Instrument Control
Toolbox

For Use with MATLAB®

Computation
—

Visualization
—

Programming
—1

User’s Guide .-.e‘\The MathWorks

Version 1

X L8

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Instrument Control Toolbox User’s Guide
O COPYRIGHT 2000 - 2002 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: November 2000 First printing New for Version 1 (Release 12)
June 2001 Second printing Revised for Version 1.1 (Release 12.1)
July 2002 Online only Revised for Version 1.2 (Release 13)

Preface

What Is the Instrument Control Toolbox? X
Exploring the Toolbox i, x
Related Products i xi
Using ThisGuide xii
Expected Background, xii
Learning the Instrument Control Toolbox xii
How This Guide Is Organized xiii
Installation Information xiv
Toolbox Installation xiv
Hardware and Driver Installation xiv
Typographical Conventions XV

Getting Started with the Instrument

1

Control Toolbox

Toolbox Components 1-2
M-File Functions, 1-3
The Interface Driver Adaptor 1-4
Communicating with Your Instrument 1-5
Communicating with a GPIB Instrument 1-5
Communicating with a GPIB-VXI Instrument 1-6
Communicating with a Serial Port Instrument 1-7
Understanding the Toolbox Capabilities 1-9
The Contents M-File 1-9

Contents

ii

Documentation Examples 1-9

Demos e 1-9
Examining Your Hardware Resources 1-13
General Toolbox Information 1-13
Interface Information, 1-13
Adaptor Information 1-14
Instrument Object Information 1-16
GettingHelp 1-17
The instrhelp Function 1-17
The propinfo Function 1-18

The Instrument Control Session

2

Creating an Instrument Object 2-2
Configuring Properties During Object Creation 2-3
Creating an Array of Instrument Objects 2-3

Connecting to the Instrument 2-5

Configuring and Returning Properties 2-6
Returning Property Names and Property Values 2-6
Configuring Property Values 2-9
Specifying Property Names 2-9
Default Property Values 2-10
The Property Inspector 2-10

Writing and ReadingData 2-12
Writing Data 2-13
ReadingData 2-19

Disconnecting and Cleaning Up 2-25
Disconnecting an Instrument Object 2-25
Cleaning Up the MATLAB Environment 2-25

Contents

Controlling GPIB Instruments

3

GPIB Overview 3-2
What Is GPIB? e 3-2
Important GPIB Features 3-3
GPIBLInesot 34
Status and Event Reporting 3-9

Using Vendor Tools to Identify and Test Your Resources 3-14

Creatinga GPIBObject 3-18
The GPIB Object Display, 3-19
Configuring the GPIB Address 3-20
Writing and ReadingData 3-21
Rules for Completing Write and Read Operations 3-21
Example: Writing and Reading Text Data 3-22
Example: Reading BinaryData 3-24
Example: Parsing Input Data Using scanstr 3-26
Example: Understanding EOland EOS 3-27
Eventsand Callbacks 3-30
Example: Introduction to Events and Callbacks 3-30
Event Types and Callback Properties 3-31
Storing Event Information 3-32
Creating and Executing Callback Functions 3-33
Enabling Callback Functions After They Error 3-34

Example: Using Events and Callbacks to Read Binary Data . 3-35

Triggers 3-37
Example: Executinga Trigger 3-37
Serial Polls 3-39
Example: Executing a Serial Poll 3-39

iii

iv

Controlling Instruments Using the

VISA Standard

VISAOVerview it 4-2
Using Vendor Tools to Identify and Test Your Resources 4-3
The GPIB Interface 4-5
Creating a VISA-GPIB Object 4-5
The VISA-GPIB Addresscoiuiiiiiiiiinn. .. 4-7
The VXIInterface 4-9
Creating a VISA-VXI Object 4-10
The VISA-VXTI Addresso, .. 4-12
Register-Based Communication 4-13
The GPIB-VXI Interface 4-21
Creating a VISA-GPIB-VXI Object 4-22
The VISA-GPIB-VXI Address 4-24
The Serial Port Interface 4-26
Creating a VISA-Serial Object 4-26
Configuring Communication Settings 4-28

Controlling Serial Port Instruments

5]

Serial Port Overview i, 5-2
What Is Serial Communication? 5-2
The Serial Port Interface Standard 5-2
Connecting Two Devices with a Serial Cable 5-3
Serial Port Signals and Pin Assignments 5-5
Serial Data Format 5-9
Finding Serial Port Information for Your Platform 5-13

Creating a Serial Port Object 5-16
The Serial Port Object Display 5-17

Contents

Configuring Communication Settings 5-18

Writing and ReadingData 5-19
Asynchronous Write and Read Operations 5-19
Rules for Completing Write and Read Operations 5-20
Example: Writing and Reading Text Data 5-21

Eventsand Callbacks 5-24
Event Types and Callback Properties 5-24
Storing Event Information 5-25
Example: Using Events and Callbacks 5-27

Using Control Pins 5-29
Signaling the Presence of Connected Devices 5-29
Controlling the Flow of Data: Handshaking 5-32

Controlling Instruments Using TCP/IP and UDP

6

TCP/IP and UDP Overview 6-2
Creating a TCP/IP Object 6-4
The TCP/IP Object Displayccovuiiiniennn... 6-5
Example: Server Drops the Connection 6-6
Creatinga UDP Object 6-8
The UDP Object Display 6-9
Example: Communicating Between Two Hosts 6-10
Writing and ReadingData 6-12
Rules for Completing Write and Read Operations 6-12
Example: Writing and Reading Data with a TCP/IP Object .. 6-13
Example: Writing and Reading Data with a UDP Object 6-17

Eventsand Callbacks 6-19

vi

Event Types and Callback Properties 6-19
Storing Event Information 6-20
Example: Using Events and Callbacks 6-21

Saving and Loading the Session

7|

Saving and Loading Instrument Objects 7-2
Saving Instrument Objects toan M-File 7-2
Saving Objects toa MAT-File 74

Debugging: Recording InformationtoDisk 7-5
Example: Introduction to Recording Information 7-5
Creating Multiple Record Files 7-6
Specifying a Filename 7-6
The Record File Format 7-7
Example: Recording Informationto Disk 7-9

Function Reference

8 |

Functions-By Category 8-2
Base Functions i 8-2
Object-Specific Functions 84

Functions - Alphabetical List 8-7

9

Properties-By Category 9-2
Base Properties 9-2

Contents

Object-Specific Properties 94

Properties — Alphabetical List 9-10

Selected Bibliography

A

Index

vii

viil Contents

Preface

This chapter provides a brief overview of the Instrument Control Toolbox, as well as information
about this documentation set. The sections are as follows.

What Is the Instrument The toolbox and the kinds of tasks it can perform
Control Toolbox? (p. x)

Related Products (p. xi) MathWorks products related to this toolbox
Using This Guide (p. xii) An overview of this guide

Installation Information How to determine whether the toolbox is installed on your system
(p. xiv)

Typographical Conventions Typographical conventions that this guide uses
(p. xv)

What Is the Instrument Control Toolbox?

The Instrument Control Toolbox is a collection of M-file functions built on the
MATLAB® technical computing environment. The toolbox provides you with
these features:

¢ A framework for communicating with instruments that support the GPIB
interface (IEEE-488), the VISA standard, the TCP/IP or UDP protocols, and
the serial port interface (RS-232, RS-422, and RS-485). Note that the toolbox
extends the basic serial port features included with MATLAB.

¢ Functions for transferring data between MATLAB and your instrument:
= The data can be binary (numerical) or text.

= Text data can be any command used by your instrument such as a
command given by the Standard Commands for Programmable
Instruments (SCPI) language.

= The transfer can be synchronous and block the MATLAB command line, or
asynchronous and not block the MATLAB command line.

¢ Event-based communication
® Functions for recording data and event information to a text file

¢ Tools that facilitate instrument control in an easy-to-use graphical
environment

Exploring the Toolbox
A list of the toolbox functions is available to you by typing

help instrument

You can view the code for any function by typing

type function_name

You can view the help for any function by typing

instrhelp function_name

You can change the way any toolbox function works by copying and renaming
the M-file, then modifying your copy. You can also extend the toolbox by adding
your own M-files, or by using it in combination with other products such as the
MATLAB Report Generator or the Data Acquisition Toolbox.

Related Products

Related Products

The MathWorks provides several related products that are especially relevant
to the kinds of tasks you can perform with the Instrument Control Toolbox. For
more information about any of these products, see either

¢ The online documentation for that product if it is installed or if you are
reading the documentation from the CD

¢ The MathWorks Web site, at http://www.mathworks.com; see the “products”

section

The toolboxes listed below all include functions that extend the capabilities of

MATLAB.

Product

Description

Data Acquisition Toolbox

Database Toolbox

MATLAB Report
Generator

Signal Processing
Toolbox

Statistics Toolbox

System Identification
Toolbox

Wavelet Toolbox

Acquire and send out data from plug-in data
acquisition boards

Exchange data with relational databases

Automatically generate documentation for
MATLAB applications and data

Perform signal processing, analysis, and
algorithm development

Apply statistical algorithms and probability
models

Create linear dynamic models from measured
input-output data

Analyze, compress, and denoise signals and
images using wavelet techniques

xi

xii

Using This Guide

Expected Background

To use the Instrument Control Toolbox, you should have some familiarity with

e The basic features of MATLAB

® The commands used to communicate with your instrument; these commands
might use the SCPI language or some other vendor-specific language

¢ The features of the interface associated with your instrument

Learning the Instrument Control Toolbox

Start with Chapter 1, “Getting Started with the Instrument Control Toolbox,”
which describes how to examine your hardware resources, how to communicate
with your instrument, how to get online help, and so on. Then read Chapter 2,
“The Instrument Control Session,” which provides a framework for
constructing instrument control applications. Depending on the interface used
by your instrument, you might then want to read the appropriate
interface-specific chapter. These chapters are described in the next section.

If you want detailed information about a specific function, refer to Chapter 8,
“Function Reference.” If you want detailed information about a specific
property, refer to Chapter 9, “Property Reference.”

Using the Documentation Examples with Your Instrument

The examples in this guide use specific peripheral instruments such as a
Tektronix TDS 210 two-channel oscilloscope or an Agilent 33120A function
generator. Additionally, the GPIB examples use a National Instruments GPIB
controller and the serial port examples use the COM1 serial port. The string
commands written to these instruments are often unique to the vendor, and the
address information such as the board index or primary address associated
with the hardware reflects a specific configuration.

If your instrument accepts different string commands, or if your hardware is
configured to use different address information, then you should modify the
examples accordingly.

Using This Guide

How This Guide Is Organized

The organization of this guide is described below.

Chapter

Description

Getting Started

The Instrument Control
Session

Controlling GPIB
Instruments

Controlling Instruments
Using the VISA Standard

Controlling Serial Port
Instruments

Saving and Loading the
Session
Function Reference

Property Reference

Selected Bibliography

Describes how to get started with the
Instrument Control Toolbox. Topics include
examining your hardware resources and
communicating with your instrument.

Describes all the steps you are likely to take
when communicating with your instrument.

Shows you how to use the toolbox to
communicate with instruments that support
the GPIB interface.

Shows you how to use the toolbox to
communicate with instruments that support
the VISA standard.

Shows you how to use the toolbox to
communicate with instruments that support
the serial port interface.

Shows you how to save your work to an M-file,
a MAT-file, or a text file.

Presents a complete description of all toolbox
functions.

Presents a complete description of all toolbox
properties.

Presents a list of references for exploring
instrumentation standards and hardware.

xiii

Xiv

Installation Information

To communicate with your instrument from the MATLAB environment, you
must install these components:

e MATLAB 6.5 (Release 13)

® The Instrument Control Toolbox

Additionally, you might need to install hardware such as a GPIB controller and
software such as drivers, support libraries, and so on. For a complete listing of
all supported vendors, refer to “The Interface Driver Adaptor” on page 1-4.

Toolbox Installation
To determine if the Instrument Control Toolbox is installed on your system,
type

ver

at the MATLAB prompt. MATLAB displays information about the version of
MATLAB you are running, including a list of installed add-on products and
their version numbers. Check the list to see if the Instrument Control Toolbox
appears.

For information about installing the toolbox, refer to the MATLAB Installation
Guide for your platform. If you experience installation difficulties and have
Web access, look for the installation and license information at the MathWorks
Web site (http://www.mathworks.com/support).

Hardware and Driver Installation

Installation of hardware devices such as GPIB controllers, instrument drivers,
support libraries, and so on is described in the documentation provided by the
instrument vendor. Many vendors provide the latest drivers through their Web
site. For a list of vendor driver requirements and limitations, refer to the
Instrument Control Toolbox Release Notes.

Note You must install all necessary device-specific software provided by the
instrument vendor in addition to the Instrument Control Toolbox.

Typographical Conventions

Typographical Conventions

This manual uses some or all of these conventions.

Item

Convention

Example

Example code

Function names, syntax,
filenames, directory/folder
names, and user input

Buttons and keys

Literal strings (in syntax
descriptions in reference
chapters)

Mathematical
expressions

MATLAB output

Menu and dialog box titles

New terms and for
emphasis

Omitted input arguments

String variables (from a
finite list)

Monospace font

Monospace font

Boldface with book title caps

Monospace bold for literals

Italics for variables

Standard text font for functions,
operators, and constants

Monospace font

Boldface with book title caps

Italics

(...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

Monospace italics

To assign the value 5 to A,
enter

A=25

The cos function finds the
cosine of each array element.

Syntax line example is
MLGetVar ML_var_name

Press the Enter key.

f = freqspace(n, 'whole')

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB responds with
A =
5

Choose the File Options
menu.

An array is an ordered
collection of information.

[c,ia,ib] = union(...)

sysc = d2c(sysd, 'method")

XV

xVvi

Getting Started with the
Instrument Control Toolbox

This chapter provides the information you need to get started with the Instrument Control Toolbox.
The sections are as follows.

Toolbox Components The M-files and interface driver adaptors that comprise the toolbox.
(p. 1-2)

Communicating with Your Examples that show you how to communicate with instruments that
Instrument (p. 1-5) support the GPIB, GPIB-VXI, and serial port interfaces.

Understanding the Toolbox Resources to help you understand the toolbox capabilities including
Capabilities (p. 1-9) demos and documentation examples.

Examining Your Hardware Return hardware-related information visible to the toolbox including
Resources (p. 1-13) the installed adaptors and the syntax for creating instrument objects.

Getting Help (p. 1-17) Get help using the Help browser, M-file help, and other methods.

1 Cetting Started with the Instrument Control Toolbox

Toolbox Components

The Instrument Control Toolbox consists of two distinct components: M-file
functions and interface driver adaptors. These components allow you to pass
information between MATLAB and your instrument. For example, the
following diagram shows how information passes from MATLAB to an
instrument via the GPIB driver and the GPIB controller.

MATLAB

Interactive M-file functions

Instrument Control Toolbox

M-file functions

Disk file

Interface driver adaptors

Property values, data, and events

GPIB driver

Property values, data, and events

GPIB controller (0000t

0000
(I

Toolbox Components

The preceding diagram illustrates how information flows from component to
component. Information consists of

* Property values
You define the behavior of your instrument control application by
configuring property values. In general, you can think of a property as a
characteristic of the toolbox or of the instrument that can be configured to
suit your needs.

® Data

You can write data to the instrument and read data from the instrument.
Data can be binary (numerical) or formatted as text. For example, writing
text often involves writing string commands that change hardware settings,
or prepare the instrument to return data or status information, while writing
binary data involves writing numerical values such as calibration or
waveform data.

* Events

An event occurs after a condition is met and might result in one or more
callbacks. Events can be generated only after you configure the associated
properties. For example, you can use events to analyze data after a certain
number of bytes are read from the instrument, or display a message to the
MATLAB command line after an error occurs.

M-File Functions

To perform any task within your instrument control application, you must call
M-file functions from the MATLAB environment. Among other things, these
functions allow you to

® Create instrument objects, which provide a gateway to your instrument’s
capabilities and allow you to control the behavior of your application

¢ Connect the object to the instrument

¢ Configure property values

® Write data to the instrument, and read data from the instrument

¢ Evaluate your application status and examine your hardware resources

For a listing of all Instrument Control Toolbox functions, refer to Chapter 8,
“Function Reference.” You can also display all the toolbox functions by typing

help instrument

1-3

1 Cetting Started with the Instrument Control Toolbox

14

The Interface Driver Adaptor

The interface driver adaptor (or just adaptor) is the link between the toolbox
and the interface driver. The adaptor’s main purpose is to pass information
between MATLAB and the interface driver. Interface drivers are provided by
your instrument vendor. For example, if you are communicating with an
instrument using a National Instruments GPIB controller, then an interface
driver such as NI-488.2 must be installed on your platform. Note that interface
drivers are not installed as part of the Instrument Control Toolbox.

The Instrument Control Toolbox provides adaptors for the GPIB interface and
the VISA standard. The serial port, TCP/IP, and UDP interfaces do not require
an adaptor. The supported interfaces and the adaptor names are listed below.

Table 1-1: Supported Interfaces and Adaptor Names

Interface Adaptor Name

GPIB agilent, cec, iotech, keithley, mcc, ni
Serial port N/A

TCP/IP N/A

UDP N/A

VISA standard agilent, ni, tek

As described in “Examining Your Hardware Resources” on page 1-13, you can
list the supported interfaces and adaptor names with the instrhwinfo
function. For a list of vendor driver requirements and limitations, refer to the
Instrument Control Toolbox Release Notes.

Communicating with Your Instrument

Communicating with Your Instrument

Perhaps the most effective way to get started with the Instrument Control
Toolbox is to communicate with your instrument. This section provides simple
examples that show you how to communicate with a

e GPIB instrument
e GPIB-VXI instrument

¢ Serial port instrument

Each example illustrates a typical instrument control session. The instrument
control session comprises all the steps you are likely to take when
communicating with a supported instrument. You should keep these steps in
mind when constructing your own instrument control applications.

The examples also use specific instrument addresses, SCPI commands, and so
on. If your instrument requires different parameters, or if it does not support
the SCPI language, you should modify the examples accordingly.

If you want detailed information about any functions that are used, refer to
Chapter 8, “Function Reference.” If you want detailed information about any
properties that are used, refer to Chapter 9, “Property Reference.”

Communicating with a GPIB Instrument

This example illustrates how to communicate with a GPIB instrument. The
GPIB controller is a National Instruments AT-GPIB card. The instrument is
an Agilent 33120A Function Generator, which is outputting a 2 volt
peak-to-peak signal.

You should modify this example to suit your specific instrument control
application needs. If you want detailed information about communicating with
an instrument via GPIB, refer to Chapter 3, “Controlling GPIB Instruments.”

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB board with board index 0, and an instrument
with primary address 1.

g = gpib('ni’',0,1);

2 Connect to the instrument — Connect g to the instrument.

fopen(g)

1 Cetting Started with the Instrument Control Toolbox

1-6

3 Configure property values — Configure g to assert the EOI line when the
line feed character is written to the instrument, and to complete read
operations when the line feed character is read from the instrument.

set(g, 'EOSMode', 'read&write')
set (g, 'EOSCharCode', 'LF")

4 Write and read data — Change the instrument’s peak-to-peak voltage to 6
volts by writing the Volt 3 command, query the peak-to-peak voltage value,
and then read the voltage value.

fprintf(g, 'Volt 3')
fprintf(g, 'Volt?')
data = fscanf(g)
data =
+3.00000E+00

5 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, remove it from memory, and remove it
from the MATLAB workspace.

fclose(g)
delete(g)
clear ¢

Communicating with a GPIB-VXI Instrument

This example illustrates how to communicate with a VXI instrument via a
GPIB controller using the VISA standard provided by Agilent Technologies.

The GPIB controller is an Agilent E1406A command module in VXI slot 0. The
instrument is an Agilent E1441A Function/Arbitrary Waveform Generator in
VXI slot 1, which is outputting a 2 volt peak-to-peak signal. The GPIB
controller communicates with the instrument over the VXI backplane.

You should modify this example to suit your specific instrument control
application needs. If you want detailed information about communicating with
an instrument using the VISA standard, refer to Chapter 4, “Controlling
Instruments Using the VISA Standard.”

Communicating with Your Instrument

Create an instrument object — Create the VISA-GPIB-VXI object v
associated with the E1441A instrument located in chassis 0 with logical
address 80.

v = visa('agilent', 'GPIB-VXIO::80::INSTR');

Connect to the instrument — Connect v to the instrument.

fopen(v)

Configure property values — Configure v to complete a read operation
when the line feed character is read from the instrument.

set(v, 'EOSMode ', 'read")
set(v, 'EOSCharCode', 'LF")

Write and read data — Change the instrument’s peak-to-peak voltage to
three volts by writing the Volt 3 command, query the peak-to-peak voltage
value, and then read the voltage value.

fprintf (v, 'Volt 3')

fprintf(v, 'Volt?')

data = fscanf(v)

data =

+3.00000E+00

Disconnect and clean up — When you no longer need v, you should
disconnect it from the instrument, remove it from memory, and remove it
from the MATLAB workspace.

fclose(v)
delete(v)
clear v

Communicating with a Serial Port Instrument

This example illustrates how to communicate with an instrument via the serial
port. The instrument is a Tektronix TDS 210 two-channel digital oscilloscope
connected to the COM1 port of a PC, and configured for a baud rate of 4800 and
a carriage return (CR) terminator.

1-7

1 Cetting Started with the Instrument Control Toolbox

1-8

You should modify this example to suit your specific instrument control
application needs. If you want detailed information about communicating with
an instrument connected to the serial port, refer to Chapter 5, “Controlling
Serial Port Instruments.”

Create an instrument object — Create the serial port object s associated
with the COM1 serial port.

s = serial('COM1"');

Configure property values — Configure s to match the instrument’s baud
rate and terminator.

set (s, 'BaudRate',4800)
set(s, 'Terminator', 'CR")

Connect to the instrument — Connect s to the instrument. This step occurs
after property values are configured because serial port instruments can
transfer data immediately after the connection is established.

fopen(s)

Write and read data — Write the *IDN? command to the instrument and
then read back the result of the command. *IDN? queries the instrument for
identification information.

fprintf(s, '*IDN?')

out = fscanf(s)

out =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Disconnect and clean up — When you no longer need s, you should
disconnect it from the instrument, remove it from memory, and remove it
from the MATLAB workspace.

fclose(s)
delete(s)
clear s

Understanding the Toolbox Capabilities

Understanding the Toolbox Capabilities

In addition to the printed and online documentation, the Instrument Control
Toolbox provides these resources to help you understand the product
capabilities:

® The Contents M-file

® Documentation examples

® Demos

The Contents M-File
The Contents M-file lists the toolbox functions and demos. You can display this
information by typing

help instrument

Documentation Examples

This guide provides detailed examples that show you how to communicate with
all supported interface types. These examples are collected in the example
index, which is available through the Help browser.

The examples use specific peripheral instruments, GPIB controllers, string
commands, address information, and so on. If your instrument accepts
different string commands, or if your hardware is configured to use different
address information, then you should modify the examples accordingly.

Demos

The toolbox includes a large collection of demos, which are divided into two
main groups: command line tutorials and graphical applications. You can
access all demos through the Help browser’s Demos pane. Use the following
command to open the Help browser to the toolbox demos.

demo toolbox 'Instrument Control'

For your convenience, the command line tutorials are collected together using
a graphical user interface (GUI). To open this GUI directly from the command
line, type

instrschool

1-9

1 Cetting Started with the Instrument Control Toolbox

The instrschool GUI is shown below.

<} Instrument Control Toolbox Tutorials 101 =l
serial | orip | wisa | TepP | upe | common |
The buttong in thizs window will launch the Instrument | —
Control Toolbox demos for serial port objects.
Azcii Pead/Write - introduces reading and writing ascii
data from the instrument.
Binary Read/Write - introduces reading and writing binary
data from the instrument.
Asynchronous - 1illustrates asynchronous read and write
hehawior.
=
Jd| I
r Select a tutorial Actions
. . . : [ext = |
Azcii Readivrite Binary Readirite Asynchronous
= Freviaus |
Reset |

Note instrschool uses prerecorded data. Therefore, you do not need an
instrument connected to your computer to use these demos.

All demos have associated M-files, which are listed below. To run a particular
demo, type the M-file name at the command line.

1-10

Understanding the Toolbox Capabilities

Common Demos

The common demos illustrate features that are common to all supported
instrument objects. These demos are listed below.

Demo Name

Description

democ_callback
democ_intro
democ_record

democ_save

How to use callback properties and functions
How to get started with the toolbox
How to record data and event information to disk fil

How to save or load an instrument control session

instrcomm Graphical tool for communicating with an
instrument using text data
instrcreate Graphical tool for creating an instrument object
GPIB Demos

The GPIB demos are listed below.

Demo Name

Description

demog_ascii
demog_async

demog_binary

How to read and write ASCII (text) data
How to read and write data asynchronously

How to read and write binary (numerical) data

Serial Port Demos

The serial port demos are listed below.

Demo Name

Description

demos_ascii
demos_async

demos_binary

How to read and write ASCII (text) data
How to read and write data asynchronously

How to read and write binary (numerical) data

1-11

1 Cetting Started with the Instrument Control Toolbox

TCP/IP Demos

The TCP/IP demos are listed below.

Demo Name

Description

demot_ascii
demot_async

demot_binary

How to read and write ASCII (text) data
How to read and write data asynchronously

How to read and write binary (numerical) data

UDP Demos

The UDP demos are listed below.

Demo Name

Description

demou_ascii
demou_async

demou_binary

How to read and write ASCII (text) data
How to read and write data asynchronously

How to read and write binary (numerical) data

VISA Demos

The VISA demos are listed below.

Demo Name

Description

demov_ascii
demov_async
demov_binary

demov_intro

demov_register

How to read and write ASCII (text) data
How to read and write data asynchronously
How to read and write binary (numerical) data

Describes the VISA standard and the supported
communication interfaces

How to use register-based functionality to
communicate with VXI instruments

1-12

Examining Your Hardware Resources

Examining Your Hardware Resources

You can examine the hardware-related resources visible to the toolbox with the
instrhwinfo function. The returned information includes the installed
adaptors and the syntax for creating instrument objects. For instruments
associated with the VISA standard, instrhwinfo also returns address
information such as the GPIB board index, the VXI logical address, the VXI
chassis, and so on.

The specific information returned by instrhwinfo depends on the supplied
arguments, and is divided into these four categories:

¢ General toolbox information

¢ Interface information

® Adaptor information

¢ Instrument object information

General Toolbox Information
To display general information about the Instrument Control Toolbox:

out = instrhwinfo

MATLABVersion: '6.5 (R13)'
SupportedInterfaces: {'gpib' ‘'serial' ‘'wvisa' ‘'tcpip' ‘'udp'}
ToolboxName: 'Instrument Control Toolbox'
ToolboxVersion: '1.2 (R13)'

The SupportedInterfaces field lists the interfaces supported by the toolbox,
but not necessarily the interfaces installed on your computer.

Interface Information

To display information about a specific interface, you must supply the interface
name as an argument to instrhwinfo. The interface name can be gpib, serial,
tcpip, udp, or visa. For the serial port interface, the returned information
includes the available serial ports. For the GPIB and VISA interfaces, the
returned information includes the installed adaptors. For the TCP/IP and UDP
interfaces, the information includes the local host address.

1-13

1 Cetting Started with the Instrument Control Toolbox

1-14

For example, to display the GPIB interface information:

out
out

instrhwinfo('gpib')

InstalledAdaptors: {'mcc' 'ni'}
JarFileVersion: 'Version 1.2 (R13)'

The InstalledAdaptors field indicates that the Measurement Computing
Corporation and National Instruments drivers are installed. This means that
it is possible to communicate with instruments using GPIB controllers from
these vendors.

Adaptor Information

To display information about a specific installed adaptor, you must supply the
interface name and the adaptor name as arguments to instrhwinfo. The
supported interface and adaptor names are given below.

Interface Name Adaptor Name

gpib agilent, cec, iotech, keithley, mcc, ni

visa agilent, ni, tek

The returned information describes the adaptor, the vendor driver, and the
object constructor(s). For example, to display information for the National
Instruments GPIB adaptor:

ghwinfo = instrhwinfo('gpib','ni")
ghwinfo =

AdaptorDl1lName: [1x81 char]
AdaptorDllVersion: 'Version 1.2 (R13)'
AdaptorName: 'ni'
ObjectConstructorName: 'gpib('ni', <BID>, <PR>)'
VendorDl1lName: 'gpib-32.d11'
VendorDriverDescription: 'NI-488'

Examining Your Hardware Resources

The ObjectConstructorName field describes how you can create a GPIB object
for the National Instruments adaptor. For example, to create the GPIB object
g associated with a GPIB controller with board index 0 and an instrument with
primary address 1:

g = gpib('ni’',0,1);

To display information for the Agilent Technologies VISA adaptor:

vhwinfo = instrhwinfo('visa', 'agilent’)
vhwinfo =

AdaptorDl1Name: [1x62 char]
AdaptorDllVersion: 'Version 1.2 (R13)'
AdaptorName: 'AGILENT'
AvailableChassis: 0
AvailableSerialPorts: "'
InstalledBoardIds: 0
ObjectConstructorName: {7x1 cell}
SerialPorts: "'
VendorDl1lName: 'hpvisa32.d1l'
VendorDriverDescription: 'Agilent Technologies VISA Driver'
VendorDriverVersion: 1.1000

The available VISA object constructor names are shown below.

vhwinfo.0bjectConstructorName

ans =
'visa('agilent', 'GPIBO0::9::0::INSTR')
'visa('agilent', 'GPIB0::9::10::INSTR'
'visa('agilent', 'VXIO::0::INSTR');'
'visa('agilent', 'VXIO0::130::INSTR');'
'visa('agilent', 'VXIO0::32::INSTR');'
'visa('agilent', 'GPIB-VXIO::0::INSTR')
'visa('agilent', 'GPIB-VXIO::80::INSTR'

)5

)3
The ObjectConstructorName field describes how you can create a VISA
instrument object for instruments associated with the GPIB, VXI, and

GPIB-VXI interfaces. For example, to create the VISA-VXI object vv associated
with a VXI chassis with index 0 and an instrument with logical address 130:

vv = visa('agilent', 'VXIO0::130::INSTR')

1-15

1 Cetting Started with the Instrument Control Toolbox

Instrument Object Information

To display information about a specific instrument object, you supply the object
as an argument to instrhwinfo. For example, to display information for the
GPIB object created in the preceding section:

ghwinfo = instrhwinfo(g)
ghwinfo =
AdaptorDl1lName: [1x56 char]
AdaptorDllVersion: 'Version 1.2 (R13)'
AdaptorName: 'NI'
VendorDl1lName: 'gpib-32.d11'
VendorDriverDescription: 'NI-488'

To display information for the VISA-VXI object created in the preceding

section:

vvhwinfo = instrhwinfo(vv)
vvhwinfo =

AdaptorDllName: [1x61 char]

AdaptorDllVersion: 'Version 1.2 (R13)'
AdaptorName: 'AGILENT'
VendorDl1lName: 'hpvisa32.d1ll’
VendorDriverDescription: 'Agilent Technologies VISA Driver'
VendorDriverVersion: 1.1000

Alternatively, you can return hardware information via the Workspace
browser by right-clicking an instrument object, and selecting Explore ->
Display Hardware Info from the context menu.

1-16

Cetling Help

Getting Help
The Instrument Control Toolbox provides you with these help resources:

¢ The HTML and PDF versions of this guide, which are available through the
Help browser

e M-file function help, which you can display with the help command (because
many toolbox functions are overloaded, you might need to specify the
appropriate pathname as well)

® The instrhelp function
® The propinfo function

The instrhelp Function
You can use the instrhelp function to

¢ Display command line help for functions and properties
¢ List all the functions and properties associated with a specific instrument
object

An instrument object need not exist for you to obtain this information. For
example, to display all the functions and properties associated with a GPIB
object, as well as the constructor M-file help:

instrhelp gpib

To display help for the EOIMode property:
instrhelp EOIMode

You can also display help for an existing instrument object. For example, to
display help for the MemorySpace property associated with a VISA-GPIB-VXI

object:
v = visa('agilent', 'GPIB-VXIO::80::INSTR');
out = instrhelp(v, 'MemorySpace');
Alternatively, you can display help via the Workspace browser by

right-clicking an instrument object, and selecting Explore -> Instrument Help
from the context menu.

1-17

1 Cetting Started with the Instrument Control Toolbox

The propinfo Function

You can use the propinfo function to return the characteristics of Instrument
Control Toolbox properties. For example, you can find the default value for any
property using this function. propinfo returns a structure containing the fields
shown below.

Field Name Description

Type The property data type. Possible values are any, ASCII
value, callback, double, string, and struct.

Constraint The type of constraint on the property value. Possible
values are ASCII value, bounded, callback, enum, and
none.

Constraintvalue The property value constraint. The constraint can be a
range of valid values or a list of valid string values.

Defaultvalue The property default value.

ReadOnly The condition under which a property is read only.
Possible values are always, never, whileOpen, and
whileRecording.

Interface If the property is interface-specific, a 1 is returned. If a

Specific 0 is returned, the property is supported for all
interfaces.

For example, to display the property characteristics for the EOIMode property
associated with the GPIB object g:

g = gpib('ni",0,1);
EOIinfo = propinfo(g, 'EOIMode')

EOIinfo =
Type: 'string'
Constraint: ‘'enum'
ConstraintValue: {2x1 cell}
DefaultValue: 'on'
ReadOnly: 'never'
InterfaceSpecific: 1

1-18

Cetling Help

This information tells you that

¢ The property value data type is a string

® The property value is constrained as an enumerated list of values
¢ There are two possible property values
® The default value is on

¢ The property can be configured at any time (it is never read only)
® The property is not supported for all interfaces.

To display the property value constraints:

EOIinfo.ConstraintValue
ans =

1 On |

"off'

1-19

1 Cetting Started with the Instrument Control Toolbox

1-20

The Instrument Control
Session

The instrument control session consists of all the steps you are likely to take when communicating
with your instrument. These steps are described in the following sections.

Creating an Instrument Create a MATLAB object that represents the instrument.
Object (p. 2-2)
Connecting to the Establish a connection between the object and the instrument.

Instrument (p. 2-5)

Configuring and Returning Define the instrument object behavior by assigning values to
Properties (p. 2-6) properties.

Writing and Reading Data Write data to the instrument and read data from the instrument.
(p. 2-12)

Disconnecting and Disconnect the object from the instrument, and remove the object from
Cleaning Up (p. 2-25) memory and from the workspace.

The instrument control session is used in many of the documentation examples included in this
guide.

2 The Instrument Control Session

2-2

Creating an Instrument Object

Instrument objects are the toolbox components you use to access your
instrument. They provide a gateway to the functionality of your instrument,
and allow you to control the behavior of your instrument control application.
Each instrument object is associated with a specific interface standard, one
instrument, and possibly additional hardware such as a GPIB or VXI
controller.

To create an instrument object, you call M-file functions called object creation
functions (or object constructors). These M-files are implemented using the
MATLAB object-oriented programming capabilities, which are described in
“MATLAB Classes and Objects” in the Help browser. The supported
instrument objects are listed below.

Table 2-1: Instrument Object Creation Functions

Constructor Description

gpib Create a GPIB object.

serial Create a serial port object.

tepip Create a TCP/IP object.

udp Create a UDP object.

visa Create a VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, or

VISA-serial object.

You can find out how to create an instrument object for a particular interface
and adaptor with the ObjectConstructorName field of the instrhwinfo
function. For example, to find out how to create a GPIB object for a National
Instruments GPIB controller:

out = instrhwinfo('gpib','ni');
out.ObjectConstructorName

ans =

gpib('ni', <BID>, <PR>)

Creating an Instrument Object

The constructor syntax tells you that you must supply the GPIB controller’s
board index and the instrument’s primary address to the gpib function. For
example, to create a GPIB object with board index 0 and primary address 1:

g = gpib('ni',0,1);

Configuring Properties During Object Creation

Instrument objects contain properties that reflect the functionality of your
instrument. You control the behavior of your instrument control application by
configuring values for these properties.

As described in “Configuring and Returning Properties” on page 2-6, you
configure properties using the set function or the dot notation. You can also
configure properties during object creation by specifying property
name/property value pairs. For example, the following command configures the
EOSMode and EOSCharCode properties for the GPIB object g.

g = gpib('ni',0,1, 'EOSMode', 'read','EOSCharCode', 'CR');

If you specify an invalid property name or property value, the object is not
created. However, if you specify a value that is not supported by your
instrument, the object will be created but you will not be informed of the invalid
value until you connect the object to the instrument with the fopen function.
For example, suppose you configure the BaudRate property to 2. Although this
is a valid value for the property, it is an invalid value for the instrument.

For more information about configuring properties, refer to “Configuring and
Returning Properties” on page 2-6. For detailed property descriptions, refer to
Chapter 9, “Property Reference.”

Creating an Array of Instrument Objects

In MATLAB, you can create an array from existing variables by concatenating
those variables together. The same is true for instrument objects. For example,
suppose you create the GPIB objects g1 and g2:

gpib('ni',0,1);
gpib('ni',0,2);

g1
g2

2-3

2 The Instrument Control Session

You can now create an instrument object array consisting of g1 and g2 using
the usual MATLAB syntax. To create the row array x:

x = [g1 g2]

Instrument Object Array

Index: Type: Status: Name :
1 gpib closed GPIBO-1
2 gpib closed GPIBO-2

To create the column array y:
y = [91;92];

Note that you cannot create a matrix of instrument objects. For example, you
cannot create the matrix

z = [g1 g2;91 92];
??? Error using ==> gpib/vertcat
Only a row or column vector of instrument objects can be created.

Depending on your application, you might want to pass an array of instrument
objects to a function. For example, using one call to the set function, you can
configure both g1 and g2 to the same property value.

set(x, 'EOSMode', 'read"')

Refer to Chapter 8, “Function Reference,” to see which functions accept an
instrument object array as an input argument.

2-4

Connecting fo the Instrument

Connecting to the Instrument

Before you can use the instrument object to write or read data, you must
connect it to the instrument whose address or port is specified in the creation
function. You connect an instrument object to the instrument with the fopen
function.

fopen(g)

Some properties are read-only while the instrument object is connected and
must be configured before using fopen. Examples include the
InputBufferSize and the OutputBufferSize properties. You can determine
when a property is configurable with the propinfo function, or by referring to
Chapter 9, “Property Reference.”

Note You can create any number of instrument objects. However, at any
time, you can connect only one instrument object to an instrument with a
given address or port.

You can examine the Status property to verify that the instrument object is
connected to the instrument.

g.Status
ans =
open

As illustrated below, the connection between the instrument object and the
instrument is complete, and you can write and read data.

MATLAB GPIB Board Instrument

g=gpib('ni',0,1); 01.00| (000001
fopen(g) NI PCI-GPIB
O 0000
I

2-5

2 The Instrument Control Session

2-6

Configuring and Returning Properties

You establish the desired instrument object behavior by configuring property
values. You can configure property values using the set function or the dot
notation, or by specifying property name/property value pairs during object
creation. You can return property values using the get function or the dot
notation.

Instrument objects possess two types of properties: base properties and
object-specific properties. Base properties are supported for all instrument
objects (serial port, GPIB, VISA-VXI, and so on). For example, the Timeout
property is supported for all instrument objects. Object-specific properties are
supported only for instrument objects of a given type. For example, the
BaudRate property is supported only for serial port and VISA-serial objects.

Returning Property Names and Property Values

Once the instrument object is created, you can use the set function to return
all configurable properties to a variable or to the command line. Additionally,
if a property has a finite set of string values, then set also returns these values.

For example, the configurable properties for the GPIB object g are shown
below. The base properties are listed first, followed by the GPIB-specific
properties.

g = gpib('ni’,0,1);

set(g)
ByteOrder: [{littleEndian} | bigEndian]
BytesAvailableFcn

BytesAvailableFcnCount
BytesAvailableFcnMode: [{eosCharCode} | byte]
ErrorFcn

InputBufferSize

Name

OutputBufferSize

OutputEmptyFcn

RecordDetail: [{compact} | verbose]
RecordMode: [{overwrite} | append | index]
RecordName

Tag

Timeout

Configuring and Returning Properties

TimerFcn
TimerPeriod
UserData

GPIB specific properties:

BoardIndex

CompareBits

EOIMode: [{on} | off]

EOSCharCode

EOSMode: [{none} | read | write | read&write]
PrimaryAddress

SecondaryAddress

You can use the get function to return one or more properties and their current
values to a variable or to the command line.

For example, all the properties and their current values for the GPIB object g
are shown below. The base properties are listed first, followed by the
GPIB-specific properties.

get(9)
ByteOrder = littleEndian

BytesAvailable = 0
BytesAvailableFcn =
BytesAvailableFcnCount = 48
BytesAvailableFcnMode = eosCharCode
BytesToOutput = 0

ErrorFcn =

InputBufferSize = 512

Name = GPIBO-1
OutputBufferSize = 512
OutputEmptyFcn =
RecordDetail = compact
RecordMode = overwrite
RecordName = record.txt
RecordStatus = off

Status = closed

Tag =

Timeout = 10

TimerFcn =

TimerPeriod = 1

2-7

2 The Instrument Control Session

2-8

TransferStatus = idle
Type = gpib

UserData = []
ValuesReceived = 0

ValuesSent = 0

GPIB specific properties:
BoardIndex = 0
BusManagementStatus = [1x1 struct]
CompareBits = 8

EOIMode = on

EOSCharCode = LF

EOSMode = none

HandshakeStatus = [1x1 struct]
PrimaryAddress = 1
SecondaryAddress = 0

To display the current value for one property, you supply the property name to
get.

get(g, 'OutputBufferSize')
ans =
512

To display the current values for multiple properties, you include the property
names as elements of a cell array.

get(g,{'BoardIndex', 'TransferStatus'})
ans =
[0] ‘idle’

You can also use the dot notation to display a single property value.

g.PrimaryAddress
ans =
1

Configuring and Returning Properties

Configuring Property Values

You can configure property values using the set function

set (g, 'EOSMode ', 'read")

or the dot notation.

g.EOSMode = 'read’;

To configure values for multiple properties, you can supply multiple property
name/property value pairs to set.

set(g, 'EOSCharCode', 'CR', 'Name', 'Test1-gpib')

Note that you can configure only one property value at a time using the dot
notation.

In practice, you can configure many of the properties at any time while the
instrument object exists — including during object creation. However, some
properties are not configurable while the object is connected to the instrument
or when recording information to disk. Use the propinfo function, or refer to
Chapter 9, “Property Reference,” for information about when a property is
configurable.

Specifying Property Names

Instrument object property names are presented using mixed case. While this
makes property names easier to read, you can use any case you want when
specifying property names. Additionally, you need use only enough letters to
identify the property name uniquely, so you can abbreviate most property
names. For example, you can configure the EOSMode property any of these ways.

set (g, 'EOSMode ', 'read")
set (g, 'eosmode’', 'read")
set (g, 'EOSM', 'read"')

However, when you include property names in an M-file, you should use the
full property name. This practice can prevent problems with future releases of
the Instrument Control Toolbox if a shortened name is no longer unique
because of the addition of new properties.

2-9

2 The Instrument Control Session

2-10

Default Property Values

If you do not explicitly define a value for a property, then the default value is
used. All configurable properties have default values.

Note Default values are provided for all instrument object properties. For
serial port objects, the default values are provided by your operating system.
For GPIB and VISA instrument objects, the default values are provided by
vendor-supplied tools. However, these settings are overridden by your
MATLAB code, and will have no effect on your instrument control application.

If a property has a finite set of string values, then the default value is enclosed
by {} (curly braces). For example, the default value for the EOSMode property is
none.

set (g, 'EOSMode ')
[{none} | read | write | read&write]

You can also use the propinfo function, or refer to Chapter 9, “Property
Reference” to find the default value for any property.

The Property Inspector

The Property Inspector enables you to inspect and set properties for one or
more instrument objects. It provides a list of all properties and displays the
current value.

Settable properties in the list are associated with an editing device that is
appropriate for the values accepted by the particular property. For example, a
callback configuration GUI to set ErrorFcn, a pop-up menu to set RecordMode,
and a text field to specify the TimerPeriod. The values for read-only properties
are grayed out.

You open the Property Inspector with the inspect function, or via the
Workspace browser by right-clicking an instrument object and selecting
Explore -> Call Property Inspector from the context menu.

Configuring and Returning Properties

The Property Inspector for the GPIB object g is shown below.

=k
W GFIB

— Boardindex 1] o
- BiteOrder | iittieEndian

— BytesAvailable 1]

— BytesAvailableFcn @[DXD char array]

— BytesAvailableFenCount 48

— BytesAvailableFcniode :IeosCharCode

— BytesToOutput 1]

— CompareBits 8

- EOIMode =]on

— EQSCharCode eds| LF

— EOSMode :Inone

— ErrarFen @[DXD char array]

— InputBufferSize 812

— MName GPIBO-1

— QutputBufferSize 812

— QutputEmptyFon @[DXD chararray]I _|L|
1| *

2-11

2 The Instrument Control Session

2-12

Writing and Reading Data

Communicating with your instrument involves writing and reading data. For
example, you might write a text command to a function generator that queries
its peak-to-peak voltage, and then read back the voltage value as a
double-precision array.

Before performing a write or read operation, you should consider these three
questions:

What is the process by which data flows from MATLAB to the instrument,
and from the instrument to MATLAB?

The Instrument Control Toolbox automatically manages the data
transferred between MATLAB and the instrument. For many common
applications, you can ignore the buffering and data flow process. However, if
you are transferring a large number of values, executing an asynchronous
read or write operation, or debugging your application, you might need to be
aware of how this process works.

Is the data to be transferred binary (numerical) or text (ASCII)?

For many instruments, writing text data means writing string commands
that change instrument settings, prepare the instrument to return data or
status information, and so on. Writing binary data means writing numerical
values to the instrument such as calibration or waveform data.

Will the write or read function block access to the MATLAB command line?

You control access to the MATLAB command line by specifying whether a
read or write operation is synchronous or asynchronous. A synchronous
operation blocks access to the command line until the read or write function
completes execution. An asynchronous operation does not block access to the
command, and you can issue additional commands while the read or write
function executes in the background.

Note that there are other issues to consider when reading and writing data
such as the conditions under which read or write operation completes. Because
these issues vary among the supported interfaces, they are described in the
respective interface-specific chapters.

Writing and Reading Data

Writing Data

The functions associated with writing data are given below.

Table 2-2: Functions Associated with Writing Data

Function Name

Description

binblockwrite
fprintf
fwrite

stopasync

Write binblock data to the instrument.
Write text to the instrument.
Write binary data to the instrument.

Stop asynchronous read and write operations.

The properties associated with writing data are given below.

Table 2-3: Properties Associated with Writing Data

Property Name

Description

BytesToOutput

OutputBufferSize

Timeout

TransferStatus

ValuesSent

Indicate the number of bytes currently in the output
buffer.

Specify the size of the output buffer in bytes.

Specify the waiting time to complete a read or write
operation.

Indicate if an asynchronous read or write operation is
in progress.

Indicate the total number of values written to the
instrument.

2-13

2 The Instrument Control Session

2-14

The Output Buffer and Data Flow

The output buffer is computer memory allocated by the instrument object to
store data that is to be written to the instrument. The flow of data from
MATLAB to your instrument follows these steps:

1 The data specified by the write function is sent to the output buffer.

2 The data in the output buffer is sent to the instrument.

The OutputBufferSize property specifies the maximum number of bytes that
you can store in the output buffer. The BytesToOutput property indicates the
number of bytes currently in the output buffer. The default values for these
properties are given below.

g = gpib('ni",0,1);
get(g,{'OutputBufferSize', 'BytesToOutput'})
ans =

[512] [0]

If you attempt to write more data than can fit in the output buffer, an error is
returned and no data is written.

Note When writing data, you might need to specify a value, which can
consist of one or more bytes. This is because some write functions allow you to
control the number of bits written for each value and the interpretation of
those bits as character, integer or floating point values. For example, if you
write one value from an instrument using the int32 format, then that value
consists of four bytes.

Writing and Reading Data

For example, suppose you write the string command *IDN? to an instrument
using the fprintf function. As shown below, the string is first written to the
output buffer as six values.

MATLAB Output Buffer
g=gp1b('ni:,0,.1)i *TDN?
g.EOSMode="write"';
fopen(g) > [l
fprintf (g, '*IDN?"') sixvalues

six bytes

B Bytes used during write
[] Bytesunused during write

The *IDN? command consists of six values because the End-Of-String character
is written to the instrument, as specified by the EOSMode and EOSCharCode
properties. Moreover, the default data format for the fprintf function specifies
that one value corresponds to one byte.

As shown below, after the string is stored in the output buffer, it is then written
to the instrument.

Output Buffer GPIB Board Instrument

*IDN?

. ll NI PCI-GPI WWW 1n0ooonan

sixvalues —H]]]]]]]]]]]]]]]]]] 0000

six bytes

B Bytes used during write
[] Bytes unused during write

2-15

2 The Instrument Control Session

2-16

Writing Text Data Versus Writing Binary Data

For many instruments, writing text data means writing string commands that
change instrument settings, prepare the instrument to return data or status
information, and so on. Writing binary data means writing numerical values to
the instrument such as calibration or waveform data.

You can write text data with the fprintf function. By default, fprintf uses
the %s\n format, which formats the data as a string and includes the
terminator. You can write binary data with the fwrite function. By default,
fwrite writes data using the uchar precision, which translates the data as
unsigned 8-bit characters. Both of these functions support many other formats
and precisions, as described in their reference pages.

The following example illustrates writing text data and binary data to a
Tektronix TDS 210 oscilloscope. The text data consists of string commands,
while the binary data is a waveform that is to be downloaded to the scope and
stored in its memory.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an
instrument with primary address 1. The size of the output buffer is
increased to accommodate the waveform data. You must configure the
OutputBufferSize property while the GPIB object is disconnected from the
instrument.

g = gpib('ni',0,1);
g.OutputBufferSize = 3000;

2 Connect to the instrument — Connect g to the instrument.

fopen(g)

3 Write and read data — Write string commands that configure the scope to
store binary waveform data in memory location A.

fprintf (g, 'DATA:DESTINATION REFA');
fprintf (g, 'DATA:ENCDG SRPbinary');
fprintf (g, 'DATA:WIDTH 1');

fprintf (g, 'DATA:START 1');

Writing and Reading Data

Create the waveform data.

t = linspace(0,25,2500);
data = round(sin(t)*90 + 127);

Write the binary waveform data to the scope.

cmd = double('CURVE #42500');
fwrite(g,[cmd datal);

The ValuesSent property indicates the total number of values that were
written to the instrument.

g.ValuesSent
ans =
2577

Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, remove it from memory, and remove it
from the MATLAB workspace.

fclose(g)
delete(g)
clear g

Synchronous Versus Asynchronous Write Operations

By default, all write functions operate synchronously and block the MATLAB
command line until the operation completes. To perform an asynchronous
write operation, you must supply the async input argument to the fprintf or
fwrite functions.

For example, you use the following syntax to modify the fprintf commands
used in the preceding example to write text data asynchronously.

fprintf (g, 'DATA:DESTINATION REFA', 'async');

Similarly, you use the following syntax to modify the fwrite command used in
the preceding example to write binary data asynchronously.

fwrite(g,[cmd data], 'async');

2-17

2 The Instrument Control Session

You can monitor the status of the asynchronous write operation with the
TransferStatus property. A value of idle indicates that no asynchronous
operations are in progress.

g.TransferStatus
ans =
write

You can use the BytesToOutput property to indicate the numbers of bytes that
exist in the output buffer waiting to be written to the instrument.

g.BytesToOutput
ans =
2512

2-18

Writing and Reading Data

Reading Data

The functions associated with reading data are given below.

Table 2-4: Functions Associated with Reading Data

Function Name

Description

binblockread

fgetl

fgets

fread
fscanf
readasync

scanstr

stopasync

Read binblock data from the instrument.

Read one line of text from the instrument and
discard the terminator.

Read one line of text from the instrument and
include the terminator.

Read binary data from the instrument.
Read data from the instrument, and format as text.
Read data asynchronously from the instrument.

Read data from the instrument, format as text, and
parse

Stop asynchronous read and write operations.

The properties associated with reading data are given below.

Table 2-5: Properties Associated with Reading Data

Property Name

Description

BytesAvailable

InputBufferSize

ReadAsyncMode

Timeout

Indicate the number of bytes available in the input
buffer.

Specify the size of the input buffer in bytes.

Specify whether an asynchronous read is continuous
or manual (serial port, TCP/IP, UDP, and VISA-serial
objects only).

Specify the waiting time to complete a read or write
operation.

2-19

2 The Instrument Control Session

2-20

Table 2-5: Properties Associated with Reading Data (Continued)

Property Name Description

TransferStatus Indicate if an asynchronous read or write operation is
in progress.

ValuesReceived Indicate the total number of values read from the
instrument.

The Input Buffer and Data Flow

The input buffer is computer memory allocated by the instrument object to
store data that is to be read from the instrument. The flow of data from your
instrument to MATLAB follows these steps:

1 The data read from the instrument is stored in the input buffer.

2 The data in the input buffer is returned to the MATLAB variable specified
by the read function.

The InputBufferSize property specifies the maximum number of bytes that
you can store in the input buffer. The BytesAvailable property indicates the
number of bytes currently available to be read from the input buffer. The
default values for these properties are given below.

g = gpib('ni*,0,1);
get(g,{'InputBufferSize', 'BytesAvailable'})
ans =

[512] [0]

If you attempt to read more data than can fit in the input buffer, an error is
returned and no data is read.

Writing and Reading Data

For example, suppose you use the fscanf function to read the text-based
response of the *IDN? command previously written to the instrument. As
shown below, the data is first read into the input buffer.

Instrument GPIB Board Input Buffer

dat
WUM”””””” NIPCLGPIRL] ||

0000
T

[Bytes used during read
[] Bytes unused during read
Note that for a given read operation, you might not know the number of bytes

returned by the instrument. Therefore, you might need to preset the
InputBufferSize property to a sufficiently large value before connecting the

instrument object.

As shown below, after the data is stored in the input buffer, it is then
transferred to the output variable specified by fscanf.

Input Buffer MATLAB

data

. l . [out=fscanf(g)

[Bytes used during read
[] Bytes unused during read

2-21

2 The Instrument Control Session

2-22

Reading Text Data Versus Reading Binary Data

For many instruments, reading text data means reading string data that
reflect instrument settings, status information, and so on. Reading binary data
means reading numerical values from the instrument.

You can read text data with the fgetl, fgets, and fscanf functions. By
default, these functions return data using the %c format. You can read binary
data with the fread function. By default, fread returns numerical values as
double-precision arrays. Both the fscanf and fread functions support many
other formats and precisions, as described in their reference pages.

The following example illustrates reading text data and binary data from a
Tektronix TDS 210 oscilloscope, which is displaying a periodic input signal
with a nominal frequency of 1.0 kHz.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

2 Connect to the instrument — Connect g to the instrument.

fopen(g)

3 Write and read data — Write the *IDN? command to the scope, and read
back the identification information as text.

fprintf(g, '*IDN?')

idn = fscanf(g)

idn =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Configure the scope to return the period of the input signal, and then read
the period as a binary value. The output display format is configured to use
short exponential notation for doubles.

fprintf (g, 'MEASUREMENT :MEAS1:TYPE PERIOD')
fprintf (g, 'MEASUREMENT :MEAS1 :VALUE? ')
format short e
period = fread(g,9)'
period =
49 46 48 48 54 69 45 51 10

Writing and Reading Data

period consists of positive integers representing character codes, where 10
is a line feed. To convert the voltage value to a string, use the char function.

char(period)
ans =
1.006E-3

The ValuesReceived property indicates the total number of values that
were read from the instrument.

g.ValuesReceived
ans =
65

4 Disconnect and clean up — When you no longer need g, you should

disconnect it from the instrument, remove it from memory, and remove it
from the MATLAB workspace.

fclose(g)
delete(g)
clear g

Synchronous Versus Asynchronous Read Operations

The fgetl, fgets, fscanf, and fread functions operate synchronously and
block the MATLAB command line until the operation completes. To perform an
asynchronous read operation, you must use the readasync function. readasync
asynchronously reads data from the instrument and stores it in the input
buffer. To transfer the data from the input buffer to a MATLAB variable, you
must use one of the synchronous read functions.

Note For serial port, TCP/IP, UDP, and VISA-serial objects, you can also
perform an asynchronous read operation by configuring the ReadAsyncMode
property to continuous.

For example, to modify the preceding example to asynchronously read the
scope’s identification information, you would issue the readasync function
after the *IDN? command is written.

fprintf(g, '*IDN?')

readasync(g)

2-23

2 The Instrument Control Session

2-24

You can monitor the status of the asynchronous read operation with the
TransferStatus property. A value of idle indicates that no asynchronous
operations are in progress.

g.TransferStatus
ans =
read

You can use the BytesAvailable property to indicate the number of bytes that
exist in the input buffer waiting to be transferred to MATLAB.

g.BytesAvailable
ans =
56

When the read completes, you can transfer the data as text to a MATLAB
variable using the fscanf function.

idn = fscanf(g);

Disconnecting and Cleaning Up

Disconnecting and Cleaning Up

When you no longer need an instrument object, you should disconnect it from
the instrument, and clean up the MATLAB environment by removing the
object from memory and from the workspace. These are the steps you take to
end an instrument control session.

Disconnecting an Instrument Object

When you no longer need to communicate with the instrument, you should
disconnect it with the fclose function.

fclose(g)

You can examine the Status property to verify that the object and the
instrument are disconnected.

g.Status
ans =
closed

After fclose isissued, the resources associated with g are made available, and
you can once again connect an instrument object to the instrument with fopen.

Cleaning Up the MATLAB Environment

When you no longer need the instrument object, you should remove it from
memory with the delete function.

delete(g)

Before using delete, you must disconnect the object from the instrument with
the fclose function.

A deleted instrument object is invalid, which means that you cannot connect it
to the instrument. In this case, you should remove the object from the
MATLAB workspace. To remove instrument objects and other variables from
the MATLAB workspace, use the clear command.

clear ¢

If you use clear on an object that is connected to an instrument, the object is
removed from the workspace but remains connected to the instrument. You can
restore cleared instrument objects to MATLAB with the instrfind function.

2-25

2 The Instrument Control Session

2-26

Controlling GPIB
Instruments

This chapter describes specific issues related to controlling instruments that use the GPIB interface.
The sections are as follows.

GPIB Overview (p. 3-2) Basic features of the General Purpose Interface Bus (GPIB).
Creating a GPIB Object The GPIB object establishes a connection between MATLAB and the

(p. 3-18) instrument via its GPIB interface.

Configuring the GPIB The GPIB address consists of the board index of the GPIB controller,

Address (p. 3-20) and the primary address and (optionally) the secondary address of the
instrument.

Writing and Reading Data Interface-specific issues related to writing and reading data with a
(p. 3-21) GPIB object.

Events and Callbacks Enhance your instrument control application using events and
(p. 3-30) callbacks.
Triggers (p. 3-37) Send the GET (Group Execute Trigger) GPIB command to the

instrument. This command instructs all addressed Listeners to
perform a specified action.

Serial Polls (p. 3-39) Execute a serial poll where the Controller asks (polls) all addressed
Listeners to send back a status byte that indicates whether it has
asserted the SRQ line and needs servicing.

3 Controlling GPIB Instruments

GPIB Overview

This section provides an overview of the General Purpose Interface Bus
(GPIB). Topics include

¢ What is GPIB?

¢ Important GPIB Features

¢ GPIB Lines

¢ Status and Event Reporting

¢ Using Vendor Tools to Identify and Test Your Resources

For many GPIB applications, you can communicate with your instrument
without detailed knowledge of how GPIB works. Communication is established
through a GPIB object, which you create in the MATLAB workspace.

If your application is straightforward, or if you are already familiar with the
topics mentioned above, you might want to begin with “Creating a GPIB
Object” on page 3-18. If you want a high-level description of all the steps you
are likely to take when communicating with your instrument, refer to Chapter
2, “The Instrument Control Session.”

What Is GPIB?

The GPIB is a standardized interface that allows you to connect and control
multiple devices from various vendors. GPIB is also referred to by its original
name HP-IB, or by its IEEE designation IEEE-488. The GPIB functionality has
evolved over time, and is described in several specifications:

¢ The IEEE 488.1-1975 specification defines the electrical and mechanical
characteristics of the interface and its basic functional characteristics.

¢ The IEEE-488.2-1987 specification builds on the IEEE 488.1 specification to
define an acceptable minimum configuration and a basic set of instrument
commands and common data formats.

¢ The Standard Commands for Programmable Instrumentation (SCPI)
specification builds on the commands given by the IEEE 488.2 specification
to define a standard instrument command set that can be used by GPIB or
other interfaces.

Some of the GPIB functionality is required for all GPIB devices, while other
GPIB functionality is optional. Additionally, many devices support only a

GPIB Overview

subset of the SCPI command set, or use a different vendor-specific command
set. Refer to your device documentation for a complete list of its GPIB
capabilities and its command set.

Important GPIB Features

The important GPIB features are described below. For detailed information
about GPIB functionality, refer to the appropriate references in Appendix A,
“Selected Bibliography.”

The Bus and Connector
The GPIB bus is a cable with two 24-pin connectors that allow you to connect

multiple devices to each other. The bus and connector have these features and
limitations:

® You can connect up to fifteen devices to a bus.

® You can connect devices in a star configuration, a linear configuration, or a
combination of configurations.

¢ To achieve maximum data transfer rates, the cable length should not exceed
20 meters total or an average of 2 meters per device. You can eliminate these
restrictions by using a bus extender.

GPIB Devices

Each GPIB device must be some combination of a Talker, a Listener, or a
Controller. A Controller is typically a board that you install in your computer.
Talkers and Listeners are typically instruments such as oscilloscopes, function
generators, multimeters, and so on. Most modern instruments are both Talkers
and Listeners.

® Talkers — A Talker transmits data over the interface when addressed to talk
by the Controller. There can be only one Talker at a given time.

¢ Listeners — A Listener receives data over the interface when addressed to
listen by the Controller. There can be up to 14 Listeners at a given time.
Typically, the Controller is a Talker while one or more instruments on the
GPIB are Listeners.

¢ Controllers — The Controller specifies which devices are Talkers or
Listeners. A GPIB system can contain multiple Controllers — one of which
is designated the System Controller. However, only one Controller can be

3-3

3 Controlling GPIB Instruments

3-4

active at a given time. The current active controller is the
Controller-In-Charge (CIC). The CIC can pass control to an idle Controller,
but only the System Controller can make itself the CIC.

When the Controller is not sending messages, then a Talker can send
messages. Typically, the CIC is a Listener while another device is enabled as
a Talker.

Each Controller is identified by a unique board index number. Each
Talker/Listener is identified by a unique primary address ranging from 0 to 30,
and by an optional secondary address, which can be 0 or can range from 96 to
126.

GPIB Data

There are two types of data that can be transferred over the GPIB: instrument
data and interface messages.

¢ Instrument data — Instrument data consists of vendor-specific commands
that configure your instrument, return measurement results, and so on. For
a complete list of commands supported by your instrument, refer to its
documentation.

¢ Interface messages — Interface messages are defined by the GPIB standard
and consist of commands that clear the GPIB bus, address devices, return
self-test results, and so on.

Data transfer consists of one byte (8 bits) sent in parallel. The data transfer rate
across the interface is limited to 1 megabyte per second. However, this data
rate is usually not achieved in practice, and is limited by the slowest device on
the bus.

GPIB Lines

The GPIB consists of 24 lines, which are shared by all instruments connected
to the bus. 16 lines are used for signals, while 8 lines are for ground. The signal
lines are divided into these groups:

¢ Eight data lines

¢ Five interface management lines

® Three handshake lines

GPIB Overview

The signal lines use a low-true (negative) logic convention with TTL levels.
This means that a line is low (true or asserted) when it is a TTL low level, and
a line is high (false or unasserted) when it is a TTL high level. The pin
assignment scheme for a GPIB connector is shown below.

24] 13

The pins and signals associated with the GPIB connector are described below.

Table 3-1: GPIB Pin and Signal Assignments

Pin Label Signal Name Pin Label Signal Name
1 DIO1 Data transfer 13 DIO5 Data transfer
2 DIO2 Data transfer 14 DIO6 Data transfer
3 DIOS3 Data transfer 15 DIO7 Data transfer
4 DIO4 Data transfer 16 DIOS8 Data transfer
5 EOI End Or Identify 17 REN Remote Enable
6 DAV Data Valid 18 GND DAYV ground
7 NRFD Not Ready For 19 GND NRFD ground
Data
8 NDAC Not Data Accepted 20 GND NDAC ground
9 IFC Interface Clear 21 GND IFC ground
10 SRQ Service Request 22 GND SRQ ground
11 ATN Attention 23 GND ATN ground
12 Shield Chassis ground 24 GND Signal ground

3 Controlling GPIB Instruments

Data Lines

The eight data lines, DIO1 through DIOS, are used for transferring data one
byte at a time. DIO1 is the least significant bit, while DIOS8 is the most

significant bit. The transferred data can be an instrument command or a GPIB
interface command.

Data formats are vendor-specific and can be text-based (ASCII) or binary.
GPIB interface commands are defined by the IEEE 488 standard.

Interface Management Lines

The interface management lines control the flow of data across the GPIB
interface, and are described below.

Table 3-2: GPIB Interface Management Lines

Line

Description

ATN

IFC

REN

SRQ

EOI

Used by the Controller to inform all devices on the GPIB that
bytes are being sent. If the ATN line is high, the bytes are
interpreted as an instrument command. If the ATN line is low,
the bytes are interpreted as an interface message.

Used by the Controller to initialize the bus. If the IFC line is low,
the Talker and Listeners are unaddressed, and the System
Controller becomes the Controller-In-Charge.

Used by the Controller to place instruments in remote or local
program mode. If REN is low, all Listeners are placed in remote
mode, and you cannot change their settings from the front panel.
If REN is high, all Listeners are placed in local mode.

Used by Talkers to asynchronously request service from the
Controller. If SRQ is low, then one or more Talkers require
service (for example, an error such as invalid command was
received). You issue a serial poll to determine which Talker
requested service. The poll automatically sets the SRQ line high.

Ifthe ATN line is high, the EOI line is used by Talkers to identify
the end of a byte stream such as an instrument command. If the
ATN line is low, the EOI line is used by the Controller to perform
a parallel poll (not supported by the toolbox).

GPIB Overview

You can examine the state of the interface management lines with the
BusManagementStatus property.

Handshake Lines

The three handshake lines, DAV, NRFD, and NDAC, are used to transfer bytes
over the data lines from the Talker to one or more addressed Listeners.

Before data is transferred, all three lines must be in the proper state. The
active Talker controls the DAV line and the Listener(s) control the NRFD and
NDAC lines. The handshake process allows for error-free data transmission.
The handshake lines are described below.

Table 3-3: GPIB Handshake Lines

Line Description

DAV Used by the Talker to indicate that a byte can be read by the
Listeners.

NRFD Indicates whether the Listener is ready to receive the byte.
NDAC Indicates whether the Listener has accepted the byte.

The handshaking process follows these steps:

1 Initially, the Talker holds the DAV line high indicating no data is available,
while the Listeners holds the NRFD line high and the NDAC line low
indicating it is ready for data and no data is accepted, respectively.

2 When the Talker puts data on the bus, it sets the DAV line low, which
indicates that the data is valid.

3 The Listeners set the NRFD line low, which indicates that they are not
ready to accept new data.

4 The Listeners set the NDAC line high, which indicates that the data is
accepted.

5 When all Listeners indicate that they have accepted the data, the Talker
asserts the DAV line indicating that the data is no longer valid. The next
byte of data can now be transmitted.

3 Controlling GPIB Instruments

6 The Listeners hold the NRFD line high indicating they are ready to receive
data again, and the NDAC line is held low indicating no data is accepted.

Note Ifthe ATN line is high during the handshaking process, the
information is considered data such as an instrument command. If the ATN
line is low, the information is considered a GPIB interface message.

The handshaking steps are shown below.

ATN

Data

DAV

NRFD

NDAC

Byte 1

Byte 2

Data Datanot
valid valid

All None
ready ready

None All
accept accept
|
Initial
state

GPIB Overview

You can examine the state of the handshake lines with the HandshakeStatus
property.

Status and Event Reporting

GPIB provides a system for reporting status and event information. With this
system, you can find out if your instrument has data to return, whether a
command error occurred, and so on. For many instruments, the reporting
system consists of four 8-bit registers and two queues (output and event). The
four registers are grouped into these two functional categories:

® Status Registers — The Status Byte Register (SBR) and Standard Event
Status Register (SESR) contain information about the state of the
instrument.

¢ Enable Registers — The Event Status Enable Register (ESER) and the
Service Request Enable Register (SRER) determine which types of events
are reported to the status registers and the event queue. ESER enables
SESR, while SRER enables SBR.

3 Controlling GPIB Instruments

3-10

The status registers, enable registers, and output queue are shown below.

Standard Event

bit 7

bit 0

PON|URQ|CME|EXE |DDE|QYE

RQC

OPC

OPC

y y y y

y y

| Logical OR

bit 7 v

Data available on instrument
ready to be sent across the bus

Standard Event Status Register

Standard Event Status Enable
Register

Output Queue

bit 0

RQS
- ESB
MSS

— | Status Byte Register

Service Request Enable
Register

A

A

Logical OR

GPIB Overview

The Status Byte Register

Each bit in the Status Byte Register (SBR) is associated with a specific type of
event. When an event occurs, the instrument sets the appropriate bit to 1. You
can enable or disable the SBR bits with the Service Request Enable Register
(SRER). You can determine which events occurred by reading the enabled SBR
bits. The SBR bits are described below.

Table 3-4: Status Byte Register Bits

Bit Label Description
0-3 - Instrument-specific summary messages.
4 MAV The Message Available bit indicates if data is available in

the Output Queue. MAV is 1 if the Output Queue contains
data. MAV is 0 if the Output Queue is empty.

5 ESB The Event Status bit indicates if one or more enabled
events have occurred. ESB is 1 if an enabled event occurs.
ESB is 0 if no enabled events occur. You enable events
with the Standard Event Status Enable Register.

6 MSS The Master Summary Status summarizes the ESB and
MAV bits. MSS is 1 if either MAV or ESB is 1. MSS is 0 if
both MAV and ESB are 0. This bit is obtained from the
*STB? command.

RQS The Request Service bit indicates that the instrument
requests service from the GPIB controller. This bit is
obtained from a serial poll.

7 - Instrument-specific summary message.

For example, if you want to know when a specific type of instrument error
occurs, you would enable bit 5 of the SRER. Additionally, you would enable the
appropriate bit of the Standard Event Status Enable Register (see the
following section) so that the error event of interest is reported by the ESB bit
of the SBR.

3-11

3 Controlling GPIB Instruments

3-12

The Standard Event Status Register

Each bit in the Standard Event Status Register (SESR) is associated with a
specific state of the instrument. When the state changes, the instrument sets
the appropriate bits to 1. You can enable or disable the SESR bits with the
Standard Event Status Enable Register (ESER). You can determine the state
of the instrument by reading the enabled SESR bits. The SESR bits are
described below.

Table 3-5: Standard Event Status Register Bits

Bit Label Description

0 OPC The Operation Complete bit indicates that all commands
have completed.

1 RQC The Request Control bit is not used by most instruments.

2 QYE The Query Error bit indicates that the instrument
attempted to read an empty output buffer, or that data in
the output buffer was lost.

3 DDE The Device Dependent Error bit indicates that a device
error occurred (such as a self-test error).

4 EXE The Execution Error bit indicates that an error occurred
when the device was executing a command or query.

5 CME The Command Error bit indicates that a command syntax
error occurred.

6 URQ The User Request bit is not used by most instruments.

7 PON The Power On bit indicates that the device is powered on.

For example, if you want to know when an execution error occurs, you would
enable bit 4 of the ESER. Additionally, you would enable bit 5 of the SRER (see
the preceding section) so that the error event of interest is reported by the ESB
bit of the SBR.

GPIB Overview

Reading and Writing Register Information

This section describes the common GPIB commands used to read and write
status and event register information.

Table 3-6: GPIB Commands for Reading and Writing Register Information

Register Operation Command Description

SESR Read *ESR? Return a decimal value that corresponds to the weighted
sum of all the bits set in the SESR register.

Write N/A You cannot write to the SESR register.

ESER Read *ESE? Return a decimal value that corresponds to the weighted
sum of all the bits enabled by the *ESE command.

Write *ESE Write a decimal value that corresponds to the weighted
sum of all the bits you want to enable in the SESR
register.

SBR Read *STB? Return a decimal value that corresponds to the weighted
sum of all the bits set in the SBR register. This command
returns the same result as a serial poll except that the
MSS bit is not cleared.

Write N/A You cannot write to the SBR register.

SRER Read *SRE? Return a decimal value that corresponds to the weighted
sum of all the bits enabled by the *SRE command.

Write *SRE Write a decimal value that corresponds to the weighted

sum of all the bits you want to enable in the SBR register.

For example, to enable bit 4 of the SESR, you write the command *ESE 16. To
enable bit 4 and bit 5 of the SESR, you write the command *ESE 48. To enable

bit 5 of the SBR, you write the command *SRE 32.

To see how to use many of these commands in the context of an instrument
control session, refer to “Example: Executing a Serial Poll” on page 3-39.

3-13

3 Controlling GPIB Instruments

3-14

Using Vendor Tools to Identify and Test Your
Resources
The supported GPIB vendors provide tools that allow you to identify, configure,

and test the GPIB resources in your system. These tools are usually installed
in conjunction with the GPIB drivers. You should use these tools to

¢ Determine the GPIB board index, which is used to create a GPIB object.
Some tools also determine address information for connected and powered
instruments (see below).

e Test the GPIB interface.

For example, National Instruments’ Measurement & Automation tool is shown
below. The display indicates that a GPIB controller with board index 0 is
available on the system. By selecting the name of the controller and
right-clicking, you can perform several helpful tasks via the drop-down menu.
For example, you can scan for instruments, use the NI-488.2 Getting Started
Wizard to verify the GPIB driver and controller installation, or use the
NI-488.2 Troubleshooting Wizard to test the GPIB interface.

BN Exploring - Devices and Interfaces
JEiIe Edit Yiew Go Fawvorites IDDIS Help |

R S v Nk
Back Fanyard Up Map Drive Dlsconnect Mew
JAddreSS I Devices and Interfaces j
| All Folders * Mame | Type | Value | Diescription
@ Desktop E Add Device or Interface
[FEIGPIBD [AT-GPIB/TNT) GPIB Interface Controller Interface

4y Computer
Internet Explorer
Metwork Meighborhood

®4 Scan for Instruments

- Measurement & Autamation NI-488.2 Help
= @ Devices and Interfaces _ o)
[(& GPIBD [AT-GPIB/TNT) MI-488.2 Getting gtarte.d W|2§rd
...... @ Fecycle Bin MNI-488.2 Troubleshooting Wizard
NI Spy
< Interactive Cantrol —I—’I
| @i GPIB Analyzer 4

Delete Interface

(Eut

Copy
Paste

(Ereate Sharteut
Delete

Froperties...

GPIB Overview

By selecting Scan for Instruments in the drop-down menu, you can display all
instruments that are powered on and connected to the GPIB board. As shown
below, a Tektronix TDS 210 oscilloscope with primary address 1 and a

Hewlett-Packard 34970A data acquisition/switch unit with primary address 2

are connected and powered.

JEiIe Edit “iew Go Favorites Tools Help |

- = 2
Back v Fongard T Up Map Drive Dizconnect Froperties Scan For
Instruments
| Address [GFIBD (AT-GFIB/TNT) =l
| Al Folders x Marme | Tupe | Walue | Diescription |

t; TEKTROMTDS 21000F9.. PaD=1 GPIB Instrument
(=8 Instrument] HEWLETT-PACKARD, 343704, PAD =2 GPIB Instument

@ Desklop

My Computer

Internet Explorer

Metwork Meighborhood
Measurement & Automation
=-{g Devices and Interfaces

. @ Recycle Bin

|GF'IBD [AT-GPIBATHT] Contraoller Interface i

By selecting NI-488.2 Getting Started Wizard in the drop-down menu, you can
configure the GPIB interface, verify the hardware and software installation,
and communicate with the instrument.

The GPIB Configuration component of the Getting Started Wizard is shown
below. After selecting the appropriate GPIB board, you can select the
Configure button to configure computer hardware settings such as the

3-15

3 Controlling GPIB Instruments

interrupt line and the base I/O address. You can also configure GPIB software
settings such as the address and termination parameters.

GPIB Configuration - GPIBD (AT-GPI... &

—
GPIE Board ’\ Device Template

Ok | Lancel | Help | Unload |
Configure - GPIBD (AT-GPIBfTNT) |]
—Hardware Setting: — GPIE Address
|nx2cn ~| Base /D Address Brimary Secondary
I vl IN vl
I? 'l Interrupt Level w one
- Temination

I 5 - l DA Channel

™ Temninate Fiead on EQS
¥ Use Demand Mode DMA —

™ Set EOI with EQS on wWiite

The dark side
shouéddbe ™ 8hit EDS Compare
500, - i Presses (a1 g}
[B00nsec =] Bus Tiring g el ¥ Send EOI at end of Wiite

IDisabIed 'l Cable Length for High-Speed ID EOS Eyte
Ok | Lancel | Help | §0ftware>>l

Advanced [tem:

v Systern Contraller [V Enable Auto Serial Polling

I‘IDsec vl 140 Timeout " Enable CIC Protocal

Agsert REN When SC
IDEff'UIt vlF'arallelF'oIIDuration I Asser N

Note The GPIB software settings given by the GPIB Configuration interface
are overridden by your MATLAB code, and will have no effect on your GPIB
application.

3-16

GPIB Overview

By selecting NI-488.2 Troubleshooting Wizard in the drop-down menu, you
can test the GPIB interface and display the results. The Troubleshooting
Wizard is shown below.

1-488.2 Troubleshooting Wizard

" MI-488.2 Software Presence Verified
v GPIB Hardware Presence Verified

v GPIE Interfaces Sequentially Yerified

GPIE Mame | Interface Type | Statuz |
GPIED AT-GPIBATHNT passed

Interface iz Mot Listed Help Betest

3-17

3 Controlling GPIB Instruments

3-18

Creating a GPIB Object

You create a GPIB object with the gpib function. gpib requires the adaptor
name, the GPIB board index, and the primary address of the instrument. As
described in “Configuring Properties During Object Creation” on page 2-3, you
can also configure property values during object creation. For a list of
supported adaptors, refer to “The Interface Driver Adaptor” on page 1-4.

Each GPIB object is associated with one controller and one instrument. For
example, to create a GPIB object associated with a National Instruments
controller with board index 0, and an instrument with primary address 1:

g = gpib('ni',0,1);

The GPIB object g now exists in the MATLAB workspace. You can display the
class of g with the whos command.

whos g
Name Size Bytes Class
g 1x1 636 gpib object

Grand total is 14 elements using 636 bytes

Once the GPIB object is created, the properties listed below are automatically
assigned values. These general purpose properties provide descriptive
information about the object based on its class type and address information.

Table 3-7: GPIB Descriptive Properties

Property Name Description

Name Specify a descriptive name for the GPIB object.

Type Indicate the object type.

You can display the values of these properties for g with the get function.

get(g,{'Name', 'Type'})
ans =
'GPIBO-1' 'gpib'

Creating a GPIB Obiject

The GPIB Object Display

The GPIB object provides you with a convenient display that summarizes
important address and state information. You can invoke the display summary
these ways:

¢ Type the GPIB object at the command line.
¢ Exclude the semicolon when creating a GPIB object.

¢ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by
right-clicking an instrument object and selecting Explore -> Display
Summary from the context menu.

The display summary for the GPIB object g is given below.
GPIB Object Using NI Adaptor : GPIBO-1

Communication Address

BoardIndex: 0
PrimaryAddress: 1
SecondaryAddress: 0

Communication State
Status: closed
RecordStatus: off

Read/Write State

TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

3-19

3 Controlling GPIB Instruments

3-20

Configuring the GPIB Address

Each GPIB object is associated with one controller and one instrument. The
GPIB address consists of the board index of the GPIB controller, and the
primary address and (optionally) the secondary address of the instrument. The
term “board index” is equivalent to the term “logical unit” as used by Agilent
Technologies.

As described in “Using Vendor Tools to Identify and Test Your Resources” on
page 3-14, you can find the GPIB board index number by invoking the
appropriate vendor tool. Note that some vendors place limits on the allowed
board index values. Refer to the Instrument Control Toolbox Release Notes for
a list of these limitations. You can usually find the instrument addresses
through a front panel display or by examining dip switch settings. Valid
primary addresses range from 0 to 30. Valid secondary addresses range from
96 to 126, or it can be 0 indicating that no secondary address is used.

The properties associated with the GPIB address are given below.

Table 3-8: GPIB Address Properties

Property Name Description

BoardIndex Specify the index number of the GPIB board.
PrimaryAddress Specify the primary address of the GPIB instrument.

SecondaryAddress Specify the secondary address of the GPIB
instrument.

You must specify the board index and instrument primary address values
during GPIB object creation. The BoardIndex and PrimaryAddress properties
are automatically updated with these values. If the instrument has a
secondary address, you can specify its value during or after object creation by
configuring the SecondaryAddress property.

You can display the address property values for the GPIB object g created in
“Creating a GPIB Object” on page 3-18 with the get function.

get(g,{'BoardIndex', 'PrimaryAddress', 'SecondaryAddress'})
ans =
[0] [1] [0]

Writing and Reading Data

Writing and Reading Data

This section describes interface-specific issues related to writing and reading
data with a GPIB object. Topics include

¢ The rules for completing write and read operations
¢ Examples that illustrate writing and reading text data and binary data

For a general overview about writing and reading data, as well as a list of all
associated functions and properties, refer to “Writing and Reading Data” on
page 2-12.

Rules for Completing Write and Read Operations

The rules for completing synchronous and asynchronous read and write
operations are described below.

Completing Write Operations

A write operation using fprintf or fwrite completes when one of these
conditions is satisfied:

® The specified data is written.
¢ The time specified by the Timeout property passes.

Additionally, you can stop an asynchronous write operation at any time with
the stopasync function.

An instrument determines if a write operation is complete based on the
EOSMode, EOIMode, and EOSCharCode property values. If EOSMode is configured
to either write or read&write, each occurrence of \n in a text command is
replaced with the End-Of-String (EOS) character specified by the EOSCharCode
value. Therefore, when you use the default fprintf format of %s\n, all text
commands written to the instrument will end with that value. The default
EOSCharCode value is LF, which corresponds to the line feed character. The EOS
character required by your instrument will be described in its documentation.

If EOIMode is on, then the End Or Identify (EOI) line is asserted when the last
byte is written to the instrument. The last byte can be part of a binary data
stream or a text data stream. If EOSMode is configured to either write or
read&write, then the last byte written is the EOSCharCode value and the EOI
line is asserted when the instrument receives this byte.

3-21

3 Controlling GPIB Instruments

3-22

Completing Read Operations

A read operation with fgetl, fgets, fread, fscanf, or readasync completes
when one of these conditions is satisfied:

¢ The EOI line is asserted.

¢ The terminator specified by the EOSCharCode property is read. This can occur
only when the EOSMode property is configured to either read or read&write.

¢ The time specified by the Timeout property passes.

¢ The specified number of values is read (fread, fscanf, and readasync only).

® The input buffer is filled (if the number of values is not specified).

In addition to these rules, you can stop an asynchronous read operation at any
time with the stopasync function.

Example: Writing and Reading Text Data

This example illustrates how to communicate with a GPIB instrument by
writing and reading text data.

The instrument is a Tektronix TDS 210 two-channel oscilloscope. Therefore,
many of the commands used are specific to this instrument. A sine wave is
input into channel 2 of the oscilloscope, and your job is to measure the
peak-to-peak voltage of the input signal.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni’,0,1);

2 Connect to the instrument — Connect g to the oscilloscope, and return the
default values for the EOSMode and EOIMode properties.

fopen(g)
get(g,{'EOSMode', 'EOIMode'})
ans =

"none’ ‘on'

Using these property values, write operations complete when the last byte
is written to the instrument, and read operations complete when the EOI
line is asserted by the instrument.

Writing and Reading Data

3 Write and read data — Write the *IDN? command to the instrument using
fprintf, and then read back the result of the command using fscanf.

fprintf(g, '*IDN?"')

idn = fscanf(g)

idn =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Determine the measurement source. Possible measurement sources include
channel 1 and channel 2 of the oscilloscope.

fprintf (g, 'MEASUREMENT : IMMED : SOURCE? ')
source = fscanf(g)

source
CHA1

The scope is configured to return a measurement from channel 1. Because
the input signal is connected to channel 2, you must configure the
instrument to return a measurement from this channel.

fprintf (g, 'MEASUREMENT: IMMED:SOURCE CH2')
fprintf (g, 'MEASUREMENT : IMMED:SOURCE?"')
source = fscanf(g)

source
CH2

You can now configure the scope to return the peak-to-peak voltage, request
the value of this measurement, and then return the voltage value to
MATLAB using fscanf.

fprintf (g, '"MEASUREMENT:MEAS1:TYPE PK2PK")
fprintf (g, '"MEASUREMENT :MEAS1 :VALUE?")
ptop = fscanf(g)

ptop =

2.0199999809E0

4 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.

fclose(g)
delete(g)
clear ¢

3-23

3 Controlling GPIB Instruments

3-24

Example: Reading Binary Data

This example illustrates how you can download the TDS 210 oscilloscope
screen display to MATLAB. The screen display data is transferred to MATLAB
and saved to disk using the Windows bitmap format. This data provides a
permanent record of your work, and is an easy way to document important
signal and scope parameters.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

2 Configure property values — Configure the input buffer to accept a
reasonably large number of bytes, and configure the timeout value to two
minutes to account for slow data transfer.

g.InputBufferSize = 50000;
g.Timeout = 120;

3 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)

4 Write and read data — Configure the scope to transfer the screen display
as a bitmap.

fprintf (g, 'HARDCOPY:PORT GPIB')
fprintf (g, 'HARDCOPY: FORMAT BMP')
fprintf (g, 'HARDCOPY START')

Asynchronously transfer the data from the instrument to the input buffer.
readasync(g)

Wait until the read operation completes, and then transfer the data to the
MATLAB workspace as unsigned 8-bit integers.

g.TransferStatus

ans =

idle

out = fread(g,g.BytesAvailable, 'uint8');

Writing and Reading Data

5 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.

fclose(g)
delete(g)
clear ¢

Viewing the Bitmap Data
To view the bitmap data, you should follow these steps:

1 Open a disk file.

2 Write the data to the disk file.

3 Close the disk file.

4 Read the data using the imread function.

5 Scale and display the data using the imagesc function.

Note that the MATLAB file I/O versions of the fopen, fwrite, and fclose
functions are used.

fid = fopen('testi.bmp','w');
fwrite(fid,out, 'uint8');
fclose(fid)

a = imread('test1.bmp', 'bmp');
imagesc(fliplr(a'))

Because the scope returns the screen display data using only two colors, an
appropriate colormap is selected.

mymap = [0 0 O; 1 1 1];
colormap (mymap)

3-25

3 Controlling GPIB Instruments

3-26

The resulting bitmap image is shown below.

+ Figure No. 1 M=l B3
File Edit ¥iew Insert Tools ‘Window Help

Deda xAa A/, 2HD

el Him W higd ™ R P T600us T MEASTIRE
RS GRS CE PSR e
oo ouree
CH1
PP -
202y
CH1
2
i 13BBkHD -
CH1
Periond
TE.0ns
CH1
Cyc AMS

A

50+

400| -

PPN I N A T vy IV T T
100 200 300 400 500 GO0

Example: Parsing Input Data Using scanstr

This example illustrates how to use the scanstr function to parse data that you
read from a Tektronix TDS 210 oscilloscope. scanstr is particularly useful
when you want to parse a string into one or more cell array elements, where
each element is determined to be either a double or a string.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni’,0,1);
2 Connect to the instrument — Connect g to the oscilloscope.
fopen(g)

3 Write and read data — Return identification information to separate
elements of a cell array using the default delimiters.

fprintf(g, '*IDN?');

Writing and Reading Data

idn = scanstr(g)
idn =
'"TEKTRONIX'
'"TDS 210'
[0]

'CF:91.1CT FV:vi1.16 TDS2CM:CMV:v1.04'

4 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.

fclose(g)
delete(g)
clear g

Example: Understanding EOl and EOS

This example illustrates how the EOI line and the EOS character are used to
complete read and write operations, and how the EOIMode, EOSMode, and
EOSCharCode properties are related to each other. In most cases, you can
successfully communicate with your instrument by accepting the default
values for these properties.

The default value for EOIMode is on, which means that the EOI line is asserted
when the last byte is written to the instrument. The default value for EOSMode
is none, which means that the EOSCharCode value is not written to the
instrument, and read operations will not complete when the EOSCharCode
value is read. Therefore, when you use the default values for EOIMode and
EOSMode,

® Write operations complete when the last byte is written to the instrument.

® Read operations complete when the EOI line is asserted by the instrument.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni’,0,1);

2 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)

3-27

3 Controlling GPIB Instruments

3 Write and read data — Configure g so that the EOI line is not asserted after
the last byte is written to the instrument, and the EOS character is used to
complete write operations. The default format for fprintf is %s\n, where \n
is replaced by the EOS character as given by EOSCharCode.

g.EOIMode = 'off';
g.EOSMode = 'write';
fprintf(g, '*IDN?"')
out = fscanf(g)

out =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Although EOSMode is configured so that read operations will not complete
after receiving the EOS character, the preceding read operation succeeded
because the EOI line was asserted.

Now configure g so that the EOS character is not used to complete read or
write operations. Because the EOI line is not asserted and the EOS
character is not written, the instrument cannot interpret the *IDN?
command and a timeout occurs.

g.EOSMode = 'none';
fprintf(g, '*IDN?"')
out = fscanf(g)

Warning: GPIB: NI: An I/O operation has been canceled mostly
likely due to a timeout.

Now configure g so that the read operation terminates after the “X”
character is read. The EOIMode property is configured to on so that the EOI
line is asserted after the last byte is written. The EOSMode property is
configured to read so that the read operation completes when the
EOSCharCode value is read.

g.EOIMode = 'on';
g.EOSMode = 'read';
g.EOSCharCode = 'X';
fprintf(g, '*IDN?"')

3-28

Writing and Reading Data

out = fscanf(g)
out =
TEKTRONIX

Note that the rest of the identification string remains in the instrument’s
hardware buffer. If you do not want to return this data during the next read
operation, you should clear it from the instrument buffer with the clrdevice
function.

clrdevice(g)
Disconnect and clean up — When you no longer need g, you should

disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.

fclose(g)
delete(g)
clear g

3-29

3 Controlling GPIB Instruments

3-30

Events and Callbacks

You can enhance the power and flexibility of your instrument control
application by using events. An event occurs after a condition is met, and might
result in one or more callbacks.

While the instrument object is connected to the instrument, you can use events
to display a message, display data, analyze data, and so on. Callbacks are
controlled through callback properties and callback functions. All event types
have an associated callback property. Callback functions are M-file functions
that you construct to suit your specific application needs.

You execute a callback when a particular event occurs by specifying the name
of the M-file callback function as the value for the associated callback property.

Example: Introduction to Events and Callbacks

This example uses the M-file callback function instrcallback to display a
message to the command line when a bytes-available event occurs. The event
is generated when the EOSCharCode property value is read.

g = gpib('ni’,0,1);
g.BytesAvailableFcnMode = 'eosCharCode';
g.BytesAvailableFcn = @instrcallback;

fopen(g)
fprintf(g, '*IDN?"')
readasync(g)

The resulting display from instrcallback is shown below.

BytesAvailable event occurred at 17:30:11 for the object: GPIBO-1.
End the GPIB session.

fclose(g)

delete(g)

clear ¢

You can use the type command to display instrcallback at the command line.

Events and Callbacks

Event Types and Callback Properties
The GPIB event types and associated callback properties are described below.

Table 3-9: GPIB Event Types and Callback Properties

Event Type Associated Property Name

Bytes available BytesAvailableFcn
BytesAvailableFcnCount

BytesAvailableFcnMode

Error ErrorFcn

Output empty OutputEmptyFcn

Timer TimerFcn
TimerPeriod

Bytes-Available Event. A bytes-available event is generated immediately after a
predetermined number of bytes are available in the input buffer or the
End-Of-String character is read, as determined by the
BytesAvailableFcnMode property.

If BytesAvailableFcnMode is byte, the bytes-available event executes the
callback function specified for the BytesAvailableFcn property every time the
number of bytes specified by BytesAvailableFcnCount is stored in the input
buffer. If BytesAvailableFcnMode is eosCharCode, then the callback function
executes every time the character specified by the EOSCharCode property is
read.

This event can be generated only during an asynchronous read operation.

Error Event. An error event is generated immediately after an error, such as a
timeout, occurs. A timeout occurs if a read or write operation does not
successfully complete within the time specified by the Timeout property. An
error event is not generated for configuration errors such as setting an invalid
property value.

This event executes the callback function specified for the ErrorFcn property.
It can be generated only during an asynchronous read or write operation.

3-31

3 Controlling GPIB Instruments

3-32

Output-Empty Event. An output-empty event is generated immediately after the
output buffer is empty.

This event executes the callback function specified for the OutputEmptyFcn
property. It can be generated only during an asynchronous write operation.

Timer Event. A timer event is generated when the time specified by the
TimerPeriod property passes. Time is measured relative to when the object is
connected to the instrument.

This event executes the callback function specified for the TimerFcn property.
Note that some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value is too small.

Storing Event Information

You can store event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The
Type field contains the event type, while the Data field contains event-specific
information. As described in “Creating and Executing Callback Functions” on
page 3-33, these two fields are associated with a structure that you define in
the callback function header. Refer to “Debugging: Recording Information to
Disk” on page 7-5 to learn about storing event information in a record file.

The event types and the values for the Type and Data fields are given below.

Table 3-10: GPIB Event Information

Event Type Field Field Value

Bytes available Type BytesAvailable
Data.AbsTime day-month-year hour:minute:second
Error Type Error
Data.AbsTime day-month-year hour:minute:second
Data.Message An error string
Output empty Type OutputEmpty

Data.AbsTime day-month-year hour:minute:second

Events and Callbacks

Table 3-10: GPIB Event Information (Continued)

Event Type Field Field Value
Timer Type Timer
Data.AbsTime day-month-year hour:minute:second

The Data field values are described below.

The AbsTime Field. AbsTime is defined for all events, and indicates the absolute
time the event occurred. The absolute time is returned using the MATLAB
clock format.

day-month-year hour:minute:second

The Message Field. Message is used by the error event to store the descriptive
message that is generated when an error occurs.

Creating and Executing Callback Functions

You specify the callback function to be executed when a specific event type
occurs by including the name of the M-file as the value for the associated
callback property. You can specify the callback function as a function handle or
as a string cell array element. Function handles are described in the MATLAB
function_handle reference pages. Note that if you are executing a local
callback function from within an M-file, then you must specify the callback as
a function handle.

For example, to execute the callback function mycallback every time the
EOSCharCode property value is read from your instrument:

g.BytesAvailableFcnMode = 'eosCharCode';
g.BytesAvailableFcn = @mycallback;

Alternatively, you can specify the callback function as a cell array.
g.BytesAvailableFcn = {'mycallback'};

M-file callback functions require at least two input arguments. The first
argument is the instrument object. The second argument is a variable that
captures the event information given in Table 3-10, GPIB Event Information,
on page 3-32. This event information pertains only to the event that caused the

3-33

3 Controlling GPIB Instruments

3-34

callback function to execute. The function header for mycallback is shown
below.

function mycallback(obj,event)

You pass additional parameters to the callback function by including both the
callback function and the parameters as elements of a cell array. For example,
to pass the MATLAB variable time to mycallback:

time = datestr(now,0);
g.BytesAvailableFcnMode = 'eosCharCode';
g.BytesAvailableFcn = {@mycallback,time};

Alternatively, you can specify mycallback as a string in the cell array.
g.BytesAvailableFcn = {'mycallback',time};
The corresponding function header is

function mycallback(obj,event,time)

If you pass additional parameters to the callback function, then they must be
included in the function header after the two required arguments.

Note You can also specify the callback function as a string. In this case, the
callback is evaluated in the MATLAB workspace and no requirements are
made on the input arguments of the callback function.

Enabling Callback Functions After They Error

If an error occurs while a callback function is executing, then

¢ The callback function is automatically disabled.

® A warning is displayed at the command line, indicating that the callback
function is disabled.

If you want to enable the same callback function, you can set the callback
property to the same value or you can disconnect the object with the fclose
function. If you want to use a different callback function, the callback will be
enabled when you configure the callback property to the new value.

Events and Callbacks

Example: Using Events and Callbacks to Read
Binary Data

This example extends “Example: Reading Binary Data” on page 3-24 by using
the M-file callback function instrcallback to display event-related
information to the command line when a bytes-available event occurs during a
binary read operation.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

2 Configure properties — Configure the input buffer to accept a reasonably
large number of bytes, and configure the timeout value to two minutes to
account for slow data transfer.

g.InputBufferSize = 50000;
g.Timeout = 120;

Configure g to execute the callback function instrcallback every time 5000
bytes is stored in the input buffer. Because instrcallback requires an
instrument object and event information to be passed as input arguments,
the callback function is specified as a function handle.

g.BytesAvailableFcnMode = 'byte';
g.BytesAvailableFcnCount = 5000;
g.BytesAvailableFcn = @instrcallback;

3 Connect to the instrument — Connect g to the oscilloscope.
fopen(g)

4 Write and read data — Configure the scope to transfer the screen display
as a bitmap.

fprintf (g, 'HARDCOPY:PORT GPIB')
fprintf (g, 'HARDCOPY:FORMAT BMP')
fprintf (g, 'HARDCOPY START')

Initiate the asynchronous read operation, and begin generating events.

readasync(g)

3-35

3 Controlling GPIB Instruments

instrcallback is called every time 5000 bytes is stored in the input buffer.
The resulting displays are shown below.

BytesAvailable event occurred at 09:41:42 for the object: GPIBO-1.
BytesAvailable event occurred at 09:41:50 for the object: GPIBO-1.
BytesAvailable event occurred at 09:41:58 for the object: GPIBO-1.
BytesAvailable event occurred at 09:42:06 for the object: GPIBO-1.
BytesAvailable event occurred at 09:42:14 for the object: GPIBO-1.
BytesAvailable event occurred at 09:42:22 for the object: GPIBO-1.
BytesAvailable event occurred at 09:42:30 for the object: GPIBO-1.

Wait until all the data is sent to the input buffer, and then transfer the data
to MATLAB as unsigned 8-bit integers.

g.TransferStatus

ans =

idle

out = fread(g,g.BytesAvailable, 'uint8');

5 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.

fclose(g)
delete(g)
clear g

3-36

Triggers

Triggers

You can execute a trigger with the trigger function. This function is
equivalent to writing the GET (Group Execute Trigger) GPIB command to the
instrument.

trigger instructs all the addressed Listeners to perform some
instrument-specific function such as taking a measurement. Refer to your
instrument documentation to learn how to use its triggering capabilities.

Example: Executing a Trigger

This example illustrates GPIB triggering using an Agilent 33120A function
generator. The output of the function generator is displayed with an
oscilloscope so that the trigger can be observed.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

2 Connect to the instrument — Connect g to the function generator.
fopen(g)

3 Write and read data — Configure the function generator to produce a 5000
Hz sine wave, with 6 volts peak-to-peak.

fprintf (g, 'Func:Shape Sin')
fprintf(g, 'Volt 3')
fprintf(g, 'Freq 5000")

Configure the burst of the trigger to display the sine wave for five seconds,
configure the function generator to expect the trigger from the GPIB board,
and enable the burst mode.

fprintf (g, 'BM:NCycles 25000')
fprintf(g, 'Trigger:Source Bus')
fprintf(g, 'BM:State On')

Trigger the instrument.

trigger(g)

3-37

3 Controlling GPIB Instruments

Disable the burst mode.
fprintf(g, 'BM:State Off"')

While the function generator is triggered, the sine wave is saved to the Ref
A memory location of the oscilloscope. The saved waveform is shown below.

<) Figure No. 1 =] B3
File Edit Yiew Inset Tools ‘Window Help
([nRr=2 = =R Y W R
ek T H Aute 7 MPae O000s © SAVE/REC
50 oo : : : Setups
LoD me—
100+ - E
Source
180 ICHI
=0y Fief
a50| §
300t : Save
a50} : Coos =
S PR et &
400 T ; g
4o PHT 200 CRTON W 005 CRT 7 000w
Feth 2009 10005
100 200 300 400 500 £00

4 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.

fclose(g)
delete(g)
clear ¢

3-38

Serial Polls

Serial Polls

You can execute a serial poll with the spoll function. In a serial poll, the
Controller asks (polls) each addressed Listener to send back a status byte that
indicates whether it has asserted the SRQ line and needs servicing. The
seventh bit of this byte (the RQS bit) is set if the instrument is requesting
service.

The Controller performs the following steps for every addressed Listener:

1 The Listener is addressed to talk and the Serial Poll Enable (SPE) command
byte is sent.

2 The ATN line is set high and the Listener returns the status byte.

3 The ATN line is set low and the Serial Poll Disable (SPD) command byte is
sent to end the poll sequence.

Refer to “Status and Event Reporting” on page 3-9 for more information on the
GPIB bus lines and the RQS bit.

Example: Executing a Serial Poll

This example shows you how to execute a serial poll for a Agilent 33120A
function generator, and a Tektronix TDS 210 oscilloscope. In doing so, the
example shows you how to configure many of the status bits described in “The
Standard Event Status Register” on page 3-12.

1 Create instrument objects — Create a GPIB object associated with a
Agilent 33120A function generator at primary address 1.
g1 = gpib('ni",0,1);
Create a GPIB object associated with a Tektronix TDS 210 oscilloscope at
primary address 2.
g2 = gpib('ni’,0,2);

2 Connect to the instrument — Connect g1 to the function generator and
connect g2 to the oscilloscope.

fopen([g1 g2])

3-39

3 Controlling GPIB Instruments

3 Configure property values — Configure both objects to time out after 1
second.

set([gl g2], 'Timeout',1)

4 Write and read data — Configure the function generator to request service
when a command error occurs.
fprintf (g1, '*CLS");
fprintf (g1, '*ESE 32');
fprintf (g1, '*SRE 32');

Configure the oscilloscope to request service when a command error occurs.

fprintf(g2,'*CLS")
fprintf(g2,'*PSC 0')
fprintf(g2,'*ESE 32')
fprintf (g2, 'DESE 32')
fprintf(g2,'*SRE 32')

Determine if any instrument needs servicing.

spoll([g1 92])
ans =

[]

Query the voltage value for each instrument.
fprintf(gl, 'Volt?')

fprintf(g2, 'Volt?')

Determine if either instrument produced an error due to the preceding
query.

out = spoll([g1 g2]);
Because Volt? is an invalid command for the oscilloscope, it is requesting
service.

out == [g1 02]
ans =
01

3-40

Serial Polls

Because Volt? is a valid command for the function generator, the value is
read back successfully.

volt1 = fscanf(g1)
voltl =
+1.00000E-01

However, the oscilloscope read operation times out after 1 second.

volt2 = fscanf(g2)

Warning: GPIB: NI: An I/O0 operation has been canceled, most likely
due to a timeout.

volt2 =

Disconnect and clean up — When you no longer need g1 and g2, you should
disconnect them from the instruments, and remove them from memory and
from the MATLAB workspace.

fclose([g1 g2])
delete([g1 9g2])
clear g1 g2

3-41

3 Controlling GPIB Instruments

3-42

Controlling Instruments
Using the VISA Standard

This chapter describes specific issues related to controlling instruments that use the VISA standard.
The sections are as follows.

VISA Overview (p. 4-2) Brief description of the Virtual Instrument Standard Architecture
(VISA) standard.

The GPIB Interface (p. 4-5) The VISA-GPIB object establishes a connection between MATLAB and
the instrument via its GPIB interface.

The VXI Interface (p. 4-9) The VISA-VXI object establishes a connection between MATLAB and
the instrument via its VXI interface.

The GPIB-VXI Interface The VISA-GPIB-VXI object establishes a connection between
(p. 4-21) MATLAB and the instrument via its GPIB-VXI interface.

The Serial Port Interface The VISA serial object establishes a connection between MATLAB and
(p. 4-26) the instrument via the serial port.

4 Controlling Instruments Using the VISA Standard

4-2

VISA Overview

Virtual Instrument Standard Architecture (VISA) is a standard defined by
Agilent Technologies and National Instruments for communicating with
instruments regardless of the interface.

The Instrument Control Toolbox supports the GPIB, VXI, GPIB-VXI, and
serial port interfaces using the VISA standard. Communication is established
through a VISA instrument object, which you create in the MATLAB
workspace. For example, a VISA-GPIB object allows you to use the VISA
standard to communicate with an instrument that possesses a GPIB interface.

Note Most features associated with VISA instrument objects are identical to
the features associated with GPIB and serial port objects. Therefore, this
chapter presents only interface-specific functions and properties. For example,
register-based communication is discussed for VISA-VXI objects, but
message-based communication is not discussed as this topic is covered
elsewhere in this guide.

For many VISA applications, you can communicate with your instrument
without detailed knowledge of how the interface works. In this case, you might
want to begin with one of these topics:

¢ “The GPIB Interface” on page 4-5

¢ “The VXI Interface” on page 4-9

¢ “The GPIB-VXI Interface” on page 4-21

¢ “The Serial Port Interface” on page 4-26

If you want a high-level description of all the steps you are likely to take when

communicating with your instrument, refer to Chapter 2, “The Instrument
Control Session.”

VISA Overview

Using Vendor Tools to Identify and Test Your
Resources

Both National Instruments and Agilent Technologies provide tools that allow
you to identify, configure, and test the VISA resources in your system. These

tools are usually installed in conjunction with the VXIplug&play driver. You

should use these tools to

® Determine the device resource name, which is used to create a VISA
instrument object. As described in “Adaptor Information” on page 1-14, you
can also return the resource name with the instrhwinfo function.

® Determine if your hardware configuration is correct.

Agilent’s VISA Assistant tool is shown below. The display indicates that VXI,
GPIB, and GPIB-VXI interface resources are available on the system.

B VISA Assistant =] S
File Edit ¥iew Configure Help
=]

B MEMALE Instrument Driver | Formatted 140 | Memery 140 | Attibutes |

Model: |E1432A
-GPIBO:9:0:NSTR
-GRIBO:9:10:INSTR
= GRIBAXI0

Manufacturer: IH ewlatt-Packard

- GPIBARI0:MEMALCC
- GPIBARID:0:IMSTR Mo Instrument Driver Configured
Interface |

----- GPIBAXI0:B0:INSTR _
Address Sting: [y0,130:INS TR
[rarcM ame]

Resource Configure: _|
names
Logical Address: |130 Slat: |1
Faor Help, press F1 MUM 10:5916

The VXIO: :MEMACC and GPIB-VXIO: :MEMACC resource names are associated
with register-based communication. The Instrument Control Toolbox does not
directly support these resource names. Instead, register-based communication
is supported for VXI instruments with the memread, memwrite, mempoke, and
mempeek functions, which are described in “Register-Based Communication” on
page 4-13.

4-3

4 Controlling Instruments Using the VISA Standard

National Instruments’ VISA Interactive Control tool is shown below. The
display indicates that serial port interface resources are available on the

system.
YISA Interactive Control I B3
File Edit “iew Help
oy o
VISA 10 | Soft Frant Panels| NI 140)\ g'cso:g'r‘.glmfams

& Wiew By Type £ Wiew By Connection

- SenalInstrumentResources
I ASRLIZINSTR
IE;’;‘ASRLMNSTR
I ASRLIDINSTR

Interface —»

Resource
names

Fesource to Open:

4-4

The GPIB Interface

The GPIB Interface

The GPIB interface is supported through a VISA-GPIB object. The features
associated with a VISA-GPIB object are similar to the features associated with
a GPIB object. Therefore, only functions and properties that are unique to
VISA’s GPIB interface are discussed in this section. These unique features are
associated with

¢ Creating a VISA-GPIB object
® The VISA-GPIB address
Refer to Chapter 3, “Controlling GPIB Instruments” to learn about the GPIB

interface, writing and reading text and binary data, using events and
callbacks, using triggers, and so on.

Note The VISA-GPIB object does not support the spoll function, or the
BusManagementStatus, CompareBits, and HandshakeStatus properties.

Creating a VISA-GPIB Object

You create a VISA-GPIB object with the visa function. Each VISA-GPIB object
is associated with

* A GPIB controller installed in your computer

¢ An instrument with a GPIB interface

visa requires the vendor name and the resource name as input arguments. The
vendor name can be agilent, ni, or tek. The resource name consists of the
GPIB board index, the instrument primary address, and the instrument
secondary address. You can find the VISA-GPIB resource name for a given
instrument with the configuration tool provided by your vendor, or with the
instrhwinfo function. As described in “Configuring Properties During Object
Creation” on page 2-3, you can also configure properties during object creation.

For example, to create a VISA-GPIB object associated with a National
Instruments controller with board index 0, and a Tektronix TDS 210 digital
oscilloscope with primary address 1 and secondary address 0:

vg = visa('ni', 'GPIB0::1::0::INSTR');

4 Controlling Instruments Using the VISA Standard

4-6

The VISA-GPIB object vg now exists in the MATLAB workspace. You can
display the class of vg with the whos command.

whos vg
Name Size Bytes Class
vg 1x1 636 visa object

Grand total is 14 elements using 636 bytes

After you create the VISA-GPIB object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the object based on its class type and address information.

Table 4-1: VISA-GPIB Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-GPIB object.
RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vg with the get function.

get(vg,{'Name', 'RsrcName', 'Type'})
ans =
'"VISA-GPIBO-1' 'GPIBO::1::0::INSTR' 'visa-gpib’

The VISA-GPIB Object Display

The VISA-GPIB object provides you with a convenient display that
summarizes important address and state information. You can invoke the
display summary these three ways:

¢ Type the VISA-GPIB object at the command line.

¢ Exclude the semicolon when creating a VISA-GPIB object.

¢ Exclude the semicolon when configuring properties using the dot notation.
You can also display summary information via the Workspace browser by

right-clicking an instrument object and selecting Explore -> Display
Summary from the context menu.

The GPIB Interface

The display summary for the VISA-GPIB object vg is given below.
VISA-GPIB Object Using NI Adaptor : VISA-GPIBO-1

Communication Address
BoardIndex: 0
PrimaryAddress: 1
SecondaryAddress: 0

Communication State
Status: closed

RecordStatus: off

Read/Write State

TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

The VISA-GPIB Address
The VISA-GPIB address consists of

¢ The board index of the GPIB controller installed in your computer.

® The primary address and secondary address of the instrument. Valid
primary addresses range from 0 to 30. Valid secondary addresses range from
0 to 30, where the value 0 indicates that the secondary address is not used.

You must specify the primary address value via the resource name during
VISA-GPIB object creation. Additionally, you must include the board index and
secondary address values as part of the resource name if they differ from the
default value of 0.

4-7

4 Controlling Instruments Using the VISA Standard

The properties associated with the GPIB address are given below.

Table 4-2: VISA-GPIB Address Properties

Property Name Description

BoardIndex Specify the index number of the GPIB board.
PrimaryAddress Specify the primary address of the GPIB instrument.

SecondaryAddress Specify the secondary address of the GPIB
instrument.

The BoardIndex, PrimaryAddress, and SecondaryAddress properties are
automatically updated with the specified resource name values when you
create the VISA-GPIB object.

You can display the address property values for the VISA-GPIB object vg
created in “Creating a VISA-GPIB Object” on page 4-5 with the get function.

get(vg,{'BoardIndex', 'PrimaryAddress', 'SecondaryAddress'})
ans =
[0] [1] [0]

4-8

The VX Interface

The VXI Interface

The VXI interface is associated with a VXI controller that you install in slot 0
of a VXI chassis. This interface, along with the other relevant hardware, is
shown below.

0 onfOf
Computer VXI | . | | N |
chagsis o P

pasrr’

[EEE

—>
1354 link
-

a0
—
—

Doae
—
—

a a

Sot0 Sot1l Stz St i
,‘I\ /i\

VXI VXI

controller instrument

The VXI interface is supported through a VISA-VXI object. Many of the
features associated with a VISA-VXI object are similar to the features
associated with other instrument objects. Therefore, only functions and
properties that are unique to VISA’s VXI interface are discussed in this section.
These unique features are associated with

¢ Creating a VISA-VXI object

¢ The VISA-VXI address

® Register-based communication

Refer to Chapter 3, “Controlling GPIB Instruments” to learn about general

toolbox capabilities such as writing and reading text and binary data, using
events and callbacks, and so on.

4-9

4 Controlling Instruments Using the VISA Standard

4-10

Creating a VISA-VXI Object

You create a VISA-VXI object with the visa function. Each object is associated
with

® A VXI chassis

¢ A VXI controller in slot 0 of the VXI chassis

¢ An instrument installed in the VXI chassis

visarequires the vendor name and the resource name as input arguments. The
vendor name is either agilent or ni. The resource name consists of the VXI
chassis index and the instrument logical address. You can find the VISA-VXI
resource name for a given instrument with the configuration tool provided by
your vendor, or with the instrhwinfo function. As described in “Configuring
Properties During Object Creation” on page 2-3, you can also configure
property values during object creation.

For example, to create a VISA-VXI object associated with a VXI chassis with
index 0 and an Agilent E1432A 16-channel digitizer with logical address 32:

vv = visa('agilent', 'VXIO0::32::INSTR');

The VISA-VXI object vv now exists in the MATLAB workspace. You can display
the class of vv with the whos command.

whos vv
Name Size Bytes Class
vV 1x1 634 visa object

Grand total is 13 elements using 634 bytes

After you create the VISA-VXI object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the object based on its class type and address information.

Table 4-3: VISA-VXI Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-VXI object.

The VX Interface

Table 4-3: VISA-VXI Descriptive Properties (Continued)

Property Name Description

RsrcName Indicate the resource name for a VISA instrument.

Type Indicate the object type.

You can display the values of these properties for vv with the get function.

get(vv,{'Name', 'RsrcName', 'Type'})
ans =
'VISA-VXI0-32' 'VXI0::32::INSTR' 'visa-vxi'

The VISA-VXI Object Display

The VISA-VXI object provides you with a convenient display that summarizes
important address and state information. You can invoke the display summary
these three ways:

® Type the VISA-VXI object at the command line.
¢ Exclude the semicolon when creating a VISA-VXI object.
¢ Exclude the semicolon when configuring properties using the dot notation.
The display summary for the VISA-VXI object vv is given below.
VISA-VXI Object Using AGILENT Adaptor : VISA-VXIO-32
Communication Address

ChassisIndex: 0
LogicalAddress: 32

Communication State
Status: closed
RecordStatus: off

Read/Write State

TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

4-11

4 Controlling Instruments Using the VISA Standard

4-12

The VISA-VXI Address

The VISA-VXI address consists of

¢ The chassis index of the VXI chassis

® The logical address of the instrument installed in the VXI chassis

You must specify the logical address value via the resource name during
VISA-VXI object creation. Additionally, you must include the chassis index

value as part of the resource name if it differs from the default value of 0. The
properties associated with the chassis and instrument address are given below.

Table 4-4: VISA-VXI Address Properties

Property Name Description

ChassisIndex Indicate the index number of the VXI chassis.
LogicalAddress Specify the logical address of the VXI instrument.

Slot Indicate the slot location of the VXI instrument.

The ChassisIndex and LogicalAddress properties are automatically updated
with the specified resource name values when you create the VISA-VXI object.
The Slot property is automatically updated after the object is connected to the
instrument with the fopen function.

You can display the address property values for the VISA-VXI object vv created
in “Creating a VISA-VXI Object” on page 4-10 with the get function.

fopen(vv)
get(vv,{'ChassisIndex', 'LogicalAddress', 'Slot'})
ans =

[0] [32] [2]

The VX Interface

Register-Based Communication

VXI instruments are either message-based or register-based. Generally, it is
assumed that message-based instruments are easier to use, while
register-based instruments are faster. A message-based instrument has its
own processor that allows it to interpret high-level commands such as a SCPI
command. Therefore, to communicate with a message-based instrument, you
can use the read and write functions fscanf, fread, fprintf, and fwrite. For
detailed information about these functions, refer to “Writing and Reading
Data” on page 2-12.

If the message-based instrument also contains shared memory, then you can
access the shared memory through register-based read and write operations. A
register-based instrument usually does not have its own processor to interpret
high-level commands. Therefore, to communicate with a register-based
instrument, you need to use read and write functions that access the register.

There are two types of register-based write and read functions: low-level and
high-level. The main advantage of the high-level functions is ease of use. Refer
to “Example: Using High-Level Memory Functions” on page 4-16 for more
information. The main advantage of the low-level functions is speed. Refer to
“Example: Using Low-Level Memory Functions” on page 4-18 for more
information.

The functions associated with register-based write and read operations are
given below.

Table 4-5: VISA-VXI Register-Based Write and Read Functions

Function Name Description

memmap Map memory for low-level memory read and write
operations.

mempeek Low-level memory read from VXI register.

mempoke Low-level memory write to VXI register.

memread High-level memory read from VXI register.

memunmap Unmap memory for low-level memory read and write
operations.

memwrite High-level memory write to VXI register.

4-13

4 Controlling Instruments Using the VISA Standard

4-14

The properties associated with register-based write and read operations are

given below.

Table 4-6: VISA-VXI Register-Based Write and Read Properties

Property Name

Description

MappedMemoryBase

MappedMemorySize

MemoryBase

MemoryIncrement

MemorySize

MemorySpace

Indicate the base memory address of the mapped
memory.

Indicate the size of the mapped memory for low-level
read and write operations.

Indicate the base address of the A24 or A32 space.

Specify if the VXI register offset increments after
data is transferred.

Indicate the size of the memory requested in the A24
or A32 address space.

Define the address space used by the instrument.

Example: Understanding Your Instrument’s Register Characteristics

This example explores the register characteristics for an Agilent E1432A
16-channel 51.2 kSa/s digitizer with a DSP module.

All VXTI instruments have an A16 memory space consisting of 64 bytes. It is
known as an A16 space because the addresses are 16 bits wide. Register-based
instruments provide a memory map of the address space that describes the
information contained within the A16 space. Some VXI instruments also have
an A24 or A32 space if the 64 bytes provided by the A16 space are not enough
to perform the necessary tasks. A VXI instrument cannot use both the A24 and

A32 space.

1 Create an instrument object — Create the VISA-VXI object vv associated
with a VXI chassis with index 0, and an Agilent E1432A digitizer with

logical address 130.

vv = visa('agilent', 'VXIO0::130::INSTR');

The VX Interface

2 Connect to the instrument — Connect vv to the instrument.

fopen(vv)

The MemorySpace property indicates the type of memory space the
instrument supports. By default, all instruments support A16 memory
space. However, this property can be A16/A24 or A16/A32 if the instrument
also supports A24 or A32 memory space, respectively.

get(vv, 'MemorySpace')
ans =
A16/A24

If the VISA-VXI object is not connected to the instrument, MemorySpace
always returns the default value of A16.

The MemoryBase property indicates the base address of the A24 or A32 space,
and is defined as a hexadecimal string. The MemorySize property indicates
the size of the A24 or A32 space. If the VXI instrument supports only the A16
memory space, MemoryBase defaults to OH and MemorySize defaults to 0.

get(vv,{'MemoryBase', 'MemorySize'})
ans =
'200000H"' [262144]

3 Disconnect and clean up — When you no longer need vv, you should

disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.

fclose(vv)
delete(vv)
clear vv

4-15

4 Controlling Instruments Using the VISA Standard

Example: Using High-Level Memory Functions

This example uses the high-level memory functions, memread and memwrite, to
access register information for an Agilent E1432A 16-channel 51.2 kSa/s
digitizer with a DSP module. The main advantage of these high-level functions
is ease of use — you can access multiple registers with one function call, and
the memory that is to be accessed is automatically mapped for you. The main
disadvantage is the lack of speed — they are slower than the low-level memory
functions.

Each register contains 16 bits, and is associated with an offset value that you
supply to memread or memwrite. The first four registers of the digitizer are
accessed in this example, and are described below.

Table 4-7: Agilent E1432A Register Information

Register Offset Description

ID 0 This register provides instrument configuration
information and is always defined as CFFF. Bits 15
and 14 are 1, indicating that the instrument is
register-based. Bits 13 and 12 are 0, indicating that
the instrument supports the A24 memory space. The
remaining bits are all 1, indicating the device ID.

Device 2 This register provides instrument configuration

Type information. Bits 15-12 indicate the memory required
by the A24 space. The remaining bits indicate the
model code for the instrument.

Status 4 This register provides instrument status information.
For example, bit 15 indicates whether you can access
the A24 registers, and bit 6 indicates whether a DSP
communication error occurred.

Offset 6 This register defines the base address of the
instrument’s A24 registers. Bits 15-12 map the VME
Bus address lines A23-A20 for A24 register access.
The remaining bits are all 0.

For more detailed information about these registers, refer to the HP E1432A
User’s Guide.

4-16

The VX Interface

1 Create an instrument object — Create the VISA-VXI object vv associated
with a VXI chassis with index 0, and an Agilent E1432A digitizer with
logical address is 130.

vv = visa('agilent','VXIO0::130::INSTR');
2 Connect to the instrument — Connect vv to the instrument.

fopen(vv)

3 Write and read data — The following command performs a high-level read
of the ID Register, which has an offset of 0.

memread(vv,0, 'uinti16', 'A16")

regi
regi

53247

Convert reg1 to a hexadecimal value and a binary string. Note that the hex
value is CFFF and the least significant 12 bits are all 1, as expected.

dec2hex(regl)
ans =

CFFF
dec2bin(regl)
ans =
1100111111111111

You can read multiple registers with memread. The following command reads
the next three registers. An offset of 2 indicates that the read operation
begins with the Device Type Register.

reg24 = memread(vv,2,'uinti6','A16',3)
reg24 =

20993

50012

40960

The following commands write to the Offset Register and then read the
value back. Note that if you change the value of this register, you will not be
able to access the A24 space.

memwrite(vv,45056,6, 'uint16', 'A16');

4-17

4 Controlling Instruments Using the VISA Standard

4-18

reg4
reg4

memread(vv,6, 'uinti6', 'A16")

45056

Note that the least significant 12 bits are all 0, as expected.

dec2bin(reg4,16)
ans =
1011000000000000

Restore the original register value, which is stored in the reg24 variable.
memwrite(vv,reg24(3),6, 'uinti6', 'A16');
Disconnect and clean up — When you no longer need vv, you should

disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.

fclose(vv)
delete(vv)
clear vv

Example: Using Low-Level Memory Functions

This example uses the low-level memory functions, mempeek and mempoke, to
access register information for an Agilent E1432A 16-channel 51.2 kSa/s
digitizer with a DSP module. The main advantage of these low-level functions
is speed — they are faster than the high-level memory functions. The main
disadvantages include the inability to access multiple registers with one
function call, errors are not reported, and you must map the memory that is to
be accessed.

For information about the digitizer registers accessed in this example, refer to
“Example: Using High-Level Memory Functions” on page 4-16.

1 Create an instrument object — Create the VISA-VXI object vv associated

with a VXI chassis with index 0, and an Agilent E1432A digitizer with
logical address 130.

vv = visa('agilent', 'VXIO0::130::INSTR');

The VX Interface

2 Connect to the instrument — Connect vv to the instrument.

fopen(vv)

3 Write and read data — Before you can use the low-level memory functions,
you must first map the memory space with the memmap function. If the
memory requested by memmap does not exist, an error is returned. The
following command maps the first 16 registers of the A16 memory space.

memmap (vv, 'A16',0,16);

The MappedMemoryBase and MappedMemorySize properties indicate if
memory has been mapped. MappedMemoryBase is the base address of the
mapped memory and is defined as a hexadecimal string. MappedMemorySize
is the size of the mapped memory. These properties are similar to the
MemoryBase and MemorySize properties that describe the A24 or A32
memory space.

get(vv, {'MappedMemoryBase', 'MappedMemorySize'})
ans =
'16737610H"' [16]

The following command performs a low-level read of the ID Register, which
has an offset of 0.

regl = mempeek(vv,0,'uint16"')
regl =
53247

The following command performs a low-level read of the Offset Register,
which has an offset of 6.

reg4 = mempeek(vv,6,'uint16"')
reg4 =
40960

The following commands write to the Offset Register and then read the
value back. Note that if you change the value of this register, you will not be
able to access the A24 space.

mempoke (vv,45056,6, 'uint16');

4-19

4 Controlling Instruments Using the VISA Standard

4-20

mempeek(vv,6, 'uinti16')
ans =
45056

Restore the original register value.

mempoke (vv,reg4,6, 'uint16');

When you have finished accessing the registers, you should unmap the
memory with the memunmap function.

memunmap (vv)
get(vv, {'MappedMemoryBase', 'MappedMemorySize'})
ans =

"OH' [0]

If memory is still mapped when the object is disconnected from the
instrument, the memory is automatically unmapped for you.

Disconnect and clean up — When you no longer need vv, you should

disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.

fclose(vv)
delete(vv)
clear vv

The GPIB-VXI Interface

The GPIB-VXI Interface

The GPIB-VXI interface is associated with a GPIB-VXI command module that

you install in slot 0 of a VXI chassis. This interface, along with the other
relevant hardware, is shown below.

[onfoE
Computer WXI | " | | - | T T

chassis P —
oo F
)
(<3
&
o

5

i
[
eee

| -1 u
0 Flotl Sotz Sotd Sloid Slots
/I\ 4\

GPIB-VXIL VXI

command nstrament
module

GPIB
controller

The GPIB-VXI interface is supported through a VISA-GPIB-VXI object. The
features associated with a VISA-GPIB-VXI object are similar to the features
associated with GPIB and VISA-VXI objects. Therefore, only functions and
properties that are unique to VISA’s GPIB-VXI interface are discussed in this

section. These unique features are associated with
¢ Creating a VISA-GPIB-VXI object
® The VISA-GPIB-VXI address

Refer to Chapter 3, “Controlling GPIB Instruments” to learn about writing and
reading text and binary data, using events and callbacks, using triggers, and

so on. Refer to “Register-Based Communication” on page 4-13 to learn about
accessing VXI registers.

4-21

4 Controlling Instruments Using the VISA Standard

4-22

Note The VISA-GPIB-VXI object does not support the spoll and trigger
functions, or the BusManagementStatus, HandshakeStatus, InterruptFcn,
TriggerFcn, TriggerLine, and TriggerType properties.

Creating a VISA-GPIB-VXI Object

You create a VISA-GPIB-VXI object with the visa function. As shown in the
preceding figure, each object is associated with

¢ A GPIB controller installed in your computer

¢ A VXI chassis

¢ A GPIB-VXI command module in slot 0 of the VXI chassis
¢ An instrument installed in the VXI chassis

visarequires the vendor name and the resource name as input arguments. The
vendor name is either agilent or ni. The resource name consists of the VXI
chassis index and the instrument logical address. You can find the
VISA-GPIB-VXI resource name for a given instrument with the configuration
tool provided by your vendor, or with the instrhwinfo function. As described
in “Configuring Properties During Object Creation” on page 2-3, you can also
configure property values during object creation.

For example, to create a VISA-GPIB-VXI object associated with a VXI chassis
with index 0, an Agilent E1406A Command Module in slot 0, and an Agilent
E1441A Arbitrary Waveform Generator in slot 2 with logical address 80:

vgv = visa('agilent', 'GPIB-VXIO::80::INSTR');

The VISA-GPIB-VXI object vgv now exists in the MATLAB workspace. You can
display the class of vgv with the whos command.

whos vgv
Name Size Bytes Class
vgv 1x1 644 visa object

Grand total is 18 elements using 644 bytes

The GPIB-VXI Interface

After you create the VISA-GPIB-VXI object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the object based on its class type and address information.

Table 4-8: VISA-GPIB-VXI Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-GPIB-VXI
object.

RsrcName Indicate the resource name for a VISA instrument.

Type Indicate the object type.

You can display the values of these properties for vgv with the get function.

get(vgv,{'Name', 'RsrcName', 'Type'})
ans =
'VISA-GPIB-VXIO0-80' 'GPIB-VXIO::80::INSTR' ‘visa-gpib-vxi'

Note The GPIB-VXI communication interface is a combination of the GPIB
and VXI interfaces. Therefore, you can also use a VISA-GPIB object to
communicate with instruments installed in the VXI chassis, or to
communicate with non-VXI instruments connected to the slot 0 controller.

The VISA-GPIB-VXI Object Display

The VISA-GPIB-VXI object provides you with a convenient display that
summarizes important address and state information. You can invoke the
display summary these three ways:

® Type the VISA-GPIB-VXI object at the command line.
¢ Exclude the semicolon when creating a VISA-GPIB-VXI object.
¢ Exclude the semicolon when configuring properties using the dot notation.

4-23

4 Controlling Instruments Using the VISA Standard

The display summary for the VISA-GPIB-VXI object vgv is given below.
VISA-GPIB-VXI Object Using AGILENT Adaptor : VISA-GPIB-VXIO-80
Communication Address

ChassisIndex: 0
LogicalAddress: 80

Communication State
Status: closed

RecordStatus: off

Read/Write State

TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

The VISA-GPIB-VXI Address

The VISA-GPIB-VXI address consists of a VXI component and a GPIB
component. The VXI component includes

® The chassis index of the VXI chassis

¢ The logical address of the VXI instrument; the logical address must be 0, or
it must be divisible by 8

¢ The slot of the VXI instrument
The GPIB component includes

® The board index of the GPIB controller installed in your computer
® The primary address of the GPIB-VXI command module in slot 0
¢ The secondary address of the VXI instrument

You must specify the logical address value via the resource name during
VISA-GPIB-VXI object creation. Additionally, you must include the chassis

4-24

The GPIB-VXI Interface

index value as part of the resource name if it differs from the default value of
0. The properties associated with the VISA-GPIB-VXI address are given below.

Table 4-9: VISA-GPIB-VXI Address Properties

Property Name Description
BoardIndex Indicate the index number of the GPIB board.
ChassisIndex Specify the index number of the VXI chassis.

LogicalAddress Specify the logical address of the VXI instrument.

PrimaryAddress Indicate the primary address of the GPIB-VXI
command module.

SecondaryAddress Indicate the secondary address of the VXI
instrument.

Slot Indicate the slot location of the VXI instrument.

The ChassisIndex and LogicalAddress properties are automatically updated
with the specified resource name values when you create the VISA-GPIB-VXI
object. The BoardIndex, PrimaryAddress, SecondaryAddress, and Slot
properties are automatically updated after the object is connected to the
instrument with the fopen function.

You can display the address property values for the VISA-GPIB-VXI object vgv
created in “Creating a VISA-GPIB-VXI Object” on page 4-22 with the get
function.

fopen(vgv)
get(vgv, {'BoardIndex', 'ChassisIndex', 'LogicalAddress’,...
‘PrimaryAddress', 'SecondaryAddress', 'Slot'})
ans =
[0] [0] [80] [9] [10] [2]

4-25

4 Controlling Instruments Using the VISA Standard

4-26

The Serial Port Interface

The serial port interface is supported through a VISA-serial object. The
features associated with a VISA-serial object are similar to the features
associated with a serial port object. Therefore, only functions and properties
that are unique to VISA’s serial port interface are discussed in this section.
These unique features are associated with

¢ Creating a VISA-serial object
¢ Configuring communication settings
Refer to Chapter 5, “Controlling Serial Port Instruments,” to learn about

writing and reading text and binary data, using events and callbacks, using
serial port control lines, and so on.

Note The VISA-serial object does not support the serialbreak function, the
BreakInterruptFcn property, and the PinStatusFcn property.

Creating a VISA-Serial Object

You create a VISA-serial object with the visa function. Each VISA-serial object
is associated with an instrument connected to a serial port on your computer.

visarequires the vendor name and the resource name as input arguments. The
vendor name can be agilent, ni, or tek. The resource name consists of the
name of the serial port connected to your instrument. You can find the
VISA-serial resource name for a given instrument with the configuration tool
provided by your vendor, or with the instrhwinfo function. As described in
“Configuring Properties During Object Creation” on page 2-3, you can also
configure property values during object creation.

For example, to create a VISA-serial object that is associated with the COM1
port, and that uses National Instruments VISA:

vs = visa('ni', 'ASRL1::INSTR');

The Serial Port Interface

The VISA-serial object vs now exists in the MATLAB workspace. You can
display the class of vs with the whos command.

whos vs
Name Size Bytes Class
Vs 1x1 640 visa object

Grand total is 16 elements using 640 byte

After you create the VISA-serial object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the object based on its class type and address information.

Table 4-10: VISA-Serial Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-serial object.
Port Indicate the serial port name.

RsrcName Indicate the resource name for a VISA instrument.
Type Indicate the object type.

You can display the values of these properties for vs with the get function.

get(vs,{'Name', 'Port', 'RsrcName', 'Type'})
ans =

'VISA-Serial-ASRL1' "ASRL1"' "ASRL1::INSTR' ‘visa-serial’

The VISA-Serial Object Display

The VISA-serial object provides you with a convenient display that
summarizes important address and state information. You can invoke the
display summary these three ways:

¢ Type the VISA-serial object at the command line.

¢ Exclude the semicolon when creating a VISA-serial object.

¢ Exclude the semicolon when configuring properties using the dot notation.

4-27

4 Controlling Instruments Using the VISA Standard

The display summary for the VISA-serial object vs is given below.
VISA-Serial Object Using NI Adaptor : VISA-Serial-ASRLA1

Communication Settings

Port: ASRLA1
BaudRate: 9600
Terminator: '"LF'

Communication State
Status: closed
RecordStatus: off

Read/Write State

TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

Configuring Communication Settings

Before you can write or read data, both the VISA-serial object and the
instrument must have identical communication settings. Configuring serial
port communications involves specifying values for properties that control the
baud rate and the serial data format. These properties are given below.

Table 4-11: VISA-Serial Communication Properties

Property Name Description

BaudRate Specify the rate at which bits are transmitted.

DataBits Specify the number of data bits to transmit.

Parity Specify the type of parity checking.

StopBits Specify the number of bits used to indicate the end of a
byte.

Terminator Specify the character used to terminate commands

written to the instrument.

4-28

The Serial Port Interface

Refer to your instrument documentation for an explanation of its supported
communication settings. Note that the valid values for StopBits are 1 and 2
and the valid values for Terminator do not include CR/LF and LF/CR. These
property values differ from the values supported for the serial port object.

You can display the default communication property values for the VISA-serial
object vs created in “Creating a VISA-Serial Object” on page 4-26 with the get
function.

get(vs,{'BaudRate', 'DataBits', 'Parity’', 'StopBits', 'Terminator'})
ans =
[9600] [8] "none’ [1] '"LF'

4-29

4 Controlling Instruments Using the VISA Standard

4-30

Controlling Serial Port
Instruments

This chapter describes specific issues related to controlling instruments that use the serial port. The
sections are as follows.

Serial Port Overview (p. 5-2) Basic features of the serial port.

Creating a Serial Port The serial port object establishes a connection between MATLAB and
Object (p. 5-16) the instrument via serial port.

Configuring Communication Communication settings are associated with the baud rate and serial
Settings (p. 5-18) data format.

Writing and Reading Data Port-specific issues related to writing and reading data with a serial
(p. 5-19) port object.

Events and Callbacks Enhance your instrument control application using events and
(p. 5-24) callbacks.

Using Control Pins (p. 5-29) The control pins allow you to signal the presence of connected devices
and to control the flow of data.

5 Controlling Serial Port Instruments

5-2

Serial Port Overview

This section provides an overview of the serial port. Topics include

¢ What is Serial Communication?

® The Serial Port Interface Standard

¢ Connecting Two Devices with a Serial Cable
¢ Serial Port Signals and Pin Assignments

¢ Serial Data Format

¢ Finding Serial Port Information for Your Platform

For many serial port applications, you can communicate with your instrument
without detailed knowledge of how the serial port works. Communication is
established through a serial port object, which you create in the MATLAB
workspace.

If your application is straightforward, or if you are already familiar with the
topics mentioned above, you might want to begin with “Creating a Serial Port
Object” on page 5-16. If you want a high-level description of all the steps you
are likely to take when communicating with your instrument, refer to Chapter
2, “The Instrument Control Session.”

What Is Serial Communication?

Serial communication is the most common low-level protocol for
communicating between two or more devices. Normally, one device is a
computer, while the other device can be a modem, a printer, another computer,
or a scientific instrument such as an oscilloscope or a function generator.

As the name suggests, the serial port sends and receives bytes of information
in a serial fashion — one bit at a time. These bytes are transmitted using either
a binary format or a text (ASCII) format.

The Serial Port Interface Standard

Over the years, several serial port interface standards for connecting
computers to peripheral devices have been developed. These standards include
RS-232, RS-422, and RS-485 — all of which are supported by the serial port
object. Of these, the most widely used standard is RS-232, which stands for
Recommended Standard number 232.

Serial Port Overview

The current version of this standard is designated as TIA/EIA-232C, which is
published by the Telecommunications Industry Association. However, the term
“RS-232” is still in popular use, and is used in this guide when referring to a
serial communication port that follows the TIA/EIA-232 standard. RS-232
defines these serial port characteristics:

¢ The maximum bit transfer rate and cable length

® The names, electrical characteristics, and functions of signals

¢ The mechanical connections and pin assignments

Primary communication is accomplished using three pins: the Transmit Data

pin, the Receive Data pin, and the Ground pin. Other pins are available for
data flow control, but are not required.

Note In this guide, it is assumed you are using the RS-232 standard. Refer to
your device documentation to see which interface standard you can use.

Connecting Two Devices with a Serial Cable

The RS-232 standard defines the two devices connected with a serial cable as
the Data Terminal Equipment (DTE) and Data Circuit-Terminating
Equipment (DCE). This terminology reflects the RS-232 origin as a standard
for communication between a computer terminal and a modem.

Throughout this guide, your computer is considered a DTE, while peripheral
devices such as modems and printers are considered DCEs. Note that many
scientific instruments function as DTEs.

Because RS-232 mainly involves connecting a DTE to a DCE, the pin
assignments are defined such that straight-through cabling is used, where pin
1 is connected to pin 1, pin 2 is connected to pin 2, and so on. A DTE to DCE
serial connection using the transmit data (TD) pin and the receive data (RD)

5-3

5 Controlling Serial Port Instruments

5-4

pin is shown below. Refer to “Serial Port Signals and Pin Assignments” on
page 5-5 for more information about serial port pins.

Computer Instrument
TD RD
Pin 3 »| Pin 3
DTE DCE
Pin 2 ¢ Pin 2
RD TD

If you connect two DTESs or two DCEs using a straight serial cable, then the TD
pin on each device is connected to the other, and the RD pin on each device is
connected to the other. Therefore, to connect two like devices, you must use a
null modem cable. As shown below, null modem cables cross the transmit and

receive lines in the cable.

Computer Computer
TD TD
Pin 3 Pin 3
DTE >< DTE
Pin 2 |« » Pin 2
RD RD

Note You can connect multiple RS-422 or RS-485 devices to a serial port. If
you have an RS-232/RS-485 adaptor, then you can use the serial port object

with these devices.

Serial Port Overview

Serial Port Signals and Pin Assignments

Serial ports consist of two signal types: data signals and control signals. To
support these signal types, as well as the signal ground, the RS-232 standard
defines a 25-pin connection. However, most PC’s and UNIX platforms use a
9-pin connection. In fact, only three pins are required for serial port
communications: one for receiving data, one for transmitting data, and one for
the signal ground.

The pin assignment scheme for a 9-pin male connector on a DTE is given below.

1 2 3 4 5
@) O ®) @) @)
@) @) @) @)
6 7 8 9

The pins and signals associated with the 9-pin connector are described below.
Refer to the RS-232 standard for a description of the signals and pin
assignments used for a 25-pin connector.

Table 5-1: Serial Port Pin and Signal Assignments

Pin Label Signal Name Signal Type
1 CD Carrier Detect Control

2 RD Received Data Data

3 TD Transmitted Data Data

4 DTR Data Terminal Ready Control

5 GND Signal Ground Ground

6 DSR Data Set Ready Control

7 RTS Request to Send Control

8 CTS Clear to Send Control

9 RI Ring Indicator Control

5 Controlling Serial Port Instruments

5-6

The term “data set” is synonymous with “modem” or “device,” while the term
“data terminal” is synonymous with “computer.”

Note The serial port pin and signal assignments are with respect to the DTE.
For example, data is transmitted from the TD pin of the DTE to the RD pin of
the DCE.

Signal States

Signals can be in either an active state or an inactive state. An active state
corresponds to the binary value 1, while an inactive state corresponds to the
binary value 0. An active signal state is often described as logic 1, on, true, or
a mark. An inactive signal state is often described as logic 0, off, false, or a
space.

For data signals, the “on” state occurs when the received signal voltage is more
negative than -3 volts, while the “off” state occurs for voltages more positive
than 3 volts. For control signals, the “on” state occurs when the received signal
voltage is more positive than 3 volts, while the “off” state occurs for voltages
more negative than -3 volts. The voltage between -3 volts and +3 volts is
considered a transition region, and the signal state is undefined.

To bring the signal to the “on” state, the controlling device unasserts (or lowers)
the value for data pins and asserts (or raises) the value for control pins.
Conversely, to bring the signal to the “off” state, the controlling device asserts
the value for data pins and unasserts the value for control pins.

Serial Port Overview

The “on” and “off” states for a data signal and for a control signal are shown

below.
Data Signal

6 -
B off
3 3 F—-—-——
2
g _ o _
< 0 _ L
>
E
& S p0me — — ——
) on

6

Control Signal

off

on

The Data Pins

Most serial port devices support full-duplex communication meaning that they
can send and receive data at the same time. Therefore, separate pins are used
for transmitting and receiving data. For these devices, the TD, RD, and GND
pins are used. However, some types of serial port devices support only one-way
or half-duplex communications. For these devices, only the TD and GND pins
are used. In this guide, it is assumed that a full-duplex serial port is connected

to your device.

The TD pin carries data transmitted by a DTE to a DCE. The RD pin carries

data that is receive

d by a DTE from a DCE.

5-7

5 Controlling Serial Port Instruments

The Control Pins
9-pin serial ports provide several control pins that

¢ Signal the presence of connected devices
® Control the flow of data

The control pins include RTS and CTS, DTR and DSR, CD, and RI.

The RTS and CTS Pins. The RTS and CTS pins are used to signal whether the
devices are ready to send or receive data. This type of data flow control — called
hardware handshaking — is used to prevent data loss during transmission.
When enabled for both the DTE and DCE, hardware handshaking using RTS
and CTS follows these steps:

1 The DTE asserts the RTS pin to instruct the DCE that it is ready to receive
data.

2 The DCE asserts the CTS pin indicating that it is clear to send data over the
TD pin. If data can no longer be sent, the CTS pin is unasserted.

3 The data is transmitted to the DTE over the TD pin. If data can no longer be
accepted, the RTS pin is unasserted by the DTE and the data transmission
is stopped.

To enable hardware handshaking, refer to “Controlling the Flow of Data:
Handshaking” on page 5-32.

The DTR and DSR Pins. Many devices use the DSR and DTR pins to signal if they
are connected and powered. Signaling the presence of connected devices using
DTR and DSR follows these steps:

1 The DTE asserts the DTR pin to request that the DCE connect to the
communication line.

2 The DCE asserts the DSR pin to indicate that it is connected.

3 DCE unasserts the DSR pin when it is disconnected from the
communication line.

Serial Port Overview

The DTR and DSR pins were originally designed to provide an alternative
method of hardware handshaking. However, the RTS and CTS pins are usually
used in this way, and not the DSR and DTR pins. However, you should refer to
your device documentation to determine its specific pin behavior.

The CD and Rl Pins. The CD and RI pins are typically used to indicate the
presence of certain signals during modem-modem connections.

CD is used by a modem to signal that it has made a connection with another
modem, or has detected a carrier tone. CD is asserted when the DCE is
receiving a signal of a suitable frequency. CD is unasserted if the DCE is not
receiving a suitable signal.

RI is used to indicate the presence of an audible ringing signal. RI is asserted
when the DCE is receiving a ringing signal. RI is unasserted when the DCE is
not receiving a ringing signal (for example, it’s between rings).

Serial Data Format

The serial data format includes one start bit, between five and eight data bits,
and one stop bit. A parity bit and an additional stop bit might be included in
the format as well. The diagram below illustrates the serial data format.

| l | ‘ _'_1

Start bit Data bits Parity bit Stop bits

The format for serial port data is often expressed using the following notation:
number of data bits - parity type - number of stop bits

For example, 8-N-1 is interpreted as eight data bits, no parity bit, and one stop
bit, while 7-E-2 is interpreted as seven data bits, even parity, and two stop bits.

The data bits are often referred to as a character because these bits usually
represent an ASCII character. The remaining bits are called framing bits
because they frame the data bits.

5-9

5 Controlling Serial Port Instruments

5-10

Bytes Versus Values

The collection of bits that comprise the serial data format is called a byze. At
first, this term might seem inaccurate because a byte is 8 bits and the serial
data format can range between 7 bits and 12 bits. However, when serial data
is stored on your computer, the framing bits are stripped away, and only the
data bits are retained. Moreover, eight data bits are always used regardless of
the number of data bits specified for transmission, with the unused bits
assigned a value of 0.

When reading or writing data, you might need to specify a value, which can
consist of one or more bytes. For example, if you read one value from a device
using the int32 format, then that value consists of four bytes. For more
information about reading and writing values, refer to “Writing and Reading
Data” on page 5-19.

Synchronous and Asynchronous Communication

The RS-232 standard supports two types of communication protocols:
synchronous and asynchronous.

Using the synchronous protocol, all transmitted bits are synchronized to a
common clock signal. The two devices initially synchronize themselves to each
other, and then continually send characters to stay synchronized. Even when
actual data is not really being sent, a constant flow of bits allows each device
to know where the other is at any given time. That is, each bit that is sent is
either actual data or an idle character. Synchronous communications allows
faster data transfer rates than asynchronous methods, because additional bits
to mark the beginning and end of each data byte are not required.

Using the asynchronous protocol, each device uses its own internal clock
resulting in bytes that are transferred at arbitrary times. So, instead of using
time as a way to synchronize the bits, the data format is used.

In particular, the data transmission is synchronized using the start bit of the
word, while one or more stop bits indicate the end of the word. The requirement
to send these additional bits causes asynchronous communications to be
slightly slower than synchronous. However, it has the advantage that the
processor does not have to deal with the additional idle characters. Most serial
ports operate asynchronously.

Serial Port Overview

Note When used in this guide, the terms “synchronous” and “asynchronous”
refer to whether read or write operations block access to the MATLAB
command line.

How Are the Bits Transmitted?

By definition, serial data is transmitted one bit at a time. The order in which
the bits are transmitted follows these steps:

1 The start bit is transmitted with a value of 0.

2 The data bits are transmitted. The first data bit corresponds to the least
significant bit (LSB), while the last data bit corresponds to the most
significant bit (MSB).

3 The parity bit (if defined) is transmitted.

4 One or two stop bits are transmitted, each with a value of 1.

The number of bits transferred per second is given by the baud rate. The
transferred bits include the start bit, the data bits, the parity bit (if defined),
and the stop bits.

Start and Stop Bits

As described in “Synchronous and Asynchronous Communication” on

page 5-10, most serial ports operate asynchronously. This means that the
transmitted byte must be identified by start and stop bits. The start bit
indicates when the data byte is about to begin and the stop bit(s) indicates
when the data byte has been transferred. The process of identifying bytes with
the serial data format follows these steps:

1 When a serial port pin is idle (not transmitting data), then it is in an “on”
state.

5-11

5 Controlling Serial Port Instruments

2 When data is about to be transmitted, the serial port pin switches to an “off”
state due to the start bit.

3 The serial port pin switches back to an “on” state due to the stop bit(s). This
indicates the end of the byte.

Data Bits

The data bits transferred through a serial port might represent device
commands, sensor readings, error messages, and so on. The data can be
transferred as either binary data or as text (ASCII) data.

Most serial ports use between five and eight data bits. Binary data is typically
transmitted as eight bits. Text-based data is transmitted as either seven bits
or eight bits. If the data is based on the ASCII character set, then a minimum
of seven bits is required because there are 27 or 128 distinct characters. If an
eighth bit is used, it must have a value of 0. If the data is based on the extended
ASCII character set, then eight bits must be used because there are 28 or 256
distinct characters.

The Parity Bit

The parity bit provides simple error (parity) checking for the transmitted data.
The types of parity checking are given below.

Table 5-2: Parity Types

Parity Type Description

Even The data bits plus the parity bit produce an even
number of 1’s.

Mark The parity bit is always 1.

Odd The data bits plus the parity bit produce an odd

number of 1’s.

Space The parity bit is always 0.

Mark and space parity checking are seldom used because they offer minimal
error detection. You might choose not to use parity checking at all.

Serial Port Overview

The parity checking process follows these steps:

1 The transmitting device sets the parity bit to 0 or to 1 depending on the data
bit values and the type of parity checking selected.

2 The receiving device checks if the parity bit is consistent with the
transmitted data. If it is, then the data bits are accepted. If it is not, then an
error is returned.

Note Parity checking can detect only 1 bit errors. Multiple-bit errors can
appear as valid data.

For example, suppose the data bits 01110001 are transmitted to your
computer. If even parity is selected, then the parity bit is set to 0 by the
transmitting device to produce an even number of 1s. If odd parity is selected,
then the parity bit is set to 1 by the transmitting device to produce an odd
number of 1s.

Finding Serial Port Information for Your Platform

This section describes how to find serial port information using the resources
provided by Windows and UNIX platforms.

Note Your operating system provides default values for all serial port
settings. However, these settings are overridden by your MATLAB code, and
will have no effect on your serial port application.

You can also use the instrhwinfo function to return the available serial ports
programmatically.

5-13

5 Controlling Serial Port Instruments

5-14

Windows Platform

You can easily access serial port information through the Windows Control
Panel. You can invoke the Control Panel with the Start button (Start ->

Settings -> Control Panel).

For Windows NT, you access the serial ports by selecting the Ports icon within
the Control Panel. The resulting Ports dialog box is shown below.

Ports: Cancel

Settings...

Delete...

0

To obtain information on the possible settings for COM1, select this port under
the Ports list box and then select Settings.

Settings for COM1: %]
Baud Rate: ak. I
Data Bits: IS j Cancel |

Parity: I Mone j

Advanced...
Stop Bits: |1 'l —I
Flows Contral: I Hardware - l ﬂl

You can access serial port information for the Windows 98 and Windows 2000
operating systems with the System Properties dialog box, which is available

through the Control Panel.

Serial Port Overview

UNIX Platform

To find serial port information for UNIX platforms, you need to know the serial
port names. These names might vary between different operating systems.

On Linux, serial port devices are typically named ttySO0, ttyS1, and so on. You
can use the setserial command to display or configure serial port information.
For example, to display which serial ports are available:

setserial -bg /dev/ttyS*
/dev/ttyS0O at 0x03f8 (irq 4) is a 16550A
/dev/ttyS1 at 0x02f8 (irq = 3) is a 16550A

To display detailed information about ttySo0:

setserial -ag /dev/ttySO

/dev/ttyS0, Line 0, UART: 16550A, Port: 0x03f8, IRQ: 4
Baud_base: 115200, close_delay: 50, divisor: O
closing_wait: 3000, closing wait2: infinte
Flags: spd_normal skip_test session_lockout

Note Ifthe setserial -ag command does not work, make sure that you
have read and write permission for the port.

For all supported UNIX platforms, you can use the stty command to display
or configure serial port information. For example, to display serial port
properties for ttySo0:

stty -a < /dev/ttySO

To configure the baud rate to 4800 bits per second:
stty speed 4800 < /dev/ttySO > /dev/ttySO

5-15

5 Controlling Serial Port Instruments

Creating a Serial Port Object

You create a serial port object with the serial function. serial requires the
name of the serial port connected to your device as an input argument. As
described in “Configuring Property Values” on page 2-9, you can also configure
property values during object creation.

Each serial port object is associated with one serial port. For example, to create
a serial port object associated with the COM1 port:

s = serial('COM1');

The serial port object s now exists in the MATLAB workspace. You can display
the class of s with the whos command.

whos s
Name Size Bytes Class
S 1x1 512 serial object

Grand total is 11 elements using 512 bytes

Once the serial port object is created, the properties listed below are
automatically assigned values. These general purpose properties provide
descriptive information about the serial port object based on the object type and
the serial port.

Table 5-3: Serial Port Descriptive Properties

Property Name Description

Name Specify a descriptive name for the serial port object.
Port Indicate the platform-specific serial port name.
Type Indicate the object type.

You can display the values of these properties for s with the get function.

get(s,{'Name', 'Port','Type'})
ans =
'Serial-COM1' "COM1' 'serial’

Creating a Serial Port Object

The Serial Port Object Display

The serial port object provides you with a convenient display that summarizes
important configuration and state information. You can invoke the display
summary these three ways:

¢ Type the serial port object variable name at the command line.
¢ Exclude the semicolon when creating a serial port object.

¢ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by
right-clicking an instrument object and selecting Explore -> Display
Summary from the context menu.

The display summary for the serial port object s is given below.

Serial Port Object : Serial-COMA

Communication Settings

Port: COMA1
BaudRate: 9600
Terminator: '"LF'

Communication State
Status: closed
RecordStatus: off

Read/Write State

TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

5-17

5 Controlling Serial Port Instruments

5-18

Configuring Communication Settings

Before you can write or read data, both the serial port object and the
instrument must have identical communication settings. Configuring serial
port communications involves specifying values for properties that control the
baud rate and the serial data format. These properties are given below.

Table 5-4: Serial Port Communication Properties

Property Name Description

BaudRate Specify the rate at which bits are transmitted.

DataBits Specify the number of data bits to transmit.

Parity Specify the type of parity checking.

StopBits Specify the number of bits used to indicate the end of a
byte.

Terminator Specify the terminator character.

Note Ifthe serial port object and the instrument communication settings are
not identical, then you cannot successfully read or write data.

Refer to your instrument documentation for an explanation of its supported
communication settings.

You can display the communication property values for the serial port object s
created in “Creating a Serial Port Object” on page 5-16 with the get function.

get(s,{'BaudRate', 'DataBits', 'Parity', 'StopBits', 'Terminator'})
ans =
[9600] [8] 'none’ [1] 'LF'

Writing and Reading Data

Writing and Reading Data

This section describes interface-specific issues related to writing and reading
data with a serial port object. Topics include

¢ Asynchronous write and read operations
® Rules for completing write and read operations

® An example that illustrates writing and reading text data

For a general overview about writing and reading data, as well as a list of all
associated functions and properties, refer to “Writing and Reading Data” on
page 2-12.

Asynchronous Write and Read Operations

Asynchronous write and read operations do not block access to the MATLAB
command line. Additionally, while an asynchronous operation is in progress
you can

¢ Execute a read (write) operation while an asynchronous write (read)
operation is in progress. This is because serial ports have separate pins for
reading and writing.

® Make use of all supported callback properties. Refer to “Events and
Callbacks” on page 5-24 for more information about the callback properties
supported by serial port objects.

The process of writing data asynchronously is given in “Synchronous Versus
Asynchronous Write Operations” on page 2-17. The process of reading data
asynchronously is described in the next section.

Asynchronous Read Operations

For serial port objects, you specify whether read operations are synchronous or
asynchronous with the ReadAsyncMode property. You can configure
ReadAsyncMode to continuous or manual.

If ReadAsyncMode is continuous (the default value), the serial port object
continuously queries the instrument to determine if data is available to be
read. If data is available, it is asynchronously stored in the input buffer. To
transfer the data from the input buffer to MATLAB, you use one of the

5-19

5 Controlling Serial Port Instruments

5-20

synchronous (blocking) read functions such as fgetl, fgets, fscanf, or fread.
If data is available in the input buffer, these functions will return quickly.

s = serial('COM1"');
fopen(s)
s.ReadAsyncMode = 'continuous';
fprintf(s, '*IDN?"')
s.BytesAvailable
ans =
56
out = fscanf(s);

If ReadAsyncMode is manual, the serial port object does not continuously query
the instrument to determine if data is available to be read. To read data
asynchronously, you use the readasync function. You then use one of the
synchronous read functions to transfer data from the input buffer to MATLAB.

s.ReadAsyncMode = 'manual';
fprintf(s, '*IDN?')
s.BytesAvailable
ans =

0
readasync(s)
s.BytesAvailable
ans =

56
out = fscanf(s);

Rules for Completing Write and Read Operations

The rules for completing synchronous and asynchronous read and write
operations are described below.

Completing Write Operations

A write operation using fprintf or fwrite completes when one of these
conditions is satisfied:

® The specified data is written.

¢ The time specified by the Timeout property passes.

Writing and Reading Data

In addition to these rules, you can stop an asynchronous write operation at any
time with the stopasync function.

A text command is processed by the instrument only when it receives the
required terminator. For serial port objects, each occurrence of \n in the ASCII
command is replaced with the Terminator property value. Because the default
format for fprintf is %s\n, all commands written to the instrument will end
with the Terminator value. The default value of Terminator is the line feed
character. The terminator required by your instrument will be described in its
documentation.

Completing Read Operations

A read operation with fgetl, fgets, fscanf, or readasync completes when one
of these conditions is satisfied:

® The terminator specified by the Terminator property is read.

¢ The time specified by the Timeout property passes.

® The input buffer is filled.

® The specified number of values is read (fscanf and readasync only).
A read operation with fread completes when one of these conditions is
satisfied:

¢ The time specified by the Timeout property passes.

¢ The specified number of values is read.

In addition to these rules, you can stop an asynchronous read operation at any
time with the stopasync function.

Example: Writing and Reading Text Data

This example illustrates how to communicate with a serial port instrument by
writing and reading text data.

The instrument is a Tektronix TDS 210 two-channel oscilloscope connected to
the serial port COM1. Therefore, many of the commands given below are
specific to this instrument. A sine wave is input into channel 2 of the
oscilloscope, and your job is to measure the peak-to-peak voltage of the input
signal.

5-21

5 Controlling Serial Port Instruments

5-22

1 Create a serial port object — Create the serial port object s associated with

serial port COM1.
s = serial('COM1"');

Connect to the instrument — Connect s to the oscilloscope. Because the
default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffer as soon as it is available from
the instrument.

fopen(s)

Write and read data — Write the *IDN? command to the instrument using
fprintf, and then read back the result of the command using fscanf.

fprintf(s, '*IDN?"')
s.BytesAvailable
ans =
56
idn = fscanf(s)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

You need to determine the measurement source. Possible measurement
sources include channel 1 and channel 2 of the oscilloscope.

fprintf (s, 'MEASUREMENT: IMMED:SOURCE? ')
source = fscanf(s)

source
CH1

The scope is configured to return a measurement from channel 1. Because
the input signal is connected to channel 2, you must configure the
instrument to return a measurement from this channel.

fprintf (s, '"MEASUREMENT : IMMED:SOURCE CH2')
fprintf (s, 'MEASUREMENT: IMMED:SOURCE? ')
source = fscanf(s)

source
CH2

Writing and Reading Data

You can now configure the scope to return the peak-to-peak voltage, and
then request the value of this measurement.

fprintf (s, '"MEASUREMENT:MEAS1:TYPE PK2PK')
fprintf (s, '"MEASUREMENT :MEAS1:VALUE?"')

Transfer data from the input buffer to MATLAB using fscanf.

ptop fscanf (s)
ptop =

2.0199999809E0

Disconnect and clean up — When you no longer need s, you should

disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.

fclose(s)
delete(s)
clear s

5-23

5 Controlling Serial Port Instruments

Events and Callbacks

This section describes interface-specific issues related to using events and
callbacks with a serial port object. Topics include

¢ Event types and callback properties

¢ Storing event information

¢ An example that uses the bytes-available event, the output-empty event, and
the instrcallback function

For a general overview of events and callbacks, including how to create and
execute callback functions, refer to “Events and Callbacks” on page 3-30.

Event Types and Callback Properties

The event types and associated callback properties supported by serial port
objects are listed below.

Table 5-5: Serial Port Event Types and Callback Properties

Event Type Associated Properties
Break interrupt BreakInterruptFcn
Bytes available BytesAvailableFcn

BytesAvailableFcnCount

BytesAvailableFcnMode

Error ErrorFcn
Output empty OutputEmptyFcn
Pin status PinStatusFcn
Timer TimerFcn
TimerPeriod

The break-interrupt and pin-status events are described below. For a
description of the other event types, refer to “Event Types and Callback
Properties” on page 3-31.

Events and Callbacks

Break-Interrupt Event. A break-interrupt event is generated immediately after a
break interrupt is generated by the serial port. The serial port generates a
break interrupt when the received data has been in an inactive state longer
than the transmission time for one character.

This event executes the callback function specified for the BreakInterruptFcn
property. It can be generated for both synchronous and asynchronous read and
write operations.

Pin-Status Event. A pin-status event is generated immediately after the state (pin
value) changes for the CD, CTS, DSR, or RI pins. Refer to “Serial Port Signals
and Pin Assignments” on page 5-5 for a description of these pins.

This event executes the callback function specified for the PinStatusFcn
property. It can be generated for both synchronous and asynchronous read and
write operations.

Storing Event Information

You can store event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The
Type field contains the event type, while the Data field contains event-specific
information. As described in “Creating and Executing Callback Functions” on
page 3-33, these two fields are associated with a structure that you define in
the callback function header. Refer to “Debugging: Recording Information to
Disk” on page 7-5 to learn about storing event information in a record file.

The event types and the values for the Type and Data fields are given below.

Table 5-6: Serial Port Event Information

Event Type Field Field Value
Break interrupt = Type BreakInterrupt

Data.AbsTime day-month-year hour:minute:second
Bytes available Type BytesAvailable

Data.AbsTime day-month-year hour:minute:second

5-25

5 Controlling Serial Port Instruments

5-26

Table 5-6: Serial Port Event Information (Continued)

Event Type Field Field Value

Error Type Error
Data.AbsTime day-month-year hour:minute:second
Data.Message An error string
Output empty Type OutputEmpty
Data.AbsTime day-month-year hour:minute:second
Pin status Type PinStatus
Data.AbsTime day-month-year hour:minute:second

Data.Pin CarrierDetect, ClearToSend,
DataSetReady, or RingIndicator

Data.PinValue on or off
Timer Type Timer

Data.AbsTime day-month-year hour:minute:second

The Data field values are described below.

The AbsTime Field. AbsTime is defined for all events, and indicates the absolute
time the event occurred. The absolute time is returned using the MATLAB
clock format.

day-month-year hour:minute:second
The Pin Field. Pinis used by the pin status event to indicate if the CD, CTS, DSR,

or RI pins changed state. Refer to “Serial Port Signals and Pin Assignments”
on page 5-5 for a description of these pins.

The PinValue Field. Pinvalue is used by the pin status event to indicate the state
of the CD, CTS, DSR, or RI pins. Possible values are on or off.

The Message Field. Message is used by the error event to store the descriptive
message that is generated when an error occurs.

Events and Callbacks

Example: Using Events and Callbacks

This example uses the M-file callback function instrcallback to display
event-related information to the command line when a bytes-available event or
an output-empty event occurs.

1 Create an instrument object — Create the serial port object s associated
with serial port COM1.

s = serial('COM1');

2 Connect to the instrument — Connect s to the Tektronix TDS 210
oscilloscope. Because the default value for the ReadAsyncMode property is
continuous, data is asynchronously returned to the input buffer as soon as
it is available from the instrument.

fopen(s)

3 Configure properties — Configure s to execute the callback function
instrcallback when a bytes-available event or an output-empty event
occurs.

s.BytesAvailableFcnMode = 'terminator’;
s.BytesAvailableFcn = @instrcallback;
Ss.OutputEmptyFcn = @instrcallback;

4 Write and read data — Write the R5232? command asynchronously to the
oscilloscope. This command queries the RS-232 settings and returns the
baud rate, the software flow control setting, the hardware flow control
setting, the parity type, and the terminator.

fprintf(s, 'RS232?7', 'async')

instrcallback is called after the RS232? command is sent, and when the
terminator is read. The resulting displays are shown below.

OutputEmpty event occurred at 17:37:21 for the object:
Serial-COM1.

BytesAvailable event occurred at 17:37:21 for the object:
Serial-COM1.

5-27

5 Controlling Serial Port Instruments

Read the data from the input buffer.

out
out
9600;0;0;NONE;LF

fscanf(s)

5 Disconnect and clean up — When you no longer need s, you should
disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.
fclose(s)
delete(s)
clear s

5-28

Using Control Pins

Using Control Pins

As described in “Serial Port Signals and Pin Assignments” on page 5-5, 9-pin
serial ports include six control pins. These control pins allow you to

¢ Signal the presence of connected devices
¢ Control the flow of data

The properties associated with the serial port control pins are given below.

Table 5-7: Serial Port Control Pin Properties

Property Name Description

DataTerminalReady Specify the state of the DTR pin.

FlowControl Specify the data flow control method to use.

PinStatus Indicate the state of the CD, CTS, DSR, and RI
pins.

RequestToSend Specify the state of the RT'S pin.

Signaling the Presence of Connected Devices

DTE’s and DCE’s often use the CD, DSR, RI, and DTR pins to indicate whether
a connection is established between serial port devices. Once the connection is
established, you can begin to write or read data.

You can monitor the state of the CD, DSR, and RI pins with the PinStatus
property. You can specify or monitor the state of the DTR pin with the
DataTerminalReady property.

The following example illustrates how these pins are used when two modems
are connected to each other.

Example: Connecting Two Modems

This example connects two modems to each other via the same computer, and
illustrates how you can monitor the communication status for the
computer-modem connections, and for the modem-modem connection. The first
modem is connected to COM1, while the second modem is connected to COM2.

5-29

5 Controlling Serial Port Instruments

5-30

1 Create the instrument objects — After the modems are powered on, the

serial port object s1 is created for the first modem, and the serial port object
s2 is created for the second modem.

s1 = serial('COM1');

s2 serial('COM2');

Connect to the instruments — s1 and s2 are connected to the modems.
Because the default value for the ReadAsyncMode property is continuous,
data is asynchronously returned to the input buffers as soon as it is available
from the modems.

fopen(s1)
fopen(s2)

Because the default value of the DataTerminalReady property is on, the
computer (data terminal) is now ready to exchange data with the modems.
You can verify that the modems (data sets) are ready to communicate with
the computer by examining the value of the Data Set Ready pin using the
PinStatus property.

s1.Pinstatus
ans =
CarrierDetect: 'off'
ClearToSend: 'on'
DataSetReady: 'on'
RingIndicator: 'off!'

The value of the DataSetReady field is on because both modems were
powered on before they were connected to the objects.

Configure properties — Both modems are configured for a baud rate of
2400 bits per second and a carriage return (CR) terminator.

s1.BaudRate = 2400;

s1.Terminator = 'CR';
s2.BaudRate = 2400;
s2.Terminator = 'CR';

Write and read data — Write the atd command to the first modem. This
command puts the modem “off the hook,” which is equivalent to manually
lifting a phone receiver.

Using Control Pins

fprintf(s1, 'atd')

Write the ata command to the second modem. This command puts the
modem in “answer mode,” which forces it to connect to the first modem.

fprintf(s2, 'ata')

After the two modems negotiate their connection, you can verify the
connection status by examining the value of the Carrier Detect pin using the
PinStatus property.

s1.PinStatus
ans =
CarrierDetect: 'on'
ClearToSend: 'on'
DataSetReady: 'on'
RingIndicator: 'off'

You can also verify the modem-modem connection by reading the descriptive
message returned by the second modem.

s2.BytesAvailable
ans =

25

= fread(s2,25);
char(out)'

ans =

ata
CONNECT 2400/NONE

Now break the connection between the two modems by configuring the
DataTerminalReady property to off. You can verify that the modems are
disconnected by examining the Carrier Detect pin value.

s1.DataTerminalReady = 'off';
s1.PinStatus
ans =
CarrierDetect: 'off'
ClearToSend: ‘on'
DataSetReady: 'on'
RingIndicator: 'off'

5-31

5 Controlling Serial Port Instruments

5-32

5 Disconnect and clean up — Disconnect the objects from the modems, and
remove the objects from memory and from the MATLAB workspace.

fclose([s1 s2])
delete([s1 s2])
clear si1 s2

Controlling the Flow of Data: Handshaking

Data flow control or handshaking is a method used for communicating between
a DCE and a DTE to prevent data loss during transmission. For example,
suppose your computer can receive only a limited amount of data before it must
be processed. As this limit is reached, a handshaking signal is transmitted to
the DCE to stop sending data. When the computer can accept more data,
another handshaking signal is transmitted to the DCE to resume sending data.

If supported by your device, you can control data flow using one of these
methods:

¢ Hardware handshaking
¢ Software handshaking

Note Although you might be able to configure your device for both hardware
handshaking and software handshaking at the same time, the Instrument
Control Toolbox does not support this behavior.

You can specify the data flow control method with the FlowControl property.
If FlowControl is hardware, then hardware handshaking is used to control
data flow. If FlowControl is software, then software handshaking is used to
control data flow. If FlowControl is none, then no handshaking is used.

Hardware Handshaking

Hardware handshaking uses specific serial port pins to control data flow. In
most cases, these are the RTS and CTS pins. Hardware handshaking using
these pins is described in “The RTS and CTS Pins” on page 5-8.

If FlowControl is hardware, then the RTS and CTS pins are automatically
managed by the DTE and DCE. You can return the CTS pin value with the

Using Control Pins

PinStatus property. You can configure or return the RTS pin value with the
RequestToSend property.

Note Some devices also use the DTR and DSR pins for handshaking.
However, these pins are typically used to indicate that the system is ready for
communication, and are not used to control data transmission. For the
Instrument Control Toolbox, hardware handshaking always uses the RTS and
CTS pins.

If your device does not use hardware handshaking in the standard way, then
you might need to manually configure the RequestToSend property. In this
case, you should configure FlowControl to none. If FlowControl is hardware,
then the RequestToSend value that you specify might not be honored. Refer to
the device documentation to determine its specific pin behavior.

Software Handshaking

Software handshaking uses specific ASCII characters to control data flow.
These characters, known as Xon and Xoff (or XON and XOFF), are described
below.

Table 5-8: Software Handshaking Characters

Character Integer Description

Value
Xon 17 Resume data transmission.
Xoff 19 Pause data transmission.

When using software handshaking, the control characters are sent over the
transmission line the same way as regular data. Therefore you need only the
TD, RD, and GND pins.

The main disadvantage of software handshaking is that you cannot write the
Xon or Xoff characters while numerical data is being written to the instrument.
This is because numerical data might contain a 17 or 19, which makes it
impossible to distinguish between the control characters and the data.
However, you can write Xon or Xoff while data is being asynchronously read
from the instrument because you are using both the TD and RD pins.

5-33

5 Controlling Serial Port Instruments

5-34

Example: Using Software Handshaking

Suppose you want to use software flow control in conjunction with your serial
port application. To do this, you must configure the instrument and the serial
port object for software flow control. For a serial port object s connected to a
Tektronix TDS 210 oscilloscope, this configuration is accomplished with the
following commands.

fprintf (s, 'RS232:SOFTF ON')
s.FlowControl = 'software';

To pause data transfer, you write the numerical value 19 (Xoff) to the
instrument.

fwrite(s,19)

To resume data transfer, you write the numerical value 17 (Xon) to the
instrument.

fwrite(s,17)

Controlling Instruments
Using TCP/IP and UDP

This chapter describes specific issues related to controlling instruments that use the TCP/IP or UDP
protocols. The sections are as follows.

TCP/IP and UDP Overview A comparison between the TCP/IP and UDP protocols.
(p. 6-2)

Creating a TCP/IP Object = The TCP/IP object establishes a connection between MATLAB and the
(p. 6-4) remote host.

Creating a UDP Object The UDP object establishes a connection between MATLAB and the
(p. 6-8) remote host.

Writing and Reading Data Interface-specific issues related to writing and reading data with a
(p. 6-12) TCP/IP or UDP object.

Events and Callbacks Enhance your instrument control application using events and
(p. 6-19) callbacks.

6 Controlling Instruments Using TCP/IP and UDP

6-2

TCP/IP and UDP Overview

Transmission Control Protocol (TCP or TCP/IP) and User Datagram Protocol
(UDP or UDP/IP) are both transport protocols layered on top of the Internet
Protocol (IP). TCP/IP and UDP are compared below.

¢ Connection Versus Connectionless — TCP/IP is a connection-based

protocol, while UDP is a connectionless protocol. In TCP/IP, the two ends of
the communication link must be connected at all times during the
communication. An application using UDP prepares a packet and sends it to
the receiver's address without first checking to see if the receiver is ready to
receive a packet. If the receiving end is not ready to receive a packet, the
packet is lost.

Stream Versus Packet — TCP/IP is a stream-oriented protocol, while UDP
is a packet-oriented protocol. This means that TCP/IP is considered to be a
long stream of data that is transmitted from one end of the connection to the
other end, and another long stream of data flowing in the opposite direction.
The TCP/IP stack is responsible for breaking the stream of data into packets
and sending those packets while the stack at the other end is responsible for
reassembling the packets into a data stream using information in the packet
headers. UDP, on the other hand, is a packet-oriented protocol where the
application itself divides the data into packets and sends them to the other
end. The other end does not have to reassemble the data into a stream. Note,
some applications might present the data as a stream when the underlying
protocol is UDP. However, this is the layering of an additional protocol on top
of UDP, and it is not something inherent in the UDP protocol itself.

TCP/IP Is a Reliable Protocol, While UDP Is Unreliable — The packets
that are sent by TCP/IP contain a unique sequence number. The starting
sequence number is communicated to the other side at the beginning of
communication. The receiver acknowledges each packet, and the
acknowledgment contains the sequence number so that the sender knows
which packet was acknowledged. This implies that any packets lost on the
way can be retransmitted (the sender would know that they did not reach
their destination because it had not received an acknowledgment). Also,
packets that arrive out of sequence can be reassembled in the proper order
by the receiver.

TCP/IP and UDP Overview

Further, timeouts can be established because the sender knows (from the
first few packets) how long it takes on average for a packet to be sent and its
acknowledgment received. UDP, on the other hand, sends the packets and
does not keep track of them. Thus, if packets arrive out of sequence, or are
lost in transmission, the receiving end (or the sending end) has no way of
knowing.

Note that “unreliable” is used in the sense of “not guaranteed to succeed” as
opposed to “will fail a lot of the time.” In practice, UDP is quite reliable as long
as the receiving socket is active and is processing data as quickly as it arrives.

6-3

6 Controlling Instruments Using TCP/IP and UDP

Creating a TCP/IP Object

You create a TCP/IP object with the tcpip function. tcpip requires the name
of the remote host as an input argument. In most cases, you need to specify the
remote port value. If you do not specify the remote port, then 80 is used. As
described in “Configuring Property Values” on page 2-9, you can also configure
property values during object creation.

Each TCP/IP object is associated with one instrument. For example, to create
a TCP/IP object for a Sony/Tektronix AWG520 Arbitrary Waveform Generator:

t = tcpip('sonytekawg.mathworks.com',4000);

Note that the port number is fixed and is found in the instrument's
documentation.

The TCP/IP object t now exists in the MATLAB workspace. You can display the
class of t with the whos command.

whos t
Name Size Bytes Class
t 1x1 640 tcpip object

Grand total is 16 elements using 640 bytes

Once the TCP/IP object is created, the properties listed below are automatically
assigned values. These general purpose properties provide descriptive
information about the TCP/IP object based on the object type, the remote host,
and the remote port.

Table 6-1: TCP/IP Descriptive Properties

Property Name Description

Name Specify a descriptive name for the TCP/IP object.
RemoteHost Specify the remote host.
RemotePort Specify the remote host port for the connection.

Type Indicate the object type.

Creating a TCP/IP Object

You can display the values of these properties for t with the get function.

get(t,{'Name', 'RemoteHost', 'RemotePort', 'Type'})
ans =

[1x31 char] [1x24 char] [4000] "tepip!

The TCP/IP Object Display

The TCP/IP object provides you with a convenient display that summarizes
important configuration and state information. You can invoke the display
summary these three ways:

¢ Type the TCP/IP object variable name at the command line.
¢ Exclude the semicolon when creating a TCP/IP object.

¢ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by
right-clicking an instrument object and selecting Explore -> Display
Summary from the context menu.

The display summary for the TCP/IP object t is given below.
TCP/IP Object : TCP/IP-sonytekawg.mathworks.com

Communication Settings

RemotePort: 4000
RemoteHost: sonytekawg.mathworks.com
Terminator: "LF'

Communication State
Status: closed
RecordStatus: off

Read/Write State

TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

6-5

6 Controlling Instruments Using TCP/IP and UDP

6-6

Example: Server Drops the Connection

This example shows what happens when a TCP/IP object loses its connection
with a remote server. The server is a Sony/Tektronix AWG520 Arbitrary
Waveform Generator (AWGQG). Its address is sonytekawg.mathworks.com and
its port is 4000. The AWG’s host IP address is 192.168.1.10 and is user
configurable in the instrument. The associated host name is given by your
network administrator. The port number is fixed and is found in the
instrument's documentation.

The AWG can drop the connection because it is taken off line, it is powered
down, and so on.

1 Create an instrument object — Create a TCP/IP object for the AWG.
t = tcpip('sonytekawg.mathworks.com', 4000);

2 Connect to the instrument — Connect to the remote instrument.

fopen(t)

3 Write and read data — Write a command to the instrument and read back
the result.

fprintf(t, '*IDN?')

fscanf(t)

ans =

SONY/TEK,AWG520,0,SCPI:95.0 0S:2.0 USR:2.0

Assume that the server drops the connection. If you attempt to read from the
instrument, a timeout occurs and a warning is displayed.

fprintf(t, '*IDN?')
fscanf(t)

Warning: A timeout occurred before the Terminator was reached.
(Type "warning off instrument:fscanf:unsuccessfulRead" to
suppress this warning.)

ans =

Creating a TCP/IP Object

At this point, the object and the instrument are still connected.

get(t, 'Status')
ans =
open

If you attempt to write to the instrument again, an error message is
returned and the connection is automatically closed.

fprintf(t, '*IDN?"')

??? Error using ==> fprintf

Connection closed by RemoteHost. Use FOPEN to connect to
RemoteHost.

Note that if the TCP/IP object is connected to the local host, the warning
message is not displayed. Instead, the error message is displayed following
the next read operation after the connection is dropped.

Disconnect and clean up — When you no longer need t, you should
disconnect it from the host, and remove it from memory and from the
MATLAB workspace.

fclose(t)
delete(t)
clear t

6-7

6 Controlling Instruments Using TCP/IP and UDP

6-8

Creating a UDP Object

You create a UDP object with the udp function. udp does not require the name
of the remote host as an input argument. However, if you are using the object
to communicate with a specific instrument, you should specify the remote host
and the port number. As described in “Configuring Property Values” on
page 2-9, you can also configure property values during object creation.

For example, to create a UDP object associated with the remote host
127.0.0.1and the remote port 4012

u = udp('127.0.0.1',4012);

The UDP object u now exists in the MATLAB workspace. You can display the
class of u with the whos command.

whos u
Name Size Bytes Class
u 1x1 632 udp object

Grand total is 12 elements using 632 bytes

Once the UDP object is created, the properties listed below are automatically
assigned values. These general purpose properties provide descriptive
information about the UDP object based on the object type, the remote host,
and the remote port.

Table 6-2: UDP Descriptive Properties

Property Name Description

Name Specify a descriptive name for the UDP object.
RemoteHost Specify the remote host.

RemotePort Specify the remote host port for the connection.
Type Indicate the object type.

Creating a UDP Object

You can display the values of these properties for t with the get function.

get(u,{'Name', 'RemoteHost', 'RemotePort', 'Type'})
ans =

'UDP-127.0.0.1" '127.0.0.1" [4012] ‘udp'’

The UDP Object Display

The UDP object provides you with a convenient display that summarizes
important configuration and state information. You can invoke the display
summary these three ways:

¢ Type the UDP object variable name at the command line.
¢ Exclude the semicolon when creating a UDP object.

¢ Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by
right-clicking an instrument object and selecting Explore -> Display
Summary from the context menu.

The display summary for the UDP object u is given below.
UDP Object : UDP-127.0.0.1

Communication Settings

RemotePort: 4012
RemoteHost: 127.0.0.1
Terminator: '"LF'

Communication State
Status: closed
RecordStatus: off

Read/Write State

TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

6-9

6 Controlling Instruments Using TCP/IP and UDP

6-10

Example: Communicating Between Two Hosts

This example illustrates how you can use UDP objects to communicate between
two hosts. Your platform is considered the local host with name doejohn.dhcp,
while the other platform is considered the remote host with address
192.168.1.12. To run this example on your platform, you can use the name of
your machine as the local host.

Create an instrument object — Create a UDP object for the local host.
ul = udp('','LocalPort',4114);

A UDP object is also created for the remote host. Note that the remote host
must specify the local host name and port number.

u2 = udp('doejohn.dhcp',4114);

Connect to the host — Connect u1 to the remote host. The warning occurs
because you created u1 as a listener with no knowledge of u2’s address.
fopen(ul)

Warning: Unknown RemoteHost: ' '.

Connect u2 to the host associated with u1.

fopen(u2)

Write and read data — Communicate with u1 by writing a message.

fprintf(u2,'Is anybody home?')

Before reading data with u1, you must configure its datagram address and
datagram port. This information is available to u1 after communication is
established by u2.

get(ul,{'DatagramAddress', 'DatagramPort'})
ans =

'192.168.1.12"' [2194]
ul.RemoteHost = ul.DatagramAddress;
ul.RemotePort = ul.DatagramPort;

Creating a UDP Object

You can now read the message.

fscanf(utl)
ans =
Is anybody home?

You can also write a message to u2.
fprintf(u2,'I''m here!')

Disconnect and clean up — When you no longer need u1, you should

disconnect it from the host, and remove it from memory and from the
MATLAB workspace.

fclose(ul)
delete(ul)
clear ut

6-11

6 Controlling Instruments Using TCP/IP and UDP

6-12

Writing and Reading Data

This section describes interface-specific issues related to writing and reading
data with TCP/IP and UDP objects. Topics include

¢ The rules for completing write and read operations
¢ Examples that illustrate writing and reading text data and binary data

For a general overview about writing and reading data, as well as a list of all
associated functions and properties, refer to “Writing and Reading Data” on
page 2-12.

Rules for Completing Write and Read Operations

The rules for completing synchronous and asynchronous read and write
operations are described below.

Completing Write Operations

A write operation using fprintf or fwrite completes when one of these
conditions is satisfied:

® The specified data is written.
¢ The time specified by the Timeout property passes.

In addition to these rules, you can stop an asynchronous write operation at any
time with the stopasync function.

A text command is processed by the instrument only when it receives the
required terminator. For TCP/IP and UDP objects, each occurrence of \n in the
ASCII command is replaced with the Terminator property value. Because the
default format for fprintf is %s\n, all commands written to the instrument
will end with the Terminator value. The default value of Terminator is the line
feed character. The terminator required by your instrument will be described
in its documentation.

Writing and Reading Data

Completing Read Operations

A read operation with fgetl, fgets, fscanf, or readasync completes when one
of these conditions is satisfied:

¢ The terminator specified by the Terminator property is read. For UDP
objects, DatagramTerminateMode must be off.

¢ The time specified by the Timeout property passes.

® The input buffer is filled.

¢ The specified number of values is read (fscanf and readasync only). For
UDP objects, DatagramTerminateMode must be off.

¢ A datagram is received (for UDP objects, only when DatagramTerminateMode
is on).

A read operation with fread completes when one of these conditions is
satisfied:

¢ The time specified by the Timeout property passes.
¢ The input buffer is filled.

¢ The specified number of values is read. For UDP objects,
DatagramTerminateMode must be off.

® A datagram is received (for UDP objects, only when DatagramTerminateMode
is on).

In addition to these rules, you can stop an asynchronous read operation at any
time with the stopasync function.

Example: Writing and Reading Data with a TCP/IP
Object

This example illustrates how to use text and binary read and write operations
with a TCP/IP object connected to a remote instrument. In this example, you
create a vector of waveform data in MATLAB, upload the data to the
instrument, and then read back the waveform.

The instrument is a Sony/Tektronix AWG520 Arbitrary Waveform Generator
(AWG). Its address is sonytekawg.mathworks.com and its port is 4000. The
AWG's host IP address is 192.168.1.10 and is user configurable in the
instrument. The associated host name is given by your network administrator.
The port number is fixed and is found in the instrument's documentation.

6-13

6 Controlling Instruments Using TCP/IP and UDP

6-14

1 Create an instrument object — Create a TCP/IP object associated with the

AWG.
t = tcpip('sonytekawg.mathworks.com',4000);

Connect to the instrument — Before establishing a connection, the
OutputBufferSize must be large enough to hold the data being written. In
this example, 2577 bytes are written to the instrument. Therefore, the
OutputBufferSize is set to 3000.

set(t, 'OutputBufferSize',3000)

You can now connect t to the instrument.

fopen(t)

Write and read data — Since the instrument's byte order is little-endian,
configure the ByteOrder property to 1littleEndian.

set(t, 'ByteOrder','littleEndian')

Create the sine wave data.

X = (0:499).*8*pi/500;

data = sin(x);

marker = zeros(length(data),1);
marker(1) = 3;

Instruct the instrument to write the file sin.wfm with Waveform File
format, a total length of 2544 bytes, and a combined data and marker length
of 2500 bytes.

fprintf(t, 'Sss', ['MMEMORY:DATA "sin.wfm",#42544MAGIC 1000' 13 10])
fprintf(t, '%s', '#42500")

o°

Write the sine wave to the instrument.

for (i = 1:length(data)),
fwrite(t,data(i), 'float32');
fwrite(t,marker(i));

end

Writing and Reading Data

Instruct the instrument to use a clock frequency of 100 MS/s for the
waveform.

fprintf(t, '%ss',['CLOCK 1.0000000000e+008"' 13 10 10])
Read the waveform stored in the function generator's hard drive. The
waveform contains 2000 bytes plus markers, header, and clock information.

To store this data, close the connection and configure the input buffer to hold
3000 bytes.

fclose(t)
set(t, 'InputBufferSize',3000)

Reopen the connection to the instrument.

fopen(t)

Read the file sin.wfm from the function generator.

fprintf (t, 'MMEMORY:DATA? "sin.wfm" ')

data = fread(t,t.BytesAvailable);

The next set of commands reads the same waveform as a float32 array. To
begin, write the waveform to the AWG.

fprintf(t, '"MMEMORY:DATA? "sin.wfm" ')

Read the file header as ASCII characters.
fscanf(t)

headeri
headert1 =
#42544MAGIC 1000

Read the next six bytes, which specify the length of data.

header?2
header?2
#42500

fscanf(t, '%s',6)

6-15

6 Controlling Instruments Using TCP/IP and UDP

Read the waveform using float32 precision and read the markers using
uint8 precision. Note that one float32 value consists of four bytes.
Therefore, the following commands read 2500 bytes.

data = zeros(500,1);
marker = zeros(500,1);
for i = 1:500,
data(i) = fread(t,1,'float32');
marker (i) = fread(t,1, 'uint8');
end

Read the remaining data, which consists of clock information and
termination characters.

clock = fscanf(t);
cleanup = fread(t,2);

4 Disconnect and clean up — When you no longer need t, you should

disconnect it from the host, and remove it from memory and from the
MATLAB workspace.

fclose(t)
delete(t)
clear t

6-16

Writing and Reading Data

Example: Writing and Reading Data with a UDP
Object

This example illustrates how to use text read and write operations with a UDP
object connected to a remote instrument.

The instrument used is an echo server on a Linux-based PC. An echo server is
a service available from the operating system that returns (echoes) received
data to the sender. The host name is daglab11 and the port number is 7. The
host name is assigned by your network administrator.

1 Create an instrument object — Create a UDP object associated with
daqlabii.

u = udp('daglabi1',7);

2 Connect to the instrument — Connect u to the echo server.

fopen(u)

3 Write and read data — You use the fprintf function to write text data to
the instrument. For example, write the following string to the echo server.

fprintf(u, 'Request Time')

UDP sends and receives data in blocks that are called datagrams. Each time
you write or read data with a UDP object, you are writing or reading a
datagram. For example, the string sent to the echo server constitutes a
datagram with 13 bytes — 12 ASCII bytes plus the line feed terminator.

You use the fscanf function to read text data from the echo server.

fscanf(u)
ans =
Request Time

The DatagramTerminateMode property indicates whether a read operation
terminates when a datagram is received. By default,
DatagramTerminateMode is on and a read operation terminates when a
datagram is received. To return multiple datagrams in one read operation,
set DatagramTerminateMode to off.

6-17

6 Controlling Instruments Using TCP/IP and UDP

The following commands write two datagrams. Note that only the second
datagram sends the terminator character.

fprintf(u, '%s', 'Request Time')
fprintf(u, '%ss\n', 'Request Time')

Since DatagramTerminateMode is off, fscanf reads across datagram
boundaries until the terminator character is received.

set(u, 'DatagramTerminateMode', 'off"')
data = fscanf(u)

data =

Request TimeRequest Time

4 Disconnect and clean up — When you no longer need u, you should
disconnect it from the host, and remove it from memory and from the
MATLAB workspace.

fclose(u)
delete(u)
clear u

6-18

Events and Callbacks

Events and Callbacks

This section describes interface-specific issues related to using events and
callbacks with a TCP/IP or UDP object. Topics include

¢ Event types and callback properties

¢ Storing event information

* An example that uses the datagram-received event and the instrcallback

function

For a general overview of events and callbacks, including how to create and
execute callback functions, refer to “Events and Callbacks” on page 3-30.

Event Types and Callback Properties

The event types and associated callback properties supported by TCP/IP and
UDP objects are listed below.

Table 6-3: TCP/IP and UDP Event Types and Callback Properties

Event Type Associated Properties

Bytes available BytesAvailableFcn
BytesAvailableFcnCount
BytesAvailableFcnMode

Datagram received DatagramReceivedFcn (UDP objects only)

Error ErrorFcn

Output empty OutputEmptyFcn

Timer TimerFcn
TimerPeriod

The datagram-received event is described below. For a description of the other
event types, refer to “Event Types and Callback Properties” on page 3-31.

6-19

6 Controlling Instruments Using TCP/IP and UDP

6-20

Datagram-received Event. A datagram-received event is generated immediately
after a complete datagram is received in the input buffer.

This event executes the callback function specified for the
DatagramReceivedFcn property. It can be generated for both synchronous and
asynchronous read operations.

Storing Event Information

You can store event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The
Type field contains the event type, while the Data field contains event-specific
information. As described in “Creating and Executing Callback Functions” on
page 3-33, these two fields are associated with a structure that you define in
the callback function header. Refer to “Debugging: Recording Information to
Disk” on page 7-5 to learn about storing event information in a record file.

The event types and the values for the Type and Data fields are given below.

Table 6-4: TCP/IP and UDP Event Information

Event Type Field Field Value

Bytes available Type BytesAvailable

Data.AbsTime day-month-year hour:minute:second

Datagram Type DatagramReceived

received . .
Data.AbsTime day-month-year hour:minute:second

Error Type Error

Data.AbsTime day-month-year hour:minute:second
Data.Message An error string
Output empty Type OutputEmpty
Data.AbsTime day-month-year hour:minute:second
Timer Type Timer

Data.AbsTime day-month-year hour:minute:second

Events and Callbacks

The Data field values are described below.

The AbsTime Field. AbsTime is defined for all events, and indicates the absolute
time the event occurred. The absolute time is returned using the MATLAB
clock format.

day-month-year hour:minute:second

The Message Field. Message is used by the error event to store the descriptive
message that is generated when an error occurs.

Example: Using Events and Callbacks

This example extends “Example: Communicating Between Two Hosts” on
page 6-10 to include a datagram received callback. The callback function is
instrcallback, which displays information to the command line indicating
that a datagram has been received.

The following command configures the callback for the UDP object uf.

ul.DatagramReceivedFcn = @instrcallback;

When a datagram is received, the following message is displayed.

DatagramReceived event occurred at 10:26:20 for the object:
UDP-192.168.1.12.
17 bytes were received from address 192.168.1.12, port 2194.

6-21

6 Controlling Instruments Using TCP/IP and UDP

6-22

Saving and Loading the
Session

This chapter describes how to save and load information associated with an instrument control
session. The sections are as follows.

Saving and Loading Save instrument objects and their associated property values to disk
Instrument Objects (p. 7-2) as an M-file or as a MAT-file.

Debugging: Recording Save information to disk as a text file. The saved information includes
Information to Disk (p. 7-5) the data transferred to and from the instrument, and event
information.

7 Saving and loading the Session

7-2

Saving and Loading Instrument Objects

You can save an instrument object to disk using two possible formats:

® As an M-file using the obj2mfile function
® As a MAT-file using the save command

You can also save data transferred between the object and the instrument
using these two functions. However, it is easier to use the record function for
this purpose as described in “Debugging: Recording Information to Disk” on
page 7-5.

Saving Instrument Objects to an M-File

You can save an instrument object to an M-file using the obj2mfile function.
obj2mfile provides you with these options:

e Save all property values or save only those property values that differ from
their default values.

Read-only property values are not saved. Therefore, read-only properties use
their default values when you load the instrument object into the MATLAB
workspace. To determine if a property is read-only, use the propinfo
function or examine the property reference pages.

® Save property values using the set syntax or the dot notation.

If the UserData property is not empty, or if a callback property is set to a cell
array of values or a function handle, then the data stored in these properties
is written to a MAT-file when the instrument object is saved. The MAT-file
has the same name as the M-file containing the instrument object code.

For example, suppose you create the GPIB object g, return instrument
identification information to the variable out, and store out in the UserData
property.

g = gpib('ni’,0,1);
g.Tag = 'My GPIB object';
fopen(g)

cmd = '*IDN?';
fprintf(g,cmd)

out = fscanf(g);
g.UserData = out;

Saving and loading Instrument Objects

The following command saves g and the modified property values to the M-file
mygpib.m. Because the UserData property is not empty, its value is
automatically written to the MAT-file mygpib.mat.

obj2mfile(g, 'mygpib.m");

Use the type command to display mygpib.m at the command line.

Loading the Instrument Object

To load an instrument object that was saved as an M-file into the MATLAB
workspace, type the name of the M-file at the command line. For example, to
load g from the M-file mygpib.m:

g = mygpib

The display summary for g is shown below. Note that the read-only properties
such as Status, BytesAvailable, ValuesReceived, and ValuesSent are
restored to their default values.

GPIB Object Using NI Adaptor : GPIBO-1

Communication Address
BoardIndex: 0
PrimaryAddress:
SecondaryAddress: 0

—_

Communication State
Status: closed
RecordStatus: off

Read/Write State

TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

When loading g into the workspace, the MAT-file mygpib.mat is automatically
loaded and the UserData property value is restored.

g.UserData
ans =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

7-3

7 Saving and loading the Session

Saving Objects to a MAT-File

You can save an instrument object to a MAT-file just as you would any
workspace variable — using the save command. For example, to save the GPIB
object g, and the variables cmd and out defined in the preceding section to the
MAT-file mygpib1.mat:

save mygpib1 g cmd out

Read-only property values are not saved. Therefore, read-only properties use
their default values when you load the instrument object into the MATLAB
workspace. To determine if a property is read-only, use the propinfo function
or examine the property reference pages.

Loading the Instrument Object

To load an instrument object that was saved to a MAT-file into the MATLAB
workspace, use the load command. For example, to load g, cmd, and out from
MAT-file mygpib1.mat:

load mygpib1

The display summary for g is shown below. Note that the read-only properties
such as Status, BytesAvailable, ValuesReceived, and ValuesSent are
restored to their default values.

GPIB Object Using NI Adaptor : GPIBO-1

Communication Address

BoardIndex: 0
PrimaryAddress: 1
SecondaryAddress: 0

Communication State
Status: closed
RecordStatus: off

Read/Write State

TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

7-4

Debugging: Recording Information fo Disk

Debugging: Recording Information to Disk

Recording information to disk provides a permanent record of your instrument
control session, and is an easy way to debug your application. While the
instrument object is connected to the instrument, you can record this
information to a disk file:

® The number of values written to the instrument, the number of values read
from the instrument, and the data type of the values

® Data written to the instrument, and data read from the instrument

¢ Event information

You record information to a disk file with the record function. The properties
associated with recording information to disk are given below.

Table 7-1: Recording Properties

Property Name Description

RecordDetail Specify the amount of information saved to a record file.

RecordMode Specify whether data and event information are saved
to one record file or to multiple record files.

RecordName Specify the name of the record file.

RecordStatus Indicate if data and event information are saved to a
record file.

Example: Introduction to Recording Information

This example creates the GPIB object g, records the number of values
transferred between g and the instrument, and stores the information to the
file text myfile. txt.

g = gpib('ni',0,1);
g.RecordName = 'myfile.txt';
fopen(g)

record(g)

fprintf(g, '*IDN?')

out = fscanf(g);

7-5

7 Saving and loading the Session

7-6

End the instrument control session.

fclose(g)
delete(g)
clear ¢

Use the type command to display myfile.txt at the command line.

Creating Multiple Record Files

When you initiate recording with the record function, the RecordMode property
determines if a new record file is created or if new information is appended to
an existing record file.

You can configure RecordMode to overwrite, append, or index. If RecordMode
is overwrite, then the record file is overwritten each time recording is
initiated. If RecordMode is append, then the new information is appended to the
file specified by RecordName. If RecordMode is index, a different disk file is
created each time recording is initiated. The rules for specifying a record
filename are discussed in the next section.

Specifying a Filename
You specify the name of the record file with the RecordName property. You can
specify any value for RecordName, including a directory path, provided the

filename is supported by your operating system. Additionally, if RecordMode is
index, then the filename follows these rules:

¢ Indexed filenames are identified by a number. This number precedes the
filename extension and is increased by 1 for successive record files.

¢ If no number is specified as part of the initial filename, then the first record
file does not have a number associated with it. For example, if RecordName is
myfile.txt, then myfile.txt is the name of the first record file,
myfileO1.txt is the name of the second record file, and so on.

® RecordName is updated after the record file is closed.

¢ If the specified filename already exists, then the existing file is overwritten.

Debugging: Recording Information fo Disk

The Record File Format

The record file is an ASCII file that contains a record of one or more instrument
control sessions. You specify the amount of information saved to a record file
with the RecordDetail property.

RecordDetail can be compact or verbose. A compact record file contains the
number of values written to the instrument, the number of values read from
the instrument, the data type of the values, and event information. A verbose
record file contains the preceding information as well as the data transferred
to and from the instrument.

Binary data with precision given by uchar, schar, (u)int8, (u)int16, or
(u)int32 is recorded as hexadecimal values. For example, if the integer value
255 is read from the instrument as a 16-bit integer, the hexadecimal value
OO0FF is saved in the record file. Single- and double-precision floating-point
numbers are recorded as decimal values using the %g format, and as
hexadecimal values using the format specified by the IEEE Standard 754-1985
for Binary Floating-Point Arithmetic.

The IEEE floating-point format includes three components — the sign bit, the
exponent field, and the significand field. Single-precision floating-point values
consist of 32 bits, and the value is given by

sign,,exp-127

value = (-1) (2)(1.significand)

Double-precision floating-point values consist of 64 bits, and the value is given

by

sign,,exp-1023

value = (-1) (2)(1.significand)
The floating-point format component, and the associated single-precision and

double-precision bits are given below.

Format Single-Precision Bits Double-Precision Bits
Component

sign 1 1

exp 2-9 2-12

significand 10-32 13-64

7-7

7 Saving and loading the Session

7-8

For example, suppose you record the decimal value 4.25 using the
single-precision format. The record file stores 4.25 as the hex value 40880000,
which is calculated from the IEEE single-precision floating-point format. To
reconstruct the original value, convert the hex value to a decimal value using
hex2dec:

dval
dval

hex2dec (' 40880000)

1.082654720000000e+009

Convert the decimal value to a binary value using dec2bin:

bval = dec2bin(dval,32)
bval =
01000000100010000000000000000000

The interpretation of bval is given by the preceding table. The left most bit
indicates the value is positive because (-1)% = 1. The next 8 bits correspond to
the exponent, which is given by

exp = bval(2:9)
exp =
10000001

The decimal value of exp is 27+2° = 129. The remaining bits correspond to the
significand, which is given by

significand = bval(10:32)
significand =
00010000000000000000000

The decimal value of significand is 2 = 0.0625. You reconstruct the original
value by plugging the decimal values of exp and significand into the formula
for IEEE singles:

value = (-1)%(2'22 - 127y (1,0625)
value = 4.25

Debugging: Recording Information fo Disk

Example: Recording Information to Disk

This example extends “Example: Reading Binary Data” on page 3-24 by
recording the associated information to a record file. Additionally, the
structure of the resulting record file is presented.

1 Create an instrument object — Create the GPIB object g associated with a
National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni’,0,1);

2 Configure properties — Configure the input buffer to accept a reasonably
large number of bytes, and configure the timeout value to two minutes to
account for slow data transfer.

g.InputBufferSize = 50000;
g.Timeout = 120;

Configure g to execute the callback function instrcallback every time 5000
bytes are stored in the input buffer.

g.BytesAvailableFcnMode = 'byte';
g.BytesAvailableFcnCount = 5000;
g.BytesAvailableFcn = @instrcallback;

Configure g to record information to multiple disk files using the verbose
format. The first disk file is defined as WaveForm1.txt.

g.RecordMode = 'index';
g.RecordDetail = 'verbose';
g.RecordName = 'WaveFormi.txt';

3 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)

4 Write and read data — Initiate recording.
record(g)

7-9

7 Saving and loading the Session

7-10

Configure the scope to transfer the screen display as a bitmap.

fprintf (g, 'HARDCOPY:PORT GPIB')
fprintf (g, 'HARDCOPY : FORMAT BMP')
fprintf (g, 'HARDCOPY START')

Initiate the asynchronous read operation, and begin generating events.

readasync(g)

instrcallback is called every time 5000 bytes are stored in the input buffer.
The resulting displays are shown below.

BytesAvailable event occurred at 09:04:33 for the object: GPIBO-1.
BytesAvailable event occurred at 09:04:42 for the object: GPIBO-1.
BytesAvailable event occurred at 09:04:51 for the object: GPIBO-1.
BytesAvailable event occurred at 09:05:00 for the object: GPIBO-1.
BytesAvailable event occurred at 09:05:10 for the object: GPIBO-1.
BytesAvailable event occurred at 09:05:19 for the object: GPIBO-1.
BytesAvailable event occurred at 09:05:28 for the object: GPIBO-1.

Wait until all the data is stored in the input buffer, and then transfer the
data to MATLAB as unsigned 8 bit integers.

out = fread(g,g.BytesAvailable, 'uint8');

Toggle the recording state from on to of f. Because the RecordMode value is
index, the record filename is automatically updated.

record(g)
g.RecordStatus
ans =

off
g.RecordName
ans =
WaveForm2.txt

Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from the
MATLAB workspace.

fclose(g)
delete(g)
clear ¢

Debugging: Recording Information fo Disk

The Record File Contents
To display the contents of the WaveForm1. txt record file:

type WaveForm1.txt

The record file contents are shown below. Note that data returned by the fread
function is in hex format (most of the bitmap data is not shown).

Legend:
An event occurred.

*

> -
< -

10 *
11 *
12 <

13 Recording off.

A write operation occurred.

A read operation occurred.

Recording on 18-Jun-2000 at 09:03:53.529. Binary
little endian format.
18 ascii values.
HARDCOPY : PORT GPIB
19 ascii values.
HARDCOPY : FORMAT BMP
14 ascii values.
HARDCOPY START
BytesAvailable event
BytesAvailable event
BytesAvailable event
BytesAvailable event
BytesAvailable event
BytesAvailable event
BytesAvailable event

38462 uint8
42 4d cf 03
00 00 80 02
00 00 00 96

ff Ff ff ff
ff Ff ff ff
ff Ff ff ff

values.

00 00 00
00 00 e0
00 00 00

ff ff ff
ff ff ff
ff ff ff

occurred
occurred
occurred
occurred
occurred
occurred
occurred

00
01
00

ff
ff
ff

00
00
00

ff
ff
ff

00
00
00

ff
ff
ff

at
at
at
at
at
at
at

3e
01
00

ff
ff
ff

00
00
00

ff
ff
ff

00
01
00

ff
ff
ff

18-Jun-2000 at 09:
18-Jun-2000 at 09:
18-Jun-2000 at 09:
18-Jun-2000 at 09:
18-Jun-2000 at 09:
18-Jun-2000 at 09:
18-Jun-2000 at 09:

00 28 00
00 00 00
00 00 00

ff ff ff
ff ff ff
ff

data in

04
04

:33.
141
04:
04:
05:
05:
05:

334

775
50.
00.
10.
18.
27.

805
266
306
777
778

7-11

7 Saving and loading the Session

7-12

Function Reference

This chapter describes the toolbox M-file functions that you use directly. A number of other M-file
helper functions are provided with this toolbox to support the functions listed below. These helper
functions are not documented because they are not intended for direct use.

Functions — By Category Contains a series of tables that group functions by category
(p. 8-2)

Functions — Alphabetical Lists all the functions alphabetically
List (p. 8-7)

8-2

Functions - By Category

This section contains brief descriptions of all toolbox functions. The functions
are divided into these two groups:
® Base functions

¢ Object-specific functions

Base Functions

Base functions apply to all supported instrument objects (GPIB, VISA-VXI,
and so on). For example, the fscanf function is supported for all instrument
objects. The base functions are organized into the following categories.

Creating Instrument Objects

gpib Create a GPIB object
serial Create a serial port object
tepip Create a TCP/IP object
udp Create a UDP object

visa Create a VISA object

State Change

fclose Disconnect an instrument object from the instrument
fopen Connect an instrument object to the instrument
record Record data and event information to a file

Reading and Writing Data
binblockread Read binblock data from the instrument
binblockwrite Write binblock data to the instrument

fgetl Read one line of text from the instrument and discard the
terminator

Functions — By Category

fgets

fprintf
fread
fscanf
fwrite

query

readasync
scanstr

stopasync

Read one line of text from the instrument and include the
terminator

Write text to the instrument

Read binary data from the instrument

Read data from the instrument, and format as text
Write binary data to the instrument

Write text to the instrument, and read data from the
instrument

Read data asynchronously from the instrument
Read data from the instrument, format as text, and parse

Stop asynchronous read and write operations

Getting and Setting Properties

get
inspect

set

Return instrument object properties
Open Property Inspector

Configure or display instrument object properties

Getting Information and Help

instrhelp
instrhwinfo
instrschool

propinfo

Return instrument object function and property help
Return information about available hardware
Interface for displaying toolbox tutorials

Return instrument object property information

Graphical Tools

instrcomm

instrcreate

Graphical tool for communicating with an instrument using
text data

Graphical tool for creating and configuring an instrument
object

8-3

8-4

General Purpose Functions

clear

delete

disp
flushinput
flushoutput
instrcallback

instrfind

instrreset
isvalid
length
load

obj2mfile
save

size

Remove instrument objects from the MATLAB workspace
Remove instrument objects from memory

Display instrument object summary information

Remove data from the input buffer

Remove data from the output buffer

Display event information when an event occurs

Return instrument objects from memory to the MATLAB
workspace

Disconnect and delete all instrument objects
Determine if instrument objects are valid
Length of instrument object array

Load instrument objects and variables into the MATLAB
workspace

Convert instrument object to MATLAB code
Save instrument objects and variables to a MAT-file

Size of instrument object array

Object-Specific Functions

Object-specific functions apply only to instrument objects of a given type
(GPIB, VISA-VXI, and so on). For example, the serialbreak function is
supported only for serial port objects. The object-specific functions are
organized into the following categories based on instrument object type.

GPIB Functions

clrdevice
gpib
spoll
trigger

Clear instrument buffer
Create a GPIB object
Perform a serial poll

Send a trigger message to the instrument

Functions — By Category

Serial Port Functions
freeserial Release MATLAB's hold on a serial port
serial Create a serial port object

serialbreak Send a break to the instrument

TCP/IP Functions
echotcpip Start or stop a TCP/IP echo server
tepip Create a TCP/IP object

resolvehost Return network name or network address

UDP Functions
echoudp Start or stop a UDP echo server

udp Create a UDP object

VISA-GPIB Functions

clrdevice Clear instrument buffer
trigger Send a trigger message to the instrument
visa Create a VISA object

VISA-VXI Functions

clrdevice Clear instrument buffer

memmap Map memory for low-level memory read and write operations

mempeek Low-level memory read from VXI register

mempoke Low-level memory write to VXI register

memread High-level memory read from VXI register

memunmap Unmap memory for low-level memory read and write
operations

memwrite High-level memory write to VXI register

8-5

8-6

trigger Send a trigger message to the instrument

visa Create a VISA object

VISA-GPIB-VXI Functions

clrdevice Clear instrument buffer

memmap Map memory for low-level memory read and write operations

mempeek Low-level memory read from VXI register

mempoke Low-level memory write to VXI register

memread High-level memory read from VXI register

memunmap Unmap memory for low-level memory read and write
operations

memwrite High-level memory write to VXI register

visa Create a VISA object

VISA-Serial Functions
visa Create a VISA object

Functions — Alphabetical List

Functions - Alphabetical List

This section contains detailed descriptions of all toolbox functions. Each
function reference page contains some or all of this information:
® The function name
¢ The function purpose
¢ The function syntax
All valid input argument and output argument combinations are shown. In

some cases, an ellipsis (. . .) is used for the input arguments. This means that

all preceding input argument combinations are valid for the specified output
argument(s).

® A description of each argument

¢ A description of each function syntax
¢ Additional remarks about usage

® An example of usage

¢ Related functions and properties

8-7

binblockread

Purpose

Syntax

Arguments

Description

Remarks

8-8

Read binblock data from the instrument

A binblockread(obj)

A binblockread(obj, 'precision')
[A,count] = binblockread(...)
[A,count,msg] = binblockread(...)

obj An instrument object.

‘precision' The number of bits read for each value, and the interpretation
of the bits as character, integer, or floating-point values.

A Binblock data returned from the instrument.
count The number of values read.
msg A message indicating if the read operation was unsuccessful.

A = binblockread(obj) reads binary-block (binblock) data from the
instrument connected to obj and returns the values to A. The binblock format
is described in the binblockwrite reference pages.

A = binblockread(obj, 'precision') reads binblock data translating
MATLAB values to the precision specified by precision. By default the uchar
precision is used and numeric values are returned in double-precision arrays.
Refer to the fread function for a list of supported precisions.

[A,count] = binblockread(...) returns the number of values read to count.

[A,count,msg] = binblockread(...) returns a warning message to msg if
the read operation did not complete successfully.

Before you can read data from the instrument, it must be connected to obj with
the fopen function. A connected instrument object has a Status property value
of open. An error is returned if you attempt to perform a read operation while
obj is not connected to the instrument.

binblockread

Example

See Also

binblockread blocks the MATLAB command line until one of the following
occurs:

¢ The data is completely read.
¢ The time specified by the Timeout property passes.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read,
each time binblockread is issued.

Create the GPIB object g associated with a National Instruments GPIB
controller with board index 0, and a Tektronix TDS 210 oscilloscope with
primary address 2.

g = gpib('ni',0,2);
g.InputBufferSize = 3000;

Connect g to the instrument, and write string commands that configure the
scope to transfer binary waveform data from memory location A.

fopen(g)

fprintf (g, 'DATA:DESTINATION REFA');
fprintf (g, 'DATA:ENCDG SRPbinary');
fprintf (g, 'DATA:WIDTH 1');
fprintf (g, 'DATA:START 1');

Write the CURVE? command, which prepares the scope to transfer data, and
read the data using the binblock format.

fprintf(g, 'CURVE?"')
data = binblockread(g);

Functions
binblockwrite, fopen, fread, instrhelp

Properties
BytesAvailable, InputBufferSize, Status, ValuesReceived

8-9

binblockwrite

Purpose

Syntax

Arguments

Description

Remarks

8-10

Write binblock data to the instrument

binblockwrite(obj,A)
binblockwrite(obj,A, 'precision')

obj An instrument object.
A The data to be written using the binblock format.

‘precision' The number of bits written for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

binblockwrite(obj,A) writes the data specified by A to the instrument
connected to obj as a binary-block (binblock). The binblock format is defined as
#<N><D><A> where

¢ N specifies the number of digits D that follow.

® D specifies the number of data bytes A that follow.
® Ais the data written to the instrument.

For example, if A is given by [0 5 5 0 5 5 0], the binblock would be defined as
[double('#)170550550].

binblockwrite(obj,A, 'precision') writes binblock data translating
MATLAB values to the precision specified by precision. By default the uchar
precision is used. Refer to the fwrite function for a list of supported precisions.

Before you can write data to the instrument, it must be connected to obj with
the fopen function. A connected instrument object has a Status property value
of open. An error is returned if you attempt to perform a write operation while
obj is not connected to the instrument.

The ValuesSent property value is increased by the number of values written
each time binblockwrite is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

binblockwrite

Example

See Also

Create the GPIB object g associated with a National Instruments GPIB
controller with board index 0, and a Tektronix TDS 210 oscilloscope with
primary address 2.

g = gpib('ni',0,2);
g.0OutputBufferSize = 3000;

Connect g to the instrument, and write string commands that configure the
scope to transfer binary waveform data to memory location A.

fopen(g)

fprintf (g, 'DATA:DESTINATION REFA');
fprintf (g, 'DATA:ENCDG SRPbinary');
fprintf (g, 'DATA:WIDTH 1');
fprintf (g, 'DATA:START 1');

Create the waveform data.

t = linspace(0,25,2500);
data = round(sin(t)*90 + 127);

Write the binblock data to the scope.

cmd = double('CURVE #42500');
binblockwrite(g,[cmd data])

Functions
binblockread, fopen, fwrite, instrhelp

Properties
OutputBufferSize, QutputEmptyFcn, Status, Timeout, TransferStatus,
ValuesSent

8-11

clear

Purpose
Syntax

Arguments

Description

Remarks

Example

See Also

8-12

Remove instrument objects from the MATLAB workspace

clear obj
obj An instrument object or an array of instrument objects.

clear obj removes obj from the MATLAB workspace.

If obj is connected to the instrument and it is cleared from the workspace, then
obj remains connected to the instrument. You can restore obj to the workspace
with the instrfind function. An object connected to the instrument has a
Status property value of open.

To disconnect obj from the instrument, use the fclose function. To remove obj
from memory, use the delete function. You should remove invalid instrument
objects from the workspace with clear.

This example creates the GPIB object g, copies g to a new variable gcopy, and
clears g from the MATLAB workspace. g is then restored to the workspace with
instrfind and is shown to be identical to gcopy.

g = gpib('ni',0,1);
gcopy = 9;

clear g

g = instrfind;

isequal(gcopy,q)
ans =
1

Functions
delete, fclose, instrfind, instrhelp, isvalid

Properties
Status

clrdevice

Purpose
Syntax

Arguments

Description

Remarks

See Also

Clear instrument buffer

clrdevice(obj)
obj A GPIB, VISA-GPIB, VISA-VXI, or VISA-GPIB-VXI object.

clrdevice(obj) clears the hardware buffer of the instrument connected to
obj.

Before you can clear the hardware buffer, the instrument must be connected to
obj with the fopen function. A connected object has a Status property value of
open. If you issue clrdevice when obj is disconnected from the instrument,
then an error is returned.

You can clear the software input buffer using the flushinput function. You can
clear the software output buffer using the flushoutput function.

Functions
flushinput, flushoutput, fopen

Properties
Status

8-13

delete

Purpose
Syntax

Arguments

Description

Remarks

Example

See Also

8-14

Remove instrument objects from memory

delete(obj)
obj An instrument object or an array of instrument objects.

delete(obj) removes obj from memory.

When you delete obj, it becomes an invalid object. Because you cannot connect
an invalid object to the instrument, you should remove it from the workspace
with the clear command. If multiple references to obj exist in the workspace,
then deleting one reference invalidates the remaining references.

If obj is connected to the instrument, it has a Status property value of open. If
you issue delete while obj is connected, then the connection is automatically
broken. You can also disconnect obj from the instrument with the fclose
function.

This example creates the GPIB object g, connects g to the instrument, writes
and reads text data, disconnects g, removes g from memory using delete, and
then removes g from the workspace using clear.

g = gpib('ni',0,1);
fopen(g)

fprintf(g, '*IDN?')
idn = fscanf(g);
fclose(g)

delete(g)

clear g

Functions
clear, fclose, instrhelp, isvalid, stopasync

Properties
Status

disp

Purpose

Syntax

Arguments

Description

Remarks

Example

Display instrument object summary information

obj
disp(obj)

obj An instrument object or an array of instrument objects.

obj or disp(obj) displays summary information for obj.

In addition to the syntax shown above, you can display summary information
for obj by excluding the semicolon when

¢ Creating an instrument object
¢ Configuring property values using the dot notation

As shown below, you can also display summary information via the Workspace
browser by right-clicking an instrument object, and selecting Explore ->
Display Summary from the context menu.

ol

File Edit WYiew Web ‘Window Help

Dq' E | ﬁ | ﬁ Stack:IElase VI

Name Size |Bytes|Class

@ans 1x3 24| double array

Cal Property Inspector Access context (pop-up) menus by
Select Al . .l . .
right-clicking an instrument object.
Dizplay Hardware Info
Impart Data....
Save Selection &s.. Instrument Help

Save Workspace Az,

Copy

Delete

Clear YWorkspace

Rename

The following commands display summary information for the GPIB object g.

g = gpib('ni',0,1)
g.EOSMode = 'read’
g

8-15

echotcpip

Purpose Start or stop a TCP/IP echo server

Syntax echotcpip('state',port)
echotcpip('state')

Arguments 'state’ Turn the server on or off.
port Port number of the server.
Description echotcpip('state',port) starts a TCP/IP server with port number specified

by port. state can only be on.

echotcpip('state') stops the echo server. state can only be off.

Example Start the echo server and create a TCP/IP object.

echotcpip('on',4000)
t = tcpip('localhost',4000);

Connect the TCP/IP object to the host.
fopen(t)
Write to the host and read from the host.

fprintf(t, 'echo this string.')
data = fscanf(t);

Stop the echo server and disconnect the TCP/IP object from the host.

echotcpip('off"')
fclose(t)

See Also Functions
echoudp, tcpip, udp

8-16

echoudp

Purpose

Syntax

Arguments

Description

Example

See Also

Start or stop a UDP echo server

echoudp('state',port)
echoudp('state')
‘state’ Turn the server on or off.

port Port number of the server.

echoudp('state',port) starts a UDP server with port number specified by
port. state can only be on.

echoudp('state') stops the echo server. state can only be off.

Start the echo server and create a UDP object.

echoudp('on',4012)
u = udp('127.0.0.1',4012);

Connect the UDP object to the host.
fopen(u)
Write to the host and read from the host.

fwrite(u,65:74)
A = fread(u,10);

Stop the echo server and disconnect the UDP object from the host.

echoudp('off"')
fclose(u)

Functions
echotcpip, tcpip, udp

8-17

fclose

Purpose
Syntax

Arguments

Description

Remarks

Example

See Also

8-18

Disconnect an instrument object from the instrument

fclose(obj)
obj An instrument object or an array of instrument objects.

fclose(obj) disconnects obj from the instrument.

If obj was successfully disconnected, then the Status property is configured to
closed and the RecordStatus property is configured to off. You can reconnect
obj to the instrument using the fopen function.

An error is returned if you issue fclose while data is being written
asynchronously. In this case, you should abort the write operation with the
stopasync function, or wait for the write operation to complete.

This example creates the GPIB object g, connects g to the instrument, writes
and reads text data, and then disconnects g from the instrument using fclose.
g = gpib('ni',0,1);
fopen(g)
fprintf(g, '*IDN?")
idn = fscanf(g);
fclose(g)

At this point, you can once again connect an instrument object to the
instrument. If you no longer need g, you should remove it from memory with
the delete function, and remove it from the workspace with the clear
command.

Functions
clear, delete, fopen, instrhelp, record, stopasync

Properties
RecordStatus, Status

fgetl

Purpose

Syntax

Arguments

Description

Remarks

Read one line of text from the instrument and discard the terminator

tline = fgetl(obj)
[tline,count] = fgetl(obj)
[tline,count,msg] = fgetl(obj)

obj An instrument object.

tline The text read from the instrument, excluding the terminator.
count The number of values read, including the terminator.

msg A message indicating if the read operation was unsuccessful.

tline = fgetl(obj) reads one line of text from the instrument connected to
obj, and returns the data to t1ine. The returned data does not include the
terminator with the text line. To include the terminator, use fgets.

[tline,count] = fgetl(obj) returns the number of values read to count.

[tline,count,msg] = fgetl(obj) returns a warning message to msg if the
read operation was unsuccessful.

Before you can read text from the instrument, it must be connected to obj with
the fopen function. A connected instrument object has a Status property value
of open. An error is returned if you attempt to perform a read operation while
obj is not connected to the instrument.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
— including the terminator — each time fgetl is issued.

8-19

fgetl

Example

8-20

Rules for Completing a Read Operation with fgetl
A read operation with fgetl blocks access to the MATLAB command line until

¢ The terminator is read. For serial port, TCP/IP, UDP, and VISA-serial
objects, the terminator is given by the Terminator property. Note that for
UDP objects, DatagramTerminateMode must be off.
For all other instrument objects except VISA-RSIB, the terminator is given
by the EOSCharCode property.

¢ The EOI line is asserted (GPIB and VXI instruments only).

¢ A datagram has been received (UDP objects only if DatagramTerminateMode
is on).

¢ The time specified by the Timeout property passes.

¢ The input buffer is filled.

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode property
is configured to read or read&write. For example, if EOSMode is configured to

read and EOSCharCode is configured to LF, then one of the ways that the read
operation terminates is when the line feed character is received.

If EOSMode is none or write, then there is no terminator defined for read
operations. In this case, fgetl will complete execution and return control to the
command line when another criterion, such as a timeout, is met.

Create the GPIB object g, connect g to a Tektronix TDS 210 oscilloscope,
configure g to complete read operations when the End-Of-String character is
read, and write the *IDN? command with the fprintf function. *IDN? instructs
the scope to return identification information.

g = gpib('ni’,0,1);
fopen(g)

g.EOSMode = 'read’';
fprintf(g, '*IDN?"')

fgetl

See Also

Asynchronously read the identification information from the instrument.

readasync(g)
g.BytesAvailable
ans =

56

Use fgetl to transfer the data from the input buffer to the MATLAB
workspace, and discard the terminator.

idn = fgetl(g)

idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

length(idn)
ans =
55

Disconnect g from the scope, and remove g from memory and the workspace.

fclose(g)
delete(g)
clear ¢

Functions
fgets, fopen, instrhelp

Properties

BytesAvailable, EOSCharCode, EOSMode, InputBufferSize, Status,
Terminator, Timeout, ValuesReceived

8-21

fgets

Purpose

Syntax

Arguments

Description

Remarks

8-22

Read one line of text from the instrument and include the terminator

tline = fgets(obj)
[tline,count] = fgets(obj)
[tline,count,msg] = fgets(obj)

obj An instrument object.

tline The text read from the instrument, including the terminator.
count The number of values read.

msg A message indicating that the read operation did not

complete successfully.

tline = fgets(obj) reads one line of text from the instrument connected to
obj, and returns the data to t1ine. The returned data includes the terminator
with the text line. To exclude the terminator, use fgetl.

[tline,count] = fgets(obj) returns the number of values read to count.

[tline,count,msg] = fgets(obj) returns a warning message to msg if the
read operation was unsuccessful.

Before you can read text from the instrument, it must be connected to obj with
the fopen function. A connected instrument object has a Status property value
of open. An error is returned if you attempt to perform a read operation while
obj is not connected to the instrument.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
— including the terminator — each time fgets is issued.

fgets

Example

Rules for Completing a Read Operation with fgets

A read operation with fgets blocks access to the MATLAB command line until

¢ The terminator is read. For serial port, TCP/IP, UDP, and VISA-serial
objects, the terminator is given by the Terminator property. Note that for
UDP objects, DatagramTerminateMode must be off.
For all other instrument objects except VISA-RSIB, the terminator is given
by the EOSCharCode property.

¢ The EOI line is asserted (GPIB and VXI instruments only).

e A datagram has been received (UDP objects only if DatagramTerminateMode
is on).

¢ The time specified by the Timeout property passes.

¢ The input buffer is filled.

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode property
is configured to read or read&write. For example, if EOSMode is configured to

read and EOSCharCode is configured to LF, then one of the ways that the read
operation terminates is when the line feed character is received.

If EOSMode is none or write, then there is no terminator defined for read
operations. In this case, fgets will complete execution and return control to the
command line when another criterion, such as a timeout, is met.

Create the GPIB object g, connect g to a Tektronix TDS 210 oscilloscope,
configure g to complete read operations when the End-Of-String character is
read, and write the *IDN? command with the fprintf function. *IDN? instructs
the scope to return identification information.

g = gpib('ni',0,1);
fopen(g)

g.EOSMode = 'read’;
fprintf(g, '*IDN?')

8-23

fgets

See Also

8-24

Asynchronously read the identification information from the instrument.

readasync(g)
g.BytesAvailable
ans =

56

Use fgets to transfer the data from the input buffer to the MATLAB
workspace, and include the terminator.

idn = fgets(g)

idn =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

length(idn)

ans =

56

Disconnect g from the scope, and remove g from memory and the workspace.

fclose(g)
delete(g)
clear g

Functions
fgetl, fopen, instrhelp, query

Properties

BytesAvailable, EOSCharCode, EOSMode, InputBufferSize, Status,
Terminator, Timeout, ValuesReceived

flushinput

Purpose
Syntax

Arguments

Description

Remarks

See Also

Remove data from the input buffer
flushinput(obj)
obj An instrument object or an array of instrument objects.

flushinput(obj) removes data from the input buffer associated with obj.

After the input buffer is flushed, the BytesAvailable property is automatically
configured to 0.

If flushinput is called during an asynchronous (nonblocking) read operation,
the data currently stored in the input buffer is flushed and the read operation
continues. You can read data asynchronously from the instrument using the
readasync function.

The input buffer is automatically flushed when you connect an object to the
instrument with the fopen function.

You can clear the output buffer with the flushoutput function. You can clear
the hardware buffer for GPIB and VXI instruments with the clrdevice
function.

Functions
clrdevice, flushoutput, fopen, readasync

Properties
BytesAvailable

8-25

flushoutput

Purpose
Syntax

Arguments

Description

Remarks

See Also

8-26

Remove data from the output buffer

flushoutput (obj)
obj An instrument object or an array of instrument objects.

flushoutput(obj) removes data from the output buffer associated with obj.

After the output buffer is flushed, the BytesToOutput property is automatically
configured to 0.

If flushoutput is called during an asynchronous (nonblocking) write operation,
the data currently stored in the output buffer is flushed and the write operation
is aborted. Additionally, the M-file callback function specified for the
OutputEmptyFcn property is executed. You can write data asynchronously to
the instrument using the fprintf or fwrite functions.

The output buffer is automatically flushed when you connect an object to the
instrument with the fopen function.

You can clear the input buffer with the flushinput function. You can clear the

hardware buffer for GPIB and VXI instruments with the clrdevice function.

Functions
clrdevice, flushinput, fopen, fprintf, fwrite

Properties
BytesToOutput, OutputEmptyFcn

fopen

Purpose
Syntax

Arguments

Description

Remarks

Connect an instrument object to the instrument
fopen(obj)
obj An instrument object or an array of instrument objects.

fopen(obj) connects obj to the instrument.

Before you can perform a read or write operation, obj must be connected to the
instrument with the fopen function. When obj is connected to the instrument

¢ Data remaining in the input buffer or the output buffer is flushed.
¢ The Status property is set to open.

¢ The BytesAvailable, ValuesReceived, ValuesSent, and BytesToOutput
properties are set to 0.

An error is returned if you attempt to perform a read or write operation while
obj is not connected to the instrument. You can connect only one instrument
object to the same instrument. For example, you can connect only one serial
port object to an instrument associated with the COM1 port. Similarly, you can
connect only one GPIB object to an instrument with a given board index,
primary address, and secondary address.

Some properties are read-only while the instrument object is open (connected),
and must be configured before using fopen. Examples include
InputBufferSize and OutputBufferSize. Refer to the property reference
pages or use the propinfo function to determine which properties have this
constraint.

The values for some properties are verified only after obj is connected to the
instrument. If any of these properties are incorrectly configured, then an error
is returned when fopen is issued and obj is not connected to the instrument.
Properties of this type include BaudRate and SecondaryAddress, and are
associated with instrument settings.

8-27

fopen

Example This example creates the GPIB object g, connects g to the instrument using
fopen, writes and reads text data, and then disconnects g from the instrument.
g = gpib('ni',0,1);
fopen(g)
fprintf(g, '*IDN?")
idn = fscanf(g);
fclose(g)

See Also Functions
fclose, instrhelp, propinfo

Properties
BytesAvailable, BytesToOutput, Status, ValuesReceived, ValuesSent

8-28

fprintf

Purpose

Syntax

Arguments

Description

Write text to the instrument

fprintf(obj, 'cmd"')

fprintf(obj, 'format','cmd')
fprintf(obj,'cmd', 'mode")
fprintf(obj, 'format','cmd', 'mode")

obj An instrument object.

‘cmd' The string written to the instrument.

‘format' C language conversion specification.

'mode’ Specifies whether data is written synchronously or
asynchronously.

fprintf(obj, 'cmd') writes the string cmd to the instrument connected to obj.
The default format is %s\n. The write operation is synchronous and blocks the
command line until execution is complete.

fprintf(obj,'format','cmd') writes the string using the format specified by
format.

format is a C language conversion specification. Conversion specifications
involve the % character and the conversion characters d, i, 0, u, x, X, f, e, E, g,
G, ¢, and s. Refer to the sprintf file I/O format specifications or a C manual for
more information.

fprintf(obj,'cmd', 'mode') writes the string with command-line access
specified by mode. If mode is sync, cmd is written synchronously and the
command line is blocked. If mode is async, cmd is written asynchronously and
the command line is not blocked. If mode is not specified, the write operation is
synchronous.

fprintf(obj,'format','cmd', 'mode') writes the string using the specified

format. If mode is sync, cmd is written synchronously. If mode is async, cmd is
written asynchronously.

8-29

fprintf

Remarks

8-30

Before you can write text to the instrument, it must be connected to obj with
the fopen function. A connected instrument object has a Status property value
of open. An error is returned if you attempt to perform a write operation while
obj is not connected to the instrument.

The ValuesSent property value is increased by the number of values written
each time fprintf is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

Synchronous Versus Asynchronous Write Operations

By default, text is written to the instrument synchronously and the command
line is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes,

® The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

¢ The M-file callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in “Synchronous Versus Asynchronous Write Operations” on page 2-17.

Rules for Completing a Write Operation with fprintf
A write operation using fprintf completes when

® The specified data is written.
¢ The time specified by the Timeout property passes.

Rules for Writing the Terminator

For serial port, TCP/IP, UDP, and VISA-serial objects, all occurrences of \n in
cmd are replaced with the Terminator property value. Therefore, when using

the default format %s\n, all commands written to the instrument will end with
this property value.

fprintf

Example

See Also

For GPIB, VISA-GPIB, VISA-VXI, and VISA-GPIB-VXI objects, all
occurrences of \n in cmd are replaced with the EOSCharCode property value if
the EOSMode property is set to write or read&write. For example, if EOSMode is
set to write and EOSCharCode is set to LF, then all occurrences of \n are
replaced with a line feed character. Additionally, for GPIB objects, the End Or
Identify (EOI) line is asserted when the terminator is written out.

Note The terminator required by your instrument will be described in its
documentation.

Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)

fprintf(s, 'RS2327")
settings = fscanf(s)
settings =
9600;1;0;NONE;LF

Because the default format for fprintf is %s\n, the terminator specified by the
Terminator property was automatically written. However, in some cases you

might want to suppress writing the terminator. To do so, you must explicitly

specify a format for the data that does not include the terminator, or configure
the terminator to empty.

fprintf(s, '%s', 'RS232?")

Functions
fopen, fwrite, instrhelp, query, sprintf

Properties

BytesToOutput, EOSCharCode, EOSMode, OQutputBufferSize, QutputEmptyFcn,
Status, TransferStatus, ValuesSent

8-31

fread

Purpose

Syntax

Arguments

Description

8-32

Read binary data from the instrument

A fread(obj,size)

A fread(obj,size, 'precision')
[A,count] = fread(...)
[A,count,msg] = fread(...)

[A,count,msg,datagramaddress] = fread(obj,...)
[A,count,msg,datagramaddress,datagramport] = fread(obj,...)
obj An instrument object.

size The number of values to read.

‘precision’ The number of bits read for each value, and the

interpretation of the bits as character, integer, or
floating-point values.

A Binary data returned from the instrument.

count The number of values read.

msg A message indicating if the read operation was
unsuccessful.

datagramaddress The address of the datagram sender.

datagramport The port of the datagram sender.

A = fread(obj,size) reads binary data from the instrument connected to
obj, and returns the data to A. The maximum number of values to read is
specified by size. Valid options for size are

n Read at most n values into a column vector.

[m,n] Read at most m—by—n values filling an m—by-n matrix in column
order.

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. You specify the size, in bytes, of the input
buffer with the InputBufferSize property. A value is defined as a byte
multiplied by the precision (see below).

fread

Remarks

If obj is a UDP object and DatagramTerminateMode is off, the size value is
honored. If size is less than the length of the datagram, only size values are
read. If size is greater than the length of the datagram, a warning is issued
stating that a complete datagram was read before size values was reached.

A = fread(obj,size, 'precision') reads binary data with precision
specified by precision.

precision controls the number of bits read for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. By
default, numeric values are returned in double-precision arrays. The supported
values for precision are listed below in Remarks.

[A,count] = fread(...) returns the number of values read to count.

[A,count,msg] = fread(...) returns a warning message to msg if the read
operation was unsuccessful.

[A,count,msg,datagramaddress] = fread(obj,...) returns the datagram
address to datagramaddress if obj is a UDP object. If more than one datagram
is read, datagramaddress is'"'.

[A,count,msg,datagramaddress,datagramport] = fread(obj,...) returns
the datagram port to datagramport if obj is a UDP object. If more than one
datagram is read, datagramportis[].

Before you can read data from the instrument, it must be connected to obj with
the fopen function. A connected instrument object has a Status property value
of open. An error is returned if you attempt to perform a read operation while
obj is not connected to the instrument.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read,
each time fread is issued.

8-33

fread

8-34

Rules for Completing a Binary Read Operation
A read operation with fread blocks access to the MATLAB command line until

¢ The specified number of values is read. For UDP objects,
DatagramTerminateMode must be off.

¢ The time specified by the Timeout property passes.

e A datagram is received (for UDP objects only when DatagramTerminateMode
is on).

¢ The input buffer is filled.

¢ The EOI line is asserted (GPIB and VXI instruments only).

e The EOSCharCode is received (GPIB and VXI instruments only).

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode property
is configured to read or read&write. For example, if EOSMode is configured to

read and EOSCharCode is configured to LF, then one of the ways that the read
operation terminates is when the line feed character is received.

If EOSMode is none or write, then there is no terminator defined for read
operations. In this case, fread will complete execution and return control to the
command when another criterion, such as a timeout, is met.

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation
Character uchar 8-bit unsigned character
schar 8-bit signed character
char 8-bit signed or unsigned character

fread

See Also

Data Type Precision Interpretation

Integer int8 8-bit integer
int16 16-bit integer
int32 32-bit integer
uint8 8-bit unsigned integer
uinti16 16-bit unsigned integer
uint32 32-bit unsigned integer
short 16-bit integer
int 32-bit integer
long 32- or 64-bit integer
ushort 16-bit unsigned integer
uint 32-bit unsigned integer
ulong 32- or 64-bit unsigned integer

Floating-point single
float32
float
double

float64

32-bit floating point
32-bit floating point
32-bit floating point
64-bit floating point
64-bit floating point

Functions

fgetl, fgets, fopen, fscanf, instrhelp

Properties

BytesAvailable, InputBufferSize, Status, ValuesReceived

8-35

freeserial

Purpose

Syntax

Arguments

Description

Remarks

See Also

8-36

Release the hold on a serial port

freeserial
freeserial('port')
freeserial(obj)

'port' A serial port name, or a cell array of serial port names

obj A serial port object, or an array of serial port objects.

freeserial releases the hold MATLAB has on all serial ports.

freeserial('port') releases the hold MATLAB has on the serial port
specified by port. port can be a cell array of strings.

freeserial(obj) releases the hold MATLAB has on the serial port associated
with the object specified by obj. obj can be an array of serial port objects.

An error is returned if a serial port object is connected to the port that is being
freed. Use the fclose function to disconnect the serial port object from the
serial port.

freeserial is necessary only on Windows platforms. You should use
freeserial if you need to connect to the serial port from another application
after a serial port object has been connected to that port, and you do not want
to exit MATLAB.

Functions
fclose

fscanf

Purpose

Syntax

Arguments

Description

Read data from the instrument, and format as text

A = fscanf(obj)
A fscanf(obj, ' format')
(

A = fscanf(obj, 'format',size)

[A,count] fscanf(...)

[A,count,msg] = fscanf(...)

[A,count,msg,datagramaddress] = fscanf(obj,...)
[A,count,msg,datagramaddress,datagramport] = fscanf(obj,...)
obj An instrument object.

‘format' C language conversion specification.

size The number of values to read.

A Data read from the instrument and formatted as text.
count The number of values read.

msg A message indicating if the read operation was unsuccessful.

datagramaddr The address of the datagram sender.
ess

datagramport The port of the datagram sender.

A = fscanf(obj) reads data from the instrument connected to obj, and
returns it to A. The data is converted to text using the %c format.

A = fscanf(obj, 'format') reads data and converts it according to format.

format is a C language conversion specification. Conversion specifications
involve the % character and the conversion characters d, i, 0, u, x, X, f, ¢, E, g,
G, ¢, and s. Refer to the sscanf file I/O format specifications or a C manual for
more information.

8-37

fscanf

Remarks

8-38

A = fscanf(obj,'format',size) reads the number of values specified by
size. Valid options for size are

n Read at most n values into a column vector.
[m,n] Read at most m—by-n values filling an m—by—n matrix in column
order.

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. If size is not of the form [m,n], and a
character conversion is specified, then Ais returned as a row vector. You specify
the size, in bytes, of the input buffer with the InputBufferSize property. An
ASCII value is one byte.

If obj is a UDP object and DatagramTerminateMode is off, the size value is
honored. If size is less than the length of the datagram, only size values are
read. If size is greater than the length of the datagram, a warning is issued
stating that a complete datagram was read before size values was reached.

[A,count] = fscanf(...) returns the number of values read to count.

[A,count,msg] = fscanf(...) returns a warning message to msg if the read
operation did not complete successfully.

[A,count,msg,datagramaddress] = fscanf(obj,...) returns the datagram
address to datagramaddress if obj is a UDP object. If more than one datagram
is read, datagramaddressis'’.

[A,count,msg,datagramaddress,datagramport] = fscanf(obj,...)
returns the datagram port to datagramport if obj is a UDP object. If more than
one datagram is read, datagramportis [].

Before you can read data from the instrument, it must be connected to obj with
the fopen function. A connected instrument object has a Status property value
of open. An error is returned if you attempt to perform a read operation while
obj is not connected to the instrument.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

fscanf

Example

The ValuesReceived property value is increased by the number of values read
— including the terminator — each time fscanf is issued.

Rules for Completing a Read Operation with fscanf
A read operation with fscanf blocks access to the MATLAB command line
until

¢ The terminator is read. For serial port, TCP/IP, UDP, and VISA-serial
objects, the terminator is given by the Terminator property. If Terminator is
empty, fscanf will complete execution and return control when another
criterion is met. For UDP objects, DatagramTerminateMode must be off.
For all other instrument objects, the terminator is given by the EOSCharCode
property.

¢ The time specified by the Timeout property passes.

¢ The number of values specified by size is read. For UDP objects,
DatagramTerminateMode must be off.

¢ A datagram is received (for UDP objects only when DatagramTerminateMode
is on).

® The input buffer is filled.

¢ The EOI line is asserted (GPIB and VXI instruments only).

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode property
is configured to read or read&write. For example, if EOSMode is configured to

read and EOSCharCode is configured to LF, then one of the ways that the read
operation terminates is when the line feed character is received.

If EOSMode is none or write, then there is no terminator defined for read
operations. In this case, fscanf will complete execution and return control to
the command when another criterion, such as a timeout, is met.

Create the serial port object s and connect s to a Tektronix TDS 210
oscilloscope, which is displaying a sine wave.

s = serial('COM1');
fopen(s)

8-39

fscanf

See Also

8-40

Use the fprintf function to configure the scope to measure the peak-to-peak
voltage of the sine wave, return the measurement type, and return the
peak-to-peak voltage.

fprintf (s, 'MEASUREMENT: IMMED: TYPE PK2PK')
fprintf (s, 'MEASUREMENT : IMMED: TYPE? ')
fprintf (s, 'MEASUREMENT: IMMED: VAL? ")

Because the default value for the ReadAsyncMode property is continuous, data
associated with the two query commands is automatically returned to the input
buffer.

s.BytesAvailable
ans =
13

Use fscanf to read the measurement type. The operation will complete when
the first terminator is read.

meas
meas =
PK2PK

fscanf(s)

Use fscanf to read the peak-to-peak voltage as a floating-point number, and
exclude the terminator.

pk2pk = fscanf(s, '%e',6)
pk2pk =
2.0200

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

Functions
fgetl, fgets, fopen, fread, instrhelp, scanstr, sscanf

Properties
BytesAvailable, BytesAvailableFcn, EOSCharCode, EOSMode,
InputBufferSize, Status, Terminator, Timeout, TransferStatus

fwrite

Purpose

Syntax

Arguments

Description

Remarks

Write binary data to the instrument

fwrite
fwrite
fwrite
fwrite

obj,A)

obj,A, 'precision')

obj,A, mode')

obj,A, 'precision', mode')

—_~ o~~~

obj An instrument object.
A The binary data written to the instrument.

'‘precision' The number of bits written for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

‘mode' Specifies whether data is written synchronously or
asynchronously.

fwrite(obj,A) writes the binary data A to the instrument connected to obj.

fwrite(obj,A, 'precision') writes binary data with precision specified by
precision.

precision controls the number of bits written for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. The
supported values for precision are listed below in Remarks.

fwrite(obj,A, '‘mode') writes binary data with command line access specified
by mode. If mode is sync, A is written synchronously and the command line is
blocked. If mode is async, A is written asynchronously and the command line is
not blocked. If mode is not specified, the write operation is synchronous.

fwrite(obj,A, 'precision', 'mode') writes binary data with precision
specified by precision and command line access specified by mode.

Before you can write data to the instrument, it must be connected to obj with
the fopen function. A connected instrument object has a Status property value
of open. An error is returned if you attempt to perform a write operation while
obj is not connected to the instrument.

8-41

fwrite

8-42

The ValuesSent property value is increased by the number of values written
each time fwrite is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

Synchronous Versus Asynchronous Write Operations

By default, data is written to the instrument synchronously and the command
line is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes,

® The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

¢ The M-file callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in “Synchronous Versus Asynchronous Write Operations” on page 2-17.
Rules for Completing a Write Operation with fwrite

A binary write operation using fwrite completes when

¢ The specified data is written.

¢ The time specified by the Timeout property passes.

Note The Terminator and EOSCharCode properties are not used with binary
write operations.

fwrite

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation
Character uchar 8-bit unsigned character
schar 8-bit signed character
char 8-bit signed or unsigned character
Integer int8 8-bit integer
int16 16-bit integer
int32 32-bit integer
uint8 8-bit unsigned integer
uinti16 16-bit unsigned integer
uint32 32-bit unsigned integer
short 16-bit integer
int 32-bit integer
long 32- or 64-bit integer
ushort 16-bit unsigned integer
uint 32-bit unsigned integer
ulong 32- or 64-bit unsigned integer
Floating-point single 32-bit floating point
float32 32-bit floating point
float 32-bit floating point
double 64-bit floating point
float64 64-bit floating point

8-43

fwrite

See Also Functions
fopen, fprintf, instrhelp

Properties
OutputBufferSize, OutputEmptyFcn, Status, Timeout, TransferStatus,
ValuesSent

8-44

get

Purpose

Syntax

Arguments

Description

Remarks

Return instrument object properties

get(obj)
out = get(obj)
out = get(obj, 'PropertyName')

obj An instrument object or an array of instrument objects.
'PropertyName' A property name or a cell array of property names.

out A single property value, a structure of property values, or
a cell array of property values.

get(obj) returns all property names and their current values to the command
line for obj. The properties are divided into two sections. The base properties
are listed first and the object-specific properties are listed second.

out = get(obj) returns the structure out where each field name is the name
of a property of obj, and each field contains the value of that property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a 1-by-n or
n-by-1 cell array of strings containing property names, then get returns a
1-by-n cell array of values to out. If obj is an array of instrument objects, then
out will be a m-by-n cell array of property values where m is equal to the length
of obj and n is equal to the number of properties specified.

When you specify a property name, you can do so without regard to case, and
you can make use of property name completion. For example, if g is a GPIB
object, then these commands are all valid.

out = get(g, 'EOSMode');
out = get(g, 'eosmode’);
out = get(g, 'EOSM');

8-45

get

Example This example illustrates some of the ways you can use get to return property
values for the GPIB object g.

g = gpib('ni',0,1);

outl = get(g);

out2 = get(g,{'PrimaryAddress', 'EOSCharCode'});
get(g, 'EOIMode"')

ans =

on

See Also Functions
instrhelp, propinfo, set

8-46

gpib

Purpose

Syntax

Arguments

Description

Create a GPIB object

obj gpib('vendor',boardindex,primaryaddress)

obj gpib('vendor',boardindex,primaryaddress, 'PropertyName',
PropertyValue,...)

‘vendor' The vendor name.

boardindex The GPIB board index.

primaryaddress The instrument primary address.
‘PropertyName' A GPIB property name.

'PropertyValue' A property value supported by PropertyName.
obj The GPIB object.

obj = gpib('vendor',boardindex,primaryaddress) createsthe GPIB object
obj associated with the board specified by boardindex, and the instrument
specified by primaryaddress. The GPIB hardware is supplied by vendor.
Supported vendors are given below.

Vendor Description

agilent Agilent Technologies hardware

cec Capital Equipment Corporation hardware
iotech IOTech hardware

keithley Keithley hardware

mcc Measurement Computing Corporation hardware
ni National Instruments hardware

obj = gpib('vendor',boardindex,primaryaddress, 'PropertyName’ ,
PropertyValue,...) creates the GPIB object with the specified property
names and property values. If an invalid property name or property value is
specified, an error is returned and obj is not created.

8-47

gpib

Remarks

Example

8-48

At any time, you can use the instrhelp function to view a complete listing of
properties and functions associated with GPIB objects.

instrhelp gpib

When you create a GPIB object, these property value are automatically
configured:

® The Type property is given by gpib.
® The Name property is given by concatenating GPIB with the board index and

the primary address specified in the gpib function. If the secondary address
is specified, then this value is also used in Name.

¢ The BoardIndex and PrimaryAddress property values are given by the
values supplied to gpib.

You can specify the property names and property values using any format
supported by the set function. For example, you can use property name/
property value cell array pairs. Additionally, you can specify property names
without regard to case, and you can make use of property name completion. For
example, these commands are all valid:

g = gpib(ni, 0,1, 'SecondaryAddress',96)
g = gpib(ni, 0,1, 'secondaryaddress',96)
g = gpib(ni, 0,1, 'SECOND',96)

Before you can communicate with the instrument, it must be connected to obj
with the fopen function. A connected instrument object has a Status property
value of open. An error is returned if you attempt to perform a read or write
operation while obj is not connected to the instrument.

You cannot connect multiple GPIB objects to the same instrument. A GPIB
instrument is uniquely identified by its board index, primary address, and
secondary address.

This example creates the GPIB object g1 associated with a National
Instruments board at index 0 with primary address 1, and then connects g1 to
the instrument.

g1 = gpib('ni',0,1);
fopen(g1l)

gpib

See Also

The Type, Name, BoardIndex, and PrimaryAddress properties are automatically
configured.

get(gl, {'Type', 'Name', 'BoardIndex','PrimaryAddress'})
ans =
"gpib’ 'GPIBO-1' [0] [1]

To specify the secondary address during object creation:

g2 = gpib('ni',0,1, 'SecondaryAddress',96);

Functions
fopen, instrhelp, instrhwinfo

Properties
BoardIndex, Name, PrimaryAddress, SecondaryAddress, Status, Type

8-49

inspect

Purpose
Syntax

Arguments

Description

Remarks

8-50

Open Property Inspector
inspect(obj)
obj An instrument object or an array of instrument objects.

inspect(obj) opens the Property Inspector and allows you to inspect and set
properties for instrument object obj.

You can also open the Property Inspector via the Workspace browser by
right-clicking an instrument object and selecting Explore -> Call Property
Inspector from the context menu.

ol

File Edit WYiew Web ‘Window Help

Dq' E | ﬁ | ﬁ Stack:IElase VI

Name Size |Bytes|Class

@ans 1x3 24| double array

s Explare

Dizplay Summary

Access context (pop-up) menus by

Call Property Inspectar

Select Al . .l . .
. right-clicking an instrument object.
Dizplay Hardware Info
Impart Data....
Save Selection &s.. Instrument Help

Save Workspace Az,

Copy

Delete
Clear YWorkspace

Rename

instrcallback

Purpose
Syntax

Arguments

Description

Remarks

Example

Display event information when an event occurs

instrcallback(obj,event)

obj An instrument object.

event The event that caused the callback to execute.

instrcallback(obj,event) displays a message that contains the event type,
the time the event occurred, and the name of the instrument object that caused
the event to occur.

For error events, the error message is also displayed. For pin status events, the
pin that changed value and its value are also displayed. For trigger events, the
trigger line is also displayed. For datagram received events, the number of
bytes received and the datagram address and port are also displayed.

You should use instrcallback as a template from which you create callback
functions that suit your specific application needs.

The following example creates the serial port objects s, and configures s to
execute instrcallback when an output-empty event occurs. The event occurs
after the *IDN? command is written to the instrument.

s = serial('COM1');

set (s, 'OutputEmptyFcn',@instrcallback)
fopen(s)

fprintf(s, '*IDN?', 'async')

The resulting display from instrcallback is shown below.

OutputEmpty event occurred at 08:37:49 for the object: Serial-COM1

Read the identification information from the input buffer and end the serial
port session.

idn = fscanf(s);
fclose(s)
delete(s)

clear s

8-51

instrcomm

Purpose

Syntax

Arguments

Description

Example

8-52

Graphical tool for communicating with an instrument using text data

instrcomm(obj)
instrcomm

obj An instrument object

instrcomm(obj) launches the Instrument Control ASCII Communication Tool
for the instrument object obj. instrcomm provides you with these features and
capabilities:

¢ Connect obj to the instrument, and disconnect obj from the instrument.

¢ Initiate and terminate recording.

® Perform synchronous read, write, and query operations for text commands.
A history of transferred data is also provided.

¢ Flush the input buffer.

® Monitor the values sent and values received.

instrcomm launches the Instrument Control Configuration Tool, instrcreate.
After you create an instrument object, it is automatically passed to the
Instrument Control ASCII Communication Tool.

This example uses instrcomm to communicate with a Tektronix TDS 210
oscilloscope, and saves the data to a record file. The read and write operations
are taken from “Example: Writing and Reading Text Data” on page 3-22.

First, create the GPIB object g at the command line. Note that you can also
create this object using instrcreate.

g = gpib('ni',0,1);
Launch the Instrument Control ASCII Communication Tool for g.

instrcomm(g)

instrcomm

The initial instrcomm window is shown below. Note that the object name is
displayed in the figure title.

<) Instrument Control ASCIl Communication Tool - Communicating with GPIB0-1

~Communication State

~ Command YWritten to the Instrument

Total:

Current:

Ll

Connect | to instrument Format: m Clear Commands
Start: | recording Command: |Enter acommand here, e.g. *IDM? LI
Rl Wiitite | Fead | (=1 | st [|
TiEE —Data Read from the Instrument
Current: Format: lm Clear Data |
~WaluesReceived Data:

Help Close

The communication session follows these steps:

1 Inthe Communication State panel, select the Connect button to connect g
to the instrument, and select the Start button to initiate recording.

2 Input the instrument commands one at a time, and select the Write, Read,
or Query button as needed for each command.

You can specify the command and data format using the Format
parameters, and you can clear the commands and data from the interface
tool using the Clear Commands and Clear Data buttons, respectively.

8-53

instrcomm

The complete communication session is shown below. The most recent
command written to the instrument is at the top of the Command list, while
the most recent command response read from the instrument is at the bottom
of the Data list.

<) Instrument Control ASCIl Communication Tool - Communicating with GPIB0-1

—Communication State —Command Written ta the Instrument
Disconnect | fram instrument Farmat: I%Sln VI CIearCommandsl
Start | recording Command: |MEASUREMENT-MEAS VALUE? =]
WaluesSent— MEASUEMENTMEAS1 TYPE PKIPK
_ = MEASUREMENTIMMED:SOURCE?
Total: _Data Read fil MEASUREMENT.IMMED:SOURCE CH2
*IDN?
Current: |24 Farmat: |%¢] Clear Data |
~MaluesReceived || | Data [opTpany TDS 210,0,CF:91.1CT Fvrl 16 TDS2CM:CMyY:1 .04
Tatal: ITU CH1
CH2
Current: |5 2.0E0
Help Close
See Also Functions
instrcreate

8-54

instrcreate

Purpose

Syntax

Arguments

Description

Example

Graphical tool for creating and configuring an instrument object

instrcreate
obj = instrcreate

obj An instrument object.

instrcreate launches the Instrument Control Configuration Tool. Using this
tool, you can create and configure an instrument object. You can then save the
instrument object to the MATLAB workspace, convert it to the equivalent
M-code, or save it to a MAT-file. Using this syntax, you have access to the
MATLAB command line.

After the object is created, you can use it from the command line, or use it in
conjunction with the Instrument Control ASCII Communication Tool,
instrcomm. instrcreate is automatically launched if you call instrcomm
without an input argument.

obj = instrcreate saves the configured instrument object to obj if the The
MATLAB workspace check box is selected (see example below). Otherwise,
obj is empty. Using this syntax, you do not have access to the MATLAB
command line until you save the instrument object to the workspace, convert
it to the equivalent M-Code, save it to a MAT-file, or select the Close button.

This example uses instrcreate to create a GPIB object that will communicate
with a Tektronix TDS 210 oscilloscope. The configuration steps are taken from
“Example: Reading Binary Data” on page 3-24.

The first step is to launch the Instrument Control Configuration Tool:

instrcreate

8-55

instrcreate

The initial instrcreate window is shown below. Select The GPIB radio button
to configure and create a GPIB object.

<} Instrument Control Configuration Tool = |EI|1|
rSelect an instrument ohject to create
" serial part © YISA-GPIB
o WISAVHI
 yISA-serial ' YISA-GPIB-VHI
 TCPRIP © UDP
= Hack: | Mext = | Help | Close |

Select the Next button to display the property configuration window. This
window consists of two parts, which are accessible with the GPIB and General
tabs. Each tabbed window contains dialog box parameters that are directly
associated with instrument object properties. By selecting the GPIB tab, you
can select an adaptor, configure the communication address, and configure the
conditions under which a read or write operation completes.

For this example, the GPIB object is created for a National Instruments GPIB
controller with board index 0, and an oscilloscope with primary address 1.

8-56

instrcreate

The GPIB property configuration window is shown below.

<} Instrument Control Configuration Tool - Create a GPIB Objeckt = |EI|1|
GPIB | General |
rAddress Termination
rSelect an Adaptor rEOSMode
I - % none " read

- write ' read&write
r Communication Address

Boardindes: IU rEQSCharCode
. I'LF'
FrimaryAddress: |1|

Secondarydddress: IU rEQIMode

& Assertthe EOI line at end of write.

" Dontassert EQl line at end afwrite.

- CompareBits
" Match the lower 7 hits.

& Match all 8 hits.

= Back | Mext = | Help | Close |

Select the General tab to display the parameters associated with recording,
buffering, the timeout, and callbacks. For this example, the GPIB object is
configured in this way:

¢ The InputBufferSize parameter is configured to 50000.
¢ The Timeout parameter is configured to 120.

¢ The BytesAvailableFcn parameter is configured to @instrcallback, the
BytesAvailableFcnMode parameter is configured to byte, and the
BytesAvailableFecnCount parameter is configured to 5000.

These parameters are configured so that the M-file callback function

instrcallback executes every time 5,000 bytes are stored in the input
buffer.

8-57

instrcreate

8-58

The General property configuration window is shown below.

<} Instrument Control Configuration Tool - Create a GPIB Object =lol x|

GPIB General |

Recording Callbacks

r RecordMame
BytesAvailahleFcn: I@instrcallback
Irecord.bﬁ
BytesAvailahleFcniMode: byte -

rRecordMode ByteséwailableFenCount: ISDDD

& Overwrite Append

" Index TimarFen: I
r RecordDetail TimerPeriod: |1

 verbose & Compact
ErrorFeon: I
InputBufferSize: a0000 QutputEmptyFen: I

QutputBufferSize: 12

Timeout {in secands): |1 20

= Back | Mext = | Help | Close |

Select the Next button to display the object creation window. This window
allows you to save the GPIB object to the MATLAB workspace, convert it to the
equivalent M-code, and save it to a MAT-file. For this example, the GPIB object
is saved to the workspace using the variable g, and saved as M-code to the file
myGPIB1.m.

The instrument object and M-file are created when you select the Create
button. Note that you can select the Back button and modify parameters for g,
or create a new instrument object.

instrcreate

See Also

The object creation window is shown below.

<} Instrument Control Configuration Tool - Create a GPIB Object =lol x|

rSave the instrument object ta:

¥ The MATLAB workspace.

Wariahle Mame: Ig

W fan M-Fie]

M-File Name: |ryGPIBT.m

[~ AMAT-File.

MAT-File Mame: |myokj.mat

Create Status:

= Back | Create | Help | Close |

After the GPIB object is configured and created, you can use it to communicate
with your instrument via the command line or via the Instrument Control
ASCII Communication Tool, instrcomm. Note that instrcomm does not support

asynchronous read and write operations. Therefore, the bytes-available events
will not be generated.

Functions
instrcomm

8-59

instrfind

Purpose

Syntax

Arguments

Description

Remarks

8-60

Return instrument objects from memory to the MATLAB workspace

out = instrfind

out = instrfind('PropertyName' ,PropertyValue,...)

out = instrfind(S)

out = instrfind(obj, 'PropertyName',PropertyValue,...)

'PropertyName' A property name for obj.

PropertyValue A property value supported by PropertyName.

S A structure of property names and property values.

obj An instrument object, or an array of instrument objects.
out An array of instrument objects.

out = instrfind returns all valid instrument objects as an array to out.

out instrfind('PropertyName' ,PropertyValue,...) returns an array of
instrument objects whose property names and property values match those
specified.

out = instrfind(S) returns an array of instrument objects whose property
names and property values match those defined in the structure S. The field
names of S are the property names, while the field values are the associated
property values.

out = instrfind(obj,'PropertyName',PropertyVvalue,...) restricts the
search for matching property name/property value pairs to the instrument
objects listed in obj.

You must specify property values using the same format as the get function
returns. For example, if get returns the Name property value as MyObject,
instrfind will not find an object with a Name property value of myobject.
However, this is not the case for properties that have a finite set of string
values. For example, instrfind will find an object with a Parity property
value of Even or even. You can use the propinfo function to determine if a
property has a finite set of string values.

instrfind

Example

See Also

You can use property name/property value string pairs, structures, and cell

array pairs in the same call to instrfind.

Suppose you create the following two GPIB objects.

g1 = gpib('ni',0,1);
g2 = gpib('ni',0,2);
g2.EOSCharCode = 'CR';
fopen([g1 g2])

You can use instrfind to return instrument objects based on property values.

outl = instrfind('Type', 'gpib');
out2

instrfind({'Type', 'EOSCharCode'},{"'gpib', 'CR"'});

You can also use instrfind to return cleared instrument objects to the

MATLAB workspace.

clear g1 g2
newobjs = instrfind

Instrument Object Array

Index: Type: Status: Name:
1 gpib open GPIBO-1
2 gpib open GPIBO-2

Assign the instrument objects their original names.

g1 newobjs(1);
g2 = newobjs(2);

Close both g1 and g2.

fclose(newobjs)

Functions
clear, get, propinfo

8-61

instrhelp

Purpose

Syntax

Arguments

Description

8-62

Return instrument object function and property help

instrhelp

instrhelp('name"')

out = instrhelp('name')
instrhelp(obj)
instrhelp(obj, 'name')

out = instrhelp(obj, 'name')

"name' A function name, property name, or interface type.
obj An instrument object.
out Contains the text string.

instrhelp returns a complete listing of instrument object functions, with a
brief description of each.

instrhelp('name') returns help for the function, property, or interface
specified by name.

You can return specific instrument object information by specifying name in the
form object/function or object.property. For example, to return the help
for a serial port object's fprintf function, name would be serial/fprintf. To
return the help for a serial port object's Parity property, name would be
serial.parity.

out = instrhelp('name') returns the help text to out.

instrhelp(obj) returns a complete listing of functions and properties for obj,
with a brief description of each. Help for the constructor is also returned.

instrhelp(obj, 'name') returns help for the function or property specified by
name associated with obj.

out = instrhelp(obj, 'name') returns the help text to out.

instrhelp

Remarks

Example

When returning property help, the names in the See Also section that contain
all uppercase letters are function names. The names that contain a mixture of
upper and lowercase letters are property names. When returning function
help, the See Also section contains only function names.

As shown below, you can also display help via the Workspace browser by
right-clicking an instrument object, and selecting Explore -> Instrument Help
from the context menu.

ol

File Edit WYiew Web ‘Window Help

Dq' E | ﬁ | ﬁ Stack:IElase VI

Name Size |Bytes|Class

@ans 1x3 24| double array

Dizplay Summary

e Access confext (pop-up) menus by
Call Property Inspectar . e . . N
Select &l right-clicking an instrument object.

Dizplay Hardware Info

Impart Data....

Save Selection As..

Save Workspace Az,

Copy

Delete
Clear YWorkspace

Rename

The following commands illustrate some of the ways you can get function and
property help without creating an instrument object.

instrhelp gpib

out = instrhelp('gpib.m');
instrhelp set
instrhelp('gpib/set')
instrhelp EOSCharCode
instrhelp('gpib.eoscharcode')

8-63

instrhelp

The following commands illustrate some of the ways you can get function and
property help for an existing instrument object.

g = gpib('ni',0,1);
instrhelp(g)

instrhelp(g, 'EOSMode');

out = instrhelp(g, 'trigger');

See Also Functions
propinfo

8-64

instrhwinfo

Purpose

Syntax

Arguments

Description

Return information about available hardware

out = instrhwinfo
out = instrhwinfo('interface')

out = instrhwinfo('interface', 'adaptor')

out = instrhwinfo('interface', 'adaptor', 'type')
out = instrhwinfo(obj)

out = instrhwinfo(obj,'FieldName"')

‘interface' A supported instrument interface.

‘adaptor' A supported GPIB or VISA adaptor.

obj An instrument object or array of instrument objects.
'FieldName' A field name or cell array of field names associated with obj.

out A structure or array containing hardware information.

out = instrhwinfo returns hardware information to the structure out. This
information includes the toolbox version, MATLAB version and supported
interfaces.

out = instrhwinfo('interface') returns information related to the
interface specified by interface. interface can be serial, gpib, tcpip, udp,
or visa. For the GPIB and VISA interfaces, the information includes the
installed adaptors. For the serial port interface, the information includes the
available ports and the object constructor name. For the TCP/IP and UDP
interfaces, the information includes the local host address.

out = instrhwinfo('interface', 'adaptor') returns information related to
the adaptor specified by adaptor, and for the interface specified by interface.
interface can be gpib or visa. The returned information includes the adaptor
version and available hardware. The GPIB adaptors are agilent, cec, iotech,
keithley, mcc, and ni. The VISA adaptors are agilent, ni, and tek.

out = instrhwinfo('interface', 'adaptor', 'type') returns a structure,
out, which contains information on the specified type, type. interface can
only be visa. adaptor can be agilent, ni, or tek. type can be gpib, vxi,
gpib-vxi, serial, or rsib.

8-65

instrhwinfo

Remarks

Example

8-66

out = instrhwinfo(obj) returns information on the adaptor and
vendor-supplied DLL associated with the VISA or GPIB object obj. If obj is a
serial port, TCP/IP, or UDP object, then JAR file information is returned. If obj
is an array of instrument objects, then out is a 1-by-n cell array of structures
where n is the length of obj.

out = instrhwinfo(obj,'FieldName') returns hardware information for the
field name specified by FieldName. FieldName can be a single string or a cell
array of strings. out is a m-by-n cell array where m is the length of obj and n
is the length of FieldName. You can return the supported values for FieldName
using the instrhwinfo(obj) syntax.

As shown below, you can also display hardware information via the Workspace
browser by right-clicking an instrument object, and selecting Explore ->
Display Hardware Info from the context menu.

ol

File Edit WYiew Web ‘Window Help

Dq' E | ﬁ | ﬁ Stack:IElase VI

Name Size |Bytes|Class

@ans 1x3 24| double array

Dizplay Summary

Access confext (pop-up) menus by
right-clicking an instrument object.

Call Property Inspectar
Select Al P

Impart Data....

Dizplay Hardware Info |

Save Selection &s.. Instrument Help

Save Workspace Az,

Copy

Delete
Clear YWorkspace

Rename

The following commands illustrate some of the ways you can get
hardware-related information without creating an instrument object.

out1l = instrhwinfo;

out2 instrhwinfo('serial');

out3 instrhwinfo('gpib', 'ni');

out4 = instrhwinfo('visa', 'agilent');

instrhwinfo

The following commands illustrate some of the ways you can get
hardware-related information for an existing instrument object.

vs = visa('agilent', 'ASRL1::INSTR');

out5 = instrhwinfo(vs)
outd

AdaptorDl1lName: [1x67 char]
AdaptorDllVersion: 'Version 1.2 (R13)'
AdaptorName: 'AGILENT'
VendorDriverDescription: 'Agilent Technologies VISA Driver'
VendorDriverVersion: '1.1000'

vsdll instrhwinfo(vs, 'AdaptorDl11Name')
vsdll D:\V6\toolbox\instrument\instrumentadaptors\win32\
mwagilentvisa.dll

8-67

instrreset

Purpose
Syntax
Description

Remarks

See Also

8-68

Disconnect and delete all instrument objects

instrreset

instrreset disconnects and deletes all instrument objects.

If data is being written or read asynchronously, the asynchronous operation is

stopped.

instrreset is equivalent to issuing the stopasync (if needed), fclose, and
delete functions for all instrument objects.

When you delete an instrument object, it becomes invalid. Because you cannot
connect an invalid object to the instrument, you should remove it from the
workspace with the clear command.

Functions
clear, delete, fclose, isvalid, stopasync

instrschool

Purpose Interface for displaying toolbox tutorials
Syntax instrschool
Description instrschool launches the Instrument Control Toolbox Tutorials interface,

which is shown below.

<} Instrument Control Toolbox Tuterials =10l]

Serial | opie | wvisa | TP | upp | common

The buttons in this window will launch the Instrument —
Control Toolbox demos for serial port objects.

Azcii Read/Write - introduces reading and writing ascii
data from the instrument.

Binary Fead/Write - introduces reading and writing binary
data from the instrument.

Asynchronous - illustrates asynchronous read and write
behavior.
=
4 [
Select a tutarial Actions
"))) [t = |
Ascii Readirite Binary Readhiirite Asynchronous

= Frevious |
Reset |

Refer to “Demos” on page 1-9 for a list of demos included with instrschool.

8-69

isvalid

Purpose
Syntax
Arguments
Description

Remarks

Example

See Also

8-70

Determine if instrument objects are valid

out = isvalid(obj)
obj An instrument object or array of instrument objects.
out A logical array.

out = isvalid(obj) returns the logical array out, which contains a 0 where
the elements of obj are invalid instrument objects and a 1 where the elements
of obj are valid instrument objects.

obj becomes invalid after it is removed from memory with the delete function.
Because you cannot connect an invalid object to the instrument, you should
remove it from the workspace with the clear command.

Suppose you create the following two GPIB objects:

gpib('ni',0,1);
gpib('ni',0,2);

gl
g2

g2 becomes invalid after it is deleted.

delete(g2)
isvalid verifies that g1 is valid and g2 is invalid.

garray = [g1 g2];
isvalid(garray)
ans =

1 0

Functions
clear, delete

length

Purpose
Syntax

Arguments

Description

See Also

Length of instrument object array

length(obj)
obj An instrument object or an array of instrument objects.

length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

Functions
instrhelp, size

8-71

load

Purpose

Syntax

Arguments

Description

Remarks

Example

8-72

Load instrument objects and variables into the MATLAB workspace

load filename
load filename obj1 obj2 ...

out = load('filename','obj1','obj2',...)

filename The MAT-file name.

obj1 obj2 ... Instrument objects or arrays of instrument objects.

out A structure containing the specified instrument objects.

load filename returns all variables from the MAT-file specified by filename
into the MATLAB workspace.

load filename obj1 obj2 ... returns the instrument objects specified by
obj1 obj2... from the MAT-file filename into the MATLAB workspace.

out = load('filename','obj1','obj2',...) returns the specified instrument
objects from the MAT-file filename as a structure to out instead of directly
loading them into the workspace. The field names in out match the names of
the loaded instrument objects.

Values for read-only properties are restored to their default values upon
loading. For example, the Status property is restored to closed. To determine
if a property is read-only, examine its reference pages or use the propinfo
function.

Suppose you create the GPIB objects g1 and g2, configure a few properties for
g1, and connect both objects to their associated instruments.

g1 = gpib('ni',0,1);

g2 = gpib('ni',0,2);

set(gl, 'EOSMode', 'read', 'EOSCharCode', 'CR")
fopen([g1 g2])

load

See Also

The read-only Status property is automatically configured to open.

get([gl g2], 'Status"')
ans =

"open'

"open'

Save g1 and g2 to the file MyObject.mat, and then load the objects into the
MATLAB workspace.

save MyObject g1 g2
load MyObject g1 g2

Values for read-only properties are restored to their default values upon
loading, while all other property values are honored.

get([gl g21,{'EOSMode', 'EOSCharCode', 'Status'})

ans =
'read’ 'CR' ‘closed’
'none'’ '"LF' 'closed’
Functions

instrhelp, propinfo, save

8-73

memmap

Purpose Map memory for low-level memory read and write operations
Syntax memmap (obj, 'adrspace' ,offset,size)
Arguments obj A VISA-VXI or VISA-GPIB-VXI object.
‘adrspace'’ The memory address space.
offset Offset for the memory address space.
size Number of bytes to map.
Description memmap (obj, 'adrspace',offset,size) maps the amount of memory specified

by size in address space, adrspace with an offset, offset. You can configure
adrspace to A16 (A16 address space), A24 (A24 address space), or A32 (A32
address space).

Remarks Before you can map memory, obj must be connected to the instrument with the
fopen function. A connected instrument object has a Status property value of
open. An error is returned if you attempt to map memory while obj is not
connected to the instrument.

To unmap the memory, use the memunmap function. If memory is mapped and
fclose is called, the memory is unmapped before the object is disconnected
from the instrument.

The MappedMemorySize property returns the size of the memory space mapped.
You must map the memory space before using the mempoke or mempeek function.

Example Create the VISA-VXI object vv associated with a VXI chassis with index 0, and
an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent', 'VXI0::130::INSTR');
fopen(vv)

Use memmap to map 16 bytes in the A16 address space.
memmap (vv, 'A16',0,16)

8-74

memmap

See Also

Read the first and second instrument registers.

regi
reg2

mempeek (vv,0, 'uint16"');
mempeek (vv,2, 'uint16');

Unmap the memory and disconnect vv from the instrument.

memunmap (vv)
fclose(vv)

Functions
fopen, fclose, mempeek, mempoke, memunmap

Properties
MappedMemorySize, Status

8-75

mempeek

Purpose

Syntax

Arguments

Description

Remarks

8-76

Low-level memory read from VXI register

out = mempeek(obj,offset)

out = mempeek(obj,offset, 'precision')

obj A VISA-VXI or VISA-GPIB-VXI object.

offset The offset in the mapped memory space from which the
data is read.

'precision' The number of bits to read from the memory address.

out An array containing the returned value.

out = mempeek(obj,offset) reads a uint8 value from the mapped memory
space specified by offset for the object obj. The value is returned to out.

out = mempeek(obj,offset, 'precision') reads the number of bits specified
by precision, from the mapped memory space specified by offset. precision
can be uint8, uint16, or uint32, which instructs mempeek to read 8-, 16-, or
32-bit values, respectively. precision can also be single, which instructs
mempeek to read single precision values.

Before you can read from the VXI register, obj must be connected to the
instrument with the fopen function. A connected instrument object has a
Status property value of open. An error is returned if you attempt a read
operation while obj is not connected to the instrument.

You must map the memory space using the memmap function before using
mempeek. The MappedMemorySize property returns the size of the memory space
mapped.

offset indicates the offset in the mapped memory space from which the data
is read. For example, if the mapped memory space begins at 200H, the offset is
2, and the precision is uint8, then the data is read from memory location 202H.
If the precision is uint16, the data is read from 202H and 203H.

To increase speed, mempeek does not return error messages from the
instrument.

mempeek

Example

See Also

Create the VISA-VXI object vv associated with a VXI chassis with index 0, and
an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent', 'VXIO0::130::INSTR');
fopen(vv)

Use memmap to map 16 bytes in the A16 address space.
memmap (vv, 'A16',0,16)

Perform a low-level read the first and second instrument registers.

regl = mempeek(vv,0,'uint16"')
regl =

53247
reg2 = mempeek(vv,2,'uint16"')
reg2 =

20993

Unmap the memory and disconnect vv from the instrument.

memunmap (vv)
fclose(vv)

Refer to “Example: Using High-Level Memory Functions” on page 4-16 for a
description of the first four registers of the E1432A digitizer.

Functions
fopen, memmap, mempoke, memunmap

Properties
MappedMemorySize, MemoryIncrement, Status

8-77

mempoke

Purpose

Syntax

Arguments

Description

Remarks

8-78

Low-level memory write to VXI register

mempoke (obj,data,offset)
mempoke (obj,data,offset, 'precision')

obj A VISA-VXI or VISA-GPIB-VXI object.

data The data written to the memory address.

offset The offset in the mapped memory space to which the data
is written.

'precision' The number of bits to write to the memory address.

mempoke (obj,data,offset) writes the uint8 value specified by data to the
mapped memory address specified by offset for the object obj.

mempoke (obj,data,offset, 'precision') writes data using the number of
bits specified by precision. precision can be uint8, uint16, or uint32, which
instructs mempoke to write data as 8-, 16-, or 32-bit values, respectively.
precision can also be single, which instructs mempoke to write data as single
precision values.

Before you can write to the VXI register, obj must be connected to the
instrument with the fopen function. A connected instrument object has a
Status property value of open. An error is returned if you attempt a write
operation while obj is not connected to the instrument.

You must map the memory space using the memmap function before using
mempoke. The MappedMemorySize property returns the size of the memory space
mapped.

offset indicates the offset in the mapped memory space to which the data is
written. For example, if the mapped memory space begins at 200H, the offset
is 2, and the precision is uint8, then the data is written to memory location
202H. If the precision is uint16, the data is written to 202H and 203H.

To increase speed, mempoke does not return error messages from the
instrument.

mempoke

Example

See Also

Create the VISA-VXI object vv associated with a VXI chassis with index 0, and
an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent', 'VXIO0::130::INSTR');
fopen(vv)

Use memmap to map 16 bytes in the A16 address space.
memmap (vv, 'A16',0,16)

Perform a low-level write to the fourth instrument register, which has an offset
of 6.

mempoke (vv,45056,6, 'uinti16"')
Unmap the memory and disconnect vv from the instrument.

memunmap (vv)
fclose(vv)

Refer to “Example: Using High-Level Memory Functions” on page 4-16 for a
description of the first four registers of the E1432A digitizer.

Functions
fopen, memmap, mempeek

Properties
MappedMemorySize, MemoryIncrement, Status

8-79

memread

Purpose

Syntax

Arguments

Description

8-80

High-level memory read from VXI register

out = memread(obj)

out = memread(obj,offset)

out = memread(obj,offset, 'precision')

out = memread(obj,offset, 'precision', 'adrspace')

out = memread(obj,offset, 'precision', 'adrspace',size)

obj A VISA-VXI or VISA-GPIB-VXI object.

offset Offset for the memory address space.

'precision' The number of bits to read from the memory address.
‘adrspace'’ The memory address space.

offset Offset for the memory address space.

size The size of the data block to read.

out An array containing the returned value.

out = memread(obj) reads a uint8 value from the A16 address space with an
offset of O for the object obj.

out = memread(obj,offset) reads a uint8 value from the A16 address space
with an offset specified by offset. You must specify offset as a decimal value.

out = memread(obj,offset, 'precision') reads the number of bits specified
by precision from the A16 address space. precision can be uint8, uint16, or
uint32, which instructs memread to read 8-, 16-, or 32-bit values, respectively.
precision can also be single, which instructs memread to read single-precision
values.

out = memread(obj,offset, 'precision', 'adrspace') reads the specified
number of bits from the address space specified by adrspace. adrspace can be
A16,A24, or A32. The MemorySpace property indicates which VXI address spaces
are used by the instrument.

out = memread(obj,offset, 'precision', 'adrspace',size) reads ablock of
data with a size specified by size.

memread

Remarks

Example

See Also

Before you can read data from the VXI register, obj must be connected to the
instrument with the fopen function. A connected instrument object has a
Status property value of open. An error is returned if you attempt to read
memory while obj is not connected to the instrument.

Create the VISA-VXI object vv associated with a VXI chassis with index 0, and
an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXIO0::130::INSTR');
fopen(vv)

Perform a high-level read of the first instrument register.

regi
regi

memread(vv,0, 'uint16"')

53247

Perform a high-level read of the next three instrument registers.

reg24 = memread(vv,2,'uinti6','A16',3)
reg24 =

20993

50012

40960

Disconnect vv from the instrument.

fclose(vv)

Refer to “Example: Using High-Level Memory Functions” on page 4-16 for a
description of the first four registers of the E1432A digitizer.

Functions
fopen, mempeek, memwrite

Properties
MemoryIncrement, MemorySpace, Status

8-81

memunmap

Purpose
Syntax

Arguments

Description

Remarks

Example

See Also

8-82

Unmap memory for low-level memory read and write operations

memunmap (obj)
obj A VISA-VXI or VISA-GPIB-VXI object.

memunmap (obj) unmaps memory space previously mapped by the memmap
function.

When the memory space is unmapped, the MappedMemorySize property is set
to 0 and the MappedMemoryBase property is set to OH.

Create the VISA-VXI object vv associated with a VXI chassis with index 0, and
an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent', 'VXI0::130::INSTR');
fopen(vv)

Map 16 bytes in the A16 address space.
memmap (vv, 'A16',0,16)
Read the first and second instrument registers.

regl = mempeek(vv,0,'uint16');
reg2 = mempeek(vv,2,'uinti6');

Use memunmap to unmap the memory, and disconnect vv from the instrument.

memunmap (vv)
fclose(vv)

Functions
memmap, mempeek, mempoke

Properties
MappedMemoryBase, MappedMemorySize

memwrite

Purpose

Syntax

Arguments

Description

Remarks

High-level memory write to VXI register

memwrite(obj,data)

memwrite (obj,data,offset)

memwrite(obj,data,offset, 'precision')
memwrite(obj,data,offset, 'precision', 'adrspace')

obj A VISA-VXI or VISA-GPIB-VXI object.

data The data written to the memory address.

offset Offset for the memory address space.

'‘precision’ The number of bits to write to the memory address.
‘adrspace'’ The memory address space.

memwrite(obj,data) writes the uint8 value specified by data to the A16
address space with an offset of 0 for the object obj. data can be an array of
uint8 values.

memwrite (obj,data,offset) writes data to the A16 address space with an
offset specified by offset. offset is specified as a decimal value.

memwrite (obj,data,offset, 'precision') writes data with precision
specified by precision. precision can be uint8, uint16, or uint32, which
instructs memwrite to write data as 8-, 16-, or 32-bit values, respectively.
precision can also be single, which instructs memwrite to write data as
single-precision values.

memwrite(obj,data,offset, 'precision', 'adrspace') writes data to the
address space specified by adrspace. adrspace can be A16, A24, or A32. The
MemorySpace property indicates which VXI address spaces are used by the
instrument.

Before you can write to the VXI register, obj must be connected to the
instrument with the fopen function. A connected instrument object has a
Status property value of open. An error is returned if you attempt a write
operation while obj is not connected to the instrument.

8-83

memwrite

Example Create the VISA-VXI object vv associated with a VXI chassis with index 0, and
an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXIO::130::INSTR');
fopen(vv)

Perform a high-level write to the fourth instrument register, which has an
offset of 6.

memwrite(vv,45056,6, 'uint16', 'A16")
Disconnect vv from the instrument.

fclose(vv)

Refer to “Example: Using High-Level Memory Functions” on page 4-16 for a
description of the first four registers of the E1432A digitizer.

See Also Functions
fopen, memread, mempoke

Properties
MemoryIncrement, MemorySpace, Status

8-84

obj2mfile

Purpose

Syntax

Arguments

Description

Remarks

Convert instrument object to MATLAB code

obj2mfile(obj, 'filename')

obj2mfile(obj, 'filename', 'syntax')
obj2mfile(obj, 'filename', 'mode")
obj2mfile(obj,'filename’', 'syntax', 'mode')

obj An instrument object or an array of instrument objects.

‘filename' The name of the file that the MATLAB code is written to.
You can specify the full pathname. If an extension is not
specified, the .m extension is used.

‘syntax' Syntax of the converted MATLAB code. By default, the
set syntax is used. If dot is specified, then the dot
notation is used.

‘mode’ Specifies whether all properties are converted to code, or
only modified properties are converted to code.

obj2mfile(obj,'filename') converts obj to the equivalent MATLAB code
using the set syntax and saves the code to filename. Only those properties not
set to their default value are saved.

obj2mfile(obj,'filename', 'syntax') converts obj to the equivalent
MATLAB code using the syntax specified by syntax. You can specify syntax to
be set or dot. set uses the set syntax, while dot uses the dot notation.

obj2mfile(obj,'filename', 'mode') converts the properties specified by
mode. You can specify mode to be all or modified. If mode is all, then all
properties are converted to code. If mode is modified, then only those properties
not set to their default value are converted to code.

obj2mfile(obj,'filename', 'syntax', 'mode') converts the specified
properties to code using the specified syntax.

You can recreate a saved instrument object by typing the name of the M-file at
the MATLAB command line.

8-85

obj2mfile

Example

See Also

8-86

Ifthe UserData property is not empty or if any of the callback properties are set
to a cell array of values or a function handle, then the data stored in those
properties is written to a MAT-file when the instrument object is converted and
saved. The MAT-file has the same name as the M-file containing the
instrument object code (see the example below).

Read-only properties are restored with their default values. For example,
suppose an instrument object is saved with a Status property value of open.
When the object is recreated, Status is set to its default value of closed.

Suppose you create the GPIB object g, and configure several property values.

g = gpib('ni',0,1);
set(g, 'Tag', '"MyGPIB object', 'EOSMode', 'read', 'EOSCharCode','CR")
set(g, 'UserData',{'test',2,magic(10)})

The following command writes MATLAB code to the files MyGPIB.m and
MyGPIB.mat.

obj2mfile(g, 'MyGPIB.m', 'dot"')

MyGPIB.m contains code that recreates the commands shown above using the
dot notation for all properties that have their default values changed. Because
UserData is set to a cell array of values, this property appears in MyGPIB.m as

obj1.UserData = userdatail;

It is saved in MyGPIB.mat as
userdata = {'test', 2, magic(10)};

To recreate g in the MATLAB workspace using a new variable, gnew:
gnew = MyGPIB;

The associated MAT-file, MyGPIB.mat, is automatically run and UserData is
assigned the appropriate values.

gnew.UserData
ans =
"test' [2] [10x10 double]

Functions
propinfo

propinfo

Purpose

Syntax

Arguments

Description

Return instrument object property information

out = propinfo(obj)
out = propinfo(obj, 'PropertyName")
obj An instrument object.

'"PropertyName' A property name or cell array of property names.
out A structure containing property information.
out = propinfo(obj) returns the structure out with field names given by the

property names for obj. Each property name in out contains the fields shown
below.

Field Name Description

Type The property data type. Possible values are any, ASCII
value, callback, double, string, and struct.

Constraint The type of constraint on the property value. Possible
values are ASCII value, bounded, callback, enum, and
none.

ConstraintValue Property value constraint. The constraint can be a
range of valid values or a list of valid string values.

DefaultValue The property default value.

ReadOnly The condition under which a property is read-only.
Possible values are always, never, whileOpen, and
whileRecording.

Interface If the property is interface-specific, a 1 is returned. If a

Specific 0 is returned, the property is supported for all
interfaces.

out = propinfo(obj, 'PropertyName') returns the structure out for the
property specified by PropertyName. The field names of out are given in the

8-87

propinfo

Remarks

Example

See Also

8-88

table shown above. If PropertyName is a cell array of property names, a cell
array of structures is returned for each property.

You can get help for instrument object properties with the instrhelp function.

You can display all instrument object property names and their current values
using the get function. You can display all configurable properties and their
possible values using the set function.

When you specify property names, you can do so without regard to case, and
you can make use of property name completion. For example, if g is a GPIB
object, then the following commands are all valid.

out = propinfo(g, 'EOSMode');
out propinfo(g, 'eosmode');
out propinfo(g, 'EOSM');

To return all property information for the GPIB object g:

= gpib('ni',0,1);
ut = propinfo(g);

To display all the property information for the InputBufferSize property:

out.InputBufferSize
ans =
Type: 'double'
Constraint: 'none'’
ConstraintValue: "'
DefaultValue: 512
ReadOnly: 'whileOpen'
InterfaceSpecific: 0

To display the default value for the EOSMode property:

out.EOSMode.DefaultValue
ans =
none

Functions
get, instrhelp, set

query

Purpose

Syntax

Arguments

Description

Write text to the instrument, and read data from the instrument

out = query(obj,'cmd")

out = query(obj,'cmd', 'wformat')

out = query(obj,'cmd', 'wformat','rformat')
[out,count] = query(...)

[out,count,msg] = query(...)

obj An instrument object.

‘cmd' String that is written to the instrument.
‘wformat' Format for written data.

‘rformat' Format for read data.

out Contains data read from the instrument.
count The number of values read.

msg A message indicating if the read operation was

unsuccessful.

out = query(obj,'cmd') writes the string cmd to the instrument connected to
obj. The data read from the instrument is returned to out. By default, the %s\n
format is used for cmd, and the %c format is used for the returned data.

out = query(obj,'cmd', 'wformat') writes the string cmd using the format
specified by wformat.

wformat is a C language conversion specification. Conversion specifications
involve the % character and the conversion characters d, i, 0, u, x, X, f, e, E, g,
G, ¢, and s. Refer to the sprintf file I/O format specifications or a C manual for
more information.

out = query(obj,'cmd', 'wformat','rformat') writes the string cmd using
the format specified by wformat. The data read from the instrument is returned
to out using the format specified by rformat.

rformat is a C language conversion specification. The supported conversion
specifications are identical to those supported by wformat.

8-89

query

Remarks

Example

See Also

8-90

[A,count] = query(...) returns the number of values read to count.

[A,count,msg] = query(...) returns a warning message to msg if the read
operation did not complete successfully.

Before you can write or read data, obj must be connected to the instrument
with the fopen function. A connected instrument object has a Status property
value of open. An error is returned if you attempt to perform a query operation
while obj is not connected to the instrument.

query operates only in synchronous mode, and blocks the command line until
the write and read operations complete execution.

Using query is equivalent to using the fprintf and fgets functions. The rules
for completing a write operation are described in the fprintf reference pages.
The rules for completing a read operation are described in the fgets reference

pages.

This example creates the GPIB object g, connects g to a Tektronix TDS 210
oscilloscope, writes and reads text data using query, and then disconnects g
from the instrument.

g = gpib('ni*,0,1);

fopen(g)
idn = query(g, '*IDN?')
idn =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04
fclose(g)

Functions
fopen, fprintf, fgets, sprintf

Properties
Status

readasync

Purpose

Syntax

Arguments

Description

Remarks

Read data asynchronously from the instrument

readasync(obj)
readasync(obj,size)

obj An instrument object.

size The number of bytes to read from the instrument.

readasync(obj) initiates an asynchronous read operation.

readasync(obj,size) asynchronously reads, at most, the number of bytes
specified by size. If size is greater than the difference between the
InputBufferSize property value and the BytesAvailable property value, an
error is returned.

Before you can read data, you must connect obj to the instrument with the
fopen function. A connected instrument object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the instrument.

For serial port, TCP/IP, UDP, and VISA-serial objects, you should use
readasync only when you configure the ReadAsyncMode property to manual.
readasync is ignored if used when ReadAsyncMode is continuous.

The TransferStatus property indicates if an asynchronous read or write
operation is in progress. For all instrument objects, you cannot use readasync
while a read operation is in progress. For serial port and VISA-serial objects,
you can write data while an asynchronous read is in progress because serial
ports have separate read and write pins. You can stop asynchronous read and
write operations with the stopasync function.

You can monitor the amount of data stored in the input buffer with the
BytesAvailable property. Additionally, you can use the BytesAvailableFcn
property to execute an M-file callback function when the terminator or the
specified amount of data is read.

8-91

readasync

Example

8-92

Rules for Completing an Asynchronous Read Operation
An asynchronous read operation with readasync completes when one of these
conditions is met:

¢ The terminator is read. For serial port, TCP/IP, UDP, and VISA-serial
objects, the terminator is given by the Terminator property. Note that for
UDP objects, DatagramTerminateMode must be off.
For all other instrument objects except VISA-RSIB, the terminator is given
by the EOSCharCode property.

¢ The time specified by the Timeout property passes.
¢ The specified number of bytes is read.
® The input buffer is filled.

¢ A datagram has been received (UDP objects only if DatagramTerminateMode
is on)
¢ The EOI line is asserted (GPIB and VXI instruments only).

For serial port, TCP/IP, UDP, and VISA-serial objects, readasync can be slow
because it checks for the terminator. To increase speed, you might want to
configure ReadAsyncMode to continuous and continuously return data to the
input buffer as soon as it is available from the instrument.

This example creates the serial port object s, connects s to a Tektronix TDS 210
oscilloscope, configures s to read data asynchronously only if readasync is
issued, and configures the instrument to return the peak-to-peak value of the
signal on channel 1.

s = serial('COM1');

fopen(s)

s.ReadAsyncMode = 'manual’;

fprintf (s, 'Measurement:Meas1:Source CH1')
fprintf(s, 'Measurement:Meas1:Type Pk2Pk")
fprintf (s, 'Measurement:Measi:Value?')

Initially, there is no data in the input buffer.

s.BytesAvailable
ans =
0

readasync

See Also

Begin reading data asynchronously from the instrument using readasync.
When the read operation is complete, return the data to the MATLAB
workspace using fscanf.

readasync(s)
s.BytesAvailable
ans =

15
out = fscanf(s)
out =
2.0399999619E0
fclose(s)

Functions
fopen, stopasync

Properties
BytesAvailable, BytesAvailableFcn, ReadAsyncMode, Status,
TransferStatus

8-93

record

Purpose

Syntax

Arguments

Description

Remarks

Example

8-94

Record data and event information to a file

record(obj)
record(obj, 'switch')

obj An instrument object.

'switch' Switch recording capabilities on or off.

record(obj) toggles the recording state for obj.

record(obj, 'switch') initiates or terminates recording for obj. switch can
be on or off. If switch is on, recording is initiated. If switch is off, recording
is terminated.

Before you can record information to disk, obj must be connected to the
instrument with the fopen function. A connected instrument object has a
Status property value of open. An error is returned if you attempt to record
information while obj is not connected to the instrument. Each instrument
object must record information to a separate file. Recording is automatically
terminated when obj is disconnected from the instrument with fclose.

The RecordName and RecordMode properties are read-only while obj is
recording, and must be configured before using record.

For a detailed description of the record file format and the properties
associated with recording data and event information to a file, refer to
“Debugging: Recording Information to Disk” on page 7-5.

This example creates the GPIB object g, connects g to the instrument, and
configures g to record detailed information to the disk file MyGPIBFile.txt.

g = gpib('ni',0,1);

fopen(g)

g.RecordDetail = 'verbose';
g.RecordName = 'MyGPIBFile.txt';

record

Initiate recording, write the * IDN? command to the instrument, and read back
the identification information.

record(g, 'on")
fprintf(g, '*IDN?"')
out = fscanf(g);

Terminate recording and disconnect g from the instrument.

record(g, 'off')
fclose(g)

See Also Functions
fclose, fopen, propinfo

Properties
RecordMode, RecordName, RecordStatus, Status

8-95

resolvehost

Purpose

Syntax

Arguments

Description

Example

See Also

8-96

Return network name or network address

name = resolvehost('host')
[name,address] = resolvehost('host')
out = resolvehost('host', 'returntype')

"host' The network name or network address of host.
‘returntype'’ Return either the name or address of host
name Network name of host

address Network address of host

name = resolvehost('host') returns the name of the specified host. You can
specify host as either a network name or a network address. For example,
www .mathworks.com is a network name and 144.212.100.10 is a network
address.

[name,address] = resolvehost('host') returns the name and address of
the specified host.

out = resolvehost('host', 'returntype') returns the host name if
returntype is name and returns the host address if returntype is address.

The following commands show how you can return the host name and address.

[name,address] = resolvehost('144.212.100.10")
name = resolvehost('144.212.100.10', 'name"')
address = resolvehost('www.mathworks.com', 'address"')

Functions
tcpip, udp

save

Purpose

Syntax

Arguments

Description

Remarks

Save instrument objects and variables to a MAT-file

save filename
save filename obj1 obj2...

filename The MAT-file name.

obj1 obj2... Instrument objects or arrays of instrument objects.

save filename saves all MATLAB variables to the MAT-file filename. If an
extension is not specified for filename, then a .mat extension is used.

save filename obj1 obj2,... saves the instrument objects obj1 obj2 ... to the
MAT-file filename.

You can use save in the functional form as well as the command form shown
above. When using the functional form, you must specify the filename and
instrument objects as strings. For example, to save the serial port object s to
the file MySerial.mat:

s = serial('COM1');
save('MySerial','s

)

Any data that is associated with the instrument object is not automatically
stored in the MAT-file. For example, suppose there is data in the input buffer
for obj. To save that data to a MAT-file, you must bring the data into the
MATLAB workspace using one of the synchronous read functions, and then
save the data to the MAT-file using a separate variable name. You can also
save data to a text file with the record function.

You return objects and variables to the MATLAB workspace with the load
command. Values for read-only properties are restored to their default values
upon loading. For example, the Status property is restored to closed. To
determine if a property is read-only, examine its reference pages or use the
propinfo function.

8-97

save

Example This example illustrates how to use the command form and the functional form
of save.

s = serial('COM1');
set(s, 'BaudRate',2400, 'StopBits',1)
save MySeriall s

set(s, 'BytesAvailableFcn',@mycallback)
save('MySerial2','s"')

See Also Functions
instrhelp, load, propinfo, record

Properties
Status

8-98

scanstr

Purpose

Syntax

Arguments

Description

Read data from the instrument, format as text, and parse

A = scanstr(obj)

A = scanstr(obj, 'delimiter"')

A = scanstr(obj, 'delimiter', 'format')
[A,count] = scanstr(...)
[A,count,msg] = scanstr(...)

obj An instrument object.

‘delimiter' One or more delimiters used to parse the data.

‘format' C language conversion specification.

A Data read from the instrument and formatted as text.

count The number of values read.

msg A message indicating if the read operation was unsuccessful.

A = scanstr(obj) reads formatted data from the instrument connected to
obj, parses the data using both a comma and a semicolon delimiter, and
returns the data to the cell array A. Each element of the cell array is
determined to be either a double or a string.

A = scanstr(obj, 'delimiter') parsesthe datainto separate variables based
on the specified delimiter. delimiter can be a single character or a string
array. If delimiter is a string array, then each character in the array is used
as a delimiter.

A = scanstr(obj, 'delimiter','format') converts the data according to the
specified format. A can be a matrix or a cell array depending on format. See the
textread M-file help for complete details. format is a string containing C
language conversion specifications.

Conversion specifications involve the % character and the conversion
characters d, i,0,u,x, X, f, e, E, g, G, c, and s. See the sscanf file I/O format
specifications or a C manual for complete details.

If format is not specified, then the best format (either a double or a string) is
chosen.

8-99

scanstr

Remarks

Example

See Also

8-100

[A,count] = scanstr(...) returns the number of values read to count.

[A,count,msg] = scanstr(...) returns a warning message to msg if the read
operation did not complete successfully.

Before you can read data from the instrument, it must be connected to obj with
the fopen function. A connected instrument object has a Status property value
of open. An error is returned if you attempt to perform a read operation while
obj is not connected to the instrument.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
— including the terminator — each time scanstr is issued.

Create the GPIB object g associated with a National Instruments board with
index 0 and primary address 2, and connect g to a Tektronix TDS 210
oscilloscope.

g = gpib('ni',0,2);
fopen(g)

Return identification information to separate elements of a cell array using the
default delimiters.

fprintf (g, '*IDN?"');
idn = scanstr(g)

idn =
'TEKTRONIX'
'TDS 210"
[0]
'CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04'
Functions

fopen, fscanf, instrhelp, sscanf, textread

Properties
EOSCharCode, EOSMode, Status, Terminator, ValuesReceived

serial

Purpose

Syntax

Arguments

Description

Remarks

Create a serial port object

obj = serial('port')
obj = serial('port', 'PropertyName',PropertyValue,...)
‘port’ The serial port name.

'PropertyName' A serial port property name.
PropertyValue A property value supported by PropertyName.
obj The serial port object.

obj = serial('port') creates a serial port object associated with the serial
port specified by port. If port does not exist, or if it is in use, you will not be

able to connect the serial port object to the instrument with the fopen function.

obj = serial('port','PropertyName',Propertyvalue,...) createsaserial
port object with the specified property names and property values. If an invalid
property name or property value is specified, an error is returned and the serial
port object is not created.

At any time, you can use the instrhelp function to view a complete listing of
properties and functions associated with serial port objects.

instrhelp serial

When you create a serial port object, these property values are automatically
configured:
® The Type property is given by serial.

® The Name property is given by concatenating Serial with the port specified
in the serial function.

® The Port property is given by the port specified in the serial function.
You can specify the property names and property values using any format

supported by the set function. For example, you can use property name/
property value cell array pairs. Additionally, you can specify property names

8-101

serial

Example

See Also

8-102

without regard to case, and you can make use of property name completion. For
example, the following commands are all valid.

s = serial('COM1', 'BaudRate',4800)
s = serial('COM1', 'baudrate',4800)
s = serial('COM1', 'BAUD',4800)

Before you can communicate with the instrument, it must be connected to obj
with the fopen function. A connected serial port object has a Status property
value of open. An error is returned if you attempt a read or write operation
while obj is not connected to the instrument. You can connect only one serial
port object to a given serial port.

This example creates the serial port object s1 associated with the serial port
COM1.

s1 = serial('COM1");
The Type, Name, and Port properties are automatically configured.

get(s1,{'Type', 'Name', 'Port'})
ans =
'serial’ 'Serial-COM1' "COM1'

To specify properties during object creation:

s2 = serial('COM2', 'BaudRate',1200, 'DataBits',7);

Functions
fclose, fopen, propinfo

Properties
Name, Port, Status, Type

serialbreak

Purpose

Syntax

Arguments

Description

Remarks

See Also

Send a break to the instrument

serialbreak(obj)
serialbreak(obj,time)

obj A serial port object.

time The duration of the break, in milliseconds.

serialbreak(obj) sends a break of 10 milliseconds to the instrument
connected to obj.

serialbreak(obj,time) sends a break to the instrument with a duration, in
milliseconds, specified by time. Note that the duration of the break might be
inaccurate under some operating systems.

For some instruments, the break signal provides a way to clear the hardware
buffer.

Before you can send a break to the instrument, it must be connected to obj with
the fopen function. A connected serial port object has a Status property value
of open. An error is returned if you attempt to send a break while obj is not
connected to the instrument.

serialbreak is a synchronous function, and blocks the command line until
execution is complete.

If you issue serialbreak while data is being asynchronously written, an error
is returned. In this case, you must call the stopasync function or wait for the
write operation to complete.

Functions
fopen, stopasync

Properties
Status

8-103

set

Purpose

Syntax

Arguments

Description

8-104

Configure or display instrument object properties

set(obj)

props = set(obj)

set(obj, 'PropertyName")

props = set(obj, 'PropertyName')

set(obj, 'PropertyName' ,PropertyValue,...)
set(obj,PN,PV)

set(obj,S)

obj An instrument object or an array of instrument objects.
'PropertyName' A property name for obj.

PropertyValue A property value supported by PropertyName.

PN A cell array of property names.
PV A cell array of property values.
S A structure with property names and property values.
props A structure array whose field names are the property

names for obj, or cell array of possible values.

set(obj) displays all configurable properties values for obj. If a property has
a finite list of possible string values, then these values are also displayed.

props = set(obj) returns all configurable properties and their possible
values for obj to props. props is a structure whose field names are the property
names of obj, and whose values are cell arrays of possible property values. If
the property does not have a finite set of possible values, then the cell array is
empty.

set(obj, 'PropertyName') displays the valid values for PropertyName if it
possesses a finite list of string values.

props = set(obj, 'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values or an
empty cell array if PropertyName does not have a finite list of possible values.

sef

Remarks

Examples

See Also

set(obj, 'PropertyName' ,PropertyValue,...) configures multiple property
values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of strings
PN to the corresponding values in the cell array PV. PN must be a vector. PV can
be m-by-n where m is equal to the number of instrument objects in obj and n
is equal to the length of PN.

set(obj,S) configures the named properties to the specified values for obj. S
is a structure whose field names are instrument object properties, and whose
field values are the values of the corresponding properties.

You can use any combination of property name/property value pairs, structure
arrays, and cell arrays in one call to set. Additionally, you can specify a
property name without regard to case, and you can make use of property name
completion. For example, if g is a GPIB object, then the following commands
are all valid.

set (g, 'EOSMode ')
set (g, 'eosmode ')
set (g, 'EOSM"')

This example illustrates some of the ways you can use set to configure or
return property values for the GPIB object g.

g = gpib('ni',0,1);

set (g, 'EOSMode ', 'read', 'OutputBufferSize',50000)

set (g, {'EOSCharCode', 'RecordName'}, {13, 'sydney.txt'})
set (g, 'EOIMode"')

[{on} | off]

Functions
get, instrhelp, propinfo

8-105

size

Purpose

Syntax

Arguments

Description

See Also

8-106

Size of instrument object array

d = size(obj)

[myn] = size(obj)
[m1,m2,...,mn] = size(obj)
m = size(obj,dim)

obj An instrument object or an array of instrument objects.
dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the dimension

specified by dim.
n The number of columns in obj.
mi,m2,...,mn The length of the first N dimensions of obj.

d = size(obj) returns the two-element row vector d containing the number of
rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in separate
output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n dimensions
of obj.

m = size(obj,dim) returns the length of the dimension specified by the scalar
dim. For example, size(obj,1) returns the number of rows.

Functions
instrhelp, length

spoll

Purpose

Syntax

Arguments

Description

Remarks

Example

Perform a serial poll

out = spoll(obj)

out = spoll(obj,val)

obj A GPIB object or an array of GPIB objects.

val A numeric array containing the indices of the objects in obj,
that must be ready for servicing before control is returned to
MATLAB.

out The GPIB objects ready for servicing.

out = spoll(obj) performs a serial poll on the instruments associated with
obj.out contains the GPIB objects that are ready for servicing. If no objects are
ready for servicing, then out is empty.

out = spoll(obj,val) performs a serial poll and waits until the instruments
specified by val are ready for servicing. An error is returned if a value specified
in val does not match an index value in obj.

Using this syntax, spoll blocks access to the MATLAB command line until the
objects specified by val are ready for servicing, or a timeout occurs for each
instrument object specified by val. The timeout period is specified by the
Timeout property.

Serial polling is a method of obtaining specific information from GPIB objects
when they request service. When you perform a serial poll, out contains the
GPIB object that has asserted its service request (SRQ) line.

If obj is an array of GPIB objects

¢ Each element of obj must have the same BoardIndex property value.

¢ Each element of obj is polled to determine if the instrument is ready for
servicing.

If obj is a four-element array and val is set to [1 3], then spoll will block
access to the MATLAB command line until the instruments connected to the
first and third GPIB objects have both asserted their SRQ line, or a timeout
occurs.

8-107

spoll

See Also

8-108

Functions
gpib, length

Properties
BoardIndex, Timeout

stopasync

Purpose
Syntax

Arguments

Description

Remarks

See Also

Stop asynchronous read and write operations
stopasync(obj)
obj An instrument object or an array of instrument objects.

stopasync(obj) stops any asynchronous read or write operation that is in
progress for obj.

You can write data asynchronously using the fprintf or fwrite functions. You
can read data asynchronously using the readasync function, or by configuring
the ReadAsyncMode property to continuous (serial port, TCP/IP, UDP, and
VISA-serial objects). In-progress asynchronous operations are indicated by the
TransferStatus property.

If obj is an array of instrument objects and one of the objects cannot be
stopped, the remaining objects in the array are stopped and a warning is
returned. After an object stops,

¢ [ts TransferStatus property is configured to idle.

¢ Jts ReadAsyncMode property is configured to manual (serial port, TCP/IP,
UDP, and VISA-serial objects).

¢ The data in its output buffer is flushed.

Data in the input buffer is not flushed. You can return this data to the
MATLAB workspace using any of the synchronous read functions. If you
execute the readasync function, or configure the ReadAsyncMode property to
continuous, then the new data is appended to the existing data in the input
buffer.

Functions
fprintf, fwrite, readasync

Properties
ReadAsyncMode, TransferStatus

8-109

tcpip

Purpose

Syntax

Arguments

Description

Remarks

8-110

Create a TCP/IP object

obj
obj
obj

tepip('rhost')
tepip('rhost',rport)
tepip(..., 'PropertyName' ,PropertyValue,...)

'rhost' The remote host.

rport The remote port.

‘PropertyName' A TCP/IP property name.

Propertyvalue A property value supported by PropertyName.
obj The TCP/IP object.

obj = tcpip('rhost') creates a TCP/IP object, obj, associated with remote
host, rhost, and the default remote port value of 80.

obj = tcpip('rhost',rport) creates a TCP/IP object with remote port value,
rport.

obj = tcpip(...,'PropertyName',PropertyValue,...) creates a TCP/IP
object with the specified property name/property value pairs. If an invalid
property name or property value is specified, the object is not created.

At any time, you can use the instrhelp function to view a complete listing of
properties and functions associated with TCP/IP objects.

instrhelp tcpip

When you create a TCP/IP object, these property values are automatically

configured:

® The Type property is given by tcpip.

¢ The Name property is given by concatenating TCP/IP with the remote host
name specified in the tcpip function.

® The RemoteHost and RemotePort properties are given by the values specified
in the tcpip function.

tcpip

Example

See Also

You can specify the property names and property values using any format
supported by the set function. For example, you can use property name/
property value cell array pairs. Additionally, you can specify property names
without regard to case, and you can make use of property name completion. For
example, the following commands are all valid.

t = tcpip('144.212.113.252"', 'InputBufferSize',1024)
t tcpip('144.212.113.252"', "inputbuffersize',1024)
t tcpip('144.212.113.252"', 'Input',1024)

When the TCP/IP object is constructed, the Status property value is closed.
Once the object is connected to the host with the fopen function, the Status
property is configured to open.

The default local host in multihome hosts is the system’s default. The
LocalPort property defaults to a value of [] and it causes any free local port to
be used. LocalPort is updated when fopen is issued.

Start a TCP/IP echo server and create a TCP/IP object.

echotcpip('on',4012)
t = tcpip('localhost',4012);

Connect the TCP/IP object to the host.
fopen(t)
Write to the host and read from the host.

fwrite(t,65:74)
A = fread(t, 10);

Disconnect the TCP/IP object from the host and stop the echo server.

fclose(t)
echotcpip('off"')

Functions
fopen, sendmail, udp, urlread, urlwrite

Properties

LocalHost, LocalPort, LocalPortMode, Name, RemoteHost, RemotePort,
Status, Type

8-111

trigger

Purpose
Syntax

Arguments

Description

Remarks

See Also

8-112

Send a trigger message to the instrument
trigger(obj)

obj A GPIB, VISA-GPIB, or VISA-VXI object.

trigger(obj) sends a trigger message to the instrument connected to obj.

Before you can use trigger, obj must be connected to the instrument with the
fopen function. A connected instrument object has a Status property value of
open. An error is returned if you attempt to use trigger while obj is not
connected to the instrument.

For GPIB and VISA-GPIB objects, the Group Execute Trigger (GET) message
is sent to the instrument.

For VISA-VXI objects, if the TriggerType property is configured to software,
the Word Serial Trigger command is sent to the instrument. If TriggerType is
configured to hardware, a hardware trigger is sent on the line specified by the
TriggerLine property.

Functions
fopen

Properties
Status, TriggerLine, TriggerType

udp

Purpose

Syntax

Arguments

Description

Remarks

Create a UDP object

obj = udp('")
obj = udp('rhost')
obj = udp('rhost',rport)

obj = udp(..., 'PropertyName',PropertyValue,...)
'rhost’ The remote host.
rport The remote port.

'PropertyName' A UDP property name.
PropertyValue A property value supported by PropertyName.
obj The UDP object.

obj = udp('"') creates a UDP object, obj, not associated with a remote host.
obj = udp('rhost') creates a UDP object associated with remote host rhost.

obj = udp('rhost',rport) creates a UDP object with remote port value,
rport. The default remote port is 9090.

obj = udp(...,'PropertyName' ,PropertyValue,...) creates a UDP object
with the specified property name/property value pairs. If an invalid property
name or property value is specified, the object is not created.

At any time, you can use the instrhelp function to view a complete listing of
properties and functions associated with UDP objects.

instrhelp udp
When you create a UDP object, these properties are automatically configured:

® The Type property is given by udp.

® The Name property is given by concatenating UDP with the remote host name
specified in the udp function.

® The RemoteHost and RemotePort properties are given by the values specified
in the udp function.

8-113

udp

Example

8-114

You can specify the property names and property values using any format
supported by the set function. For example, you can use property name/
property value cell array pairs. Additionally, you can specify property names
without regard to case, and you can make use of property name completion. For
example, the following commands are all valid.

u = udp('144.212.113.252"', 'InputBufferSize',1024)
u udp('144.212.113.252"', "inputbuffersize',1024)
u udp('144.212.113.252"', 'Input',1024)

The UDP object must be bound to the local socket with the fopen function. The
default remote port is 9090. The default local host in multihome hosts is the
system’s default. The LocalPort property defaults to a value of [] and it causes
any free local port to be used. LocalPort is updated when fopen is issued.
When the UDP object is constructed, the Status property value is closed. Once
the object is bound to the local socket with fopen, Status is configured to open.

The maximum packet size for reading is 8192 bytes. The input buffer can hold
as many packets as defined by the InputBufferSize property value. You can
write any data size to the output buffer. The data will be sent in packets of at
most 4096 bytes.

Start the echo server and create a UDP object.

echoudp('on',4012)
u = udp('127.0.0.1',4012);

Connect the UDP object to the host.
fopen(u)
Write to the host and read from the host.

fwrite(u,65:74)
A = fread(u,10);

Stop the echo server and disconnect the UDP object from the host.

echoudp('off"')
fclose(u)

udp

See Also Functions
fopen

Properties
LocalHost, LocalPort, LocalPortMode, Name, RemoteHost, RemotePort,
Status, Type

8-115

visa

Purpose

Syntax

Arguments

Description

8-116

Create a VISA object

obj = visa('vendor','rsrcname')

obj = visa('vendor','rsrcname', 'PropertyName',PropertyValue,...)
‘vendor' A supported VISA vendor.

‘rsrcname’ The resource name of the VISA instrument.

'PropertyName' A VISA property name.
Propertyvalue A property value supported by PropertyName.
obj The VISA object.

obj = visa('vendor', 'rsrcname') creates the VISA object obj with a
resource name given by rsrcname for the vendor specified by vendor. If an
invalid vendor or resource name is specified, an error is returned and the VISA
object is not created. The supported values for vendor are given below.

Vendor Description

agilent Agilent Technologies VISA
ni National Instruments VISA
tek Tektronix VISA

The format for rsrcname is given below for the supported VISA interfaces. The
values indicated by brackets are optional.

Interface Resource Name
GPIB GPIB[board]::primary_address::[secondary_address]::INSTR
VXI VXI[chassis]::VXI_logical_address::INSTR

GPIB-VXI GPIB-VXI[chassis]::VXI_logical_address::INSTR

visa

Remarks

Interface Resource Name
RSIB RSIB::remote_host::INSTR (provided by NI VISA only)
Serial ASRL[port_number]::INSTR

The rsrcname parameters are described below.

Parameter Description

board Board index (optional — defaults to 0)
chassis VXI chassis index (optional — defaults to 0)
port_number Serial port number (optional — defaults to 1)
primary_address Primary address of the GPIB instrument
remote_host Host name or IP address of the instrument.
secondary_address Secondary address of the GPIB instrument

(optional — defaults to 0)
VXI _logical_address Logical address of the VXI instrument

obj = visa('vendor','rsrcname', 'PropertyName',PropertyValue,...)
creates the VISA object with the specified property names and property values.
If an invalid property name or property value is specified, an error is returned
and the VISA object is not created.

At any time, you can use the instrhelp function to view a complete listing of
properties and functions associated with VISA objects.

instrhelp visa

You can specify the property names and property values using any format
supported by the set function. For example, you can use property name/
property value cell array pairs. Additionally, you can specify property names
without regard to case, and you can make use of property name completion. For
example, the following commands are all valid.

v = visa('ni','GPIBO::1::INSTR', 'SecondaryAddress', 96);

8-117

visa

8-118

v = visa('ni','GPIB0O::1::INSTR', 'secondaryaddress', 96);
v = visa('ni','GPIBO::1::INSTR', 'SECOND', 96);

Before you can communicate with the instrument, it must be connected to obj
with the fopen function. A connected instrument object has a Status property
value of open. An error is returned if you attempt a read or write operation
while obj is not connected to the instrument. You cannot connect multiple
VISA objects to the same instrument.

Creating a VISA-GPIB Object

When you create a VISA-GPIB object, these properties are automatically
configured:

® Type is given by visa-gpib.

® Name is given by concatenating VISA-GPIB with the board index, the primary
address, and the secondary address.

® The BoardIndex, PrimaryAddress, SecondaryAddress, and RsrcName values
are given by the values specified during object creation.

Creating a VISA-VXI Object

When you create a VISA-VXI object, these properties are automatically
configured:

® Type is given by visa-vxi.

® Name is given by concatenating VISA-VXI with the chassis index and the
logical address specified in the visa function.

® The ChassisIndex, LogicalAddress, and RsrcName values are given by the
values specified during object creation.

Creating a VISA-GPIB-VXI Object

When you create a VISA-GPIB-VXI object, these properties are automatically

configured:

® Type is given by visa-gpib-vxi.

® Name is given by concatenating VISA-GPIB-VXI with the chassis index and
the logical address specified in the visa function.

® The ChassisIndex, LogicalAddress, and RsrcName values are given by the
values specified during object creation.

visa

Example

See Also

¢ The BoardIndex, PrimaryAddress, and SecondaryAddress values are given
by the visa driver after the object is connected to the instrument with fopen.

Creating a VISA-Serial Object

When you create a VISA-serial object, these properties are automatically
configured:

® Type is given by visa-serial.

® Name is given by concatenating VISA-Serial with the port specified in the
visa function.

¢ The Port and RsrcName values are given by the values specified during object
creation.

Create a VISA-serial object connected to serial port COM1 using National
Instruments VISA interface.
vs = visa('ni', 'ASRL1::INSTR');

Create a VISA-GPIB object connected to board 0 with primary address 1 and
secondary address 30 using Agilent Technologies VISA interface.

vg = visa('agilent','GPIBO::1::30::INSTR');
Create a VISA-VXI object connected to a VXI instrument located at logical
address 8 in the first VXI chassis.

vv = visa('agilent','VXIO0::8::INSTR');
Create a VISA-GPIB-VXI object connected to a GPIB-VXI instrument located
at logical address 72 in the second VXI chassis.

vgv = visa('agilent', 'GPIB-VXI1::72::INSTR');

Functions
fclose, fopen, instrhelp, instrhwinfo

Properties

BoardIndex, ChassisIndex, LogicalAddress, Name, Port, PrimaryAddress,
RsrcName, SecondaryAddress, Status, Type

8-119

visa

8-120

Property Reference

This section describes the instrument object properties in detail.

Properties — By Category Contains a series of tables that group properties by category
(p. 9-2)

Properties — Alphabetical Lists all the properties alphabetically
List (p. 9-10)

9-2

Properties - By Category

This section contains brief descriptions of all toolbox properties. The properties
are divided into these two groups:

® Base properties

® Object-specific properties

Base Properties

Base properties apply to all supported instrument objects (GPIB, VISA-VXI,
and so on). For example, the Timeout property is supported for all instrument
objects. The base properties are organized into the following categories.

Write Properties
BytesToOutput

OutputBufferSize

Timeout
TransferStatus
ValuesSent
Read Properties
BytesAvailable

InputBufferSize

Timeout
TransferStatus

ValuesReceived

Indicate the number of bytes currently in the output
buffer

Specify the size of the output buffer in bytes

Specify the waiting time to complete a read or write
operation

Indicate if an asynchronous read or write operation is in
progress

Indicate the total number of values written to the
instrument

Indicate the number of bytes available in the input buffer
Specify the size of the input buffer in bytes

Specify the waiting time to complete a read or write
operation

Indicate if an asynchronous read or write operation is in
progress

Indicate the total number of values read from the
instrument

Properties — By Category

Callback Properties

BytesAvailableFcn Specify the M-file callback function to execute when a

specified number of bytes are available in the input
buffer, or a terminator is read

BytesAvailableFcn Specify the number of bytes that must be available in

Count
BytesAvailable
FcnMode
ErrorFcn
OutputEmptyFcn

TimerFcn

TimerPeriod

the input buffer to generate a bytes-available event

Specify if the bytes-available event is generated after a
specified number of bytes are available in the input
buffer, or after a terminator is read

Specify the M-file callback function to execute when an
error event occurs

Specify the M-file callback function to execute when the
output buffer is empty

Specify the M-file callback function to execute when a
predefined period of time passes

Specify the period of time between timer events

Recording Properties

RecordDetail

RecordMode

RecordName

RecordStatus

Specify the amount of information saved to a record file

Specify whether data and event information are saved to
one record file or to multiple record files

Specify the name of the record file

Indicate if data and event information are saved to a
record file

9-3

94

General Purpose Properties

ByteOrder
Name

Status

Tag

Type
UserData

Specify the order in which the instrument stores bytes
Specify a descriptive name for the instrument object

Indicate if the instrument object is connected to the
instrument

Specify a label to associate with a instrument object
Indicate the object type

Specify data that you want to associate with a
instrument object

Object-Specific Properties

Object-specific properties apply only to instrument objects of a given type
(GPIB, VISA-VXI, and so on). For example, the BreakInterruptFcn property is
supported only for serial port objects. The object-specific properties are
organized into the following categories based on instrument object type.

GPIB Properties
BoardIndex

BusManagement
Status

CompareBits

EOIMode

EOSCharCode
EOSMode
HandshakeStatus
PrimaryAddress

SecondaryAddress

Specify the index number of the GPIB board

Indicate the state of the GPIB bus management lines

Specify the number of bits that must match the EOS
character to complete a read operation, or to assert the
EOI line

Specify if the EOI line is asserted at the end of a write
operation

Specify the EOS character

Specify when the EOS character is written or read
Indicate the state of the GPIB handshake lines
Specify the primary address of the GPIB instrument
Specify the secondary address of the GPIB instrument

Properties — By Category

Serial Port Properties

BaudRate

BreakInterruptFcn

DataBits

DataTerminalReady

FlowControl
Parity
PinStatus

PinStatusFcn

Port

ReadAsyncMode

RequestToSend
StopBits

Terminator

TCP/IP Properties

LocalHost
LocalPort
LocalPortMode

ReadAsyncMode

RemoteHost

RemotePort

Specify the rate at which bits are transmitted

Specify the M-file callback function to execute when a
break-interrupt event occurs

Specify the number of data bits to transmit

Specify the state of the DTR pin

Specify the data flow control method to use

Specify the type of parity checking

Indicate the state of the CD, CTS, DSR, and RI pins

Specify the M-file callback function to execute when the
CD, CTS, DSR, or RI pins change state

Specify the platform-specific serial port name

Specify whether an asynchronous read operation is
continuous or manual

Indicate the state of the RT'S pin

Specify the number of bits used to indicate the end of a
byte

Specify the terminator character

Specify the local host
Specify the local host port for the connection
Specify the local host port selection mode

Specify whether an asynchronous read operation is
continuous or manual

Specify the remote host

Specify the remote host port for the connection

9-5

9-6

Terminator

TransferDelay

UDP Properties

DatagramAddress

DatagramPort

DatagramReceived
Fcn

DatagramTerminate
Mode

LocalHost
LocalPort
LocalPortMode

ReadAsyncMode

RemoteHost
RemotePort

Terminator

Specify the terminator character

Specify the use of the TCP segment transfer algorithm

Indicate the IP dotted decimal address of the received
datagram sender

Indicate the port number of the datagram sender

Specify the M-file callback function to execute whenever
a datagram has been received

Configure the terminate read mode when reading
datagrams

Specify the local host
Specify the local host port for the connection
Specify the local port selection mode

Specify whether an asynchronous read operation is
continuous or manual

Specify the remote host
Specify the remote host port for the connection

Specify the terminator character

VISA-GPIB Properties

BoardIndex

EOIMode

EOSCharCode
EOSMode
PrimaryAddress
RsrcName

SecondaryAddress

Specify the index number of the GPIB board

Specify if the EOI line is asserted at the end of a write
operation

Specify the EOS character

Specify when the EOS character is written or read
Specify the primary address of the GPIB instrument
Indicate the resource name for a VISA instrument

Specify the secondary address of the GPIB instrument

Properties — By Category

VISA-VXI Properties

ChassisIndex

EOIMode

EOSCharCode
EOSMode

InterruptFcn

LogicalAddress
MappedMemoryBase

MappedMemorySize

MemoryBase

MemoryIncrement

MemorySize

MemorySpace
RsrcName
Slot

TriggerFcn

TriggerLine

TriggerType

Indicate the index number of the VXI chassis

Specify if the EOI line is asserted at the end of a write
operation

Specify the EOS character
Specify when the EOS character is written or read

Specify the M-file callback function to execute when an
interrupt event occurs

Specify the logical address of the VXI instrument

Indicate the base memory address of the mapped
memory

Indicate the size of the mapped memory for low-level
read and write operations

Indicate the base address of the A24 or A32 space

Specify if the VXI register offset increments after data is
transferred

Indicate the size of the memory requested in the A24 or
A32 address space

Define the address space used by the instrument
Indicate the resource name for a VISA instrument
Indicate the slot location of the VXI instrument

Specify the M-file callback function to execute when a
trigger event occurs

Specify the trigger line on the VXI instrument
Specify the trigger type

9-7

9-8

VISA-GPIB-VXI Properties

BoardIndex
ChassisIndex

EOIMode

EOSCharCode
EOSMode
LogicalAddress
MappedMemoryBase

MappedMemorySize

MemoryBase

MemoryIncrement

MemorySize

MemorySpace
PrimaryAddress
RsrcName
SecondaryAddress

Slot

Specify the index number of the GPIB board
Indicate the index number of the VXI chassis

Specify if the EOI line is asserted at the end of a write
operation

Specify the EOS character
Specify when the EOS character is written or read
Specify the logical address of the VXI instrument

Indicate the base memory address of the mapped
memory

Indicate the size of the mapped memory for low-level
read and write operations

Indicate the base address of the A24 or A32 space

Specify if the VXI register offset increments after data is
transferred

Indicate the size of the memory requested in the A24 or
A32 address space

Define the address space used by the instrument
Specify the primary address of the GPIB instrument
Indicate the resource name for a VISA instrument
Specify the secondary address of the GPIB instrument

Indicate the slot location of the VXI instrument

Properties — By Category

VISA-Serial Properties

BaudRate

DataBits
DataTerminalReady
FlowControl
Parity

PinStatus

Port

ReadAsyncMode

RequestToSend
RsrcName

StopBits

Terminator

Specify the rate at which bits are transmitted
Specify the number of data bits to transmit

Specify the state of the DTR pin

Specify the data flow control method to use

Specify the type of parity checking

Indicate the state of the CD, CTS, DSR, and RI pins
Specify the platform-specific serial port name

Specify whether an asynchronous read operation is
continuous or manual

Indicate the state of the RT'S pin
Indicate the resource name for a VISA instrument

Specify the number of bits used to indicate the end of a
byte

Specify the terminator character

9-9

Properties - Alphabetical List

This section contains detailed descriptions of all toolbox properties. Each
property reference page contains some or all of this information:
® The property name
¢ A description of the property
¢ The property characteristics, including:
= Usage — the instrument object(s) the property is associated with
= Read only — the condition under which the property is read-only

A property can be read-only always, never, while the instrument object is
open, or while the instrument object is recording. You can configure a
property value using the set command or dot notation. You can return the
current property value using the get command or dot notation.

= Data type — the property data type
This is the data type you use when specifying a property value
¢ Valid property values including the default value

When property values are given by a predefined list, the default value is
usually indicated by {} (curly braces).

® An example using the property

¢ Related properties and functions

9-10

BaudRate

Purpose

Description

Characteristics

Values

See Also

Specify the rate at which bits are transmitted

You configure BaudRate as bits per second. The transferred bits include the
start bit, the data bits, the parity bit (if used), and the stop bits. However, only
the data bits are stored.

The baud rate is the rate at which information is transferred in a
communication channel. In the serial port context, "9600 baud" means that the
serial port is capable of transferring a maximum of 9600 bits per second. If the
information unit is one baud (one bit), then the bit rate and the baud rate are
identical. If one baud is given as 10 bits, (for example, eight data bits plus two
framing bits), the bit rate is still 9600 but the baud rate is 9600/10, or 960. You
always configure BaudRate as bits per second. Therefore, in the above example,
set BaudRate to 9600.

Note Both the computer and the instrument must be configured to the same
baud rate before you can successfully read or write data.

Standard baud rates include 110, 300, 600, 1200, 2400, 4800, 9600, 14400,
19200, 38400, 57600, 115200, 128000, and 256000 bits per second. However,
your serial port might support baud rates that differ from these values.

Usage Serial port, VISA-serial
Read only Never
Data type Double

The default value is 9600.

Properties
DataBits, Parity, StopBits

9-11

Boardindex

Purpose

Description

Characteristics

Values

Example

See Also

9-12

Specify the index number of the GPIB board

You configure BoardIndex to be the index number of the GPIB board associated
with your instrument. When you create a GPIB or VISA-GPIB object,
BoardIndex is automatically assigned the value specified in the gpib or visa
function.

For GPIB objects, the Name property is automatically updated to reflect the
BoardIndex value. For VISA-GPIB objects, the Name and RsrcName properties
are automatically updated to reflect the BoardIndex value.

You can configure BoardIndex only when the object is disconnected from the
instrument. You disconnect a connected object with the fclose function. A
disconnected object has a Status property value of closed.

Usage GPIB, VISA-GPIB, VISA-GPIB-VXI

Read only While open (GPIB, VISA-GPIB), always (VISA-GPIB-VXI)

Data type double

The value is defined after the instrument object is created.

Suppose you create a VISA-GPIB object associated with board 4, primary
address 1, and secondary address 8.
vg = visa('agilent','GPIB4::1::8::INSTR');

The BoardIndex, Name, and RsrcName properties reflect the GPIB board index
number.

get(vg,{'BoardIndex', 'Name', 'RsrcName'})
ans =
[4] 'VISA-GPIB4-1-8' 'GPIB4::1::8::INSTR'

Functions
fclose, gpib, visa

Properties
Name, RsrcName, Status

BreaklinterruptFcn

Purpose

Description

Characteristics

Values

See Also

Specify the M-file callback function to execute when a break-interrupt event
occurs

You configure BreakInterruptFcn to execute an M-file callback function when
a break-interrupt event occurs. A break-interrupt event is generated by the
serial port when the received data is in an off (space) state longer than the
transmission time for one byte.

Note A break-interrupt event can be generated at any time during the
instrument control session.

If the RecordStatus property value is on, and a break-interrupt event occurs,
the record file records this information:

® The event type as BreakInterrupt

¢ The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and Executing
Callback Functions” on page 3-33.

Usage Serial port
Read only Never
Data type Callback function

The default value is an empty string.

Functions
record

Properties
RecordStatus

9-13

BusManagementStatus

Purpose Indicate the state of the GPIB bus management lines

Description BusManagementStatus is a structure array that contains the fields Attention,
InterfaceClear, RemoteEnable, ServiceRequest, and EndOrIdentify. These
fields indicate the state of the Attention (ATN), Interface Clear (IFC), Remote
Enable (REN), Service Request (SRQ) and End Or Identify (EOI) GPIB lines.

BusManagementStatus can be on or off for any of these fields. If
BusManagementStatus is on, the associated line is asserted. If
BusManagementStatus is off, the associated line is unasserted.

Characteristics Usage GPIB

Read only Always

Data type Structure
Values off The GPIB line is unasserted
on The GPIB line is asserted

The default value is instrument dependent.

Example Create the GPIB object g associated with a National Instruments board, and
connect g to a Tektronix TDS 210 oscilloscope.

g = gpib('ni',0,0);
fopen(g)

Write the *STB? command, which queries the instrument’s status byte register,
and then return the state of the bus management lines with the
BusManagementStatus property.

fprintf(g, '*STB?')
g.BusManagementStatus
ans =
Attention: 'off'
InterfaceClear: 'off'
RemoteEnable: 'on'
ServiceRequest: 'off'
EndOrIdentify: 'on'

9-14

BusManagementStatus

REN is asserted because the system controller placed the scope in the remote
enable mode, while EOI is asserted to mark the end of the command.

Now read the result of the *STB? command, and return the state of the bus
management lines.

out = fscanf(g)
out =
0
g.busmanagementstatus
ans =
Attention: 'on'
InterfaceClear: 'off'
RemoteEnable: 'on'
ServiceRequest: 'off'
EndOrIdentify: 'off'

ATN is asserted because a multiline response was read from the scope.
fclose(g)
delete(g)
clear g

9-15

ByteOrder

Purpose Specify the byte order of the instrument

Description You configure ByteOrder to be littleEndian or bigEndian. If ByteOrder is
littleEndian, then the instrument stores the first byte in the first memory
address. If ByteOrder is bigEndian, then the instrument stores the last byte in
the first memory address.

For example, suppose the hexadecimal value 4F52 is to be stored in instrument
memory. Because this value consists of two bytes, 4F and 52, two memory
locations are used. Using big-endian format, 4F is stored first in the lower
storage address. Using little-endian format, 52 is stored first in the lower
storage address.

Note You should configure ByteOrder to the appropriate value for your
instrument before performing a read or write operation. Refer to your
instrument documentation for information about the order in which it stores

bytes.
Characteristics Usage Any instrument object
Read only Never

Data type String

Values {littleEndian} The byte order of the instrument is little-endian.
bigEndian The byte order of the instrument is big-endian.
See Also Properties
Status

9-16

BytesAvailable

Purpose

Description

Characteristics

Values

See Also

Indicate the number of bytes available in the input buffer

BytesAvailable indicates the number of bytes currently available to be read
from the input buffer. The property value is continuously updated as the input
buffer is filled, and is set to 0 after the fopen function is issued.

You can make use of BytesAvailable only when reading data asynchronously.
This is because when reading data synchronously, control is returned to the
MATLAB command line only after the input buffer is empty. Therefore, the
BytesAvailable value is always 0. To learn how to read data asynchronously,
refer to “Synchronous Versus Asynchronous Read Operations” on page 2-23.

The BytesAvailable value can range from zero to the size of the input buffer.
Use the InputBufferSize property to specify the size of the input buffer. Use
the ValuesReceived property to return the total number of values read.

Usage Any instrument object
Read only Always
Data type Double

The value can range from zero to the size of the input buffer. The default value
is 0.

Functions
fopen

Properties
InputBufferSize, TransferStatus, ValuesReceived

9-17

BytesAvailableFcn

Purpose

Description

Characteristics

Values

Example

9-18

Specify the M-file callback function to execute when a specified number of bytes
are available in the input buffer, or a terminator is read

You configure BytesAvailableFcn to execute an M-file callback function when
a bytes-available event occurs. A bytes-available event occurs when the
number of bytes specified by the BytesAvailableFcnCount property is
available in the input buffer, or after a terminator is read, as determined by the
the BytesAvailableFcnMode property.

Note A bytes-available event can be generated only for asynchronous read
operations.

If the RecordStatus property value is on, and a bytes-available event occurs,
the record file records this information:

* The event type as BytesAvailable

¢ The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and Executing
Callback Functions” on page 3-33.

Usage Any instrument object
Read only Never
Data type Callback function

The default value is an empty string.
Create the serial port object s for a Tektronix TDS 210 two-channel oscilloscope
connected to the serial port COM1.

s = serial('COM1');

Configure s to execute the M-file callback function instrcallback when 40
bytes are available in the input buffer.

s.BytesAvailableFcnCount = 40;

BytesAvailableFcn

s.BytesAvailableFcnMode = 'byte’;
s.BytesAvailableFcn = @instrcallback;

Connect s to the oscilloscope.
fopen(s)

Write the *IDN? command, which instructs the scope to return identification
information. Because the default value for the ReadAsyncMode property is
continuous, data is read as soon as it is available from the instrument.

fprintf(s, '*IDN?"')
The resulting output from instrcallback is shown below.

BytesAvailable event occurred at 18:33:35 for the object:
Serial-COM1.

56 bytes are read and instrcallback is called once. The resulting display is
shown above.

s.BytesAvailable
ans =
56

Suppose you remove 25 bytes from the input buffer and issue the MEASUREMENT?
command, which instructs the scope to return its measurement settings.

out = fscanf(s, '%c',25);
fprintf (s, '"MEASUREMENT?')

The resulting output from instrcallback is shown below.

BytesAvailable event occurred at 18:33:48 for the object:
Serial-COM1.

BytesAvailable event occurred at 18:33:48 for the object:
Serial-COM1.

9-19

BytesAvailableFcn

See Also

9-20

There are now 102 bytes in the input buffer, 31 of which are left over from the
*IDN? command. instrcallback is called twice; once when 40 bytes are
available and once when 80 bytes are available.

s.BytesAvailable
ans =
102

Functions
record

Properties

BytesAvailableFcnCount, BytesAvailableFcnMode, EOSCharCode,
RecordStatus, Terminator, TransferStatus

BytesAvailableFcnCount

Purpose

Description

Characteristics

Values

See Also

Specify the number of bytes that must be available in the input buffer to
generate a bytes-available event

You configure BytesAvailableFcnCount to the number of bytes that must be
available in the input buffer before a bytes-available event is generated.

Use the BytesAvailableFcnMode property to specify whether the
bytes-available event occurs after a certain number of bytes are available or
after a terminator is read.

The bytes-available event executes the M-file callback function specified for the
BytesAvailableFcn property.

You can configure BytesAvailableFcnCount only when the object is
disconnected from the instrument. You disconnect an object with the fclose
function. A disconnected object has a Status property value of closed.

Usage Any instrument object
Read only While open
Data type Double

The default value is 48.

Functions
fclose

Properties

BytesAvailableFcn, BytesAvailableFcnMode, EOSCharCode, Status,
Terminator

9-21

BytesAvailableFcnMode

Purpose

Description

Characteristics

Values

9-22

Specify if the bytes-available event is generated after a specified number of
bytes are available in the input buffer, or after a terminator is read

For serial port, TCP/IP, UDP, or VISA-serial objects, you can configure
BytesAvailableFcnMode to be terminator or byte. For all other instrument
objects, you can configure BytesAvailableFcnMode to be eosCharCode or byte.

IfBytesAvailableFcnMode is terminator, a bytes-available event occurs when
the terminator specified by the Terminator property is read. If
BytesAvailableFcnMode is eosCharCode, a bytes-available event occurs when
the End-Of-String character specified by the EOSCharCode property is read. If
BytesAvailableFcnMode is byte, a bytes-available event occurs when the
number of bytes specified by the BytesAvailableFcnCount property is
available.

The bytes-available event executes the M-file callback function specified for the
BytesAvailableFcn property.

You can configure BytesAvailableFcnMode only when the object is

disconnected from the instrument. You disconnect an object with the fclose

function. A disconnected object has a Status property value of closed.
Usage Any instrument object

Read only While open

Data type String

Serial, TCP/IP, UDP, and VISA-serial

{terminator} A bytes-available event is generated when the terminator
is reached.

byte A bytes-available event is generated when the specified
number of bytes available.

BytesAvailableFcnMode
|

GPIB, VISA-GPIB, VISA-VXI, and VISA-GPIB-VXI

{eosCharCode} A bytes-available event is generated when the EOS
(End-Of-String) character is reached.

byte A bytes-available event is generated when the specified
number of bytes available.

See Also Functions
fclose

Properties

BytesAvailableFcn, BytesAvailableFcnCount, EOSCharCode, Status,
Terminator

9-23

BytesToOutput

Purpose

Description

Characteristics

Values

See Also

9-24

Indicate the number of bytes currently in the output buffer

BytesToOutput indicates the number of bytes currently in the output buffer
waiting to be written to the instrument. The property value is continuously
updated as the output buffer is filled and emptied, and is set to 0 after the
fopen function is issued.

You can make use of BytesToOutput only when writing data asynchronously.
This is because when writing data synchronously, control is returned to the

MATLAB command line only after the output buffer is empty. Therefore, the
BytesToOutput value is always 0. To learn how to write data asynchronously,
Refer to “Synchronous Versus Asynchronous Write Operations” on page 2-17.

Use the ValuesSent property to return the total number of values written to
the instrument.

Note Ifyou attempt to write out more data than can fit in the output buffer,
then an error is returned and BytesToOutput is 0. You specify the size of the
output buffer with the OutputBufferSize property.

Usage Any instrument object
Read only Always
Data type Double

The default value is 0.

Functions
fopen

Properties
OutputBufferSize, TransferStatus, ValuesSent

Chassisindex

Purpose

Description

Characteristics

Values

Example

See Also

Specify the index number of the VXI chassis

You configure ChassisIndex to be the index number of the VXI chassis
associated with your instrument.

When you create a VISA-VXI or VISA-GPIB-VXI object, ChassisIndex is
automatically assigned the value specified in the visa function. For both object
types, the Name and RsrcName properties are automatically updated to reflect
the ChassisIndex value.

You can configure ChassisIndex only when the object is disconnected from the
instrument. You disconnect a connected object with the fclose function. A
disconnected object has a Status property value of closed.

Usage VISA-VXI, VISA-GPIB-VXI

Read only While open

Data type double

The value is defined after the instrument object is created.

Suppose you create a VISA-GPIB-VXI object associated with chassis 0 and
logical address 32.

v = visa('agilent', 'GPIB-VXIO::32::INSTR');
The ChassisIndex, Name, and RsrcName properties reflect the VXI chassis index
number.

get(v,{'ChassisIndex', 'Name', 'RsrcName'})
ans =
[0] 'VISA-GPIB-VXI0-32' 'GPIB-VXIO::32::INSTR'

Functions
fclose, visa

Properties
Name, RsrcName, Status

9-25

CompareBits

Purpose

Description

Characteristics

Values

See Also

9-26

Specify the number of bits that must match the EOS character to complete a
read operation, or to assert the EOI line

You can configure CompareBits to be 7 or 8. If CompareBits is 7, the read
operation completes when a byte that matches the low seven bits of the
End-Of-String (EOS) character is received. The End Or Identify (EOI) line is
asserted when a byte that matches the low seven bits of the EOS character is
written. If CompareBits is 8, the read operation completes when a byte that
matches all eight bits of the EOS character is received. The EOI line is asserted
when a byte that matches all eight bits of the EOS character is written.

You can specify the EOS character with the EOSCharCode property. You can
specify when the EOS character is used (read operation, write operation, or
both) with the EOSMode property.

Usage GPIB
Read only Never
Data type Double

{8} Compare all eight EOS bits.
7 Compare the lower seven EOS bits.
Properties

EOSCharCode, EOSMode

DataBits

Purpose

Description

Characteristics

Values

See Also

Specify the number of data bits to transmit

You can configure DataBits to be 5, 6, 7, or 8. Data is transmitted as a series
of five, six, seven, or eight bits with the least significant bit sent first. At least
seven data bits are required to transmit ASCII characters. Eight bits are
required to transmit binary data. Five and six bit data formats are used for
specialized communication equipment.

Note Both the computer and the instrument must be configured to transmit
the same number of data bits.

In addition to the data bits, the serial data format consists of a start bit, one or
two stop bits, and possibly a parity bit. You specify the number of stop bits with
the StopBits property, and the type of parity checking with the Parity
property.

Usage Serial port, VISA-serial

Read only Never

Data type Double

DataBits can be 5, 6, 7, or 8. The default value is 8.

Properties
Parity, StopBits

9-27

DatagramAddress

Purpose Indicate the IP dotted decimal address of the received datagram sender

Descripﬁon DatagramAddress is the datagram sender IP address of the next datagram to
be read from the input buffer. An example of an IP dotted decimal address
string is 144.212.100.10.

When you read a datagram from the input buffer, DatagramAddress is updated.
Characteristics Usage UDP

Read only Always
Data type String

Values The default value is ' .
See Also Functions

udp

Properties

DatagramPort, RemotePort

9-28

DatagramPort

Purpose

Description

Characteristics

Values

See Also

Indicate the port number of the datagram sender

DatagramPort is the port number of the datagram to be read next from the
input buffer. When you read a datagram from the input buffer, DatagramPort
is updated.

Usage UDP
Read only Never
Data type Double

The default value is [].

Functions
udp

Properties
DatagramAddress

9-29

DatagramReceivedFcn

Purpose

Description

Characteristics

Values

See Also

9-30

Specify the M-file callback function to execute whenever a datagram has been
received

You configure DatagramReceivedFcn to execute an M-file callback function
when a datagram has been received. The callback executes when a complete
datagram is received in the input buffer.

Note A datagram-received event can be generated at any time during the
instrument control session.

If the RecordStatus property value is on, and a datagram-received event
occurs, the record file records this information:

¢ The event type as DatagramReceived

¢ The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and Executing
Callback Functions” on page 3-33

Usage UDP
Read only Never
Data type Callback

The default valueis ''.

Functions
readasync, udp

Properties
DatagramAddress, DatagramPort, ReadAsyncMode

DatagramTerminateMode

Purpose

Description

Characteristics

Values

See Also

Configure the terminate read mode when reading datagrams

DatagramTerminateMode defines how fread and fscanf read operations
terminate. You can configure DatagramTerminateMode to be on or off.

If DatagramTerminateMode is on, the read operation terminates when a
datagram is read. When DatagramTerminateMode is off, fread and fscanf
read across datagram boundaries.

Usage
Read only

Data type

{on}
off

Functions

UDP
Never

String

The read operation terminates when a datagram is read.

The read operation spans datagram boundaries.

fread, fscanf, udp

9-31

DataTerminalReady

Purpose

Description

Characteristics

Values

See Also

9-32

Specify the state of the DTR pin

You can configure DataTerminalReady to be on or off. If DataTerminalReady
is on, the Data Terminal Ready (DTR) pin is asserted. If DataTerminalReady is
off, the DTR pin is unasserted.

In normal usage, the DTR and Data Set Ready (DSR) pins work together, and
are used to signal if instruments are connected and powered. However, there
is nothing in the RS-232 standard that states the DTR pin must be used in any
specific way. For example, DTR and DSR might be used for handshaking. You
should refer to your instrument documentation to determine its specific pin
behavior.

You can return the value of the DSR pin with the PinStatus property.
Handshaking is described in “The Control Pins” on page 5-8.

Usage Serial port, VISA-serial

Read only Never

Data type String

{on} The DTR pin is asserted.
of f The DTR pin is unasserted.
Properties

FlowControl, PinStatus

EOIMode

Purpose

Description

Characteristics

Values

See Also

Specify if the EOI line is asserted at the end of a write operation

You can configure EOIMode to be on or of f. If EOIMode is on, the End Or Identify
(EOI) line is asserted at the end of a write operation. If EOIMode is of f, the EOI
line is not asserted at the end of a write operation. EOIMode applies to both
binary and text write operations.

Usage GPIB, VISA-GPIB, VISA-VXI, VISA-GPIB-VXI
Read only Never
Data type String

{on} The EOI line is asserted at the end of a write operation.

of f The EOI line is not asserted at the end of a write operation.
Properties
BusManagementStatus

9-33

EOSCharCode

Purpose

Description

Characteristics

Values

See Also

9-34

Specify the EOS character

You can configure EOSCharCode to an integer value ranging from 0 to 255, or to
the equivalent ASCII character. For example, to configure EOSCharCode to a
carriage return, you specify the value to be CR or 13.

EOSCharCode replaces \n wherever it appears in the ASCII command sent to
the instrument. Note that %s\n is the default format for the fprintf function.

For many practical applications, you will configure both EOSCharCode and the
EOSMode property. EOSMode specifies when the EOS character is used. If
EOSMode is write or read&write (writing is enabled), the EOI line is asserted
every time the EOSCharCode value is written to the instrument. If EOSMode is
read or read&write (reading is enabled), then the read operation might
terminate when the EOSCharCode value is detected. For GPIB objects, the
CompareBits property specifies the number of bits that must match the EOS
character to complete a read or write operation.

To see how EOSCharCode and EOSMode work together, refer to the example given
in the EOSMode property description.

Usage GPIB, VISA-GPIB, VISA-VXI, VISA-GPIB-VXI
Read only Never
Data type ASCII value

An integer value ranging from 0 to 255 or the equivalent ASCII character. The
default value is LF, which corresponds to a line feed.

Functions
fprintf

Properties
CompareBits, EOSMode

EOSMode
|

Purpose Specify when the EOS character is written or read

Description For GPIB, VISA-GPIB, VISA-VXI, and VISA-GPIB-VXI objects, you can
configure EOSMode to be none, read, write, or read&write.

If EOSMode is none, the End-Of-String (EOS) character is ignored. If EOSMode is
read, the EOS character is used to terminate a read operation. If EOSMode is
write, the EOS character is appended to the ASCII command being written
whenever \n is encountered. When the EOS character is written to the
instrument, the End Or Identify (EOI) line is asserted. If EOSMode is
read&write, the EOS character is used in both read and write operations.

The EOS character is specified by the EOSCharCode property. For GPIB objects,
the CompareBits property specifies the number of bits that must match the
EOS character to complete a read operation, or to assert the EOI line.

Rules for Completing a Read Operation
For any EOSMode value, the read operation completes when

¢ The EOI line is asserted.
¢ Specified number of values is read.

¢ A timeout occurs.

Additionally, if EOSMode is read or read&write (reading is enabled), then the
read operation can complete when the EOSCharCode property value is detected.

Rules for Completing a Write Operation
Regardless of the EOSMode value, a write operation completes when

® The specified number of values is written.

e A timeout occurs.

Additionally, if EOSMode is write or read&write, the EOI line is asserted each
time the EOSCharCode property value is written to the instrument.

Characteristics Usage GPIB, VISA-GPIB, VISA-VXI, VISA-GPIB-VXI
Read only Never
Data type String

9-35

EOSMode

Values {none} The EOS character is ignored.
read The EOS character is used for each read operation.
write The EOS character is used for each write operation.

read&write The EOS character is used for each read and write
operation.

Example Suppose you input a nominal voltage signal of 2.0 volts into a function
generator, and read back the voltage value using fscanf.

g = gpib('ni',0,1);
fopen(g)

fprintf(g, 'Volt?')
out = fscanf(g)

out =

+2.00000E+00

The EOSMode and EOSCharCode properties are configured to terminate the read
operation when an E character is encountered.

set(g, 'EOSMode', 'read')
set(g, 'EOSCharCode', 'E")
fprintf(g, 'Volt?')

out = fscanf(g)

out =

+2.00000

See Also Properties
CompareBits, EOIMode, EOSCharCode

9-36

ErrorFcn

Purpose Specify the M-file callback function to execute when an error event occurs

Description You configure ErrorFcn to execute an M-file callback function when an error
event occurs.

Note An error event is generated only for asynchronous read and write
operations.

An error event is generated when a timeout occurs. A timeout occurs if a read
or write operation does not successfully complete within the time specified by
the Timeout property. An error event is not generated for configuration errors
such as setting an invalid property value.

Ifthe RecordStatus property value is on, and an error event occurs, the record
file records this information:

¢ The event type as Error
¢ The error message

¢ The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and Executing
Callback Functions” on page 3-33.

Characteristics Usage Any instrument object

Read only Never

Data type Callback function
Values The default value is an empty string.
See Also Functions
record
Properties

RecordStatus, Timeout

9-37

FlowControl

Purpose

Description

Characteristics

Values

See Also

9-38

Specify the data flow control method to use

You can configure FlowControl to be none, hardware, or software. If
FlowControl is none, then data flow control (handshaking) is not used. If

FlowControl is hardware, then hardware handshaking is used to control data
flow. If FlowControlis software, then software handshaking is used to control

data flow.

Hardware handshaking typically utilizes the Request to Send (RTS) and Clear
to Send (CTS) pins to control data flow. Software handshaking uses control
characters (Xon and Xoff) to control data flow. To learn more about hardware

and software handshaking, refer to “Using Control Pins” on page 5-29.

You can return the value of the CTS pin with the PinStatus property. You can
specify the value of the RTS pin with the RequestToSend property. However, if
FlowControlis hardware, and you specify a value for RequestToSend, then that

value might not be honored.

Note Although you might be able to configure your instrument for both
hardware handshaking and software handshaking at the same time, the
toolbox does not support this behavior.

Usage
Read only
Data type

{none}
hardware

software

Properties

Serial port, VISA-serial
Never

String

No flow control is used.
Hardware flow control is used.

Software flow control is used.

PinStatus, RequestToSend

HandshakeStatus

Purpose

Description

Characteristics

Values

Indicate the state of the GPIB handshake lines

HandshakeStatus is a structure array that contains the fields Datavalid,
NotDataAccepted, and NotReadyForData. These fields indicate the state of the
Data Valid (DAV), Not Data Accepted (NDAC) and Not Ready For Data
(NRFD) GPIB lines, respectively.

HandshakeStatus can be on or of f for any of these fields. A value of on indicates
the associated line is asserted. A value of of f indicates the associated line is
unasserted.

Usage GPIB

Read only Never

Data type Structure

on The associated handshake line is asserted
off The associated handshake line is unasserted

The default value is instrument dependent.

9-39

InputBufferSize

Purpose

Description

Characteristics

Values

See Also

9-40

Specify the size of the input buffer in bytes
You configure InputBufferSize as the total number of bytes that can be stored
in the software input buffer during a read operation.

A read operation is terminated if the amount of data stored in the input buffer
equals the InputBufferSize value. You can read text data with the fgetl,
fgets, or fscanf functions. You can read binary data with the fread function.

You can configure InputBufferSize only when the instrument object is
disconnected from the instrument. You disconnect an object with the fclose
function. A disconnected object has a Status property value of closed.

If you configure InputBufferSize while there is data in the input buffer, then
that data is flushed.

Usage Any instrument object
Read only While open
Data type Double

The default value is 512.

Functions
fclose, fgetl, fgets, fopen, fread, fscanf

Properties
Status

InterruptFcn

Purpose

Description

Characteristics

Values

See Also

Specify the M-file callback function to execute when an interrupt event occurs

You configure InterruptFcn to execute an M-file callback function when an
interrupt event occurs. An interrupt event is generated when a VXI bus signal
or a VXI bus interrupt is received from the instrument.

Note An interrupt event can be generated at any time during the instrument
control session.

If the RecordStatus property value is on, and an interrupt event occurs, the
record file records

¢ The event type as Interrupt

¢ The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Usage VISA-VXI
Read only Never
Data type String
The default value is an empty string.

Functions
record

Properties
RecordStatus

9-41

LocalHost

Purpose

Description

Characteristics

Values

See Also

9-42

Specify the local host

LocalHost specifies the local host name or the IP dotted decimal address. An

example dotted decimal address is 144.212.100.10. If you have only one address
or you do not specify this property, the object uses the default IP address when
you connect to the hardware with the fopen function.

You can configure LocalHost only when the object is disconnected from the
hardware. You disconnect a connected object with the fclose function. A
disconnected object has a Status property value of closed.

Usage TCP/IP, UDP
Read only While open
Data type String

The default value is ''.

Functions
fclose, fopen, tcpip, udp

Properties
LocalPort, RemoteHost, Status

LocalPort

Purpose

Description

Characteristics

Values

See Also

Specify the local host port for the connection
You configure LocalPort to be the port value of the local host. The default
valueis [].

If LocalPortMode is set to auto or if LocalPort is [], the property is assigned
any free port when you connect the object to the hardware with the fopen
function. If LocalPortMode is set to manual, the specified LocalPort value is
used when you issue fopen. If you explicitly configure LocalPort,
LocalPortMode is automatically set to manual.

You can configure LocalPort only when the object is disconnected from the
hardware. You disconnect a connected object with the fclose function. A
disconnected object has a Status property value of closed.

Usage TCP/IP, UDP
Read only While open
Data type Double

The default value is [1.

Functions
fclose, fopen, tcpip, udp

Properties
LocalHost, LocalPortMode, Status

9-43

LocalPortMode

Purpose

Description

Characteristics

Values

See Also

9-44

Specify the local host port selection mode

LocalPortMode specifies the selection mode for the LocalPort property when
you connect a TCP/IP or UDP object.

If LocalPortMode is set to auto, MATLAB uses any free local port. If
LocalPortMode is set to manual, the specified LocalPort value is used when
you issue the fopen function. If you explicitly specify a value for LocalPort,
LocalPortMode is automatically set to manual.

Usage TCP/IP, UDP
Read only While open
Data type String

{auto} Use any free local port.
manual Use the specified local port value.
Functions

fclose, fopen, tcpip, udp

Properties
LocalHost, LocalPort, Status

LogicalAddress

Purpose

Description

Characteristics

Values

Example

See Also

Specify the logical address of the VXI instrument

For VISA-VXI and VISA-GPIB-VXI objects, you configure LogicalAddress to
be the logical address of the VXI instrument. You must include the logical
address as part of the resource name during object creation using the visa
function.

The Name and RsrcName properties are automatically updated to reflect the
LogicalAddress value.

You can configure LogicalAddress only when the object is disconnected from
the instrument. You disconnect a connected object with the fclose function. A
disconnected object has a Status property value of closed.

Usage VISA-VXI, VISA-GPIB-VXI

Read only While open

Data type Double

The value is defined when the instrument object is created.

This example creates a VISA-VXI object associated with chassis 4 and logical
address 1, and then returns the logical address.
vv = visa('agilent','VXI4::1::INSTR');
vv.LogicalAddress
ans =
1

Functions
fclose, visa

Properties
Name, RsrcName, Status

9-45

MappedMemoryBase

Purpose

Description

Characteristics

Values

Example

See Also

9-46

Indicate the base memory address of the mapped memory

MappedMemoryBase is the base address of the mapped memory used for low
level read and write operations.

The memory address is returned as a string representing a hexadecimal value.
For example, if the mapped memory base is 200000, then MappedMemoryBase
returns 200000H. If no memory is mapped, MappedMemoryBase is OH.

Use the memmap function to map the specified amount of memory in the
specified address space (A16, A24, or A32) with the specified offset. Use the
memunmap function to unmap the memory space.

Usage VISA-VXI, VISA-GPIB-VXI
Read only Always
Data type String

The default value is OH.

Create the VISA-VXI object vv associated with a VXI chassis with index 0, and
an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent', 'VXI0::130::INSTR');
fopen(vv)

Map 16 bytes in the A16 address space with no offset, and then return the base
address of the mapped memory.

memmap (vv, 'A16',0,16)
vv.MappedMemoryBase
ans =

16737610H

Functions
memmap, memunmap

Properties
MappedMemorySize

MappedMemorySize

Purpose

Description

Characteristics

Values

Example

See Also

Indicate the size of the mapped memory for low-level read and write operations
MappedMemorySize indicates the amount of memory mapped for low-level read
and write operations.

Use the memmap function to map the specified amount of memory in the
specified address space (A16, A24, or A32) with the specified offset. Use the
memunmap function to unmap the memory space.

Usage VISA-VXI, VISA-GPIB-VXI

Read only Always
Data type Double

The default value is 0.

Create the VISA-VXI object vv associated with a VXI chassis with index 0, and
an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent', 'VXIO::130::INSTR');
fopen(vv)

Map 16 bytes in the A16 address space with no offset, and then return the size
of the mapped memory.

memmap (vv, 'A16',0,16)
vv.MappedMemorySize
ans =

16

Functions
memmap, memunmap

Properties
MappedMemoryBase

9-47

MemoryBase

Purpose

Description

Characteristics

Values

Example

9-48

Indicate the base address of the A24 or A32 space

MemoryBase indicates the base address of the A24 or A32 space. The value is
returned as a string representing a hexadecimal value.

All VXTI instruments have an A16 address space that is 16 bits wide. There are
also 24- and 32-bit wide address spaces known as A24 and A32. Some
instruments require the additional memory associated with the A24 or A32
address space when the 64 bytes of A16 space are insufficient for performing
necessary functions. A bit in the A16 address space is set allowing the
instrument to recognize commands to its A24 or A32 space.

An instrument cannot use both the A24 and A32 address space. The address
space is given by the MemorySpace property. If MemorySpace is A16, then
MemoryBase is OH.

Usage VISA-VXI, VISA-GPIB-VXI
Read only Always
Data type String

The default value is OH.
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and
an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXIO::130::INSTR');
fopen(vv)

The MemorySpace property indicates that the A24 memory space is supported.

vv.MemorySpace
ans =
A16/A24

MemoryBase

The base address of the A24 space is

vv.MemoryBase
ans =
'200000H'

See Also Properties
MemorySpace

9-49

Memorylncrement

Purpose

Description

Characteristics

Values

Example

9-50

Specify if the VXI register offset increments after data is transferred

You can configure MemoryIncrement to be block or FIFO. If MemoryIncrement
is block, the memread and memwrite functions increment the offset after every
read and write operation, and data is transferred from or to consecutive
memory elements. If MemoryIncrement is FIFO, the memread and memwrite
functions do not increment the VXI register offset, and data is always read
from or written to the same memory element.

Usage VISA-VXI, VISA-GPIB-VXI
Read only Never
Data type String

{block} Increment the VXI register offset.

FIFO Do not increment the VXI register offset.

Create the VISA-VXI object v associated with a VXI chassis with index 0, and
an instrument with logical address 8.

v = visa('ni','VXI0::8::INSTR');
fopen(v)
Configure the hardware for a FIFO read and write operation.

set(v, 'MemoryIncrement', 'FIFQ')

Write two values to the VXI register starting at offset 16. Because
MemoryIncrement is FIFO, the VXI register offset does not change and both
values are written to offset 16.

memwrite(v,[1984 2000],16, 'uint32', 'A16"')

Read the value at offset 16. The value returned is the second value written with
the memwrite function.

memread(v,16, 'uint32"')
ans =
2000

Memoryincrement

See Also

Read two values starting at offset 16. Note that both values are read at offset
16.

memread(v,16, 'uint32','A16',2);
ans =
2000
2000

Configure the hardware for a block read and write operation.

set (v, 'MemoryIncrement', 'block')

Write two values to the VXI register starting at offset 16. The first value is
written to offset 16 and the second value is written to offset 20 because a
uint32 value consists of four bytes.

memwrite(v,[1984 2000],16, 'uint32','A16")

Read the value at offset 16. The value returned is the first value written with
the memwrite function.

memread(v,16, 'uint32")
ans =
1984

Read two values starting at offset 16. The first value is read at offset 16 and
the second value is read at offset 20.

memread(v,16, 'uint32','A16',2);
ans =
1984
2000

Functions
mempeek, mempoke, memread, memwrite

9-51

MemorySize

Purpose

Description

Characteristics

Values

Example

See Also

9-52

Indicate the size of the memory requested in the A24 or A32 address space
MemorySize indicates the size of the memory requested by the instrument in
the A24 or A32 address space.

Some instruments use the A24 or A32 address space when the 64 bytes of A16
space are not enough for performing necessary functions. An instrument
cannot use both the A24 and A32 address space. The address space is given by
the MemorySpace property. If MemorySpace is A16, then MemorySize is 0.

Usage VISA-VXI, VISA-GPIB-VXI
Read only Always
Data type Double

The default value is 0.
Create the VISA-VXI object vv associated with a VXI chassis with index 0, and
an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent', 'VXI0::130::INSTR');
fopen(vv)

The MemorySpace property indicates that the A24 memory space is supported.

vv.MemorySpace
ans =
A16/A24

The size of the A24 space is

vv.MemorySize
ans =
262144

Properties
MemorySpace

MemorySpace

Purpose

Description

Characteristics

Values

Example

Indicate the address space used by the instrument

MemorySpace indicates the address space requested by the instrument.
MemorySpace can be A16, A16/A24, or A16/A32. If MemorySpace is A16, the
instrument uses only the A16 address space. If MemorySpace is A16/A24, the
instrument uses the A16 and A24 address space. If MemorySpace is A16/A32,
the instrument uses the A16 and A32 address space.

All VXTI instruments have an A16 address space that is 16 bits wide. There are
also 24- and 32-bit wide address spaces known as A24 and A32, respectively.
Some instruments use this memory when the 64 bytes of A16 space are not
enough for performing necessary functions. An instrument cannot use both the
A24 and A32 address space.

The size of the memory is given by the MemorySize property. The base address
of the memory is given by the MemoryBase property.

Usage VISA-VXI, VISA-GPIB-VXI
Read only Always
Data type String

{A16} The instrument uses the A16 address space.
A16/A24 The instrument uses the A16 and A24 address space.
A16/A32 The instrument uses the A16 and A32 address space.

Create the VISA-VXI object vv associated with a VXI chassis with index 0, and
an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent', 'VXIO0::130::INSTR');
fopen(vv)

Return the memory space supported by the instrument.

vv.MemorySpace
ans =
A16/A24

9-53

MemorySpace

This value indicates that the instrument supports A24 memory space in
addition to the A16 memory space.

See Also Properties
MemoryBase, MemorySize

9-54

Name

Purpose

Description

Specify a descriptive name for the instrument object

You configure Name to be a descriptive name for an instrument object.

When you create an instrument object, a descriptive name is automatically
generated and stored in Name. However, you can change this value at any time.
As shown below, the components of Name reflect the instrument object type and
the input arguments you supply to the creation function.

Instrument Object Default Value of Name

GPIB GPIB and BoardIndex-PrimaryAddress-
SecondaryAddress

serial port Serial and Port

TCP/TP TCP/IP and RemoteHost

UDP UDP and RemoteHost

VISA-serial VISA-Serial and Port

VISA-GPIB VISA-GPIB and BoardIndex-PrimaryAddress-
SecondaryAddress

VISA-VXI VISA-VXI and ChassisIndex-LogicalAddress

VISA-GPIB-VXI VISA-GPIB-VXI and ChassisIndex-LogicalAddress

If the secondary address is not specified when a GPIB or VISA-GPIB object is
created, then Name will not include this component.

If you change the value of any property that is a component of Name (for
example, Port or PrimaryAddress), then Name is automatically updated to
reflect those changes.

9-55

Name

Characteristics Usage Any instrument object
Read only Never

Data type String

Values Name is automatically defined at object creation time. The value of Name
depends on the specific instrument object you create.

9-56

OutputBufferSize

Purpose

Description

Characteristics

Values

See Also

Specify the size of the output buffer in bytes
You configure OutputBufferSize as the total number of bytes that can be
stored in the software output buffer during a write operation.

An error occurs if the output buffer cannot hold all the data to be written. You
write text data with the fprintf function. You write binary data with the
fwrite function.

You can configure OutputBufferSize only when the instrument object is
disconnected from the instrument. You disconnect an object with the fclose
function. A disconnected object has a Status property value of closed.

Usage Any instrument object
Read only While open
Data type Double

The default value is 512.

Functions
fprintf, fwrite

Properties
Status

9-57

OutputEmptyFcn

Purpose Specify the M-file callback function to execute when the output buffer is empty

Description You configure OutputEmptyFcn to execute an M-file callback function when an
output-empty event occurs. An output-empty event is generated when the last
byte is sent from the output buffer to the instrument.

Note An output-empty event can be generated only for asynchronous write
operations.

If the RecordStatus property value is on, and an output-empty event occurs,
the record file records this information:

¢ The event type as OutputEmpty

¢ The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and Executing
Callback Functions” on page 3-33.

Characteristics Usage Any instrument object
Read only Never
Data type Callback function

Values The default value is an empty string.

See Also Functions
record

Properties
RecordStatus

9-58

Parity

Purpose Specify the type of parity checking

Description You can configure Parity to be none, odd, even, mark, or space. If Parity is
none, parity checking is not performed and the parity bit is not transmitted. If
Parity is odd, the number of mark bits (1’s) in the data is counted, and the
parity bit is asserted or unasserted to obtain an odd number of mark bits. If
Parity is even, the number of mark bits in the data is counted, and the parity
bit is asserted or unasserted to obtain an even number of mark bits. If Parity
is mark, the parity bit is asserted. If Parity is space, the parity bit is
unasserted.

Parity checking can detect errors of one bit only. An error in two bits might
cause the data to have a seemingly valid parity, when in fact it is incorrect. To
learn more about parity checking, refer to “The Parity Bit” on page 5-12.

In addition to the parity bit, the serial data format consists of a start bit,
between five and eight data bits, and one or two stop bits. You specify the
number of data bits with the DataBits property, and the number of stop bits
with the StopBits property.

Characteristics Usage Serial port, VISA-serial
Read only Never

Data type String

Values {none} No parity checking
odd 0dd parity checking
even Even parity checking
mark Mark parity checking
space Space parity checking

See Also Properties

DataBits, StopBits

9-59

PinStatus

Purpose

Description

Characteristics

Values

See Also

9-60

Indicate the state of the CD, CTS, DSR, and RI pins

PinStatus is a structure array that contains the fields CarrierDetect,
ClearToSend, DataSetReady and RingIndicator. These fields indicate the
state of the Carrier Detect (CD), Clear to Send (CTS), Data Set Ready (DSR)
and Ring Indicator (RI) pins, respectively. Refer to “The Control Pins” on page
5-8 to learn more about these pins.

PinStatus can be on or off for any of these fields. A value of on indicates the
associated pin is asserted. A value of of f indicates the associated pin is
unasserted. For serial port objects, a pin status event occurs when any of these
pins changes its state. A pin status event executes the M-file specified by
PinStatusFcn.

In normal usage, the Data Terminal Ready (DTR) and DSR pins work together,
while the Request To Send (RTS) and CTS pins work together. You can specify
the state of the DTR pin with the DataTerminalReady property. You can specify
the state of the RTS pin with the RequestToSend property.

Refer to “Example: Connecting Two Modems” on page 5-29 for an example that
uses PinStatus.

Usage Serial port, VISA-serial

Read only Always

Data type Structure
of f The associated pin is asserted
on The associated pin is asserted

The default value is instrument dependent.

Properties
DataTerminalReady, PinStatusFcn, RequestToSend

PinStatusFcn

Purpose

Description

Characteristics

Values

See Also

Specify the M-file callback function to execute when the CD, CTS, DSR, or RI

pin changes state

You configure PinStatusFcn to execute an M-file callback function when a pin
status event occurs. A pin status event occurs when the Carrier Detect (CD),
Clear to Send (CTS), Data Set Ready (DSR) or Ring Indicator (RI) pin changes
state. A serial port pin changes state when it is asserted or unasserted.
Information about the state of these pins is recorded in the PinStatus

property.

Note A pin status event can be generated at any time during the instrument

control session.

If the RecordStatus property value is on, and a pin status event occurs, the

record file records this information:

® The event type as PinStatus

¢ The pin that changed its state, and pin state as either on or off

¢ The time the event occurred using the format day-month-year

hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and Executing

Callback Functions” on page 3-33.

Usage Serial port
Read only Never

Data type Callback function

The default value is an empty string.

Functions
record

Properties
PinStatus, RecordStatus

9-61

Port

Purpose

Description

Characteristics

Values

Example

See Also

9-62

Specify the platform-specific serial port name
You configure Port to be the name of a serial port on your platform. Port
specifies the physical port associated with the object and the instrument.

When you create a serial port or VISA-serial object, Port is automatically
assigned the port name specified for the serial or visa function.

You can configure Port only when the object is disconnected from the
instrument. You disconnect an object with the fclose function. A disconnected
object has a Status property value of closed.

Usage Serial port, VISA-serial
Read only While open
Data type String

The value is determined when the instrument object is created.
Suppose you create a serial port and VISA-serial object associated with serial
port COM1.

s = serial('COM1")
vs = visa('ni', 'ASRL1::INSTR')

The Port property values are given below.

get([s vs],'Port')

ans =
"COM1'
'ASRL1"

Functions

fclose, serial, visa

Properties
Name, RsrcName, Status

PrimaryAddress

Purpose

Description

Characteristics

Values

Example

See Also

Specify the primary address of the GPIB instrument

For GPIB and VISA-GPIB objects, you configure PrimaryAddress to be the
GPIB primary address associated with your instrument. The primary address
can range from 0 to 30, and you must specify it during object creation using the
gpib or visa function. For VISA-GPIB-VXI objects, PrimaryAddress is
read-only, and the value is returned automatically by the VISA interface after
the object is connected to the instrument with the fopen function.

For GPIB and VISA-GPIB objects, the Name property is automatically updated
to reflect the PrimaryAddress value. For VISA-GPIB objects, the RsrcName
property is automatically updated to reflect the PrimaryAddress value.

You can configure PrimaryAddress only when the GPIB or VISA-GPIB object
is disconnected from the instrument. You disconnect a connected object with
the fclose function. A disconnected object has a Status property value of
closed.

Usage GPIB, VISA-GPIB, VISA-GPIB-VXI
Read only While open (GPIB, VISA-GPIB), always (VISA-GPIB-VXI)

Data type Double

PrimaryAddress can range from 0 to 30. The value is determined when the
instrument object is created.

This example creates a VISA-GPIB object associated with board 0, primary
address 1, and secondary address 8, and then returns the primary address.
vg = visa('agilent', 'GPIBO::1::8::INSTR');
vg.PrimaryAddress
ans =
1

Functions
fclose, gpib, visa

Properties
Name, RsrcName, Status

9-63

ReadAsyncMode

Purpose

Description

Characteristics

Values

9-64

Specify whether an asynchronous read operation is continuous or manual

You can configure ReadAsyncMode to be continuous or manual. If
ReadAsyncMode is continuous, the object continuously queries the instrument
to determine if data is available to be read. If data is available, it is
automatically read and stored in the input buffer. If issued, the readasync
function is ignored.

If ReadAsyncMode is manual, the object will not query the instrument to
determine if data is available to be read. Instead, you must manually issue the
readasync function to perform an asynchronous read operation. Because
readasync checks for the terminator, this function can be slow. To increase
speed, you should configure ReadAsyncMode to continuous.

Note Ifthe instrument is ready to transmit data, then it will do so regardless
of the ReadAsyncMode value. Therefore, if ReadAsyncMode is manual and a read
operation is not in progress, then data can be lost. To guarantee that all
transmitted data is stored in the input buffer, you should configure
ReadAsyncMode to continuous.

You can determine the amount of data available in the input buffer with the
BytesAvailable property. For either ReadAsyncMode value, you can bring data
into the MATLAB workspace with one of the synchronous read functions such
as fscanf, fgetl, fgets, or fread.

Usage Serial port, TCP/IP, UDP, VISA-serial
Read only Never

Data type String

{continuous} Continuously query the instrument to determine if data is
available to be read.

manual Manually read data from the instrument using the
readasync function.

ReadAsyncMode
|

See Also Functions
fgetl, fgets, fread, fscanf, readasync

Properties
BytesAvailable, InputBufferSize

9-65

RecordDetail

Purpose

Description

Characteristics

Values

See Also

9-66

Specify the amount of information saved to a record file

You can configure RecordDetail to be compact or verbose. If RecordDetail is
compact, the number of values written to the instrument, the number of values
read from the instrument, the data type of the values, and event information
are saved to the record file. If RecordDetail is verbose, the data transferred to
and from the instrument is also saved to the record file.

The verbose record file structure is shown in “Example: Recording Information
to Disk” on page 7-9.

Usage Any instrument object

Read only Never

Data type String

{compact} The number of values written to the instrument, the
number of values read from the instrument, the data type

of the values, and event information are saved to the record
file.

verbose The data written to the instrument, and the data read from
the instrument are also saved to the record file.

Functions
record

Properties
RecordMode, RecordName, RecordStatus

RecordMode

Purpose

Description

Characteristics

Values

Example

Specify whether data and event information are saved to one record file or to
multiple record files

You can configure RecordMode to be overwrite, append, or index. If
RecordMode is overwrite, then the record file is overwritten each time
recording is initiated. If RecordMode is append, then data is appended to the
record file each time recording is initiated. If RecordMode is index, a different
record file is created each time recording is initiated, each with an indexed
filename.

You can configure RecordMode only when the object is not recording. You
terminate recording with the record function. A object that is not recording
has a RecordStatus property value of off.

You specify the record filename with the RecordName property. The indexed
filename follows a prescribed set of rules. Refer to “Specifying a Filename” on
page 7-6 for a description of these rules.

Usage Any instrument object

Read only While recording
Data type String

{overwrite} The record file is overwritten.

append Data is appended to the record file.
index Multiple record files are written, each with an indexed
filename.

Suppose you create the serial port object s associated with the serial port
CcoM1.

s = serial('COM1');
fopen(s)

Specify the record filename with the RecordName property, configure
RecordMode to index, and initiate recording.

s.RecordName = 'myrecord.txt';

9-67

RecordMode

s.RecordMode = 'index';
record(s)

The record filename is automatically updated with an indexed filename after
recording is turned off.

record(s, 'off')
s.RecordName
ans =
myrecord01.txt

Disconnect s from the instrument, and remove s from memory and from the
MATLAB workspace.

fclose(s)
delete(s)
clear s

See Also Functions
record

Properties
RecordDetail, RecordName, RecordStatus

9-68

RecordName

Purpose

Description

Characteristics

Values

See Also

Specify the name of the record file

You configure RecordName to be the name of the record file. You can specify any
value for RecordName — including a directory path — provided the filename is
supported by your operating system.

MATLAB supports any filename supported by your operating system.
However, if you access the file through MATLAB, you might need to specify the
filename using single quotes. For example, suppose you name the record file my
record.txt. To type this file at the MATLAB command line, you must include
the name in quotes.

type('my record.txt')

You can specify whether data and event information are saved to one disk file
or to multiple disk files with the RecordMode property. If RecordMode is index,
then the filename follows a prescribed set of rules. Refer to “Specifying a
Filename” on page 7-6 for a description of these rules.

You can configure RecordName only when the object is not recording. You
terminate recording with the record function. An object that is not recording
has a RecordStatus property value of off.

Usage Any instrument object

Read only While recording
Data type String

The default record file name is record. txt.

Functions
record

Properties
RecordDetail, RecordMode, RecordStatus

9-69

RecordStatus

Purpose Indicate if data and event information are saved to a record file

Description You can configure RecordStatus to be of f or on with the record function. If
RecordStatus is off, then data and event information are not saved to a record
file. If RecordStatus is on, then data and event information are saved to the
record file specified by RecordName.

Use the record function to initiate or complete recording. RecordStatus is
automatically configured to reflect the recording state.

Characteristics Usage Any instrument object
Read only Always
Data type String

Values {off} Data and event information are not written to a record file
on Data and event information are written to a record file
See Also Functions
record
Properties

RecordDetail, RecordMode, RecordName

9-70

RemoteHost

Purpose

Description

Characteristics

Values

See Also

Specify the remote host

RemoteHost specifies the remote host name or IP dotted decimal address. An
example dotted decimal address is 144.212.100.10.

For TCP/IP objects, you can configure RemoteHost only when the object is
disconnected from the hardware. You disconnect a connected object with the

fclose function. A disconnected object has a Status property value of closed.

For UDP objects, you can configure RemoteHost at any time. If the object is
open, a warning is issued if the remote address is invalid.

Usage TCP/IP, UDP
Read only While open (TCP/IP), Never (UDP)
Data type String

The value is defined when you create the TCP/IP or UDP object.

Functions
fclose, fopen, tcpip, udp

Properties
LocalHost, RemotePort, Status

9-71

RemotePort

Purpose

Description

Characteristics

Values

See Also

9-72

Specify the remote host port for the connection

You can configure RemotePort to be any port number between 1 and 65535. The
default value is 80 for TCP/IP objects and 9090 for UDP objects.

For TCP/IP objects, you can configure RemotePort only when the object is
disconnected from the hardware. You disconnect a connected object with the
fclose function. A disconnected object has a Status property value of closed.

For UDP objects, you can configure RemotePort at any time.

Usage TCP/IP, UDP
Read only While open (TCP/IP), Never (UDP)

Data type Double

Any port number between 1 and 65535. The default value is 80 for TCP/IP
objects and 9090 for UDP objects.

Functions
fclose, fopen, tcpip, udp

Properties
RemoteHost, LocalPort, Status

RequesiToSend

Purpose

Description

Characteristics

Values

See Also

Specify the state of the RTS pin

You can configure RequestToSend to be on or off. If RequestToSend is on, the
Request to Send (RTS) pin is asserted. If RequestToSend is off, the RTS pin is
unasserted.

In normal usage, the RTS and Clear to Send (CTS) pins work together, and are
used as standard handshaking pins for data transfer. In this case, RTS and
CTS are automatically managed by the DTE and DCE. However, there is
nothing in the RS-232 standard that states the RTS pin must to be used in any
specific way. Therefore, if you manually configure the RequestToSend value, it
is probably for nonstandard operations.

If your instrument does not use hardware handshaking in the standard way,
and you need to manually configure RequestToSend, then you should configure
the FlowControl property to none. Otherwise, the RequestToSend value that
you specify might not be honored. Refer to your instrument documentation to
determine its specific pin behavior.

You can return the value of the CTS pin with the PinStatus property.
Handshaking is described in “The Control Pins” on page 5-8.

Usage Serial port, VISA-serial

Read only Never

Data type String

{on} The RTS pin is asserted.

off The RTS pin is unasserted.
Properties

FlowControl, PinStatus

9-73

RsrcName

Purpose

Description

Characteristics

Values

Example

9-74

Indicate the resource name for a VISA instrument

RsrcName indicates the resource name for a VISA instrument. When you create
a VISA object, RsrcName is automatically assigned the value specified in the
visa function.

The resource name is a symbolic name for the instrument. The resource name
you supply to visa depends on the interface and has the format shown below.
The components in brackets are optional and have a default value of 0 except
port_number, which has a default value of 1.

Interface Resource Name

GPIB GPIB[board]::primary_address::[secondary_address]::INSTR
VXI VXI[chassis]::VXI_logical_address::INSTR

GPIB-VXI GPIB-VXI[chassis]::VXI_logical_address::INSTR

Serial ASRL[port_number]::INSTR

If you change the BoardIndex, PrimaryAddress, SecondaryAddress,
ChassisIndex, LogicalAddress, or Port property values, RsrcName is
automatically updated to reflect these changes.

Usage VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, VISA-serial
Read only Always
Data type String

The value is defined when the instrument object is created.

To create a VISA-GPIB object associated with a GPIB controller with board
index 0 and an instrument with primary address 1, you supply the following
resource name to the visa function.

vg = visa('ni','GPIBO::1::INSTR');

RsrcName

See Also

To create a VISA-VXI object associated with a VXI chassis with index 0 and an
instrument with logical address 130, you supply the following resource name
to the visa function.

vv = visa('agilent','VXIO0::130::INSTR');
To create a VISA-GPIB-VXI object associated with a VXI chassis with index 0

and an instrument with logical address 80, you supply the following resource
name to the visa function.

vgv = visa('agilent', 'GPIB-VXIO0::80::INSTR');

To create a VISA-serial object associated with the COM1 serial port, you supply
the following resource name to the visa function.

vs = visa('ni', 'ASRL1::INSTR');

Functions
visa

Properties

BoardIndex, ChassisIndex, LogicalAddress, Port, PrimaryAddress,
SecondaryAddress

9-75

SecondaryAddress

Purpose

Description

Characteristics

Values

9-76

Specify the secondary address of the GPIB instrument

For GPIB and VISA-GPIB objects, you configure SecondaryAddress to be the
GPIB secondary address associated with your instrument. You can initially
specify the secondary address during object creation using the gpib or visa
function. For VISA-GPIB-VXI objects, SecondaryAddress is read-only, and the
value is returned automatically by the VISA interface after the object is
connected to the instrument with the fopen function.

For GPIB objects, SecondaryAddress can range from 96 to 126, or it can be 0
indicating that no secondary address is used. For VISA-GPIB objects,
SecondaryAddress can range from 0 to 30. If your instrument does not have a
secondary address, then SecondaryAddress is 0.

For GPIB and VISA-GPIB objects, the Name property is automatically updated
to reflect the SecondaryAddress value. For VISA-GPIB objects, the RsrcName
property is automatically updated to reflect the SecondaryAddress value.

You can configure SecondaryAddress only when the GPIB or VISA-GPIB
object is disconnected from the instrument. You disconnect a connected object
with the fclose function. A disconnected object has a Status property value of
closed.

Usage GPIB, VISA-GPIB, VISA-GPIB-VXI
Read only While open (GPIB, VISA-GPIB), always (VISA-GPIB-VXI)
Data type Double

For GPIB objects, SecondaryAddress can range from 96 to 126, or it can be 0.

For VISA-GPIB objects, SecondaryAddress can range from 0 to 30. The default
value is 0.

SecondaryAddress
|

Example This example creates a VISA-GPIB object associated with board 0, primary
address 1, and secondary address 8, and then returns the secondary address.
vg = visa('agilent', 'GPIBO::1::8::INSTR');
vg.SecondaryAddress
ans =
8

See Also Functions
fclose, gpib, visa

Properties
Name, RsrcName, Status

9-77

Slot

Purpose Indicate the slot location of the VXI instrument

Description Slot indicates the physical slot of the VXI instrument. Slot can be any value
between 0 and 12.

Characteristics Usage VISA-VXI, VISA-GPIB-VXI
Read only Always
Data type Double

Values The property value is defined when the instrument object is connected.

9-78

Status

Purpose

Description

Characteristics

Values

See Also

Indicate if the object is connected to the instrument

Status can be open or closed. If Status is closed, the object is not connected
to the instrument. If Status is open, the object is connected to the instrument.

Before you can write or read data, you must connect the object to the
instrument with the fopen function. You use the fclose function to disconnect
an object from the instrument.

Usage
Read only

Data type

{closed}

open

Functions
fclose, fopen

Any instrument object
Always
String

The object is not connected to the instrument.

The object is connected to the instrument.

9-79

StopBits

Purpose

Description

Characteristics

Values

See Also

9-80

Specify the number of bits used to indicate the end of a byte

You can configure StopBits to be 1, 1.5, or 2 for serial port objects, or 1 or 2 for
VISA-serial objects If StopBits is 1, one stop bit is used to indicate the end of
data transmission. If StopBits is 2, two stop bits are used to indicate the end
of data transmission. If StopBits is 1.5, the stop bit is transferred for 150% of
the normal time used to transfer one bit.

Note Both the computer and the instrument must be configured to transmit
the same the number of stop bits.

In addition to the stop bits, the serial data format consists of a start bit,
between five and eight data bits, and possibly a parity bit. You specify the
number of data bits with the DataBits property, and the type of parity
checking with the Parity property.

Usage Serial port, VISA-serial

Read only Never

Data type double

Serial Port

{1} One stop bit is transmitted to indicate the end of a byte.

1.5 The stop bit is transferred for 150% of the normal time used

to transfer one bit.

2 Two stop bits are transmitted to indicate the end of a byte.
VISA-serial

{1} One stop bit is transmitted to indicate the end of a byte.

2 Two stop bits are transmitted to indicate the end of a byte
Properties

DataBits, Parity

Tag

Purpose

Description

Characteristics

Values

Example

See Also

Specify a label to associate with an instrument object
You configure Tag to be a string value that uniquely identifies an instrument
object.

Tag is particularly useful when constructing programs that would otherwise
need to define the instrument object as a global variable, or pass the object as
an argument between callback routines.

You can return the instrument object with the instrfind function by
specifying the Tag property value.

Usage Any instrument object

Read only Never

Data type String

The default value is an empty string.

Suppose you create a serial port object associated with the serial port COM1.

s = serial('COM1');
fopen(s);

You can assign s a unique label using Tag.
set(s,'Tag', 'MySerialObj')

You can access s in the MATLAB workspace or in an M-file using the
instrfind function and the Tag property value.

s1 = instrfind('Tag', 'MySerialObj');

Functions
instrfind

9-81

Terminator

Purpose

Description

Characteristics

Values

See Also

9-82

Specify the terminator character

For serial port., TCP/IP, UDP, and VISA-serial objects, you can configure
Terminator to an integer value ranging from 0 to 127, to the equivalent ASCII
character, or to empty ("'). For example, to configure Terminator to a carriage
return, you specify the value to be CR or 13. To configure Terminator to a line
feed, you specify the value to be LF or 10. For serial port objects, you can also
set Terminator to CR/LF or LF/CR. If Terminator is CR/LF, the terminator is a
carriage return followed by a line feed. If Terminator is LF/CR, the terminator
is a line feed followed by a carriage return. Note that there are no integer
equivalents for these two values.

Additionally, you can set Terminator to a 1-by-2 cell array. The first element
of the cell is the read terminator and the second element of the cell array is the
write terminator.

When performing a write operation using the fprintf function, all occurrences
of \n are replaced with the Terminator value. Note that %s\n is the default
format for fprintf. A read operation with fgetl, fgets, or fscanf completes
when the Terminator value is read. The terminator is ignored for binary
operations.

You can also use the terminator to generate a bytes-available event when the
BytesAvailableFcnMode is set to terminator.

Usage Serial port, TCP/IP, UDP, VISA-serial

Read only Never

Data type ASCII value

An integer value ranging from 0 to 127, the equivalent ASCII character, or
empty (). For serial port objects, CR/LF and LF/CR are also accepted values.
You specify different read and write terminators as a 1-by-2 cell array.

Functions
fgetl, fgets, fprintf, fscanf

Properties
BytesAvailableFcnMode

Timeout

Purpose

Description

Characteristics

Values

See Also

Specify the waiting time to complete a read or write operation

You configure Timeout to be the maximum time (in seconds) to wait to complete
a read or write operation.

If a timeout occurs, then the read or write operation aborts. Additionally, if a
timeout occurs during an asynchronous read or write operation, then

® An error event is generated.

® The M-file callback function specified for ErrorFcn is executed.

Usage Any instrument object
Read only Never
Data type Double

The default value is 10 seconds.

Properties
ErrorFcn

9-83

TimerFcn

Purpose

Description

Characteristics

Values

See Also

9-84

Specify the M-file callback function to execute when a predefined period of time
passes

You configure TimerFcn to execute an M-file callback function when a timer
event occurs. A timer event occurs when the time specified by the TimerPeriod
property passes. Time is measured relative to when the object is connected to
the instrument with fopen.

Note A timer event can be generated at any time during the instrument
control session.

If the RecordStatus property value is on, and a timer event occurs, the record
file records this information:

¢ The event type as Timer

¢ The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Some timer events might not be processed if your system is significantly slowed
or if the TimerPeriod value is too small.

To learn how to create a callback function, refer to “Creating and Executing
Callback Functions” on page 3-33.

Usage Any instrument object
Read only Never

Data type Callback function

The default value is an empty string.

Functions
fopen, record

Properties
RecordStatus, TimerPeriod

TimerPeriod

Purpose

Description

Characteristics

Values

See Also

Specify the period of time between timer events

TimerPeriod specifies the time, in seconds, that must pass before the callback
function specified for TimerFcnis called. Time is measured relative to when the
object is connected to the instrument with fopen.

Some timer events might not be processed if your system is significantly slowed
or if the TimerPeriod value is too small.

Usage Any instrument object
Read only Never
Data type Callback function

The default value is 1 second. The minimum value is 0.01 second.

Functions
fopen

Properties
TimerFcn

9-85

TransferDelay

Purpose

Description

Characteristics

Values

See Also

9-86

Specify the use of the TCP segment transfer algorithm

You can configure TransferDelay to on or off. If TransferDelay is on, small
segments of outstanding data are collected and sent in a single packet when
acknowledgment (ACK) arrives from the server. If TransferDelay is of f, data
is sent immediately to the network.

If a network is slow, you can improve its performance by configuring
TransferDelay to on. However, on a fast network acknowledgments arrive
quickly and there is negligible difference between configuring TransferDelay
to on or off.

Note that the segment transfer algorithm used by TransferDelay is Nagle's
algorithm.

Usage TCP/IP
Read only Never

Data type String

{on} Use the TCP segment transfer algorithm.

off Do no use the TCP segment transfer algorithm.
Functions
tcpip

TransferStatus

Purpose

Description

Characteristics

Values

See Also

Indicate if an asynchronous read or write operation is in progress

TransferStatus can be idle, read, write, or read&write. If TransferStatus
is idle, then no asynchronous read or write operations are in progress. If
TransferStatus is read, then an asynchronous read operation is in progress.
If TransferStatus is write, then an asynchronous write operation is in
progress. If TransferStatus is read&write, then both an asynchronous read
and an asynchronous write operation are in progress.

You can write data asynchronously using the fprintf or fwrite functions. You
can read data asynchronously using the readasync function, or by configuring
ReadAsyncMode to continuous (serial, TCP/IP, UDP, and VISA-serial objects
only). For detailed information about asynchronous read and write operations,
refer to “Writing and Reading Data” on page 2-12.

While readasync is executing for any instrument object, TransferStatus
might indicate that data is being read even though data is not filling the input
buffer. However, if ReadAsyncMode is continuous, TransferStatus indicates
that data is being read only when data is actually filling the input buffer.

Usage Any instrument object
Read only Always
Data type String

{idle} No asynchronous operations are in progress.

read An asynchronous read operation is in progress.

write An asynchronous write operation is in progress.

read&write Asynchronous read and write operations are in progress.
Functions

fprintf, fwrite, readasync

Properties
ReadAsyncMode

9-87

TriggerFcn

Purpose

Description

Characteristics

Values

See Also

9-88

Specify the M-file callback function to execute when a trigger event occurs

You configure TriggerFcn to execute an M-file callback function when a trigger
event occurs. A trigger event is generated when a trigger occurs in software, or
on one of the VXI hardware trigger lines. You configure the trigger type with
the TriggerType property.

Note A trigger event can be generated at any time during the instrument
control session.

Ifthe RecordStatus property value is on, and a trigger event occurs, the record
file records

¢ The event type as Trigger

¢ The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Usage VISA-VXI
Read only Never

Data type String

The default value is an empty string.

Functions
record

Properties
RecordStatus, TriggerLine, TriggerType

TriggerLine

Purpose

Description

Characteristics

Values

See Also

Specify the trigger line on the VXI instrument

You can configure TriggerLine tobe TTLO through TTL7, ECLO, or ECL1. You can
use only one trigger line at a time.

You can specify the trigger type with the TriggerType property. When
TriggerType is hardware, the line triggered is given by the TriggerLine value.
When the TriggerType is software, the TriggerLine value is ignored.

You execute a trigger for a VISA-VXI object with the trigger function.

Usage VISA-VXI
Read only Never

Data type String

TriggerLine can be TTLO through TTL7, ECLO, or ECL1. The default value is
TTLO.

Functions
trigger

Properties
TriggerType

9-89

TriggerType

Purpose Specify the trigger type

Description You can configure TriggerType to be software or hardware. If TriggerType is
software, then a software trigger is used. If TriggerType is hardware, then the
trigger line specified by the TriggerLine property is used.

You execute a trigger for a VISA-VXI object with the trigger function.

Characteristics Usage VISA-VXI
Read only Never
Data type String

Values {hardware} A hardware trigger is used.

software A software trigger is used.

See Also Functions
trigger

Properties
TriggerLine

9-90

Type

Purpose

Description

Characteristics

Values

Example

See Also

Indicate the instrument object type

Type indicates the type of the object. Type is automatically defined after the
instrument object is created with the serial, gpib, or visa function.

Using the instrfind function and the Type value, you can quickly identify
instrument objects of a given type.

Usage Any instrument object
Read only Always
Data type String

gpib The object type is GPIB.
serial The object type is serial port.
tepip The object type is TCP/IP.

udp The object type is UDP.
visa-gpib The object type is VISA-GPIB.
visa-vxi The object type is VISA-VXI.

visa-gpib-vxi The object type is VISA-GPIB-VXI.

visa-serial The object type is VISA-serial.

The value is automatically determined when the instrument object is created.

Create a serial port object associated with the serial port COM1. The value of
the Type property is serial, which is the object class.

s = serial('COM1');
s.Type

ans =

serial

Functions
instrfind, gpib, serial, tcpip, udp, visa

9-91

UserData

Purpose

Description

Characteristics

Values

Example

9-92

Specify data that you want to associate with an instrument object

You configure UserData to store data that you want to associate with an
instrument object. The object does not use this data directly, but you can access
it using the get function or the dot notation.

Usage Any instrument object

Read only Never
Data type Any type

The default value is an empty vector.

Suppose you create the serial port object associated with the serial port COM1.
s = serial('COM1");
You can associate data with s by storing it in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
s.UserData = coeff

ValuesReceived

Purpose

Description

Characteristics

Values

Example

Indicate the total number of values read from the instrument

ValuesReceived indicates the total number of values read from the
instrument. The value is updated after each successful read operation, and is
set to 0 after the fopen function is issued. If the terminator is read from the
instrument, then this value is reflected by ValuesReceived.

If you are reading data asynchronously, use the BytesAvailable property to
return the number of bytes currently available in the input buffer.

When performing a read operation, the received data is represented by values
rather than bytes. A value consists of one or more bytes. For example, one
uint32 value consists of four bytes. Refer to “The Output Buffer and Data
Flow” on page 2-14 for more information about bytes and values.

Usage Any instrument object
Read only Always
Data type Double

The default value is 0.

Suppose you create a serial port object associated with the serial port COM1.

s = serial('COM1');
fopen(s)

If you write the RS232? command, and then read back the response using
fscanf,ValuesReceivedis 17 because the instrument is configured to send the
LF terminator.

fprintf(s, 'RS2327")
out = fscanf(s)
out =
9600;0;0;NONE;LF
s.ValuesReceived
ans =

17

9-93

ValuesReceived

See Also Functions
fopen

Properties
BytesAvailable

9-94

ValuesSent

Purpose

Description

Characteristics

Values

Example

See Also

Indicate the total number of values written to the instrument

ValuesSent indicates the total number of values written to the instrument.
The value is updated after each successful write operation, and is set to 0 after
the fopen function is issued. If you are writing the terminator, then
valuesSent reflects this value.

If you are writing data asynchronously, use the BytesToOutput property to
return the number of bytes currently in the output buffer.

When performing a write operation, the transmitted data is represented by
values rather than bytes. A value consists of one or more bytes. For example,
one uint32 value consists of four bytes. Refer to “The Output Buffer and Data
Flow” on page 2-14 for more information about bytes and values.

Usage Any instrument object
Read only Always
Data type Double

The default value is 0.

Suppose you create a serial port object associated with the serial port COM1.

s = serial('COM1');
fopen(s)

If you write the *IDN? command using the fprintf function, then ValuesSent
is 6 because the default data format is %s\n, and the terminator was written.

fprintf(s, '*IDN?')
s.ValuesSent
ans =

6

Functions
fopen

Properties
BytesToOutput

9-95

ValuesSent

9-96

Selected Bibliography

[1] Axelson, Jan, Serial Port Complete, Lakeview Research, Madison, WI, 1998.

[2] Courier High Speed Modems User’s Manual, U.S. Robotics, Inc., Skokie, IL,
1994.

[3] TIA/EIA-232-F, Interface Between Data Terminal Equipment and Data
Circuit-Terminating Equipment Employing Serial Binary Data Interchange.

[4] Getting Started with Your AT Serial Hardware and Software for Windows
98/95, National Instruments, Inc., Austin, TX, 1998.

[5] HP E1432A User’s Guide, Hewlett-Packard Company, Palo Alto, CA, 1997.

[6] HP 33120A Function Generator/Arbitrary Waveform Generator User’s
Guide, Hewlett-Packard Company, Palo Alto, CA, 1997.

[71 HP VISA User’s Guide, Hewlett-Packard Company, Palo Alto, CA, 1998.

[8] NI-488.2M™ User Manual for Windows 95 and Windows NT, National
Instruments, Inc., Austin, TX, 1996.

[9] NI-VISA™ User Manual, National Instruments, Inc., Austin, TX, 1998.

[10] IEEE Std 488.2-1992, IEEE Standard Codes, Formats, Protocols, and
Common Commands for Use with IEEE Std 4881.-1987, IEEE Standard
Digital Interface for Programmable Instrumentation, Institute of Electrical and
Electronics Engineers, New York, NY, 1992.

[11] Instrument Communication Handbook,10Tech, Inc., Cleveland, OH, 1991.

[12] TDS 200-Series Two Channel Digital Oscilloscope Programmer Manual,
Tektronix, Inc., Wilsonville, OR.

[13] Stevens, W. Richard. TCP/IP Illustrated, Volume 1, Addison-Wesley,
Boston, MA, 1994.

A
A16/A24/A32 memory space 4-14

active state, serial port 5-6
adaptors 1-4
finding with instrhwinfo 1-13
address configuration
GPIB object 3-20
VISA-GPIB object 4-7
VISA-GPIB-VXI object 4-24
VISA-VXI object 4-12
Agilent Technologies
adaptors 1-4
E1432A registers, example of 4-16
VISA Assistant tool 4-3
array, instrument object
creating 2-3
example of 3-39
ASCII
control characters 5-33
read operations 2-22, 3-22
serial data 5-9
write operations 2-16, 3-22
ASCII Communication Tool 8-52
asynchronous
read operations 2-23
readasync, example of 3-24, 3-35
ReadAsyncMode, example of 5-20
serial port 5-10
write operations 2-17
ATN line 3-6
serial poll 3-1, 3-39

base properties 2-6
list of all 9-2
BaudRate property 9-11

binary

floating-point arithmetic standard 7-7

read operations 2-22, 3-24

write operations 2-16
binblockread function 8-8
binblockwrite function 8-10
BoardIndex

GPIB object 3-20

VISA-GPIB object 4-8

VISA-GPIB-VXI object 4-25
BoardIndex property 9-12
break-interrupt event 5-25, 6-20
BreakInterruptFcn property 9-13
buffer

clearing hardware 3-29

input 2-20

output 2-14

values versus bytes 2-14
bus and connector, GPIB 3-3
BusManagementStatus

GPIB interface management lines 3-7
BusManagementStatus property 9-14

example of 9-14
ByteOrder property 9-16
bytes versus values 2-14
BytesAvailable

example of 2-24

input buffer 2-20
bytes-available event 3-31

example of 3-35
BytesAvailable property 9-17
BytesAvailableFcn property 9-18
BytesAvailableFcnCount property 9-21
BytesAvailableFcnMode property 9-22
BytesToOutput

output buffer 2-14

I1

Index

BytesToOutput property 9-24

C

callback functions
creating 3-33
enabling after they error 3-34
executing 3-33
instrcallback, example of 3-30
callback properties
GPIB object 3-31
saving property values to a MAT-file 7-2
serial port object 5-24, 6-19
CD pin 5-9
ChassisIndex property 9-25
clear
cleaning up the MATLAB environment 2-25
clear function 8-12
clrdevice
example of 3-29
clrdevice function 8-13
CompareBits property 9-26
Configuration Tool 8-55
configuring property values 2-9
connecting to the instrument 2-5
constructor 2-2
finding with instrhwinfo 1-14
Contents 1-9
control characters 5-33
control pins 5-8, 5-29
controllers, GPIB 3-3
creation function 2-2
CTS pin 5-8

D
data bits 5-12

data format
serial port 5-9
data lines 3-6
DataBits property 9-27
DatagramAddress property 9-28
DatagramPort property 9-29
DatagramReceivedFcn property 9-30
DatagramTerminateMode property 9-31
DataTerminalReady property 9-32
DAV line 3-7
DCE 5-3
dec2bin 7-8
default property values 2-10
delete
cleaning up the MATLAB environment 2-25
delete function 8-14
demos 1-9
DIO lines 3-6
disconnecting from the instrument 2-25
disp function 8-15
display summary
GPIB object 3-19
serial port object 5-17
TCP/IP object 6-5
UDP object 6-9
VISA-GPIB object 4-6
VISA-GPIB-VXI object 4-23
VISA-serial object 4-27
VISA-VXI object 4-11
documentation examples 1-9
dot notation
configuring property values 2-9
returning property values 2-8
saving property values to an M-file 7-2
DSR pin 5-8
DTE 5-3
DTR pin 5-8

Index

E

echotcpip function 8-16
echoudp function 8-17
enable registers 3-9
EOI line 3-6
example of 3-27
EOIMode
example of 3-27
EOIMode property 9-33
EOS character 3-27
EOSCharCode 9-34
EOSCharCode
example of 3-27
EOSCharCode property 9-34
EOSMode
example of 3-27
EOSMode property 9-35
error event 3-31
ErrorFcn property 9-37
ESER 3-12
even parity 5-12
event reporting 3-9
event types
GPIB object 3-31
serial port object 5-24, 6-19
events 1-3
example index 1-9
examples
communicating with a GPIB instrument 1-5
communicating with a GPIB-VXI instrument
1-6
communicating with a serial port instrument
1-7
connecting two modems 5-29
executing a serial poll 3-39
executing a trigger, GPIB 3-37
parsing input data using scanstr 3-26

reading binary data, GPIB 3-24

reading text data versus reading binary data
2-22

recording information to disk 7-9

understanding EOI and EOS 3-27

using events and callbacks, GPIB 3-35

using events and callbacks, serial port 5-27

using software handshaking 5-34

writing and reading text data, GPIB 3-22

writing and reading text data, serial port 5-21

writing text data versus writing binary data
2-16

F

fclose

disconnecting from the instrument 2-25
fclose function 8-18
fgetl

reading text data 2-22
fgetl function 8-19

example of 8-20
fgets

reading text data 2-22
fgets function 8-22

example of 8-23
FlowControl

example of 5-34
FlowControl property 9-38
flushinput function 8-25
flushoutput function 8-26
fopen

connecting to the instrument 2-5
fopen function 8-27
format

record file 7-7

serial data 5-9

I3

Index

I4

fprintf
example of 3-23
writing text data 2-16
fprintf function 8-29
fread
example of 3-24
reading binary data 2-22
fread function 8-32
free serial port from MATLAB 8-36
freeserial function 8-36
fscanf
example of 3-23
reading text data 2-22
fscanf function 8-37
full-duplex 5-7
function handles 3-33
functions
binblockread 8-8
binblockwrite 8-10
clear 2-25, 8-12
clrdevice 3-29, 8-13
delete 2-25, 8-14
disp 8-15
echotcpip 8-16
echoudp 8-17
fclose 2-25, 8-18
fgetl 2-22, 8-19
fgets 2-22, 8-22
flushinput 8-25
flushoutput 8-26
fopen 2-5, 8-27
fprintf 2-16, 3-23, 8-29
fread 2-22, 3-24, 8-32
freeserial 8-36
fscanf 2-22, 3-23, 8-37
fwrite 2-16, 8-41
get 2-7, 8-45

gpib 3-18, 8-47
inspect 8-50
instrbreak 8-103
instrcallback 3-30, 3-35, 8-51
instrcomm 8-52
instrcreate 8-55
instrfind 8-60
instrhelp 1-17, 8-62
instrhwinfo 1-13, 8-65
instrreset 8-68
instrschool 1-9, 8-69
isvalid 8-70

length 8-71

load 7-4, 8-72

memmap 8-74

mempeek 8-76

mempoke 8-78

memread 8-80
memunmap 8-82
memwrite 8-83
obj2mfile 7-2, 8-85
propinfo 1-18, 8-87
query 8-89

readasync 2-23, 3-24, 3-35, 8-91
record 7-9, 8-94
resolvehost 8-96
save 8-97

scanstr 8-99

serial 5-16, 8-101
set 2-6, 2-9, 8-104
size 8-106

spoll 3-40, 8-107
stopasync 8-109
tcpip 6-4, 8-110
trigger 3-37, 8-112
udp 6-8, 8-113

visa 8-116

Index

fwrite

example of 2-17

writing binary data 2-16
fwrite function 8-41

G
get
GPIB object properties 2-7
get function 8-45
gpib
creating a GPIB object 3-18
gpib function 8-47
GPIB object
address configuration 3-20
base properties 9-2
callback properties 3-31
creation 3-18
display summary 3-19
event types 3-31
events and callbacks 3-30
object-specific properties 9-4
GPIB standard 3-2
bus and connector 3-3
controllers 3-3
data 3-4
data lines 3-6
enable registers 3-9
event reporting 3-9
handshake lines 3-7

interface management lines 3-6

listeners 3-3
status registers 3-9
talkers 3-3
GPIB-VXI interface 4-21
graphical tools
instrcomm 8-52

instrcreate 8-55

Measurement & Automation tool, NI 3-14

VISA Assistant tool, Agilent 4-3

VISA Interactive Control tool, NI 4-4
Group Execute Trigger 3-37
GUI

instrcomm 8-52

instrcreate 8-55

Property Inspector 2-11

H
half-duplex 5-7
handshake lines 3-7
HandshakeStatus
GPIB handshake lines 3-9
HandshakeStatus property 9-39
handshaking
hardware 5-32
serial port object 5-32
software 5-33
hardware handshaking 5-32
hardware resources 1-13
help 1-17
hex2dec 7-8
hexadecimal values
converting to decimal values 7-8
saved to record file 7-11
high-level memory functions, VXI 4-16
HP-IB 3-2

I
IEEE

488 standard 3-2
754 standard 7-7
format saved to record file 7-7

I-5

Index

IFC line 3-6
inactive state, serial port 5-6
input buffer 2-20
InputBufferSize

input buffer 2-20
InputBufferSize property 9-40
inspect function 8-50
instrbreak function 8-103
instrcallback

example of 3-30, 3-35
instrcallback function 8-51
instrcomm function 8-52
instrcreate function 8-55
instrfind

example of 8-61
instrfind function 8-60
instrhelp

example of 1-17
instrhelp function 8-62
instrhwinfo

adaptors, finding 1-13

example of 1-13

object constructors, finding 1-14
instrhwinfo function 8-65
instrreset function 8-68
instrschool

example of 1-9
instrschool function 8-69
instrument control session 2-1

loading 7-2

saving 7-2
instrument object 2-2

array

creating 2-3
example of 3-39
base properties 9-2
configuring property values 2-9

during object creation 2-3
connecting to instrument 2-5
creating 2-2

disconnecting from instrument 2-25

input buffer 2-20

invalid 2-25

loading 7-2

object-specific properties 9-4

output buffer 2-14

reading data 2-19

returning from memory 8-60

returning property values 2-6

saving 7-2

specifying property names 2-9

writing data 2-13
interface

driver adaptor 1-4

GPIB object 3-18

serial port object 5-16

TCP/IP object 6-4

UDP object 6-8

VISA-GPIB object 4-5

VISA-GPIB-VXI object 4-22

VISA-serial object 4-26

VISA-VXI object 4-10
interface management lines 3-6
InterruptFcn property 9-41
invalid instrument object 2-25
isvalid function 8-70

L

length function 8-71
listeners 3-3

load 7-4

load function 8-72

Index

loading instrument objects
MAT-file, from 7-4
M-file, from 7-3
LocalHost property 9-42
LocalPort property 9-43
LocalPortMode property 9-44
logical unit 3-20
LogicalAddress property 9-45
low-level memory functions, VXI 4-18

M
MappedMemoryBase property 9-46
MappedMemorySize property 9-47
mark parity 5-12
MAT-file
instrument objects, saving to 7-4
properties, saving to 7-2
Measurement & Automation tool, NI 3-14
memmap function 8-74
memory mapping, VXI 4-18
MemoryBase property 9-48
MemoryIncrement property 9-50
MemorySize property 9-52
MemorySpace property 9-53
mempeek function 8-76
mempoke function 8-78
memread function 8-80
memunmap function 8-82
memwrite function 8-83
message-based communication, VXI 4-13

N

Nagle’s algorithm 9-86
Name property 9-55
National Instruments

adaptors 1-4
Measurement & Automation tool 3-14
VISA Interactive Control tool 4-4
NDAC line 3-7
NRFD line 3-7
null modem cable 5-4

(o)
obj2mfile

example of 7-2
obj2mfile function 8-85
object constructor 2-2

finding with instrhwinfo 1-14
object-specific properties 2-6

list by object type 9-4
odd parity 5-12
online help 1-17
output buffer 2-14
OutputBufferSize

output buffer 2-14
OutputBufferSize property 9-57
output-empty event 3-32
OutputEmptyFcn property 9-58

P
parity bit 5-12
Parity property 9-59
parsing input data 3-26
PinStatus

example of 5-30
pin-status event 5-25
PinStatus property 9-60
PinStatusFcn property 9-61
Port property 9-62

I-7

Index

I-8

PrimaryAddress
GPIB object 3-20
VISA-GPIB object 4-8
VISA-GPIB-VXI object 4-25
PrimaryAddress property 9-63
properties
BaudRate 9-11
BoardIndex 3-20, 9-12
BreakInterruptFcn 9-13

BusManagementStatus 3-7, 9-14

ByteOrder 9-16
BytesAvailable 2-20, 9-17
BytesAvailableFcn 9-18

BytesAvailableFcnCount 9-21
BytesAvailableFcnMode 9-22

BytesToOutput 2-14, 9-24
characteristics 1-18
ChassisIndex 9-25
CompareBits 9-26
DataBits 9-27
DatagramAddress 9-28
DatagramPort 9-29
DatagramReceivedFcn 9-30

DatagramTerminateMode 9-31

DataTerminalReady 9-32
EOIMode 3-27, 9-33
EOSCharCode 3-27, 9-34
EOSMode 3-27, 9-35
ErrorFcn 9-37
FlowControl 9-38
HandshakeStatus 3-9, 9-39
InputBufferSize 2-20, 9-40
InterruptFcn 9-41
LocalHost 9-42

LocalPort 9-43
LocalPortMode 9-44
LogicalAddress 9-45

MappedMemoryBase 9-46
MappedMemorySize 9-47
MemoryBase 9-48
MemoryIncrement 9-50
MemorySize 9-52
MemorySpace 9-53

Name 3-18, 9-55
OutputBufferSize 2-14, 9-57
OutputEmptyFcn 9-58
Parity 9-59

PinStatus 9-60
PinStatusFcn 9-61

Port 9-62

PrimaryAddress 3-20, 9-63
ReadAsyncMode 9-64
RecordDetail 7-7, 7-9, 9-66
RecordMode 7-6, 7-9, 9-67
RecordName 7-6, 7-9, 9-69
RecordStatus 9-70
RemoteHost 9-71
RemotePort 9-72
RequestToSend 9-73
RsrcName 9-74
SecondaryAddress 3-20, 9-76
Slot 9-78

Status 2-5, 9-79

StopBits 9-80

Tag 9-81

Terminator 5-30, 9-82
Timeout 9-83

TimerFcn property 9-84
TimerPeriod property 9-85
TransferDelay 9-86
TransferStatus 9-87
TriggerFcn 9-88
TriggerLine 9-89
TriggerType 9-90

Index

Type 3-18, 9-91

UserData 9-92

ValuesReceived 9-93

ValuesSent 9-95
Property Inspector 2-10
property values

base 2-6, 9-2

configuring 2-9

during object creation 2-3

default 2-10

object-specific 2-6, 9-4

returning 2-6

saving 7-2

specifying names 2-9
propinfo

example of 1-18
propinfo function 8-87

Q

query function 8-89

R
read operations
asynchronous 2-23, 3-24, 3-35
binary 2-22, 3-24
completing
GPIB object 3-22, 6-13
serial port object 5-21
GPIB registers 3-13
register-based, VXI 4-13
synchronous 2-23
text 2-22, 3-22
readasync
asynchronous read operations 2-23
example of 3-24, 3-35

readasync function 8-91
ReadAsyncMode
asynchronous read operations 5-19
example of 5-20
ReadAsyncMode property 9-64
record
example of 7-9
record file
creating multiple files 7-6
filename 7-6
format 7-7
record function 8-94
RecordDetail
example of 7-9
format, record file 7-7
RecordDetail property 9-66
RecordMode
example of 7-9
multiple record files, creating 7-6
RecordMode property 9-67
RecordName
example of 7-9
specifying a record file name 7-6
RecordName property 9-69
RecordStatus property 9-70
register-based communication, VXI 4-13
high-level memory functions, example of 4-16
low-level memory functions, example of 4-18
registers
Agilent E1432A, example of 4-16
reading and writing 3-13, 3-40
Service Request Enable 3-11
Standard Event Status 3-12
Standard Event Status Enable 3-12
Status Byte 3-11
release serial port from MATLAB 8-36
RemoteHost property 9-71

I-9

Index

I-10

RemotePort property 9-72
REN line 3-6
RequestToSend 9-73
resolvehost function 8-96
resource name
finding with vendor tools 4-3
visa input argument 8-116
returning objects from memory 8-60
returning property values 2-6
RI pin 5-9
RS-232 standard 5-2
RsrcName property 9-74
RTS pin 5-8

S

save function 8-97
saving instrument objects
MAT-file, to 7-4
M-file, to 7-2
SBR 3-11
scanstr 3-26
scanstr function 8-99
SCPI 3-2
SecondaryAddress
GPIB object 3-20
VISA-GPIB object 4-8
VISA-GPIB-VXI object 4-25
SecondaryAddress property 9-76
serial
creating a serial port object 5-16
serial function 8-101
serial poll 3-39
serial port
configuring via operating system 5-13
connecting two devices 5-3
data format 5-9

release from MATLAB 8-36
RS-232 standard 5-2
signal and pin assignments 5-5
serial port object
base properties 9-2
callback properties 5-24, 6-19
configuring communications 5-18
control pins 5-8, 5-29
creation 5-16
display summary 5-17
event types 5-24, 6-19
events and callbacks 5-24
handshaking 5-32
object-specific properties 9-5
writing data 5-19, 6-12
Service Request Enable Register 3-11
SESR 3-12
session 2-1
loading 7-2
saving 7-2
set
configuring property values 2-9
GPIB object properties 2-6
saving property values to an M-file 7-2
set function 8-104
setserial 5-15
signal state
GPIB 3-5
serial port 5-6
size function 8-106
Slot property 9-78
software handshaking 5-33
space parity 5-12
spoll 3-40
spoll function 8-107
SRER 3-11

Index

SRQ line 3-6
serial poll 3-1, 3-39
Standard Event Status Enable Register 3-12
Standard Event Status Register 3-12
start bit 5-11
Status 2-5
Status Byte Register 3-11
Status property 9-79
status registers 3-9
stop bit 5-11
stopasync function 8-109
StopBits property 9-80
stty 5-15
synchronous
read operations 2-23
serial port 5-10
write operations 2-17

T
Tag property 9-81
talkers 3-3
TCP/IP object
creation 6-4
display summary 6-5
tepip
creating a TCP/IP object 6-4
tcpip function 8-110
tepip object
object-specific properties 9-5, 9-6
termination
EOSCharCode, example of 3-28
read operations
GPIB object 3-22, 6-13
serial port object 5-21
Terminator, example of 5-30
write operations

GPIB object 3-21
serial port object 5-20, 6-12

Terminator

example of 5-30
Terminator property 9-82
text

read operations 2-22, 3-22

write operations 2-16, 3-22
Timeout property 9-83
timer event 3-32
toolbox components

interface driver adaptor 1-4

M-files 1-3
TransferDelay property 9-86
TransferStatus property 9-87
trigger

example of 3-37
trigger function 8-112
TriggerFcn property 9-88
TriggerLine property 9-89
TriggerType property 9-90
troubleshooting

GPIB instruments 3-14

serial ports 5-13

VISA instruments 4-3
Type property 9-91

U

udp function 8-113
UDP object
creation 6-8
display summary 6-9
udpl
creating a UDP object 6-8
UserData
saving values to a MAT-file 7-2

I-11

Index

I-12

UserData property 9-92

\')

values versus bytes 2-14
ValuesReceived property 9-93
ValuesSent property 9-95
vendor tools

Measurement & Automation tool, NI 3-14

VISA Assistant tool, Agilent 4-3

VISA Interactive Control tool, NI 4-4
VISA Assistant tool, Agilent 4-3
visa function 8-116
VISA Interactive Control tool, NI 4-4
VISA-GPIB object

address configuration 4-7

base properties 9-2

creation 4-5

display summary 4-6

object-specific properties 9-6
VISA-GPIB-VXI object

address configuration 4-24

base properties 9-2

creation 4-22

display summary 4-23

object-specific properties 9-8
VISA-serial object

base properties 9-2

communication configuration 4-28

creation 4-26

display summary 4-27

object-specific properties 9-9
VISA-VXI object

address configuration 4-12

base properties 9-2

creation 4-10

display summary 4-11

object-specific properties 9-7
register-based communication 4-13
VXTI interface 4-9

w

Workspace browser
Display Hardware Info 1-16
Display Summary 3-19
Instrument Help 1-17
Property Inspector 2-10
write operations
asynchronous 2-17
binary 2-16
completing
GPIB object 3-21
serial port object 5-20, 6-12
GPIB registers 3-13, 3-40
register-based, VXI 4-13
synchronous 2-17
text 2-16, 3-22
values versus bytes 2-14

X
Xoff 5-33

Xon 5-33

	Preface
	What Is the Instrument Control Toolbox?
	Exploring the Toolbox

	Related Products
	Using This Guide
	Expected Background
	Learning the Instrument Control Toolbox
	How This Guide Is Organized

	Installation Information
	Toolbox Installation
	Hardware and Driver Installation

	Typographical Conventions

	Getting Started with the Instrument Control Toolbox
	Toolbox Components
	M-File Functions
	The Interface Driver Adaptor

	Communicating with Your Instrument
	Communicating with a GPIB Instrument
	Communicating with a GPIB-VXI Instrument
	Communicating with a Serial Port Instrument

	Understanding the Toolbox Capabilities
	The Contents M-File
	Documentation Examples
	Demos

	Examining Your Hardware Resources
	General Toolbox Information
	Interface Information
	Adaptor Information
	Instrument Object Information

	Getting Help
	The instrhelp Function
	The propinfo Function

	The Instrument Control Session
	Creating an Instrument Object
	Configuring Properties During Object Creation
	Creating an Array of Instrument Objects

	Connecting to the Instrument
	Configuring and Returning Properties
	Returning Property Names and Property Values
	Configuring Property Values
	Specifying Property Names
	Default Property Values
	The Property Inspector

	Writing and Reading Data
	Writing Data
	Reading Data

	Disconnecting and Cleaning Up
	Disconnecting an Instrument Object
	Cleaning Up the MATLAB Environment

	Controlling GPIB Instruments
	GPIB Overview
	What Is GPIB?
	Important GPIB Features
	GPIB Lines
	Status and Event Reporting
	Using Vendor Tools to Identify and Test Your Resources

	Creating a GPIB Object
	The GPIB Object Display

	Configuring the GPIB Address
	Writing and Reading Data
	Rules for Completing Write and Read Operations
	Example: Writing and Reading Text Data
	Example: Reading Binary Data
	Example: Parsing Input Data Using scanstr
	Example: Understanding EOI and EOS

	Events and Callbacks
	Example: Introduction to Events and Callbacks
	Event Types and Callback Properties
	Storing Event Information
	Creating and Executing Callback Functions
	Enabling Callback Functions After They Error
	Example: Using Events and Callbacks to Read Binary Data

	Triggers
	Example: Executing a Trigger

	Serial Polls
	Example: Executing a Serial Poll

	Controlling Instruments Using the VISA Standard
	VISA Overview
	Using Vendor Tools to Identify and Test Your Resources

	The GPIB Interface
	Creating a VISA-GPIB Object
	The VISA-GPIB Address

	The VXI Interface
	Creating a VISA-VXI Object
	The VISA-VXI Address
	Register-Based Communication

	The GPIB-VXI Interface
	Creating a VISA-GPIB-VXI Object
	The VISA-GPIB-VXI Address

	The Serial Port Interface
	Creating a VISA-Serial Object
	Configuring Communication Settings

	Controlling Serial Port Instruments
	Serial Port Overview
	What Is Serial Communication?
	The Serial Port Interface Standard
	Connecting Two Devices with a Serial Cable
	Serial Port Signals and Pin Assignments
	Serial Data Format
	Finding Serial Port Information for Your Platform

	Creating a Serial Port Object
	The Serial Port Object Display

	Configuring Communication Settings
	Writing and Reading Data
	Asynchronous Write and Read Operations
	Rules for Completing Write and Read Operations
	Example: Writing and Reading Text Data

	Events and Callbacks
	Event Types and Callback Properties
	Storing Event Information
	Example: Using Events and Callbacks

	Using Control Pins
	Signaling the Presence of Connected Devices
	Controlling the Flow of Data: Handshaking

	Controlling Instruments Using TCP/IP and UDP
	TCP/IP and UDP Overview
	Creating a TCP/IP Object
	The TCP/IP Object Display
	Example: Server Drops the Connection

	Creating a UDP Object
	The UDP Object Display
	Example: Communicating Between Two Hosts

	Writing and Reading Data
	Rules for Completing Write and Read Operations
	Example: Writing and Reading Data with a TCP/IP Object
	Example: Writing and Reading Data with a UDP Object

	Events and Callbacks
	Event Types and Callback Properties
	Storing Event Information
	Example: Using Events and Callbacks

	Saving and Loading the Session
	Saving and Loading Instrument Objects
	Saving Instrument Objects to an M-File
	Saving Objects to a MAT-File

	Debugging: Recording Information to Disk
	Example: Introduction to Recording Information
	Creating Multiple Record Files
	Specifying a Filename
	The Record File Format
	Example: Recording Information to Disk

	Function Reference
	Functions – By Category
	Base Functions
	Object-Specific Functions

	Functions – Alphabetical List
	binblockread
	binblockwrite
	clear
	clrdevice
	delete
	disp
	echotcpip
	echoudp
	fclose
	fgetl
	fgets
	flushinput
	flushoutput
	fopen
	fprintf
	fread
	freeserial
	fscanf
	fwrite
	get
	gpib
	inspect
	instrcallback
	instrcomm
	instrcreate
	instrfind
	instrhelp
	instrhwinfo
	instrreset
	instrschool
	isvalid
	length
	load
	memmap
	mempeek
	mempoke
	memread
	memunmap
	memwrite
	obj2mfile
	propinfo
	query
	readasync
	record
	resolvehost
	save
	scanstr
	serial
	serialbreak
	set
	size
	spoll
	stopasync
	tcpip
	trigger
	udp
	visa

	Property Reference
	Properties – By Category
	Base Properties
	Object-Specific Properties

	Properties – Alphabetical List
	BaudRate
	BoardIndex
	BreakInterruptFcn
	BusManagementStatus
	ByteOrder
	BytesAvailable
	BytesAvailableFcn
	BytesAvailableFcnCount
	BytesAvailableFcnMode
	BytesToOutput
	ChassisIndex
	CompareBits
	DataBits
	DatagramAddress
	DatagramPort
	DatagramReceivedFcn
	DatagramTerminateMode
	DataTerminalReady
	EOIMode
	EOSCharCode
	EOSMode
	ErrorFcn
	FlowControl
	HandshakeStatus
	InputBufferSize
	InterruptFcn
	LocalHost
	LocalPort
	LocalPortMode
	LogicalAddress
	MappedMemoryBase
	MappedMemorySize
	MemoryBase
	MemoryIncrement
	MemorySize
	MemorySpace
	Name
	OutputBufferSize
	OutputEmptyFcn
	Parity
	PinStatus
	PinStatusFcn
	Port
	PrimaryAddress
	ReadAsyncMode
	RecordDetail
	RecordMode
	RecordName
	RecordStatus
	RemoteHost
	RemotePort
	RequestToSend
	RsrcName
	SecondaryAddress
	Slot
	Status
	StopBits
	Tag
	Terminator
	Timeout
	TimerFcn
	TimerPeriod
	TransferDelay
	TransferStatus
	TriggerFcn
	TriggerLine
	TriggerType
	Type
	UserData
	ValuesReceived
	ValuesSent

	Selected Bibliography
	Index

