
Computation

Visualization

Programming

For Use with MATLAB®

User’s Guide
Version 1

GARCH Toolbox



How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

GARCH Toolbox User’s Guide  
  COPYRIGHT 1999 - 2002  by The MathWorks, Inc.  
The software described in this document is furnished under a license agreement.  The software may be used 
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION:  This provision applies to all acquisitions of the Program and Documentation by 
or for the federal government of the United States.  By accepting delivery of the Program, the government 
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR 
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 
252.227-7014.  The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain 
to the government’s use and disclosure of the Program and Documentation, and shall supersede any 
conflicting contractual terms or conditions.  If this license fails to meet the government’s minimum needs or 
is inconsistent in any respect with federal procurement law, the government agrees to return the Program 
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and 
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 1999 First printing New for Version 1.0 (Release 11)
November 2000 Online only Revised for Version 1.0.1 (Release 12)
July 2002 Online only Revised for Version 1.0.2 (Release 13)



Contents
Preface

Using This Guide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vi

Related Products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Typographical Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix

1
Introduction

What Is the GARCH Toolbox?  . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2

Software Requirements and Compatibility . . . . . . . . . . . . . .  1-3

Expected Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4

Technical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-5

2
Tutorial

GARCH Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-3
Introducing GARCH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-3
Using GARCH to Model Financial Time Series . . . . . . . . . . . . .  2-4

GARCH Toolbox Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-11
Models for the Conditional Mean and Variance  . . . . . . . . . . .  2-11
Conventions and Clarifications  . . . . . . . . . . . . . . . . . . . . . . . .  2-12
i



ii Contents
The Default Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-15

Analysis and Estimation Example Using the Default 
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-17

Pre-Estimation Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-17
Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-24
Post-Estimation Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-28

The GARCH Specification Structure . . . . . . . . . . . . . . . . . . .  2-33
Purpose of the Specification Structure . . . . . . . . . . . . . . . . . . .  2-33
Contents of the Specification Structure  . . . . . . . . . . . . . . . . . .  2-34
Valid Model Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-36
Accessing Specification Structures . . . . . . . . . . . . . . . . . . . . . .  2-37
Using the Specification Structure for Estimation, Simulation, 
and Forecasting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-40

Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-42
Simulating Sample Paths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-42
Transients in the Simulation Process . . . . . . . . . . . . . . . . . . . .  2-46
A General Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . .  2-51

Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-55
Computing a Forecast  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-55
Computing Root Mean Square Errors (RMSE)  . . . . . . . . . . . .  2-61
Asymptotic Behavior for Long-Range Forecast Horizons  . . . .  2-62

Conditional Mean Models with Regression Components .  2-63
Incorporating a Regression Model in an Estimation . . . . . . . .  2-63
Simulation and Inference Using a Regression Component . . .  2-69
Forecasting Using a Regression Component  . . . . . . . . . . . . . .  2-69
Regression in a Monte Carlo Framework . . . . . . . . . . . . . . . . .  2-72

Model Selection and Analysis  . . . . . . . . . . . . . . . . . . . . . . . . .  2-74
Likelihood Ratio Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-74
Akaike and Bayesian Information Criteria  . . . . . . . . . . . . . . .  2-77
Equality Constraints and Parameter Significance  . . . . . . . . .  2-79
Equality Constraints and Initial Parameter Estimates  . . . . .  2-85

Recommendations and Suggestions . . . . . . . . . . . . . . . . . . . .  2-87



Simplicity/Parsimony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-87
Convergence Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-89
Initial Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-93
Boundary Constraints and Statistical Inferences  . . . . . . . . . .  2-96
Data Size and Quality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-99

3
Function Reference

Functions – By Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-2
GARCH Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-2
GARCH Innovations Inference  . . . . . . . . . . . . . . . . . . . . . . . . . .  3-2
Log-Likelihood Objective Functions  . . . . . . . . . . . . . . . . . . . . . .  3-2
Statistics and Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-2
GARCH Specification Structure Interface Functions  . . . . . . . .  3-3
Helpers and Utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-3
Graphics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-3

Functions — Alphabetical List  . . . . . . . . . . . . . . . . . . . . . . . . .  3-4

A
Glossary

B
Bibliography

Index
iii



iv Contents



Preface

The Preface includes these sections:

Using This Guide (p. vi) Explains the organization of this guide.

Related Products (p. vii) Lists products that may be relevant to the kinds of tasks 
you can perform with the GARCH Toolbox.

Typographical Conventions (p. ix) Describes the typographical conventions used in this 
guide.
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vi
Using This Guide
“Introduction” introduces the GARCH Toolbox, lists toolboxes required by 
GARCH, and describes the intended audience as well as the use of common 
mathematical terms.

“Tutorial” provides a brief overview of GARCH, then demonstrates the use of 
the GARCH Toolbox by estimating GARCH model parameters, and performing 
pre- and post-estimation analysis. Chapter 1 continues with discussions of 
simulation, forecasting, and regression, as well as model selection and 
analysis.

“Function Reference” describes the individual functions that comprise the 
GARCH Toolbox. The description of each function includes a synopsis of the 
function syntax, as well as a complete explanation of its arguments and 
operation. It may also include examples and references to additional reading 
material. 

“Glossary” defines terms associated with modeling the volatility of economic 
time series.

“Bibliography” lists published materials that support concepts implemented in 
the GARCH Toolbox. 



Related Products
Related Products
The MathWorks provides several products that are related to the kinds of tasks 
you can perform with the GARCH Toolbox.

For more information about any of these products, see either:

• The online documentation for that product if it is installed or if you are 
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products” 
section

Note  The toolboxes listed below all include functions that extend MATLAB’s 
capabilities. The blocksets all include blocks that extend Simulink’s 
capabilities.

Product Description

Curve Fitting Toolbox Perform model fitting and analysis

Database Toolbox Exchange data with relational databases

Datafeed Toolbox Acquire real-time financial data from data 
service providers

Excel Link Use MATLAB with Microsoft Excel

Financial Derivatives 
Toolbox

Model and analyze fixed-income derivatives 
and securities

Financial Time Series 
Toolbox

Analyze and manage financial time series data

Financial Toolbox Model financial data and develop financial 
analysis algorithms

MATLAB Compiler Convert MATLAB M-files to C and C++ code
vii
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MATLAB Report 
Generator

Automatically generate documentation for 
MATLAB applications and data

MATLAB Runtime 
Server

Deploy runtime versions of MATLAB 
applications 

MATLAB Web Server Use MATLAB with HTML Web applications 

Optimization Toolbox Solve standard and large-scale optimization 
problems

Simulink Report 
Generator

Automatically generate documentation for 
Simulink and Stateflow models

Statistics Toolbox Apply statistical algorithms and probability 
models

Product Description
i



Typographical Conventions
Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A, 
enter

A = 5

Function names, syntax, 
filenames, directory/folder 
names, and user input

Monospace font The cos function finds the 
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax 
descriptions in reference 
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions, 
operators, and constants

This vector represents the 
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options 
menu.

New terms and for 
emphasis

Italics An array is an ordered 
collection of information.

Omitted input arguments (...) ellipsis denotes all of the 
input/output arguments from 
preceding syntaxes. 

[c,ia,ib] = union(...)

String variables (from a 
finite list)

Monospace italics sysc = d2c(sysd,'method')
ix
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1

Introduction

This Introduction includes these sections:

What Is the GARCH Toolbox? (p. 1-2) Introduces the GARCH Toolbox, and describes its 
intended use and its capabilities.

Software Requirements and 
Compatibility (p. 1-3)

Lists other MathWorks toolboxes and version 
compatibility required by the GARCH Toolbox. 

Expected Background (p. 1-4) Describes the intended audience for this product.

Technical Conventions (p. 1-5) Describes the use of common mathematical terms in this 
guide.  See the “Glossary” for definitions of 
GARCH-specific terms.
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What Is the GARCH Toolbox?
MATLAB and the GARCH Toolbox provide an integrated computing 
environment for modeling the volatility of univariate economic time series. The 
GARCH Toolbox uses a general ARMAX/GARCH composite model to perform 
simulation, forecasting, and parameter estimation of univariate time series in 
the presence of conditional heteroscedasticity. Supporting functions perform 
tasks such as pre- and post-estimation diagnostic testing, hypothesis testing of 
residuals, model order selection, and time series transformations. Graphics 
capabilities let you plot correlation functions and visually compare matched 
innovations, volatility, and return series. 

More specifically, you can:

• Perform Monte Carlo simulation of univariate returns, innovations, and 
conditional volatilities

• Specify conditional mean models of general ARMAX form and conditional 
models of general GARCH form for univariate asset returns

• Estimate parameters of general ARMAX/GARCH composite models via the 
maximum likelihood method

• Generate minimum mean square error forecasts of the conditional mean and 
conditional variance of univariate return series

• Perform pre- and post-estimation diagnostic and hypothesis testing, such as 
Engle’s ARCH test, Ljung-Box Q-statistic test, likelihood ratio tests, and 
AIC/BIC model order selection

• Perform graphical correlation analysis, including auto-correlation, 
cross-correlation, and partial auto-correlation

• Convert price/return series to return/price series, and transform finite-order 
ARMA models to infinite-order AR and MA models



Software Requirements and Compatibility
Software Requirements and Compatibility
The GARCH Toolbox requires the Statistics and Optimization Toolboxes. 
However, you need not read those manuals before reading this one. 

The GARCH Toolbox Version 1.0.2 is compatible with Release 11, including 
MATLAB Version 5.3, Statistics Toolbox Version 2.2, and Optimization 
Toolbox 2.0, and later.
1-3
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Expected Background
This guide is a practical introduction to the GARCH Toolbox. In general, it 
assumes you are familiar with the basic concepts of General Autoregressive 
Conditional Heteroscedasticity (GARCH) modeling. 

In designing the GARCH Toolbox and this manual, we assume your title is 
similar to one of these:

• Analyst, quantitative analyst

• Risk manager

• Portfolio manager

• Fund manager, asset manager

• Economist

• Financial engineer

• Trader

• Student, professor, or other academic

We also assume your background, education, training, and responsibilities 
match some aspects of this profile:

• Finance, economics, perhaps accounting

• Engineering, mathematics, physics, other quantitative sciences

• Bachelor’s degree minimum; MS or MBA likely; Ph.D. perhaps; CFA

• Comfortable with probability, statistics, and algebra

• May understand linear or matrix algebra, calculus, and differential 
equations

• Previously doing traditional programming (C, Fortran, etc.)

• May be responsible for instruments or analyses involving large sums of 
money

• Perhaps new to MATLAB



Technical Conventions
Technical Conventions 
This user’s guide uses the following definitions and descriptions:

• The size of an array describes the dimensions of the array. If a matrix has m 
rows and n columns, its size is m-by-n. If two arrays are the same size, their 
dimensions are the same. 

If two vectors are of the same size, then they not only have the same length, 
but they also have the same orientation.

• The length of a vector indicates only the number of elements in the vector. If 
the length of a vector is n, it could be a 1-by-n (row) vector or an n-by-1 
(column) vector. Two vectors of length n, one a row vector and the other a 
column vector, do not necessarily have the same size. 

• The rows of a time series matrix correspond to a time index and the columns 
correspond to sample paths, independent realizations, or individual time 
series. In any given column, the first row contains the oldest observation and 
the last row contains the most recent observation.

• Time series vectors and matrices are time-tagged series of asset returns. If 
you have a price series, the GARCH Toolbox lets you convert it to a return 
series using either continuous compounding or periodic compounding.

• Continuous compounding is the default compounding method of the GARCH 
Toolbox. The results of some GARCH Toolbox functions are approximate for 
periodic compounding, but exact for continuous compounding. Using 
continuous compounding when moving between prices and returns, ensures 
exact results regardless of the function.

• The GARCH Toolbox assumes that return series are stationary processes. 
The price-to-return transformation generally guarantees a stable data set 
for GARCH modeling.

• The term conditional implies explicit dependence on a past sequence of 
observations. The term unconditional is more concerned with long-term 
behavior of a time series and assumes no explicit knowledge of the past. 

See the “Glossary” for general term definitions.
1-5
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2

Tutorial

The Tutorial includes these sections:

GARCH Overview (p. 2-3) Introduces GARCH and the characteristics of GARCH 
models that are commonly associated with financial time 
series.

GARCH Toolbox Overview (p. 2-11) Discusses allowable models for describing conditional mean 
and variance to the GARCH Toolbox and presents the 
default model that is used as the basis of discussion in this 
manual.

Analysis and Estimation Example 
Using the Default Model (p. 2-17)

The example in this section uses the GARCH Toolbox 
default model to examine the equity series of a hypothetical 
company.

The GARCH Specification Structure 
(p. 2-33)

Explains the purpose and contents of the specification 
structure, as well as how to use it for estimation, simulation, 
and forecasting.

Simulation (p. 2-42) Shows you how to simulate sample paths for return series, 
innovations, and conditional standard deviation processes. It 
also examine transient effects in the simulation process.

Forecasting (p. 2-55) Uses the estimated default model and the same hypothetical 
company to demonstrate the use of forecasting.

Conditional Mean Models with 
Regression Components (p. 2-63)

Discusses the incorporation of a regression component in an 
estimation, and its use in simulation, inference, and 
forecasting.
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Model Selection and Analysis 
(p. 2-74)

Explains the use of likelihood ratio tests and Akaike and 
Bayesian criteria for model selection. It also discusses the 
setting of equality constraints as a way of assessing 
parameter significance, and the effect of equality constraints 
on initial parameter estimates.

Recommendations and Suggestions 
(p. 2-87)

Provides general recommendations to make it easier for you 
to use the GARCH Toolbox



GARCH Overview
GARCH Overview
This section:

• Introduces GARCH

• Introduces the characteristics of GARCH models that are commonly 
associated with financial time series

Introducing GARCH
GARCH stands for Generalized Autoregressive Conditional 
Heteroscedasticity. Loosely speaking, you can think of heteroscedasticity as 
time-varying variance (i.e., volatility). Conditional implies a dependence on the 
observations of the immediate past, and autoregressive describes a feedback 
mechanism that incorporates past observations into the present. GARCH then 
is a mechanism that includes past variances in the explanation of future 
variances. More specifically, GARCH is a time series modeling technique that 
uses past variances and past variance forecasts to forecast future variances. 

In this manual, whenever a time series is said to have GARCH effects, the 
series is heteroskedastic, i.e., its variances vary with time. If its variances 
remain constant with time, the series is homoskedastic.

Why Use GARCH?
GARCH modeling builds on advances in the understanding and modeling of 
volatility in the last decade. It takes into account excess kurtosis (i.e. fat tail 
behavior) and volatility clustering, two important characteristics of financial 
time series. It provides accurate forecasts of variances and covariances of asset 
returns through its ability to model time-varying conditional variances. As a 
consequence, you can apply GARCH models to such diverse fields as risk 
management, portfolio management and asset allocation, option pricing, 
foreign exchange, and the term structure of interest rates.

You can find highly significant GARCH effects in equity markets, not only for 
individual stocks, but for stock portfolios and indices, and equity futures 
markets as well [5]. These effects are important in such areas as value-at-risk 
(VaR) and other risk management applications that concern the efficient 
allocation of capital. You can use GARCH models to examine the relationship 
between long- and short-term interest rates. As the uncertainty for rates over 
various horizons changes through time, you can also apply GARCH models in 
2-3
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the analysis of time-varying risk premiums [5]. Foreign exchange markets, 
which couple highly persistent periods of volatility and tranquility with 
significant fat tail behavior [5], are particularly well suited for GARCH 
modeling.

Note  Bollerslev [4] developed GARCH as a generalization of Engle’s [8] 
original ARCH volatility modeling technique. Bollerslev designed GARCH to 
offer a more parsimonious model (i.e., using fewer parameters) that lessens 
the computational burden.

GARCH Limitations
Although GARCH models are useful across a wide range of applications, they 
do have limitations:

• GARCH models are only part of a solution. Although GARCH models are 
usually applied to return series, financial decisions are rarely based solely on 
expected returns and volatilities. 

• GARCH models are parametric specifications that operate best under 
relatively stable market conditions [11]. Although GARCH is explicitly 
designed to model time-varying conditional variances, GARCH models often 
fail to capture highly irregular phenomena, including wild market 
fluctuations (e.g., crashes and subsequent rebounds), and other highly 
unanticipated events that can lead to significant structural change. 

• GARCH models often fail to fully capture the fat tails observed in asset 
return series. Heteroscedasticity explains some of the fat tail behavior, but 
typically not all of it. Fat tail distributions, such as student-t, have been 
applied in GARCH modeling, but often the choice of distribution is a matter 
of trial and error.

Using GARCH to Model Financial Time Series
GARCH models account for certain characteristics that are commonly 
associated with financial time series:

• Fat tails

• Volatility clustering
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Probability distributions for asset returns often exhibit fatter tails than the 
standard normal, or Gaussian, distribution. The fat tail phenomenon is known 
as excess kurtosis. Time series that exhibit a fat tail distribution are often 
referred to as leptokurtic. The blue (or dashed) line in Figure 2-1, A Plot 
Showing Excess Kurtosis illustrates excess kurtosis. The red (or solid) line 
illustrates a Gaussian distribution.

Figure 2-1:  A Plot Showing Excess Kurtosis

In addition, financial time series usually exhibit a characteristic known as 
volatility clustering, in which large changes tend to follow large changes, and 
small changes tend to follow small changes (see Figure 2-2, A Plot Showing 
Volatility Clustering). In either case, the changes from one period to the next 
are typically of unpredictable sign. Volatility clustering, or persistence, 
suggests a time series model in which successive disturbances, although 
uncorrelated, are nonetheless serially dependent.
2-5
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Figure 2-2:  A Plot Showing Volatility Clustering

Volatility clustering (a type of heteroscedasticity) accounts for some but not all 
of the fat tail effect (or excess kurtosis) typically observed in financial data. A 
part of the fat tail effect can also result from the presence of non-Gaussian 
asset return distributions that just happen to have fat tails.

This section also discusses:

• Correlation in Financial Time Series

• Conditional Variances

• Serial Dependence in Innovations

• Homoskedasticity of the Unconditional Variance

Correlation in Financial Time Series
If you treat a financial time series as a sequence of random observations, this 
random sequence, or stochastic process, may exhibit some degree of correlation 
from one observation to the next. You can use this correlation structure to 
predict future values of the process based on the past history of observations. 
Exploiting the correlation structure, if any, allows you to decompose the time 
series into a deterministic component (i.e., the forecast), and a random 
component (i.e., the error, or uncertainty, associated with the forecast).
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Eq. (2-1) uses these components to represent a univariate model of an observed 
time series yt.

(2-1)

In this equation: 

• f(t – 1, X) represents the deterministic component of the current return as a 
function of any information known at time t – 1, including past innovations 
{εt - 1, εt - 2, …}, past observations {yt - 1, yt - 2, …}, and any other relevant 
explanatory time series data, X.

• εt is the random component. It represents the innovation in the mean of yt. 
Note that you can also interpret the random disturbance, or shock, εt, as the 
single-period-ahead forecast error. 

Conditional Variances
The key insight of GARCH lies in the distinction between conditional and 
unconditional variances of the innovations process {εt}. The term conditional 
implies explicit dependence on a past sequence of observations. The term 
unconditional is more concerned with long-term behavior of a time series and 
assumes no explicit knowledge of the past. 

GARCH models characterize the conditional distribution of εt by imposing 
serial dependence on the conditional variance of the innovations. Specifically, 
the variance model imposed by GARCH, conditional on the past, is given by

(2-2)

where

(2-3)

Given the form of Eq. (2-2) and Eq. (2-3), you can see that σt
2 is the forecast of 

the next period’s variance, given the past sequence of variance forecasts, σt-i
2, 

and past realizations of the variance itself, εt-j
2.

When P = 0, the GARCH(0,Q) model of Eq. (2-3) becomes Eq. (2-4), the original 
ARCH(Q) model introduced by Engle [8].

yt f t 1– X,( ) εt+=

Vart 1– yt( ) Et 1– εt
2( ) σt

2
= =

σt
2 κ Giσt i–

2

i 1=

P

∑ Ajεt j–
2

j 1=

Q

∑+ +=
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(2-4)

Eq. (2-3) and Eq. (2-4) are referred to as GARCH(P,Q) and ARCH(Q) variance 
models, respectively. Note that when P = Q = 0, the variance process is simply 
white noise with variance κ.

Parsimonious Parameterization. In practice, you often need a large lag Q for ARCH 
modeling, and this requires that you estimate a large number of parameters. 
To reduce the computational burden, Bollerslev [4] extended Engle’s ARCH 
model by including past conditional variances. This results in a more 
parsimonious representation of the conditional variance process.

Volatility Clustering. Eq. (2-3) and Eq. (2-4) mimic the volatility clustering 
phenomenon. Large disturbances, positive or negative, become part of the 
information set used to construct the variance forecast of the next period's 
disturbance. In this manner, large shocks of either sign are allowed to persist, 
and can influence the volatility forecasts for several periods. The lag lengths P 
and Q, as well the magnitudes of the coefficients Gi and Aj, determine the 
degree of persistence. Note that the basic GARCH(P,Q) model of Eq. (2-3) is a 
symmetric variance process, in that the sign of the disturbance is ignored.

Serial Dependence in Innovations
A common assumption when modeling financial time series is that the forecast 
errors (i.e., the innovations) are zero-mean random disturbances uncorrelated 
from one period to the next. 

As mentioned above, although successive innovations are uncorrelated, they 
are not independent. In fact, an explicit generating mechanism for a 
GARCH(P,Q) innovations process, {εt}, is

(2-5)

where σt is the conditional standard deviation given by the square root of 
Eq. (2-3), and zt is a standardized, independent, identically distributed (i.i.d.) 
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random draw from some specified probability distribution. The GARCH 
literature uses several distributions to model GARCH processes, but the vast 
majority of research assumes the standard normal (i.e., Gaussian) density such 
that εt ~ N(0, σt

2). Reflecting this, Eq. (2-5) illustrates that a GARCH 
innovations process {εt} simply rescales an i.i.d process {zt} such that the 
conditional standard deviation incorporates the serial dependence of Eq. (2-3). 
Equivalently, Eq. (2-5) also states that a standardized GARCH disturbance, 
εt/σt, is itself an i.i.d. random variable zt.

Notice that GARCH models are consistent with various forms of efficient 
market theory, which state that asset returns observed in the past cannot 
improve the forecasts of asset returns in the future. Since GARCH innovations 
{εt} are serially uncorrelated, GARCH modeling does not violate efficient 
market theory.

Homoskedasticity of the Unconditional Variance
The GARCH Toolbox imposes the following parameter constraints on the 
conditional variance parameters.

(2-6)

The first constraint, a stationarity constraint, is necessary and sufficient for 
the existence of a finite, time-independent variance of the innovations process 
{εt}. The remaining constraints are sufficient to ensure that the conditional 
variance {σt

2} is strictly positive.

When the conditional variance parameters satisfy the inequalities in Eq. (2-6), 
the unconditional variance (i.e., time-independent, or long-run variance 
expectation) of the innovations process {εt} is 
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(2-7)

Although Eq. (2-3) shows that the conditional variance of εt changes with time, 
Eq. (2-7) shows that the unconditional variance is constant (i.e., 
homoskedastic).
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GARCH Toolbox Overview
This section discusses:

• Models for the Conditional Mean and Variance 

Allowable models for describing conditional mean and variance to the 
GARCH Toolbox

• Conventions and Clarifications

MATLAB constructs and financial concepts as they are used in this manual

• The Default Model

The default model that is used as the basis of discussion in this manual

Models for the Conditional Mean and Variance
The GARCH Toolbox allows a flexible model description of the conditional 
mean, using a general ARMAX form. ARMAX models encompass 
autoregressive (AR), moving average (MA), and regression (X) models, in any 
combination. Specifically, the toolbox allows a general ARMAX(R,M,Nx) form 
for the conditional mean 

(2-8)

where X is an explanatory regression matrix in which each column is a time 
series and X(t,k) denotes the tth row and kth column. 

The GARCH Toolbox models the conditional variance as a standard GARCH 
process with Gaussian innovations. It allows a general GARCH(P,Q) form with 
Gaussian innovations for the conditional variance

(2-9)
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Note  This GARCH model is based on Bollerslev’s original paper [4], and also 
includes Engle’s original ARCH model [8] as a special case.

Conventions and Clarifications

Rows, Columns, Length, and Size 
MATLAB operates as a large-scale, array-based processor, which makes it 
ideally suited for time series modeling and analysis. This manual imparts 
specific meanings to the words length and size in discussing arrays. 

Matrices. A matrix is an m-by-n array in which m is the number of rows and n 
is the number of columns. By convention, the rows (i.e., the m-dimension) of a 
time series matrix correspond to a time index. In any given column, the first 
row contains the oldest observation and the last row contains the most recent 
observation. Columns (i.e., the n-dimension) correspond to sample paths, 
independent realizations, or individual time series.

Let A be a 100-by-5 time series matrix generated to support a Monte Carlo 
simulation experiment. In this case, A has 100 observations for each of five 
independent sample paths (or equivalently, five realizations of some 
underlying univariate random process in which each column is a realization of 
an individual time series). In this case, the size of A is 100-by-5. If some other 
matrix, B, is the same size as A, then B is also a 100-by-5 matrix. 

Since the current release of the GARCH Toolbox addresses univariate models 
only, matrices usually represent multiple realizations of a univariate time 
series (as opposed to a single realization of a multivariate time series). 
Whenever a GARCH Toolbox function detects the presence of an input matrix 
of size m-by-n, it assumes that m is the number of time-tagged observations 
and n is the number of realizations. 

Vectors. The length of a time series vector represents only the number of 
observations the vector contains. It does not indicate whether the vector is a 
row or column vector, i.e. it does not indicate the vector’s size. For example, a 
time series vector of length 10 can be a row vector (i.e., a 1-by-10 matrix) or a 
column vector (i.e., a 10-by-1 matrix). 
2
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When a function detects a time series vector, row or column, it assumes that 
the vector represents a single realization of a univariate time series, and the 
length of the vector is the number of observations. 

Note  Although most functions can process either row or column vectors, you 
can avoid confusing input/output arguments if you format single realizations 
of a univariate time series as column vectors. Using column vectors also 
makes it easier for you to display data in the MATLAB command window.

Precision
The GARCH Toolbox performs all its calculations in double precision. Select 
File > Preferences... > General > Numeric Format to set the numeric format 
for your displays. The default is Short.

Prices, Returns, and Compounding
The GARCH Toolbox assumes that time series vectors and matrices are 
time-tagged series of observations. If you have a price series, the toolbox lets 
you convert it to a return series using either continuous compounding or 
periodic compounding in accord with Eq. (2-10) and Eq. (2-11).

If you denote successive price observations made at time t and t+1 as Pt and 
Pt+1, respectively, continuous compounding transforms a price series {Pt} into 
a return series {yt} as 

(2-10)

Periodic compounding defines the transformation as 

(2-11)

Continuous compounding is the default compounding method of the GARCH 
Toolbox, and is the preferred method for most of continuous-time finance. Since 
GARCH modeling is typically based on relatively high frequency data (i.e., 
daily or weekly observations), the difference between the two methods is 
usually small. However, there are some toolbox functions whose results are 
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approximations for periodic compounding, but exact for continuous 
compounding. If you adopt the continuous compounding default convention 
when moving between prices and returns, all toolbox functions produce exact 
results.

Stationary and Nonstationary Time Series
Figure 2-3, Typical Equity Price Series illustrates a typical equity price series. 
Notice that there appears to be no long-run average level about which the 
series evolves. This is evidence of a nonstationary time series. 

Figure 2-3:  Typical Equity Price Series

Figure 2-4, Continuously Compounded Returns Associated with the Price 
Series, however, illustrates the continuously compounded returns associated 
with the same price series. In contrast, the returns appear to be quite stable 
over time, and the transformation from prices to returns has produced a 
stationary time series.
4
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Figure 2-4:  Continuously Compounded Returns Associated with the Price 
Series

The GARCH Toolbox assumes that return series are stationary processes. This 
may seem limiting, but the price-to-return transformation is common and 
generally guarantees a stable data set for GARCH modeling.

The Default Model
The GARCH Toolbox default model is the simple (yet common) conditional 
mean model with GARCH(1,1) Gaussian innovations, based on Eq. (2-8) and 
Eq. (2-9).

(2-12)

(2-13)

In the conditional mean model, Eq. (2-12), the returns, yt, consist of a simple 
constant, plus an uncorrelated, white noise disturbance, εt. This model is often 
sufficient to describe the conditional mean in a financial return series. Most 
financial return series do not require the comprehensiveness that an ARMAX 
model provides.

In the conditional variance model, Eq. (2-13), the variance forecast, σt
2, 

consists of a constant plus a weighted average of last period's forecast, σt-1
2, 
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and last period's squared disturbance, εt-1
2. Although financial return series, 

as defined in Eq. (2-10) and Eq. (2-11), typically exhibit little correlation, the 
squared returns often indicate significant correlation and persistence. This 
implies correlation in the variance process, and is an indication that the data 
is a candidate for GARCH modeling.

Although simplistic, the default model shown in Eq. (2-12) and Eq. (2-13) has 
several benefits:

• It represents a parsimonious model that requires you to estimate only four 
parameters (C, κ, G1, and A1). According to Box and Jenkins [7], the fewer 
parameters to estimate, the less that can go wrong. Elaborate models often 
fail to offer real benefits when forecasting (see Hamilton [12], page 109).

• The simple GARCH(1,1) model captures most of the variability in most 
return series. Small lags for P and Q are common in empirical applications. 
Typically, GARCH(1,1), GARCH(2,1), or GARCH(1,2) models are adequate 
for modeling volatilities even over long sample periods (see Bollerslev, Chou, 
and Kroner [5], pages 10 and 22).
6
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Analysis and Estimation Example Using the Default Model
The example in this section uses the GARCH Toolbox default model to examine 
the equity series of a hypothetical company, the XYZ Corporation. It uses the 
default model to estimate the parameters needed to model the series. 
Specifically, the example: 

1 Performs a pre-estimation analysis to determine if the data is 
heteroskedastic and can be modeled using GARCH

2 Estimates the parameters for the default model

3 Performs a post-estimation analysis to confirm that the default model 
explains the heteroscedasticity present in the data

Note  Due to platform differences, the estimation results you obtain when you 
recreate the examples in this chapter may differ from those shown in the text. 
These differences will propagate through any subsequent examples that use 
the estimation results as input, and may cause the numerical output of some 
examples to differ markedly from the text. These differences, however, do not 
affect the outcome of the examples.

Pre-Estimation Analysis
The pre-estimation analysis:

1 Loads the raw data: daily closing prices

2 Converts the prices to a return series

3 Checks for correlation

4 Quantifies the correlation

Load the Raw Data: Daily Closing Prices
Start by loading the MATLAB binary file xyz.mat, and examining its contents 
using the whos command.
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load xyz
whos
  Name         Size         Bytes  Class

  prices    2001x1          16008  double array

Grand total is 2001 elements using 16008 bytes

The whos command lists all the variables in the current workspace, together 
with information about their size, bytes, and class. 

The data you loaded from xyz.mat consists of a single column vector, prices, 
of length 2001. This vector contains the daily closing prices of the XYZ 
Corporation. Use the MATLAB plot function to examine the data (see plot in 
the online MATLAB Function Reference). 

plot([0:2000], prices)
ylabel('Share Price')
title('Daily Closing Prices')

Figure 2-5:  Daily Closing Prices of the XYZ Corporation

The plot shown in Figure 2-5, Daily Closing Prices of the XYZ Corporation is 
the same as the one shown in Figure 2-3, Typical Equity Price Series. 
8
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Convert the Prices to a Return Series
Because GARCH modeling assumes a return series, you need to convert the 
prices to returns. Use the utility function price2ret, and then examine the 
result.

xyz = price2ret(prices);
whos
  Name         Size         Bytes  Class

  prices    2001x1          16008  double array
  xyz       2000x1          16000  double array

Grand total is 4001 elements using 32008 bytes

The workspace information shows both the 2001-point price series and the 
2000-point return series derived from it. 

Now, use the MATLAB plot function to see the return series. 

plot(xyz)
ylabel('Return')
title('Daily Returns')

Figure 2-6:  Raw Return Series Based on Daily Closing Prices
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The results, shown in Figure 2-6, Raw Return Series Based on Daily Closing 
Prices, are the same as those shown in Figure 2-4, Continuously Compounded 
Returns Associated with the Price Series. Notice the presence of volatility 
clustering in the raw return series.

Check for Correlation

In the Return Series. You can check qualitatively for correlation in the raw return 
series by calling the functions autocorr and parcorr to examine the sample 
autocorrelation function (ACF) and partial-autocorrelation (PACF) function, 
respectively.

autocorr(xyz)

Figure 2-7:  ACF with Bounds for the Raw Return Series

The autocorr function computes and displays the sample ACF of the returns, 
along with the upper and lower standard deviation confidence bounds, based 
on the assumption that all autocorrelations are zero beyond lag zero. 

parcorr(xyz)
0
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Figure 2-8:  PACF with Bounds for the Raw Return Series

Similarly, the parcorr function displays the sample PACF with upper and 
lower confidence bounds.

Since the individual ACF values can have large variances and can also be 
autocorrelated, you should view the sample ACF and PACF with care (see Box, 
Jenkins, Reinsel [7], pages 34 and 186). However, as preliminary identification 
tools, the ACF and PACF provide some indication of the broad correlation 
characteristics of the returns. From Figure 2-7, ACF with Bounds for the Raw 
Return Series and Figure 2-8, PACF with Bounds for the Raw Return Series, 
there is no real indication that you need to use any correlation structure in the 
conditional mean. Also, notice the similarity between the graphs.

In the Squared Returns. Although the ACF of the observed returns exhibits little 
correlation, the ACF of the squared returns may still indicate significant 
correlation and persistence in the second-order moments. Check this by 
plotting the ACF of the squared returns.

autocorr(xyz.^2)
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Figure 2-9:  ACF of the Squared Returns

Figure 2-9, ACF of the Squared Returns shows that, although the returns 
themselves are largely uncorrelated, the variance process exhibits some 
correlation. This is consistent with the earlier discussion in the section, “The 
Default Model” on page 2-15. Note that the ACF shown in Figure 2-9, ACF of 
the Squared Returns appears to die out slowly, indicating the possibility of a 
variance process close to being nonstationary. 

Note  The syntax in the preceding command, an operator preceded by the dot 
operator (.), indicates that the operation is performed on an 
element-by-element basis. In the preceding command, xyz.^2 indicates that 
each element of the vector xyz is squared.

Quantify the Correlation
You can quantify the preceding qualitative checks for correlation using formal 
hypothesis tests, such as the Ljung-Box-Pierce Q-test and Engle's ARCH test.
2
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The function lbqtest implements the Ljung-Box-Pierce Q-test for a departure 
from randomness based on the ACF of the data. The Q-test is most often used 
as a post-estimation lack-of-fit test applied to the fitted innovations (i.e., 
residuals). In this case, however, you can also use it as part of the pre-fit 
analysis because the default model assumes that returns are just a simple 
constant plus a pure innovations process. Under the null hypothesis of no serial 
correlation, the Q-test statistic is asymptotically Chi-Square distributed (see 
Box, Jenkins, Reinsel [7], page 314). 

The function archtest implements Engle's test for the presence of ARCH 
effects. Under the null hypothesis that a time series is a random sequence of 
Gaussian disturbances (i.e., no ARCH effects exist), this test statistic is also 
asymptotically Chi-Square distributed (see Engle [8], pages 999-1000).

Both functions return identical outputs. The first output, H, is a Boolean 
decision flag. H = 0 implies that no significant correlation exists (i.e., do not 
reject the null hypothesis). H = 1 means that significant correlation exists (i.e., 
reject the null hypothesis). The remaining outputs are the P-value (pValue), 
the test statistic (Stat), and the critical value of the Chi-Square distribution 
(CriticalValue).

Ljung-Box-Pierce Q-Test. Using lbqtest, you can verify, at least approximately, 
that no significant correlation is present in the raw returns when tested for up 
to 10, 15, and 20 lags of the ACF at the 0.05 level of significance. 

[H, pValue, Stat, CriticalValue] = lbqtest(xyz-mean(xyz), [10 15 
20]', 0.05);
[H  pValue  Stat  CriticalValue]
ans =
         0    0.2996   11.7869   18.3070
         0    0.2791   17.6943   24.9958
         0    0.1808   25.5616   31.4104

However, there is significant serial correlation in the squared returns when 
you test them with the same inputs. 

[H, pValue, Stat, CriticalValue] = lbqtest((xyz-mean(xyz)).^2, 
[10 15 20]', 0.05);
[H  pValue  Stat  CriticalValue]
ans =
    1.0000         0  177.5937   18.3070
    1.0000         0  263.9325   24.9958
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    1.0000         0  385.6907   31.4104

Engle's ARCH Test. You can also perform Engle’s ARCH test using the function 
archtest. This test also shows significant evidence in support of GARCH 
effects (i.e heteroscedasticity).

[H, pValue, Stat, CriticalValue] = archtest(xyz-mean(xyz), [10 15 
20]', 0.05);
[H  pValue  Stat  CriticalValue]
ans =
    1.0000         0  107.6171   18.3070
    1.0000         0  127.1083   24.9958
    1.0000         0  159.6543   31.4104

Each of these examples extracts the sample mean from the actual returns. This 
is consistent with the definition of the conditional mean equation of the default 
model, in which the innovations process is εt = yt - C, and C is the mean of yt.

Parameter Estimation
The parameter estimation:

1 Estimates the model parameters

2 Examines the estimated GARCH model

Estimate the Model Parameters
The presence of heteroscedasticity, shown in the previous analysis, indicates 
that GARCH modeling is appropriate. Use the estimation function garchfit to 
estimate the model parameters. Assume the default GARCH model described 
in the section “The Default Model” on page 2-15. This only requires that you 
specify the return series of interest as an argument to the function garchfit. 

Note  Because the default value of the Display parameter in the specification 
structure is on, garchfit prints diagnostic, optimization, and summary 
information to the MATLAB command window in the example below. (See 
fmincon in the Optimization Toolbox for information about the optimization 
information.) 
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[coeff, errors, LLF, innovations, sigma, summary] = 
garchfit(xyz);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   Diagnostic Information 

Number of variables: 4

Functions 
 Objective:                            garchllfn
 Gradient:                             finite-differencing
 Hessian:                              finite-differencing (or 
Quasi-Newton)
 Nonlinear constraints:                garchnlc
 Gradient of nonlinear constraints:    finite-differencing

Constraints
 Number of nonlinear inequality constraints: 0
 Number of nonlinear equality constraints:   0
 
 Number of linear inequality constraints:    1
 Number of linear equality constraints:      0
 Number of lower bound constraints:          4
 Number of upper bound constraints:          0

Algorithm selected
   medium-scale

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 End diagnostic information 

                                 max                      Directional 
 Iter  F-count   f(x)         constraint    Step-size      derivative   
Procedure 
    1     5    -5921.94  -1.684e-005            1      -7.92e+004     
    2    34    -5921.94  -1.684e-005    1.19e-007            -553     
    3    43    -5924.42  -1.474e-005        0.125           -31.2     
    4    49    -5936.16  -6.996e-021            1            -288     
    5    57    -5960.62            0         0.25            -649     
    6    68    -5961.45  -4.723e-006       0.0313           -17.3     
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    7    75    -5963.18  -2.361e-006          0.5           -28.6     
    8    81    -5968.24            0            1             -55     
    9    90    -5970.54  -6.016e-007        0.125            -196     
   10   103    -5970.84  -1.244e-006      0.00781           -16.1     
   11   110    -5972.77  -9.096e-007          0.5           -34.4     
   12   126    -5972.77  -9.354e-007     0.000977           -24.5     
   13   134    -5973.29   -1.05e-006         0.25           -4.97     
   14   141    -5973.95  -6.234e-007          0.5           -1.99     
   15   147    -5974.21  -1.002e-006            1          -0.641     
   16   153    -5974.57  -9.028e-007            1         -0.0803     
   17   159    -5974.59  -8.054e-007            1         -0.0293     
   18   165     -5974.6  -8.305e-007            1         -0.0039     
   19   172     -5974.6  -8.355e-007          0.5       -0.000964     
   20   192     -5974.6  -8.355e-007    -6.1e-005       -0.000646     
   21   212     -5974.6  -8.355e-007    -6.1e-005       -0.000996    
Hessian modified twice
   22   219     -5974.6  -8.361e-007          0.5       -0.000184     
   23   239     -5974.6  -8.361e-007    -6.1e-005        -0.00441    
Hessian modified twice
Optimization terminated successfully:
 Search direction less than 2*options.TolX and
  maximum constraint violation is less than options.TolCon
 No Active Constraints

Examine the Estimated GARCH Model
Now that the estimation is complete, you can display the parameter estimates 
and their standard errors using the function garchdisp,

garchdisp(coeff, errors)

  Number of Parameters Estimated: 4

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
          C    0.00049183     0.00025585       1.9223
          K    8.2736e-007    2.7446e-007      3.0145
   GARCH(1)    0.96283        0.0051557      186.7500
    ARCH(1)    0.03178        0.004416         7.1965
6
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If you substitute these estimates in the definition of the default model, 
Eq. (2-12) and Eq. (2-13), the estimation process implies that the constant 
conditional mean/GARCH(1,1) conditional variance model that best fits the 
observed data is

where G1 = GARCH(1) = 0.96283 and A1 = ARCH(1) = 0.03178. In addition, 
C = C = 0.00049183 and κ = K = 8.2736e-007.
Figure 2-10, GARCH(1,1) Log-Likelihood Contours for the XYZ Corporation 
shows the log-likelihood contours of the default GARCH(1,1) model fit to the 
returns of the XYZ Corporation. The contour data is generated by the GARCH 
Toolbox demonstration function garch11grid. This function evaluates the 
log-likelihood function on a grid in the G1-A1 plane, holding the parameters C 
and κ fixed at their maximum likelihood estimates of 0.00049183 and 
8.2736e-007, respectively. 

The contours confirm the printed garchfit results above. The maximum 
log-likelihood value, LLF = 5974.6, occurs at the coordinates G1 = GARCH(1) = 
0.96283 and A1 = ARCH(1) = 0.03178.

The figure also reveals a highly negative correlation between the estimates of 
the G1 and A1 parameters of the GARCH(1,1) model. This implies that a small 
change in the estimate of the G1 parameter is nearly compensated for by a 
corresponding change of opposite sign in the A1 parameter. 

yt 0.00049183 εt+=
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Figure 2-10:  GARCH(1,1) Log-Likelihood Contours for the XYZ Corporation

Note  If you view this manual on the Web, the color-coded bar at the right of 
the figure indicates the height of the log-likelihood surface above the 
GARCH(1,1) plane. 

Post-Estimation Analysis
The post_estimation analysis:

1 Compares the residuals, conditional standard deviations, and returns

2 Plots and compares correlation of the standardized innovations

3 Quantifies and compares correlation of the standardized innovations
8
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Compare the Residuals, Conditional Standard Deviations, and Returns
In addition to the parameter estimates and standard errors, garchfit also 
returns the optimized log-likelihood function value (LLF), the residuals 
(innovations), and conditional standard deviations (sigma). Use the function 
garchplot to inspect the relationship between the innovations (i.e., residuals) 
derived from the fitted model, the corresponding conditional standard 
deviations, and the observed returns. garchplot displays the tiered plot shown 
in Figure 2-11, Comparison of Innovations, Conditional Standard Deviations 
and Observed Returns.

garchplot(innovations, sigma, xyz)

Figure 2-11:  Comparison of Innovations, Conditional Standard Deviations 
and Observed Returns
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Notice in Figure 2-11, Comparison of Innovations, Conditional Standard 
Deviations and Observed Returns that both the innovations (top plot) and the 
returns (bottom plot) exhibit volatility clustering. Also, notice that the sum, 
G1 + A1 = 0.96283 + 0.03178, is 0.99461, which is close to the integrated, 
nonstationary boundary given by Eq. (2-6).

Plot and Compare Correlation of the Standardized Innovations 
Although the fitted innovations exhibit volatility clustering (Figure 2-11, 
Comparison of Innovations, Conditional Standard Deviations and Observed 
Returns), if you plot of the standardized innovations (the innovations divided 
by their conditional standard deviation), they appear generally stable with 
little clustering.

plot(innovations./sigma)
ylabel('Innovation')
title('Standardized Innovations')

Figure 2-12:  Standardized Innovations

If you plot the ACF of the squared standardized innovations (Figure 2-13, ACF 
of the Squared Standardized Innovations), they also show no correlation.

autocorr((innovations./sigma).^2)
0
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Figure 2-13:  ACF of the Squared Standardized Innovations

Now compare the ACF of the squared standardized innovations (Figure 2-13, 
ACF of the Squared Standardized Innovations) to the ACF of the squared 
returns prior to fitting the default model (Figure 2-9, ACF of the Squared 
Returns). The comparison shows that the default model explains sufficiently 
the heteroscedasticity in the raw returns.

Quantify and Compare Correlation of the Standardized Innovations 
Compare the results below of the Q-test and the ARCH test with the results of 
these same tests in the pre-estimation analysis. In the pre-estimation analysis, 
both the Q-test and the ARCH test indicate a rejection (H = 1 with pValue = 0) 
of their respective null hypotheses, showing significant evidence in support of 
GARCH effects. In the post-estimate analysis, using standardized innovations 
based on the estimated model, these same tests indicate acceptance (H = 0 with 
highly significant pValues) of their respective null hypotheses and confirm the 
explanatory power of the default model.

[H, pValue, Stat, CriticalValue] = 
lbqtest((innovations./sigma).^2,[10 15 20]',0.05);
[H  pValue  Stat  CriticalValue]
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ans =
         0    0.8632    5.3966   18.3070
         0    0.9328    7.7677   24.9958
         0    0.9819    9.0843   31.4104

[H, pValue, Stat, CriticalValue] = 
archtest(innovations./sigma,[10 15 20]',0.05);
[H  pValue  Stat  CriticalValue]
ans =
         0    0.8883    5.0428   18.3070
         0    0.8765    9.0200   24.9958
         0    0.9521   10.7657   31.4104
2
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The GARCH Specification Structure
This section discusses:

• Purpose of the Specification Structure

• Contents of the Specification Structure

• Valid Model Specifications

• Accessing Specification Structures

• Using the Specification Structure for Estimation, Simulation, and 
Forecasting

Purpose of the Specification Structure
Situations may arise in which you need more direct control of the analysis than 
is provided by the default model, 

(See “Analysis and Estimation Example Using the Default Model” on 
page 2-17.) For example, you may want to estimate the parameters of more 
elaborate conditional mean or variance models, perform Monte Carlo 
simulation, perform what-if analyses, or forecast time series. 

The GARCH Toolbox maintains the parameters that define a model in a 
GARCH specification structure. In the default model example, garchfit 
creates the specification structure, coeff, and stores the model orders and 
estimated parameters of the default model in it. For more complex models, 
however, such as those required for the tasks listed above, you must specify the 
necessary parameters and store them in a specification structure.

The specification structure, coeff (from the default model example) represents 
the following default model estimated by garchfit. 

yt C εt+=

σt
2 κ G1σt 1–

2
A1εt 1–

2
+ +=

yt 0.00049183 εt+=

σt
2

8.2736e 007– 0.96283σt 1–
2

0.03178εt 1–
2

+ +=
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“Contents of the Specification Structure” on page 2-34 shows the specification 
structure for the default model.

Contents of the Specification Structure
This example shows the contents of the specification structure. It is the 
specification structure, coeff, for the default model. The term to the left of the 
colon (:) is the parameter name.

coeff
coeff = 
         Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
               R: 0
               M: 0
               P: 1
               Q: 1
    Distribution: 'Gaussian'
               C: 4.9183e-004
              AR: []
              MA: []
         Regress: []
               K: 8.2736e-007
           GARCH: 0.9628
            ARCH: 0.0318
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

The specification structure parameters of interest in this discussion are 
Comment, R, M, P, Q, C, AR, MA, Regress, K, GARCH, and ARCH. (See the garchset 
reference page for a complete description of the GARCH specification structure 
parameters.) This section discusses:

• The Comment Field

• Equation Variables and Parameter Names

• Interpreting the Specification Structure
4



The GARCH Specification Structure
The Comment Field
The Comment field summarizes the ARMAX and GARCH models used for the 
conditional mean and variance equations in the default model example. The 
Comment value 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)' describes the 
default model in terms of the general ARMAX(R,M,Nx) form for the conditional 
mean, where R = M = Nx = 0

(2-14)

and the general GARCH(P,Q) form with Gaussian innovations for the 
conditional variance, where P = Q = 1.

(2-15)

By default, garchfit and garchset generate the Comment field automatically 
Although you can set the value of the Comment field, it offers such a convenient 
summary that The MathWorks discourages your doing so. However, if you do 
specify your own comment, the GARCH Toolbox recognizes this and does not 
override your comment.

Equation Variables and Parameter Names
For the most part, the names of specification structure parameters that define 
the ARMAX/GARCH models reflect the variable names of their corresponding 
components in Eq. (2-14) and Eq. (2-15):

• R and M represent the order of the ARMA(R,M) model. 

• P and Q represent the order of the GARCH(P,Q) model. 

• AR represents the coefficient vector ARi.

• MA represents the coefficient vector MAj.

• GARCH represents the coefficient vector Gi.

• ARCH represents the coefficient vector Aj.

• C and K represent the constants C and κ, respectively.

yt C ARiyt i–
i 1=

R

∑ εt MAjεt j–

j 1=

M

∑ βkX t k,( )
k 1=

Nx

∑+ + + +=

σt
2 κ Giσt i–

2

i 1=

P

∑ Ajεt j–
2

j 1=

Q

∑+ +=
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Unlike the other components of these equations, X has no representation in the 
GARCH specification structure. X is an optional matrix of returns that some 
toolbox functions use as explanatory variables in the regression component of 
the conditional mean. For example, X could contain return series of a suitable 
market index collected over the same period as y. Toolbox functions that allow 
the use of a regression matrix provide a separate argument by which you can 
specify it. In the specification structure, Regress represents the coefficient 
vector of X, βk. 

Interpreting the Specification Structure
In the specification structure, coeff, for the default model example, the AR, MA, 
and Regress fields are empty matrices ([]). This is because the default mean 
equation is an ARMAX(0,0,0) model, where R = M = Nx = 0, and AR, MA, and 
Regress are R-, M-, and Nx-element vectors, respectively. 

The GARCH and ARCH fields are both scalars set to their respective estimated 
values. They are scalars because the default variance equation is a 
GARCH(1,1) model, where P = 1 lag of the past conditional variance and Q = 1 
lag of the past squared innovations. 

C and K are the constants of the mean and variance equations, respectively. 
Their values were estimated by garchfit. 

Valid Model Specifications
The specification structure you provide as input to all functions except 
garchfit must contain a complete model specification. That is, the orders of 
the ARMA and GARCH models must agree with the lengths of their 
corresponding coefficient vectors. Specifically, the value of R must be the same 
as the length of the vector AR, and M must be the same as the length of MA. The 
value of P must be the same as the length of the vector GARCH, and Q must be 
the same as the length of ARCH.

Only garchfit can accept as input a specification structure in which some or 
all of the model orders (R, M, P, or Q) are greater than 0 and the coefficient 
vectors are empty ([]). During the estimation process, garchfit creates 
appropriate coefficient vectors whose lengths correspond to the specified model 
orders.
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Accessing Specification Structures
This section discusses:

• Using garchset to Create a Specification Structure

• Retrieving Specification Structure Values

• Accessing Fields Directly

Using garchset to Create a Specification Structure
The function garchset provides various options for creating and modifying a 
specification structure. Each of the following commands uses a different 
garchset syntax to create identical specification structures for the default 
model.

spec = garchset('R', 0, 'm', 0, 'P', 1, 'Q', 1);
spec = garchset('p', 1, 'Q', 1);
spec = garchset('R', 0, 'M', 0); spec = garchset(spec, 'P', 1, 
'Q', 1);
spec = garchset;

The first command explicitly sets all model orders: R, M, P, and Q. This command 
illustrates the most basic garchset calling syntax. It specifies the structure 
fields as parameter/value pairs, in which the parameter name is a MATLAB 
character string enclosed in single quotes, followed by its corresponding value. 
When calling garchset, you only need to type the leading characters that 
uniquely identify the parameter. As illustrated here, case is ignored for 
parameter names.

The second command sets model orders for a GARCH(1,1) variance process 
only, and relies on the ARMAX(0,0,?) default for the mean. The third command 
creates an initial structure, and then updates the existing structure with 
additional parameter/value pairs. The last command, with no input 
arguments, creates a structure for the default model. The last command also 
implies that the following commands produce exactly the same estimation 
results.

[coeff, errors, LLF, innovations, sigma] = garchfit(xyz);
[coeff, errors, LLF, innovations, sigma] = garchfit(garchset, 
xyz);
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Retrieving Specification Structure Values
The function garchget retrieves the values contained in specification structure 
fields.

Use garchget to retrieve the estimated coefficients from coeff. Then use 
garchset to write those coefficients to a new specification structure, spec, that 
is almost identical to coeff. For both garchget and garchset, you only need to 
type the leading characters that uniquely identify the parameter. Case is 
ignored for parameter names.

C = garchget(coeff, 'C')   % Use a separate garchget call to
                            % get each estimated coefficient.
C =
  4.9183e-004

K = garchget(coeff, 'K')

K =
  8.2736e-007

G = garchget(coeff, 'GARCH')

G =
    0.9628

A = garchget(coeff, 'ARCH')

A =
    0.0318
                            % Use garchset to create a new 
                            % structure, spec.
spec = garchset('C', C, 'K', K, 'GARCH', G, 'ARCH', A)

spec = 
         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
               R: 0
               M: 0
               P: 1
               Q: 1
    Distribution: 'Gaussian'
8
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               C: 4.9183e-004
              AR: []
              MA: []
         Regress: []
               K: 8.2736e-007
           GARCH: 0.9628
            ARCH: 0.0318
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

In this example, garchset automatically generates the first six fields (i.e., 
Comment, R, M, P, Q, and Distribution). Specifically, garchset infers the 
comment and model orders (R, M, P, Q) from the corresponding coefficient vectors 
(AR, MA, ARCH, GARCH). The converse is not true. If you specify only the model 
orders, garchset creates the coefficient vectors as empty matrices ([]). If you 
later call garchfit, it estimates the coefficient vectors for models of the order 
you specify, and updates the AR, MA, ARCH, and GARCH fields with these values.

Note  The only difference between the coeff and spec structures above lies 
in their Comment fields. In coeff, garchfit explicitly sets the number of 
explanatory (i.e., regression) variables in the Comment field of coeff to 0. This 
is because coeff represents an actual model whose conditional mean has no 
regression component. On the other hand, garchset inserts a '?' because it has 
no knowledge when it creates spec, whether you will include a regression 
component when you call garchfit to estimate the model parameters. 

Accessing Fields Directly
In addition to using garchset and garchget to access the values of specification 
structure fields, you can also manipulate the fields of a structure directly. For 
example, the commands 

garchget(spec, 'P')
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spec.P 

both retrieve the order P in the structure spec. Similarly, the commands

spec = garchset(spec, 'P', 3)
spec.P = 3

both write the order P = 3. 

The first command in each case uses a GARCH Toolbox function to retrieve or 
write the value of a field. In this case the toolbox performs error checking (e.g., 
to ensure compatibility between inputs and guarantee that ARMA models are 
stationary/invertible). You also have the convenience of partial field names and 
case insensitivity.

In each case, the second command manipulates the structure directly. 
Although this approach does not support partial field names and case 
insensitivity, it can be convenient when you work interactively at the MATLAB 
command line. However, it does not provide error checking. For this reason, 
you should avoid manipulating a specification structure directly when writing 
code.

Note that the call to garchset above fails in your example workspace because 
the corresponding coefficient vector, GARCH, has only one element. Setting 
spec.P = 3 directly succeeds but leaves you with an inconsistent specification 
structure.

Using the Specification Structure for Estimation, 
Simulation, and Forecasting
The three functions, garchfit, garchpred, and garchsim, comprise the core 
analysis and modeling routines of the GARCH Toolbox. These three functions 
operate on the GARCH specification structure. Table 2-1, GARCH 
Specification Structure Use describes each function’s use of the GARCH 
specification structure. 
0
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Table 2-1:  GARCH Specification Structure Use 

Function Description Use of GARCH Specification Structure

garchfit Estimates the parameters of a 
conditional mean specification of 
ARMAX form and a conditional 
variance specification of GARCH 
form.

Input . Optionally accepts a GARCH 
specification structure as input. If the 
structure contains the model orders but no 
coefficient vectors (C, AR, MA, Regress, K, 
ARCH, GARCH), garchfit uses maximum 
likelihood to estimate the coefficients for an 
ARMAX/GARCH model of the specified 
orders. If the structure contains coefficient 
vectors, garchfit uses them as initial 
estimates for further refinement. If you 
provide no specification structure, garchfit 
assumes, and returns, a specification 
structure for the default model. 

Output. Returns a specification structure 
that contains a fully specified 
ARMAX/GARCH model.

garchpred Provides 
minimum-mean-square-error 
(MMSE) forecasts of the 
conditional mean and standard 
deviation of a return series, for a 
specified number of periods into 
the future. 

Input. Requires a GARCH specification 
structure that contains the coefficient 
vectors for the model for which garchpred is 
to forecast the conditional mean and 
standard deviation.

Output. garchpred does not modify or return 
the specification structure.

garchsim Uses Monte Carlo methods to 
simulates sample paths for 
return series, innovations, and 
conditional standard deviation 
processes. 

Input. Requires a GARCH specification 
structure that contains the coefficient 
vectors for the model for which garchsim is 
to simulate sample paths.

Output. garchsim does not modify or return 
the specification structure.
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Simulation
This section shows you how to:

• Simulate sample paths, using the simulation function garchsim, for return 
series, innovations, and conditional standard deviation processes 

• Examine transient effects in the simulation process

It also provides a general simulation example.

Simulating Sample Paths
The section “Analysis and Estimation Example Using the Default Model” on 
page 2-17 models the equity series of a hypothetical company, the XYZ 
Corporation, using the default model. This section uses the resulting model 

to simulate sample paths, using the simulation function garchsim, for return 
series, innovations, and conditional standard deviation processes. You can 
think of garchsim as a filter that you can use to generate a (possibly) correlated 
return series {yt} from a white noise input series {εt}. 

Use the following commands to restore your workspace if necessary. This 
example omits the estimation output to save space. 

load xyz
xyz = price2ret(prices);
[coeff, errors, LLF, innovations, sigma] = garchfit(xyz);
coeff
coeff = 
         Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
               R: 0
               M: 0
               P: 1
               Q: 1
    Distribution: 'Gaussian'
               C: 4.9183e-004
              AR: []

yt 0.00049183 εt+=

σt
2

8.2736e 007– 0.96283σt 1–
2

0.03178εt 1–
2

+ +=
2
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              MA: []
         Regress: []
               K: 8.2736e-007
           GARCH: 0.9628
            ARCH: 0.0318
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

Using Default Inputs
Now call garchsim to simulate sample paths using the model in coeff. This 
command accepts garchsim defaults for:

• The number of sample paths (i.e. realizations) to generate: 1

• The number of observations to generate for each path: 100

• The random number generator seed: 0 

[e,s,y] =  garchsim(coeff);

whos e s y
  Name      Size         Bytes  Class

  e       100x1            800  double array
  s       100x1            800  double array
  y       100x1            800  double array

Grand total is 300 elements using 2400 bytes

The result is a single realization (i.e., one sample path) of 100 observations 
each for the innovations {εt}, conditional standard deviations {σt}, and returns 
{yt} processes. These processes are designated by the output variables e, s, and 
y, respectively. 
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Simulating a Much Longer Path
However, accurate GARCH modeling typically requires a few years worth of 
data. If there are 250 trading days per year, 1000 observations would be a more 
useful sample. 

[e,s,y] =  garchsim(coeff, 1000);
whos e s y
  Name      Size         Bytes  Class

  e      1000x1           8000  double array
  s      1000x1           8000  double array
  y      1000x1           8000  double array

Grand total is 3000 elements using 24000 bytes

The result is a single realization of 1000 observations (roughly four years of 
data) for each of {εt}, {σt}, and {yt}. Plot the garchsim output data to see what it 
looks like.

garchplot(e,s,y)
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Figure 2-14:  A Single Realization of 1000 Observations

Simulating Multiple Paths
However, Monte Carlo simulation requires multiple independent paths. Use 
the same model to simulate 1000 paths of 200 observations each.

[e,s,y] =  garchsim(coeff, 200, 1000);
whos e s y
  Name      Size         Bytes  Class

  e       200x1000     1600000  double array
  s       200x1000     1600000  double array
  y       200x1000     1600000  double array
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Grand total is 600000 elements using 4800000 bytes

In this example, {εt}, {σt}, and {yt} are 200-by-1000 element matrices. These are 
relatively large arrays, and demand large chunks of memory. In fact, because 
of the way the GARCH Toolbox manages transients, simulating this data 
requires more memory than the 4800000 bytes indicated above.

Transients in the Simulation Process

Automatic Minimization of Transient Effects
The function garchsim generates stable output processes in (approximately) 
steady-state by attempting to eliminate transients in the data it simulates. 
garchsim first estimates the number of observations needed for the transients 
to decay to some arbitrarily small value, and then generates a number of 
observations equal to the sum of this estimated value and the number you 
request. garchsim then ignores the estimated number of initial samples needed 
for the transients to decay sufficiently and returns only the requested number 
of later observations. 

To do this, garchsim interprets the simulated GARCH(P,Q) conditional 
variance process as an ARMA(max(P,Q),P) model for the squared innovations 
(see, for example, Bollerslev [4], p.310). It then interprets this 
ARMA(max(P,Q),P) model as the correlated output of a linear filter and 
estimates its impulse response by finding the magnitude of the largest 
eigenvalue of its auto-regressive polynomial. Based on this eigenvalue, 
garchsim estimates the number of observations needed for the magnitude of 
the impulse response (which begins at 1) to decay below 0.01 (i.e., 1 percent). 
If the conditional mean has an ARMA(R,M) component, then garchsim also 
estimates its impulse response. 

Depending on the values of the parameters in the simulated conditional mean 
and variance models, you may need long pre-sample periods for the transients 
to die out. Although the simulation outputs may be relatively small matrices, 
the initial computation of these transients can result in a large memory burden 
and seriously impact performance. In the previous example, which simulates 
three 200-by-1000 element arrays, intermediate storage is required for far 
more than 200 observations.
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Further Minimization of Transient Effects
If you suspect transients persist in the simulated data garchsim returns, you 
can oversample and delete observations from the beginning of each series. For 
example, suppose you would like to simulate 10 independent paths of 1000 
observations each for {εt}, {σt}, and {yt} starting from a known scalar random 
number seed (12345). Start by generating 1200 observations, then further 
minimize the effect of transients by retaining only the last 1000 observations 
of interest.

[e,s,y] =  garchsim(coeff, 1200, 10, 12345);
whos e s y
  Name      Size         Bytes  Class

  e      1200x10         96000  double array
  s      1200x10         96000  double array
  y      1200x10         96000  double array

Grand total is 36000 elements using 288000 bytes

e = e(end-999:end, :);
s = s(end-999:end, :);
y = y(end-999:end, :);

whos e s y
  Name      Size         Bytes  Class

  e      1000x10         80000  double array
  s      1000x10         80000  double array
  y      1000x10         80000  double array

Grand total is 30000 elements using 240000 bytes

Note  The example above also illustrates how to specify a random number 
generator seed. If you do not specify a seed, as in the example in “Simulating 
Multiple Paths” on page 2-45, the default seed is 0 (the MATLAB initial state).
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Understanding Transient Effects
The example in this section builds on the example in the section “Further 
Minimization of Transient Effects” on page 2-47. The previous example 
simulated 10 independent paths of 1000 observations each for {εt}, {σt}, and {yt} 
and returned its outputs in the variables e, s, and y respectively. This example 
uses the GARCH Toolbox inference function garchinfer to infer {εt} and {σt} 
from the simulated return series y. It then compares the steady-state 
simulated innovations and conditional standard deviation processes with the 
inferred innovations and conditional standard deviation processes.

Essentially, garchsim uses an ARMA model as a linear filter to transform an 
uncorrelated input innovations process {εt} into a correlated output returns 
process {yt}. Use the function garchinfer to reverse this process by inferring 
innovations {εt} and standard deviation {σt} processes from the observations in 
{yt}

[eInferred, sInferred] = garchinfer(coeff, y);

where eInferred and sInferred are the inferred innovations and conditional 
standard deviations, respectively. Notice that when you query the workspace, 
eInferred and sInferred are the same size as the simulated returns matrix y

whos eInferred  sInferred y
  Name            Size         Bytes  Class

  eInferred    1000x10         80000  double array
  sInferred    1000x10         80000  double array
  y            1000x10         80000  double array

Grand total is 30000 elements using 240000 bytes

Now compare the steady-state, simulated processes with their inferred 
counterparts by examining the third trial (i.e., the third column of each 
matrix). Note that there is nothing special about the third column, and the 
following comparisons hold for all columns. 

First, create two matrices, eData and sData, to store the row numbers, the 
simulated and inferred series, and the difference between the two.

eData = [[1:length(e)]' e(:,3)  eInferred(:,3)  
[e(:,3)-eInferred(:,3)]];
sData = [[1:length(s)]' s(:,3)  sInferred(:,3)  
[s(:,3)-sInferred(:,3)]];
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whos eData sData
  Name        Size         Bytes  Class

  eData    1000x4          32000  double array
  sData    1000x4          32000  double array

Grand total is 8000 elements using 64000 bytes

Now, print the first 10 rows of eData and sData, using the fprintf command 
to format the printed output, and examine the observations.

Note  Depending on your platform, the innovations (e, eInferred) and 
standard deviations (s, sInferred) may differ in value from those shown 
below. This has little effect on the calculated differences, which continue to 
demonstrate the convergence shown in the last column.

fprintf('%4d %12.8f %12.8f %12.8f\n', eData(1:10,:)')
   1  -0.00111887  -0.00111887   0.00000000
   2  -0.01022535  -0.01022535   0.00000000
   3  -0.01391679  -0.01391679   0.00000000
   4   0.00769383   0.00769383   0.00000000
   5   0.00284161   0.00284161   0.00000000
   6   0.00837156   0.00837156   0.00000000
   7  -0.01022153  -0.01022153   0.00000000
   8  -0.00064348  -0.00064348   0.00000000
   9   0.00769471   0.00769471   0.00000000
  10  -0.00011629  -0.00011629  -0.00000000

fprintf('%4d %12.8f %12.8f %12.8f\n', sData(1:10,:)')
   1   0.01176309   0.01532522  -0.00356213
   2   0.01157993   0.01506653  -0.00348661
   3   0.01154388   0.01492360  -0.00337972
   4   0.01163145   0.01488014  -0.00324869
   5   0.01153130   0.01469346  -0.00316216
   6   0.01136278   0.01445537  -0.00309258
   7   0.01128578   0.01429146  -0.00300569
   8   0.01125978   0.01417048  -0.00291070
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   9   0.01108652   0.01393485  -0.00284832
  10   0.01100236   0.01377214  -0.00276979

Notice that the difference between the simulated and inferred innovations is 
effectively zero immediately, whereas the standard deviations appear to 
converge slowly. If you examine every 25th observation of the standard 
deviations, through the 400th observation, the convergence is more obvious.

fprintf('%4d %12.8f %12.8f %12.8f\n', sData(25:25:400,:)')
  25   0.01060556   0.01230273  -0.00169717
  50   0.01167755   0.01230644  -0.00062889
  75   0.01290505   0.01312981  -0.00022476
 100   0.01228385   0.01237591  -0.00009206
 125   0.01256986   0.01260484  -0.00003498
 150   0.01292421   0.01293742  -0.00001321
 175   0.01212655   0.01213201  -0.00000546
 200   0.01155697   0.01155919  -0.00000222
 225   0.01409612   0.01409683  -0.00000071
 250   0.01468410   0.01468437  -0.00000026
 275   0.01336617   0.01336628  -0.00000011
 300   0.01138117   0.01138123  -0.00000005
 325   0.01414220   0.01414222  -0.00000002
 350   0.01312882   0.01312883  -0.00000001
 375   0.01494447   0.01494447  -0.00000000
 400   0.01704352   0.01704352  -0.00000000

The innovations processes of the default model converge immediately because 
the default model assumes a simple constant in the conditional mean equation 
(i.e., there is no correlation in the conditional mean). However, the 
GARCH(1,1) default conditional variance equation is highly persistent (recall 
that the GARCH and ARCH parameter estimates are 0.9628 and 0.0318, 
respectively).

Note  The fprintf function lets you control the specific formatting of printed 
data. This example uses it to print the first 10 rows of eData and sData. It 
prints each innovation and difference value in fixed point notation, in a field of 
at least 12 digits, with 8 digits of precision. (See fprintf in the online 
MATLAB Function Reference.)
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A General Simulation Example
This simulation example is more general than the previous one that used the 
default model, GARCH(1,1). It uses an ARMA(2,1) model to express correlation 
in the conditional mean. The example:

1 Defines an ARMA(2,1)/GARCH(1,1) model

2 Uses the model to simulate 2000 observations for return series, innovations, 
and conditional standard deviation processes

3 Infers the innovations and standard deviations for the simulated return 
series

4 Compares the simulated and inferred innovations for the first 20 
observations

Create the Model
Start by creating an ARMA(2,1)/GARCH(1,1) composite model with repeated 
calls to garchset.

spec = garchset;
spec = garchset(spec, 'R', 2, 'M', 1);
spec = garchset(spec, 'C', 0, 'AR', [0.6 0.2], 'MA', 0.4);
spec = garchset(spec, 'K', 0.00001, 'GARCH', 0.8, 'ARCH', 0.1)
spec = 
         Comment: 'Mean: ARMAX(2,1,?); Variance: GARCH(1,1)'
               R: 2
               M: 1
               P: 1
               Q: 1
    Distribution: 'Gaussian'
               C: 0
              AR: [0.6000 0.2000]
              MA: 0.4000
         Regress: []
               K: 1.0000e-005
           GARCH: 0.8000
            ARCH: 0.1000
            FixC: []
           FixAR: []
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           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

If you substitute the coefficient vectors from this specification structure in 
Eq. (2-8) and Eq. (2-9) you get the following ARMA(2,1) and GARCH(1,1) 
models. These are the models this example simulates.

Simulate and Infer the Innovations
Use this model to simulate 2000 observations in a return series, and their 
corresponding innovations and standard deviations. Then use garchinfer to 
infer innovations and standard deviations from the simulated return series.

[e,s,y] =  garchsim(spec, 2000);
[eInferred, sInferred] = garchinfer(spec, y);

You can think of the simulation engine garchsim as a filter that generates a 
(possibly) correlated return series {yt} from a white noise input series {εt}. 
garchinfer reverses this process by inferring innovations {εt} and standard 
deviation {σt} processes from the observations in {yt}. 

However, garchinfer is a convenience function that only provides a 
user-friendly interface to the log-likelihood objective function, garchllfn. So, 
in fact,  garchllfn is the inverse (i.e., whitening) filter associated with the 
simulation engine, because it infers the white noise process from the observed 
return series. (See the section “Understanding Transient Effects” on 
page 2-48.)

Note  garchfit also calls the log-likelihood objective function, garchllfn, to 
infer the innovations and standard deviations. 

yt 0 0.6yt 1– 0.2yt 2– εt 0.4εt 1–+ + + +=

σt
2

0.00001 0.8σt 1–
2

0.1εt 1–
2

+ +=
2
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Compare Simulated and Inferred Innovations
Now compare the simulated and inferred innovations for the first 20 
observations. Notice that, after a few observations, the difference between the 
simulated and inferred innovations is insignificant.

eData = [[1:length(e)]'  e  eInferred  [e-eInferred]];
fprintf('%4d %12.8f %12.8f %12.8f\n', eData(1:20,:)')
   1  -0.00836573   0.00000000  -0.00836573
   2  -0.01976087   0.00000000  -0.01976087
   3  -0.00063568  -0.00854003   0.00790435
   4  -0.01022288  -0.00706114  -0.00316174
   5   0.00621509   0.00495039   0.00126470
   6   0.00496725   0.00547313  -0.00050588
   7   0.01596937   0.01576702   0.00020235
   8   0.00610852   0.00618946  -0.00008094
   9  -0.00640740  -0.00643977   0.00003238
  10   0.00367566   0.00368861  -0.00001295
  11  -0.00936189  -0.00936707   0.00000518
  12  -0.00018263  -0.00018056  -0.00000207
  13  -0.00043157  -0.00043240   0.00000083
  14   0.00000037   0.00000070  -0.00000033
  15  -0.00264566  -0.00264579   0.00000013
  16   0.00890411   0.00890416  -0.00000005
  17  -0.01577120  -0.01577122   0.00000002
  18   0.00409658   0.00409659  -0.00000001
  19   0.00825279   0.00825278   0.00000000
  20   0.00672859   0.00672859  -0.00000000

In the example above, the difference between the simulated and inferred 
innovations (e - eInferred) illustrates the transient effects introduced by the 
inference. When garchsim generates data, it generates sufficient initial data, 
which it then discards, to allow transients to decay to some arbitrarily small 
value (see “Automatic Minimization of Transient Effects” on page 2-46). 
However, the inference function garchinfer (an interface to the log-likelihood 
objective function, garchllfn) must infer the innovations and conditional 
standard deviations directly from the observed returns. This can introduce 
transient effects.

That the first R = 2 rows of the inferred innovations are 0, illustrates the link 
between simulation, inference, and estimation in the GARCH Toolbox. This 
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fact is also directly related to the manner in which maximum likelihood 
estimation is performed.

Maximum Likelihood Estimation
Forming the log-likelihood objective function involves a two-step process: 

1 garchllfn uses the conditional mean specification of ARMAX form shown in 
Eq. (2-16) to infer the innovations from the observed returns.  This equation 
is derived from Eq. (2-8) by solving for εt. 

(2-16)

To infer the innovations, garchllfn uses the Box and Jenkins conditional 
approach, which conditions the recursion on the initial R observations of yt, 
setting the initial values of εt to 0 (see Hamilton [12], page 132, or Box, 
Jenkins, and Reinsel [7], page 237). Note that for the default model, 
R = M = 0, and no transients are induced due to this initialization.

2 garchllfn must then infer the conditional variances from the squared 
innovations as illustrated in Eq. (2-9), which is replicated here. 

This step initializes the recursion by setting the first max(P,Q) observations 
of both σt

2 and εt
2 to the sample variance of the innovations inferred from 

the first step (see Hamilton [12], pages 666-667, or Bollerslev [4], page 316).

εt C– yt ARiyt i–
i 1=

R

∑– MAjεt j–

j 1=

M

∑– βkX t k,( )
k 1=

Nx

∑–+=

σt
2 κ Giσt i–

2

i 1=

P

∑ Ajεt j–
2

j 1=

Q

∑+ +=
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Forecasting
This section uses the estimated default model and the XYZ Corporation, from 
the section “Simulation” on page 2-42, to demonstrate the use of the forecasting 
function garchpred.

garchpred computes minimum-mean-square-error (MMSE) forecasts of the 
conditional mean and conditional standard deviation of the returns {yt} in each 
period over a user-specified forecast horizon.

Specifically, this section discusses:

• Computing a Forecast

• Computing Root Mean Square Errors (RMSE)

• Asymptotic Behavior for Long-Range Forecast Horizons

Note  Example results in this section are printed in Short E numeric format 
for readability. Select File > Preferences... > General > Short E before 
starting the example to duplicate these printed results.

Computing a Forecast
This section discusses:

• Using Default Inputs

• Forecasting Over a Longer Horizon

• Long-Range Forecasting

• Forecasting Returns Over Multiple Periods

If the variables for the estimated model no longer exist in your workspace, then 
use the following commands to load the data and regenerate the estimation 
results of the default model. This example omits the estimation output to save 
space. 

yt 0.00049183 εt+=

σt
2

8.2736e 007– 0.96283σt 1–
2

0.03178εt 1–
2

+ +=
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load xyz
xyz = price2ret(prices);
[coeff, errors, LLF, innovations, sigma] = garchfit(xyz);

Using Default Inputs
Now call garchpred to compute the conditional mean and standard deviation 
return forecasts for the XYZ Corporation using the default model parameter 
estimates. Provide the specification structure coeff (the output of garchfit) 
and the XYZ Corporation return series xyz, as input. Accept the garchpred 
default (1) for the number of forecast periods. 

[sFcast, yFcast]  = garchpred(coeff, xyz);
[sFcast, yFcast]

ans =

  1.1670e-002  4.9183e-004

The result consists of the MMSE forecasts of the conditional standard 
deviations and the conditional mean of the return series xyz for a one-period 
default horizon.

Note  garchpred allows the use of a time series regression matrix and an 
associated time series matrix of forecasted explanatory data. If you specify no 
regression matrix, the conditional mean has no regression component. See the 
section “Conditional Mean Models with Regression Components” on page 2-63 
for information about using regression models.

Forecasting Over a Longer Horizon
To obtain information about asymptotic behavior, you need to forecast for more 
more than a single period. Use the following command to forecast the 
conditional mean and standard deviation in each period of a 10-period forecast 
horizon. 

[sFcast, yFcast]  = garchpred(coeff, xyz, 10);
[sFcast, yFcast]
ans =
  1.1670e-002  4.9183e-004
6
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  1.1674e-002  4.9183e-004
  1.1678e-002  4.9183e-004
  1.1682e-002  4.9183e-004
  1.1686e-002  4.9183e-004
  1.1690e-002  4.9183e-004
  1.1694e-002  4.9183e-004
  1.1697e-002  4.9183e-004
  1.1701e-002  4.9183e-004
  1.1705e-002  4.9183e-004

The results show that the default model forecast of the conditional mean is 
always C = 0.00049183. This is true for any forecast horizon because the 
expected value of any innovation, εt, is 0.

In contrast, the conditional standard deviation forecast changes from period to 
period and approaches the unconditional standard deviation of {εt}, given by 
the square root of Eq. (2-7).

(2-17)

For this example, you can calculate the unconditional standard deviation of {εt} 
as 

s0 = sqrt(coeff.K/(1 - sum([coeff.GARCH(:) ; coeff.ARCH(:)])))
s0 =
  1.2393e-002

Plot the conditional standard deviations, sigma, derived from the fitted 
returns. The plot reveals that the most recent values of σt fall below this 
long-run, asymptotic value.

plot(sigma)
title('Fitted Conditional Standard Deviations: XYZ Corporation')

σ κ

1 Gi
i 1=

P

∑– Aj
j 1=

Q

∑–

-------------------------------------------------=
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Figure 2-15:  Fitted Conditional Standard Deviations

Long-Range Forecasting
That the most recent values of σt fall below 1.2393e-002 indicates that the 
long-range forecast of σt approaches this value from below. Confirm this by 
forecasting the standard deviations out 1000 periods, then plotting the 
forecasts (blue, dashed) and asymptotic value (red, solid) on the same graph.

sFcast = garchpred(coeff, xyz, 1000);
plot(sFcast, 'blue--')
hold('on')
plot([0 length(sFcast)], [s0 s0], 'red')
title('Standard Deviation Forecasts and Asymptotic Value: XYZ 
Corporation')
8
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Figure 2-16:  Standard Deviation Forecasts and Asymptotic Value

You can see from Figure 2-16, Standard Deviation Forecasts and Asymptotic 
Value that it takes a very long time for the forecast to reach its steady-state 
value. This is consistent with the high degree of persistence in the volatility 
process for the XYZ Corporation (see Figure 2-9, ACF of the Squared Returns).

Forecasting Returns Over Multiple Periods
In addition to computing conditional mean and volatility forecasts on a 
per-period basis, garchpred also computes volatility forecasts of returns for 
assets held for multiple periods. For example, to forecast the standard 
deviation of the return you would obtain if you purchased XYZ stock today and 
sold it 10 days from now,

[sFcast, yFcast, sTotal]  = garchpred(coeff, xyz, 10);
[sFcast, sTotal]
ans =
  1.1670e-002  1.1670e-002
  1.1674e-002  1.6506e-002
  1.1678e-002  2.0220e-002
  1.1682e-002  2.3352e-002
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  1.1686e-002  2.6112e-002
  1.1690e-002  2.8609e-002
  1.1694e-002  3.0907e-002
  1.1697e-002  3.3047e-002
  1.1701e-002  3.5057e-002
  1.1705e-002  3.6959e-002

The vector sTotal (the second column above) represents the standard 
deviation forecasts of returns when the asset is held for multiple periods. The 
first element contains the standard deviation of the return expected if XYZ 
stock were held for one period, the second element contains the standard 
deviation of the return expected if XYZ stock were held for two periods, and so 
on. The last element contains the volatility forecast of the expected return if 
XYZ were purchased today and held for 10 periods. 

If you convert the standard deviations sFcast and sTotal to variances by 
squaring each element, you can see an interesting relationship between the 
cumulative sum of sFcast.^2 and sTotal.^2.

[cumsum(sFcast.^2)  sTotal.^2]
ans =
  1.3618e-004  1.3618e-004
  2.7246e-004  2.7246e-004
  4.0883e-004  4.0883e-004
  5.4530e-004  5.4530e-004
  6.8185e-004  6.8185e-004
  8.1850e-004  8.1850e-004
  9.5524e-004  9.5524e-004
  1.0921e-003  1.0921e-003
  1.2290e-003  1.2290e-003
  1.3660e-003  1.3660e-003

Although not exactly equivalent, this relationship in the presence of 
heteroscedasticity is similar to the familiar square-root-of-time rule for 
converting constant variances of uncorrelated returns expressed on a 
per-period basis to a variance over multiple periods. This relationship between 
sFcast and sTotal holds for the default conditional mean model only (i.e., the 
relationship is valid for uncorrelated returns). 

Note that the calculation of sTotal is strictly correct for continuously 
compounded returns only, and is an approximation for periodically 
compounded returns.
0
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Note  The sTotal output of garchpred is not available for conditional mean 
models with regression components. 

Computing Root Mean Square Errors (RMSE)
 You can also use garchpred to calculate the root mean square errors (RMSE) 
associated with the conditional mean forecasts in yFcast.

[sFcast, yFcast, sTotal, yRMSE]  = garchpred(coeff, xyz, 10);
[yFcast, yRMSE]
ans =
  4.9183e-004  1.1670e-002
  4.9183e-004  1.1674e-002
  4.9183e-004  1.1678e-002
  4.9183e-004  1.1682e-002
  4.9183e-004  1.1686e-002
  4.9183e-004  1.1690e-002
  4.9183e-004  1.1694e-002
  4.9183e-004  1.1697e-002
  4.9183e-004  1.1701e-002
  4.9183e-004  1.1705e-002

The first column above contains the minimum mean square error (MMSE) 
forecasts of the conditional mean of the returns in each of the first 10 periods 
(from the section “Forecasting Over a Longer Horizon” on page 2-56). The 
second column contains the standard error of the corresponding forecast (see 
Baillie & Bollerslev [1], equation 19, page 96). You can use these results to 
construct approximate confidence intervals for conditional mean forecasts, 
with the approximation becoming more accurate during periods of relatively 
stable volatility (see Baillie & Bollerslev [1], and Bollerslev, Engle, and Nelson 
[6]). As heteroscedasticity in returns disappears (i.e., as the returns approach 
the homoskedastic, or constant variance, limit), the approximation is exact and 
you can apply the Box & Jenkins confidence bounds (see Box, Jenkins, and 
Reinsel [7], pages 133-145).
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Note  The yRMSE output of garchpred is not available for conditional mean 
models with regression components. 

Asymptotic Behavior for Long-Range Forecast 
Horizons
If you are working with long-range forecast horizons, the following asymptotic 
behaviors hold for the outputs of garchpred:

• As mentioned earlier in this section, the conditional standard deviation 
forecast (i.e., the first garchpred output, sFcast) approaches the 
unconditional standard deviation of {εt} given by the square root of Eq. (2-7).

• GARCH effects do not affect the MMSE forecast of the conditional mean (i.e., 
the second garchpred output, yFcast). The forecast approaches the 
unconditional mean of {yt} as in the constant variance case. That is, the 
presence of GARCH effects introduces dependence in the variance process, 
and only affects the uncertainty of the mean forecast, leaving the mean 
forecast itself unchanged.

• The mean-square-error of the conditional mean (i.e., the square of the fourth 
garchpred output, yRMSE.^2) approaches the unconditional variance of {yt}.
2
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Conditional Mean Models with Regression Components
The GARCH Toolbox allows conditional mean models with regression 
components, i.e., of general ARMAX(R,M,Nx) form.

Conditional mean models with a regression component introduce additional 
complexity in the sense that the GARCH Toolbox has no way of knowing what 
the explanatory data represents or how it was generated. This is in contrast to 
ARMA models, which have an explicit forecasting mechanism and well-defined 
stationarity/invertibility requirements.

All the primary functions in the GARCH Toolbox (i.e., garchfit, garchinfer, 
garchpred, and garchsim) accept an optional regression matrix X, which 
represents X in the equation above. You must ensure that the regression 
matrix you provide is valid and you must: 

• Collect and format the past history of explanatory data you include in X

• As needed, forecast X into the future to form XF

This section discusses:

• Incorporating a Regression Model in an Estimation

• Simulation and Inference Using a Regression Component

• Forecasting Using a Regression Component

• Regression in a Monte Carlo Framework

Incorporating a Regression Model in an Estimation
This section uses the asymptotic equivalence of auto-regressive models and 
linear regression models to illustrate the use of a regression component in the 
GARCH Toolbox. The example is presented in two parts:

• Fitting an AR/GARCH Model to a Simulated Return Series

• Fitting a Regression Model to the Same Return Series

yt C ARiyt i–
i 1=

R

∑ εt MAjεt j–

j 1=

M

∑ βkX t k,( )
k 1=

Nx

∑+ + + +=
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Fitting an AR/GARCH Model to a Simulated Return Series
This section defines a specification structure for an AR/GARCH model, and 
then uses that model to fit a simulated return series to the defined model.

Define the AR/GARCH Model. Start by creating a specification structure for an 
AR(2)/GARCH(1,1) composite model with successive calls to garchset. Set the 
Display flag to off to suppress the optimization details that garchfit 
normally prints to the screen.

spec = garchset('K', 0.005, 'GARCH', 0.7, 'ARCH', 0.1);
spec = garchset(spec, 'C', 0);
spec = garchset(spec, 'R', 2, 'AR', [0.5 -0.8]);
spec = garchset(spec, 'Regress', [0.5  -0.8])
spec = garchset(spec, 'Display', 'off');

spec = 
         Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,1)'
               R: 2
               M: 0
               P: 1
               Q: 1
    Distribution: 'Gaussian'
               C: 0
              AR: [0.5000 -0.8000]
              MA: []
         Regress: [0.5000 -0.8000]
               K: 0.0050
           GARCH: 0.7000
            ARCH: 0.1000
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

Notice that in this specification structure, spec:
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• The model order fields R, M, P, and Q are consistent with the number of 
coefficients in the AR, MA, GARCH, and ARCH vectors, respectively.

• Although the Regress field indicates two regression coefficients, the Comment 
field still contains a question mark as a placeholder for the number of 
explanatory variables.

• There is no model order field for the Regress vector, analogous to the R, M, P, 
and Q orders of an ARMA(R,M)/GARCH(P,Q) model.

Fit the Model to a Simulated Return Series. Simulate 2000 observations of the 
innovations, conditional standard deviations, and returns for the 
AR(2)/GARCH(1,1) process defined in spec. Use the model defined in spec to 
estimate the parameters of the simulated return series and then compare the 
parameter estimates to the original coefficients in spec. 

[e,s,y] = garchsim(spec, 2000);
[coeff, errors] = garchfit(spec, y);
garchdisp(coeff, errors)

  Number of Parameters Estimated: 6

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
          C    -0.00045653    0.0034627       -0.1318
      AR(1)    0.50256        0.013926        36.0875
      AR(2)    -0.80022       0.013987       -57.2134
          K    0.0049947      0.0019528        2.5577
   GARCH(1)    0.71232        0.094514         7.5366
    ARCH(1)    0.082964       0.022582         3.6740

The estimated parameters, shown in the Value column, are quite close to the 
original coefficients in spec.

Because you specified no explanatory regression matrix as input to garchsim 
and garchfit, these functions ignore the regression coefficients (Regress). 
Display the Comment field of the resulting garchfit output structure. It shows 
a 0 for the order of the regression component. 

comment = garchget(coeff, 'Comment')
comment =
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Mean: ARMAX(2,0,0); Variance: GARCH(1,1)

Fitting a Regression Model to the Same Return Series
To illustrate the use of a regression matrix, fit the return series y, an AR(2) 
process in the mean, to a regression model with two explanatory variables. The 
regression matrix consists of the first- and second-order lags of the simulated 
return series y. 

Remove AR Component. First, remove the AR component from the specification 
structure.   

spec = garchset(spec, 'R', 0, 'AR', [])
spec = 
         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
               R: 0
               M: 0
               P: 1
               Q: 1
    Distribution: 'Gaussian'
               C: 0
              AR: []
              MA: []
         Regress: [0.5000 -0.8000]
               K: 0.0050
           GARCH: 0.7000
            ARCH: 0.1000
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

Create the Regression Matrix. Create a regression matrix of first- and second-order 
lags using the simulated returns vector y as input. Examine the first 10 rows 
of y and the corresponding rows of the lags.

X = lagmatrix(y, [1 2]);
[y(1:10)  X(1:10,:)]
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ans =
    0.0562       NaN       NaN
    0.0183    0.0562       NaN
   -0.0024    0.0183    0.0562
   -0.1506   -0.0024    0.0183
   -0.3937   -0.1506   -0.0024
   -0.0867   -0.3937   -0.1506
    0.1075   -0.0867   -0.3937
    0.2225    0.1075   -0.0867
    0.1044    0.2225    0.1075
    0.1288    0.1044    0.2225

A NaN (an IEEE arithmetic standard for Not-a-Number) in the resulting matrix 
X indicates the presence of a missing observation. If you use X to fit a regression 
model to y, garchfit produces an error.

[coeff, errors] = garchfit(spec, y, X);
??? Error using ==> garchfit
 Regression matrix 'X' has insufficient number of observations.

The error occurs because there are fewer valid rows (i.e., those rows without a 
NaN) in the regression matrix X than there are observations in y. The returns 
vector y has 2000 observations but the most recent number of valid 
observations in X is only 1998. 

You can do one of two things to enable you to proceed. For a return series of this 
size it makes little difference which option you choose:

• Strip off the first two observations in y

• Replace all NaNs in X with some reasonable value 

This example continues by replacing all NaNs with the sample mean of y. Use 
the MATLAB function isnan to identify NaNs and the function mean to compute 
the mean of y.

X(isnan(X)) = mean(y);
[y(1:10), X(1:10,:)]
ans =
    0.0562    0.0004    0.0004
    0.0183    0.0562    0.0004
   -0.0024    0.0183    0.0562
   -0.1506   -0.0024    0.0183
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   -0.3937   -0.1506   -0.0024
   -0.0867   -0.3937   -0.1506
    0.1075   -0.0867   -0.3937
    0.2225    0.1075   -0.0867
    0.1044    0.2225    0.1075
    0.1288    0.1044    0.2225

Note  If the number of valid rows in X exceeds the number of observations in 
y, then garchfit includes in the estimation only the most recent rows of X, 
equal to the number of observations in y.

Fit the Regression Model. Now that the explanatory regression matrix X is 
compatible with the return series vector y, use garchfit to estimate the model 
coefficients for the return series using the regression matrix and display the 
results.

[coeffX, errorsX] = garchfit(spec, y, X);
garchdisp (coeffX, errorsX)
 
  Number of Parameters Estimated: 6

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
          C    -0.00044818    0.0034618       -0.1295
 Regress(1)    0.50257        0.01392         36.1049
 Regress(2)    -0.8002        0.013981       -57.2344
          K    0.0050529      0.0019709        2.5637
   GARCH(1)    0.70955        0.095315         7.4443
    ARCH(1)    0.083293       0.022664         3.6751

These estimation results are similar to those shown for the AR model in the 
section “Fitting an AR/GARCH Model to a Simulated Return Series” on 
page 2-64. This similarity illustrates the asymptotic equivalence of 
auto-regressive models and linear regression models.

By illustrating the extra steps involved in formatting the explanatory matrix, 
this part of the example also highlights the additional complexity involved in 
modeling conditional means with regression components.
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Simulation and Inference Using a Regression 
Component
Including a regression component with garchsim and garchinfer is similar to 
including one with garchfit.

For example, the following command simulates a single realization of 2000 
observations of the innovations, conditional standard deviations, and returns. 
It uses the initial MATLAB default state as a random number generator seed, 
and incorporates the regression matrix X.

[e,s,y] = garchsim(spec, 2000, 1, [], X);

You can also use the same regression matrix X to infer the innovations and 
conditional standard deviations from the returns.

[eInfer, sInfer] = garchinfer(spec, y, X);

Forecasting Using a Regression Component
Inclusion of a regression component in forecasting is also similar to including 
one in an estimation. However, in addition to the explanatory data, you must 
consider the use of forecasted explanatory data. 

This section discusses:

• Forecasted Explanatory Data

• Generating the Forecasted Explanatory Data

• Ordinary Least Squares Regression

Forecasted Explanatory Data
If you want to forecast the conditional mean of a return series y in each period 
of a 10-period forecast horizon, the correct calling syntax for garchpred is 

[sFcast, yFcast] = garchpred(spec, y, 10, X, XF);

where X is the same regression matrix shown above, and XF is a regression 
matrix of forecasted explanatory data. In fact, XF represents a projection into 
the future of the same explanatory data found in X. Note that the command 
above produces an error if you execute it in your current workspace because XF 
is missing.
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XF must have the same number of columns as X. In each column of XF, the first 
row contains the one-period-ahead forecast, the second row the 
two-period-ahead forecast, and so on. If you specify XF, the number of rows 
(forecasts) in each column of must equal or exceed the forecast horizon. When 
the number of forecasts in XF exceeds the 10-period forecast horizon, garchpred 
uses only the first 10 forecasts. If XF is empty ([]) or missing, the conditional 
mean forecast has no regression component.

You should use the same regression matrix X when calling garchpred that you 
used for simulation and/or estimation. This is because garchpred requires a 
complete conditional mean specification to correctly infer the innovations {εt} 
from the observed return series {yt}.

Forecasting the Conditional Standard Deviation. If you only need to forecast the 
conditional standard deviation (i.e., sFcast), XF is unnecessary. This is true 
even if you included the matrix X in the simulation and/or estimation process.

For example, you would use the following syntax to forecast only the 
conditional standard deviation of the return series y over a 10-period forecast 
horizon

sFcast = garchpred(spec, y, 10, X);

Forecasting the Conditional Mean. If you specify X, you must also specify XF to 
forecast the conditional mean (i.e., yFcast). 

For example, to forecast the conditional mean of the return series y over a 
10-period forecast horizon,

[sFcast yFcast] = garchpred(spec, y, 10, X, XF);

The forecasted explanatory data, XF, does not affect the standard deviation 
forecast. Note that this command produces an error if you execute it in your 
current workspace because XF is missing.

Generating the Forecasted Explanatory Data
Typically, the regression matrix X contains the observed returns of a suitable 
market index, collected over the same time interval as the observed data of 
interest. In this case, X is most likely a vector, corresponding to a single 
explanatory variable, and you must devise some way of generating the forecast 
of X (i.e., XF).
0



Conditional Mean Models with Regression Components
One approach, using the GARCH Toolbox, is to first use garchfit to fit a 
suitable ARMA(R,M) model to the returns in X, then use garchpred to forecast 
the market index returns into the future. Specifically, since you’re not 
interested in fitting the volatility of X, you can simplify the estimation process 
by assuming a constant conditional variance model, i.e. 
ARMA(R,M)/GARCH(0,0).

Ordinary Least Squares Regression
The following example illustrates an ordinary least squares regression by 
simulating a return series that scales the returns of the XYZ Corporation. It 
also provides an example of a constant conditional variance model. A model like 
this might, for example, represent a leveraged position in the common stock of 
the XYZ Corporation.

First, create a specification structure. Set the Display flag to off to suppress 
the optimization details that garchfit normally prints to the screen.

spec = garchset('Display', 'off');
spec = garchset(spec, 'P', 0, 'Q', 0);
spec = garchset(spec, 'C', 0, 'Regress', 1.2, 'K', 0.00015)
spec = 
         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(0,0)'
               R: 0
               M: 0
               P: 0
               Q: 0
    Distribution: 'Gaussian'
               C: 0
              AR: []
              MA: []
         Regress: 1.2000
               K: 1.5000e-004
           GARCH: []
            ARCH: []
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
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         FixARCH: []
    Optimization: [1x1 struct]

Now, simulate a single realization of 2000 observations, fit the model, and 
examine the results

[e, s, y] = garchsim(spec, 2000, 1, [], xyz);
[coeff, errors] = garchfit(spec, y, xyz);
garchdisp(coeff, errors)
 
  Number of Parameters Estimated: 3

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
          C    -5.5043e-006   0.0002711       -0.0203
 Regress(1)    1.2402         0.020454        60.6304
          K    0.0001464      4.6871e-006     31.2345

These estimation results are just the ordinary least squares (OLS) regression 
results. In fact, in the absence of GARCH effects and assuming Gaussian 
innovations, maximum likelihood estimation and least squares regression are 
the same thing. 

Note  This example is shown purely for illustration purposes. Although you 
can use the GARCH Toolbox to perform OLS, it is computationally inefficient 
and is not recommended.

Regression in a Monte Carlo Framework
In the general case, the functions garchsim, garchinfer, and garchpred 
process multiple realizations (i.e., sample paths) of univariate time series. That 
is, the outputs of garchsim, as well as the observed return series input to 
garchpred and garchinfer, can be matrices in which each column represents 
an independent realization. garchfit is different, in that the input observed 
return series of interest must be a vector (i.e., a single realization).

When simulating, inferring, and forecasting multiple realizations, the 
appropriate toolbox function applies a given regression matrix X to each 
2
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realization of a univariate time series. For example, in the following command, 
garchsim applies a given X matrix to all 10 columns of the output series {εt}, 
{σt}, and {yt}.

[e,s,y] = garchsim(spec, 100, 10, [], X);

In a true Monte Carlo simulation of the above process, including a regression 
component, you would call garchsim inside a loop 10 times, once for each path. 
Each iteration would pass in a unique realization of X and produce 
single-column outputs.
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Model Selection and Analysis
The GARCH Toolbox offers a number of model selection tools.

The section “Analysis and Estimation Example Using the Default Model” on 
page 2-17 illustrates the use of the autocorrelation (autocorr) and partial 
autocorrelation (parcorr) functions as qualitative guides in the process of 
model selection and assessment. It also introduces the archtest and lbqtest 
hypothesis testing functions. 

This section discusses:

• Likelihood Ratio Tests (lratiotest)

• Akaike and Bayesian Information Criteria (aicbic)

• Equality Constraints and Parameter Significance

• Equality Constraints and Initial Parameter Estimates

The examples that follow again rely on the daily returns of the XYZ 
Corporation. If the variables no longer exist in your MATLAB workspace, you 
can recreate them with the commands,

load xyz
xyz = price2ret(prices);

Likelihood Ratio Tests
The section “Analysis and Estimation Example Using the Default Model” on 
page 2-17 demonstrates that the default GARCH(1,1) model explains most of 
the variability of the returns of the XYZ Corporation. This example uses the 
function lratiotest to determine if evidence exists to support the use of a 
GARCH(2,1) model.

The example first fits the return series of the XYZ Corporation to the default 
GARCH(1,1) model. It then overfits the same series using the following, more 
elaborate, GARCH(2,1) model.

The example is presented in two parts:

yt C εt+=

σt
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Model Selection and Analysis
• Estimate Parameters for the GARCH(1,1) and GARCH(2,1) Models

• Perform the Likelihood Ratio Test

Estimate Parameters for the GARCH(1,1) and GARCH(2,1) Models

The GARCH(1,1) Model. First, create a GARCH(1,1) default model with the 
Display flag set to off. Then, estimate the model and display the results, 
including the maximized log-likelihood function value.

spec11 = garchset('Display', 'off', 'P', 1, 'Q', 1);
[coeff11, errors11, LLF11, innovations11, sigma11, summary11] = 
garchfit(spec11, xyz);
garchdisp(coeff11, errors11)
 
  Number of Parameters Estimated: 4

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
          C    0.00049183     0.00025585       1.9223
          K    8.2736e-007    2.7446e-007      3.0145
   GARCH(1)    0.96283        0.0051557      186.7500
    ARCH(1)    0.03178        0.004416         7.1965
 
LLF11
LLF11 =
  5.9746e+003

Note that a more accurate value of LLF11 is 5974.6025.

The GARCH(2,1) Model. Create a GARCH(2,1) specification structure. Again, set 
the Display flag to off.

spec21 = garchset('Display', 'off', 'P', 2, 'Q', 1)
spec21 = 
         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(2,1)'
               R: 0
               M: 0
               P: 2
               Q: 1
    Distribution: 'Gaussian'
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               C: []
              AR: []
              MA: []
         Regress: []
               K: []
           GARCH: []
            ARCH: []
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

 Now estimate the GARCH(2,1) model and display the results, including the 
maximized log-likelihood function value.

[coeff21,errors21,LLF21,innovations21,sigma21,summary21] = 
garchfit(spec21, xyz);
garchdisp(coeff21, errors21)
 
  Number of Parameters Estimated: 5

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
          C    0.00049584     0.000256         1.9369
          K    1.3645e-006    4.6186e-007      2.9545
   GARCH(1)    0.0358         0.028327         1.2638
   GARCH(2)    0.90149        0.029642        30.4131
    ARCH(1)    0.05379        0.0073393        7.3291

LLF21
LLF21 =
  5.9759e+003

A more accurate value of LLF21 is 5975.8927.
6
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Perform the Likelihood Ratio Test
Of the two models associated with the same return series: 

• The default GARCH(1,1) model is a restricted model. That is, you can 
interpret a GARCH(1,1) model as a GARCH(2,1) model with the restriction 
that G2 = 0. 

• The more elaborate GARCH(2,1) model is an unrestricted model. 

Since garchfit enforces no boundary constraints during either of the two 
estimations, you can apply a likelihood ratio test (LRT) (see Hamilton [12], 
pages 142-144).

In this context, the unrestricted GARCH(2,1) model serves as the alternative 
hypothesis (i.e., the hypothesis the example gathers evidence to support), while 
the restricted GARCH(1,1) model serves as the null hypothesis (i.e., the 
hypothesis the example assumes is true, lacking any evidence to support the 
alternative). 

The LRT statistic is asymptotically Chi-Square distributed with 
degrees-of-freedom equal to the number of restrictions imposed. Since the 
GARCH(1,1) model imposes one restriction, specify one degrees-of-freedom in 
your call to lratiotest. Test the models at the 0.05 significance level.

[H, pValue, Stat, CriticalValue] = lratiotest(LLF21, LLF11, 1, 
0.05);
[H  pValue  Stat  CriticalValue]
ans =
         0    0.1082    2.5806    3.8415

H = 0 indicates that there is insufficient statistical evidence in support of the 
GARCH(2,1) model. The conclusion is that the default GARCH(1,1) model 
adequately explains the variability in the return series when compared to a 
more elaborate GARCH(2,1) model.

Akaike and Bayesian Information Criteria
You can also use Akaike (AIC) and Bayesian (BIC) information criteria to 
compare alternative models. Since information criteria penalize models with 
additional parameters, the AIC and BIC model-order-selection criteria are 
based on parsimony (see Box, Jenkins, and Reinsel [7], pages 200-201). 
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The following example uses the default GARCH(1,1) and GARCH(2,1) models 
developed in the previous section, “Likelihood Ratio Tests” on page 2-74. It is 
presented in two parts:

• Counting Estimated Parameters

• Computing the AIC and BIC Criteria

Counting Estimated Parameters
For both AIC and BIC, you need to provide the number of parameters 
estimated in the model. For the relatively simple models in the previous 
example, you can just count the number of parameters. The GARCH(2,1) model 
estimated five parameters (C, κ, G1, G2, and A1), and GARCH(1,1) model 
estimated four parameters (C, κ, G1, and A1). 

Use the function garchcount for more elaborate models. garchcount accepts 
the output specification structure created by garchfit and returns the number 
of parameters in the model defined in that structure.

n21 = garchcount(coeff21)
n21 =
     5
n11 = garchcount(coeff11)
n11 =
     4

Computing the AIC and BIC Criteria
Now use the function aicbic to compute the AIC and BIC statistics for the 
GARCH(2,1) model and the GARCH(1,1) model. Note that for the BIC statistic, 
you must also specify the number of observations in the return series.

[AIC, BIC] = aicbic(LLF21, n21, 2000);
[AIC   BIC]
ans =
  1.0e+004 *
   -1.1942   -1.1914  

More accurate values are AIC = -11941.7855 and BIC = -11913.7810.

[AIC, BIC] = aicbic(LLF11, n11, 2000);
[AIC   BIC]
8
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ans =
  1.0e+004 *
   -1.1941   -1.1919  

More accurate values are AIC = -11941.2049 and BIC = -11918.8013

You can use the relative values of the AIC and BIC statistics as guides in the 
model selection process. In this example, the AIC criterion favors the 
GARCH(2,1) model, while the BIC criterion favors the GARCH(1,1) default 
model with fewer parameters. Notice that since BIC imposes a greater penalty 
for additional parameters than does AIC, BIC always provides a model with a 
number of parameters no greater than that chosen by AIC.

Equality Constraints and Parameter Significance
The GARCH Toolbox lets you set and constrain model parameters as a way of 
assessing the parameters’ significance. 

This section:

• Shows you how to use the specification structure to fix individual 
parameters.

• Provides an example that demonstrates the use of equality constraints.

The Specification Structure Fix Fields
Each of the coefficient fields C, AR, MA, Regress, K, GARCH, and ARCH, in the 
specification structure, has a corresponding Boolean field that lets you hold 
any individual parameter fixed. These fix fields are FixC, FixAR, FixMA, 
FixRegress, FixK, FixGARCH, and FixARCH. For example, look at the output 
structure from the GARCH(2,1) estimation in the section “Likelihood Ratio 
Tests” on page 2-74.

coeff21
coeff21 = 
         Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(2,1)'
               R: 0
               M: 0
               P: 2
               Q: 1
    Distribution: 'Gaussian'
               C: 4.9584e-004
2-79



2 Tutorial

2-8
              AR: []
              MA: []
         Regress: []
               K: 1.3645e-006
           GARCH: [0.0358 0.9015]
            ARCH: 0.0538
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

Each fix field, when not empty ([]), is the same size as the corresponding 
coefficient field. A 0 in a particular element of a fix field indicates that the 
corresponding element of its companion value field is an initial parameter 
guess that garchfit refines during the estimation process. A 1 indicates that 
garchfit holds the corresponding element of its value field fixed during the 
estimation process (i.e., an equality constraint). 

The GARCH(2,1) Model as an Example
This example uses the GARCH(2,1) model above to demonstrate the use of 
equality constraints. First, display the estimation results for the model.

garchdisp(coeff21, errors21)
 
  Number of Parameters Estimated: 5

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
          C    0.00049584     0.000256         1.9369
          K    1.3645e-006    4.6186e-007      2.9545
   GARCH(1)    0.0358         0.028327         1.2638
   GARCH(2)    0.90149        0.029642        30.4131
    ARCH(1)    0.05379        0.0073393        7.3291

The T-statistic column is the parameter value divided by the standard error, 
and is normally distributed for large samples. The T-statistic measures the 
0
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number of standard deviations the parameter estimate is away from zero, and 
as a general rule, a T-statistic greater than 2 in magnitude corresponds to 
approximately a 95 percent confidence interval. The T-statistics in the table 
above imply that the conditional mean constant (C) is on the edge of 
significance. They also imply that the GARCH(1) parameter adds little if any 
explanatory power to the model.

The GARCH(1) Parameter. Constrain the GARCH(1) parameter at 0 to assess its 
significance.

specG1 = garchset(coeff21, 'GARCH', [0 0.9], 'FixGARCH', [1 0])
specG1 = 
         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(2,1)'
               R: 0
               M: 0
               P: 2
               Q: 1
    Distribution: 'Gaussian'
               C: 4.9584e-004
              AR: []
              MA: []
         Regress: []
               K: 1.3645e-006
           GARCH: [0 0.9000]
            ARCH: 0.0538
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: [1 0]
         FixARCH: []
    Optimization: [1x1 struct]

The specG1 structure field FixGARCH indicates that garchfit holds GARCH(1) 
fixed at 0, and refines GARCH(2) from an initial value of 0.9 during the 
estimation process. In other words, the specG1 specification structure tests the 
composite model,

yt C εt+=
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Now estimate the model subject to the equality constraint and display the 
results.

[coeffG1,errorsG1,LLFG1,innovationsG1,sigmaG1] = 
garchfit(specG1, xyz);
garchdisp(coeffG1, errorsG1)
 
  Number of Parameters Estimated: 4

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
          C    0.00052356     0.00025499       2.0532
          K    1.6865e-006    4.6547e-007      3.6231
   GARCH(1)    0              Fixed            Fixed
   GARCH(2)    0.93442        0.0085294      109.5531
    ARCH(1)    0.054718       0.0072265        7.5719

LLFG1
LLFG1 =
  5.9738e+003

A more accurate value of LLFG1 is 5973.7872.

Notice that the standard error and T-statistic columns for the first GARCH 
parameter indicate that garchfit held the GARCH(1) parameter fixed. The 
number of estimated parameters also decreased from 5 in the original, 
unrestricted GARCH(2,1) model to 4 in this restricted GARCH(2,1) model. 

Apply the likelihood ratio test as before.

[H, pValue, Stat, CriticalValue] = lratiotest(LLF21, LLFG1, 1, 
0.05);
[H  pValue  Stat  CriticalValue]
ans =
    1.0000    0.0402    4.2112    3.8415

The results support rejection of the simpler, restricted model at the 0.05 
significance level, but just barely. The P-value indicates that had you tested at 
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a significance level of 0.04 or less, the restricted model would have been 
accepted.

The GARCH(2) Parameter. As a second example, assess the significance of the 
GARCH(2) parameter by setting it to 0.

specG2 = garchset(coeff21, 'GARCH', [0.9 0], 'FixGARCH', [0 1])
specG2 = 
         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(2,1)'
               R: 0
               M: 0
               P: 2
               Q: 1
    Distribution: 'Gaussian'
               C: 4.9584e-004
              AR: []
              MA: []
         Regress: []
               K: 1.3645e-006
           GARCH: [0.9000 0]
            ARCH: 0.0538
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: [0 1]
         FixARCH: []
    Optimization: [1x1 struct]

The specG2 structure field FixGARCH indicates that garchfit holds GARCH(2) 
fixed at 0, and refines GARCH(1) from an initial value of 0.9 during the 
estimation process. In other words, the specG2 specification structure tests the 
composite model,

which is really the GARCH(1,1) default model.

yt C εt+=
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Now, estimate the model subject to the equality constraint and display the 
results.

[coeffG2,errorsG2,LLFG2,innovationsG2,sigmaG2] = 
garchfit(specG2, xyz);
garchdisp(coeffG2, errorsG2)
 
  Number of Parameters Estimated: 4

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
          C    0.00048996     0.00025618       1.9126
          K    7.9828e-007    2.6908e-007      2.9667
   GARCH(1)    0.9636         0.0050784      189.7460
   GARCH(2)    0              Fixed            Fixed
    ARCH(1)    0.031239       0.0043564        7.1709

LLFG2
LLFG2 =
  5.9746e+003

Note that a more accurate value of LLFG2 is 5974.6058.

Finally, apply the likelihood ratio test again,

[H, pValue, Stat, CriticalValue] = lratiotest(LLF21, LLFG2, 1, 
0.05);
[H  pValue  Stat  CriticalValue]
ans =
         0    0.1086    2.5738    3.8415

In this case, the results support acceptance of the restricted model at the 0.05 
significance level. In fact, the P-value indicates that the test would support 
acceptance at the 0.10 significance level as well. This result again emphasizes 
that the default GARCH(1,1) model adequately explains the variation in the 
observed returns. A close examination reveals that the log-likelihood function 
values of the two models are nearly identical (i.e., LLFG2 = 5974.6058, 
LLF11 = 5974.6025).
4
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Equality Constraints and Initial Parameter Estimates
This section highlights some important points regarding equality constraints 
and initial parameter estimates in the GARCH Toolbox. It discusses:

• Complete Model Specification

• Empty Fix Fields

• Number of Equality Constraints

Complete Model Specification
To set equality constraints during estimation, you must provide a complete 
model specification. The only flexibility in this regard is that you can decouple 
the model specification for the conditional mean from the model specification 
for the conditional variance. 

The following example demonstrates an attempt to set equality constraints for 
an incomplete conditional mean model and a complete variance model. Create 
an ARMA(1,1)/GARCH(1,1) specification structure for conditional mean and 
variance models, respectively.

spec = garchset('R', 1, 'M', 1, 'P', 1, 'Q', 1);
spec = garchset(spec, 'C', 0, 'AR', 0.5, 'FixAR', 1);
spec = garchset(spec, 'K', 0.0005, 'GARCH', 0.8, 'ARCH', 0.1, 
'FixGARCH', 1)
spec = 
         Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
               R: 1
               M: 1
               P: 1
               Q: 1
    Distribution: 'Gaussian'
               C: 0
              AR: 0.5000
              MA: []
         Regress: []
               K: 5.0000e-004
           GARCH: 0.8000
            ARCH: 0.1000
            FixC: []
           FixAR: 1
           FixMA: []
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      FixRegress: []
            FixK: []
        FixGARCH: 1
         FixARCH: []
    Optimization: [1x1 struct]

The conditional mean model is incomplete because the MA field is still empty. 
Since the requested ARMA(1,1) model is an incomplete conditional mean 
specification, garchfit ignores the C, AR, and FixAR fields, computes initial 
parameter estimates, and overwrites any existing parameters in the 
incomplete conditional mean specification. It also estimates all conditional 
mean parameters (i.e., C, AR, and MA) and ignores the request to constrain the 
AR parameter.

However, since the structure explicitly sets all fields in the conditional 
variance model, garchfit uses the specified values of K and ARCH as initial 
estimates subject to further refinement, and holds the GARCH parameter at 0.8 
throughout the optimization process.

Empty Fix Fields
Any fix field that you leave empty ([]), is equivalent to a vector of zeros of 
compatible length. That is, when garchfit encounters an empty fix field, it 
automatically estimates the corresponding parameter. For example, the 
following specification structures produce the same GARCH(1,1) estimation 
results.

spec1 = garchset('K', 0.005, 'GARCH', 0.8, 'ARCH', 0.1, 
'FixGARCH', 0, 'FixARCH', 0)
spec2 = garchset('K', 0.005, 'GARCH', 0.8, 'ARCH', 0.1)

Number of Equality Constraints
Avoid setting several equality constraints simultaneously. Although the ability 
to set equality constraints is both convenient and useful, equality constraints 
complicate the estimation process. For example, if you really want to estimate 
a GARCH(1,1) model, then specify a GARCH(1,1) model instead of a more 
elaborate model with numerous constraints.
6
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Recommendations and Suggestions
This final section of the tutorial highlights some general recommendations to 
make it easier for you to use the GARCH Toolbox. It discusses:

• Simplicity/Parsimony

• Convergence Issues

• Initial Parameter Estimates

• Boundary Constraints and Statistical Inferences

• Data Size and Quality

Simplicity/Parsimony
Specify the smallest, most simplistic models that adequately describe your 
data. This is especially relevant for estimation. Simple models are easier to 
estimate, easier to forecast, and easier to analyze. In fact, certain model 
selection criteria, such as the AIC/BIC discussed in the section “Model 
Selection and Analysis” on page 2-74, penalize models for their complexity.

The section “Analysis and Estimation Example Using the Default Model” on 
page 2-17, examines the autocorrelation function (ACF) and partial 
autocorrelation function (PACF) of the XYZ Corporation. The results support 
the use of a simple constant for the conditional mean model as adequate to 
describe the data.

The following example illustrates an unnecessarily complicated model 
specification. It uses an ARMA(1,1)/GARCH(1,1) composite model, rather than 
a simple constant with GARCH(1,1) innovations, to estimate the model 
parameters for the returns of the XYZ Corporation.

Create a specification structure for an ARMA(1,1)/GARCH(1,1) model. Set the 
Display flag to off to suppress the optimization details that garchfit 
normally prints to the screen.

spec = garchset;
spec = garchset(spec, 'Display', 'off', 'R', 1, 'M', 1)
spec = 
         Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
               R: 1
               M: 1
               P: 1
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               Q: 1
    Distribution: 'Gaussian'
               C: []
              AR: []
              MA: []
         Regress: []
               K: []
           GARCH: []
            ARCH: []
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

Now, estimate the model and examine the results.

[coeff,errors,LLF,innovations,sigma,summary] = garchfit(spec, 
xyz);
garchdisp(coeff, errors)
 
  Number of Parameters Estimated: 6

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
          C    0.00088504     0.00046465       1.9048
      AR(1)    -0.76595       0.098721        -7.7587
      MA(1)    0.80041        0.09305          8.6020
          K    7.9417e-007    2.7078e-007      2.9329
   GARCH(1)    0.96313        0.0051048      188.6716
    ARCH(1)    0.031735       0.0043606        7.2775

These results imply that the ARMA(1,1)/GARCH(1,1) composite model that 
best fits the observed data is

yt 0.00088504 0.76595yt 1–– εt 0.80041εt 1–+ +=
8
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However, close examination of the conditional mean equation reveals that the 
AR(1) and MA(1) parameters are almost identical. In fact, rewriting the mean 
equation in backshift (i.e., lag) operator notation, where Byt = yt-1,

the auto-regressive and moving-average polynomials come close to canceling 
each other (see Box, Jenkins, Reinsel [7], pages 263-267). This is an example of 
parameter redundancy, or pole-zero cancellation. It implies that you can use 
the default model simple white noise process to approximate the conditional 
mean model.

In fact, from the section “Analysis and Estimation Example Using the Default 
Model” on page 2-17, the default model that best fits the observed data is

Note that the long-run (i.e., unconditional) mean and variance forecasts of each 
model are in very close agreement.

However, notice that the AR(1) and MA(1) T-statistics provide a misleading 
impression, implying that the parameters are highly significant. In fact, the 
more elaborate ARMA(1,1) model only complicates the analysis by requiring 
the estimation of two additional parameters. If you evaluate the information 
criteria, both AIC and BIC favor the default model (BIC is more decisive), and 
the LRT with two degrees-of-freedom fails to reject the default model.

Convergence Issues
When estimating the parameters of a composite conditional mean/variance 
model, you may occasionally encounter convergence problems. For example, 
the estimation may appear to stall, showing little or no progress. It may 
terminate prematurely prior to convergence. Or, it may converge to an 
unexpected, suboptimal solution.

You can avoid many of these difficulties by performing a sound, pre-fit analysis 
as outlined in the section “Analysis and Estimation Example Using the Default 

σt
2

7.9417e 007– 0.96313σt 1–
2

0.031735εt 1–
2

+ +=

1 0.76595B+( )yt 0.00088504 1 0.80041B+( )εt+=

yt 0.00049183 εt+=

σt
2

8.2736e 007– 0.96283σt 1–
2

0.03178εt 1–
2

+ +=
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Model” on page 2-17. That section discusses graphical techniques (plotting the 
return series, examining the ACF and PACF), as well as some preliminary 
tests, including Engle’s ARCH test and the Q-test. In addition, the section 
“GARCH Limitations” on page 2-4 mentions some of the limitations of GARCH 
models. In particular, it notes that GARCH techniques do not easily capture 
wild, spurious swings in a return series.

The most effective way of avoiding convergence problems is to select the most 
simplistic model that adequately describes your data. In fact, extreme 
difficulty in convergence is an indication that the model you chose does not 
describe your data well.

Specification Structure Fields That Affect Convergence
If you believe that your model is appropriate, and you still experience 
convergence problems during estimation, there are several fields in the 
specification structure that you can modify. The specification structure fields 
that affect convergence for the estimation function are MaxIter, MaxFunEvals, 
TolCon, TolFun, and TolX. 

MaxIter and MaxFunEvals. MaxIter is the maximum number of iterations allowed 
in the estimation process. Each iteration involves an optimization phase in 
which garchfit suitably modifies calculations such as line search, gradient, and 
step size. The default value of MaxIter is 400. Although an estimation rarely 
exceeds MaxIter, you can increase the value if you suspect the estimation 
terminated prematurely.

MaxFunEvals, a field closely related to MaxIter, specifies the maximum number 
of log-likelihood objective function evaluations. The default value is 100 times 
the number of parameters estimated in the model. For example, the default 
model has four parameters, and so the default value of MaxFunEvals is 400. 
When the estimation process terminates prematurely, it is usually because 
MaxFunEvals, rather than MaxIter, is exceeded. You can increase MaxFunEvals 
if you suspect the estimation terminated prematurely.

TolCon, TolFun, and TolX. The fields TolCon, TolFun, and TolX are 
tolerance-related parameters that directly influence how and when 
convergence is achieved. 

TolCon is the termination tolerance placed on violations of the stationarity and 
positivity constraints, and represents the maximum value by which parameter 
estimates can violate a constraint and still allow successful convergence. See 
0
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Eq. (2-6) in the section “Homoskedasticity of the Unconditional Variance” on 
page 2-9 for information about these constraints.

TolFun is the termination tolerance placed on the log-likelihood objective 
function. Successful convergence occurs when the log-likelihood function value 
changes by less than TolFun.

TolX is the termination tolerance placed on the estimated parameter values. 
Similar to TolFun, successful convergence occurs when the parameter values 
change by less than TolX.

TolCon, TolFun, and TolX have the same default value, 1e-006. If you 
experience extreme difficulty in convergence (e.g., the estimation shows little 
or no progress, or shows progress but stops early), then increasing one or more 
of these parameter values (e.g., from 1e-006 to 1e-004) may allow the 
estimation to converge. If the estimation appears to converge to a suboptimal 
solution, then decreasing one or more of these parameter values (e.g., from 
1e-006 to 1e-007) may provide more accurate parameter estimates.

Determining Convergence Status
There are two ways to determine whether an estimation achieves convergence. 
The first, and easiest, is to examine the optimization details of the estimation. 
By default, garchfit displays this information in the MATLAB command 
window. The second way to determine convergence status is to request the 
garchfit optional summary output. 

To illustrate these methods, revisit the default model for the XYZ Corporation.

[coeff, errors, LLF, innovations, sigma, summary] = 
garchfit(xyz);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   Diagnostic Information 

Number of variables: 4

Functions 
 Objective:                            garchllfn
 Gradient:                             finite-differencing
 Hessian:                              finite-differencing (or 
Quasi-Newton)
 Nonlinear constraints:                garchnlc
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 Gradient of nonlinear constraints:    finite-differencing

Constraints
 Number of nonlinear inequality constraints: 0
 Number of nonlinear equality constraints:   0
 
 Number of linear inequality constraints:    1
 Number of linear equality constraints:      0
 Number of lower bound constraints:          4
 Number of upper bound constraints:          0

Algorithm selected
   medium-scale

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 End diagnostic information 

                                 max                     Directional 
 Iter  F-count   f(x)         constraint    Step-size     derivative   
Procedure 
    1     5    -5921.94  -1.684e-005            1      -7.92e+004     
    2    34    -5921.94  -1.684e-005    1.19e-007            -553     
    3    43    -5924.42  -1.474e-005        0.125           -31.2     
    4    49    -5936.16  -6.996e-021            1            -288     
    5    57    -5960.62            0         0.25            -649     
    6    68    -5961.45  -4.723e-006       0.0313           -17.3     
    7    75    -5963.18  -2.361e-006          0.5           -28.6     
    8    81    -5968.24            0            1             -55     
    9    90    -5970.54  -6.016e-007        0.125            -196     
   10   103    -5970.84  -1.244e-006      0.00781           -16.1     
   11   110    -5972.77  -9.096e-007          0.5           -34.4     
   12   126    -5972.77  -9.354e-007     0.000977           -24.5     
   13   134    -5973.29   -1.05e-006         0.25           -4.97     
   14   141    -5973.95  -6.234e-007          0.5           -1.99     
   15   147    -5974.21  -1.002e-006            1          -0.641     
   16   153    -5974.57  -9.028e-007            1         -0.0803     
   17   159    -5974.59  -8.054e-007            1         -0.0293     
   18   165     -5974.6  -8.305e-007            1         -0.0039     
   19   172     -5974.6  -8.355e-007          0.5       -0.000964     
   20   192     -5974.6  -8.355e-007    -6.1e-005       -0.000646     
2
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   21   212     -5974.6  -8.355e-007    -6.1e-005       -0.000996    
Hessian modified twice
   22   219     -5974.6  -8.361e-007          0.5       -0.000184     
   23   239     -5974.6  -8.361e-007    -6.1e-005        -0.00441    
Hessian modified twice
Optimization terminated successfully:
 Search direction less than 2*options.TolX and
  maximum constraint violation is less than options.TolCon
 No Active Constraints

Notice that the optimization details indicate successful termination. Now, 
examine the summary output structure.

summary
summary = 
          warning: 'No Warnings'
         converge: 'Function Converged to a Solution'
        covMatrix: [4x4 double]
       iterations: 23
    functionCalls: 241
      constraints: 'No Boundary Constraints'

The converge field indicates successful convergence. If the estimation failed to 
converge, the converge field would contain the message, 'Function Did NOT 
Converge'. If the number of iterations or function evaluations exceeded its 
specified limits, the converge field would contain the message, 'Maximum 
Function Evaluations or Iterations Reached'. The summary structure also 
contains fields that indicate the number of iterations (iterations) and 
log-likelihood function evaluations (functionCalls).

These are generic suggestions. The default values of MaxIter, MaxFunEvals, 
TolCon, TolFun, and TolX typically provide acceptable estimation results. For 
additional details, see the Optimization Toolbox User's Guide and, in 
particular, the reference section for the function fmincon.

Initial Parameter Estimates
Although garchfit computes initial parameter estimates if you provide none, 
at times it may be helpful to compute and specify your own initial guesses to 
avoid convergence problems. 
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Note  If you specify initial estimates, you must provide complete conditional 
mean and/or variance model specifications. See the section “Equality 
Constraints and Initial Parameter Estimates” on page 2-85 for more 
information.

Partial Estimation
An important property of a conditionally Gaussian innovations process is that 
the parameters of the conditional mean and the conditional variance are 
asymptotically uncorrelated (see Bollerslev [4], pages 315-317, Engle [8], pages 
994-997, and Gourieroux, [11], pages 43-51). You can estimate initial 
parameter estimates of the mean separately from those of the variance, 
breaking the composite estimation process into two parts. 

For example, if the conditional mean is an ARMAX model, you can first 
estimate the ARMAX parameters assuming a constant variance innovations 
process (i.e., a GARCH(0,0) conditional variance model). The sample variance 
of the estimated residuals is then an approximation of the unconditional 
variance of the innovations process {εt}. Finally, based on reasonable 
parameter values of the GARCH and ARCH parameters of the conditional 
variance model, you can apply Eq. (2-7) to estimate the conditional variance 
constant κ.

For the common GARCH(1,1) model with Gaussian innovations, 

it often turns out that you can obtain reasonable initial estimates by assuming 
G1 is approximately 0.8 to 0.9, and A1 is approximately 0.05 to 0.10.

Iterative Estimation
Another approach is to estimate the complete model, examine the results, then 
modify the parameter estimates as initial guesses for another round of 
estimation. For example, suppose you have already estimated a composite 
ARMA(1,1)/GARCH(1,1) model.

coeff
coeff = 
         Comment: 'Mean: ARMAX(1,1,0); Variance: GARCH(1,1)'

σt
2 κ G1σt 1–

2
A1εt 1–

2
+ +=
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               R: 1
               M: 1
               P: 1
               Q: 1
    Distribution: 'Gaussian'
               C: 1.0000e-004
              AR: 0.5000
              MA: 0.4000
         Regress: []
               K: 5.0000e-006
           GARCH: 0.4000
            ARCH: 0.5000
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

As you examine the above coeff structure (i.e., the first output of garchfit), 
you may feel that the parameters of the ARMA(1,1) model appear reasonable. 
However, you suspect the GARCH(1,1) results may be stuck at a local 
maximum. You can modify the conditional variance parameters.

coeff = garchset(coeff, 'K', 6.25e-6, 'GARCH', 0.85, 'ARCH', 0.05)
coeff = 
         Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
               R: 1
               M: 1
               P: 1
               Q: 1
    Distribution: 'Gaussian'
               C: 1.0000e-004
              AR: 0.5000
              MA: 0.4000
         Regress: []
               K: 6.2500e-006
           GARCH: 0.8500
            ARCH: 0.0500
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            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

You can then use this updated coeff specification structure as input to another 
round of optimization.

[coeff, errors, LLF, innovations, sigma, summary] = 
garchfit(coeff, xyz);

Compare the log-likelihood function values (i.e., LLF) to assess the various 
alternatives. This example illustrates the convenience of the shared 
specification structure.

Boundary Constraints and Statistical Inferences
The estimation process places stationarity and positivity constraints on the 
parameters (see Eq. (2-6) in the section “Homoskedasticity of the 
Unconditional Variance” on page 2-9).

Whenever garchfit actively imposes parameter constraints (other than 
user-specified equality constraints) during the estimation process, the 
statistical results based on the maximum likelihood parameter estimates are 
invalid (see Hamilton [12], page 142). This is because statistical inference 
relies on the log-likelihood function being approximately quadratic in the 
neighborhood of the maximum likelihood parameter estimates. This cannot be 
the case when the estimates fail to fall in the interior of the parameter space.

As an example of an actively imposed parameter constraint, fit a GARCH(1,2) 
model to the returns of the XYZ Corporation. This model is intentionally 
misspecified and estimations for such models often have difficulty converging. 
You can increase the likelihood of convergence by making the requirement for 
convergence less stringent. To do this increase the termination tolerance 
parameter TolCon from 1e-6 (the default) to 1e-5.

spec = garchset('P', 1, 'Q', 2, 'TolCon', 1e-5);
[coeff, errors, LLF, innovations, sigma, summary] = 
garchfit(spec, xyz);
6
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   Diagnostic Information 

Number of variables:5

Functions 
 Objective:                           garchllfn
 Gradient:                            finite-differencing
 Hessian:                             finite-differencing (or 
Quasi-Newton)
 Nonlinear constraints:               garchnlc
 Gradient of nonlinear constraints:   finite-differencing

Constraints
 Number of nonlinear inequality constraints:0
 Number of nonlinear equality constraints:  0
 
 Number of linear inequality constraints:   1
 Number of linear equality constraints:     0
 Number of lower bound constraints:         5
 Number of upper bound constraints:         0

Algorithm selected
   medium-scale

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 End diagnostic information 

                                  max                   Directional 
Iter   F-count    f(x)         constraint   Step-size   derivative  
Procedure 
   1      6     -5922.27  -1.684e-005           1    -3.34e+004     
   2     36     -5922.27  -1.684e-005   1.19e-007          -578     
   3     46     -5926.29  -1.474e-005       0.125           -60     
   4     60     -5926.45  -1.558e-005     0.00781         -51.6     
   5     68      -5952.6   -7.79e-006         0.5         -27.5     
   6     76     -5964.39  -3.895e-006         0.5         -12.4     
   7     84     -5964.42  -1.947e-006         0.5         -95.4     
   8     98     -5964.43  -2.084e-006     0.00781         -27.4     
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   9    106     -5971.69  -1.552e-006         0.5          -7.6     
  10    114     -5974.09  -7.762e-007         0.5         -97.8     
  11    129     -5974.17  -9.254e-007     0.00391        -0.556     
  12    136     -5974.59   4.337e-019           1       -0.0767     
  13    145      -5974.6   5.421e-019        0.25       -0.0075     
  14    152      -5974.6   1.084e-018           1      -0.00322     
  15    159      -5974.6   2.168e-018           1      -0.00152     
  16    166      -5974.6   4.337e-018           1      -0.00084     
  17    173      -5974.6   8.674e-018           1     -0.000282     
  18    183      -5974.6   9.758e-018       0.125    -6.16e-005     
  19    191      -5974.6   1.464e-017         0.5     -0.000145   
Hessian modified twice
  20    205      -5974.6   1.475e-017     0.00781    -1.94e-006     
Optimization terminated successfully:
 Search direction less than 2*options.TolX and
  maximum constraint violation is less than options.TolCon
Active Constraints:
     5
Warning:Boundary Constraints Active; Standard Errors may be 
Inaccurate.

The warning message explicitly states that garchfit has imposed constraints. 
If you choose to suppress the estimations details (i.e., set the specification 
structure field Display to off), the same information is available from the 
constraints field of the summary output structure.

summary
summary = 
        warning:'No Warnings'
       converge:'Function Converged to a Solution'
      covMatrix:[5x5 double]
     iterations:20
  functionCalls:208
    constraints:'Boundary Constraints Active; Errors may be 
Inaccurate'

Examine the estimation results to see exactly what happened.

garchdisp(coeff, errors)

 Number of Parameters Estimated: 5
8
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                               Standard          T     
 Parameter       Value          Error       Statistic 
-----------   -----------   ------------   -----------
         C    0.00048993     0.00025674       1.9083
         K    8.1018e-007    2.9827e-007      2.7163
  GARCH(1)    0.96327        0.0062937      153.0524
   ARCH(1)    0.031503       0.016075         1.9597
   ARCH(2)    0              0.018615         0.0000

The 0 value of ARCH(2)reveals that garchfit has enforced the variance 
positivity constraint of the second ARCH parameter. It indicates that the 
estimated GARCH(1,2) model is in fact a GARCH(1,1) model, and further 
emphasizes that the default model is well suited for the returns of the XYZ 
Corporation.

Furthermore, since a parameter constraint has been actively imposed during 
the estimation process, the statistical results based on the maximum likelihood 
parameter estimates are invalid. These statistical results include the standard 
errors shown in column two, as well as any likelihood ratio tests based on the 
lratiotest function.

Data Size and Quality
The size and quality of your return series affect the validity of your results. 
Because of this, The MathWorks recommends that you carefully examine your 
data prior to estimation. In particular, you should consider altering any 
missing or anomalous data points. For example, you can fill in missing data 
points, and remove or smooth anomalous ones. (See the section “GARCH 
Limitations” on page 2-4.) 

In addition, GARCH volatility modeling typically requires at least a few 
hundred observations. Assuming daily data, one year’s worth of data requires 
about 250 data points. 
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3-2
Functions – By Category
This section lists the GARCH Toolbox functions according to their purpose.

• “GARCH Modeling” on page 3-2

• “GARCH Innovations Inference” on page 3-2

• “Log-Likelihood Objective Functions” on page 3-2

• “Statistics and Tests” on page 3-2

• “GARCH Specification Structure Interface Functions” on page 3-3

• “Helpers and Utilities” on page 3-3

• “Graphics” on page 3-3

GARCH Modeling

GARCH Innovations Inference

Log-Likelihood Objective Functions

Statistics and Tests

garchfit Univariate GARCH process parameter estimation.

garchpred Univariate GARCH process forecasting.

garchsim Univariate GARCH process simulation.

garchinfer Inverse filter to infer GARCH innovations and conditional 
standard deviations from an observed return series.

garchllfn Univariate GARCH process objective function (Gaussian 
innovations).

aicbic Akaike and Bayesian information criteria for model order 
selection.

archtest Engle’s hypothesis test for the presence of ARCH/GARCH 
effects.

autocorr Plot or return computed sample auto-correlation function.



Functions – By Category
GARCH Specification Structure Interface Functions

Helpers and Utilities

Graphics

crosscorr Plot or return computed sample cross-correlation function.

lbqtest Ljung-Box Q-statistic lack-of-fit hypothesis test.

lratiotest Likelihood ratio hypothesis test.

parcorr Plot or return computed sample partial auto-correlation 
function.

garchget Retrieve a GARCH specification structure parameter.

garchset Create or modify a GARCH specification structure.

garchar Convert finite-order ARMA models to infinite-order AR 
models.

garchcount Count GARCH estimation coefficients.

garchdisp Display GARCH process estimation results.

garchma Convert finite-order ARMA models to infinite-order MA 
models.

lagmatrix Create a lagged time series matrix.

price2ret Convert price series to a return series.

ret2price Convert return series to a price series.

garchplot Plot matched univariate innovations, volatility, and return 
series.
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reference pages contain detailed descriptions of the GARCH Toolbox functions.



aicbic
3aicbicPurpose Akaike (AIC) and Bayesian (BIC) information criteria for model order selection

Syntax AIC = aicbic(LogLikelihood, NumParams)
[AIC, BIC] = aicbic(LogLikelihood, NumParams, NumObs)

Arguments  

Description aicbic computes the Akaike and Bayesian information criteria, using 
optimized log-likelihood objective function (LLF) values as input. You can 
obtain the LLF values by fitting models of the conditional mean and variance 
to a univariate return series.

AIC = aicbic(LogLikelihood, NumParams) computes only the Akaike (AIC) 
information criteria. 

[AIC, BIC] = aicbic(LogLikelihood, NumParams, NumObs) computes both 
the Akaike (AIC) and Bayesian (BIC) information criteria.

Since information criteria penalize models with additional parameters, 
parsimony is the basis of the AIC and BIC model order selection criteria. 

LogLikelihood Vector of optimized log-likelihood objective function (LLF) 
values associated with parameter estimates of the models 
to be tested. aicbic assumes you obtained the LLF values 
from the estimation function garchfit, or the inference 
function garchinfer. 

NumParams Number of estimated parameters associated with each 
LLF value in LogLikelihood. NumParams can be a scalar 
applied to all values in LogLikelihood, or a vector the 
same length as LogLikelihood. All elements of NumParams 
must be positive integers. Use garchcount to compute 
NumParams values. 

NumObs Sample size of the observed return series you associate 
with each value of LogLikelihood. NumObs can be a scalar 
applied to all values in LogLikelihood, or a vector the 
same length as LogLikelihood. It is required to compute 
BIC. All elements of NumObs must be positive integers. 
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See Also garchdisp, garchfit, garchinfer

Reference [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting 
and Control, third edition, Prentice Hall, 1994.

AIC Vector of AIC statistics associated witin this “Arguments” 
sectionh each LogLikelihood objective function value. The AIC 
statistic is defined as:

BIC Vector of BIC statistics associated with each LogLikelihood 
objective function value. The BIC statistic is defined as:

 

AIC 2– LogLikelihood×( ) 2 NumParams×( )+=

BIC 2– LogLikelihood×( )
NumParams Log NumObs( )×( )+

=
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archtest
3archtestPurpose Engle’s hypothesis test for the presence of ARCH/GARCH effects

Syntax [H, pValue, ARCHstat, CriticalValue] = archtest(Residuals, Lags, 
Alpha)

Arguments  

Description [H, pValue, ARCHstat, CriticalValue] = archtest(Residuals, Lags, 
Alpha) tests the null hypothesis that a time series of sample residuals consists 
of independent identically distributed (i.i.d.) Gaussian disturbances, i.e., no 
ARCH effects exist. 

Given sample residuals obtained from a curve fit (e.g., a regression model), 
archtest tests for the presence of Mth order ARCH effects by regressing the 
squared residuals on a constant and the lagged values of the previous M 
squared residuals. Under the null hypothesis, the asymptotic test statistic, 
T( R2), where T is the number of squared residuals included in the regression 
and R2 is the sample multiple correlation coefficient, is asymptotically 
Chi-Square distributed with M degrees of freedom. When testing for ARCH 
effects, a GARCH(P,Q) process is locally equivalent to an ARCH(P+Q) process.

Residuals Time series vector of sample residuals obtained from a curve 
fit, which archtest examines for the presence of ARCH 
effects. The last element contains the most recent observation.

Lags (optional) Vector of positive integers indicating the lags of the 
squared sample residuals included in the ARCH test statistic. 
If specified, each lag should be significantly less than the 
length of Residuals. If Lags = [] or is not specified, the 
default is 1 lag (i.e., first order ARCH).

Alpha (optional) Significance level(s) of the hypothesis test. Alpha 
can be a scalar applied to all lags in Lags, or a vector of 
significance levels the same length as Lags. If Alpha = [] or is 
not specified, the default is 0.05. For all elements, α, of Alpha, 
0 < α < 1.
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Example Create a vector of 100 (synthetic) residuals, then test for the 1st, 2nd, and 4th 
order ARCH effects at the 10 percent significance level.

randn('state',0)                % Start from a known state.
residuals     = randn(100,1);   % 100 Gaussian deviates ~ N(0,1)
[H,P,Stat,CV] = archtest(residuals, [1 2 4]', 0.10);
[H,P,Stat,CV]

ans =

         0    0.3925    0.7312    2.7055
         0    0.5061    1.3621    4.6052
         0    0.7895    1.7065    7.7794

See Also lbqtest

References [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting 
and Control, third edition, Prentice Hall, 1994.

[2] Engle, Robert, “Autoregressive Conditional Heteroskedasticity with 
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50, 
pp. 987-1007, 1982.

[3] Gourieroux, C., ARCH Models and Financial Applications, 
Springer-Verlag, 1997.

H Boolean decision vector. 0 indicates acceptance of the null 
hypothesis that no ARCH effects exist, i.e., there is 
homoskedasticity at the corresponding element of Lags. 1 
indicates rejection of the null hypothesis. The length of H is 
the same as the length of Lags.

pValue Vector of P-values (significance levels) at which archtest 
rejects the null hypothesis of no ARCH effects at each lag in 
Lags.

ARCHstat Vector of ARCH test statistics for each lag in Lags.

CriticalValue Vector of critical values of the Chi-Square distribution for 
comparison with the corresponding element of ARCHstat.
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[4] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
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3autocorrPurpose Plot or return computed sample auto-correlation function

Syntax autocorr(Series, nLags, M, nSTDs)
[ACF, Lags, Bounds] = autocorr(Series, nLags, M, nSTDs)

Arguments

Description autocorr(Series, nLags, M, nSTDs) computes and plots the sample ACF 
of a univariate, stochastic time series with confidence bounds. To plot the ACF 
sequence without the confidence bounds, set nSTDs = 0.

[ACF, Lags, Bounds] = autocorr(Series, nLags, M, nSTDs) computes 
and returns the ACF sequence.

Series Vector of observations of a univariate time series for which 
autocorr computes or plots the sample auto-correlation function 
(ACF). The last element of Series contains the most recent 
observation of the stochastic sequence.

nLags (optional) Positive, scalar integer indicating the number of lags of 
the ACF to compute. If nLags = [] or is not specified, the default 
is to compute the ACF at lags 0, 1, 2, ..., T, where T = min([20, 
length(Series)-1]).

M (optional) Nonnegative integer scalar indicating the number of 
lags beyond which the theoretical ACF is effectively 0. autocorr 
assumes the underlying Series is an MA(M) process, and uses 
Bartlett’s approximation to compute the large-lag standard error 
for lags > M. If M = [] or is not specified, the default is 0, and 
autocorr assumes that Series is Gaussian white noise. If Series 
is a Gaussian white noise process of length N, the standard error 
is approximately 1 ⁄ √N. M must be < nLags.

nSTDs (optional) Positive scalar indicating the number of standard 
deviations of the sample ACF estimation error to compute. 
autocorr assumes the theoretical ACF of Series is 0 beyond lag M. 
When M = 0 and Series is a Gaussian white noise process of 
length N, specifying nSTDs results in confidence bounds at 
±(nSTDs ⁄ √N). If nSTDs = [] or is not specified, the default is 2 
(i.e., approximate 95 percent confidence interval).
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Example Create an MA(2) process from a sequence of 1000 Gaussian deviates, and 
assess whether the ACF is effectively zero for lags > 2.

randn('state', 0)             % Start from a known state.
x = randn(1000, 1);           % 1000 Gaussian deviates ~ N(0,1).
y = filter([1 -1 1], 1, x);   % Create an MA(2) process.
[ACF, Lags, Bounds] = autocorr(y, [], 2);  % Compute the ACF
                                           % with 95 percent 
                                           % confidence.
[Lags, ACF]

ans =

         0    1.0000
    1.0000   -0.6487
    2.0000    0.3001
    3.0000    0.0229
    4.0000    0.0196
    5.0000   -0.0489
    6.0000    0.0452
    7.0000    0.0012
    8.0000   -0.0214
    9.0000    0.0235
   10.0000    0.0340
   11.0000   -0.0392
   12.0000    0.0188
   13.0000    0.0504

ACF Sample auto-correlation function of Series. ACF is a vector of 
length nLags+1 corresponding to lags 0, 1, 2, ..., nLags. The first 
element of ACF is unity, that is, ACF(1) = 1 = lag 0 correlation.

Lags Vector of lags corresponding to ACF(0,1,2,...,nLags). Since an 
ACF is symmetric about 0 lag, autocorr ignores negative lags.

Bounds Two element vector indicating the approximate upper and lower 
confidence bounds, assuming that Series is an MA(M) process. 
Values of ACF beyond lag M that are effectively 0 lie within these 
bounds. Note that autocorr computes Bounds only for lags > M. 
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   14.0000   -0.0600
   15.0000    0.0251
   16.0000    0.0441
   17.0000   -0.0732
   18.0000    0.0755
   19.0000   -0.0571
   20.0000    0.0485

Bounds =

    0.0899
   -0.0899

autocorr(y, [], 2)      % Use the same example, but plot the ACF
                        % sequence with confidence bounds.

 

See Also crosscorr, parcorr
filter (in the online MATLAB Function Reference)
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Reference [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting 
and Control, third edition, Prentice Hall, 1994.

[2] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
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3crosscorrPurpose Plot or return computed sample cross-correlation function

Syntax crosscorr(Series1, Series2, nLags, nSTDs)
[XCF, Lags, Bounds] = crosscorr(Series1, Series2, nLags, nSTDs)

Arguments  

Description crosscorr(Series1, Series2, nLags, nSTDs) computes and plots the 
sample cross-correlation function (XCF) between two univariate, stochastic 
time series. To plot the XCF sequence without the confidence bounds, set 
nSTDs = 0.

[XCF, Lags, Bounds] = crosscorr(Series1, Series2, nLags, nSTDs)
computes and returns the XCF sequence.

Series1 Vector of observations of the first univariate time series for which 
crosscorr computes or plots the sample cross-correlation function 
(XCF). The last element of Series1 contains the most recent 
observation.

Series2 Vector of observations of the second univariate time series for 
which crosscorr computes or plots the sample XCF. The last 
element of Series2 contains the most recent observation.

nLags (optional) Positive, scalar integer indicating the number of lags of 
the XCF to compute. If nLags = [] or is not specified, crosscorr 
computes the XCF at lags 0, ±1, ±2, ..., ±T, where T = min([20, 
min([length(Series1), length(Series2)])-1]).

nSTDs (optional) Positive scalar indicating the number of standard 
deviations of the sample XCF estimation error to compute, if 
Series1 and Series2 are uncorrelated. If nSTDs = [] or is not 
specified, the default is 2 (i.e., approximate 95 percent confidence 
interval). 
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Example Create a random sequence of 100 Gaussian deviates, and a delayed version 
lagged by four samples. Compute the XCF, and then plot it to see the XCF peak 
at the fourth lag.

randn('state',100)              % Start from a known state.
x           = randn(100,1);     % 100 Gaussian deviates, N(0,1).
y           = lagmatrix(x, 4);  % Delay it by 4 samples.
y(isnan(y)) = 0;                % Replace NaNs with zeros.
[XCF, Lags, Bounds] = crosscorr(x,y);  % Compute the XCF with
                                       % 95 percent confidence.
[Lags, XCF]

ans =

  -20.0000   -0.0210
  -19.0000   -0.0041
  -18.0000    0.0661
  -17.0000    0.0668
  -16.0000    0.0380
  -15.0000   -0.1060
  -14.0000    0.0235
  -13.0000    0.0240
  -12.0000    0.0366
  -11.0000    0.0505
  -10.0000    0.0661
   -9.0000    0.1072
   -8.0000   -0.0893

XCF Sample cross-correlation function between Series1 and Series2. 
XCF is a vector of length 2(nLags)+1 corresponding to lags 0, ±1, 
±2, ..., ±nLags. The center element of XCF contains the 0th lag 
cross correlation. XCF is a row (column) vector if Series1 is a row 
(column) vector.

Lags Vector of lags corresponding to XCF(-nLags, ..., +nLags).

Bounds Two-element vector indicating the approximate upper and lower 
confidence bounds assuming Series1 and Series2 are 
completely uncorrelated.
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   -7.0000   -0.0018
   -6.0000    0.0730
   -5.0000    0.0204
   -4.0000    0.0352
   -3.0000    0.0792
   -2.0000    0.0550
   -1.0000    0.0004
         0   -0.1556
    1.0000   -0.0959
    2.0000   -0.0479
    3.0000    0.0361
    4.0000    0.9802
    5.0000    0.0304
    6.0000   -0.0566
    7.0000   -0.0793
    8.0000   -0.1557
    9.0000   -0.0128
   10.0000    0.0623
   11.0000    0.0625
   12.0000    0.0268
   13.0000    0.0158
   14.0000    0.0709
   15.0000    0.0102
   16.0000   -0.0769
   17.0000    0.1410
   18.0000    0.0714
   19.0000    0.0272
   20.0000    0.0473

Bounds =

    0.2000
   -0.2000

crosscorr(x,y)         % Use the same example, but plot the XCF 
                       % sequence. Note the peak at the 4th lag.
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See Also autocorr, parcorr
filter (in the online MATLAB Function Reference)
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3garcharPurpose Convert finite-order ARMA models to infinite-order auto-regressive (AR) 
models

Syntax InfiniteAR  = garchar(AR, MA, NumLags)

Arguments  

Description InfiniteAR = garchar(AR, MA, NumLags) computes the coefficients of an 
infinite-order AR model, using the coefficients of the equivalent univariate, 
stationary, invertible, finite-order ARMA(R,M) model as input. garchar 
truncates the infinite-order AR coefficients to accommodate a user-specified 
number of lagged AR coefficients.

 

In the following ARMA(R,M) model, {yt} is the return series of interest and {εt} 
the innovations noise process. 

AR R-element vector of auto-regressive coefficients associated 
with the lagged observations of a univariate return series 
modeled as a finite order, stationary, invertible ARMA(R,M) 
model.

MA M-element vector of moving-average coefficients associated 
with the lagged innovations of a finite-order, stationary, 
invertible univariate ARMA(R,M) model.

NumLags (optional) Number of lagged AR coefficients that garchar 
includes in the approximation of the infinite-order AR 
representation. NumLags is an integer scalar and determines 
the length of the infinite-order AR output vector. If 
NumLags = [] or is not specified, the default is 10.

InfiniteAR Vector of coefficients of the infinite-order AR representation      
associated with the finite-order ARMA model specified by the 
AR and MA input vectors. InfiniteAR is a vector of length 
NumLags. The jth element of InfiniteAR is the coefficient of 
the jth lag of the input series in an infinite-order AR 
representation. Note that Box, Jenkins, and Reinsel refer to 
the infinite-order AR coefficients as “π weights.”
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If you write this model equation as 

you can specify the garchar input coefficient vectors, AR and MA, exactly as you 
read them from the model. In general, the jth elements of AR and MA are the 
coefficients of the jth lag of the return series and innovations processes yt – j and 
εt – j, respectively. garchar assumes that the current-time-index coefficients of 
yt and εt are 1 and are not part of AR and MA. 

In theory, you can use the π weights returned in InfiniteAR, to approximate 
yt as a pure AR process.

Consistently, the jth element of the truncated infinite-order auto-regressive 
output vector, πj or InfiniteAR(j), is the coefficient of the jth lag of the 
observed return series, yt – j, in this equation. See Box, Jenkins, and Reinsel [7], 
Section 4.2.3, pages 106-109. 

Given the above discussion, the AR and MA vectors differ from the corresponding 
AR and MA polynomials formally presented in time series references such as 
Box, Jenkins, and Reinsel. The conversion from GARCH Toolbox vectors to the 
corresponding GARCH Toolbox polynomials is:

AR polynomial tested for stationarity = [1 ; -AR]
MA polynomial tested for invertibility = [1 ; MA]

Example For the following ARMA(2,2) model, use garchar to obtain the first 20 weights 
of the infinite order AR approximation.

From this model, 

AR = [0.5 -0.8] 

yt ARiyt i–
i 1=

R

∑ εt MAjεt j–

j 1=

M

∑+ +=

yt AR1yt 1– … ARRyt R– εt MA1εt 1– … MAMεt M–+ + + + + +=

yt πiyt i–
i 1=

∞

∑ εt+=

yt 0.5yt 1– 0.8yt 2–– εt 0.6εt 1– 0.08εt 2–+–+=
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MA = [-0.6 0.08]

Since the current-time-index coefficients of yt and εt are defined to be 1, the 
example omits them from AR and MA. This saves time and effort when you 
specify parameters using the garchset and garchget interfaces. 

PI = garchar([0.5 -0.8], [-0.6 0.08], 20);

PI'

ans =

   -0.1000
   -0.7800
   -0.4600
   -0.2136
   -0.0914
   -0.0377
   -0.0153
   -0.0062
   -0.0025
   -0.0010
   -0.0004
   -0.0002
   -0.0001
   -0.0000
   -0.0000
   -0.0000
   -0.0000
   -0.0000
   -0.0000
   -0.0000

See Also garchfit, garchma, garchpred

Reference [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting 
and Control, third edition, Prentice Hall, 1994.
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3garchcountPurpose Count GARCH estimation coefficients

Syntax NumParams = garchcount(Coeff)

Arguments

Description NumParams = garchcount(Coeff) counts and returns the number of estimated 
coefficients from a GARCH specification structure containing coefficient 
estimates and equality constraint information. garchcount is a helper utility 
designed to support the GARCH Toolbox model selection function aicbic.

See Also aicbic, garchdisp, garchfit

Coeff GARCH specification structure containing the estimated 
coefficients and equality constraints. Coeff is an output of the 
estimation function garchfit.

NumParams Number of estimated parameters (i.e., coefficients) included in 
the conditional mean and variance specifications, less any 
parameters held constant, as equality constraints, during the 
estimation. The aicbic function needs NumParams to calculate 
the Akaike (AIC) and Bayesian (BIC) statistics. 
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3garchdispPurpose Display GARCH process estimation results

Syntax garchdisp(Coeff, Errors)

Arguments

Description garchdisp(Coeff, Errors) displays coefficient estimates, standard errors, 
and T-statistics from a GARCH specification structure that was output by the 
estimation function garchfit. 

This function displays matched GARCH Toolbox estimation results, and 
returns no output arguments. The tabular display includes parameter 
estimates, standard errors, and T-statistics for each parameter in the 
conditional mean and variance models. Parameters held fixed during the 
estimation process have the word 'Fixed' printed in the standard error and 
T-statistic columns, indicating that the parameter was set as an equality 
constraint.

See Also garchcount, garchfit 

Coeff GARCH specification structure containing estimated coefficients 
and equality constraint information. Coeff is an output of the 
estimation function garchfit. 

Errors Structure containing the estimation errors (i.e., the standard 
errors) of the coefficients in Coeff. Errors is also an output of the 
estimation function garchfit. 
3-22



garchfit
3garchfitPurpose Univariate GARCH process parameter estimation

Syntax [Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Series)
[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec, 

Series)
[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec, 

Series, X)
garchfit(...)

Arguments  

Description garchfit estimates the parameters of a conditional mean specification of 
ARMAX form and a conditional variance specification of GARCH form. If the 
Display flag (see the function garchset) in the specification structure is set to 

Series Vector of observations of the underlying univariate return series 
for which garchfit estimates the parameters of the conditional 
mean and variance models. The last element of Series holds the 
most recent observation.

Spec (optional) GARCH specification structure that contains the 
conditional mean and variance models, and optimization 
parameters. You create the fields in this structure by calling the 
function garchset, or you can use the Coeff output structure 
from a previous call to garchfit.

X (optional) Time series regression matrix of observed explanatory 
data. Typically, X is a matrix of asset returns (e.g., the return 
series of an equity index), and represents the past history of the 
explanatory data. Each column of X is an individual time series 
used as an explanatory variable in the regression component of 
the conditional mean. In each column, the first row contains the 
oldest observation and the last row the most recent. 
The number of valid (non-NaN) most recent observations in each 
column of X must equal or exceed the number of valid most 
recent observations in Series. If the number of valid 
observations in a column of X exceeds that of Series, garchfit 
uses only the most recent observations of X. If X = [] or is not 
specified, the conditional mean has no regression component. 
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on (the default), it also displays diagnostic and iterative optimization 
information in the MATLAB command window (see the function fmincon in the 
Optimization Toolbox).  

[Coeff, Errors, LLF, Innovations, Sigma, Summary] = 
garchfit(Series) models an observed univariate return series as a constant, 
C, plus GARCH(1,1) conditionally Gaussian innovations. For models beyond 
this simplistic (yet common) model, you must provide model parameters in the 
specification structure, Spec. The C + GARCH(1,1) model is the default model 
of the GARCH Toolbox.

[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec, 
Series) infers the innovations from the return series and fits the model 
specification, contained in Spec, to the return series by maximum likelihood. 

[Coeff, Errors, LLF, Innovations, Sigma, Summary] = garchfit(Spec, 
Series, X) provides a regression component for the conditional mean.

garchfit(...) (with input arguments as shown above but with no output 
arguments) prints the final parameter estimates and standard errors to the 
MATLAB command window. It also produces a tiered plot of the original return 
series, the inferred innovations (i.e., residuals), and the corresponding 
conditional standard deviations.

 

Coeff GARCH specification structure containing the estimated 
coefficients. Coeff is of the same form as the Spec input 
structure. This allows other GARCH Toolbox functions, such 
as garchset, garchget, garchsim, garchinfer, and 
garchpred, to accept either Spec or Coeff seamlessly.

Errors Structure containing the estimation errors (i.e., the standard 
errors) of the coefficients. The fields of Errors correspond to 
the coefficient fields (C, AR, MA, Regress, K, GARCH, ARCH) found 
in Coeff or Spec. 

LLF Optimized log-likelihood objective function value associated 
with the parameter estimates found in Coeff. garchfit 
performs the optimization using the fmincon function of the 
Optimization Toolbox.
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Note  garchfit calculates the error covariance matrix of the parameter 
estimates, Summary.covMatrix, and the corresponding standard errors found 
in the Errors output structure, using finite difference approximation. In 
particular, it calculates the standard errors using the outer-product method 
(see Hamilton [12], section 5.8, bottom of page 143).

See Also garchllfn, garchpred, garchset, garchsim, 

Innovations Innovations vector inferred from Series. The size of 
Innovations is the same as the size of Series.

Sigma Conditional standard deviation vector corresponding to 
Innovations. The size of Sigma is the same as the size of 
Series.

Summary Structure of summary information about the optimization 
process. The fields and their possible values are 

warning        One of the following strings:
               'No Warnings'
               'ARMA Model Is Not 
Stationary/Invertible'

converge       One of the following strings:
               'Function Converged to a Solution'
               'Function Did NOT Converge'
               'Maximum Function Evaluations or 
Iterations Reached' 

covMatrix      Covariance matrix of the parameter 
estimates

iterations     Number of iterations

functionCalls  Number of function evaluations

constraints    One of the following strings:
               'No Boundary Constraints'
               'Boundary Constraints Active; Errors 
May Be Inaccurate'
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fmincon (in the Optimization Toolbox)

References Bollerslev, T., “Generalized Autoregressive Conditional Heteroskedasticity,” 
Journal of Econometrics, Vol. 31, pp. 307-327, 1986.

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and 
Control, third edition, Prentice Hall, 1994.

Engle, Robert, “Autoregressive Conditional Heteroskedasticity with Estimates 
of the Variance of United Kingdom Inflation,” Econometrica, vol. 50, pp. 
987-1007, 1982.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
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3garchgetPurpose Retrieve a GARCH specification structure parameter

Syntax ParameterValue = garchget(Spec, 'ParameterName')

Arguments  

Description ParameterValue = garchget(Spec, 'ParameterName') provides the 
preferred user-interface for retrieveing a model parameter from a GARCH 
specification structure. 

 

Example Spec = garchset('P',1,'Q',1)  % Create a GARCH(P=1, Q=1) model.
Spec = 

         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
               R: 0
               M: 0
               P: 1
               Q: 1
    Distribution: 'Gaussian'
               C: []
              AR: []

Spec GARCH specification structure containing the orders, and 
coefficients, as well as the optimization constraints of the 
conditional mean and variance specifications of a GARCH 
model. You can create a GARCH specification structure as 
the output (Spec) of the companion function garchset, or 
the output (Coeff) of the estimation function garchfit.

ParameterName String indicating the name of the parameter whose value 
garchget extracts from Spec. You can specify only 
sufficient leading characters to uniquely identify the 
parameter. See garchset for a list of valid parameter 
names. ParameterName is case insensitive. 

ParameterValue Value of the named parameter, ParameterName, extracted 
from the structure Spec. ParameterValue = [] if the 
parameter has no value.
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              MA: []
         Regress: []
               K: []
           GARCH: []
            ARCH: []
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct] 

P = garchget(Spec,'P')              % Extract the order P.

P =
     1

See Also garchfit, garchpred, garchset, garchsim
optimget, optimset (in the online MATLAB Function Reference)
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3garchinferPurpose Inverse filter to infer GARCH innovations and conditional standard deviations 
from an observed return series

Syntax [Innovations, Sigma, LogLikelihood] = garchinfer(Spec, Series, X)

Arguments  

Description [Innovations, Sigma, LogLikelihood] = garchinfer(Spec, Series, X)
acts as an inverse, or whitening, filter to infer the innovations and conditional 
standard deviations from an observed return series, using a conditional mean 
specification of ARMAX form and a conditional variance specification of 
GARCH form as input. Since garchinfer provides an interface to the 

Spec GARCH specification structure that contains the conditional 
mean and variance specifications, as well as the optimization 
parameters of a GARCH model. You can create Spec by calling 
the function garchset or the estimation function garchfit.

Series Matrix of observations of the underlying univariate return series 
of interest for which garchinfer infers the innovations and 
corresponding conditional standard deviations.
Each column of Series is an independent realization (i.e., path). 
The last row of Series holds the most recent observation of each 
realization.

X (optional) Time series regression matrix of observed explanatory 
data. Typically, X is a matrix of asset returns (e.g., the return 
series of an equity index), and represents the past history of the 
explanatory data. Each column of X is an individual time series 
used as an explanatory variable in the regression component of 
the conditional mean. In each column, the first row contains the 
oldest observation and the last row the most recent. 
The number of valid (non-NaN) most recent observations in each 
column of X must equal or exceed the number of valid most recent 
observations in Series. If the number of valid observations in a 
column of X exceeds that of Series, garchinfer uses only the 
most recent observations of X. If X = [] or is not specified, the 
conditional mean has no regression component. 
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appropriate log-likelihood objective function, it also computes the 
log-likelihood value as a convenience. 

 

See Also garchfit, garchllfn, garchpred, garchset, garchsim
fmincon (in the Optimization Toolbox)

References Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and 
Control, third edition, Prentice Hall, 1994.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Innovations Innovations matrix inferred from the input Series 
matrix. The size of Innovations is the same as the size 
of Series, and its organization is the same as Series.

Sigma Conditional standard deviation matrix corresponding to 
Innovations. The size of Sigma is the same as the size of 
Series.

LogLikelihood Vector of log-likelihood objective function values for each 
realization of Series. The length of LogLikelihood is the 
same as the number of columns in Series. 
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3garchllfnPurpose Univariate GARCH process objective function (Gaussian innovations)

Syntax [LogLikelihood, G, H, Innovations, Sigma] = garchllfn(Parameters, 
Series, R, M, P, Q, X)

Arguments  

Parameters Column vector of process parameters associated with fitting 
conditional mean and variance specifications to the observed 
return series, Series. The conditional mean contributes the 
first (1 + R + M + Nx) parameters, where Nx is the number of 
explanatory variables you include in the regression component 
of the conditional mean (the number of columns in X). The 
conditional variance contributes the remaining (1 + P + Q) 
parameters. The resultant length of Parameters is 
(2 + R + M + Nx + P + Q). (See the “Formatting the Input 
Coefficient Vector” section below.)

Series Matrix of observations of the underlying univariate return 
series of interest for which garchllfn estimates the 
parameters of the conditional mean and variance models. 
Series can have several columns, where each column is an 
independent realization (i.e., path). The last row of Series 
holds the most recent observation of each realization.

R Nonnegative, scalar integer representing the AR-process 
order.

M Nonnegative, scalar integer representing the MA-process 
order.

P Nonnegative, scalar integer representing the number of lags of 
the conditional variance included in the GARCH process.
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Description [LogLikelihood, G, H, Innovations, Sigma] = garchllfn(Parameters, 
Series, R, M, P, Q, X) computes the log-likelihood objective function value 
suitable for maximum likelihood estimation (MLE). 

For Gaussian innovations, garchfit uses garchllfn as the objective function 
to be optimized by fmincon. When garchinfer calls garchllfn, the primary 
outputs of garchllfn are the innovations and conditional standard deviations 
inferred from the input data. In either case, garchllfn must infer an 
uncorrelated white noise innovation process. In this sense, garchllfn is an 
inverse, or whitening, filter.

The use of garchllfn is specific to Distribution = 'Gaussian' in the GARCH 
specification structure.

Note  Because garchllfn is performance sensitive and because fmincon calls 
it iteratively as the objective function, garchllfn performs no argument 
checking. Although you can call garchllfn directly, it is better to call it via 
garchinfer.

Q Nonnegative, scalar integer representing the number of lags of 
the squared innovations included in the GARCH process.

X (optional) Time series regression matrix of observed 
explanatory data. Typically, X is a matrix of asset returns 
(e.g., the return series of an equity index), and represents the 
past history of the explanatory data. Each column of X is an 
individual time series used as an explanatory variable in the 
regression component of the conditional mean. In each 
column, the first row contains the oldest observation and the 
last row the most recent. X must have the same number of 
rows as Series.
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Formatting the Input Coefficient Vector
Format the input coefficient vector Parameters exactly as you would read the 
coefficients from the recursive difference equations when solving for the 
current values of the yt and σt

2 time series. Specifically, if:

• yt = return series of interest (assumed stationary)

• εt = innovations of the model noise process (assumed invertible)

• σt
2 = conditional variance of the innovations process εt

then the following equations represent the general 
ARMAX(R,M,Nx)/GARCH(P,Q) model.

LogLikelihood Vector of log-likelihood objective function values 
evaluated at the values in Parameters. The length of 
LogLikelihood is the same as the number of columns in 
Series. Because the fmincon function (of the 
Optimization Toolbox), which is used to optimize 
garchllfn, is a minimization routine, LogLikelihood is 
the negative of what is formally presented in most 
econometrics references

G Reserved for future use. G = [].

H Reserved for future use. H = [].

Innovations Innovations matrix inferred from the input Series 
matrix.

Sigma Conditional standard deviation matrix corresponding to 
Innovations.

yt C ARiyt i–
i 1=

R

∑ εt MAjεt j–

j 1=

M

∑ βkX t k,( )
k 1=

Nx

∑+ + + +=

σt
2 κ Giσt i–

2

i 1=

P

∑ Ajεt j–
2

j 1=

Q

∑+ +=
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You can also write these equations as

Using this form, the following equations represent the conditional mean and 
variance of a specific ARMAX(R=2, M=2, Nx=1) / GARCH(P=2, Q=2) composite 
model.

In the MATLAB notation, and using specification structure parameter names, 
the coefficient vector, Parameters, that represents this model is

Parameters =
 [ C     AR(1:R)   MA(1:M)     B(1:Nx)  K     GARCH(1:P)  ARCH(1:Q) ]' =
 [ 1.3   0.5 -0.8  -0.6 0.08   1.2      0.5   0.2 0.1     0.3 0.2   ]'

Note that the coefficient of εt in the conditional mean equation is 1. Since 
garchfit does not estimate the coefficient of εt, the coefficient vector does not 
include it. 

Inferring the Innovations
garchllfn uses the following conditional mean specification of ARMAX form to 
infer the innovations, and then fits the conditional variance of the innovations 
to a GARCH model. It assumes Gaussian innovations.

yt C AR1yt 1– … ARRyt R– εt+ + + +=

MA1εt 1– … MAMεt M–+ +

β1X t 1,( ) … βNxX t Nx,( )+ +

+
+

σt
2

K G1σt 1–
2 … GPσt P–

2
+ + +=

A1εt 1–
2 … AQεt Q–

2
+ ++

yt 1.3 0.5yt 1– 0.8yt 2– εt+–+=

0.6εt 1– 0.08εt 2–+

1.2X t( )

–

+

σt
2

0.5 0.2σt 1–
2

0.1σt 2–
2

+ +=

0.3εt 1–
2

0.2εt 2–
2

++
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You can derive this equation from the general conditional mean equation given 
above for yt, by solving it for εt. Its coefficient vector, which garchllfn uses to 
infer the innovations, is the negation of Parameters with the insertion of the yt 
coefficient.

See “Maximum Likelihood Estimation” on page 2-54 for more information.

See Also garchfit, garchinfer, garchpred, garchsim

References Bollerslev, T. (1986), “Generalized Autoregressive Conditional 
Heteroskedasticity,” Journal of Econometrics, Vol. 31, pp. 307-327.

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and 
Control, third edition, Prentice Hall, 1994.

Engle, Robert (1982), “Autoregressive Conditional Heteroskedasticity with 
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50, 
pp. 987-1007.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

εt C– yt ARiyt i–
i 1=

R

∑– MAjεt j–

j 1=

M

∑– βkX t k,( )
k 1=

Nx

∑–+=
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3garchmaPurpose Convert finite-order ARMA models to infinite-order moving average (MA) 
models

Syntax InfiniteMA = garchma(AR, MA, NumLags)

Arguments  

Description InfiniteMA = garchma(AR, MA, NumLags) computes the coefficients of an 
infinite-order MA model, using the coefficients of the equivalent univariate, 
stationary, invertible finite-order ARMA(R,M) model as input. garchma 
truncates the infinite-order MA coefficients to accommodate the number of 
lagged MA coefficients you specify in NumLags. 

This function is particularly useful for calculating the standard errors of 
minimum mean square error forecasts of univariate ARMA models. 

 

AR R-element vector of auto-regressive coefficients associated 
with the lagged observations of a univariate return series 
modeled as a finite order, stationary, invertible ARMA(R,M) 
model.

MA M-element vector of moving-average coefficients associated 
with the lagged innovations of a finite-order, stationary, 
invertible univariate ARMA(R,M) model.

NumLags (optional) Number of lagged MA coefficients that garchma 
includes in the approximation of the infinite-order MA 
representation. NumLags is an integer scalar and determines 
the length of the infinite-order MA output vector. If 
NumLags = [] or is not specified, the default is 10.

InfiniteMA Vector of coefficients of the infinite-order MA representation 
associated with the finite-order ARMA model specified by AR 
and MA. InfiniteMA is a vector of length NumLags. The jth 
element of InfiniteMA is the coefficient of the jth lag of the 
innovations noise sequence in an infinite-order MA 
representation. Note that Box, Jenkins, and Reinsel refer to 
the infinite-order MA coefficients as the “ψ weights.”
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In the following ARMA(R,M) model, {yt} is the return series of interest and {εt} 
the innovations noise process. 

If you write this model equation as 

you can specify the garchar input coefficient vectors, AR and MA, exactly as you 
read them from the model. In general, the jth elements of AR and MA are the 
coefficients of the jth lag of the return series and innovations processes yt – j and 
εt – j, respectively. garchma assumes that the current-time-index coefficients of 
yt and εt are 1 and are not part of AR and MA. 

In theory, you can use the ψ weights returned in InfiniteMA to approximate yt 
as a pure MA process.

Consistently, the jth element of the truncated infinite-order moving-average 
output vector, ψj or InfiniteMA(j), is the coefficient of the jth lag of the 
innovations process, εt – j, in this equation. See Box, Jenkins, and Reinsel [7], 
Section 5.2.2, pages 139-141.

Given the above discussion, the AR and MA vectors differ from the corresponding 
AR and MA polynomials formally presented in time series references such as 
Box, Jenkins, and Reinsel. The conversion from GARCH Toolbox vectors to the 
corresponding GARCH Toolbox polynomials is as follows:

• AR polynomial tested for stationarity = [1 ; -AR]

• MA polynomial tested for invertibility = [1 ; MA]

Example Suppose you want a forecast horizon of 10 periods for the following ARMA(2,2) 
model. 

yt ARiyt i–
i 1=

R

∑ εt MAjεt j–

j 1=

M

∑+ +=

yt AR1yt 1– … ARRyt R– εt MA1εt 1– … MAMεt M–+ + + + + +=

yt εt ψiεt i–

i 1=

∞

∑+=
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To obtain probability limits for these forecasts, use garchma to compute the 
first 9 (i.e., 10 - 1) weights of the infinite order MA approximation.

From the model, AR = [0.5 -0.8] and MA = [-0.6 0.08]. 

Since the current-time-index coefficients of yt and εt are 1, the example omits 
them from AR and MA. This saves time and effort when you specify parameters 
via the garchset and garchget user interfaces. 

PSI = garchma([0.5 -0.8], [-0.6 0.08], 9);
PSI'

ans =

   -0.1000
   -0.7700
   -0.3050
    0.4635
    0.4758
   -0.1329
   -0.4471
   -0.1172
    0.2991

See Also garchar, garchpred

Reference [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting 
and Control, third edition, Prentice Hall, 1994.

yt 0.5yt 1– 0.8yt 2–– εt 0.6εt 1– 0.08εt 2–+–+=
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3garchplotPurpose Plot matched univariate innovations, volatility, and return series

Syntax garchplot(Innovations, Sigma, Series)

Arguments  

Description garchplot lets you visually compare matched innovations, conditional 
standard deviations, and returns. It provides a convenient way to compare 
innovations series, simulated using garchsim or estimated using garchfit, 
with companion conditional standard deviations, or returns series. You can 
also use garchplot to plot forecasts, computed using garchpred, of conditional 
standard deviations and returns.

In general, garchplot produces a tiered plot of matched time series. garchplot 
does not display an empty or missing input array, i.e., garchplot allocates no 
space in the tiered figure window to the array. garchplot displays valid 
(nonempty) Innovations, Sigma, and Series arrays in the top, center, and 
bottom plots, respectively. Since garchplot assigns a title and label to each 
plot according to its position in the argument list, you can ensure correct plot 
annotation by using empty matrices ([]) as placeholders.

Innovations Vector or matrix of innovations. As a vector, Innovations 
represents a single realization of a univariate time series in 
which the first element contains the oldest observation and 
the last element the most recent. As a matrix, each column of 
Innovations represents a single realization of a univariate 
time series in which the first row contains the oldest 
observation of each realization and the last row the most 
recent. If Innovations = [], then Innovations is not 
displayed.

Sigma Vector or matrix of conditional standard deviations. In 
general, Innovations and Sigma are the same size, and form 
a matching pair of arrays. If Sigma = [], then Sigma is not 
displayed.

Series Vector or matrix of asset returns. In general, Series is the 
same size as Innovations and Sigma, and is organized in 
exactly the same manner. If Series = [] or is not specified, 
then Series is not displayed.
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You can plot several realizations of each array simultaneously because 
garchplot color codes corresponding realizations of each input array. 
However, the plots may become cluttered if you try to display more than a few 
realizations of each input at one time.

Examples Assume Innovations, Sigma, and Series are not empty.

garchplot(Innovations)                % Plot Innovations only.
garchplot(Innovations, [], Series)    % Plot Innovations and
                                      % Series only.
garchplot([], Sigma, Series)          % Plot Sigma and Series
                                      % only.
garchplot(Innovations, Sigma, Series) % Plot all three vectors.
garchplot(Innovations, Sigma, [])     % Plot Innovations and
                                      % Sigma only.
garchplot(Innovations, Sigma)         % Plot Innovations and
                                      % Sigma only.

See Also garchfit, garchpred, garchsim
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3garchpredPurpose Univariate GARCH process forecasting

Syntax SigmaForecast = garchpred(Spec, Series, NumPeriods, X)
[SigmaForecast, MeanForecast] = garchpred(Spec, Series, NumPeriods, 

X, XF)
[SigmaForecast, MeanForecast, SigmaTotal, MeanRMSE] = 

garchpred(Spec, Series, NumPeriods)

Arguments  

Spec GARCH specification structure for the conditional mean and 
variance models. You can create Spec by calling the function 
garchset or the estimation function garchfit.

Series Matrix of observations of the underlying univariate return 
series of interest for which garchpred generates forecasts. 
Each column of Series is an independent realization (i.e., 
path). The last row of Series holds the most recent 
observation of each realization. garchpred assumes that 
Series is a stationary stochastic process. It also assumes that 
the ARMA component of the conditional mean model (if any) is 
stationary and invertible.

NumPeriods (optional) Positive, scalar integer representing the forecast 
horizon of interest. The value you specify should be compatible 
with the sampling frequency of Series. If NumPeriods = [] or 
is not specified, the default is 1.
3-41



garchpred
Description garchpred forecasts the conditional mean and standard deviation of the 
univariate return series NumPeriods into the future, using specifications for 
the conditional mean and variance of an observed univariate return series as 
input. The conditional mean and variance can be of general ARMAX and 
GARCH form, respectively.

X (optional) Time series regression matrix of observed 
explanatory data. Typically, X is a matrix of asset returns 
(e.g., the return series of an equity index), and represents the 
past history of the explanatory data. Each column of X is an 
individual time series used as an explanatory variable in the 
regression component of the conditional mean. In each 
column, the first row contains the oldest observation and the 
last row the most recent. 

The number of valid (non-NaN) most recent observations in 
each column of X must equal or exceed the number of valid 
most recent observations in Series. If the number of valid 
observations in a column of X exceeds that of Series, 
garchpred uses only the most recent observations of X. 

If X = [] or is not specified, the conditional mean 
(MeanForecast) has no regression component. 

XF (optional) Time series matrix of forecasted explanatory data. 
XF represents the evolution into the future of the same 
explanatory data found in X. Because of this, XF and X must 
have the same number of columns. In each column of XF, the 
first row contains the one-period-ahead forecast, the second 
row the two-period-ahead forecast, and so on.

The number of rows (forecasts) in each column (time series) of 
XF must equal or exceed the forecast horizon NumPeriods. 
When the number of forecasts in XF exceeds NumPeriods, 
garchpred uses only the first NumPeriods forecasts. 

If XF = [] or is not specified, the conditional mean 
(MeanForecast) has no regression component. 
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SigmaForecast = garchpred(Spec, Series, NumPeriods, X) forecasts only 
the standard deviation of the univariate return series, Series. The regression 
matrix X is optional. If you specify XF, garchpred ignores it.

[SigmaForecast, MeanForecast] = garchpred(Spec, Series, NumPeriods, 
X, XF) forecasts both the conditional mean and standard deviation of the 
univariate return series, Series. X and XF are optional. However, for 
MeanForecast, if you specify X, you must also specify XF. For SigmaForecast, 
garchpred ignores XF.

[SigmaForecast, MeanForecast, SigmaTotal, MeanRMSE] = 
garchpred(Spec, Series, NumPeriods) in addition to forecasting the 
conditional mean and standard deviation of the univariate return series,  
computes the volatility forecasts of asset returns over multiperiod holding 
intervals, and the standard errors of conditional mean forecasts. If you 
compute SigmaTotal or MeanRMSE, SigmaForecast and MeanForecast can have 
no regression component.If you compute SigmaTotal or MeanRMSE, 
SigmaForecast and MeanForecast can have no regression component. 

garchpred requires a complete conditional mean specification to correctly infer 
the innovations process that drives the forecasts. Because of this, you would 
typically use the same regression matrix of observed returns (X), if any, that 
you used for simulation (using garchsim) or estimation (using garchfit). XF, 
however, is just the forecast of X, and you only need it to forecast the conditional 
mean (MeanForecast). If you want to forecast only the conditional variance 
(SigmaForecast), XF is unnecessary. 
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SigmaForecast Matrix of minimum mean square error (MSE) forecasts of 
the conditional standard deviations of Series on a per 
period basis. SigmaForecast has NumPeriods rows and the 
same number of columns as Series. The first row contains 
the one-period-ahead forecast for each realization of Series, 
the second row contains the two-period-ahead forecast, and 
so on. If a forecast horizon is > 1 (i.e., NumPeriods > 1), 
garchpred returns the per-period forecasts of all 
intermediate horizons, as well as the forecast at the 
specified horizon which is in the last row.

MeanForecast Matrix of minimum MSE forecasts of the conditional mean 
of Series on a per-period basis. MeanForecast is the same 
size as SigmaForecast. The first row contains the forecast in 
the first period for each realization of Series, the second 
row contains the forecast in the second period, and so on. 

Both X and XF must be non-empty for MeanForecast to have 
a regression component. If X and XF are empty ([]) or not 
specified, MeanForecast is based on the ARMA model. If you 
specify X and XF, MeanForecast is based on the full ARMAX 
model.
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SigmaTotal Matrix of minimum mean square error (MSE) volatility 
forecasts of Series over multiperiod holding intervals. 
SigmaTotal is the same size as SigmaForecast. The first 
row contains the standard deviation of returns expected for 
assets held for one period for each realization of Series, the 
second row contains the standard deviation of returns 
expected for assets held for two periods, and so on. The last 
row contains the volatility forecast of the cumulative return 
obtained if an asset was held for the entire NumPeriods 
forecast horizon. 

garchpred computes the elements of SigmaTotal by taking 
the square root of

where s is the forecast horizon of interest (NumPeriods), and 
ψj is the coefficient of the jth lag of the innovations process 
in an infinite-order MA representation of the conditional 
mean model (see the function garchma). 

In the special case of the default model for the conditional 
mean, yt = C + εt, this reduces to

The SigmaTotal forecasts are correct for continuously 
compounded returns, and approximate for periodically 
compounded returns. SigmaTotal is the same size as 
SigmaForecast if the conditional mean is modeled as a 
stationary invertible ARMA process. 

If you specify X or XF, SigmaTotal = [].

vart yt i+

i 1=

s

∑ 1 ψj

j 1=

s i–

∑+
2
Et σt i+

2( )

i 1=

s

∑=

vart yt i+

i 1=

s

∑ Et σt i+
2( )

i 1=

s

∑=
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Note  garchpred calls the function garchinfer to access the past history of 
innovations and conditional standard deviations inferred from Series. If you 
need the innovations and conditional standard deviations, call garchinfer 
directly.

See Also garchfit, garchinfer, garchma, garchset, garchsim

References [1] Baillie, R.T., T. Bollerslev (1992), “Prediction in Dynamic Models with 
Time-Dependent Conditional Variances,” Journal of Econometrics, Vol. 52, pp. 
91-113.

[2] Bollerslev, T. (1986), “Generalized Autoregressive Conditional 
Heteroskedasticity,” Journal of Econometrics, Vol. 31, pp. 307-327.

[3] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting 
and Control, third edition, Prentice Hall, 1994.

[4] Engle, Robert (1982), "Autoregressive Conditional Heteroskedasticity with 
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50, 
pp. 987-1007.

[5] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

MeanRMSE Matrix of root mean square errors (RMSE) associated with 
MeanForecast. That is, MeanRMSE is the conditional standard 
deviation of the forecast errors (i.e., the standard error of 
the forecast) of the corresponding MeanForecast matrix. 
MeanRMSE is the same size as MeanForecast and garchpred 
organizes it in exactly the same manner, provided the 
conditional mean is modeled as a stationary/invertible 
ARMA process. 

If you specify X or XF, MeanRMSE = [].
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3garchsetPurpose Create or modify GARCH specification structure

Syntax garchset
Spec = garchset
Spec = garchset('Parameter1', Value1, 'Parameter2', Value2, ...) 
Spec = garchset(OldSpec, 'Parameter1', Value1, ...)

Arguments  

Description garchset provides the main user interface for specifying a GARCH model, and 
is the preferred method for creating and modifying GARCH specification 
structures. Use garchget to retrieve the values of specification structure 
parameters.

garchset (with no input arguments and no output arguments) displays all 
parameter names and the default values where appropriate.

Spec = garchset creates a GARCH specification structure Spec with all fields 
set to their default settings. This default GARCH specification structure 
models an observed univariate return series as a constant, C, plus GARCH(1,1) 
conditionally Gaussian innovations. The C + GARCH(1,1) model is the default 
model of the GARCH Toolbox. You can use this Spec as input to garchfit, but 
it is invalid as input to garchpred or garchsim. 

Spec = garchset('Parameter1', Value1, 'Parameter2', Value2, ...)
creates a GARCH specification structure Spec using the parameter/value pairs 
specified in the input argument list. The Parameter part of the pair must be a 
valid GARCH specification structure field. garchset assigns the Value part of 

Parameter1, 
Parameter2, 
...

String representing the name of a valid parameter field of the 
output specification structure Spec. “GARCH Specification 
Parameters” below lists the valid parameters. The GARCH 
Toolbox ignores case for parameter names.

Value1, 
Value2, ...

Value assigned to the corresponding Parameter.

OldSpec (optional) Existing GARCH specification structure. Fields of 
the structure were previously generated by calling garchset 
or garchfit.
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the pair to its paired Parameter field. If you specify coefficient vectors (AR, MA, 
GARCH, ARCH) but not their corresponding model orders (R, M, P, Q), garchset 
infers the values of the model orders from the lengths of the coefficient vectors. 
In all other cases, garchset sets all parameters you do not specify to their 
respective defaults. A parameter name needs to include only sufficient leading 
characters to uniquely identify the parameter. 

Spec = garchset(OldSpec, 'Parameter1', Value1, ...) modifies an 
existing GARCH specification structure, OldSpec, by changing the named 
parameters to the specified values.

 

A GARCH specification structure includes the parameters shown in “GARCH 
Specification Parameters”. 

Spec GARCH specification structure. This structure contains the orders 
and coefficients (if specified) of the conditional mean and variance 
specifications of a GARCH model. It also contains the parameters 
associated with the function fmincon in the MATLAB 
Optimization Toolbox. 

Table 3-1:  GARCH Specification Parameters 

Parameter Description Possible Values

Comment User-defined summary comment String. The default lists expressions for 
the mean and variance models derived 
from the current values of R, M, P, and Q. 
For example, 'Mean: ARMAX(0,0,?); 
Variance: GARCH(1,1)'. If you 
explicitly specify a comment, the 
toolbox does not overwrite it.

R Auto-regressive component of the 
conditional mean model order of an 
ARMA(R,M) model

Nonnegative integer scalar. 
Default = 0. 
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M Moving average component of the 
conditional mean model order of an 
ARMA(R,M) model

Nonnegative integer scalar. 
Default = 0.

P GARCH component of the 
conditional variance model order of 
an GARCH(P,Q) model

Nonnegative integer scalar. P must be 0 
if Q is 0. Default = 0.

Q ARCH component of the conditional 
variance model order of an 
GARCH(P,Q) model

Nonnegative integer scalar. 
Default = 0.

Distribution Conditional distribution of 
innovations 

String. The only valid value is 
'Gaussian'.

C Conditional mean constant Scalar coefficient. Default = [].

AR Conditional mean auto-regressive 
coefficients 

Vector of R coefficients of lagged 
returns. Default = [].

MA Conditional mean moving average 
coefficients 

Vector of M coefficients of lagged 
innovations. Default = [].

Regress Conditional mean regression 
coefficients 

Vector of coefficients. Default = [].

K Conditional variance constant Positive scalar coefficient. Default = [].

GARCH Conditional variance coefficients for 
lagged variances 

Vector of P nonnegative coefficients. 
Default = [].

ARCH Conditional variance coefficients for 
lagged squared residuals 

Vector of Q nonnegative coefficients. 
Default = [].

FixC Equality constraint indicator for C 
coefficient of the conditional mean 

Boolean scalar. Default = 0.

FixAR Equality constraint indicator for AR 
coefficients of the conditional mean 

Boolean vector. 
Default = [0, 0, ..., 0].

Table 3-1:  GARCH Specification Parameters  (Continued)

Parameter Description Possible Values
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FixMA Equality constraint indicator for MA 
coefficients of the conditional mean 

Boolean vector. 
Default = [0, 0, ..., 0].

FixRegress Equality constraint indicator for the 
REGRESS coefficients of the 
conditional mean 

Boolean vector. 
Default = [0, 0, ..., 0].

FixK Equality constraint indicator for the 
K coefficient of the conditional 
variance 

Boolean scalar. Default = 0.

FixGARCH Equality constraint indicator for the 
GARCH coefficients of the conditional 
variance 

Boolean vector. 
Default = [0, 0, ..., 0].

FixARCH Equality constraint indicator for the 
ARCH coefficients of the conditional 
variance 

Boolean vector. 
Default = [0, 0, ..., 0].

Display Display flag for iterative 
optimization information

String. Valid values are on (default) and 
off.

MaxFunEvals Maximum number of log-likelihood 
objective function evaluations 
allowed in the estimation process 

Positive integer. Default = (100 * 
number of parameters in the model). 
For a Gaussian distribution, this is 
100 * (2 + R + M + Nx + P + Q) 
where Nx is the number of explanatory 
variables in the regression component 
of the conditional mean.

MaxIter Maximum number of iterations 
allowed in the estimation process

Positive integer. Default = 400.

TolCon Termination tolerance on constraint 
violation 

Positive scalar. Default = 1e-006.

Table 3-1:  GARCH Specification Parameters  (Continued)

Parameter Description Possible Values
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Example This example creates a GARCH(1,1) model and prints the specification 
structure. The nested Optimization structure, shown in the printed 
specification structure, contains the Display, MaxFunEvals, MaxIter, TolCon, 
TolFun, and TolX parameters. Use garchget to retrieve the values of these 
parameters. 

spec = garchset('P',1,'Q',1)   % Create a GARCH(P=1,Q=1) model.

spec = 

         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
               R: 0
               M: 0
               P: 1
               Q: 1
    Distribution: 'Gaussian'
               C: []
              AR: []
              MA: []
         Regress: []
               K: []
           GARCH: []
            ARCH: []
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

TolFun Termination tolerance on the 
objective function value 

Positive scalar. Default = 1e-006.

TolX Termination tolerance on parameter 
estimates 

Positive scalar. Default = 1e-006.

Table 3-1:  GARCH Specification Parameters  (Continued)

Parameter Description Possible Values
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spec = garchset(spec,'Q',2)    % Change it to a GARCH(P=1,Q=2)
                               % model.
spec = 

         Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,2)'
               R: 0
               M: 0
               P: 1
               Q: 2
    Distribution: 'Gaussian'
               C: []
              AR: []
              MA: []
         Regress: []
               K: []
           GARCH: []
            ARCH: []
            FixC: []
           FixAR: []
           FixMA: []
      FixRegress: []
            FixK: []
        FixGARCH: []
         FixARCH: []
    Optimization: [1x1 struct]

See Also garchfit, garchget, garchpred, garchsim
optimset (in the online MATLAB Function Reference)
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3garchsimPurpose Univariate GARCH process simulation

Syntax [Innovations, Sigma, Series] = garchsim(Spec, NumSamples, NumPaths, 
Seed, X)

Arguments  

Spec GARCH specification structure for the conditional mean and 
variance models. You create Spec by calling the function 
garchset or the estimation function garchfit. The 
conditional mean can be of general ARMAX form and 
conditional variance of general GARCH form.

NumSamples (optional) Positive integer indicating the number of samples 
garchsim generates for each path of the Innovations, Sigma, 
and Series outputs. If NumSamples = [] or is not specified, 
the default is 100.

NumPaths (optional) Positive integer indicating the number of sample 
paths (realizations) garchsim generates for the Innovations, 
Sigma, and Series outputs. If NumPaths = [] or is not 
specified, the default is 1, i.e. Innovations, Sigma and Series 
are column vectors.
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Description [Innovations, Sigma, Series] = garchsim(Spec, NumSamples, NumPaths, 
Seed, X) simulates sample paths for return series, innovations, and 
conditional standard deviation processes, using specifications for the 
conditional mean and variance of a univariate time series as input. garchsim 
samples each of NumPaths sample paths at NumSamples observations. 

  

Seed (optional) Scalar random number generator seed. If Seed = [] 
or is not specified, the default is 0 (the MATLAB initial state).

X (optional) Time series regression matrix of observed 
explanatory data. Typically, X is a matrix of asset returns 
(e.g., the return series of an equity index), and represents the 
past history of the explanatory data. Each column of X is an 
individual time series used as an explanatory variable in the 
regression component of the conditional mean. In each 
column, the first row contains the oldest observation and the 
last row the most recent. 
If X = [] or is not specified, the conditional mean has no 
regression component. If specified, then at least the most 
recent NumSamples observations of each return series must be 
valid (i.e., non-NaN). When the number of valid observations in 
each series exceeds NumSamples, garchsim uses only the most 
recent NumSamples observations of X.

Innovations NumSamples by NumPaths matrix of innovations, representing 
a mean zero, discrete-time stochastic process. The 
Innovations time series follows the conditional variance 
(GARCH) specification defined in Spec. Rows are sequential 
times samples, columns are independent realizations.
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See Also garchfit, garchget, garchpred, garchset

References Bollerslev, T. (1986), “Generalized Autoregressive Conditional 
Heteroskedasticity,” Journal of Econometrics, Vol. 31, pp. 307-327.

Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and 
Control, third edition, Prentice Hall, 1994.

Engle, Robert (1982), “Autoregressive Conditional Heteroskedasticity with 
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50, 
pp. 987-1007.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Sigma NumSamples by NumPaths matrix of conditional standard 
deviations of the corresponding Innovations matrix. 
Innovations and Sigma are the same size. Rows are 
sequential times samples. Columns are independent 
realizations.

Series NumSamples by NumPaths matrix of the return series of 
interest. Series is the dependent stochastic process and 
follows the conditional mean specification of general ARMAX 
form defined in Spec. Rows are sequential times samples. 
Columns are independent realizations.
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3lagmatrixPurpose Create a lagged time series matrix

Syntax XLAG = lagmatrix(X, Lags)

Arguments  

Description XLAG = lagmatrix(X, Lags) creates a lagged (i.e., shifted) version of a time 
series matrix. The lagmatrix function is useful for creating a regression matrix 
of explanatory variables for fitting the conditional mean of a return series. 

  

X Time series of explanatory data. X can be a vector or a matrix. As a 
vector (row or column), X represents a univariate time series whose 
first element contains the oldest observation and whose last 
element contains the most recent observation. As a matrix, X 
represents a multivariate time series whose rows correspond to 
time indices in which the first row contains the oldest observations 
and the last row contains the most recent observations. lagmatrix 
assumes that observations across any given row occur at the same 
time. Each column is an individual time series.

Lags Vector of integer lags. lagmatrix applies the first lag to every 
series in X, then applies the second lag to every series in X, and so 
forth. To include a time series as is, include a 0 lag. Positive lags 
correspond to delays, and shift a series back in time. Negative lags 
correspond to leads, and shift a series forward in time. 

XLAG Lagged transform of the time series X. To create XLAG, lagmatrix 
shifts each time series in X by the first lag, then shifts each time 
series in X by the second lag, and so forth. Since XLAG represents an 
explanatory regression matrix, each column is an individual time 
series. XLAG has the same number of rows as there are observations 
in X, but its column dimension is equal to the product of the number 
of columns in X and the length of Lags. lagmatrix uses a NaN 
(Not-a-Number) to indicate an undefined observation.
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Example The following example creates a bivariate time series matrix X with five 
observations each, then creates a lagged matrix XLAG composed of X and the 
first two lags of X. The result, XLAG, is a 5-by-6 matrix.

X = [1 -1; 2 -2 ;3 -3 ;4 -4 ;5 -5]  % Create a simple bivariate
                                    % series.
X =

     1    -1
     2    -2
     3    -3
     4    -4
     5    -5
XLAG = lagmatrix(X , [0 1 2])       % Create the lagged matrix.

XLAG =

     1    -1   NaN   NaN   NaN   NaN
     2    -2     1    -1   NaN   NaN
     3    -3     2    -2     1    -1
     4    -4     3    -3     2    -2
     5    -5     4    -4     3    -3

See Also filter, isnan, and nan (in the online MATLAB Function Reference)
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3lbqtestPurpose Ljung-Box Q-statistic lack-of-fit hypothesis test

Syntax [H, pValue, Qstat, CriticalValue] = lbqtest(Series, Lags, Alpha, 
DoF)

Arguments  

Description [H, pValue, Qstat, CriticalValue] = lbqtest(Series, Lags, Alpha, 
DoF) performs the Ljung-Box lack-of-fit hypothesis test for model 
misspecification, which is based on the Q-statistic

 

Series Vector of observations of a univariate time series for which lbqtest 
computes the sample Q-statistic. The last row of Series contains 
the most recent observation of the stochastic sequence. Typically, 
Series is either the sample residuals derived from fitting a model 
to an observed time series, or the standardized residuals obtained 
by dividing the sample residuals by the conditional standard 
deviations.

Lags (optional) Vector of positive integers indicating the lags of the 
sample autocorrelation function included in the Q-statistic. If 
specified, each lag must be less than the length of Series. If 
Lags = [] or is not specified, the default is 
Lags = min([20, length(Series)-1]).

Alpha (optional) Significance level(s). Alpha can be a scalar applied to all 
lags, or a vector the same length as Lags. If Alpha = [] or is not 
specified, the default is 0.05. For all elements, α, of Alpha, 
0 < α < 1.

DoF (optional) Degree(s) of freedom. DoF can be a scalar applied to all 
lags, or a vector the same length as Lags. If specified, all elements 
of DoF must be positive integers less than the corresponding 
element of Lags. If DoF = [] or is not specified, the elements of 
Lags serve as the default degrees of freedom for the Chi-Square 
distribution.

Q N N 2+( )
rk

2

N k–( )
-------------------

k 1=

L

∑=
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where N = sample size, L = number of autocorrelation lags included in the 
statistic, and rk

2 is the squared sample autocorrelation at lag k. Once you fit a 
univariate model to an observed time series, you can use the Q-statistic as a 
lack-of-fit test for a departure from randomness. Under the null hypothesis 
that the model fit is adequate, the test statistic is asymptotically Chi-Square 
distributed.

  

Example Create a vector of 100 Gaussian random numbers, then compute the Q-statistic 
for autocorrelation lags 20 and 25 at the 10 percent significance level.

randn('state',100)               % Start from a known state.
Series         = randn(100,1);   % 100 Gaussian deviates ~ N(0,1)
[H,P,Qstat,CV] = lbqtest(Series, [20 25]', 0.10);
[H,P,Qstat,CV]

ans =

         0    0.9615   10.3416   28.4120
         0    0.9857   12.1015   34.3816

See Also archtest, autocorr

Reference [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting 
and Control, third edition, Prentice Hall, 1994.

H Boolean decision vector. 0 indicates acceptance of the null 
hypothesis that the model fit is adequate (no serial 
correlation at the corresponding element of Lags). 
1 indicates rejection of the null hypothesis. H is the same 
size as Lags.

pValue Vector of P-values (significance levels) at which lbqtest 
rejects the null hypothesis of no serial correlation at each 
lag in Lags.

Qstat Vector of Q-statistics for each lag in Lags.

CriticalValue Vector of critical values of the Chi-Square distribution for 
comparison with the corresponding element of Qstat.
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[2] Gourieroux, C., ARCH Models and Financial Applications, 
Springer-Verlag, 1997.
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3lratiotestPurpose Likelihood ratio hypothesis test

Syntax [H, pValue, Ratio, CriticalValue] = lratiotest(BaseLLF, NullLLF, 
DoF, Alpha)

Arguments   

Description [H, pValue, Ratio, CriticalValue] = lratiotest(BaseLLF, NullLLF, 
DoF, Alpha) performs the likelihood ratio hypothesis test. lratiotest uses as 
input the optimized log-likelihood objective function (LLF) value associated 
with an unrestricted maximum likelihood parameter estimate, and the LLF 
values associated with restricted parameter estimates.

The unrestricted LLF is the baseline case used to fit conditional mean and 
variance specifications to an observed univariate return series. The restricted 
models determine the null hypotheses of each test, and the number of 
restrictions they impose determines the degrees of freedom of the resulting 
Chi-Square distribution.

BaseLLF Scalar value of the optimized log-likelihood objective 
function of the baseline, unrestricted estimate. lratiotest 
assumes BaseLLF is the output of the estimation function 
garchfit, or the inference function garchinfer. 

NullLLF Vector of optimized log-likelihood objective function values 
of the restricted estimates. lratiotest assumes you 
obtained the NullLLF values using garchfit or 
garchinfer.

DoF Degrees of freedom (i.e, the number of parameter 
restrictions) associated with each value in NullLLF. DoF 
can be a scalar applied to all values in NullLLF, or a vector 
the same length as NullLLF. All elements of DoF must be 
positive integers.

Alpha (optional) Significance levels of the hypothesis test. Alpha 
can be a scalar applied to all values in NullLLF, or a vector 
the same length as NullLLF. If Alpha = [] or is not 
specified, the default is 0.05. For all elements, α, of Alpha, 
0 < α < 1.
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BaseLLF is usually the LLF of a larger estimated model and serves as the 
alternative hypothesis. Elements of NullLLF are then the LLFs associated with 
smaller, restricted specifications. BaseLLF should exceed the values in NullLLF, 
and the asymptotic distribution of the test statistic is Chi-Square distributed 
with degrees of freedom equal to the number of restrictions.

  

See Also garchfit, garchinfer

Reference [1] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

H Vector of Boolean decisions the same size as NullLLF. 
A 0 indicates acceptance of the restricted model under the 
null hypothesis. 1 indicates rejection of the restricted, null 
hypothesis model relative to the unrestricted alternative 
associated with BaseLLF.

pValue Vector of P-values (significance levels) at which 
lratiotest rejects the null hypothesis of each restricted 
model. pValue is the same size as NullLLF.

Ratio Vector of likelihood ratio test statistics the same size as 
NullLLF. The test statistic is

CriticalValue Vector of critical values of the Chi-Square distribution. 
CriticalValue is the same size as NullLLF.

Ratio 2 BaseLLF NullLLF–( )=
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3parcorrPurpose Plot or return computed sample partial auto-correlation function

Syntax [PartialACF, Lags, Bounds] = parcorr(Series, nLags, R, nSTDs)

Arguments  

Description parcorr(Series, nLags, R, nSTDs) computes and plots the sample partial 
auto-correlation function (partial ACF) of a univariate, stochastic time series. 
parcorr computes the partial ACF by fitting successive autoregressive models 
of orders 1, 2, ... by ordinary least squares, retaining the last coefficient of each 

Series Vector of observations of a univariate time series for which 
parcorr returns or plots the sample partial auto-correlation 
function (partial ACF). The last element of Series contains the 
most recent observation of the stochastic sequence.

nLags (optional) Positive, scalar integer indicating the number of lags of 
the partial ACF to compute. If nLags = [] or is not specified, 
parcorr computes the partial ACF sequence at lags 0, 1, 2, ..., T, 
where T = min([20, length(Series)-1]).

R (optional) Nonnegative integer scalar indicating the number of 
lags beyond which parcorr assumes the theoretical partial ACF is 
zero. Assuming that Series is an AR(R) process, the estimated 
partial ACF coefficients at lags > R are approximately zero-mean, 
independently distributed Gaussian variates. In this case, the 
standard error of the estimated partial ACF coefficients of a fitted 
Series with N observations is approximately 1 ⁄ √N for lags > R. 
If R = [] or is not specified, the default is 0. The value of R must 
be < nLags.

nSTDs (optional) Positive scalar indicating the number of standard 
deviations of the sample partial ACF estimation error to display, 
assuming that Series is an AR(R) process. If the Rth regression 
coefficient (i.e., the last ordinary least squares (OLS) regression 
coefficient of Series regressed on a constant and R of its lags) 
includes N observations, specifying nSTDs results in confidence 
bounds at ±(nSTDs ⁄ √N). If nSTDs = [] or is not specified, the 
default is 2 (i.e., approximate 95 percent confidence interval).
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regression. To plot the partial ACF sequence without the confidence bounds, 
set nSTDs = 0.

[PartialACF, Lags, Bounds] = parcorr(Series, nLags, R, nSTDs)
computes and returns the partial ACF sequence. 

 

Example Create a stationary AR(2) process from a sequence of 1000 Gaussian deviates, 
and then visually assess whether the partial ACF is zero for lags > 2.

randn('state',0)                % Start from a known state.
x = randn(1000,1);              % 1000 Gaussian deviates ~ N(0,1).
y = filter(1,[1 -0.6 0.08],x);  % Create a stationary AR(2)
                                % process.
[PartialACF, Lags, Bounds] = parcorr(y , [] , 2); % Compute the
                                % partial ACF with 95 percent
                                % confidence.
[Lags, PartialACF]

ans =

         0    1.0000
    1.0000    0.5570
    2.0000   -0.0931
    3.0000    0.0249
    4.0000   -0.0180
    5.0000   -0.0099

PartialACF Sample partial ACF of Series. PartialACF is a vector of 
length nLags + 1 corresponding to lags 0, 1, 2, ..., nLags. The 
first element of PartialACF is unity, 
i.e., PartialACF(1) = 1 = OLS regression coefficient of Series 
regressed upon itself. parcorr includes this element as a 
reference.

Lags Vector of lags corresponding to PartialACF(0, 1, 2, ..., nLags).

Bounds Two-element vector indicating the approximate upper and 
lower confidence bounds, assuming that Series is an AR(R) 
process. Note that Bounds is approximate for lags > R only.
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    6.0000    0.0483
    7.0000    0.0058
    8.0000    0.0354
    9.0000    0.0623
   10.0000    0.0052
   11.0000   -0.0109
   12.0000    0.0421
   13.0000   -0.0086
   14.0000   -0.0324
   15.0000    0.0482
   16.0000    0.0008
   17.0000   -0.0192
   18.0000    0.0348
   19.0000   -0.0320
   20.0000    0.0062

Bounds

Bounds =

    0.0633
   -0.0633

parcorr(y , [] , 2)            % Use the same example, but plot
                               % the partial ACF sequence with
                               % confidence bounds.
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See Also autocorr, crosscorr
filter (in the online MATLAB Function Reference)

References [1] Box, G.E.P., G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting 
and Control, third edition, Prentice Hall, 1994.

[2] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
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3price2retPurpose Convert a price series to a return series

Syntax [RetSeries, RetIntervals] = price2ret(TickSeries, TickTimes, 
Method)

Arguments  

Description [RetSeries, RetIntervals] = price2ret(TickSeries, TickTimes, 
Method) computes asset returns for NUMOBS price observations of NUMASSETS 
assets.

TickSeries Time series of price data. TickSeries can be a vector (row or 
column) or a matrix:

• As a vector, TickSeries represents a univariate price series. 
The length of the vector is the number of observations 
(NUMOBS). The first element contains the oldest observation, 
and the last element the most recent.

• As a matrix, TickSeries represents a NUMOBS-by-number of 
assets (NUMASSETS) matrix of asset prices. Rows correspond to 
time indices. The first row contains the oldest observations 
and the last row the most recent. price2ret assumes the 
observations across a given row occur at the same time for all 
columns, and each column is a price series of an individual 
asset.

TickTimes (optional) A NUMOBS element vector of monotonically increasing 
observation times. Times are numeric and taken either as 
serial date numbers (day units), or as decimal numbers in 
arbitrary units (e.g., yearly). If TickTimes = [] or is not 
specified, then price2ret assumes sequential observation 
times from 1, 2, ..., NUMOBS. 

Method (optional) Character string indicating the compounding 
method to compute asset returns. If Method = 'Continuous', 
= [], or is not specified, then price2ret computes 
continuously compounded returns. If Method = 'Periodic', 
then price2ret assumes simple periodic returns. Method is 
case insensitive.
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Example Create a stock price process continuously compounded at 10 percent, then 
convert the price series to a 10 percent return series.

S = 100*exp(0.10 * [0:19]');   % Create the stock price series
R = price2ret(S);              % Convert the price series to a 
                               % 10 percent returns series
[S [R ; NaN]]                  % Pad the return series so vectors

RetSeries Array of asset returns:

• When TickSeries is a NUMOBS element row (column) 
vector, RetSeries is a NUMOBS-1 row (column) vector.

• When TickSeries is a NUMOBS-by-NUMASSETS matrix, 
RetSeries is a (NUMOBS-1)-by-NUMASSETS matrix. 
price2ret quotes the ith return of an asset for the period 
TickTimes(i) to TickTimes(i+1) and normalizes it by the 
time interval between successive price observations. 

Assuming that

then if Method = 'Continuous', = [], or is not specified, 
price2ret computes the continuously-compounded ith 
return of an asset as

 

If Method = 'Periodic', then price2ret computes the ith 
simple return as

 

RetIntervals NUMOBS-1 element vector of interval times between 
observations. If TickTimes = [] or is not specified, 
price2ret assumes that all intervals are 1.

RetIntervals i( ) TickTimes i 1+( ) TickTimes i( )–=

RetSeries i( )

TickSeries i 1+( )
TickSeries i( )

------------------------------------------------log

RetIntervals i( )
---------------------------------------------------------------=

RetSeries i( )

TickSeries i 1+( )
TickSeries i( )

------------------------------------------------ 1–

RetIntervals i( )
---------------------------------------------------------------=
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                               % are of same length. price2ret
                               % computes the ith return from 
                               % the ith and i+1th prices.

ans =

  100.0000    0.1000
  110.5171    0.1000
  122.1403    0.1000
  134.9859    0.1000
  149.1825    0.1000
  164.8721    0.1000
  182.2119    0.1000
  201.3753    0.1000
  222.5541    0.1000
  245.9603    0.1000
  271.8282    0.1000
  300.4166    0.1000
  332.0117    0.1000
  366.9297    0.1000
  405.5200    0.1000
  448.1689    0.1000
  495.3032    0.1000
  547.3947    0.1000
  604.9647    0.1000
  668.5894       NaN

See Also ret2price
3-69



ret2price
3ret2pricePurpose Convert a return series to a price series

Syntax [TickSeries, TickTimes] = ret2price(RetSeries, StartPrice, 
RetIntervals, StartTime, Method)

Arguments  

RetSeries Time series array of returns. RetSeries can be a vector 
(row or column) or a matrix:

• As a vector, RetSeries represents a univariate series of 
returns of a single asset. The length of the vector is the 
number of observations (NUMOBS). The first element 
contains the oldest observation, and the last element the 
most recent. 

• As a matrix, RetSeries represents a NUMOBS-by-number of 
assets (NUMASSETS) matrix of asset returns. Rows 
correspond to time indices. The first row contains the 
oldest observations and the last row the most recent. 
ret2price assumes the observations across a given row 
occur at the same time for all columns, and each column is 
a return series of an individual asset. 

StartPrice (optional) A NUMASSETS element vector of initial prices for 
each asset, or a single scalar initial price applied to all 
assets. If StartPrice = [] or is not specified, all asset 
prices start at 1.

RetIntervals (optional) A NUMOBS element vector of time intervals 
between return observations, or a single scalar interval 
applied to all observations. If RetIntervals = [] or is not 
specified, ret2price assumes all intervals have length 1.
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Description [TickSeries, TickTimes] = ret2price(RetSeries, StartPrice, 
RetIntervals, StartTime, Method) generates a price series for each of 
NUMASSETS assets, given the asset starting prices and NUMOBS return 
observations for each asset.

 

Example Create a stock price process continuously compounded at 10 percent. Compute 
10 percent returns for reference, then convert the resulting return series to the 
original price series and compare results.

S = 100*exp(0.10 * [0:19]');   % Create the stock price series
R = price2ret(S);              % Convert the price series to a 
                               % 10 percent returns series
P = ret2price(R, 100);         % Convert to the original price
                               % series

StartTime (optional) Scalar starting time for the first observation, 
applied to the price series of all assets. The default is 0.

Method (optional) Character string indicating the compounding 
method used to compute asset returns. If 
Method = 'Continuous', = [], or is not specified, then 
ret2price computes continuously compounded returns. If 
Method = 'Periodic' then ret2price computes simple 
periodic returns. Method is case insensitive.

TickSeries Array of asset prices:

• When RetSeries is a NUMOBS element row (column) vector, 
TickSeries is a NUMOBS+1 row (column) vector. The first 
element contains the starting price of the asset, and the 
last element the most recent price. 

• When RetSeries is a NUMOBS-by-NUMASSETS matrix, then 
RetSeries is a (NUMOBS+1)-by-NUMASSETS matrix. The first 
row contains the starting price of the assets, and the last 
row contains the most recent prices.

TickTimes A NUMOBS+1 element vector of price observation times. The 
initial time is zero unless specified in StartTime.
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[S P]                          % Compare the original and 
                               % computed price series

ans =

  100.0000  100.0000
  110.5171  110.5171
  122.1403  122.1403
  134.9859  134.9859
  149.1825  149.1825
  164.8721  164.8721
  182.2119  182.2119
  201.3753  201.3753
  222.5541  222.5541
  245.9603  245.9603
  271.8282  271.8282
  300.4166  300.4166
  332.0117  332.0117
  366.9297  366.9297
  405.5200  405.5200
  448.1689  448.1689
  495.3032  495.3032
  547.3947  547.3947
  604.9647  604.9647
  668.5894  668.5894

See Also price2ret
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A Glossary

A-2
Akaike information criteria (AIC) – A model order selection criteria based on 
parsimony. More complicated models are penalized for the inclusion of 
additional parameters. See also Bayesian information criteria (BIC).

AR – Auto-Regressive. AR models include past observations of the dependent 
variable in the forecast of future observations.

ARCH – Auto-Regressive Conditional Heteroscedasticity. A time series 
technique in which past observations of the variance are used to forecast future 
variances. See also GARCH.

ARMA – Auto-Regressive Moving Average. A time series model that includes 
both AR and MA components. See also AR and MA.

auto-correlation function (ACF) – Correlation sequence of a random time 
series with itself. See also cross-correlation function (XCF).

auto-regressive – See AR.

Bayesian information criteria (BIC) – A model order selection criteria based 
on parsimony. More complicated models are penalized for the inclusion of 
additional parameters. Since BIC imposes a greater penalty for additional 
parameters than AIC, BIC always provides a model with a number of 
parameters no greater than that chosen by AIC. See also Akaike information 
criteria (AIC).

conditional – Time series technique with explicit dependence on the past 
sequence of observations.

conditional mean – Time series model for forecasting the expected value of the 
return series itself.

conditional variance – Time series model for forecasting the expected value 
of the variance of the return series.

cross-correlation function (XCF) – Correlation sequence between two 
random time series. See also auto-correlation function (ACF).

equality constraint – A constraint, imposed during parameter estimation, by 
which a parameter is held fixed at a user-specified value.

excess kurtosis – A characteristic, relative to a standard normal probability 
distribution, whereby an area under the probability density function is 
reallocated from the center of the distribution to the tails (fat tails). Samples 
obtained from distributions with excess kurtosis have a higher probability of 



containing outliers than samples drawn from a normal (Gaussian) density. 
Time series that exhibit a fat tail distribution are often referred to as 
leptokurtic.

explanatory variables – Time series used to explain the behavior of another 
observed series of interest. Explanatory variables are typically incorporated 
into a regression framework.

fat tails – See excess kurtosis.

GARCH – Generalized Auto-Regressive Conditional Heteroscedasticity. A 
time series technique in which past observations of the variance and variance 
forecast are used to forecast future variances. See also ARCH.

heteroscedasticity – Time-varying, or time-dependent, variance.

homoskedasticity – Time-independent variance. The GARCH Toolbox also 
refers to homoskedasticity as constant conditional variance.

i.i.d. – Independent, identically distributed.

innovations – A sequence of unanticipated shocks, or disturbances. The 
GARCH Toolbox uses innovations and residuals interchangeably. 

leptokurtic – See excess kurtosis.

MA – Moving average. MA models include past observations of the innovations 
noise process in the forecast of future observations of the dependent variable of 
interest.

MMSE – Minimum mean square error. An technique designed to minimize the 
variance of the estimation or forecast error. See also RMSE.

moving average – See MA.

objective function – The function to be numerically optimized. In the GARCH 
Toolbox, the objective function is the log-likelihood function of a random 
process.

partial auto-correlation function (PACF) – Correlation sequence estimated 
by fitting successive order auto-regressive models to a random time series by 
least squares. The PACF is useful for identifying the order of an 
auto-regressive model.

path – A random trial of a time series process.

P-value – The lowest level of significance at which a test statistic is significant.
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realization – See path.

residuals – See innovations.

RMSE – Root mean square error. The square root of the mean square error. See 
also  MMSE.

standardized innovations – The innovations divided by the corresponding 
conditional standard deviation.

stationarity constraint – Constraint imposed during estimation such that the 
sum of the GARCH model conditional variance parameters is less than unity.

time series – Discrete-time sequence of observations of a random process. The 
type of time series of interest in the GARCH Toolbox is typically a series of 
returns, or relative changes of some underlying price series.

transient – A response, or behavior, of a time series that is heavily dependent 
on the initial conditions chosen to begin a recursive calculation. The transient 
response is typically undesirable, and initially masks the true steady-state 
behavior of the process of interest.

unconditional – Time series technique in which explicit dependence on the 
past sequence of observations is ignored. Equivalently, the time stamp 
associated with any observation is ignored.

volatility – The risk, or uncertainty, measure associated with a financial time 
series. The GARCH Toolbox associates volatility with standard deviation.
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