model.

The example is presented in two parts:

yt C εt+=

σt
2 κ G1σt 1–

2
G2σt 2–

2
A1εt 1–

2
+ + +=
4

Model Selection and Analysis
• Estimate Parameters for the GARCH(1,1) and GARCH(2,1) Models

• Perform the Likelihood Ratio Test

Estimate Parameters for the GARCH(1,1) and GARCH(2,1) Models

The GARCH(1,1) Model. First, create a GARCH(1,1) default model with the
Display flag set to off. Then, estimate the model and display the results,
including the maximized log-likelihood function value.

spec11 = garchset('Display', 'off', 'P', 1, 'Q', 1);
[coeff11, errors11, LLF11, innovations11, sigma11, summary11] =
garchfit(spec11, xyz);
garchdisp(coeff11, errors11)

 Number of Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00049183 0.00025585 1.9223
 K 8.2736e-007 2.7446e-007 3.0145
 GARCH(1) 0.96283 0.0051557 186.7500
 ARCH(1) 0.03178 0.004416 7.1965

LLF11
LLF11 =
 5.9746e+003

Note that a more accurate value of LLF11 is 5974.6025.

The GARCH(2,1) Model. Create a GARCH(2,1) specification structure. Again, set
the Display flag to off.

spec21 = garchset('Display', 'off', 'P', 2, 'Q', 1)
spec21 =
 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(2,1)'
 R: 0
 M: 0
 P: 2
 Q: 1
 Distribution: 'Gaussian'
2-75

2 Tutorial

2-7
 C: []
 AR: []
 MA: []
 Regress: []
 K: []
 GARCH: []
 ARCH: []
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

 Now estimate the GARCH(2,1) model and display the results, including the
maximized log-likelihood function value.

[coeff21,errors21,LLF21,innovations21,sigma21,summary21] =
garchfit(spec21, xyz);
garchdisp(coeff21, errors21)

 Number of Parameters Estimated: 5

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00049584 0.000256 1.9369
 K 1.3645e-006 4.6186e-007 2.9545
 GARCH(1) 0.0358 0.028327 1.2638
 GARCH(2) 0.90149 0.029642 30.4131
 ARCH(1) 0.05379 0.0073393 7.3291

LLF21
LLF21 =
 5.9759e+003

A more accurate value of LLF21 is 5975.8927.
6

Model Selection and Analysis
Perform the Likelihood Ratio Test
Of the two models associated with the same return series:

• The default GARCH(1,1) model is a restricted model. That is, you can
interpret a GARCH(1,1) model as a GARCH(2,1) model with the restriction
that G2 = 0.

• The more elaborate GARCH(2,1) model is an unrestricted model.

Since garchfit enforces no boundary constraints during either of the two
estimations, you can apply a likelihood ratio test (LRT) (see Hamilton [12],
pages 142-144).

In this context, the unrestricted GARCH(2,1) model serves as the alternative
hypothesis (i.e., the hypothesis the example gathers evidence to support), while
the restricted GARCH(1,1) model serves as the null hypothesis (i.e., the
hypothesis the example assumes is true, lacking any evidence to support the
alternative).

The LRT statistic is asymptotically Chi-Square distributed with
degrees-of-freedom equal to the number of restrictions imposed. Since the
GARCH(1,1) model imposes one restriction, specify one degrees-of-freedom in
your call to lratiotest. Test the models at the 0.05 significance level.

[H, pValue, Stat, CriticalValue] = lratiotest(LLF21, LLF11, 1,
0.05);
[H pValue Stat CriticalValue]
ans =
 0 0.1082 2.5806 3.8415

H = 0 indicates that there is insufficient statistical evidence in support of the
GARCH(2,1) model. The conclusion is that the default GARCH(1,1) model
adequately explains the variability in the return series when compared to a
more elaborate GARCH(2,1) model.

Akaike and Bayesian Information Criteria
You can also use Akaike (AIC) and Bayesian (BIC) information criteria to
compare alternative models. Since information criteria penalize models with
additional parameters, the AIC and BIC model-order-selection criteria are
based on parsimony (see Box, Jenkins, and Reinsel [7], pages 200-201).
2-77

2 Tutorial

2-7
The following example uses the default GARCH(1,1) and GARCH(2,1) models
developed in the previous section, “Likelihood Ratio Tests” on page 2-74. It is
presented in two parts:

• Counting Estimated Parameters

• Computing the AIC and BIC Criteria

Counting Estimated Parameters
For both AIC and BIC, you need to provide the number of parameters
estimated in the model. For the relatively simple models in the previous
example, you can just count the number of parameters. The GARCH(2,1) model
estimated five parameters (C, κ, G1, G2, and A1), and GARCH(1,1) model
estimated four parameters (C, κ, G1, and A1).

Use the function garchcount for more elaborate models. garchcount accepts
the output specification structure created by garchfit and returns the number
of parameters in the model defined in that structure.

n21 = garchcount(coeff21)
n21 =
 5
n11 = garchcount(coeff11)
n11 =
 4

Computing the AIC and BIC Criteria
Now use the function aicbic to compute the AIC and BIC statistics for the
GARCH(2,1) model and the GARCH(1,1) model. Note that for the BIC statistic,
you must also specify the number of observations in the return series.

[AIC, BIC] = aicbic(LLF21, n21, 2000);
[AIC BIC]
ans =
 1.0e+004 *
 -1.1942 -1.1914

More accurate values are AIC = -11941.7855 and BIC = -11913.7810.

[AIC, BIC] = aicbic(LLF11, n11, 2000);
[AIC BIC]
8

Model Selection and Analysis
ans =
 1.0e+004 *
 -1.1941 -1.1919

More accurate values are AIC = -11941.2049 and BIC = -11918.8013

You can use the relative values of the AIC and BIC statistics as guides in the
model selection process. In this example, the AIC criterion favors the
GARCH(2,1) model, while the BIC criterion favors the GARCH(1,1) default
model with fewer parameters. Notice that since BIC imposes a greater penalty
for additional parameters than does AIC, BIC always provides a model with a
number of parameters no greater than that chosen by AIC.

Equality Constraints and Parameter Significance
The GARCH Toolbox lets you set and constrain model parameters as a way of
assessing the parameters’ significance.

This section:

• Shows you how to use the specification structure to fix individual
parameters.

• Provides an example that demonstrates the use of equality constraints.

The Specification Structure Fix Fields
Each of the coefficient fields C, AR, MA, Regress, K, GARCH, and ARCH, in the
specification structure, has a corresponding Boolean field that lets you hold
any individual parameter fixed. These fix fields are FixC, FixAR, FixMA,
FixRegress, FixK, FixGARCH, and FixARCH. For example, look at the output
structure from the GARCH(2,1) estimation in the section “Likelihood Ratio
Tests” on page 2-74.

coeff21
coeff21 =
 Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(2,1)'
 R: 0
 M: 0
 P: 2
 Q: 1
 Distribution: 'Gaussian'
 C: 4.9584e-004
2-79

2 Tutorial

2-8
 AR: []
 MA: []
 Regress: []
 K: 1.3645e-006
 GARCH: [0.0358 0.9015]
 ARCH: 0.0538
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

Each fix field, when not empty ([]), is the same size as the corresponding
coefficient field. A 0 in a particular element of a fix field indicates that the
corresponding element of its companion value field is an initial parameter
guess that garchfit refines during the estimation process. A 1 indicates that
garchfit holds the corresponding element of its value field fixed during the
estimation process (i.e., an equality constraint).

The GARCH(2,1) Model as an Example
This example uses the GARCH(2,1) model above to demonstrate the use of
equality constraints. First, display the estimation results for the model.

garchdisp(coeff21, errors21)

 Number of Parameters Estimated: 5

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00049584 0.000256 1.9369
 K 1.3645e-006 4.6186e-007 2.9545
 GARCH(1) 0.0358 0.028327 1.2638
 GARCH(2) 0.90149 0.029642 30.4131
 ARCH(1) 0.05379 0.0073393 7.3291

The T-statistic column is the parameter value divided by the standard error,
and is normally distributed for large samples. The T-statistic measures the
0

Model Selection and Analysis
number of standard deviations the parameter estimate is away from zero, and
as a general rule, a T-statistic greater than 2 in magnitude corresponds to
approximately a 95 percent confidence interval. The T-statistics in the table
above imply that the conditional mean constant (C) is on the edge of
significance. They also imply that the GARCH(1) parameter adds little if any
explanatory power to the model.

The GARCH(1) Parameter. Constrain the GARCH(1) parameter at 0 to assess its
significance.

specG1 = garchset(coeff21, 'GARCH', [0 0.9], 'FixGARCH', [1 0])
specG1 =
 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(2,1)'
 R: 0
 M: 0
 P: 2
 Q: 1
 Distribution: 'Gaussian'
 C: 4.9584e-004
 AR: []
 MA: []
 Regress: []
 K: 1.3645e-006
 GARCH: [0 0.9000]
 ARCH: 0.0538
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: [1 0]
 FixARCH: []
 Optimization: [1x1 struct]

The specG1 structure field FixGARCH indicates that garchfit holds GARCH(1)
fixed at 0, and refines GARCH(2) from an initial value of 0.9 during the
estimation process. In other words, the specG1 specification structure tests the
composite model,

yt C εt+=
2-81

2 Tutorial

2-8
Now estimate the model subject to the equality constraint and display the
results.

[coeffG1,errorsG1,LLFG1,innovationsG1,sigmaG1] =
garchfit(specG1, xyz);
garchdisp(coeffG1, errorsG1)

 Number of Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00052356 0.00025499 2.0532
 K 1.6865e-006 4.6547e-007 3.6231
 GARCH(1) 0 Fixed Fixed
 GARCH(2) 0.93442 0.0085294 109.5531
 ARCH(1) 0.054718 0.0072265 7.5719

LLFG1
LLFG1 =
 5.9738e+003

A more accurate value of LLFG1 is 5973.7872.

Notice that the standard error and T-statistic columns for the first GARCH
parameter indicate that garchfit held the GARCH(1) parameter fixed. The
number of estimated parameters also decreased from 5 in the original,
unrestricted GARCH(2,1) model to 4 in this restricted GARCH(2,1) model.

Apply the likelihood ratio test as before.

[H, pValue, Stat, CriticalValue] = lratiotest(LLF21, LLFG1, 1,
0.05);
[H pValue Stat CriticalValue]
ans =
 1.0000 0.0402 4.2112 3.8415

The results support rejection of the simpler, restricted model at the 0.05
significance level, but just barely. The P-value indicates that had you tested at

σt
2 κ G2σt 2–

2
A1εt 1–

2
+ +=
2

Model Selection and Analysis
a significance level of 0.04 or less, the restricted model would have been
accepted.

The GARCH(2) Parameter. As a second example, assess the significance of the
GARCH(2) parameter by setting it to 0.

specG2 = garchset(coeff21, 'GARCH', [0.9 0], 'FixGARCH', [0 1])
specG2 =
 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(2,1)'
 R: 0
 M: 0
 P: 2
 Q: 1
 Distribution: 'Gaussian'
 C: 4.9584e-004
 AR: []
 MA: []
 Regress: []
 K: 1.3645e-006
 GARCH: [0.9000 0]
 ARCH: 0.0538
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: [0 1]
 FixARCH: []
 Optimization: [1x1 struct]

The specG2 structure field FixGARCH indicates that garchfit holds GARCH(2)
fixed at 0, and refines GARCH(1) from an initial value of 0.9 during the
estimation process. In other words, the specG2 specification structure tests the
composite model,

which is really the GARCH(1,1) default model.

yt C εt+=

σt
2 κ G1σt 1–

2
A1εt 1–

2
+ +=
2-83

2 Tutorial

2-8
Now, estimate the model subject to the equality constraint and display the
results.

[coeffG2,errorsG2,LLFG2,innovationsG2,sigmaG2] =
garchfit(specG2, xyz);
garchdisp(coeffG2, errorsG2)

 Number of Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00048996 0.00025618 1.9126
 K 7.9828e-007 2.6908e-007 2.9667
 GARCH(1) 0.9636 0.0050784 189.7460
 GARCH(2) 0 Fixed Fixed
 ARCH(1) 0.031239 0.0043564 7.1709

LLFG2
LLFG2 =
 5.9746e+003

Note that a more accurate value of LLFG2 is 5974.6058.

Finally, apply the likelihood ratio test again,

[H, pValue, Stat, CriticalValue] = lratiotest(LLF21, LLFG2, 1,
0.05);
[H pValue Stat CriticalValue]
ans =
 0 0.1086 2.5738 3.8415

In this case, the results support acceptance of the restricted model at the 0.05
significance level. In fact, the P-value indicates that the test would support
acceptance at the 0.10 significance level as well. This result again emphasizes
that the default GARCH(1,1) model adequately explains the variation in the
observed returns. A close examination reveals that the log-likelihood function
values of the two models are nearly identical (i.e., LLFG2 = 5974.6058,
LLF11 = 5974.6025).
4

Model Selection and Analysis
Equality Constraints and Initial Parameter Estimates
This section highlights some important points regarding equality constraints
and initial parameter estimates in the GARCH Toolbox. It discusses:

• Complete Model Specification

• Empty Fix Fields

• Number of Equality Constraints

Complete Model Specification
To set equality constraints during estimation, you must provide a complete
model specification. The only flexibility in this regard is that you can decouple
the model specification for the conditional mean from the model specification
for the conditional variance.

The following example demonstrates an attempt to set equality constraints for
an incomplete conditional mean model and a complete variance model. Create
an ARMA(1,1)/GARCH(1,1) specification structure for conditional mean and
variance models, respectively.

spec = garchset('R', 1, 'M', 1, 'P', 1, 'Q', 1);
spec = garchset(spec, 'C', 0, 'AR', 0.5, 'FixAR', 1);
spec = garchset(spec, 'K', 0.0005, 'GARCH', 0.8, 'ARCH', 0.1,
'FixGARCH', 1)
spec =
 Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
 R: 1
 M: 1
 P: 1
 Q: 1
 Distribution: 'Gaussian'
 C: 0
 AR: 0.5000
 MA: []
 Regress: []
 K: 5.0000e-004
 GARCH: 0.8000
 ARCH: 0.1000
 FixC: []
 FixAR: 1
 FixMA: []
2-85

2 Tutorial

2-8
 FixRegress: []
 FixK: []
 FixGARCH: 1
 FixARCH: []
 Optimization: [1x1 struct]

The conditional mean model is incomplete because the MA field is still empty.
Since the requested ARMA(1,1) model is an incomplete conditional mean
specification, garchfit ignores the C, AR, and FixAR fields, computes initial
parameter estimates, and overwrites any existing parameters in the
incomplete conditional mean specification. It also estimates all conditional
mean parameters (i.e., C, AR, and MA) and ignores the request to constrain the
AR parameter.

However, since the structure explicitly sets all fields in the conditional
variance model, garchfit uses the specified values of K and ARCH as initial
estimates subject to further refinement, and holds the GARCH parameter at 0.8
throughout the optimization process.

Empty Fix Fields
Any fix field that you leave empty ([]), is equivalent to a vector of zeros of
compatible length. That is, when garchfit encounters an empty fix field, it
automatically estimates the corresponding parameter. For example, the
following specification structures produce the same GARCH(1,1) estimation
results.

spec1 = garchset('K', 0.005, 'GARCH', 0.8, 'ARCH', 0.1,
'FixGARCH', 0, 'FixARCH', 0)
spec2 = garchset('K', 0.005, 'GARCH', 0.8, 'ARCH', 0.1)

Number of Equality Constraints
Avoid setting several equality constraints simultaneously. Although the ability
to set equality constraints is both convenient and useful, equality constraints
complicate the estimation process. For example, if you really want to estimate
a GARCH(1,1) model, then specify a GARCH(1,1) model instead of a more
elaborate model with numerous constraints.
6

Recommendations and Suggestions
Recommendations and Suggestions
This final section of the tutorial highlights some general recommendations to
make it easier for you to use the GARCH Toolbox. It discusses:

• Simplicity/Parsimony

• Convergence Issues

• Initial Parameter Estimates

• Boundary Constraints and Statistical Inferences

• Data Size and Quality

Simplicity/Parsimony
Specify the smallest, most simplistic models that adequately describe your
data. This is especially relevant for estimation. Simple models are easier to
estimate, easier to forecast, and easier to analyze. In fact, certain model
selection criteria, such as the AIC/BIC discussed in the section “Model
Selection and Analysis” on page 2-74, penalize models for their complexity.

The section “Analysis and Estimation Example Using the Default Model” on
page 2-17, examines the autocorrelation function (ACF) and partial
autocorrelation function (PACF) of the XYZ Corporation. The results support
the use of a simple constant for the conditional mean model as adequate to
describe the data.

The following example illustrates an unnecessarily complicated model
specification. It uses an ARMA(1,1)/GARCH(1,1) composite model, rather than
a simple constant with GARCH(1,1) innovations, to estimate the model
parameters for the returns of the XYZ Corporation.

Create a specification structure for an ARMA(1,1)/GARCH(1,1) model. Set the
Display flag to off to suppress the optimization details that garchfit
normally prints to the screen.

spec = garchset;
spec = garchset(spec, 'Display', 'off', 'R', 1, 'M', 1)
spec =
 Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
 R: 1
 M: 1
 P: 1
2-87

2 Tutorial

2-8
 Q: 1
 Distribution: 'Gaussian'
 C: []
 AR: []
 MA: []
 Regress: []
 K: []
 GARCH: []
 ARCH: []
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

Now, estimate the model and examine the results.

[coeff,errors,LLF,innovations,sigma,summary] = garchfit(spec,
xyz);
garchdisp(coeff, errors)

 Number of Parameters Estimated: 6

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00088504 0.00046465 1.9048
 AR(1) -0.76595 0.098721 -7.7587
 MA(1) 0.80041 0.09305 8.6020
 K 7.9417e-007 2.7078e-007 2.9329
 GARCH(1) 0.96313 0.0051048 188.6716
 ARCH(1) 0.031735 0.0043606 7.2775

These results imply that the ARMA(1,1)/GARCH(1,1) composite model that
best fits the observed data is

yt 0.00088504 0.76595yt 1–– εt 0.80041εt 1–+ +=
8

Recommendations and Suggestions
However, close examination of the conditional mean equation reveals that the
AR(1) and MA(1) parameters are almost identical. In fact, rewriting the mean
equation in backshift (i.e., lag) operator notation, where Byt = yt-1,

the auto-regressive and moving-average polynomials come close to canceling
each other (see Box, Jenkins, Reinsel [7], pages 263-267). This is an example of
parameter redundancy, or pole-zero cancellation. It implies that you can use
the default model simple white noise process to approximate the conditional
mean model.

In fact, from the section “Analysis and Estimation Example Using the Default
Model” on page 2-17, the default model that best fits the observed data is

Note that the long-run (i.e., unconditional) mean and variance forecasts of each
model are in very close agreement.

However, notice that the AR(1) and MA(1) T-statistics provide a misleading
impression, implying that the parameters are highly significant. In fact, the
more elaborate ARMA(1,1) model only complicates the analysis by requiring
the estimation of two additional parameters. If you evaluate the information
criteria, both AIC and BIC favor the default model (BIC is more decisive), and
the LRT with two degrees-of-freedom fails to reject the default model.

Convergence Issues
When estimating the parameters of a composite conditional mean/variance
model, you may occasionally encounter convergence problems. For example,
the estimation may appear to stall, showing little or no progress. It may
terminate prematurely prior to convergence. Or, it may converge to an
unexpected, suboptimal solution.

You can avoid many of these difficulties by performing a sound, pre-fit analysis
as outlined in the section “Analysis and Estimation Example Using the Default

σt
2

7.9417e 007– 0.96313σt 1–
2

0.031735εt 1–
2

+ +=

1 0.76595B+()yt 0.00088504 1 0.80041B+()εt+=

yt 0.00049183 εt+=

σt
2

8.2736e 007– 0.96283σt 1–
2

0.03178εt 1–
2

+ +=
2-89

2 Tutorial

2-9
Model” on page 2-17. That section discusses graphical techniques (plotting the
return series, examining the ACF and PACF), as well as some preliminary
tests, including Engle’s ARCH test and the Q-test. In addition, the section
“GARCH Limitations” on page 2-4 mentions some of the limitations of GARCH
models. In particular, it notes that GARCH techniques do not easily capture
wild, spurious swings in a return series.

The most effective way of avoiding convergence problems is to select the most
simplistic model that adequately describes your data. In fact, extreme
difficulty in convergence is an indication that the model you chose does not
describe your data well.

Specification Structure Fields That Affect Convergence
If you believe that your model is appropriate, and you still experience
convergence problems during estimation, there are several fields in the
specification structure that you can modify. The specification structure fields
that affect convergence for the estimation function are MaxIter, MaxFunEvals,
TolCon, TolFun, and TolX.

MaxIter and MaxFunEvals. MaxIter is the maximum number of iterations allowed
in the estimation process. Each iteration involves an optimization phase in
which garchfit suitably modifies calculations such as line search, gradient, and
step size. The default value of MaxIter is 400. Although an estimation rarely
exceeds MaxIter, you can increase the value if you suspect the estimation
terminated prematurely.

MaxFunEvals, a field closely related to MaxIter, specifies the maximum number
of log-likelihood objective function evaluations. The default value is 100 times
the number of parameters estimated in the model. For example, the default
model has four parameters, and so the default value of MaxFunEvals is 400.
When the estimation process terminates prematurely, it is usually because
MaxFunEvals, rather than MaxIter, is exceeded. You can increase MaxFunEvals
if you suspect the estimation terminated prematurely.

TolCon, TolFun, and TolX. The fields TolCon, TolFun, and TolX are
tolerance-related parameters that directly influence how and when
convergence is achieved.

TolCon is the termination tolerance placed on violations of the stationarity and
positivity constraints, and represents the maximum value by which parameter
estimates can violate a constraint and still allow successful convergence. See
0

Recommendations and Suggestions
Eq. (2-6) in the section “Homoskedasticity of the Unconditional Variance” on
page 2-9 for information about these constraints.

TolFun is the termination tolerance placed on the log-likelihood objective
function. Successful convergence occurs when the log-likelihood function value
changes by less than TolFun.

TolX is the termination tolerance placed on the estimated parameter values.
Similar to TolFun, successful convergence occurs when the parameter values
change by less than TolX.

TolCon, TolFun, and TolX have the same default value, 1e-006. If you
experience extreme difficulty in convergence (e.g., the estimation shows little
or no progress, or shows progress but stops early), then increasing one or more
of these parameter values (e.g., from 1e-006 to 1e-004) may allow the
estimation to converge. If the estimation appears to converge to a suboptimal
solution, then decreasing one or more of these parameter values (e.g., from
1e-006 to 1e-007) may provide more accurate parameter estimates.

Determining Convergence Status
There are two ways to determine whether an estimation achieves convergence.
The first, and easiest, is to examine the optimization details of the estimation.
By default, garchfit displays this information in the MATLAB command
window. The second way to determine convergence status is to request the
garchfit optional summary output.

To illustrate these methods, revisit the default model for the XYZ Corporation.

[coeff, errors, LLF, innovations, sigma, summary] =
garchfit(xyz);

%%%
 Diagnostic Information

Number of variables: 4

Functions
 Objective: garchllfn
 Gradient: finite-differencing
 Hessian: finite-differencing (or
Quasi-Newton)
 Nonlinear constraints: garchnlc
2-91

2 Tutorial

2-9
 Gradient of nonlinear constraints: finite-differencing

Constraints
 Number of nonlinear inequality constraints: 0
 Number of nonlinear equality constraints: 0

 Number of linear inequality constraints: 1
 Number of linear equality constraints: 0
 Number of lower bound constraints: 4
 Number of upper bound constraints: 0

Algorithm selected
 medium-scale

%%%
 End diagnostic information

 max Directional
 Iter F-count f(x) constraint Step-size derivative
Procedure
 1 5 -5921.94 -1.684e-005 1 -7.92e+004
 2 34 -5921.94 -1.684e-005 1.19e-007 -553
 3 43 -5924.42 -1.474e-005 0.125 -31.2
 4 49 -5936.16 -6.996e-021 1 -288
 5 57 -5960.62 0 0.25 -649
 6 68 -5961.45 -4.723e-006 0.0313 -17.3
 7 75 -5963.18 -2.361e-006 0.5 -28.6
 8 81 -5968.24 0 1 -55
 9 90 -5970.54 -6.016e-007 0.125 -196
 10 103 -5970.84 -1.244e-006 0.00781 -16.1
 11 110 -5972.77 -9.096e-007 0.5 -34.4
 12 126 -5972.77 -9.354e-007 0.000977 -24.5
 13 134 -5973.29 -1.05e-006 0.25 -4.97
 14 141 -5973.95 -6.234e-007 0.5 -1.99
 15 147 -5974.21 -1.002e-006 1 -0.641
 16 153 -5974.57 -9.028e-007 1 -0.0803
 17 159 -5974.59 -8.054e-007 1 -0.0293
 18 165 -5974.6 -8.305e-007 1 -0.0039
 19 172 -5974.6 -8.355e-007 0.5 -0.000964
 20 192 -5974.6 -8.355e-007 -6.1e-005 -0.000646
2

Recommendations and Suggestions
 21 212 -5974.6 -8.355e-007 -6.1e-005 -0.000996
Hessian modified twice
 22 219 -5974.6 -8.361e-007 0.5 -0.000184
 23 239 -5974.6 -8.361e-007 -6.1e-005 -0.00441
Hessian modified twice
Optimization terminated successfully:
 Search direction less than 2*options.TolX and
 maximum constraint violation is less than options.TolCon
 No Active Constraints

Notice that the optimization details indicate successful termination. Now,
examine the summary output structure.

summary
summary =
 warning: 'No Warnings'
 converge: 'Function Converged to a Solution'
 covMatrix: [4x4 double]
 iterations: 23
 functionCalls: 241
 constraints: 'No Boundary Constraints'

The converge field indicates successful convergence. If the estimation failed to
converge, the converge field would contain the message, 'Function Did NOT
Converge'. If the number of iterations or function evaluations exceeded its
specified limits, the converge field would contain the message, 'Maximum
Function Evaluations or Iterations Reached'. The summary structure also
contains fields that indicate the number of iterations (iterations) and
log-likelihood function evaluations (functionCalls).

These are generic suggestions. The default values of MaxIter, MaxFunEvals,
TolCon, TolFun, and TolX typically provide acceptable estimation results. For
additional details, see the Optimization Toolbox User's Guide and, in
particular, the reference section for the function fmincon.

Initial Parameter Estimates
Although garchfit computes initial parameter estimates if you provide none,
at times it may be helpful to compute and specify your own initial guesses to
avoid convergence problems.
2-93

2 Tutorial

2-9
Note If you specify initial estimates, you must provide complete conditional
mean and/or variance model specifications. See the section “Equality
Constraints and Initial Parameter Estimates” on page 2-85 for more
information.

Partial Estimation
An important property of a conditionally Gaussian innovations process is that
the parameters of the conditional mean and the conditional variance are
asymptotically uncorrelated (see Bollerslev [4], pages 315-317, Engle [8], pages
994-997, and Gourieroux, [11], pages 43-51). You can estimate initial
parameter estimates of the mean separately from those of the variance,
breaking the composite estimation process into two parts.

For example, if the conditional mean is an ARMAX model, you can first
estimate the ARMAX parameters assuming a constant variance innovations
process (i.e., a GARCH(0,0) conditional variance model). The sample variance
of the estimated residuals is then an approximation of the unconditional
variance of the innovations process {εt}. Finally, based on reasonable
parameter values of the GARCH and ARCH parameters of the conditional
variance model, you can apply Eq. (2-7) to estimate the conditional variance
constant κ.

For the common GARCH(1,1) model with Gaussian innovations,

it often turns out that you can obtain reasonable initial estimates by assuming
G1 is approximately 0.8 to 0.9, and A1 is approximately 0.05 to 0.10.

Iterative Estimation
Another approach is to estimate the complete model, examine the results, then
modify the parameter estimates as initial guesses for another round of
estimation. For example, suppose you have already estimated a composite
ARMA(1,1)/GARCH(1,1) model.

coeff
coeff =
 Comment: 'Mean: ARMAX(1,1,0); Variance: GARCH(1,1)'

σt
2 κ G1σt 1–

2
A1εt 1–

2
+ +=
4

Recommendations and Suggestions
 R: 1
 M: 1
 P: 1
 Q: 1
 Distribution: 'Gaussian'
 C: 1.0000e-004
 AR: 0.5000
 MA: 0.4000
 Regress: []
 K: 5.0000e-006
 GARCH: 0.4000
 ARCH: 0.5000
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

As you examine the above coeff structure (i.e., the first output of garchfit),
you may feel that the parameters of the ARMA(1,1) model appear reasonable.
However, you suspect the GARCH(1,1) results may be stuck at a local
maximum. You can modify the conditional variance parameters.

coeff = garchset(coeff, 'K', 6.25e-6, 'GARCH', 0.85, 'ARCH', 0.05)
coeff =
 Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
 R: 1
 M: 1
 P: 1
 Q: 1
 Distribution: 'Gaussian'
 C: 1.0000e-004
 AR: 0.5000
 MA: 0.4000
 Regress: []
 K: 6.2500e-006
 GARCH: 0.8500
 ARCH: 0.0500
2-95

2 Tutorial

2-9
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

You can then use this updated coeff specification structure as input to another
round of optimization.

[coeff, errors, LLF, innovations, sigma, summary] =
garchfit(coeff, xyz);

Compare the log-likelihood function values (i.e., LLF) to assess the various
alternatives. This example illustrates the convenience of the shared
specification structure.

Boundary Constraints and Statistical Inferences
The estimation process places stationarity and positivity constraints on the
parameters (see Eq. (2-6) in the section “Homoskedasticity of the
Unconditional Variance” on page 2-9).

Whenever garchfit actively imposes parameter constraints (other than
user-specified equality constraints) during the estimation process, the
statistical results based on the maximum likelihood parameter estimates are
invalid (see Hamilton [12], page 142). This is because statistical inference
relies on the log-likelihood function being approximately quadratic in the
neighborhood of the maximum likelihood parameter estimates. This cannot be
the case when the estimates fail to fall in the interior of the parameter space.

As an example of an actively imposed parameter constraint, fit a GARCH(1,2)
model to the returns of the XYZ Corporation. This model is intentionally
misspecified and estimations for such models often have difficulty converging.
You can increase the likelihood of convergence by making the requirement for
convergence less stringent. To do this increase the termination tolerance
parameter TolCon from 1e-6 (the default) to 1e-5.

spec = garchset('P', 1, 'Q', 2, 'TolCon', 1e-5);
[coeff, errors, LLF, innovations, sigma, summary] =
garchfit(spec, xyz);
6

Recommendations and Suggestions
%%%
 Diagnostic Information

Number of variables:5

Functions
 Objective: garchllfn
 Gradient: finite-differencing
 Hessian: finite-differencing (or
Quasi-Newton)
 Nonlinear constraints: garchnlc
 Gradient of nonlinear constraints: finite-differencing

Constraints
 Number of nonlinear inequality constraints:0
 Number of nonlinear equality constraints: 0

 Number of linear inequality constraints: 1
 Number of linear equality constraints: 0
 Number of lower bound constraints: 5
 Number of upper bound constraints: 0

Algorithm selected
 medium-scale

%%%
 End diagnostic information

 max Directional
Iter F-count f(x) constraint Step-size derivative
Procedure
 1 6 -5922.27 -1.684e-005 1 -3.34e+004
 2 36 -5922.27 -1.684e-005 1.19e-007 -578
 3 46 -5926.29 -1.474e-005 0.125 -60
 4 60 -5926.45 -1.558e-005 0.00781 -51.6
 5 68 -5952.6 -7.79e-006 0.5 -27.5
 6 76 -5964.39 -3.895e-006 0.5 -12.4
 7 84 -5964.42 -1.947e-006 0.5 -95.4
 8 98 -5964.43 -2.084e-006 0.00781 -27.4
2-97

2 Tutorial

2-9
 9 106 -5971.69 -1.552e-006 0.5 -7.6
 10 114 -5974.09 -7.762e-007 0.5 -97.8
 11 129 -5974.17 -9.254e-007 0.00391 -0.556
 12 136 -5974.59 4.337e-019 1 -0.0767
 13 145 -5974.6 5.421e-019 0.25 -0.0075
 14 152 -5974.6 1.084e-018 1 -0.00322
 15 159 -5974.6 2.168e-018 1 -0.00152
 16 166 -5974.6 4.337e-018 1 -0.00084
 17 173 -5974.6 8.674e-018 1 -0.000282
 18 183 -5974.6 9.758e-018 0.125 -6.16e-005
 19 191 -5974.6 1.464e-017 0.5 -0.000145
Hessian modified twice
 20 205 -5974.6 1.475e-017 0.00781 -1.94e-006
Optimization terminated successfully:
 Search direction less than 2*options.TolX and
 maximum constraint violation is less than options.TolCon
Active Constraints:
 5
Warning:Boundary Constraints Active; Standard Errors may be
Inaccurate.

The warning message explicitly states that garchfit has imposed constraints.
If you choose to suppress the estimations details (i.e., set the specification
structure field Display to off), the same information is available from the
constraints field of the summary output structure.

summary
summary =
 warning:'No Warnings'
 converge:'Function Converged to a Solution'
 covMatrix:[5x5 double]
 iterations:20
 functionCalls:208
 constraints:'Boundary Constraints Active; Errors may be
Inaccurate'

Examine the estimation results to see exactly what happened.

garchdisp(coeff, errors)

 Number of Parameters Estimated: 5
8

Recommendations and Suggestions
 Standard T
 Parameter Value Error Statistic
----------- ----------- ------------ -----------
 C 0.00048993 0.00025674 1.9083
 K 8.1018e-007 2.9827e-007 2.7163
 GARCH(1) 0.96327 0.0062937 153.0524
 ARCH(1) 0.031503 0.016075 1.9597
 ARCH(2) 0 0.018615 0.0000

The 0 value of ARCH(2)reveals that garchfit has enforced the variance
positivity constraint of the second ARCH parameter. It indicates that the
estimated GARCH(1,2) model is in fact a GARCH(1,1) model, and further
emphasizes that the default model is well suited for the returns of the XYZ
Corporation.

Furthermore, since a parameter constraint has been actively imposed during
the estimation process, the statistical results based on the maximum likelihood
parameter estimates are invalid. These statistical results include the standard
errors shown in column two, as well as any likelihood ratio tests based on the
lratiotest function.

Data Size and Quality
The size and quality of your return series affect the validity of your results.
Because of this, The MathWorks recommends that you carefully examine your
data prior to estimation. In particular, you should consider altering any
missing or anomalous data points. For example, you can fill in missing data
points, and remove or smooth anomalous ones. (See the section “GARCH
Limitations” on page 2-4.)

In addition, GARCH volatility modeling typically requires at least a few
hundred observations. Assuming daily data, one year’s worth of data requires
about 250 data points.
2-99

2 Tutorial

2-1
00

3

Function Reference

3 Function Reference

3-2
Functions – By Category
This section lists the GARCH Toolbox functions according to their purpose.

• “GARCH Modeling” on page 3-2

• “GARCH Innovations Inference” on page 3-2

• “Log-Likelihood Objective Functions” on page 3-2

• “Statistics and Tests” on page 3-2

• “GARCH Specification Structure Interface Functions” on page 3-3

• “Helpers and Utilities” on page 3-3

• “Graphics” on page 3-3

GARCH Modeling

GARCH Innovations Inference

Log-Likelihood Objective Functions

Statistics and Tests

garchfit Univariate GARCH process parameter estimation.

garchpred Univariate GARCH process forecasting.

garchsim Univariate GARCH process simulation.

garchinfer Inverse filter to infer GARCH innovations and conditional
standard deviations from an observed return series.

garchllfn Univariate GARCH process objective function (Gaussian
innovations).

aicbic Akaike and Bayesian information criteria for model order
selection.

archtest Engle’s hypothesis test for the presence of ARCH/GARCH
effects.

autocorr Plot or return computed sample auto-correlation function.

Functions – By Category
GARCH Specification Structure Interface Functions

Helpers and Utilities

Graphics

crosscorr Plot or return computed sample cross-correlation function.

lbqtest Ljung-Box Q-statistic lack-of-fit hypothesis test.

lratiotest Likelihood ratio hypothesis test.

parcorr Plot or return computed sample partial auto-correlation
function.

garchget Retrieve a GARCH specification structure parameter.

garchset Create or modify a GARCH specification structure.

garchar Convert finite-order ARMA models to infinite-order AR
models.

garchcount Count GARCH estimation coefficients.

garchdisp Display GARCH process estimation results.

garchma Convert finite-order ARMA models to infinite-order MA
models.

lagmatrix Create a lagged time series matrix.

price2ret Convert price series to a return series.

ret2price Convert return series to a price series.

garchplot Plot matched univariate innovations, volatility, and return
series.
3-3

3 Function Reference

3-4
Functions — Alphabetical List
This section contains function reference pages listed alphabetically. The
reference pages contain detailed descriptions of the GARCH Toolbox functions.

aicbic
3aicbicPurpose Akaike (AIC) and Bayesian (BIC) information criteria for model order selection

Syntax AIC = aicbic(LogLikelihood, NumParams)
[AIC, BIC] = aicbic(LogLikelihood, NumParams, NumObs)

Arguments

Description aicbic computes the Akaike and Bayesian information criteria, using
optimized log-likelihood objective function (LLF) values as input. You can
obtain the LLF values by fitting models of the conditional mean and variance
to a univariate return series.

AIC = aicbic(LogLikelihood, NumParams) computes only the Akaike (AIC)
information criteria.

[AIC, BIC] = aicbic(LogLikelihood, NumParams, NumObs) computes both
the Akaike (AIC) and Bayesian (BIC) information criteria.

Since information criteria penalize models with additional parameters,
parsimony is the basis of the AIC and BIC model order selection criteria.

LogLikelihood Vector of optimized log-likelihood objective function (LLF)
values associated with parameter estimates of the models
to be tested. aicbic assumes you obtained the LLF values
from the estimation function garchfit, or the inference
function garchinfer.

NumParams Number of estimated parameters associated with each
LLF value in LogLikelihood. NumParams can be a scalar
applied to all values in LogLikelihood, or a vector the
same length as LogLikelihood. All elements of NumParams
must be positive integers. Use garchcount to compute
NumParams values.

NumObs Sample size of the observed return series you associate
with each value of LogLikelihood. NumObs can be a scalar
applied to all values in LogLikelihood, or a vector the
same length as LogLikelihood. It is required to compute
BIC. All elements of NumObs must be positive integers.
3-5

aicbic

See Also garchdisp, garchfit, garchinfer

Reference [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting
and Control, third edition, Prentice Hall, 1994.

AIC Vector of AIC statistics associated witin this “Arguments”
sectionh each LogLikelihood objective function value. The AIC
statistic is defined as:

BIC Vector of BIC statistics associated with each LogLikelihood
objective function value. The BIC statistic is defined as:

AIC 2– LogLikelihood×() 2 NumParams×()+=

BIC 2– LogLikelihood×()
NumParams Log NumObs()×()+

=

3-6

archtest
3archtestPurpose Engle’s hypothesis test for the presence of ARCH/GARCH effects

Syntax [H, pValue, ARCHstat, CriticalValue] = archtest(Residuals, Lags,
Alpha)

Arguments

Description [H, pValue, ARCHstat, CriticalValue] = archtest(Residuals, Lags,
Alpha) tests the null hypothesis that a time series of sample residuals consists
of independent identically distributed (i.i.d.) Gaussian disturbances, i.e., no
ARCH effects exist.

Given sample residuals obtained from a curve fit (e.g., a regression model),
archtest tests for the presence of Mth order ARCH effects by regressing the
squared residuals on a constant and the lagged values of the previous M
squared residuals. Under the null hypothesis, the asymptotic test statistic,
T(R2), where T is the number of squared residuals included in the regression
and R2 is the sample multiple correlation coefficient, is asymptotically
Chi-Square distributed with M degrees of freedom. When testing for ARCH
effects, a GARCH(P,Q) process is locally equivalent to an ARCH(P+Q) process.

Residuals Time series vector of sample residuals obtained from a curve
fit, which archtest examines for the presence of ARCH
effects. The last element contains the most recent observation.

Lags (optional) Vector of positive integers indicating the lags of the
squared sample residuals included in the ARCH test statistic.
If specified, each lag should be significantly less than the
length of Residuals. If Lags = [] or is not specified, the
default is 1 lag (i.e., first order ARCH).

Alpha (optional) Significance level(s) of the hypothesis test. Alpha
can be a scalar applied to all lags in Lags, or a vector of
significance levels the same length as Lags. If Alpha = [] or is
not specified, the default is 0.05. For all elements, α, of Alpha,
0 < α < 1.
3-7

archtest

Example Create a vector of 100 (synthetic) residuals, then test for the 1st, 2nd, and 4th
order ARCH effects at the 10 percent significance level.

randn('state',0) % Start from a known state.
residuals = randn(100,1); % 100 Gaussian deviates ~ N(0,1)
[H,P,Stat,CV] = archtest(residuals, [1 2 4]', 0.10);
[H,P,Stat,CV]

ans =

 0 0.3925 0.7312 2.7055
 0 0.5061 1.3621 4.6052
 0 0.7895 1.7065 7.7794

See Also lbqtest

References [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting
and Control, third edition, Prentice Hall, 1994.

[2] Engle, Robert, “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50,
pp. 987-1007, 1982.

[3] Gourieroux, C., ARCH Models and Financial Applications,
Springer-Verlag, 1997.

H Boolean decision vector. 0 indicates acceptance of the null
hypothesis that no ARCH effects exist, i.e., there is
homoskedasticity at the corresponding element of Lags. 1
indicates rejection of the null hypothesis. The length of H is
the same as the length of Lags.

pValue Vector of P-values (significance levels) at which archtest
rejects the null hypothesis of no ARCH effects at each lag in
Lags.

ARCHstat Vector of ARCH test statistics for each lag in Lags.

CriticalValue Vector of critical values of the Chi-Square distribution for
comparison with the corresponding element of ARCHstat.
3-8

archtest
[4] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
3-9

autocorr
3autocorrPurpose Plot or return computed sample auto-correlation function

Syntax autocorr(Series, nLags, M, nSTDs)
[ACF, Lags, Bounds] = autocorr(Series, nLags, M, nSTDs)

Arguments

Description autocorr(Series, nLags, M, nSTDs) computes and plots the sample ACF
of a univariate, stochastic time series with confidence bounds. To plot the ACF
sequence without the confidence bounds, set nSTDs = 0.

[ACF, Lags, Bounds] = autocorr(Series, nLags, M, nSTDs) computes
and returns the ACF sequence.

Series Vector of observations of a univariate time series for which
autocorr computes or plots the sample auto-correlation function
(ACF). The last element of Series contains the most recent
observation of the stochastic sequence.

nLags (optional) Positive, scalar integer indicating the number of lags of
the ACF to compute. If nLags = [] or is not specified, the default
is to compute the ACF at lags 0, 1, 2, ..., T, where T = min([20,
length(Series)-1]).

M (optional) Nonnegative integer scalar indicating the number of
lags beyond which the theoretical ACF is effectively 0. autocorr
assumes the underlying Series is an MA(M) process, and uses
Bartlett’s approximation to compute the large-lag standard error
for lags > M. If M = [] or is not specified, the default is 0, and
autocorr assumes that Series is Gaussian white noise. If Series
is a Gaussian white noise process of length N, the standard error
is approximately 1 ⁄ √N. M must be < nLags.

nSTDs (optional) Positive scalar indicating the number of standard
deviations of the sample ACF estimation error to compute.
autocorr assumes the theoretical ACF of Series is 0 beyond lag M.
When M = 0 and Series is a Gaussian white noise process of
length N, specifying nSTDs results in confidence bounds at
±(nSTDs ⁄ √N). If nSTDs = [] or is not specified, the default is 2
(i.e., approximate 95 percent confidence interval).
3-10

autocorr

Example Create an MA(2) process from a sequence of 1000 Gaussian deviates, and
assess whether the ACF is effectively zero for lags > 2.

randn('state', 0) % Start from a known state.
x = randn(1000, 1); % 1000 Gaussian deviates ~ N(0,1).
y = filter([1 -1 1], 1, x); % Create an MA(2) process.
[ACF, Lags, Bounds] = autocorr(y, [], 2); % Compute the ACF
 % with 95 percent
 % confidence.
[Lags, ACF]

ans =

 0 1.0000
 1.0000 -0.6487
 2.0000 0.3001
 3.0000 0.0229
 4.0000 0.0196
 5.0000 -0.0489
 6.0000 0.0452
 7.0000 0.0012
 8.0000 -0.0214
 9.0000 0.0235
 10.0000 0.0340
 11.0000 -0.0392
 12.0000 0.0188
 13.0000 0.0504

ACF Sample auto-correlation function of Series. ACF is a vector of
length nLags+1 corresponding to lags 0, 1, 2, ..., nLags. The first
element of ACF is unity, that is, ACF(1) = 1 = lag 0 correlation.

Lags Vector of lags corresponding to ACF(0,1,2,...,nLags). Since an
ACF is symmetric about 0 lag, autocorr ignores negative lags.

Bounds Two element vector indicating the approximate upper and lower
confidence bounds, assuming that Series is an MA(M) process.
Values of ACF beyond lag M that are effectively 0 lie within these
bounds. Note that autocorr computes Bounds only for lags > M.
3-11

autocorr
 14.0000 -0.0600
 15.0000 0.0251
 16.0000 0.0441
 17.0000 -0.0732
 18.0000 0.0755
 19.0000 -0.0571
 20.0000 0.0485

Bounds =

 0.0899
 -0.0899

autocorr(y, [], 2) % Use the same example, but plot the ACF
 % sequence with confidence bounds.

See Also crosscorr, parcorr
filter (in the online MATLAB Function Reference)
3-12

autocorr
Reference [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting
and Control, third edition, Prentice Hall, 1994.

[2] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
3-13

crosscorr
3crosscorrPurpose Plot or return computed sample cross-correlation function

Syntax crosscorr(Series1, Series2, nLags, nSTDs)
[XCF, Lags, Bounds] = crosscorr(Series1, Series2, nLags, nSTDs)

Arguments

Description crosscorr(Series1, Series2, nLags, nSTDs) computes and plots the
sample cross-correlation function (XCF) between two univariate, stochastic
time series. To plot the XCF sequence without the confidence bounds, set
nSTDs = 0.

[XCF, Lags, Bounds] = crosscorr(Series1, Series2, nLags, nSTDs)
computes and returns the XCF sequence.

Series1 Vector of observations of the first univariate time series for which
crosscorr computes or plots the sample cross-correlation function
(XCF). The last element of Series1 contains the most recent
observation.

Series2 Vector of observations of the second univariate time series for
which crosscorr computes or plots the sample XCF. The last
element of Series2 contains the most recent observation.

nLags (optional) Positive, scalar integer indicating the number of lags of
the XCF to compute. If nLags = [] or is not specified, crosscorr
computes the XCF at lags 0, ±1, ±2, ..., ±T, where T = min([20,
min([length(Series1), length(Series2)])-1]).

nSTDs (optional) Positive scalar indicating the number of standard
deviations of the sample XCF estimation error to compute, if
Series1 and Series2 are uncorrelated. If nSTDs = [] or is not
specified, the default is 2 (i.e., approximate 95 percent confidence
interval).
3-14

crosscorr

Example Create a random sequence of 100 Gaussian deviates, and a delayed version
lagged by four samples. Compute the XCF, and then plot it to see the XCF peak
at the fourth lag.

randn('state',100) % Start from a known state.
x = randn(100,1); % 100 Gaussian deviates, N(0,1).
y = lagmatrix(x, 4); % Delay it by 4 samples.
y(isnan(y)) = 0; % Replace NaNs with zeros.
[XCF, Lags, Bounds] = crosscorr(x,y); % Compute the XCF with
 % 95 percent confidence.
[Lags, XCF]

ans =

 -20.0000 -0.0210
 -19.0000 -0.0041
 -18.0000 0.0661
 -17.0000 0.0668
 -16.0000 0.0380
 -15.0000 -0.1060
 -14.0000 0.0235
 -13.0000 0.0240
 -12.0000 0.0366
 -11.0000 0.0505
 -10.0000 0.0661
 -9.0000 0.1072
 -8.0000 -0.0893

XCF Sample cross-correlation function between Series1 and Series2.
XCF is a vector of length 2(nLags)+1 corresponding to lags 0, ±1,
±2, ..., ±nLags. The center element of XCF contains the 0th lag
cross correlation. XCF is a row (column) vector if Series1 is a row
(column) vector.

Lags Vector of lags corresponding to XCF(-nLags, ..., +nLags).

Bounds Two-element vector indicating the approximate upper and lower
confidence bounds assuming Series1 and Series2 are
completely uncorrelated.
3-15

crosscorr
 -7.0000 -0.0018
 -6.0000 0.0730
 -5.0000 0.0204
 -4.0000 0.0352
 -3.0000 0.0792
 -2.0000 0.0550
 -1.0000 0.0004
 0 -0.1556
 1.0000 -0.0959
 2.0000 -0.0479
 3.0000 0.0361
 4.0000 0.9802
 5.0000 0.0304
 6.0000 -0.0566
 7.0000 -0.0793
 8.0000 -0.1557
 9.0000 -0.0128
 10.0000 0.0623
 11.0000 0.0625
 12.0000 0.0268
 13.0000 0.0158
 14.0000 0.0709
 15.0000 0.0102
 16.0000 -0.0769
 17.0000 0.1410
 18.0000 0.0714
 19.0000 0.0272
 20.0000 0.0473

Bounds =

 0.2000
 -0.2000

crosscorr(x,y) % Use the same example, but plot the XCF
 % sequence. Note the peak at the 4th lag.
3-16

crosscorr
See Also autocorr, parcorr
filter (in the online MATLAB Function Reference)
3-17

garchar
3garcharPurpose Convert finite-order ARMA models to infinite-order auto-regressive (AR)
models

Syntax InfiniteAR = garchar(AR, MA, NumLags)

Arguments

Description InfiniteAR = garchar(AR, MA, NumLags) computes the coefficients of an
infinite-order AR model, using the coefficients of the equivalent univariate,
stationary, invertible, finite-order ARMA(R,M) model as input. garchar
truncates the infinite-order AR coefficients to accommodate a user-specified
number of lagged AR coefficients.

In the following ARMA(R,M) model, {yt} is the return series of interest and {εt}
the innovations noise process.

AR R-element vector of auto-regressive coefficients associated
with the lagged observations of a univariate return series
modeled as a finite order, stationary, invertible ARMA(R,M)
model.

MA M-element vector of moving-average coefficients associated
with the lagged innovations of a finite-order, stationary,
invertible univariate ARMA(R,M) model.

NumLags (optional) Number of lagged AR coefficients that garchar
includes in the approximation of the infinite-order AR
representation. NumLags is an integer scalar and determines
the length of the infinite-order AR output vector. If
NumLags = [] or is not specified, the default is 10.

InfiniteAR Vector of coefficients of the infinite-order AR representation
associated with the finite-order ARMA model specified by the
AR and MA input vectors. InfiniteAR is a vector of length
NumLags. The jth element of InfiniteAR is the coefficient of
the jth lag of the input series in an infinite-order AR
representation. Note that Box, Jenkins, and Reinsel refer to
the infinite-order AR coefficients as “π weights.”
3-18

garchar
If you write this model equation as

you can specify the garchar input coefficient vectors, AR and MA, exactly as you
read them from the model. In general, the jth elements of AR and MA are the
coefficients of the jth lag of the return series and innovations processes yt – j and
εt – j, respectively. garchar assumes that the current-time-index coefficients of
yt and εt are 1 and are not part of AR and MA.

In theory, you can use the π weights returned in InfiniteAR, to approximate
yt as a pure AR process.

Consistently, the jth element of the truncated infinite-order auto-regressive
output vector, πj or InfiniteAR(j), is the coefficient of the jth lag of the
observed return series, yt – j, in this equation. See Box, Jenkins, and Reinsel [7],
Section 4.2.3, pages 106-109.

Given the above discussion, the AR and MA vectors differ from the corresponding
AR and MA polynomials formally presented in time series references such as
Box, Jenkins, and Reinsel. The conversion from GARCH Toolbox vectors to the
corresponding GARCH Toolbox polynomials is:

AR polynomial tested for stationarity = [1 ; -AR]
MA polynomial tested for invertibility = [1 ; MA]

Example For the following ARMA(2,2) model, use garchar to obtain the first 20 weights
of the infinite order AR approximation.

From this model,

AR = [0.5 -0.8]

yt ARiyt i–
i 1=

R

∑ εt MAjεt j–

j 1=

M

∑+ +=

yt AR1yt 1– … ARRyt R– εt MA1εt 1– … MAMεt M–+ + + + + +=

yt πiyt i–
i 1=

∞

∑ εt+=

yt 0.5yt 1– 0.8yt 2–– εt 0.6εt 1– 0.08εt 2–+–+=
3-19

garchar
MA = [-0.6 0.08]

Since the current-time-index coefficients of yt and εt are defined to be 1, the
example omits them from AR and MA. This saves time and effort when you
specify parameters using the garchset and garchget interfaces.

PI = garchar([0.5 -0.8], [-0.6 0.08], 20);

PI'

ans =

 -0.1000
 -0.7800
 -0.4600
 -0.2136
 -0.0914
 -0.0377
 -0.0153
 -0.0062
 -0.0025
 -0.0010
 -0.0004
 -0.0002
 -0.0001
 -0.0000
 -0.0000
 -0.0000
 -0.0000
 -0.0000
 -0.0000
 -0.0000

See Also garchfit, garchma, garchpred

Reference [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting
and Control, third edition, Prentice Hall, 1994.
3-20

garchcount
3garchcountPurpose Count GARCH estimation coefficients

Syntax NumParams = garchcount(Coeff)

Arguments

Description NumParams = garchcount(Coeff) counts and returns the number of estimated
coefficients from a GARCH specification structure containing coefficient
estimates and equality constraint information. garchcount is a helper utility
designed to support the GARCH Toolbox model selection function aicbic.

See Also aicbic, garchdisp, garchfit

Coeff GARCH specification structure containing the estimated
coefficients and equality constraints. Coeff is an output of the
estimation function garchfit.

NumParams Number of estimated parameters (i.e., coefficients) included in
the conditional mean and variance specifications, less any
parameters held constant, as equality constraints, during the
estimation. The aicbic function needs NumParams to calculate
the Akaike (AIC) and Bayesian (BIC) statistics.
3-21

garchdisp
3garchdispPurpose Display GARCH process estimation results

Syntax garchdisp(Coeff, Errors)

Arguments

Description garchdisp(Coeff, Errors) displays coefficient estimates, standard errors,
and T-statistics from a GARCH specification structure that was output by the
estimation function garchfit.

This function displays matched GARCH Toolbox estimation results, and
returns no output arguments. The tabular display includes parameter
estimates, standard errors, and T-statistics for each parameter in the
conditional mean and variance models. Parameters held fixed during the
estimation process have the word 'Fixed' printed in the standard error and
T-statistic columns, indicating that the parameter was set as an equality
constraint.

See Also garchcount, garchfit

Coeff GARCH specification structure containing estimated coefficients
and equality constraint information. Coeff is an output of the
estimation function garchfit.

Errors Structure containing the estimation errors (i.e., the standard
errors) of the coefficients in Coeff. Errors is also an output of the
estimation function garchfit.
3-22

garchfit
3garchfitPurpose Univariate GARCH process parameter estimation

Syntax [Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Series)
[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec,

Series)
[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec,

Series, X)
garchfit(...)

Arguments

Description garchfit estimates the parameters of a conditional mean specification of
ARMAX form and a conditional variance specification of GARCH form. If the
Display flag (see the function garchset) in the specification structure is set to

Series Vector of observations of the underlying univariate return series
for which garchfit estimates the parameters of the conditional
mean and variance models. The last element of Series holds the
most recent observation.

Spec (optional) GARCH specification structure that contains the
conditional mean and variance models, and optimization
parameters. You create the fields in this structure by calling the
function garchset, or you can use the Coeff output structure
from a previous call to garchfit.

X (optional) Time series regression matrix of observed explanatory
data. Typically, X is a matrix of asset returns (e.g., the return
series of an equity index), and represents the past history of the
explanatory data. Each column of X is an individual time series
used as an explanatory variable in the regression component of
the conditional mean. In each column, the first row contains the
oldest observation and the last row the most recent.
The number of valid (non-NaN) most recent observations in each
column of X must equal or exceed the number of valid most
recent observations in Series. If the number of valid
observations in a column of X exceeds that of Series, garchfit
uses only the most recent observations of X. If X = [] or is not
specified, the conditional mean has no regression component.
3-23

garchfit
on (the default), it also displays diagnostic and iterative optimization
information in the MATLAB command window (see the function fmincon in the
Optimization Toolbox).

[Coeff, Errors, LLF, Innovations, Sigma, Summary] =
garchfit(Series) models an observed univariate return series as a constant,
C, plus GARCH(1,1) conditionally Gaussian innovations. For models beyond
this simplistic (yet common) model, you must provide model parameters in the
specification structure, Spec. The C + GARCH(1,1) model is the default model
of the GARCH Toolbox.

[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec,
Series) infers the innovations from the return series and fits the model
specification, contained in Spec, to the return series by maximum likelihood.

[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec,
Series, X) provides a regression component for the conditional mean.

garchfit(...) (with input arguments as shown above but with no output
arguments) prints the final parameter estimates and standard errors to the
MATLAB command window. It also produces a tiered plot of the original return
series, the inferred innovations (i.e., residuals), and the corresponding
conditional standard deviations.

Coeff GARCH specification structure containing the estimated
coefficients. Coeff is of the same form as the Spec input
structure. This allows other GARCH Toolbox functions, such
as garchset, garchget, garchsim, garchinfer, and
garchpred, to accept either Spec or Coeff seamlessly.

Errors Structure containing the estimation errors (i.e., the standard
errors) of the coefficients. The fields of Errors correspond to
the coefficient fields (C, AR, MA, Regress, K, GARCH, ARCH) found
in Coeff or Spec.

LLF Optimized log-likelihood objective function value associated
with the parameter estimates found in Coeff. garchfit
performs the optimization using the fmincon function of the
Optimization Toolbox.
3-24

garchfit
Note garchfit calculates the error covariance matrix of the parameter
estimates, Summary.covMatrix, and the corresponding standard errors found
in the Errors output structure, using finite difference approximation. In
particular, it calculates the standard errors using the outer-product method
(see Hamilton [12], section 5.8, bottom of page 143).

See Also garchllfn, garchpred, garchset, garchsim,

Innovations Innovations vector inferred from Series. The size of
Innovations is the same as the size of Series.

Sigma Conditional standard deviation vector corresponding to
Innovations. The size of Sigma is the same as the size of
Series.

Summary Structure of summary information about the optimization
process. The fields and their possible values are

warning One of the following strings:
 'No Warnings'
 'ARMA Model Is Not
Stationary/Invertible'

converge One of the following strings:
 'Function Converged to a Solution'
 'Function Did NOT Converge'
 'Maximum Function Evaluations or
Iterations Reached'

covMatrix Covariance matrix of the parameter
estimates

iterations Number of iterations

functionCalls Number of function evaluations

constraints One of the following strings:
 'No Boundary Constraints'
 'Boundary Constraints Active; Errors
May Be Inaccurate'
3-25

garchfit
fmincon (in the Optimization Toolbox)

References Bollerslev, T., “Generalized Autoregressive Conditional Heteroskedasticity,”
Journal of Econometrics, Vol. 31, pp. 307-327, 1986.

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and
Control, third edition, Prentice Hall, 1994.

Engle, Robert, “Autoregressive Conditional Heteroskedasticity with Estimates
of the Variance of United Kingdom Inflation,” Econometrica, vol. 50, pp.
987-1007, 1982.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
3-26

garchget
3garchgetPurpose Retrieve a GARCH specification structure parameter

Syntax ParameterValue = garchget(Spec, 'ParameterName')

Arguments

Description ParameterValue = garchget(Spec, 'ParameterName') provides the
preferred user-interface for retrieveing a model parameter from a GARCH
specification structure.

Example Spec = garchset('P',1,'Q',1) % Create a GARCH(P=1, Q=1) model.
Spec =

 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
 R: 0
 M: 0
 P: 1
 Q: 1
 Distribution: 'Gaussian'
 C: []
 AR: []

Spec GARCH specification structure containing the orders, and
coefficients, as well as the optimization constraints of the
conditional mean and variance specifications of a GARCH
model. You can create a GARCH specification structure as
the output (Spec) of the companion function garchset, or
the output (Coeff) of the estimation function garchfit.

ParameterName String indicating the name of the parameter whose value
garchget extracts from Spec. You can specify only
sufficient leading characters to uniquely identify the
parameter. See garchset for a list of valid parameter
names. ParameterName is case insensitive.

ParameterValue Value of the named parameter, ParameterName, extracted
from the structure Spec. ParameterValue = [] if the
parameter has no value.
3-27

garchget
 MA: []
 Regress: []
 K: []
 GARCH: []
 ARCH: []
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

P = garchget(Spec,'P') % Extract the order P.

P =
 1

See Also garchfit, garchpred, garchset, garchsim
optimget, optimset (in the online MATLAB Function Reference)
3-28

garchinfer
3garchinferPurpose Inverse filter to infer GARCH innovations and conditional standard deviations
from an observed return series

Syntax [Innovations, Sigma, LogLikelihood] = garchinfer(Spec, Series, X)

Arguments

Description [Innovations, Sigma, LogLikelihood] = garchinfer(Spec, Series, X)
acts as an inverse, or whitening, filter to infer the innovations and conditional
standard deviations from an observed return series, using a conditional mean
specification of ARMAX form and a conditional variance specification of
GARCH form as input. Since garchinfer provides an interface to the

Spec GARCH specification structure that contains the conditional
mean and variance specifications, as well as the optimization
parameters of a GARCH model. You can create Spec by calling
the function garchset or the estimation function garchfit.

Series Matrix of observations of the underlying univariate return series
of interest for which garchinfer infers the innovations and
corresponding conditional standard deviations.
Each column of Series is an independent realization (i.e., path).
The last row of Series holds the most recent observation of each
realization.

X (optional) Time series regression matrix of observed explanatory
data. Typically, X is a matrix of asset returns (e.g., the return
series of an equity index), and represents the past history of the
explanatory data. Each column of X is an individual time series
used as an explanatory variable in the regression component of
the conditional mean. In each column, the first row contains the
oldest observation and the last row the most recent.
The number of valid (non-NaN) most recent observations in each
column of X must equal or exceed the number of valid most recent
observations in Series. If the number of valid observations in a
column of X exceeds that of Series, garchinfer uses only the
most recent observations of X. If X = [] or is not specified, the
conditional mean has no regression component.
3-29

garchinfer
appropriate log-likelihood objective function, it also computes the
log-likelihood value as a convenience.

See Also garchfit, garchllfn, garchpred, garchset, garchsim
fmincon (in the Optimization Toolbox)

References Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and
Control, third edition, Prentice Hall, 1994.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Innovations Innovations matrix inferred from the input Series
matrix. The size of Innovations is the same as the size
of Series, and its organization is the same as Series.

Sigma Conditional standard deviation matrix corresponding to
Innovations. The size of Sigma is the same as the size of
Series.

LogLikelihood Vector of log-likelihood objective function values for each
realization of Series. The length of LogLikelihood is the
same as the number of columns in Series.
3-30

garchllfn
3garchllfnPurpose Univariate GARCH process objective function (Gaussian innovations)

Syntax [LogLikelihood, G, H, Innovations, Sigma] = garchllfn(Parameters,
Series, R, M, P, Q, X)

Arguments

Parameters Column vector of process parameters associated with fitting
conditional mean and variance specifications to the observed
return series, Series. The conditional mean contributes the
first (1 + R + M + Nx) parameters, where Nx is the number of
explanatory variables you include in the regression component
of the conditional mean (the number of columns in X). The
conditional variance contributes the remaining (1 + P + Q)
parameters. The resultant length of Parameters is
(2 + R + M + Nx + P + Q). (See the “Formatting the Input
Coefficient Vector” section below.)

Series Matrix of observations of the underlying univariate return
series of interest for which garchllfn estimates the
parameters of the conditional mean and variance models.
Series can have several columns, where each column is an
independent realization (i.e., path). The last row of Series
holds the most recent observation of each realization.

R Nonnegative, scalar integer representing the AR-process
order.

M Nonnegative, scalar integer representing the MA-process
order.

P Nonnegative, scalar integer representing the number of lags of
the conditional variance included in the GARCH process.
3-31

garchllfn
Description [LogLikelihood, G, H, Innovations, Sigma] = garchllfn(Parameters,
Series, R, M, P, Q, X) computes the log-likelihood objective function value
suitable for maximum likelihood estimation (MLE).

For Gaussian innovations, garchfit uses garchllfn as the objective function
to be optimized by fmincon. When garchinfer calls garchllfn, the primary
outputs of garchllfn are the innovations and conditional standard deviations
inferred from the input data. In either case, garchllfn must infer an
uncorrelated white noise innovation process. In this sense, garchllfn is an
inverse, or whitening, filter.

The use of garchllfn is specific to Distribution = 'Gaussian' in the GARCH
specification structure.

Note Because garchllfn is performance sensitive and because fmincon calls
it iteratively as the objective function, garchllfn performs no argument
checking. Although you can call garchllfn directly, it is better to call it via
garchinfer.

Q Nonnegative, scalar integer representing the number of lags of
the squared innovations included in the GARCH process.

X (optional) Time series regression matrix of observed
explanatory data. Typically, X is a matrix of asset returns
(e.g., the return series of an equity index), and represents the
past history of the explanatory data. Each column of X is an
individual time series used as an explanatory variable in the
regression component of the conditional mean. In each
column, the first row contains the oldest observation and the
last row the most recent. X must have the same number of
rows as Series.
3-32

garchllfn

Formatting the Input Coefficient Vector
Format the input coefficient vector Parameters exactly as you would read the
coefficients from the recursive difference equations when solving for the
current values of the yt and σt

2 time series. Specifically, if:

• yt = return series of interest (assumed stationary)

• εt = innovations of the model noise process (assumed invertible)

• σt
2 = conditional variance of the innovations process εt

then the following equations represent the general
ARMAX(R,M,Nx)/GARCH(P,Q) model.

LogLikelihood Vector of log-likelihood objective function values
evaluated at the values in Parameters. The length of
LogLikelihood is the same as the number of columns in
Series. Because the fmincon function (of the
Optimization Toolbox), which is used to optimize
garchllfn, is a minimization routine, LogLikelihood is
the negative of what is formally presented in most
econometrics references

G Reserved for future use. G = [].

H Reserved for future use. H = [].

Innovations Innovations matrix inferred from the input Series
matrix.

Sigma Conditional standard deviation matrix corresponding to
Innovations.

yt C ARiyt i–
i 1=

R

∑ εt MAjεt j–

j 1=

M

∑ βkX t k,()
k 1=

Nx

∑+ + + +=

σt
2 κ Giσt i–

2

i 1=

P

∑ Ajεt j–
2

j 1=

Q

∑+ +=
3-33

garchllfn
You can also write these equations as

Using this form, the following equations represent the conditional mean and
variance of a specific ARMAX(R=2, M=2, Nx=1) / GARCH(P=2, Q=2) composite
model.

In the MATLAB notation, and using specification structure parameter names,
the coefficient vector, Parameters, that represents this model is

Parameters =
 [C AR(1:R) MA(1:M) B(1:Nx) K GARCH(1:P) ARCH(1:Q)]' =
 [1.3 0.5 -0.8 -0.6 0.08 1.2 0.5 0.2 0.1 0.3 0.2]'

Note that the coefficient of εt in the conditional mean equation is 1. Since
garchfit does not estimate the coefficient of εt, the coefficient vector does not
include it.

Inferring the Innovations
garchllfn uses the following conditional mean specification of ARMAX form to
infer the innovations, and then fits the conditional variance of the innovations
to a GARCH model. It assumes Gaussian innovations.

yt C AR1yt 1– … ARRyt R– εt+ + + +=

MA1εt 1– … MAMεt M–+ +

β1X t 1,() … βNxX t Nx,()+ +

+
+

σt
2

K G1σt 1–
2 … GPσt P–

2
+ + +=

A1εt 1–
2 … AQεt Q–

2
+ ++

yt 1.3 0.5yt 1– 0.8yt 2– εt+–+=

0.6εt 1– 0.08εt 2–+

1.2X t()

–

+

σt
2

0.5 0.2σt 1–
2

0.1σt 2–
2

+ +=

0.3εt 1–
2

0.2εt 2–
2

++
3-34

garchllfn
You can derive this equation from the general conditional mean equation given
above for yt, by solving it for εt. Its coefficient vector, which garchllfn uses to
infer the innovations, is the negation of Parameters with the insertion of the yt
coefficient.

See “Maximum Likelihood Estimation” on page 2-54 for more information.

See Also garchfit, garchinfer, garchpred, garchsim

References Bollerslev, T. (1986), “Generalized Autoregressive Conditional
Heteroskedasticity,” Journal of Econometrics, Vol. 31, pp. 307-327.

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and
Control, third edition, Prentice Hall, 1994.

Engle, Robert (1982), “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50,
pp. 987-1007.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

εt C– yt ARiyt i–
i 1=

R

∑– MAjεt j–

j 1=

M

∑– βkX t k,()
k 1=

Nx

∑–+=
3-35

garchma
3garchmaPurpose Convert finite-order ARMA models to infinite-order moving average (MA)
models

Syntax InfiniteMA = garchma(AR, MA, NumLags)

Arguments

Description InfiniteMA = garchma(AR, MA, NumLags) computes the coefficients of an
infinite-order MA model, using the coefficients of the equivalent univariate,
stationary, invertible finite-order ARMA(R,M) model as input. garchma
truncates the infinite-order MA coefficients to accommodate the number of
lagged MA coefficients you specify in NumLags.

This function is particularly useful for calculating the standard errors of
minimum mean square error forecasts of univariate ARMA models.

AR R-element vector of auto-regressive coefficients associated
with the lagged observations of a univariate return series
modeled as a finite order, stationary, invertible ARMA(R,M)
model.

MA M-element vector of moving-average coefficients associated
with the lagged innovations of a finite-order, stationary,
invertible univariate ARMA(R,M) model.

NumLags (optional) Number of lagged MA coefficients that garchma
includes in the approximation of the infinite-order MA
representation. NumLags is an integer scalar and determines
the length of the infinite-order MA output vector. If
NumLags = [] or is not specified, the default is 10.

InfiniteMA Vector of coefficients of the infinite-order MA representation
associated with the finite-order ARMA model specified by AR
and MA. InfiniteMA is a vector of length NumLags. The jth
element of InfiniteMA is the coefficient of the jth lag of the
innovations noise sequence in an infinite-order MA
representation. Note that Box, Jenkins, and Reinsel refer to
the infinite-order MA coefficients as the “ψ weights.”
3-36

garchma
In the following ARMA(R,M) model, {yt} is the return series of interest and {εt}
the innovations noise process.

If you write this model equation as

you can specify the garchar input coefficient vectors, AR and MA, exactly as you
read them from the model. In general, the jth elements of AR and MA are the
coefficients of the jth lag of the return series and innovations processes yt – j and
εt – j, respectively. garchma assumes that the current-time-index coefficients of
yt and εt are 1 and are not part of AR and MA.

In theory, you can use the ψ weights returned in InfiniteMA to approximate yt
as a pure MA process.

Consistently, the jth element of the truncated infinite-order moving-average
output vector, ψj or InfiniteMA(j), is the coefficient of the jth lag of the
innovations process, εt – j, in this equation. See Box, Jenkins, and Reinsel [7],
Section 5.2.2, pages 139-141.

Given the above discussion, the AR and MA vectors differ from the corresponding
AR and MA polynomials formally presented in time series references such as
Box, Jenkins, and Reinsel. The conversion from GARCH Toolbox vectors to the
corresponding GARCH Toolbox polynomials is as follows:

• AR polynomial tested for stationarity = [1 ; -AR]

• MA polynomial tested for invertibility = [1 ; MA]

Example Suppose you want a forecast horizon of 10 periods for the following ARMA(2,2)
model.

yt ARiyt i–
i 1=

R

∑ εt MAjεt j–

j 1=

M

∑+ +=

yt AR1yt 1– … ARRyt R– εt MA1εt 1– … MAMεt M–+ + + + + +=

yt εt ψiεt i–

i 1=

∞

∑+=
3-37

garchma
To obtain probability limits for these forecasts, use garchma to compute the
first 9 (i.e., 10 - 1) weights of the infinite order MA approximation.

From the model, AR = [0.5 -0.8] and MA = [-0.6 0.08].

Since the current-time-index coefficients of yt and εt are 1, the example omits
them from AR and MA. This saves time and effort when you specify parameters
via the garchset and garchget user interfaces.

PSI = garchma([0.5 -0.8], [-0.6 0.08], 9);
PSI'

ans =

 -0.1000
 -0.7700
 -0.3050
 0.4635
 0.4758
 -0.1329
 -0.4471
 -0.1172
 0.2991

See Also garchar, garchpred

Reference [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting
and Control, third edition, Prentice Hall, 1994.

yt 0.5yt 1– 0.8yt 2–– εt 0.6εt 1– 0.08εt 2–+–+=
3-38

garchplot
3garchplotPurpose Plot matched univariate innovations, volatility, and return series

Syntax garchplot(Innovations, Sigma, Series)

Arguments

Description garchplot lets you visually compare matched innovations, conditional
standard deviations, and returns. It provides a convenient way to compare
innovations series, simulated using garchsim or estimated using garchfit,
with companion conditional standard deviations, or returns series. You can
also use garchplot to plot forecasts, computed using garchpred, of conditional
standard deviations and returns.

In general, garchplot produces a tiered plot of matched time series. garchplot
does not display an empty or missing input array, i.e., garchplot allocates no
space in the tiered figure window to the array. garchplot displays valid
(nonempty) Innovations, Sigma, and Series arrays in the top, center, and
bottom plots, respectively. Since garchplot assigns a title and label to each
plot according to its position in the argument list, you can ensure correct plot
annotation by using empty matrices ([]) as placeholders.

Innovations Vector or matrix of innovations. As a vector, Innovations
represents a single realization of a univariate time series in
which the first element contains the oldest observation and
the last element the most recent. As a matrix, each column of
Innovations represents a single realization of a univariate
time series in which the first row contains the oldest
observation of each realization and the last row the most
recent. If Innovations = [], then Innovations is not
displayed.

Sigma Vector or matrix of conditional standard deviations. In
general, Innovations and Sigma are the same size, and form
a matching pair of arrays. If Sigma = [], then Sigma is not
displayed.

Series Vector or matrix of asset returns. In general, Series is the
same size as Innovations and Sigma, and is organized in
exactly the same manner. If Series = [] or is not specified,
then Series is not displayed.
3-39

garchplot
You can plot several realizations of each array simultaneously because
garchplot color codes corresponding realizations of each input array.
However, the plots may become cluttered if you try to display more than a few
realizations of each input at one time.

Examples Assume Innovations, Sigma, and Series are not empty.

garchplot(Innovations) % Plot Innovations only.
garchplot(Innovations, [], Series) % Plot Innovations and
 % Series only.
garchplot([], Sigma, Series) % Plot Sigma and Series
 % only.
garchplot(Innovations, Sigma, Series) % Plot all three vectors.
garchplot(Innovations, Sigma, []) % Plot Innovations and
 % Sigma only.
garchplot(Innovations, Sigma) % Plot Innovations and
 % Sigma only.

See Also garchfit, garchpred, garchsim
3-40

garchpred
3garchpredPurpose Univariate GARCH process forecasting

Syntax SigmaForecast = garchpred(Spec, Series, NumPeriods, X)
[SigmaForecast, MeanForecast] = garchpred(Spec, Series, NumPeriods,

X, XF)
[SigmaForecast, MeanForecast, SigmaTotal, MeanRMSE] =

garchpred(Spec, Series, NumPeriods)

Arguments

Spec GARCH specification structure for the conditional mean and
variance models. You can create Spec by calling the function
garchset or the estimation function garchfit.

Series Matrix of observations of the underlying univariate return
series of interest for which garchpred generates forecasts.
Each column of Series is an independent realization (i.e.,
path). The last row of Series holds the most recent
observation of each realization. garchpred assumes that
Series is a stationary stochastic process. It also assumes that
the ARMA component of the conditional mean model (if any) is
stationary and invertible.

NumPeriods (optional) Positive, scalar integer representing the forecast
horizon of interest. The value you specify should be compatible
with the sampling frequency of Series. If NumPeriods = [] or
is not specified, the default is 1.
3-41

garchpred
Description garchpred forecasts the conditional mean and standard deviation of the
univariate return series NumPeriods into the future, using specifications for
the conditional mean and variance of an observed univariate return series as
input. The conditional mean and variance can be of general ARMAX and
GARCH form, respectively.

X (optional) Time series regression matrix of observed
explanatory data. Typically, X is a matrix of asset returns
(e.g., the return series of an equity index), and represents the
past history of the explanatory data. Each column of X is an
individual time series used as an explanatory variable in the
regression component of the conditional mean. In each
column, the first row contains the oldest observation and the
last row the most recent.

The number of valid (non-NaN) most recent observations in
each column of X must equal or exceed the number of valid
most recent observations in Series. If the number of valid
observations in a column of X exceeds that of Series,
garchpred uses only the most recent observations of X.

If X = [] or is not specified, the conditional mean
(MeanForecast) has no regression component.

XF (optional) Time series matrix of forecasted explanatory data.
XF represents the evolution into the future of the same
explanatory data found in X. Because of this, XF and X must
have the same number of columns. In each column of XF, the
first row contains the one-period-ahead forecast, the second
row the two-period-ahead forecast, and so on.

The number of rows (forecasts) in each column (time series) of
XF must equal or exceed the forecast horizon NumPeriods.
When the number of forecasts in XF exceeds NumPeriods,
garchpred uses only the first NumPeriods forecasts.

If XF = [] or is not specified, the conditional mean
(MeanForecast) has no regression component.
3-42

garchpred
SigmaForecast = garchpred(Spec, Series, NumPeriods, X) forecasts only
the standard deviation of the univariate return series, Series. The regression
matrix X is optional. If you specify XF, garchpred ignores it.

[SigmaForecast, MeanForecast] = garchpred(Spec, Series, NumPeriods,
X, XF) forecasts both the conditional mean and standard deviation of the
univariate return series, Series. X and XF are optional. However, for
MeanForecast, if you specify X, you must also specify XF. For SigmaForecast,
garchpred ignores XF.

[SigmaForecast, MeanForecast, SigmaTotal, MeanRMSE] =
garchpred(Spec, Series, NumPeriods) in addition to forecasting the
conditional mean and standard deviation of the univariate return series,
computes the volatility forecasts of asset returns over multiperiod holding
intervals, and the standard errors of conditional mean forecasts. If you
compute SigmaTotal or MeanRMSE, SigmaForecast and MeanForecast can have
no regression component.If you compute SigmaTotal or MeanRMSE,
SigmaForecast and MeanForecast can have no regression component.

garchpred requires a complete conditional mean specification to correctly infer
the innovations process that drives the forecasts. Because of this, you would
typically use the same regression matrix of observed returns (X), if any, that
you used for simulation (using garchsim) or estimation (using garchfit). XF,
however, is just the forecast of X, and you only need it to forecast the conditional
mean (MeanForecast). If you want to forecast only the conditional variance
(SigmaForecast), XF is unnecessary.
3-43

garchpred

SigmaForecast Matrix of minimum mean square error (MSE) forecasts of
the conditional standard deviations of Series on a per
period basis. SigmaForecast has NumPeriods rows and the
same number of columns as Series. The first row contains
the one-period-ahead forecast for each realization of Series,
the second row contains the two-period-ahead forecast, and
so on. If a forecast horizon is > 1 (i.e., NumPeriods > 1),
garchpred returns the per-period forecasts of all
intermediate horizons, as well as the forecast at the
specified horizon which is in the last row.

MeanForecast Matrix of minimum MSE forecasts of the conditional mean
of Series on a per-period basis. MeanForecast is the same
size as SigmaForecast. The first row contains the forecast in
the first period for each realization of Series, the second
row contains the forecast in the second period, and so on.

Both X and XF must be non-empty for MeanForecast to have
a regression component. If X and XF are empty ([]) or not
specified, MeanForecast is based on the ARMA model. If you
specify X and XF, MeanForecast is based on the full ARMAX
model.
3-44

garchpred
SigmaTotal Matrix of minimum mean square error (MSE) volatility
forecasts of Series over multiperiod holding intervals.
SigmaTotal is the same size as SigmaForecast. The first
row contains the standard deviation of returns expected for
assets held for one period for each realization of Series, the
second row contains the standard deviation of returns
expected for assets held for two periods, and so on. The last
row contains the volatility forecast of the cumulative return
obtained if an asset was held for the entire NumPeriods
forecast horizon.

garchpred computes the elements of SigmaTotal by taking
the square root of

where s is the forecast horizon of interest (NumPeriods), and
ψj is the coefficient of the jth lag of the innovations process
in an infinite-order MA representation of the conditional
mean model (see the function garchma).

In the special case of the default model for the conditional
mean, yt = C + εt, this reduces to

The SigmaTotal forecasts are correct for continuously
compounded returns, and approximate for periodically
compounded returns. SigmaTotal is the same size as
SigmaForecast if the conditional mean is modeled as a
stationary invertible ARMA process.

If you specify X or XF, SigmaTotal = [].

vart yt i+

i 1=

s

∑ 1 ψj

j 1=

s i–

∑+
2
Et σt i+

2()

i 1=

s

∑=

vart yt i+

i 1=

s

∑ Et σt i+
2()

i 1=

s

∑=
3-45

garchpred
Note garchpred calls the function garchinfer to access the past history of
innovations and conditional standard deviations inferred from Series. If you
need the innovations and conditional standard deviations, call garchinfer
directly.

See Also garchfit, garchinfer, garchma, garchset, garchsim

References [1] Baillie, R.T., T. Bollerslev (1992), “Prediction in Dynamic Models with
Time-Dependent Conditional Variances,” Journal of Econometrics, Vol. 52, pp.
91-113.

[2] Bollerslev, T. (1986), “Generalized Autoregressive Conditional
Heteroskedasticity,” Journal of Econometrics, Vol. 31, pp. 307-327.

[3] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting
and Control, third edition, Prentice Hall, 1994.

[4] Engle, Robert (1982), "Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50,
pp. 987-1007.

[5] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

MeanRMSE Matrix of root mean square errors (RMSE) associated with
MeanForecast. That is, MeanRMSE is the conditional standard
deviation of the forecast errors (i.e., the standard error of
the forecast) of the corresponding MeanForecast matrix.
MeanRMSE is the same size as MeanForecast and garchpred
organizes it in exactly the same manner, provided the
conditional mean is modeled as a stationary/invertible
ARMA process.

If you specify X or XF, MeanRMSE = [].
3-46

garchset
3garchsetPurpose Create or modify GARCH specification structure

Syntax garchset
Spec = garchset
Spec = garchset('Parameter1', Value1, 'Parameter2', Value2, ...)
Spec = garchset(OldSpec, 'Parameter1', Value1, ...)

Arguments

Description garchset provides the main user interface for specifying a GARCH model, and
is the preferred method for creating and modifying GARCH specification
structures. Use garchget to retrieve the values of specification structure
parameters.

garchset (with no input arguments and no output arguments) displays all
parameter names and the default values where appropriate.

Spec = garchset creates a GARCH specification structure Spec with all fields
set to their default settings. This default GARCH specification structure
models an observed univariate return series as a constant, C, plus GARCH(1,1)
conditionally Gaussian innovations. The C + GARCH(1,1) model is the default
model of the GARCH Toolbox. You can use this Spec as input to garchfit, but
it is invalid as input to garchpred or garchsim.

Spec = garchset('Parameter1', Value1, 'Parameter2', Value2, ...)
creates a GARCH specification structure Spec using the parameter/value pairs
specified in the input argument list. The Parameter part of the pair must be a
valid GARCH specification structure field. garchset assigns the Value part of

Parameter1,
Parameter2,
...

String representing the name of a valid parameter field of the
output specification structure Spec. “GARCH Specification
Parameters” below lists the valid parameters. The GARCH
Toolbox ignores case for parameter names.

Value1,
Value2, ...

Value assigned to the corresponding Parameter.

OldSpec (optional) Existing GARCH specification structure. Fields of
the structure were previously generated by calling garchset
or garchfit.
3-47

garchset
the pair to its paired Parameter field. If you specify coefficient vectors (AR, MA,
GARCH, ARCH) but not their corresponding model orders (R, M, P, Q), garchset
infers the values of the model orders from the lengths of the coefficient vectors.
In all other cases, garchset sets all parameters you do not specify to their
respective defaults. A parameter name needs to include only sufficient leading
characters to uniquely identify the parameter.

Spec = garchset(OldSpec, 'Parameter1', Value1, ...) modifies an
existing GARCH specification structure, OldSpec, by changing the named
parameters to the specified values.

A GARCH specification structure includes the parameters shown in “GARCH
Specification Parameters”.

Spec GARCH specification structure. This structure contains the orders
and coefficients (if specified) of the conditional mean and variance
specifications of a GARCH model. It also contains the parameters
associated with the function fmincon in the MATLAB
Optimization Toolbox.

Table 3-1: GARCH Specification Parameters

Parameter Description Possible Values

Comment User-defined summary comment String. The default lists expressions for
the mean and variance models derived
from the current values of R, M, P, and Q.
For example, 'Mean: ARMAX(0,0,?);
Variance: GARCH(1,1)'. If you
explicitly specify a comment, the
toolbox does not overwrite it.

R Auto-regressive component of the
conditional mean model order of an
ARMA(R,M) model

Nonnegative integer scalar.
Default = 0.
3-48

garchset
M Moving average component of the
conditional mean model order of an
ARMA(R,M) model

Nonnegative integer scalar.
Default = 0.

P GARCH component of the
conditional variance model order of
an GARCH(P,Q) model

Nonnegative integer scalar. P must be 0
if Q is 0. Default = 0.

Q ARCH component of the conditional
variance model order of an
GARCH(P,Q) model

Nonnegative integer scalar.
Default = 0.

Distribution Conditional distribution of
innovations

String. The only valid value is
'Gaussian'.

C Conditional mean constant Scalar coefficient. Default = [].

AR Conditional mean auto-regressive
coefficients

Vector of R coefficients of lagged
returns. Default = [].

MA Conditional mean moving average
coefficients

Vector of M coefficients of lagged
innovations. Default = [].

Regress Conditional mean regression
coefficients

Vector of coefficients. Default = [].

K Conditional variance constant Positive scalar coefficient. Default = [].

GARCH Conditional variance coefficients for
lagged variances

Vector of P nonnegative coefficients.
Default = [].

ARCH Conditional variance coefficients for
lagged squared residuals

Vector of Q nonnegative coefficients.
Default = [].

FixC Equality constraint indicator for C
coefficient of the conditional mean

Boolean scalar. Default = 0.

FixAR Equality constraint indicator for AR
coefficients of the conditional mean

Boolean vector.
Default = [0, 0, ..., 0].

Table 3-1: GARCH Specification Parameters (Continued)

Parameter Description Possible Values
3-49

garchset
FixMA Equality constraint indicator for MA
coefficients of the conditional mean

Boolean vector.
Default = [0, 0, ..., 0].

FixRegress Equality constraint indicator for the
REGRESS coefficients of the
conditional mean

Boolean vector.
Default = [0, 0, ..., 0].

FixK Equality constraint indicator for the
K coefficient of the conditional
variance

Boolean scalar. Default = 0.

FixGARCH Equality constraint indicator for the
GARCH coefficients of the conditional
variance

Boolean vector.
Default = [0, 0, ..., 0].

FixARCH Equality constraint indicator for the
ARCH coefficients of the conditional
variance

Boolean vector.
Default = [0, 0, ..., 0].

Display Display flag for iterative
optimization information

String. Valid values are on (default) and
off.

MaxFunEvals Maximum number of log-likelihood
objective function evaluations
allowed in the estimation process

Positive integer. Default = (100 *
number of parameters in the model).
For a Gaussian distribution, this is
100 * (2 + R + M + Nx + P + Q)
where Nx is the number of explanatory
variables in the regression component
of the conditional mean.

MaxIter Maximum number of iterations
allowed in the estimation process

Positive integer. Default = 400.

TolCon Termination tolerance on constraint
violation

Positive scalar. Default = 1e-006.

Table 3-1: GARCH Specification Parameters (Continued)

Parameter Description Possible Values
3-50

garchset
Example This example creates a GARCH(1,1) model and prints the specification
structure. The nested Optimization structure, shown in the printed
specification structure, contains the Display, MaxFunEvals, MaxIter, TolCon,
TolFun, and TolX parameters. Use garchget to retrieve the values of these
parameters.

spec = garchset('P',1,'Q',1) % Create a GARCH(P=1,Q=1) model.

spec =

 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
 R: 0
 M: 0
 P: 1
 Q: 1
 Distribution: 'Gaussian'
 C: []
 AR: []
 MA: []
 Regress: []
 K: []
 GARCH: []
 ARCH: []
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

TolFun Termination tolerance on the
objective function value

Positive scalar. Default = 1e-006.

TolX Termination tolerance on parameter
estimates

Positive scalar. Default = 1e-006.

Table 3-1: GARCH Specification Parameters (Continued)

Parameter Description Possible Values
3-51

garchset
spec = garchset(spec,'Q',2) % Change it to a GARCH(P=1,Q=2)
 % model.
spec =

 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,2)'
 R: 0
 M: 0
 P: 1
 Q: 2
 Distribution: 'Gaussian'
 C: []
 AR: []
 MA: []
 Regress: []
 K: []
 GARCH: []
 ARCH: []
 FixC: []
 FixAR: []
 FixMA: []
 FixRegress: []
 FixK: []
 FixGARCH: []
 FixARCH: []
 Optimization: [1x1 struct]

See Also garchfit, garchget, garchpred, garchsim
optimset (in the online MATLAB Function Reference)
3-52

garchsim
3garchsimPurpose Univariate GARCH process simulation

Syntax [Innovations, Sigma, Series] = garchsim(Spec, NumSamples, NumPaths,
Seed, X)

Arguments

Spec GARCH specification structure for the conditional mean and
variance models. You create Spec by calling the function
garchset or the estimation function garchfit. The
conditional mean can be of general ARMAX form and
conditional variance of general GARCH form.

NumSamples (optional) Positive integer indicating the number of samples
garchsim generates for each path of the Innovations, Sigma,
and Series outputs. If NumSamples = [] or is not specified,
the default is 100.

NumPaths (optional) Positive integer indicating the number of sample
paths (realizations) garchsim generates for the Innovations,
Sigma, and Series outputs. If NumPaths = [] or is not
specified, the default is 1, i.e. Innovations, Sigma and Series
are column vectors.
3-53

garchsim
Description [Innovations, Sigma, Series] = garchsim(Spec, NumSamples, NumPaths,
Seed, X) simulates sample paths for return series, innovations, and
conditional standard deviation processes, using specifications for the
conditional mean and variance of a univariate time series as input. garchsim
samples each of NumPaths sample paths at NumSamples observations.

Seed (optional) Scalar random number generator seed. If Seed = []
or is not specified, the default is 0 (the MATLAB initial state).

X (optional) Time series regression matrix of observed
explanatory data. Typically, X is a matrix of asset returns
(e.g., the return series of an equity index), and represents the
past history of the explanatory data. Each column of X is an
individual time series used as an explanatory variable in the
regression component of the conditional mean. In each
column, the first row contains the oldest observation and the
last row the most recent.
If X = [] or is not specified, the conditional mean has no
regression component. If specified, then at least the most
recent NumSamples observations of each return series must be
valid (i.e., non-NaN). When the number of valid observations in
each series exceeds NumSamples, garchsim uses only the most
recent NumSamples observations of X.

Innovations NumSamples by NumPaths matrix of innovations, representing
a mean zero, discrete-time stochastic process. The
Innovations time series follows the conditional variance
(GARCH) specification defined in Spec. Rows are sequential
times samples, columns are independent realizations.
3-54

garchsim
See Also garchfit, garchget, garchpred, garchset

References Bollerslev, T. (1986), “Generalized Autoregressive Conditional
Heteroskedasticity,” Journal of Econometrics, Vol. 31, pp. 307-327.

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and
Control, third edition, Prentice Hall, 1994.

Engle, Robert (1982), “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50,
pp. 987-1007.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Sigma NumSamples by NumPaths matrix of conditional standard
deviations of the corresponding Innovations matrix.
Innovations and Sigma are the same size. Rows are
sequential times samples. Columns are independent
realizations.

Series NumSamples by NumPaths matrix of the return series of
interest. Series is the dependent stochastic process and
follows the conditional mean specification of general ARMAX
form defined in Spec. Rows are sequential times samples.
Columns are independent realizations.
3-55

lagmatrix
3lagmatrixPurpose Create a lagged time series matrix

Syntax XLAG = lagmatrix(X, Lags)

Arguments

Description XLAG = lagmatrix(X, Lags) creates a lagged (i.e., shifted) version of a time
series matrix. The lagmatrix function is useful for creating a regression matrix
of explanatory variables for fitting the conditional mean of a return series.

X Time series of explanatory data. X can be a vector or a matrix. As a
vector (row or column), X represents a univariate time series whose
first element contains the oldest observation and whose last
element contains the most recent observation. As a matrix, X
represents a multivariate time series whose rows correspond to
time indices in which the first row contains the oldest observations
and the last row contains the most recent observations. lagmatrix
assumes that observations across any given row occur at the same
time. Each column is an individual time series.

Lags Vector of integer lags. lagmatrix applies the first lag to every
series in X, then applies the second lag to every series in X, and so
forth. To include a time series as is, include a 0 lag. Positive lags
correspond to delays, and shift a series back in time. Negative lags
correspond to leads, and shift a series forward in time.

XLAG Lagged transform of the time series X. To create XLAG, lagmatrix
shifts each time series in X by the first lag, then shifts each time
series in X by the second lag, and so forth. Since XLAG represents an
explanatory regression matrix, each column is an individual time
series. XLAG has the same number of rows as there are observations
in X, but its column dimension is equal to the product of the number
of columns in X and the length of Lags. lagmatrix uses a NaN
(Not-a-Number) to indicate an undefined observation.
3-56

lagmatrix
Example The following example creates a bivariate time series matrix X with five
observations each, then creates a lagged matrix XLAG composed of X and the
first two lags of X. The result, XLAG, is a 5-by-6 matrix.

X = [1 -1; 2 -2 ;3 -3 ;4 -4 ;5 -5] % Create a simple bivariate
 % series.
X =

 1 -1
 2 -2
 3 -3
 4 -4
 5 -5
XLAG = lagmatrix(X , [0 1 2]) % Create the lagged matrix.

XLAG =

 1 -1 NaN NaN NaN NaN
 2 -2 1 -1 NaN NaN
 3 -3 2 -2 1 -1
 4 -4 3 -3 2 -2
 5 -5 4 -4 3 -3

See Also filter, isnan, and nan (in the online MATLAB Function Reference)
3-57

lbqtest
3lbqtestPurpose Ljung-Box Q-statistic lack-of-fit hypothesis test

Syntax [H, pValue, Qstat, CriticalValue] = lbqtest(Series, Lags, Alpha,
DoF)

Arguments

Description [H, pValue, Qstat, CriticalValue] = lbqtest(Series, Lags, Alpha,
DoF) performs the Ljung-Box lack-of-fit hypothesis test for model
misspecification, which is based on the Q-statistic

Series Vector of observations of a univariate time series for which lbqtest
computes the sample Q-statistic. The last row of Series contains
the most recent observation of the stochastic sequence. Typically,
Series is either the sample residuals derived from fitting a model
to an observed time series, or the standardized residuals obtained
by dividing the sample residuals by the conditional standard
deviations.

Lags (optional) Vector of positive integers indicating the lags of the
sample autocorrelation function included in the Q-statistic. If
specified, each lag must be less than the length of Series. If
Lags = [] or is not specified, the default is
Lags = min([20, length(Series)-1]).

Alpha (optional) Significance level(s). Alpha can be a scalar applied to all
lags, or a vector the same length as Lags. If Alpha = [] or is not
specified, the default is 0.05. For all elements, α, of Alpha,
0 < α < 1.

DoF (optional) Degree(s) of freedom. DoF can be a scalar applied to all
lags, or a vector the same length as Lags. If specified, all elements
of DoF must be positive integers less than the corresponding
element of Lags. If DoF = [] or is not specified, the elements of
Lags serve as the default degrees of freedom for the Chi-Square
distribution.

Q N N 2+()
rk

2

N k–()

k 1=

L

∑=
3-58

lbqtest
where N = sample size, L = number of autocorrelation lags included in the
statistic, and rk

2 is the squared sample autocorrelation at lag k. Once you fit a
univariate model to an observed time series, you can use the Q-statistic as a
lack-of-fit test for a departure from randomness. Under the null hypothesis
that the model fit is adequate, the test statistic is asymptotically Chi-Square
distributed.

Example Create a vector of 100 Gaussian random numbers, then compute the Q-statistic
for autocorrelation lags 20 and 25 at the 10 percent significance level.

randn('state',100) % Start from a known state.
Series = randn(100,1); % 100 Gaussian deviates ~ N(0,1)
[H,P,Qstat,CV] = lbqtest(Series, [20 25]', 0.10);
[H,P,Qstat,CV]

ans =

 0 0.9615 10.3416 28.4120
 0 0.9857 12.1015 34.3816

See Also archtest, autocorr

Reference [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting
and Control, third edition, Prentice Hall, 1994.

H Boolean decision vector. 0 indicates acceptance of the null
hypothesis that the model fit is adequate (no serial
correlation at the corresponding element of Lags).
1 indicates rejection of the null hypothesis. H is the same
size as Lags.

pValue Vector of P-values (significance levels) at which lbqtest
rejects the null hypothesis of no serial correlation at each
lag in Lags.

Qstat Vector of Q-statistics for each lag in Lags.

CriticalValue Vector of critical values of the Chi-Square distribution for
comparison with the corresponding element of Qstat.
3-59

lbqtest
[2] Gourieroux, C., ARCH Models and Financial Applications,
Springer-Verlag, 1997.
3-60

lratiotest
3lratiotestPurpose Likelihood ratio hypothesis test

Syntax [H, pValue, Ratio, CriticalValue] = lratiotest(BaseLLF, NullLLF,
DoF, Alpha)

Arguments

Description [H, pValue, Ratio, CriticalValue] = lratiotest(BaseLLF, NullLLF,
DoF, Alpha) performs the likelihood ratio hypothesis test. lratiotest uses as
input the optimized log-likelihood objective function (LLF) value associated
with an unrestricted maximum likelihood parameter estimate, and the LLF
values associated with restricted parameter estimates.

The unrestricted LLF is the baseline case used to fit conditional mean and
variance specifications to an observed univariate return series. The restricted
models determine the null hypotheses of each test, and the number of
restrictions they impose determines the degrees of freedom of the resulting
Chi-Square distribution.

BaseLLF Scalar value of the optimized log-likelihood objective
function of the baseline, unrestricted estimate. lratiotest
assumes BaseLLF is the output of the estimation function
garchfit, or the inference function garchinfer.

NullLLF Vector of optimized log-likelihood objective function values
of the restricted estimates. lratiotest assumes you
obtained the NullLLF values using garchfit or
garchinfer.

DoF Degrees of freedom (i.e, the number of parameter
restrictions) associated with each value in NullLLF. DoF
can be a scalar applied to all values in NullLLF, or a vector
the same length as NullLLF. All elements of DoF must be
positive integers.

Alpha (optional) Significance levels of the hypothesis test. Alpha
can be a scalar applied to all values in NullLLF, or a vector
the same length as NullLLF. If Alpha = [] or is not
specified, the default is 0.05. For all elements, α, of Alpha,
0 < α < 1.
3-61

lratiotest
BaseLLF is usually the LLF of a larger estimated model and serves as the
alternative hypothesis. Elements of NullLLF are then the LLFs associated with
smaller, restricted specifications. BaseLLF should exceed the values in NullLLF,
and the asymptotic distribution of the test statistic is Chi-Square distributed
with degrees of freedom equal to the number of restrictions.

See Also garchfit, garchinfer

Reference [1] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

H Vector of Boolean decisions the same size as NullLLF.
A 0 indicates acceptance of the restricted model under the
null hypothesis. 1 indicates rejection of the restricted, null
hypothesis model relative to the unrestricted alternative
associated with BaseLLF.

pValue Vector of P-values (significance levels) at which
lratiotest rejects the null hypothesis of each restricted
model. pValue is the same size as NullLLF.

Ratio Vector of likelihood ratio test statistics the same size as
NullLLF. The test statistic is

CriticalValue Vector of critical values of the Chi-Square distribution.
CriticalValue is the same size as NullLLF.

Ratio 2 BaseLLF NullLLF–()=
3-62

parcorr
3parcorrPurpose Plot or return computed sample partial auto-correlation function

Syntax [PartialACF, Lags, Bounds] = parcorr(Series, nLags, R, nSTDs)

Arguments

Description parcorr(Series, nLags, R, nSTDs) computes and plots the sample partial
auto-correlation function (partial ACF) of a univariate, stochastic time series.
parcorr computes the partial ACF by fitting successive autoregressive models
of orders 1, 2, ... by ordinary least squares, retaining the last coefficient of each

Series Vector of observations of a univariate time series for which
parcorr returns or plots the sample partial auto-correlation
function (partial ACF). The last element of Series contains the
most recent observation of the stochastic sequence.

nLags (optional) Positive, scalar integer indicating the number of lags of
the partial ACF to compute. If nLags = [] or is not specified,
parcorr computes the partial ACF sequence at lags 0, 1, 2, ..., T,
where T = min([20, length(Series)-1]).

R (optional) Nonnegative integer scalar indicating the number of
lags beyond which parcorr assumes the theoretical partial ACF is
zero. Assuming that Series is an AR(R) process, the estimated
partial ACF coefficients at lags > R are approximately zero-mean,
independently distributed Gaussian variates. In this case, the
standard error of the estimated partial ACF coefficients of a fitted
Series with N observations is approximately 1 ⁄ √N for lags > R.
If R = [] or is not specified, the default is 0. The value of R must
be < nLags.

nSTDs (optional) Positive scalar indicating the number of standard
deviations of the sample partial ACF estimation error to display,
assuming that Series is an AR(R) process. If the Rth regression
coefficient (i.e., the last ordinary least squares (OLS) regression
coefficient of Series regressed on a constant and R of its lags)
includes N observations, specifying nSTDs results in confidence
bounds at ±(nSTDs ⁄ √N). If nSTDs = [] or is not specified, the
default is 2 (i.e., approximate 95 percent confidence interval).
3-63

parcorr
regression. To plot the partial ACF sequence without the confidence bounds,
set nSTDs = 0.

[PartialACF, Lags, Bounds] = parcorr(Series, nLags, R, nSTDs)
computes and returns the partial ACF sequence.

Example Create a stationary AR(2) process from a sequence of 1000 Gaussian deviates,
and then visually assess whether the partial ACF is zero for lags > 2.

randn('state',0) % Start from a known state.
x = randn(1000,1); % 1000 Gaussian deviates ~ N(0,1).
y = filter(1,[1 -0.6 0.08],x); % Create a stationary AR(2)
 % process.
[PartialACF, Lags, Bounds] = parcorr(y , [] , 2); % Compute the
 % partial ACF with 95 percent
 % confidence.
[Lags, PartialACF]

ans =

 0 1.0000
 1.0000 0.5570
 2.0000 -0.0931
 3.0000 0.0249
 4.0000 -0.0180
 5.0000 -0.0099

PartialACF Sample partial ACF of Series. PartialACF is a vector of
length nLags + 1 corresponding to lags 0, 1, 2, ..., nLags. The
first element of PartialACF is unity,
i.e., PartialACF(1) = 1 = OLS regression coefficient of Series
regressed upon itself. parcorr includes this element as a
reference.

Lags Vector of lags corresponding to PartialACF(0, 1, 2, ..., nLags).

Bounds Two-element vector indicating the approximate upper and
lower confidence bounds, assuming that Series is an AR(R)
process. Note that Bounds is approximate for lags > R only.
3-64

parcorr
 6.0000 0.0483
 7.0000 0.0058
 8.0000 0.0354
 9.0000 0.0623
 10.0000 0.0052
 11.0000 -0.0109
 12.0000 0.0421
 13.0000 -0.0086
 14.0000 -0.0324
 15.0000 0.0482
 16.0000 0.0008
 17.0000 -0.0192
 18.0000 0.0348
 19.0000 -0.0320
 20.0000 0.0062

Bounds

Bounds =

 0.0633
 -0.0633

parcorr(y , [] , 2) % Use the same example, but plot
 % the partial ACF sequence with
 % confidence bounds.
3-65

parcorr
See Also autocorr, crosscorr
filter (in the online MATLAB Function Reference)

References [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting
and Control, third edition, Prentice Hall, 1994.

[2] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
3-66

price2ret
3price2retPurpose Convert a price series to a return series

Syntax [RetSeries, RetIntervals] = price2ret(TickSeries, TickTimes,
Method)

Arguments

Description [RetSeries, RetIntervals] = price2ret(TickSeries, TickTimes,
Method) computes asset returns for NUMOBS price observations of NUMASSETS
assets.

TickSeries Time series of price data. TickSeries can be a vector (row or
column) or a matrix:

• As a vector, TickSeries represents a univariate price series.
The length of the vector is the number of observations
(NUMOBS). The first element contains the oldest observation,
and the last element the most recent.

• As a matrix, TickSeries represents a NUMOBS-by-number of
assets (NUMASSETS) matrix of asset prices. Rows correspond to
time indices. The first row contains the oldest observations
and the last row the most recent. price2ret assumes the
observations across a given row occur at the same time for all
columns, and each column is a price series of an individual
asset.

TickTimes (optional) A NUMOBS element vector of monotonically increasing
observation times. Times are numeric and taken either as
serial date numbers (day units), or as decimal numbers in
arbitrary units (e.g., yearly). If TickTimes = [] or is not
specified, then price2ret assumes sequential observation
times from 1, 2, ..., NUMOBS.

Method (optional) Character string indicating the compounding
method to compute asset returns. If Method = 'Continuous',
= [], or is not specified, then price2ret computes
continuously compounded returns. If Method = 'Periodic',
then price2ret assumes simple periodic returns. Method is
case insensitive.
3-67

price2ret

Example Create a stock price process continuously compounded at 10 percent, then
convert the price series to a 10 percent return series.

S = 100*exp(0.10 * [0:19]'); % Create the stock price series
R = price2ret(S); % Convert the price series to a
 % 10 percent returns series
[S [R ; NaN]] % Pad the return series so vectors

RetSeries Array of asset returns:

• When TickSeries is a NUMOBS element row (column)
vector, RetSeries is a NUMOBS-1 row (column) vector.

• When TickSeries is a NUMOBS-by-NUMASSETS matrix,
RetSeries is a (NUMOBS-1)-by-NUMASSETS matrix.
price2ret quotes the ith return of an asset for the period
TickTimes(i) to TickTimes(i+1) and normalizes it by the
time interval between successive price observations.

Assuming that

then if Method = 'Continuous', = [], or is not specified,
price2ret computes the continuously-compounded ith
return of an asset as

If Method = 'Periodic', then price2ret computes the ith
simple return as

RetIntervals NUMOBS-1 element vector of interval times between
observations. If TickTimes = [] or is not specified,
price2ret assumes that all intervals are 1.

RetIntervals i() TickTimes i 1+() TickTimes i()–=

RetSeries i()

TickSeries i 1+()
TickSeries i()

--log

RetIntervals i()
---=

RetSeries i()

TickSeries i 1+()
TickSeries i()

-- 1–

RetIntervals i()
---=
3-68

price2ret
 % are of same length. price2ret
 % computes the ith return from
 % the ith and i+1th prices.

ans =

 100.0000 0.1000
 110.5171 0.1000
 122.1403 0.1000
 134.9859 0.1000
 149.1825 0.1000
 164.8721 0.1000
 182.2119 0.1000
 201.3753 0.1000
 222.5541 0.1000
 245.9603 0.1000
 271.8282 0.1000
 300.4166 0.1000
 332.0117 0.1000
 366.9297 0.1000
 405.5200 0.1000
 448.1689 0.1000
 495.3032 0.1000
 547.3947 0.1000
 604.9647 0.1000
 668.5894 NaN

See Also ret2price
3-69

ret2price
3ret2pricePurpose Convert a return series to a price series

Syntax [TickSeries, TickTimes] = ret2price(RetSeries, StartPrice,
RetIntervals, StartTime, Method)

Arguments

RetSeries Time series array of returns. RetSeries can be a vector
(row or column) or a matrix:

• As a vector, RetSeries represents a univariate series of
returns of a single asset. The length of the vector is the
number of observations (NUMOBS). The first element
contains the oldest observation, and the last element the
most recent.

• As a matrix, RetSeries represents a NUMOBS-by-number of
assets (NUMASSETS) matrix of asset returns. Rows
correspond to time indices. The first row contains the
oldest observations and the last row the most recent.
ret2price assumes the observations across a given row
occur at the same time for all columns, and each column is
a return series of an individual asset.

StartPrice (optional) A NUMASSETS element vector of initial prices for
each asset, or a single scalar initial price applied to all
assets. If StartPrice = [] or is not specified, all asset
prices start at 1.

RetIntervals (optional) A NUMOBS element vector of time intervals
between return observations, or a single scalar interval
applied to all observations. If RetIntervals = [] or is not
specified, ret2price assumes all intervals have length 1.
3-70

ret2price
Description [TickSeries, TickTimes] = ret2price(RetSeries, StartPrice,
RetIntervals, StartTime, Method) generates a price series for each of
NUMASSETS assets, given the asset starting prices and NUMOBS return
observations for each asset.

Example Create a stock price process continuously compounded at 10 percent. Compute
10 percent returns for reference, then convert the resulting return series to the
original price series and compare results.

S = 100*exp(0.10 * [0:19]'); % Create the stock price series
R = price2ret(S); % Convert the price series to a
 % 10 percent returns series
P = ret2price(R, 100); % Convert to the original price
 % series

StartTime (optional) Scalar starting time for the first observation,
applied to the price series of all assets. The default is 0.

Method (optional) Character string indicating the compounding
method used to compute asset returns. If
Method = 'Continuous', = [], or is not specified, then
ret2price computes continuously compounded returns. If
Method = 'Periodic' then ret2price computes simple
periodic returns. Method is case insensitive.

TickSeries Array of asset prices:

• When RetSeries is a NUMOBS element row (column) vector,
TickSeries is a NUMOBS+1 row (column) vector. The first
element contains the starting price of the asset, and the
last element the most recent price.

• When RetSeries is a NUMOBS-by-NUMASSETS matrix, then
RetSeries is a (NUMOBS+1)-by-NUMASSETS matrix. The first
row contains the starting price of the assets, and the last
row contains the most recent prices.

TickTimes A NUMOBS+1 element vector of price observation times. The
initial time is zero unless specified in StartTime.
3-71

ret2price
[S P] % Compare the original and
 % computed price series

ans =

 100.0000 100.0000
 110.5171 110.5171
 122.1403 122.1403
 134.9859 134.9859
 149.1825 149.1825
 164.8721 164.8721
 182.2119 182.2119
 201.3753 201.3753
 222.5541 222.5541
 245.9603 245.9603
 271.8282 271.8282
 300.4166 300.4166
 332.0117 332.0117
 366.9297 366.9297
 405.5200 405.5200
 448.1689 448.1689
 495.3032 495.3032
 547.3947 547.3947
 604.9647 604.9647
 668.5894 668.5894

See Also price2ret

3-72

A

Glossary

A Glossary

A-2
Akaike information criteria (AIC) – A model order selection criteria based on
parsimony. More complicated models are penalized for the inclusion of
additional parameters. See also Bayesian information criteria (BIC).

AR – Auto-Regressive. AR models include past observations of the dependent
variable in the forecast of future observations.

ARCH – Auto-Regressive Conditional Heteroscedasticity. A time series
technique in which past observations of the variance are used to forecast future
variances. See also GARCH.

ARMA – Auto-Regressive Moving Average. A time series model that includes
both AR and MA components. See also AR and MA.

auto-correlation function (ACF) – Correlation sequence of a random time
series with itself. See also cross-correlation function (XCF).

auto-regressive – See AR.

Bayesian information criteria (BIC) – A model order selection criteria based
on parsimony. More complicated models are penalized for the inclusion of
additional parameters. Since BIC imposes a greater penalty for additional
parameters than AIC, BIC always provides a model with a number of
parameters no greater than that chosen by AIC. See also Akaike information
criteria (AIC).

conditional – Time series technique with explicit dependence on the past
sequence of observations.

conditional mean – Time series model for forecasting the expected value of the
return series itself.

conditional variance – Time series model for forecasting the expected value
of the variance of the return series.

cross-correlation function (XCF) – Correlation sequence between two
random time series. See also auto-correlation function (ACF).

equality constraint – A constraint, imposed during parameter estimation, by
which a parameter is held fixed at a user-specified value.

excess kurtosis – A characteristic, relative to a standard normal probability
distribution, whereby an area under the probability density function is
reallocated from the center of the distribution to the tails (fat tails). Samples
obtained from distributions with excess kurtosis have a higher probability of

containing outliers than samples drawn from a normal (Gaussian) density.
Time series that exhibit a fat tail distribution are often referred to as
leptokurtic.

explanatory variables – Time series used to explain the behavior of another
observed series of interest. Explanatory variables are typically incorporated
into a regression framework.

fat tails – See excess kurtosis.

GARCH – Generalized Auto-Regressive Conditional Heteroscedasticity. A
time series technique in which past observations of the variance and variance
forecast are used to forecast future variances. See also ARCH.

heteroscedasticity – Time-varying, or time-dependent, variance.

homoskedasticity – Time-independent variance. The GARCH Toolbox also
refers to homoskedasticity as constant conditional variance.

i.i.d. – Independent, identically distributed.

innovations – A sequence of unanticipated shocks, or disturbances. The
GARCH Toolbox uses innovations and residuals interchangeably.

leptokurtic – See excess kurtosis.

MA – Moving average. MA models include past observations of the innovations
noise process in the forecast of future observations of the dependent variable of
interest.

MMSE – Minimum mean square error. An technique designed to minimize the
variance of the estimation or forecast error. See also RMSE.

moving average – See MA.

objective function – The function to be numerically optimized. In the GARCH
Toolbox, the objective function is the log-likelihood function of a random
process.

partial auto-correlation function (PACF) – Correlation sequence estimated
by fitting successive order auto-regressive models to a random time series by
least squares. The PACF is useful for identifying the order of an
auto-regressive model.

path – A random trial of a time series process.

P-value – The lowest level of significance at which a test statistic is significant.
A-3

A Glossary

A-4
realization – See path.

residuals – See innovations.

RMSE – Root mean square error. The square root of the mean square error. See
also MMSE.

standardized innovations – The innovations divided by the corresponding
conditional standard deviation.

stationarity constraint – Constraint imposed during estimation such that the
sum of the GARCH model conditional variance parameters is less than unity.

time series – Discrete-time sequence of observations of a random process. The
type of time series of interest in the GARCH Toolbox is typically a series of
returns, or relative changes of some underlying price series.

transient – A response, or behavior, of a time series that is heavily dependent
on the initial conditions chosen to begin a recursive calculation. The transient
response is typically undesirable, and initially masks the true steady-state
behavior of the process of interest.

unconditional – Time series technique in which explicit dependence on the
past sequence of observations is ignored. Equivalently, the time stamp
associated with any observation is ignored.

volatility – The risk, or uncertainty, measure associated with a financial time
series. The GARCH Toolbox associates volatility with standard deviation.

B

Bibliography

B Bibliography

B-2
[1] Baillie, R.T., T, Bollerslev, “Prediction in Dynamic Models with
Time-Dependent Conditional Variances,” Journal of Econometrics, Vol. 52, pp.
91-113, 1992.

[2] Bera, A.K., H.L. Higgins, “A Survey of ARCH Models: Properties,
Estimation and Testing,” Journal of Economic Surveys, Vol. 7 no. 4, 1993.

[3] Bollerslev, T., “A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return,” Review of Economics and Statistics,
Vol. 69, pp. 542-547, 1987.

[4] Bollerslev, T., “Generalized Autoregressive Conditional
Heteroskedasticity,” Journal of Econometrics, Vol. 31, pp. 307-327, 1986.

[5] Bollerslev, T., R.Y. Chou, K.F. Kroner, “ARCH Modeling in Finance: A
Review of the Theory and Empirical Evidence,” Journal of Econometrics, Vol.
52, pp. 5-59, 1992.

[6] Bollerslev, T., R.F. Engle, D.B. Nelson, Handbook of Econometrics:
Volume IV (Chapter 49, ARCH Models), pp. 2959-3038, Elsevier Science B.V.,
1994.

[7] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting
and Control, third edition, Prentice Hall, 1994.

[8] Engle, Robert F., “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50,
pp. 987-1007, 1982.

[9] Engle, Robert F., D.M. Lilien, R.P. Robins, “Estimating Time Varying Risk
Premia in the Term Structure: The ARCH-M Model”, Econometrica, vol. 59,
1987, pp. 391-407.

[10] Glosten, L.R., R. Jagannathan, D.E. Runkle, “On the Relation between
Expected Value and the Volatility of the Nominal Excess Return on Stocks”,
The Journal of Finance, vol.48, 1993, pp. 1779-1801.

[11] Gourieroux, C., ARCH Models and Financial Applications,
Springer-Verlag, 1997.

[12] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Index
A
ACF 3-10
AIC 3-5

using for model selection 2-77
aicbic 3-5
Akaike information criteria. See AIC
AR model

converting from ARMA model 3-18
ARCH/GARCH effects

hypothesis test 3-7
archtest 3-7
ARMA model

converting to AR model 3-18
converting to MA model 3-18

asymptotic behavior
for long-range forecast horizons 2-62

autocorr 3-10
auto-correlation function. See ACF
auto-regressive model. See AR model

B
Bayesian information criteria. See BIC
BIC 3-5

using for model selection 2-77

C
compounding

continuous and periodic 2-13
conditional mean models

with regression components 2-63
conditional standard deviations

inferred from observed return series 3-29
of forecast errors 3-41
simulating 3-53
conditional variances
constant 2-71
of the innovations process 2-7

constraints
boundary 2-9, 2-96
equality 2-79
fixing model parameters 2-79
stationarity and positivity 2-9

conventions in GARCH Toolbox 1-5, 2-12
convergence

considerations 2-89
determining status 2-91

crosscorr 3-14
cross-correlation function. See XCF

D
default model 2-15

estimation example 2-17
forecasting example 2-55

defining a model
using a GARCH specification structure 2-33

E
estimating initial parameters 2-93
estimation

count of coefficients 2-78, 3-21
incorporating a regression model 2-63
of GARCH process parameters 3-23
summary information 3-25

estimation example
estimating the model parameters 2-24
post-estimation analysis 2-28
pre-estimation analysis 2-17
using the default model 2-17
I-1

Index

I-2
F
fixing model parameters 2-79
forecast

how to compute 2-55
forecast errors

conditional standard deviations 2-61, 3-41
forecasted explanatory data 2-69
forecasting

asymptotic behavior 2-62
computing RMSE 2-61
conditional mean 3-41
conditional standard deviation 3-41
incorporating a regression model 2-69
minimum mean square error volatility. See

MMSE volatility
MMSE volatility 2-59, 3-41
plotting results 3-39
using the default model 2-55

G
GARCH

limitations 2-4
overview 2-4
uses for 2-3

GARCH model
default 2-15

GARCH process
forecasting 3-41
inferring innovations 3-29
objective function 3-31
parameter estimation 3-23

count of coefficients 3-21
displaying results 3-22
plotting results 3-39

simulation 3-53
GARCH specification structure
contents 2-34
creating and modifying parameters 2-37, 3-47
definition of fields 3-48
fixing model parameters 2-79
parameters that affect convergence 2-90
retrieving parameters 3-27
use of parameters in simulation 2-42
using as function input and output 2-40
using to define a model 2-33

GARCH Toolbox
conventions and clarifications 2-12

array definitions 2-12
compounding 2-13
precision of calculations 2-13
row and column conventions 2-12
stationarity 2-14

overview 2-11
recommendations and suggestions 2-87

garchar 3-18
garchcount 3-21
garchdisp 3-22
garchfit 3-23
garchget 3-27
garchinfer 3-29
garchllfn 3-31
garchma 3-36
garchplot 3-39
garchpred 3-41
garchset 3-47
garchsim 3-53

H
homoskedasticity

unconditional variance 2-9

Index
hypothesis tests
ARCH/GARCH effects 3-7
likelihood ratio 3-61
Ljung-Box lack-of-fit 3-58

I
inference

using a regression model 2-69
inferring

conditional standard deviations 3-29
GARCH innovations 3-29

innovations
distribution 2-8
inferring from observed return series 3-29
serial dependence 2-8
simulating 3-53

L
lack-of-fit hypothesis test 3-58
lagged time series matrix 3-56
lagmatrix 3-56
lbqtest 3-58
likelihood ratio hypothesis test 3-61
likelihood ratio tests

using for model selection 2-74
Ljung-Box lack-of-fit hypothesis test 3-58
log-likelihood objective function

computing values 3-31
gradient values 3-31
maximization 2-54
optimized value 3-23

lratiotest 3-61

M
MA model

converting from ARMA model 3-18
maximum likelihood estimation 2-54
model parameters

boundary constraints 2-96
equality constraints 2-79
estimating 2-24
initial estimates 2-93

model selection and analysis 2-74
using AIC and BIC 2-77
using likelihood ratio tests 2-74

Monte Carlo simulation 2-72
moving average model. See MA model

P
PACF 3-63
parameter estimation of GARCH process 3-23
parcorr 3-63
parsimonious parameterization 2-8, 2-87
partial auto-correlation function See PACF
plotting

auto-correlation function 3-10
cross-correlation function 3-14
forecasting results 3-39
parameter estimation results 3-39
partial auto-correlation function 3-63
simulation results 3-39

prerequisites 1-3
price series

converting from return series 3-70
converting to return series 3-67

price2ret 3-67
I-3

Index

I-4
R
regression

in a Monte Carlo framework 2-72
regression components

in estimation 2-63
in forecasting 2-69
in inference 2-69
in simulation 2-69
of conditional mean models 2-63

ret2price 3-70
return series

converting from price series 3-67
converting to price series 3-70
data size and quality 2-99
simulating 3-53

RMSE
computing for forecasted data 2-61

root mean square error. See RMSE

S
selecting a model 2-74
shifted time series matrix 3-56
simulating sample paths 2-42
simulation

of GARCH process 3-53
plotting results 3-39
using a regression model 2-69
using ordinary least squares regression 2-71

simulation example
using a higher order model 2-51
using the default model 2-42

specification structure. See GARCH specification
structure

stationary and nonstationary time series 2-14
T
time series

correlation of observations 2-6
stationary and nonstationary 2-14

time series matrix
lagged or shifted 3-56

transient effects
minimizing 2-46
overview 2-48

transients
in the simulation process 2-46

typographical conventions (table) ix

U
unconditional variances

of the innovations process 2-7

V
variances

conditional and unconditional 2-7
volatility clustering 2-8

X
XCF 3-14

	Preface
	Using This Guide
	Related Products
	Typographical Conventions

	Introduction
	What Is the GARCH Toolbox?
	Software Requirements and Compatibility
	Expected Background
	Technical Conventions

	Tutorial
	GARCH Overview
	Introducing GARCH
	Using GARCH to Model Financial Time Series

	GARCH Toolbox Overview
	Models for the Conditional Mean and Variance
	Conventions and Clarifications
	The Default Model

	Analysis and Estimation Example Using the Default Model
	Pre-Estimation Analysis
	Parameter Estimation
	Post-Estimation Analysis

	The GARCH Specification Structure
	Purpose of the Specification Structure
	Contents of the Specification Structure
	Valid Model Specifications
	Accessing Specification Structures
	Using the Specification Structure for Estimation, Simulation, and Forecasting

	Simulation
	Simulating Sample Paths
	Transients in the Simulation Process
	A General Simulation Example

	Forecasting
	Computing a Forecast
	Computing Root Mean Square Errors (RMSE)
	Asymptotic Behavior for Long-Range Forecast Horizons

	Conditional Mean Models with Regression Components
	Incorporating a Regression Model in an Estimation
	Simulation and Inference Using a Regression Component
	Forecasting Using a Regression Component
	Regression in a Monte Carlo Framework

	Model Selection and Analysis
	Likelihood Ratio Tests
	Akaike and Bayesian Information Criteria
	Equality Constraints and Parameter Significance
	Equality Constraints and Initial Parameter Estimates

	Recommendations and Suggestions
	Simplicity/Parsimony
	Convergence Issues
	Initial Parameter Estimates
	Boundary Constraints and Statistical Inferences
	Data Size and Quality

	Function Reference
	Functions – By Category
	GARCH Modeling
	GARCH Innovations Inference
	Log-Likelihood Objective Functions
	Statistics and Tests
	GARCH Specification Structure Interface Functions
	Helpers and Utilities
	Graphics

	Functions — Alphabetical List
	aicbic
	archtest
	autocorr
	crosscorr
	garchar
	garchcount
	garchdisp
	garchfit
	garchget
	garchinfer
	garchllfn
	garchma
	garchplot
	garchpred
	garchset
	garchsim
	lagmatrix
	lbqtest
	lratiotest
	parcorr
	price2ret
	ret2price

	Glossary
	Bibliography
	Index

