
MATLAB Compiler
The Language of Technical Computing

Computation

Visualization

Programming

User’s Guide

Version 3

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Compiler User’s Guide
 COPYRIGHT 1995 - 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: September 1995 First printing
March 1997 Second printing
January 1998 Third printing Revised for Version 1.2
January 1999 Fourth printing Revised for Version 2.0 (Release 11)
September 2000 Fifth printing Revised for Version 2.1 (Release 12)
October 2001 Online only Revised for Version 2.3
July 2002 Sixth printing Revised for Version 3.0 (Release 13)

i

Contents

Preface

Related Products . x

Using this Guide . xi

Typographical Conventions . xii

1
Introducing the MATLAB Compiler

Introduction . 1-2
Before You Begin . 1-2

New Features . 1-4
MATLAB Compiler 3.0 . 1-4
MATLAB Compiler 2.3 . 1-4
MATLAB Compiler 2.1 . 1-5
Compiler Licensing Changes . 1-7

Uses of the Compiler . 1-9
Creating MEX-Files . 1-9
Creating Stand-Alone Applications . 1-11

The MATLAB Compiler Family . 1-14

Why Compile M-Files? . 1-16
Stand-Alone Applications and Libraries 1-16
Excel Plug-Ins . 1-16

ii Contents

COM Components . 1-16
Hiding Proprietary Algorithms . 1-16

Upgrading from Previous Versions of the Compiler 1-17
Upgrading from MATLAB Compiler 2.0/2.1/2.2/2.3 1-17
Upgrading from MATLAB Compiler 1.0/1.1 1-17

Limitations and Restrictions . 1-18
MATLAB Code . 1-18
Stand-Alone Applications . 1-19
Fixing Callback Problems: Missing Functions 1-20

2
Installation and Configuration

System Configuration for MEX-Files . 2-2

UNIX Workstation . 2-4
System Requirements . 2-4
Installation . 2-6
mex Verification . 2-7
MATLAB Compiler Verification . 2-11

Microsoft Windows on PCs . 2-13
System Requirements . 2-13
Installation . 2-17
mex Verification . 2-19
MATLAB Compiler Verification . 2-23

Troubleshooting . 2-25
mex Troubleshooting . 2-25
Troubleshooting the Compiler . 2-27

iii

3
Working with MEX-Files

A Simple Example — The Sierpinski Gasket 3-2
Compiling the M-File into a MEX-File . 3-3
Invoking the MEX-File . 3-4

Compiler Options and Macros . 3-6

Generating Simulink S-Functions . 3-7
Simulink Specific Options . 3-7
Specifying S-Function Characteristics . 3-8

Converting Script M-Files to Function M-Files 3-10

4
Stand-Alone Applications

Differences Between MEX-Files
 and Stand-Alone Applications . 4-2

Stand-Alone C Applications . 4-2
Stand-Alone C++ Applications . 4-3

Building Stand-Alone C/C++ Applications 4-4
Overview . 4-4
Getting Started . 4-6

Building Stand-Alone Applications on UNIX 4-7
Configuring for C or C++ . 4-7
Preparing to Compile . 4-8
Verifying mbuild . 4-11
Verifying the MATLAB Compiler . 4-12
About the mbuild Script . 4-13
Packaging UNIX Applications . 4-13

iv Contents

Building Stand-Alone Applications on PCs 4-15
Configuring for C or C++ . 4-15
Preparing to Compile . 4-16
Verifying mbuild . 4-22
Verifying the MATLAB Compiler . 4-23
About the mbuild Script . 4-23
Using an Integrated Development Environment 4-23
Packaging Windows Applications for Distribution 4-26

Distributing Stand-Alone Applications 4-27
Packaging the MATLAB Run-Time Libraries 4-27
Installing Your Application . 4-27
Problem Starting Stand-Alone Application 4-28

Building Shared Libraries . 4-30

Building COM Objects . 4-31

Building Excel Plug-Ins . 4-32

Troubleshooting . 4-33
Troubleshooting mbuild . 4-33
Troubleshooting the Compiler . 4-35

Coding with M-Files Only . 4-36

Alternative Ways of Compiling M-Files 4-40
Compiling MATLAB Provided M-Files Separately 4-40
Compiling mrank.m and rank.m as Helper Functions 4-41

Mixing M-Files and C or C++ . 4-42
Simple Example . 4-42
Advanced C Example . 4-47

v

5
Controlling Code Generation

Code Generation Overview . 5-2
Example M-Files . 5-2
Generated Code . 5-3

Compiling Private and Method Functions 5-5

The Generated Header Files . 5-8
C Header File . 5-8
C++ Header File . 5-9

Internal Interface Functions . 5-11
C Interface Functions . 5-11
C++ Interface Functions . 5-16

Supported Executable Types . 5-21
Generating Files . 5-21
MEX-Files . 5-22
Main Files . 5-22
Simulink S-Functions . 5-24
C Libraries . 5-24
C Shared Library . 5-25
C++ Libraries . 5-28
COM Components . 5-29
Porting Generated Code to a Different Platform 5-34

Formatting Compiler-Generated Code 5-35
Listing All Formatting Options . 5-35
Setting Page Width . 5-35
Setting Indentation Spacing . 5-37

Including M-File Information in Compiler Output 5-40
Controlling Comments in Output Code 5-40
Controlling #line Directives in Output Code 5-42
Controlling Information in Run-Time Errors 5-44

vi Contents

Interfacing M-Code to C/C++ Code . 5-46
C Example . 5-46
Using Pragmas . 5-48

6
Optimizing Performance

Optimization Bundles . 6-2

Optimizing Arrays . 6-4
Scalar Arrays . 6-4
Nonscalar Arrays . 6-4
Scalars . 6-5

Optimizing Loops . 6-6
Simple Indexing . 6-6
Loop Simplification . 6-6

Optimizing Conditionals . 6-9

Optimizing MATLAB Arrays . 6-10
Scalars . 6-10
Scalar Doubles . 6-10

7
Reference

Functions — By Category . 7-2
Pragmas . 7-2
Compiler Functions . 7-2
Command Line Tools . 7-2

Functions — By Name . 7-4

vii

A
MATLAB Compiler Quick Reference

Common Uses of the Compiler . A-2

mcc . A-4

B
Error and Warning Messages

Compile-Time Errors . B-2

Warning Messages . B-11

Run-Time Errors . B-18

viii Contents

Preface

This chapter provides information about this documentation set. The sections are as follows.

Related Products (p. x) MathWorks products related to the Compiler

Using this Guide (p. xi) An overview of this book

Typographical Conventions (p. xii) Typographical conventions used in this book

 Preface

x

Related Products
The MATLAB Compiler automatically converts MATLAB M-files to C and C++
code. The MATLAB Compiler includes the MATLAB C/C++ Math and Graphics
Libraries, which let you automatically convert your MATLAB applications to C
and C++ code for stand-alone applications.

The MathWorks provides several products that are especially relevant to the
MATLAB Compiler. For more information about any of these products, see
either

• The online documentation for that product

• The “products” section of the MathWorks Web site, www.mathworks.com.

Product Description

MATLAB COM Builder Creating COM components from MATLAB
M-files

MATLAB Excel Builder Creating MATLAB based add-ins for Excel

MATLAB Runtime
Server

Deploy run-time versions of MATLAB
applications

MATLAB Web Server Use MATLAB with HTML Web applications

Using this Guide

xi

Using this Guide
This book describes the MATLAB Compiler and provides numerous examples
of how to use it. The topics included are

• Introducing the MATLAB Compiler — describes the new features of the
Compiler and provides an overview of how to use it.

• Installation and Configuration — discusses how to install and configure the
Compiler, and how to verify that your system is properly set up.

• Working with MEX-Files — describes how to compile M-files with the
MATLAB Compiler.

• Stand-Alone Applications — explains how to use the MATLAB Compiler to
code and build stand-alone applications.

• Controlling Code Generation — describes the code generated by the
MATLAB Compiler and the options that you can use to control code
generation.

• Optimizing Performance — describes optimizations you can perform on your
M-file source code that can improve the performance of the generated C/C++
code.

• Reference — provides the set of reference pages that describe the Compiler
pragmas, functions, and command line tools.

• MATLAB Compiler Quick Reference — is a quick reference of all the
Compiler functions.

• Error and Warning Messages — lists and describes error messages and
warnings generated by the MATLAB Compiler.

 Preface

xii

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, user input, items in
drop-down lists

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

1
Introducing the
MATLAB Compiler

This chapter describes the MATLAB Compiler and its uses. It also includes new features, upgrading
information, and limitations and restrictions that you should know.

Introduction (p. 1-2) A brief overview

New Features (p. 1-4) Features added in this and previous releases

Uses of the Compiler (p. 1-9) High-level descriptions of what the Compiler can do

The MATLAB Compiler Family
(p. 1-14)

Pictorial view of the Compiler’s output

Why Compile M-Files? (p. 1-16) Reasons to compile M-files

Upgrading from Previous Versions of
the Compiler (p. 1-17)

Compatibility issues

Limitations and Restrictions (p. 1-18) Restrictions regarding what can be compiled

1 Introducing the MATLAB Compiler

1-2

Introduction
This book describes Version 3.0 of the MATLAB® Compiler. The MATLAB
Compiler takes M-files as input and generates C or C++ source code or P-code
as output. The MATLAB Compiler can generate these kinds of source code:

• C source code for building MEX-files.

• C or C++ source code for combining with other modules to form stand-alone
applications. Stand-alone applications do not require MATLAB at run-time;
they can run even if MATLAB is not installed on the end-user’s system.

• C code S-functions for use with Simulink®.

• C shared libraries (dynamically linked libraries, or DLLs, on Microsoft
Windows) and C++ static libraries. These can be used without MATLAB on
the end-user’s system.

• Excel compatible plug-ins

• COM (Component Object Model) objects.

This chapter takes a closer look at these categories of C and C++ source code
and explains the value of compiled code.

Note MATLAB Compiler 3.0 includes the MATLAB C/C++ Math Library and
the MATLAB C/C++ Graphics Library. Installing the MATLAB Compiler
automatically installs the C/C++ Math and Graphics Libraries.

Before You Begin
Before reading this book, you should already be comfortable writing M-files. If
you are not, see Programming and Data Types in the MATLAB documentation.

Introduction

1-3

Note The phrase MATLAB interpreter refers to the application that accepts
MATLAB commands, executes M-files and MEX-files, and behaves as
described in the Using MATLAB documentation. When you use MATLAB, you
are using the MATLAB interpreter. The phrase MATLAB Compiler refers to
this product, which translates M-files to C or C++ source code and its
associated libraries. This book distinguishes references to the MATLAB
Compiler by using the word ‘Compiler’ with a capital C. References to
“compiler” with a lowercase c refer to your C or C++ compiler.

1 Introducing the MATLAB Compiler

1-4

New Features

MATLAB Compiler 3.0
• The MATLAB Compiler now includes the MATLAB C/C++ Math and

Graphics Libraries.

Note As the MATLAB Compiler evolves, it will support additional standard
platform interfaces such as COM, Java, and CORBA. Consequently, the
requirement of developing code specifically for the MATLAB C/C++ Math
Library will diminish. Once this happens, the Math Library will no longer
support code written directly for the Library. The Compiler will continue to
use the MATLAB C/C++ Math Library as it currently does.

• A new optimization is available that allows the Compiler to use simpler types
for variables at run-time, when possible. For more information about this
optimization, see Chapter 6, “Optimizing Performance.”

• The MATLAB Compiler allows you to create COM components from
MATLAB M-files.

Note To create COM components with the MATLAB Compiler, you must
have the MATLAB COM Builder product installed on your system.

MATLAB Compiler 2.3
MATLAB Compiler 2.3 allows you to create Microsoft Excel components from
MATLAB M-files. This Windows-only feature translates a collection of M-files
into a single Microsoft Excel add-in. Both C and C++ code generation are
supported.

To support the creation of these components, the following Compiler options
have been added or enhanced:

• The bundle option (-B) has been enhanced so that you can include
replacement parameters for Compiler options that accept names and version
numbers and they will be expanded properly.

New Features

1-5

• The new option, -b, causes the Compiler to generate a Visual Basic (.bas)
file that contains the Microsoft Excel Formula Function interface to a
Compiler-generated COM object.

• The new option, -i, causes the Compiler to include only the M-files that are
specified on the command line as exported interfaces.

Note To create Microsoft Excel components with the MATLAB Compiler, you
must have the MATLAB Excel Builder product installed on your system.

MATLAB Compiler 2.1
MATLAB Compiler 2.1 supports much of the functionality of MATLAB 6. The
new features of the Compiler are

• Optimizations

• mlib files

• Additional data type support

• Improved support for load and save

• Dynamically linking in MEX-files in the stand-alone environment

• MATLAB add-in for Visual Studio

• Faster C/C++ Math Library applications

• Additional language support

Optimizations
The MATLAB Compiler provides a series of optimizations that can help speed
up your compiled code. These optimizations are on by default unless you are
building a debuggable version.

Folding Array Constants. Folds scalar and nonscalar valued array constants.

One- and Two-Dimensional Array Indexing. Uses faster routines that are optimized
for simple indexing.

for-loops. Optimizes for- loops with integer starts and increments.

1 Introducing the MATLAB Compiler

1-6

Conditional Expressions. Reduces the MATLAB conditional operators to scalar C
conditional operators when both operands are known to be integer scalars.

For more information on these optimizations, see Chapter 6, “Optimizing
Performance.”

mlib Files
mlib files make it possible to produce a shared library out of a toolbox and then
compile M-files that make calls into that toolbox. Specifying an mlib file tells
the MATLAB Compiler to link against the mlib file’s corresponding shared
library whenever it needs to use any of the functions found in that library. The
mlib file and its corresponding shared library file must be located within the
same directory. For more information about mlib files, see “mlib Files” on page
5-26.

Additional Data Type Support

Integer Data Types. The signed and unsigned integer arrays int8, int16, int32,
uint8, uint16, and uint32 are now supported, which provides improved
support for the Image Processing Toolbox.

Function Handles. A function handle is a new MATLAB data type that captures
all the information about a function that MATLAB needs to evaluate it. The
MATLAB Compiler supports function handles. For more information on
function handles, see the function handle reference page.

Improved Support for load and save
load and save are now supported when they do not list the variables to be
loaded or saved. They work by loading or saving all variables that are defined
or used within the function.

Dynamically Linking in MEX-Files in the Stand-Alone Environment
Specifying -h or providing the name of a function on the command line will
automatically link in any referenced MEX-files.

MATLAB Add-In for Visual Studio®

This add-in integrates the MATLAB Compiler into Visual C/C++ Version 5 or
6. To learn more about the MATLAB add-in for Visual Studio, see “Using an
Integrated Development Environment” on page 4-23.

New Features

1-7

Faster C/C++ Math Library Applications
The improved performance of the C/C++ Math Library is due in part to the
added scalar accelerated versions of many of the library functions.

Additional Language Support

pause and continue. These commands are now supported.

eval and input. eval and input are supported for strings that do not contain
workspace variables.

Note As of Compiler 2.1, Compiler 1.2 is no longer available due to the
evolution of internal data structures. The -V1.2 option is no longer supported,
along with any options recognized by Compiler 1.2.

Compiler Licensing Changes
Starting with Compiler 1.2.1, a new licensing scheme has been employed that
enables the product to be simpler and more user friendly.

In versions prior to 1.2.1, you could not run the MATLAB Compiler unless you
were running MATLAB. On networked systems, this meant that one user
would be holding the license for one copy of MATLAB and the Compiler,
simultaneously. In effect, one user required both products and tied up both
licenses until the user exited MATLAB. Although you can still run the
Compiler from within MATLAB, it is not required. One user could be running
the Compiler while another user could be using MATLAB.

The licensing model is based on how you run the Compiler:

• From the MATLAB command prompt

• From a DOS/UNIX shell

Running Compiler from MATLAB
When you run the Compiler from “inside” of MATLAB, that is, you run mcc
from the MATLAB command prompt, you hold the Compiler license as long as
MATLAB remains open. To give up the Compiler license, exit MATLAB.

1 Introducing the MATLAB Compiler

1-8

Running Compiler from DOS/UNIX Shell
If you run the Compiler from a DOS or UNIX shell, you are running from
“outside” of MATLAB. In this case, the Compiler

• Does not require MATLAB to be running on the system where the Compiler
is running

• Gives the user a dedicated 30 minute time allotment during which the user
has complete ownership over a license to the Compiler

Each time a user requests the Compiler, the user begins a 30 minute time
period as the sole owner of the Compiler license. Anytime during the 30 minute
segment, if the same user requests the Compiler, the user gets a new 30 minute
allotment. When the 30-minute time interval has elapsed, if a different user
requests the Compiler, the new user gets the next 30 minute interval.

When a user requests the Compiler and a license is not available, the user
receives the message

Error: Could not check out a Compiler License.

This message is given when no licenses are available. As long as licenses are
available, the user gets the license and no message is displayed. The best way
to guarantee that all MATLAB Compiler users have constant access to the
Compiler is to have an adequate supply of licenses for your users.

Uses of the Compiler

1-9

Uses of the Compiler
The MATLAB Compiler (mcc) can translate M-files into C files. The resultant
C files can be used in any of the supported executable types including MEX,
executable, or library by generating an appropriate wrapper file. A wrapper file
contains the required interface between the Compiler-generated code and a
supported executable type. For example, a MEX wrapper contains the MEX
gateway routine that sets up the left- and right-hand arguments for invoking
the Compiler-generated code.

The code produced by the MATLAB Compiler is independent of the final target
type — MEX, executable, or library. The wrapper file provides the necessary
interface to the target type.

Note MEX-files generated by the MATLAB Compiler are not backward
compatible.

Creating MEX-Files
The MATLAB Compiler, when invoked with the -x macro option, produces a
MEX-file from M-files. The Compiler

1 Translates your M code to C code.

2 Generates a MEX wrapper.

3 Invokes the mex utility which builds the C MEX-file source into a MEX-file
by linking the MEX-file with the MEX version of the math libraries
(libmatlbmx).

Figure 1-1, Developing MEX-Files, illustrates the process of producing a
MEX-file. The MATLAB interpreter dynamically loads MEX-files as they are
needed.

1 Introducing the MATLAB Compiler

1-10

Figure 1-1: Developing MEX-Files

MATLAB users who do not have the MATLAB Compiler must write the source
code for MEX-files in either Fortran or C. “External Interfaces/API” in the
MATLAB documentation explains the fundamentals of this process. To write
MEX-files, you have to know how MATLAB represents its supported data types
and the MATLAB external interface (i.e., the application program interface, or
API.)

If you are comfortable writing M-files and have the MATLAB Compiler, then
you do not have to learn all the details involved in writing MEX-file source
code.

M-File

mcc -x

mex

C version of
M code

MEX Math Library
(libmatlbmx)

C MEX-File
Wrapper

MEX-File

• Shaded block is user-written code.

• Shadowed blocks are MathWorks tools.

• Unshaded blocks are MATLAB
Compiler-generated code.

• Dotted block is C/C++ compiler-generated
executable.

Uses of the Compiler

1-11

Creating Stand-Alone Applications

C Stand-Alone Applications
The MATLAB Compiler, when invoked with the -m macro option, translates
input M-files into C source code that is usable in any of the supported
executable types. The Compiler also produces the required wrapper file
suitable for a stand-alone application. Then, your ANSI C compiler compiles
these C source code files and the resulting object files are linked against the
MATLAB C/C++ Math and Graphics Libraries, which are included with the
MATLAB Compiler. For more information about distributing a C application,
see “Distributing Stand-Alone Applications” on page 4-27.

C++ Stand-Alone Applications
The MATLAB Compiler, when invoked with the -p macro option, translates
input M-files into C++ source code that is usable in any of the executable types
except MEX. The Compiler also produces the required wrapper file suitable for
a stand-alone application. Then, your C++ compiler compiles this C++ source
code and the resulting object files are linked against the MATLAB C/C++ Math
and Graphics Libraries, which are included with the MATLAB Compiler. For
more information about which libraries must be included when you distribute
a C++ application, see “Distributing Stand-Alone Applications” on page 4-27.

Developing a Stand-Alone Application
Suppose you want to create an application that calculates the rank of a large
magic square. One way to create this application is to code the whole
application in C or C++; however, this would require writing your own magic
square, rank, and singular value routines.

An easier way to create this application is to write it as one or more M-files.
Figure 1-2, Developing a Typical Stand-Alone C Application, outlines this
development process.

1 Introducing the MATLAB Compiler

1-12

Figure 1-2: Developing a Typical Stand-Alone C Application

M-File function to find the rank of a
magic square

mcc -m

C version of
M code

C Compiler

Object Files

Linker

Stand-Alone
C Application

C File Wrapper

MATLAB M-File Math Library

MATLAB Math Built-In Library

MATLAB API Library

MATLAB Utility Library

ANSI C Library MATLAB C/C++ Graphics Library

• Shaded block is user-written code.

• Shadowed blocks are tools.

• Unshaded blocks are MATLAB
Compiler-generated code.

• Dotted blocks are C/C++ compiler-generated
executables.

mbuild does
this part.

Uses of the Compiler

1-13

See Chapter 4, “Stand-Alone Applications” for complete details regarding
stand-alone applications.

Figure 1-2, Developing a Typical Stand-Alone C Application, illustrates the
process of developing a typical stand-alone C application. Use the same basic
process for developing stand-alone C++ applications, but use the -p option
instead of the -m option with the MATLAB Compiler and a C++ compiler
instead of a C compiler.

Note The MATLAB Compiler contains a tool, mbuild, which simplifies much
of this process. Chapter 4, “Stand-Alone Applications” describes the mbuild
tool.

-p and -m are examples of options that you use to control how the Compiler
works. Chapter 7, “Reference,” includes a complete description of the Compiler
options in the mcc section. Throughout this book you will see numerous
examples of how these options are used with the Compiler to perform various
tasks.

1 Introducing the MATLAB Compiler

1-14

The MATLAB Compiler Family
This figure illustrates the various ways you can use the MATLAB Compiler.
The shaded blocks represent user-written code; the unshaded blocks represent
Compiler-generated code; the remaining blocks (drop shadow) represent
MathWorks or other vendor tools.

Figure 1-3: MATLAB Compiler Uses

M-File(s)

MATLAB Compiler

Simulink
C MEX-File

C/C++ Compiler

Library

Generated Code Types

G
en

er
a

te
d

 W
ra

p
p

er
 T

yp
es

MAIN

MEX

LIB

Simulink

1

2

3

4

3

Stand-Alone
C/C++ Program

MATLAB
C MEX-File

1 2 3 4

User C/C++ Code
MATLAB C/C++

Math/Graphics Libraries

Target Types

1

COM 5 5

COM
Library

5

C Code C++ Code

The MATLAB Compiler Family

1-15

The Compiler takes your M-file(s) and can generate C or C++ code. It can also
generate a wrapper file depending on your specified target. This table shows
the wrapper files the Compiler can generate, their associated targets, and the
corresponding -W option (wrapper).

Each numbered node in Figure 1-3, MATLAB Compiler Uses, indicates a
combination of C/C++ code and a wrapper that generates a specific target type.
The file(s) formed by combining the C/C++ code (denoted by “User C/C++
Code”) and the wrapper are then passed to the C/C++ compiler, which combines
them with any user-defined C/C++ programs, and eventually links them
against the appropriate libraries. The end result of this sequence is the target
as described in the table above.

Table 1-1: Compiler Wrappers and Targets

Wrapper
File

Target -W Setting

Main Stand-alone
C or C++
program

-W main

MEX MATLAB C
MEX-file

-W mex

Library C shared
library or
C++ static
library

-W lib:libname

Simulink
S-function

Simulink C
MEX-file

-W simulink

COM COM object -W com:<componentname>[,<classname>[,<major>.<minor>]]
-W comhg:<componentname>[,<classname>[,<major>.<minor>]]

Excel Excel
Plug-in

-W excel:<componentname>[,<classname>[,<major>.<minor>]]
-W excelhg:<componentname>[,<classname>[,<major>.<minor>]]

1 Introducing the MATLAB Compiler

1-16

Why Compile M-Files?
There are several reasons to compile M-files:

• To create stand-alone applications

• To create C shared libraries (DLLs on Windows) or C++ static libraries

• To create COM components

• To hide proprietary algorithms

Stand-Alone Applications and Libraries
You can create MATLAB applications that take advantage of the mathematical
functions of MATLAB, yet do not require that the user owns MATLAB.
Stand-alone applications are a convenient way to package the power of
MATLAB and to distribute a customized application to your users.

You can develop an algorithm in MATLAB to perform specialized calculations
and use the Compiler to create a C shared library (DLL on Windows) or a C++
static library. You can then integrate the algorithm into a C/C++ application.
After you compile the C/C++ application, you can use the MATLAB algorithm
to perform specialized calculations from your program.

Excel Plug-Ins
With the optional MATLAB Excel Builder, you can automatically generate a
Visual Basic Application file (.bas) and a plug-in DLL from your MATLAB
model that can be imported into Excel as a stand-alone function.

COM Components
With the optional MATLAB COM Builder, you can create COM components
that can be used in any application that works with COM objects.

Hiding Proprietary Algorithms
MATLAB M-files are ASCII text files that anyone can view and modify.
MEX-files are binary files. Shipping MEX-files or stand-alone applications
instead of M-files hides proprietary algorithms and prevents modification of
your M-files.

Upgrading from Previous Versions of the Compiler

1-17

Upgrading from Previous Versions of the Compiler
MATLAB Compiler 3.0 is fully compatible with previous releases of the
Compiler. If you have your own M-files that were compiled with a previous
version of the Compiler and compile them with the new version, you will get
the same results.

Upgrading from MATLAB Compiler 2.0/2.1/2.2/2.3
MATLAB Compiler 2.1 (and later versions) does not support the -V1.2 option
that was available in Compiler 2.0.

Upgrading from MATLAB Compiler 1.0/1.1
In many cases, M-code that was written and compiled in MATLAB 4.2 will
work as is in the MATLAB 6 and the MATLAB 5 series. There are, however,
certain changes that could impact your work, especially if you integrated
Compiler-generated code into a larger application.

Changed Library Name
Beginning with MATLAB 5.0, the name of the shared library that contains
compiled versions of most MATLAB M-file math routines, libtbx, has
changed. The new library is now called libmmfile.

Changed Data Type Names
In C, beginning with MATLAB 5.0, the name of the basic MATLAB data type,
Matrix, has changed. The new name for the data type is mxArray.

In C++, beginning with MATLAB 5.0, the name of the basic MATLAB data
type, mwMatrix, has changed. The new name for the data type is mwArray.

1 Introducing the MATLAB Compiler

1-18

Limitations and Restrictions

MATLAB Code
MATLAB Compiler 3.0 supports almost all of the functionality of MATLAB.
However, there are some limitations and restrictions that you should be aware
of. This version of the Compiler cannot compile

• Script M-files (See “Converting Script M-Files to Function M-Files” on page
3-10 for further details.)

• M-files that use objects

• Calls to the MATLAB Java interface

• M-files that use input or eval to manipulate workspace variables

Note input and eval calls that do not use workspace variables will compile
and execute properly.

• M-files that use exist with two input arguments, for example:
exist('foo','var')

The single variable form works for filenames and functions only.

• M-files that dynamically name variables to be loaded or saved. This example
is disallowed by the Compiler:
x= 'f';
load('foo.mat',x);

• M-files that load text files, for example:

load -ascii sampling1

The Compiler cannot compile built-in MATLAB functions (functions such as
eig have no M-file, so they can’t be compiled). Note, however, that most of these
functions are available to you because they are in the MATLAB Math Built-in
Library (libmatlb).

In addition, the Compiler does not honor conditional global and persistent
declarations. It treats global and persistent as declarations. For example:

Limitations and Restrictions

1-19

if (y==3)
persistent x

else
x = 3;

end

Stand-Alone Applications
The restrictions and limitations noted in the previous section also apply to
stand-alone applications. The functions in Table 1-2, Unsupported Functions
in Stand-Alone Mode, are supported in MEX-mode, but are not supported in
stand-alone mode.

Note Stand-alone applications cannot access Simulink functions. Although
the MATLAB Compiler can compile M-files that call these functions, the
MATLAB C/C++ Math library does not support them. Therefore, unless you
write your own versions of the unsupported routines in a MEX-file or as C
code, when you run the executable, you will get a run-time error.

Table 1-2: Unsupported Functions in Stand-Alone Mode

add_block add_line applescript assignin

callstats close_system cputime dbclear

dbcont dbdown dbquit dbstack

dbstatus dbstep dbstop dbtype

dbup delete_block delete_line diary

echo edt errorstat errortrap

evalin fields fschange functionscalled

get_param hcreate help home

hregister inferiorto inmem isglobal

isjava isruntime java javaArray

1 Introducing the MATLAB Compiler

1-20

Fixing Callback Problems: Missing Functions
When the Compiler creates a stand-alone application, it compiles the M-file
you specify on the command line and, in addition, it compiles any other M-files
that your M-file calls. If your application includes a call to a function in a
callback string or in a string passed as an argument to the feval function or
an ODE solver, and this is the only place in your M-file this function is called,
the Compiler will not compile the function. The Compiler does not look in these
text strings for the names of functions to compile.

Symptom
Your application runs, but an interactive user interface element, such as a
push button, is unresponsive. When you close the application, the graphics
library issues this error message.

An error occurred in the callback : change_colormap
The error message caught was : Reference to unknown function

change_colormap from FEVAL in stand-alone mode.

Workaround
To eliminate this error, create a list of all the functions that are specified only
in callback strings and pass this list to the %#function pragma. (See “Finding
Missing Functions in an M-File” on page 1-21 for hints about finding functions

javaMethod javaObject keyboard linmod

lookfor macprint mactools methods

mislocked mlock more munlock

new_system open_system pack pfile

rehash runtime set_param sim

simget simset sldebug str2func

superiorto system_dependent trmginput type

vms what which who

whos

Table 1-2: Unsupported Functions in Stand-Alone Mode (Continued)

Limitations and Restrictions

1-21

in callback strings.) The Compiler processes any function listed in a
%#function pragma.

For example, the call to the change_colormap function in the sample
application, my_test, illustrates this problem. To make sure the Compiler
processes the change_colormap M-file, list the function name in the
%#function pragma:

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...
'style', 'pushbutton',...
'Position',[10 10 133 25],...
'String', 'Make Black & White',...
'CallBack','change_colormap');

Note Instead of using the %#function pragma, you can specify the name of
the missing M-file on the Compiler command line.

Finding Missing Functions in an M-File
To find functions in your application that may need to be listed in a %#function
pragma, search your M-file source code for text strings specified as callback
strings or as arguments to the feval, fminbnd, fminsearch, funm, and fzero
functions or any ODE solvers.

To find text strings used as callback strings, search for the characters
“Callback” or “fcn” in your M-file. This will find all the Callback properties
defined by Handle Graphics® objects, such as uicontrol and uimenu. In
addition, this will find the properties of figures and axes that end in Fcn, such
as CloseRequestFcn, that also support callbacks.

1 Introducing the MATLAB Compiler

1-22

2
Installation and
Configuration

This chapter describes the system requirements for the MATLAB Compiler and installation and
configuration information. It includes information for both MATLAB Compiler platforms — UNIX
and Microsoft Windows.

When you install your ANSI C or C++ compiler, you may be required to provide specific configuration
details regarding your system. This chapter contains information for each platform that can help you
during this phase of the installation process. The sections, “Things to Be Aware of,” provide this
information for each platform.

System Configuration for MEX-Files
(p. 2-2)

Steps to create MEX-files

UNIX Workstation (p. 2-4) Configuration on UNIX systems

Microsoft Windows on PCs (p. 2-13) Configuration on PCs

Troubleshooting (p. 2-25) Dealing with installation and configuration problems

2 Installation and Configuration

2-2

System Configuration for MEX-Files
This section outlines the steps necessary to configure your system to create
MEX-files.

The sequence of steps to install and configure the MATLAB Compiler so that it
can generate MEX-files is

1 Install the MATLAB Compiler.

2 Install an ANSI C or C++ compiler, if you don’t already have one installed.

Note If you encounter problems relating to the installation or use of your
ANSI C or C++ compiler, consult the documentation or customer support
organization of your C or C++ compiler vendor.

3 Verify that mex can generate MEX-files.

4 Verify that the MATLAB Compiler can generate MEX-files from the
MATLAB command line and from the UNIX or DOS command line.

Figure 2-1, MATLAB Compiler Installation Sequence for Creating MEX-Files,
shows the Compiler installation sequence for creating MEX-files on both
platforms. The sections following the flowchart provide more specific details for
the individual platforms. Additional steps may be necessary if you plan to
create stand-alone applications or libraries, however, you still must perform
the steps given in this chapter first. Chapter 4, “Stand-Alone Applications”
provides the details about the additional installation and configuration steps
necessary for creating stand-alone applications and libraries.

Note This flowchart assumes that MATLAB is properly installed on your
system.

System Configuration for MEX-Files

2-3

Figure 2-1: MATLAB Compiler Installation Sequence for Creating MEX-Files

Start

Is ANSI C or C++
compiler installed

Follow vendor’s instructions
to install and test
ANSI C or C++ compiler.

Test your

mex configuration.

Does the MATLAB command
mex yprime.c
generate proper MEX-file

See “mex
Troubleshooting.”

Test your
MATLAB Compiler
installation/configuration.

Does the MATLAB command
mcc -x invhilb.m
generate invhilb.mex

Stop

1

1

No

Yes

No

Yes

Yes

Use MATLAB installer to
install component (MATLAB
Compiler).

?

?

?

2

No

See “Compiler
Troubleshooting.”

2

Install MATLAB
Compiler

Install ANSI C/
C++ Compiler

Verify
mex

Verify MATLAB
Compiler can
generate
MEX-files from
MATLAB/DOS/
UNIX command
line

2 Installation and Configuration

2-4

UNIX Workstation
This section examines the system requirements, installation procedures, and
configuration procedures for the MATLAB Compiler on UNIX systems.

System Requirements
You cannot install the MATLAB Compiler unless MATLAB 6.5 (Release 13) is
already installed on the system. The MATLAB Compiler imposes no operating
system or memory requirements beyond those that are necessary to run
MATLAB. The MATLAB Compiler consumes a small amount of disk space.

Table 2-1, Requirements for Creating UNIX Applications, shows the
requirements for creating UNIX applications with the MATLAB Compiler.

Note Although the MATLAB Compiler supports the creation of stand-alone
C++ applications, it does not support the creation of C++ MEX-files.

Supported ANSI C and C++ UNIX Compilers
The MATLAB Compiler supports

• The GNU C compiler, gcc, (except on HP and SGI64)

• The system’s native ANSI C compiler on all UNIX platforms

• The system’s native C++ compiler on all UNIX platforms (except Linux)

• The GNU C++ compiler, g++, on Linux.

Table 2-1: Requirements for Creating UNIX Applications

To create... You need...

MEX-files ANSI C compiler
MATLAB Compiler

Stand-alone C applications ANSI C compiler
MATLAB Compiler

Stand-alone C++ applications C++ compiler
MATLAB Compiler

UNIX Workstation

2-5

Note For a list of all the compilers supported by MATLAB, see the
MathWorks Technical Support Department’s Technical Notes at

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

Known Compiler Limitations. There are several known restrictions regarding the
use of supported compilers:

• The SGI C compiler does not handle denormalized floating-point values
correctly. Denormalized floating-point numbers are numbers that are
greater than 0 and less than the value of DBL_MIN in the compiler’s float.h
file.

• Due to a limitation of the GNU C++ compiler (g++) on Linux, try catch end
blocks do not work.

• The -A debugline:on option does not work on the GNU C++ compiler (g++)
on Linux because it uses try catch end.

• Some UNIX compilers produce warnings that suggest additional
optimizations can be performed that might result in faster code. For
example, on IBM RS/6000 systems you may see a warning message similar to
1500-030: (I) INFORMATION: Miofun_private_imgifinfo: Additional
optimization may be attained by recompiling and specifying MAXMEM
option with a value greater than 2048.

See your vendor compiler documentation for more information on how to
improve optimization. Normally, this involves changing compiler options.
Use CFLAGS= in your mbuildopts file.

Note This compiler warning is benign and will have no harmful effect on
your code.

Compiler Options Files
The MathWorks provides options files for every supported C or C++ compiler.
These files contain the necessary flags and settings for the compiler. This table

2 Installation and Configuration

2-6

shows the preconfigured options files that are included with MATLAB for
UNIX.

Information on the options files is provided for those users who may need to
modify them to suit their own needs. Many users never have to be concerned
with the inner workings of the options files.

Locating Options Files
To locate your options file, the mex script searches the following:

• The current directory

• $HOME/.matlab/R13

• <matlab>/bin

mex uses the first occurrence of the options file it finds. If no options file is
found, mex displays an error message.

Installation

MATLAB Compiler
To install the MATLAB Compiler on UNIX workstations, follow the
instructions in the MATLAB Installation Guide for the UNIX platform. If you
have a license to install the MATLAB Compiler, it appears as one of the
installation choices that you can select as you proceed through the installation
process. If the MATLAB Compiler does not appear as one of the installation
choices, contact The MathWorks to get an updated license file (license.dat):

• Via the Web at www.mathworks.com. On the MathWorks home page, click on
the MATLAB Access option, log in to the Access home page, and follow the
instructions.

• Via e-mail at service@mathworks.com

Compiler Options File

System native ANSI compiler mexopts.sh

gcc (GNU C compiler) gccopts.sh

UNIX Workstation

2-7

ANSI C or C++ Compiler
To install your ANSI C or C++ compiler, follow the vendor’s instructions that
accompany your C or C++ compiler. Be sure to test the C or C++ compiler to
make sure it is installed and configured properly. Typically, the compiler
vendor provides some test procedures. The following section, “Things to Be
Aware of,” contains several UNIX-specific details regarding the installation
and configuration of your ANSI C or C++ compiler.

Note On some UNIX platforms, a C or C++ compiler may already be
installed. Check with your system administrator for more information.

Things to Be Aware of
This table provides information regarding the installation and configuration of
a C or C++ compiler on your system.

mex Verification

Choosing a Compiler

Using the System Compiler. If the MATLAB Compiler and your supported C or C++
compiler are installed on your system, you are ready to create C MEX-files. To
create a MEX-file, you can simply enter

mex filename.c

This simple method of creating MEX-files works for the majority of users. It
uses the system’s compiler as your default compiler for creating C MEX-files.

Description Comment

Determine which C or C++ compiler
is installed on your system.

See your system administrator.

Determine the path to your C or
C++ compiler.

See your system administrator.

2 Installation and Configuration

2-8

If you do not need to change C or C++ compilers, or you do not need to modify
your compiler options files, you can skip ahead in this section to “Creating
MEX-Files” on page 2-9. If you need to know how to change the options file,
continue with this section.

Changing Compilers

Changing the Default Compiler. To change your default C or C++ compiler, you
select a different options file. You can do this at anytime by using the command

mex -setup

Using the 'mex -setup' command selects an options file that is
placed in ~/.matlab/R13 and used by default for 'mex'. An options
file in the current working directory or specified on the
command line overrides the default options file in ~/.matlab/R13.

Options files control which compiler to use, the compiler and
link command options, and the runtime libraries to link against.

To override the default options file, use the 'mex -f' command
(see 'mex -help' for more information).

The options files available for mex are:

1: <matlab>/bin/gccopts.sh :

 Template Options file for building gcc MEX-files
 2: <matlab>/bin/mexopts.sh :
 Template Options file for building MEX-files via the
 system ANSI compiler

Enter the number of the options file to use as your default options
file:

Select the proper options file for your system by entering its number and
pressing Return. If an options file doesn’t exist in your MATLAB directory, the
system displays a message stating that the options file is being copied to your
user-specific matlab directory. If an options file already exists in your
MATLAB directory, the system prompts you to overwrite it.

UNIX Workstation

2-9

Note The setup option creates a user-specific, matlab directory in your
individual home directory and copies the appropriate options file to the
directory. (If the directory already exists, a new one is not created.) This
matlab directory is used for your individual options files only; each user can
have his or her own default options files (other MATLAB products may place
options files in this directory). Do not confuse these user-specific matlab
directories with the system matlab directory, where MATLAB is installed.

Using the setup option resets your default compiler so that the new compiler
is used every time you use the mex script.

Modifying the Options File. Another use of the setup option is if you want to
change your options file settings. For example, if you want to make a change to
the current linker settings, or you want to disable a particular set of warnings,
you should use the setup option.

As the previous note says, setup copies the appropriate options file to your
individual directory. To make your user-specific changes to the options file, you
then edit your copy of the options file to correspond to your specific needs and
save the modified file. This sets your default compiler’s options file to your
specific version.

Temporarily Changing the Compiler. To temporarily change your C or C++ compiler,
use the -f option, as in

mex -f <file>

The -f option tells the mex script to use the options file, <file>. If <file> is not
in the current directory, then <file> must be the full pathname to the desired
options file. Using the -f option tells the mex script to use the specified options
file for the current execution of mex only; it does not reset the default compiler.

Creating MEX-Files
To create MEX-files on UNIX, first copy the source file(s) to a local directory,
and then change directory (cd) to that local directory.

2 Installation and Configuration

2-10

On UNIX, MEX-files are created with platform-specific extensions, as shown in
Table 2-2, MEX-File Extensions for UNIX.

The <matlab>/extern/examples/mex directory contains C source code for the
example yprime.c. After you copy the source file (yprime.c) to a local directory
and cd to that directory, enter at the MATLAB prompt

mex yprime.c

This should create the MEX-file called yprime with the appropriate extension
corresponding to your UNIX platform. For example, if you create the MEX-file
on Solaris, its name is yprime.mexsol.

You can now call yprime from the MATLAB prompt as if it were an M-function.
For example:

yprime(1,1:4)
ans =

2.0000 8.9685 4.0000 -1.0947

If you encounter problems generating the MEX-file or getting the correct
results, refer to External Interfaces/API in the MATLAB documentation for
additional information about MEX-files.

Table 2-2: MEX-File Extensions for UNIX

Platform MEX-File Extension

Dec/Compaq Alpha mexaxp

HP 9000 PA-RISC mexhp7

HP-UX mexhpux

IBM RS/6000 mexrs6

Linux mexglx

SGI mexsg

Solaris mexsol

UNIX Workstation

2-11

MATLAB Compiler Verification

Verifying from MATLAB
Once you have verified that you can generate MEX-files on your system, you
are ready to verify that the MATLAB Compiler is correctly installed. Type the
following at the MATLAB prompt.

mcc -x invhilb

After a short delay, this command should complete and display the MATLAB
prompt. Next, at the MATLAB prompt, type

which invhilb

The which command should indicate that invhilb is now a MEX-file by listing
the filename followed by the appropriate UNIX MEX-file extension. For
example, if you run the Compiler on Solaris, the Compiler creates the file
invhilb.mexsol. Finally, at the MATLAB prompt, type

invhilb(10)

Note that this tests only the Compiler’s ability to make MEX-files. If you want
to create stand-alone applications, refer to Chapter 4, “Stand-Alone
Applications” for additional details.

Verifying from UNIX Command Prompt
To verify that the Compiler can generate MEX-files from the UNIX command
prompt, you follow a similar procedure as that used in the previous section.

Note Before you test to see if the Compiler can generate MEX-files from the
UNIX command prompt, you may want to delete the MEX-file you created in
the previous section, invhilb.mexsol, or whatever the extension is on your
system. That way, you can be sure your newly generated MEX-file is the result
of using the Compiler from the UNIX prompt.

Copy invhilb.m from the <matlab>/toolbox/matlab/elmat directory to a local
directory and then type the following at the UNIX prompt:

mcc -x invhilb

2 Installation and Configuration

2-12

Next, verify that invhilb is now a MEX-file by listing the invhilb files:

ls invhilb.*

You will see a list similar to this:

invhilb.c invhilb.m invhilb_mex.c
invhilb.h invhilb.mexsol

These are the various files that the Compiler generates from the M-file. The
Compiler-generated MEX-file appears in the list as the filename followed by
the appropriate UNIX MEX-file extension. In this example, the Compiler was
executed on Solaris, so the Compiler creates the file invhilb.mexsol. For more
information on which files the Compiler creates for a compilation, see Chapter
5, “Controlling Code Generation.”

To test the newly created MEX-file, start MATLAB and, at the MATLAB
prompt, type

invhilb(10)

Microsoft Windows on PCs

2-13

Microsoft Windows on PCs
This section examines the system requirements, installation procedures, and
configuration procedures for the MATLAB Compiler on PCs running Microsoft
Windows.

System Requirements
You cannot install the MATLAB Compiler unless MATLAB 6.5 (Release 13) is
already installed on the system. The MATLAB Compiler imposes no operating
system or memory requirements beyond what is necessary to run MATLAB.
The MATLAB Compiler consumes a small amount of disk space.

Table 2-3, Requirements for Creating PC Applications, shows the
requirements for creating PC applications with the MATLAB Compiler.

Note MATLAB includes an ANSI C compiler (Lcc) that is suitable for use
with the MATLAB Compiler.

Note Although the MATLAB Compiler supports the creation of stand-alone
C++ applications, it does not support the creation of C++ MEX-files.

Table 2-3: Requirements for Creating PC Applications

To create... You need...

MEX-files ANSI C compiler (see following note)
MATLAB Compiler

Stand-alone C applications ANSI C compiler (see following note)
MATLAB Compiler

Stand-alone C++ applications C++ compiler
MATLAB Compiler

2 Installation and Configuration

2-14

Supported ANSI C and C++ PC Compilers
To create C MEX-files, stand-alone C/C++ applications, or dynamically linked
libraries (DLLs) with the MATLAB Compiler, you must install and configure a
supported C/C++ compiler. Use one of the following 32-bit C/C++ compilers
that create 32-bit Windows dynamically linked libraries (DLLs) or Windows
NT applications:

• Lcc C version 2.4 (included with MATLAB). This is a C only compiler; it does
not work with C++.

• Watcom C/C++ versions 10.6 and 11.0

• Borland C++ versions 5.3, 5.4, 5.5, 5.6, and free 5.5. (You may see references
to these compilers as Borland C++Builder versions 3.0, 4.0, 5.0, and 6.0.) For
more information on the free Borland compiler and its associated command
line tools, see http://community.borland.com.

• Microsoft Visual C/C++ (MSVC) versions 5.0, 6.0, and 7.0.

Note For a list of all the compilers supported by MATLAB, see the
MathWorks Technical Support Department’s Technical Notes at

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

Applications generated by the MATLAB Compiler are 32-bit applications and
only run on any MATLAB-supported Microsoft Windows systems. For a
complete list of supported Windows platforms, see
http://www.mathworks.com/products/system.shtml/Windows.

Microsoft Windows on PCs

2-15

Known Compiler Limitations. There are several known restrictions regarding the
use of supported compilers:

• Some compilers, e.g., Watcom, do not handle denormalized floating-point
values correctly. Denormalized floating-point numbers are numbers that are
greater than 0 and less than the value of DBL_MIN in your compiler’s float.h
file.

• The MATLAB Compiler sometimes will generate goto statements for
complicated if conditions. The Borland C++ Compiler prohibits the goto
statement within a try catch block. This error can occur if you use the
-A debugline:on option, because its implementation uses try catch. To
work around this limitation, simplify the if conditions.

• There is a limitation with the Borland C++ Compiler. In your M-code, if you
use a constant number that includes a leading zero and contains the digit ‘8’
or ‘9’ before the decimal point, the Borland compiler will display the error
message

Error <file>.c <line>: Illegal octal digit in function
<functionname>

For example, the Borland compiler considers 009.0 an illegal octal integer as
opposed to a legal floating-point constant, which is how it is defined in the
ANSI C standard.

As an aside, if all the digits are in the legal range for octal numbers (0-7),
then the compiler will incorrectly treat the number as a floating-point value.
So, if you have code such as
x = [007 06 10];

and want to use the Borland compiler, you should edit the M-code to remove
the leading zeros and write it as
x = [7 6 10];

2 Installation and Configuration

2-16

Compiler Options Files
The MathWorks provides options files for every supported C or C++ compiler.
These files contain the necessary flags and settings for the compiler. This table
shows the preconfigured PC options files that are included with MATLAB.

Locating Options Files
To locate your options file, the mex script searches the following:

• The current directory

• The user profile directory (see the following section, “The User Profile
Directory Under Windows,” for more information about this directory)

mex uses the first occurrence of the options file it finds. If no options file is
found, mex searches your machine for a supported C compiler and uses the
factory default options file for that compiler. If multiple compilers are found,
you are prompted to select one.

The User Profile Directory Under Windows. The Windows user profile directory is
a directory that contains user-specific information such as desktop appearance,
recently used files, and Start menu items. The mex and mbuild utilities store
their respective options files, mexopts.bat and compopts.bat, which are

Compiler Options File

Lcc C, Version 2.4 (included with
MATLAB)

lccopts.bat

Microsoft Visual C/C++, Version 5.0
Microsoft Visual C/C++, Version 6.0
Microsoft Visual C/C++, Version 7.0

msvc50opts.bat
msvc60opts.bat
msvc70opts.bat

Watcom C/C++, Version 10.6
Watcom C/C++, Version 11.0

watcopts.bat (supported for mex
only, not for mbuild)
wat11copts.bat (supported for mex
only, not for mbuild)

Borland C++ Builder 3
Borland C++ Builder 4
Borland C++ Builder 5
Borland C++ Builder 6

bcc53opts.bat
bcc54opts.bat
bcc55opts.bat
bcc56opts.bat

Microsoft Windows on PCs

2-17

created during the -setup process, in a subdirectory of your user profile
directory, named Application Data\MathWorks\MATLAB\R13. Under Windows
with user profiles enabled, your user profile directory is
%windir%\Profiles\username. Under Windows with user profiles disabled,
your user profile directory is %windir%. You can determine whether or not
user profiles are enabled by using the Passwords control panel.

Installation

MATLAB Compiler
To install the MATLAB Compiler on a PC, follow the instructions in the
Installation Guide for Windows. If you have a license to install the MATLAB
Compiler, it will appear as one of the installation choices that you can select as
you proceed through the installation process.

If the Compiler does not appear in your list of choices, contact The MathWorks
to obtain an updated License File (license.dat) for multiuser network
installations, or an updated Personal License Password (PLP) for single-user,
standard installations:

• Via the Web at www.mathworks.com. On the MathWorks home page, click on
Support, then click on the Access Login, and follow the instructions.

• Via e-mail at service@mathworks.com

ANSI C or C++ Compiler
To install your ANSI C or C++ compiler, follow the vendor’s instructions that
accompany your compiler. Be sure to test the C/C++ compiler to make sure it
is installed and configured properly. The following section, “Things to Be
Aware of,” contains some Windows-specific details regarding the installation
and configuration of your C/C++ compiler.

2 Installation and Configuration

2-18

Things to Be Aware of
This table provides information regarding the installation and configuration of
a C/C++ compiler on your system.

Description Comment

Installation options We recommend that you do a full
installation of your compiler. If you do a
partial installation, you may omit a
component that the MATLAB Compiler
relies on.

Installing debugger files For the purposes of the MATLAB Compiler,
it is not necessary to install debugger (DBG)
files. However, you may need them for other
purposes.

Microsoft Foundation
Classes (MFC)

This is not required.

16-bit DLL/executables This is not required.

ActiveX This is not required.

Running from the command
line

Make sure you select all relevant options for
running your compiler from the command
line.

Updating the registry If your installer gives you the option of
updating the registry, you should do it.

Installing Microsoft Visual
C/C++ Version 6.0

If you need to change the location where this
compiler is installed, you must change the
location of the Common directory. Do not
change the location of the VC98 directory
from its default setting.

Microsoft Windows on PCs

2-19

mex Verification

Choosing a Compiler

Systems with Exactly One C/C++ Compiler. If you have properly installed the
MATLAB Compiler and your supported C or C++ compiler, you can now create
C MEX-files. On systems where there is exactly one C or C++ compiler
available to you, the mex utility automatically configures itself for the
appropriate compiler. So, for many users, to create a C MEX-file, you can
simply enter

mex filename.c

This simple method of creating MEX-files works for the majority of users. It
uses your installed C or C++ compiler as your default compiler for creating your
MEX-files.

If you are a user who does not need to change compilers, or you do not need to
modify your compiler options files, you can skip ahead in this section to
“Creating MEX-Files” on page 2-22.

Note On Windows 98 systems, if you get the error, out of environment
space, see “Out of Environment Space Running mex or mbuild” on page 2-25
for more information.

Systems with More than One C/C++ Compiler. On systems where there is more than
one C or C++ compiler, the mex utility lets you select which of the compilers you
want to use. Once you choose your C or C++ compiler, that compiler becomes
your default compiler and you no longer have to select one when you compile
MEX-files.

For example, if your system has both the Borland and Watcom compilers, when
you enter for the first time

mex filename.c

you are asked to select which compiler to use.

mex has detected the following compilers on your machine:

2 Installation and Configuration

2-20

[1] : Borland compiler in T:\Borland\BC.500
[2] : WATCOM compiler in T:\watcom\c.106

[0] : None

Please select a compiler. This compiler will become the default:

Select the desired compiler by entering its number and pressing Return. You
are then asked to verify the information.

Changing Compilers

Changing the Default Compiler. To change your default C or C++ compiler, you
select a different options file. You can do this at any time by using the
mex -setup option.

This example shows the process of changing your default compiler to the
Microsoft Visual C/C++ Version 6.0 compiler.

mex -setup

Please choose your compiler for building external interface (MEX)
files.

Would you like mex to locate installed compilers [y]/n? n

Select a compiler:
[1] Borland C++Builder version 6.0
[2] Borland C++Builder version 5.0
[3] Borland C++Builder version 4.0
[4] Borland C++Builder version 3.0
[5] Borland C/C++ version 5.02
[6] Borland C/C++ version 5.0
[7] Borland C/C++ (free command line tools) version 5.5
[8] Compaq Visual Fortran version 6.6
[9] Compaq Visual Fortran version 6.1
[10] Digital Visual Fortran version 6.0
[11] Digital Visual Fortran version 5.0
[12] Lcc C version 2.4
[13] Microsoft Visual C/C++ version 7.0
[14] Microsoft Visual C/C++ version 6.0

Microsoft Windows on PCs

2-21

[15] Microsoft Visual C/C++ version 5.0
[16] WATCOM C/C++ version 11
[17] WATCOM C/C++ version 10.6

[0] None

Compiler: 14

Your machine has a Microsoft Visual C/C++ compiler located at
D:\Applications\Microsoft Visual Studio. Do you want to use this
compiler [y]/n? y

Please verify your choices:

Compiler: Microsoft Visual C/C++ 6.0
Location: D:\Applications\Microsoft Visual Studio

Are these correct?([y]/n): y

The default options file:
"C:\WINNT\Profiles\username
\Application Data\MathWorks\MATLAB\R13\mexopts.bat" is being
updated...

Installing the MATLAB Visual Studio add-in ...

 Updated ...

If the specified compiler cannot be located, you are given the message:

The default location for compiler-name is directory-name,
but that directory does not exist on this machine.
Use directory-name anyway [y]/n?

Using the setup option sets your default compiler so that the new compiler is
used everytime you use the mex script.

Modifying the Options File. Another use of the setup option is if you want to
change your options file settings. For example, if you want to make a change to
the current linker settings, or you want to disable a particular set of warnings,
you should use the setup option.

2 Installation and Configuration

2-22

The setup option copies the appropriate options file to your user profile
directory. To make your user-specific changes to the options file, you edit your
copy of the options file in your user profile directory to correspond to your
specific needs and save the modified file. After completing this process, the mex
script will use the new options file everytime with your modified settings.

Temporarily Changing the Compiler. To temporarily change your C or C++ compiler,
use the -f option, as in

mex -f <file>

The -f option tells the mex script to use the options file, <file>. If <file> is not
in the current directory, then <file> must be the full pathname to the desired
options file. Using the -f option tells the mex script to use the specified options
file for the current execution of mex only; it does not reset the default compiler.

Creating MEX-Files
The <matlab>\extern\examples\mex directory contains C source code for the
example yprime.c. To verify that your system can create MEX-files, enter at
the MATLAB prompt

cd([matlabroot '\extern\examples\mex'])
mex yprime.c

This should create the yprime.dll MEX-file. MEX-files created on Windows
always have the extension dll.

You can now call yprime as if it were an M-function. For example,

yprime(1,1:4)
ans =

2.0000 8.9685 4.0000 -1.0947

If you encounter problems generating the MEX-file or getting the correct
results, refer to “External Interfaces/API” in the MATLAB documentation for
additional information about MEX-files.

MATLAB Add-In for Visual Studio
The MathWorks provides a MATLAB add-in for the Visual Studio development
system that lets you work easily within the Microsoft Visual C/C++ (MSVC)
environment to create and debug MEX-files. The MATLAB add-in for Visual
Studio is included with MATLAB and is automatically installed when you run

Microsoft Windows on PCs

2-23

mex -setup and select Microsoft Visual C/C++ version 5 or 6. For more
information about the add-in, see “Using an Integrated Development
Environment” on page 4-23.

Note The MATLAB add-in for Visual Studio does not currently work with
Microsoft Visual C/C++, Version 7.0.

MATLAB Compiler Verification

Verifying from MATLAB
Once you have verified that you can generate MEX-files on your system, you
are ready to verify that the MATLAB Compiler is correctly installed. Type the
following at the MATLAB prompt.

mcc -x invhilb

After a short delay, this command should complete and display the MATLAB
prompt. Next, at the MATLAB prompt, type

which invhilb

The which command should indicate that invhilb is now a MEX-file; it should
have created the file invhilb.dll. Finally, at the MATLAB prompt, type

invhilb(10)

Note that this tests only the Compiler’s ability to make MEX-files. If you want
to create stand-alone applications or DLLs, refer to Chapter 4, “Stand-Alone
Applications.”

Verifying from DOS Command Prompt
To verify that the Compiler can generate C MEX-files from the DOS command
prompt, you follow a similar procedure as that used in the previous section.

2 Installation and Configuration

2-24

Note Before you test to see if the Compiler can generate MEX-files from the
DOS command prompt, you may want to delete the MEX-file you created in
the previous section, invhilb.dll. That way, you can be sure your newly
generated MEX-file is the result of using the Compiler from the DOS prompt.
To delete this file, you must clear the MEX-file or quit MATLAB; otherwise
the deletion will fail.

Copy invhilb.m from the <matlab>\toolbox\matlab\elmat directory to a local
directory and then type the following at the DOS prompt.

mcc -x invhilb

Next, verify that invhilb is now a MEX-file by listing the invhilb files:

dir invhilb*

You will see a list containing

invhilb.c
invhilb.dll
invhilb.h
invhilb.m
invhilb_mex.c

These are the files that the Compiler generates from the M-file, in addition to
the original M-file, invhilb.m. The Compiler-generated MEX-file appears in
the list as the filename followed by the extension, dll. In this example, the
Compiler creates the file invhilb.dll. For more information on which files the
Compiler creates for a compilation, see Chapter 5, “Controlling Code
Generation.”

To test the newly created MEX-file, you would start MATLAB and, at the
MATLAB prompt, you could type

invhilb(10)

Troubleshooting

2-25

Troubleshooting
This section identifies some of the more common problems that can occur when
installing and configuring the MATLAB Compiler.

mex Troubleshooting

Out of Environment Space Running mex or mbuild. On Windows 98 systems, the mex
and mbuild scripts require more than the default amount of environment
space. If you get the error, out of environment space, add this line to your
config.sys file.

shell=c:\command.com /e:32768 /p

On Windows Me systems, if you encounter this problem and are using the
MATLAB add-in for Visual Studio, follow the procedure in “Configuring on
Windows 98 and Windows Me Systems” on page 4-25.

Non-ANSI C Compiler on UNIX. A common configuration problem in creating C
MEX-files on UNIX involves using a non-ANSI C compiler. You must use an
ANSI C compiler.

DLLs Not on Path on Windows. MATLAB will fail to load MEX-files if it cannot find
all DLLs referenced by the MEX-file; the DLLs must be on the DOS path or in
the same directory as the MEX-file. This is also true for third-party DLLs.

Segmentation Violation or Bus Error. If your MEX-file causes a segmentation
violation or bus error, there is most likely a problem with the MATLAB
Compiler. Contact Technical Support at The MathWorks at
support@mathworks.com.

Generates Wrong Answers. If your program generates the wrong answer(s), there
are several possible causes. There could be an error in the computational logic
or there may be a defect in the MATLAB Compiler. Run your original M-file
with a set of sample data and record the results. Then run the associated
MEX-file with the sample data and compare the results with those from the
original M-file. If the results are the same, there may be a logic problem in your
original M-file. If the results differ, there may be a defect in the MATLAB
Compiler. In this case, send the pertinent information via e-mail to
support@mathworks.com.

2 Installation and Configuration

2-26

mex Works from Shell But Not from MATLAB (UNIX). If the command

mex -x yprime.c

works from the UNIX shell prompt but does not work from the MATLAB
prompt, you may have a problem with your .cshrc file. When MATLAB
launches a new C shell to perform compilations, it executes the .cshrc script.
If this script causes unexpected changes to the PATH, an error may occur. You
can test whether this is true by performing a

set SHELL=/bin/sh

prior to launching MATLAB. If this works correctly, then you should check
your .cshrc file for problems setting the PATH.

Cannot Locate Your Compiler (PC). If mex has difficulty locating your installed
compilers, it is useful to know how it goes about finding compilers. mex
automatically detects your installed compilers by first searching for locations
specified in the following environment variables:

• BORLAND for Borland C++ Compiler, Version 5.3

• WATCOM for the Watcom C/C++ Compiler

• MSVCDIR for Microsoft Visual C/C++, Version 5.0, 6.0, or 7.0

Next, mex searches the Windows registry for compiler entries. Note that
Watcom does not add an entry to the registry. Digital Fortran does not use an
environment variable; mex only looks for it in the registry.

Internal Error When Using mex -setup (PC). Some antivirus software packages such
as Cheyenne AntiVirus and Dr. Solomon may conflict with the mex -setup
process. If you get an error message during mex -setup of the following form

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and rerun
mex -setup. After you have successfully run the setup option, you can reenable
your antivirus software.

Verification of mex Fails. If none of the previous solutions addresses your
difficulty with mex, contact Technical Support at The MathWorks at
support@mathworks.com.

Troubleshooting

2-27

Troubleshooting the Compiler
One problem that might occur when you try to use the Compiler involves
licensing.

Licensing Problem. If you do not have a valid license for the MATLAB Compiler,
you will get an error message similar to the following when you try to access
the Compiler.

Error: Could not check out a Compiler License:
No such feature exists.

If you have a licensing problem, contact The MathWorks. A list of contacts at
The MathWorks is provided at the beginning of this manual.

MATLAB Compiler Does Not Generate MEX-File. If you experience other problems
with the MATLAB Compiler, contact Technical Support at The MathWorks at
support@mathworks.com.

2 Installation and Configuration

2-28

3
Working
with MEX-Files

This chapter gets you started compiling M-files with the MATLAB Compiler.

A Simple Example — The Sierpinski
Gasket (p. 3-2)

Creating a MEX-file from an M-file

Compiler Options and Macros (p. 3-6) Overview of options and macros

Generating Simulink S-Functions
(p. 3-7)

Generating Simulink C MEX S-functions

Converting Script M-Files to Function
M-Files (p. 3-10)

Converting scripts to functions

3 Working with MEX-Files

3-2

A Simple Example — The Sierpinski Gasket
Consider an M-file function called gasket.m:

function theImage = gasket(numPoints)
%GASKET An image of a Sierpinski Gasket.
% IM = GASKET(NUMPOINTS)
%
% Example:
% x = gasket(50000);
% imagesc(x);colormap([1 1 1;0 0 0]);
% axis equal tight

% Copyright (c) 1984-98 by The MathWorks, Inc
% $Revision: 1.1 $ $Date: 1998/09/11 20:05:06 $

theImage = zeros(1000,1000);

corners = [866 1;1 500;866 1000];
startPoint = [866 1];
theRand = rand(numPoints,1);
theRand = ceil(theRand*3);

for i=1:numPoints
 startPoint = floor((corners(theRand(i),:)+startPoint)/2);
 theImage(startPoint(1),startPoint(2)) = 1;
end

How the Function Works
This function determines the coordinates of a Sierpinski Gasket using an
Iterated Function System algorithm. The function starts with three points that
define a triangle, and starting at one of these points, chooses one of the
remaining points at random. A dot is placed at the midpoint of these two points.
From the new point, a dot is placed at the midpoint between the new point and
a point randomly selected from the original points. This process continues and
eventually leads to an approximation of a curve.

A Simple Example — The Sierpinski Gasket

3-3

The curve can be graphed in many ways. Sierpinski's method is

• Start with a triangle and from it remove a triangle that is one-half the height
of the original and inverted. This leaves three triangles.

• From each of the remaining three triangles, remove a triangle that is
one-fourth the height of these new triangles and inverted. This leaves nine
triangles.

• The process continues and at infinity the surface area becomes zero and the
length of the curve is infinite.

To achieve a reasonable approximation of the Sierpinski Gasket, set the
number of points to 50,000. To invoke the M-file and compute the coordinates,
you can use

x = gasket(50000);

To display the figure, you can use

imagesc(x); colormap([1 1 1;0 0 0]);
axis equal tight

Compiling the M-File into a MEX-File
To create a MEX-file from this M-file, enter the mcc command at the MATLAB
interpreter prompt.

mcc -x gasket

This mcc command generates

• A file named gasket.c containing MEX-file C source code.

• A file named gasket.h containing the public information.

• A file named gasket_mex.c containing the MEX-function interface (MEX
wrapper).

• A MEX-file named gasket.mex. (The actual filename extension of the
executable MEX-file varies depending on your platform, e.g., on the PC the
file is named gasket.dll.)

mcc automatically invokes mex to create gasket.mex from gasket.c and
gasket_mex.c. The mex utility encapsulates the appropriate C compiler and
linker options for your system.

3 Working with MEX-Files

3-4

This example uses the -x macro option to create the MEX-file. For more
information on this Compiler option, see the mcc reference page. For more
information on the files that the Compiler generates, see Chapter 5,
“Controlling Code Generation.”

Invoking the MEX-File
Invoke the MEX-file version of gasket from the MATLAB interpreter the same
way you invoke the M-file version.

x = gasket(50000);

MATLAB runs the MEX-file version (gasket.mex, which is gasket.dll on the
PC) rather than the M-file version (gasket.m). Given an M-file and a MEX-file
with the same root name (gasket) in the same directory, the MEX-file takes
precedence.

Note To verify that the MEX-file version ran, use the which command

which gasket
D:\work\gasket.dll

To display the Sierpinski Gasket, use

imagesc(x); colormap([1 1 1;0 0 0]);
axis equal tight

A Simple Example — The Sierpinski Gasket

3-5

Figure 3-1, The Sierpinski Gasket for 50,000 Points, shows the results.

Figure 3-1: The Sierpinski Gasket for 50,000 Points

3 Working with MEX-Files

3-6

Compiler Options and Macros
The MATLAB Compiler uses a family of options, also called option flags, to
control the functionality of the Compiler. The mcc reference page includes a
complete description of the Compiler options. Throughout this book you will see
how these options are used with the Compiler to perform various tasks.

One particular set of Compiler options, macros, are particularly useful for
performing straightforward compilations.

Macro options provide a simplified approach to compilation. Instead of
manually grouping several options together to perform a particular type of
compilation, you can use one simple option to quickly accomplish basic
compilation tasks.

Note Macro options are intended to simplify the more common compilation
tasks. You can always use individual options to customize the compilation
process to satisfy your particular needs.

For detailed information about the macros included with the MATLAB
Compiler, as well as complete information on all the other available Compiler
options, see the mcc reference page.

Generating Simulink S-Functions

3-7

Generating Simulink S-Functions
You can use the MATLAB Compiler to generate Simulink C MEX S-functions.
This allows you to speed up Simulink models that contain MATLAB M-code
that is referenced from a MATLAB Fcn block.

Note Only the MATLAB Fcn block is supported.

For more information about Simulink in general, see the Simulink
documentation. For more information about Simulink S-functions, see
“Writing S-Functions” in the Simulink documentation.

Simulink Specific Options
By using Simulink specific options with the MATLAB Compiler, you can
generate an S-function that is compatible with the S-Function block. The
Simulink specific options are -S, -u, and -y. Using any of these options with
the MATLAB Compiler causes it to generate code that is compatible with
Simulink.

Using the -S Option
The simplest S-function that the MATLAB Compiler can generate is one with
a dynamically sized number of inputs and outputs. That is, you can pass any
number of inputs and outputs in or out of the S-function. Both the MATLAB
Fcn block and the S-Function block are single-input, single-output blocks. Only
one line can be connected to the input or output of these blocks. However, each
line may be a vector signal, essentially giving these blocks multi-input,
multi-output capability. To generate a C language S-function of this type from
an M-file, use the -S option:

mcc -S mfilename

Note The MATLAB Compiler option that generates a C language S-function
is a capital S (-S).

3 Working with MEX-Files

3-8

The result is an S-function described in the following files:

mfilename.c
mfilename.h
mfilename_simulink.c
mfilename.ext (where ext is the MEX-file extension for your

platform, e.g., dll for Windows)

Using the -u and -y Options
Using the -S option by itself will generate code suitable for most general
applications. However, if you would like to exert more control over the number
of valid inputs or outputs for your function, you should use the -u and/or -y
options. These options specifically set the number of inputs (u) and the number
of outputs (y) for your function. If either -u or -y is omitted, the respective
input or output will be dynamically sized:

mcc -S -u 1 -y 2 mfilename

In the above line, the S-function will be generated with an input vector whose
width is 1 and an output vector whose with is 2. If you were to connect the
referencing S-Function block to signals that do not correspond to the correct
number of inputs or outputs, Simulink will generate an error when the
simulation starts.

Note The MATLAB Compiler -S option does not support the passing of
parameters, which is normally available with Simulink S-functions.

Specifying S-Function Characteristics

Sample Time
Similar to the MATLAB Fcn block, the automatically generated S-function has
an inherited sample time.

Generating Simulink S-Functions

3-9

Data Type
The input and output vectors for the Simulink S-function must be
double-precision vectors or scalars. You must ensure that the variables you use
in the M-code for input and output are also double-precision values.

Note Simulink S-functions that are generated via the -S option of the
Compiler are not currently compatible with Real-Time Workshop®. They can,
however, be used to rapidly prototype code in Simulink.

3 Working with MEX-Files

3-10

Converting Script M-Files to Function M-Files
MATLAB provides two ways to package sequences of MATLAB commands:

• Function M-files

• Script M-files

These two categories of M-files differ in two important respects:

• You can pass arguments to function M-files but not to script M-files.

• Variables used inside function M-files are local to that function; you cannot
access these variables from the MATLAB interpreter’s workspace unless
they are passed back by the function. By contrast, variables used inside
script M-files are shared with the caller’s workspace; you can access these
variables from the MATLAB interpreter command line.

The MATLAB Compiler cannot compile script M-files nor can it compile a
function M-file that calls a script.

Converting a script into a function is usually fairly simple. To convert a script
to a function, simply add a function line at the top of the M-file.

For example, consider the script M-file houdini.m:

m = magic(4); % Assign 4x4 matrix to m.
t = m .^ 3; % Cube each element of m.
disp(t); % Display the value of t.

Running this script M-file from a MATLAB session creates variables m and t in
your MATLAB workspace.

The MATLAB Compiler cannot compile houdini.m because houdini.m is a
script. Convert this script M-file into a function M-file by simply adding a
function header line:

function [m,t] = houdini(sz)
m = magic(sz); % Assign matrix to m.
t = m .^ 3; % Cube each element of m.
disp(t) % Display the value of t.

The MATLAB Compiler can now compile houdini.m. However, because this
makes houdini a function, running houdini.mex no longer creates variable m

Converting Script M-Files to Function M-Files

3-11

in the MATLAB workspace. If it is important to have m accessible from the
MATLAB workspace, you can change the beginning of the function to

function [m,t] = houdini

3 Working with MEX-Files

3-12

4
Stand-Alone
Applications

This chapter explains how to use the MATLAB Compiler to code and build stand-alone applications.

Stand-alone applications run without the help of the MATLAB interpreter. In fact, stand-alone
applications run even if MATLAB is not installed on the system. However, stand-alone applications
do require the run-time shared libraries, which are detailed in the corresponding sections.

Differences Between MEX-Files and
Stand-Alone Applications (p. 4-2)

Overview of the differences

Building Stand-Alone C/C++
Applications (p. 4-4)

Steps to create stand-alone C/C++ applications

Building Stand-Alone Applications on
UNIX (p. 4-7)

UNIX-specific steps to create stand-alone applications

Building Stand-Alone Applications on
PCs (p. 4-15)

PC-specific steps to create stand-alone applications

Distributing Stand-Alone Applications
(p. 4-27)

Packaging applications for users

Building Shared Libraries (p. 4-30) Steps to create C shared libraries

Building COM Objects (p. 4-31) Steps to create COM objects

Building Excel Plug-Ins (p. 4-32) Steps to create Excel plug-ins

Troubleshooting (p. 4-33) Common problems with mbuild and the MATLAB
Compiler

Coding with M-Files Only (p. 4-36) Creating stand-alone applications from M-files and
MEX-files

Alternative Ways of Compiling M-Files
(p. 4-40)

Other ways of compiling M-files

Mixing M-Files and C or C++ (p. 4-42) Creating applications from M-files and C/C++ code

4 Stand-Alone Applications

4-2

Differences Between MEX-Files and Stand-Alone
Applications

MEX-files and stand-alone applications differ in these respects:

• MEX-files run in the same process space as the MATLAB interpreter. When
you invoke a MEX-file, the MATLAB interpreter dynamically links in the
MEX-file.

• Stand-alone C or C++ applications run independently of MATLAB.

MEX-Files
It is now possible to call MEX-files from Compiler-generated stand-alone
applications. The Compiler will compile MEX-files whenever they are specified
on the command line or are located using the -h option to find helper functions.
The MEX-files will then be loaded and called by the stand-alone code.

If an M-file and a MEX-file appear in the same directory and the M-file
contains at least one function, the Compiler will compile the M-file instead of
the MEX-file. If the MEX-file is desired instead, you must use the %#mex
pragma. For more information on this pragma, see the %#mex reference page.

Note The Compiler-generated code cannot invoke Compiler-generated
MEX-files. Specify the M-file(s) source instead and the Compiler will compile
those into the stand-alone application.

Stand-Alone C Applications
To build stand-alone C applications as described in this chapter, MATLAB, the
MATLAB Compiler, a C compiler, and the MATLAB C/C++ Math Library must
be installed on your system.

The source code for a stand-alone C application consists either entirely of
M-files or some combination of M-files, MEX-files, and C or C++ source code
files.

The MATLAB Compiler translates input M-files into C source code suitable for
your own stand-alone applications. After compiling this C source code, the
resulting object file is linked with the object libraries.

Differences Between MEX-Files and Stand-Alone Applications

4-3

For more information about distributing a C application, see “Distributing
Stand-Alone Applications” on page 4-27.

Note If you attempt to compile M-files to produce stand-alone applications
and you do not have the MATLAB C/C++ Math Library installed, the system
will not be able to find the appropriate libraries and the linking will fail. Also,
if you do not have the MATLAB C/C++ Graphics Library installed, the
MATLAB Compiler will generate run-time errors if the graphics functions are
called.

Stand-Alone C++ Applications
To build stand-alone C++ applications, MATLAB, the MATLAB Compiler, a
C++ compiler, and the MATLAB C/C++ Math Library must be installed on your
system.

The source code for a stand-alone C++ application consists either entirely of
M-files or some combination of M-files, MEX-files, and C or C++ source code
files.

The MATLAB Compiler, when invoked with the appropriate option flag (-p or
-L Cpp), translates input M-files into C++ source code suitable for your own
stand-alone applications. After compiling this C++ source code, the resulting
object files are linked against the MATLAB C/C++ Math Library. For more
information about distributing a C++ application, see “Distributing
Stand-Alone Applications” on page 4-27.

Note On the PC, the MATLAB C++ Math Library is static because the
different PC compiler vendors use different C++ name-mangling algorithms.

4 Stand-Alone Applications

4-4

Building Stand-Alone C/C++ Applications
This section explains how to build stand-alone C and C++ applications on
UNIX systems and PCs running Microsoft Windows.

This section begins with a summary of the steps involved in building
stand-alone C/C++ applications, including the mbuild script, which helps
automate the build process, and then describes platform-specific issues for both
supported platforms.

Note This chapter assumes that you have installed and configured the
MATLAB Compiler.

Overview
On both operating systems, the steps you use to build stand-alone C and C++
applications are

1 Verify that mbuild can create stand-alone applications.

2 Verify that the MATLAB Compiler can link object files with the proper
libraries to form a stand-alone application.

Building Stand-Alone C/C++ Applications

4-5

Figure 4-1, Sequence for Creating Stand-Alone C/C++ Applications, shows the
sequence on both platforms. The sections following the flowchart provide more
specific details for the individual platforms.

Figure 4-1: Sequence for Creating Stand-Alone C/C++ Applications

Packaging Stand-Alone Applications
To distribute a stand-alone application, you must include the application’s
executable as well as the shared libraries with which the application was
linked. The necessary shared libraries vary by platform. The individual UNIX
and Windows sections that follow provide more information about packaging
applications.

Start

Test your

mbuild configuration.

Does the command
mbuild ex1.c
generate proper application

See “Troubleshooting
mbuild.”

Test your
MATLAB Compiler
configuration.

Does the command
mcc -m hello
generate the hello application

Stop

1

1

No

Yes

Yes

?

?

2

No

See “Troubleshooting
Compiler.”

2

Verify
mbuild

Verify MATLAB
Compiler can
generate
application

4 Stand-Alone Applications

4-6

Getting Started

Introducing mbuild
The MathWorks utility, mbuild, lets you customize the configuration and build
process. The mbuild script provides an easy way for you to specify an options
file that lets you

• Set your compiler and linker settings

• Change compilers or compiler settings

• Switch between C and C++ development

• Build your application

The MATLAB Compiler (mcc) automatically invokes mbuild under certain
conditions. In particular, mcc -m or mcc -p invokes mbuild to perform
compilation and linking. See the mcc reference page for complete details on
which Compiler options you should use in order to use the mbuild script.

If you do not want mcc to invoke mbuild automatically, you can use the -c
option, for example, mcc -mc filename.

Compiler Options Files
Options files contain the required compiler and linker settings for your
particular C or C++ compiler. The MathWorks provides options files for every
supported C or C++ compiler. The options file for UNIX is mbuildopts.sh;
Table 4-3, Compiler Options Files on the PC, contains the PC options files.

Much of the information on options files in this chapter is provided for those
users who may need to modify an options file to suit their specific needs. Many
users never have to be concerned with how the options files work.

Note If you are developing C++ applications, make sure your C++ compiler
supports the templates features of the C++ language. If it does not, you may
be unable to use the MATLAB C/C++ Math Library.

Building Stand-Alone Applications on UNIX

4-7

Building Stand-Alone Applications on UNIX
This section explains how to compile and link C or C++ source code into a
stand-alone UNIX application. This section includes

• “Configuring for C or C++” on page 4-7

• “Preparing to Compile” on page 4-8

• “Verifying mbuild” on page 4-11

• “Verifying the MATLAB Compiler” on page 4-12

• “About the mbuild Script” on page 4-13

• “Packaging UNIX Applications” on page 4-13

Configuring for C or C++
The mbuild script deduces the type of files you are compiling by the file
extension. If you include both C and C++ files, mbuild uses the C++ compiler
and the MATLAB C++ Math Library. If mbuild cannot deduce from the file
extensions whether to compile C or C++, mbuild invokes the C compiler. The
MATLAB Compiler generates only .c and .cpp files. Table 4-1, UNIX File
Extensions for mbuild, shows the supported file extensions.

Note You can override the language choice that is determined from the
extension by using the -lang option of mbuild. For more information about
this option, as well as all of the other mbuild options, see the mbuild reference
page.

Table 4-1: UNIX File Extensions for mbuild

Language Extension(s)

C .c

C++ .cpp
.C
.cxx
.cc

4 Stand-Alone Applications

4-8

Locating Options Files
mbuild locates your options file by searching the following:

• The current directory

• $HOME/.matlab/R13

• <matlab>/bin

mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild displays an error message.

Preparing to Compile

Note Refer to “Supported ANSI C and C++ UNIX Compilers” on page 2-4 for
information about supported compilers and important limitations.

Using the System Compiler
If the MATLAB Compiler and your supported C or C++ compiler are installed
on your system, you are ready to create C or C++ stand-alone applications. To
create a stand-alone C application, you can simply enter

mbuild filename.c

This simple method works for the majority of users. Assuming filename.c
contains a main function, this example uses the system’s compiler as your
default compiler for creating your stand-alone application. If you are a user
who does not need to change C or C++ compilers, or you do not need to modify
your compiler options files, you can skip ahead in this section to “Verifying
mbuild” on page 4-11. If you need to know how to change the options file or
select a different compiler, continue with this section.

Changing Compilers

Changing the Default Compiler. You need to use the setup option if you want to
change any options or link against different libraries. At the UNIX prompt type

mbuild -setup

Building Stand-Alone Applications on UNIX

4-9

The setup option creates a user-specific options file for your ANSI C or C++
compiler. Executing mbuild -setup presents a list of options files currently
included in the bin subdirectory of MATLAB:

mbuild -setup

Using the 'mbuild -setup' command selects an options file that is
placed in ~/.matlab/R13 and used by default for 'mbuild'. An
options file in the current working directory or specified on the
command line overrides the default options file in ~/.matlab/R13.

Options files control which compiler to use, the compiler and link
command options, and the runtime libraries to link against.

To override the default options file, use the 'mbuild -f' command
(see 'mbuild -help' for more information).

The options files available for mbuild are:

 1: /matlab/bin/mbuildopts.sh :
 Build and link with MATLAB C/C++ Math Library

Enter the number of the options file to use as your default options
file:

If there is more than one options file, you can select the one you want by
entering its number and pressing Return. If there is only one options file
available, it is automatically copied to your MATLAB directory if you do not
already have an mbuild options file. If you already have an mbuild options file,
you are prompted to overwrite the existing one.

Note The options file is stored in the .matlab/R13 subdirectory of your home
directory. This allows each user to have a separate mbuild configuration.

Using the setup option sets your default compiler so that the new compiler is
used everytime you use the mbuild script.

Modifying the Options File. Another use of the setup option is if you want to
change your options file settings. For example, if you want to make a change to

4 Stand-Alone Applications

4-10

the current linker settings, or you want to disable a particular set of warnings,
you should use the setup option.

If you need to change the options that mbuild passes to your compiler or linker,
you must first run

mbuild -setup

which copies a master options file to your local MATLAB directory, typically
$HOME/.matlab/R13/mbuildopts.sh.

If you need to see which options mbuild passes to your compiler and linker, use
the verbose option, -v, as in

mbuild -v filename1 [filename2]

to generate a list of all the current compiler settings. To change the options, use
an editor to make changes to your options file, which is in your local matlab
directory. Your local matlab directory is a user-specific, MATLAB directory in
your individual home directory that is used specifically for your individual
options files. You can also embed the settings obtained from the verbose option
of mbuild into an integrated development environment (IDE) or makefile that
you need to maintain outside of MATLAB. Often, however, it is easier to call
mbuild from your makefile. See your system documentation for information on
writing makefiles.

Note Any changes made to the local options file will be overwritten if you
execute mbuild -setup. To make the changes persist through repeated uses of
mbuild -setup, you must edit the master file itself,
<matlab>/bin/mbuildopts.sh.

Temporarily Changing the Compiler. To temporarily change your C or C++ compiler,
use the -f option, as in

mbuild -f <file>

The -f option tells the mbuild script to use the options file, <file>. If <file>
is not in the current directory, then <file> must be the full pathname to the
desired options file. Using the -f option tells the mbuild script to use the
specified options file for the current execution of mbuild only; it does not reset
the default compiler.

Building Stand-Alone Applications on UNIX

4-11

Verifying mbuild
There is C source code for an example ex1.c included in the
<matlab>/extern/examples/cmath directory, where <matlab> represents the
top-level directory where MATLAB is installed on your system. To verify that
mbuild is properly configured on your system to create stand-alone
applications, copy ex1.c to your local directory and type cd to change to that
directory. Then, at the MATLAB prompt, enter

mbuild ex1.c

This creates the file called ex1. Stand-alone applications created on UNIX
systems do not have any extensions.

Locating Shared Libraries
Before you can run your stand-alone application, you must tell the system
where the API and C shared libraries reside. This table provides the necessary
UNIX commands depending on your system’s architecture.

It is convenient to place this command in a startup script such as ~/.cshrc.
Then the system will be able to locate these shared libraries automatically, and
you will not have to reissue the command at the start of each login session.

Note On all UNIX platforms, the Compiler library is shipped as a shared
object (.so) file or shared library (.sl). Any Compiler-generated, stand-alone
application must be able to locate the C/C++ libraries along the library path
environment variable (SHLIB_PATH, LIBPATH, or LD_LIBRARY_PATH) in order to

Architecture Command

HP700/HP-UX setenv SHLIB_PATH <matlab>/extern/lib/<arch>:$SHLIB_PATH

IBM RS/6000 setenv LIBPATH <matlab>/extern/lib/ibm_rs:$LIBPATH

All others setenv LD_LIBRARY_PATH <matlab>/extern/lib/<arch>:$LD_LIBRARY_PATH

where:
<matlab> is the MATLAB root directory
<arch> is your architecture (i.e., alpha, hp700, hpux, lnx86, sgi, sgi64, or sol2)

4 Stand-Alone Applications

4-12

be found and loaded. Consequently, to share a Compiler-generated,
stand-alone application with another user, you must provide all of the
required shared libraries. For more information about the required shared
libraries for UNIX, see “Packaging UNIX Applications” on page 4-13.

Running Your Application
To launch your application, enter its name on the command line. For example:

ex1
ans =

 1 3 5
 2 4 6

ans =

 1.0000 + 7.0000i 4.0000 +10.0000i
 2.0000 + 8.0000i 5.0000 +11.0000i
 3.0000 + 9.0000i 6.0000 +12.0000i

Verifying the MATLAB Compiler
There is MATLAB code for an example, hello.m, included in the
<matlab>/extern/examples/compiler directory. To verify that the MATLAB
Compiler can generate stand-alone applications on your system, type the
following at the MATLAB prompt:

mcc -m hello.m

This command should complete without errors. To run the stand-alone
application, hello, invoke it as you would any other UNIX application,
typically by typing its name at the UNIX prompt. The application should run
and display the message

Hello, World

When you execute the mcc command to link files and libraries, mcc actually
calls the mbuild script to perform the functions.

Building Stand-Alone Applications on UNIX

4-13

About the mbuild Script
The mbuild script supports various options that allow you to customize the
building and linking of your code. Many users do not need to know any
additional details of the mbuild script; they use it in its simplest form. For
complete information about the mbuild script and its options, see the mbuild
reference page.

Packaging UNIX Applications
To distribute a stand-alone UNIX application, you must create a package
containing these files:

• Your application executable.

• The contents, if any, of a directory named bin, created by mbuild in the same
directory as your application executable. Note: mbuild does not create a bin
directory for every stand-alone application.

• Any custom MEX-files your application uses.

• All the MATLAB run-time libraries.

For specific information about packaging these files, see “Distributing
Stand-Alone Applications” on page 4-27.

Distribution Caveats

Locating Shared Libraries. Remember to locate the shared libraries along the
LD_LIBRARY_PATH (SHLIB_PATH on HP) environment variable so that they can
be found and loaded.

Graphics Support on IBM_RS. There is no support for the MATLAB C/C++
Graphics Library on the IBM_RS platform.

C++ and Fortran Support on Digital UNIX. MATLAB users require access to both the
C++ and Fortran run-time shared libraries. These are usually provided as part
of the operating system installation. For Digital UNIX, however, the C++
shared libraries are part of the base installation package, but the Fortran
shared libraries are on a separate disk called the “Associated Products CD.”
MATLAB users running under Digital UNIX should install both the C++ and
Fortran run-time shared libraries.

4 Stand-Alone Applications

4-14

Note If you distribute an application created with the math libraries on
Digital UNIX, your users must have both the C++ and Fortran run-time
shared libraries installed on their systems.

Building Stand-Alone Applications on PCs

4-15

Building Stand-Alone Applications on PCs
This section explains how to compile and link the C/C++ code generated from
the MATLAB Compiler into a stand-alone Windows application. This section
includes

• “Configuring for C or C++” on page 4-15

• “Preparing to Compile” on page 4-16

• “Verifying mbuild” on page 4-22

• “Verifying the MATLAB Compiler” on page 4-23

• “About the mbuild Script” on page 4-23

• “Using an Integrated Development Environment” on page 4-23

• “Distributing Stand-Alone Applications” on page 4-27

Configuring for C or C++
mbuild determines whether to compile in C or C++ by examining the type of
files you are compiling. Table 4-2, Windows File Extensions for mbuild, shows
the file extensions that mbuild interprets as indicating C or C++ files.

• If you include both C and C++ files, mbuild uses the C++ compiler and the
MATLAB C++ Math Library.

• If mbuild cannot deduce from the file extensions whether to compile in C or
C++, mbuild invokes the C compiler.

Table 4-2: Windows File Extensions for mbuild

Language Extension(s)

C .c

C++ .cpp
.cxx
.cc

4 Stand-Alone Applications

4-16

Note You can override the language choice that is determined from the
extension by using the -lang option of mbuild. For more information about
this option, as well as all of the other mbuild options, see the mbuild reference
page.

Locating Options Files
To locate your options file, the mbuild script searches the following:

• The current directory

• The user profile directory (For more information about this directory, see
“The User Profile Directory Under Windows” on page 2-16.)

mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild searches your machine for a supported C compiler and uses the
factory default options file for that compiler. If multiple compilers are found,
you are prompted to select one.

Preparing to Compile

Compiler Restrictions
Some of the supported PC compilers have restrictions regarding their use with
the MATLAB Compiler. Refer to “Supported ANSI C and C++ PC Compilers”
on page 2-14 for important limitation information on the supported compilers.

Other restrictions include

• Watcom 10.6 and 11.0 are not supported for building stand-alone
applications.

• The Lcc C compiler does not support C++.

• The only compilers that support the building of COM objects are Borland
C++Builder (versions 3.0, 4.0, 5.0, and 6.0) and Microsoft Visual C/C++
(versions 5.0, 6.0, and 7.0).

Building Stand-Alone Applications on PCs

4-17

Choosing a Compiler

Systems with Exactly One C/C++ Compiler. If the MATLAB Compiler and your
supported C or C++ compiler are installed on your system, you are ready to
create C or C++ stand-alone applications. On systems where there is exactly
one C or C++ compiler available to you, the mbuild utility automatically
configures itself for the appropriate compiler. So, for many users, to create a C
or C++ stand-alone applications, you can simply enter

mbuild filename.c

This simple method works for the majority of users. Assuming filename.c
contains a main function, this example uses your installed C or C++ compiler
as your default compiler for creating your stand-alone application. If you are a
user who does not need to change compilers, or you do not need to modify your
compiler options files, you can skip ahead in this section to “Verifying mbuild”
on page 4-22. If you need to know how to change the options file or select a
different compiler, continue with this section.

Note On Windows 98 systems, if you get the error, out of environment
space, see “Out of Environment Space Running mex or mbuild” on page 4-33
for more information.

Systems with More than One C/C++ Compiler. On systems where there is more than
one C or C++ compiler, the mbuild utility lets you select which of the compilers
you want to use. Once you choose your C or C++ compiler, that compiler
becomes your default compiler and you no longer have to select one when you
compile your stand-alone applications.

For example, if your system has both the Lcc and Microsoft Visual C/C++
compilers, when you enter for the first time

mbuild filename.c

you are asked to select which compiler to use:

Please choose your compiler for building stand-alone MATLAB
applications:

Select a compiler:

4 Stand-Alone Applications

4-18

[1] Lcc C version 2.4 in D:Applications\Mathworks\sys\lcc
[2] Microsoft Visual C/C++ version 6.0 in
D:\Applications\Microsoft Visual Studio

[0] None

Compiler:

Select the desired compiler by entering its number and pressing Return. You
are then asked to verify your information.

Changing Compilers

Changing the Default Compiler. To change your default C or C++ compiler, you
select a different options file. You can do this at anytime by using the setup
command.

This example shows the process of changing your default compiler to the
Microsoft Visual C/C++ Version 6.0 compiler:

mbuild -setup

Please choose your compiler for building stand-alone MATLAB
applications.

Would you like mbuild to locate installed compilers [y]/n? n

Select a compiler:
[1] Borland C++Builder version 6.0
[2] Borland C++Builder version 5.0
[3] Borland C++Builder version 4.0
[4] Borland C++Builder version 3.0
[5] Borland C/C++ version 5.02
[6] Borland C/C++ version 5.0
[7] Borland C/C++ (free command line tools) version 5.5
[8] Lcc C version 2.4
[9] Microsoft Visual C/C++ version 7.0
[10] Microsoft Visual C/C++ version 6.0
[11] Microsoft Visual C/C++ version 5.0

[0] None

Building Stand-Alone Applications on PCs

4-19

Compiler: 10

Your machine has a Microsoft Visual C/C++ compiler located at
D:\Applications\Microsoft Visual Studio. Do you want to use this
compiler [y]/n? y

Please verify your choices:

Compiler: Microsoft Visual C/C++ 6.0
Location: D:\Applications\Microsoft Visual Studio

Are these correct?([y]/n): y

The default options file:
"C:\WINNT\Profiles\username\
Application Data\MathWorks\MATLAB\R13\compopts.bat"
is being updated...

Installing the MATLAB Visual Studio add-in ...

 Updated ...

If the specified compiler cannot be located, you are given the message

The default location for <compiler-name> is <directory-name>,
but that directory does not exist on this machine.

Use <directory-name> anyway [y]/n?

Using the setup option sets your default compiler so that the new compiler is
used everytime you use the mbuild script.

Modifying the Options File. Another use of the setup option is if you want to
change your options file settings. For example, if you want to make a change to
the current linker settings, or you want to disable a particular set of warnings,
you should use the setup option.

The setup option copies the appropriate options file to your user profile
directory. To make your user-specific changes to the options file, you edit your
copy of the options file in your user profile directory to correspond to your

4 Stand-Alone Applications

4-20

specific needs and save the modified file. This sets your default compiler’s
options file to your specific version. Table 4-3, Compiler Options Files on the
PC, lists the names of the PC options files included in this release of MATLAB.

If you need to see which options mbuild passes to your compiler and linker, use
the verbose option, -v, as in

mbuild -v filename1 [filename2 ...]

to generate a list of all the current compiler settings used by mbuild. To change
the options, use an editor to make changes to your options file that corresponds
to your compiler. You can also embed the settings obtained from the verbose
option into an integrated development environment (IDE) or makefile that you
need to maintain outside of MATLAB. Often, however, it is easier to call mbuild
from your makefile. See your system documentation for information on writing
makefiles.

Note Any changes that you make to the local options file compopts.bat will
be overwritten the next time you run mbuild -setup. If you want to make
your edits persist through repeated uses of mbuild -setup, you must edit the
master file itself. The master options files are also located in <matlab>\bin.

Table 4-3: Compiler Options Files on the PC

Compiler Master Options File

Borland C++Builder, Version 3.0 bcc53compp.bat

Borland C++Builder, Version 4.0 bcc54compp.bat

Borland C++Builder, Version 5.0 bcc55compp.bat

Borland C++Builder, Version 6.0 bcc56compp.bat

Lcc C, Version 2.4 lccopts.bat

Microsoft Visual C/C++, Version 5.0 msvc50compp.bat

Building Stand-Alone Applications on PCs

4-21

Combining Customized C and C++ Options Files. The options files for mbuild have
changed as of MATLAB 5.3 (Release 11) so that the same options file can be
used to create both C and C++ stand-alone applications. If you have modified
your own separate options files to create C and C++ applications, you can
combine them into one options file.

To combine your existing options files into one universal C and C++ options file:

1 Copy from the C++ options file to the C options file all lines that set the
variables COMPFLAGS, OPTIMFLAGS, DEBUGFLAGS, and LINKFLAGS.

2 In the C options file, within just those copied lines from step 1, replace all
occurrences of:

- COMPFLAGS with CPPCOMPFLAGS

- OPTIMFLAGS with CPPOPTIMFLAGS

- DEBUGFLAGS with CPPDEBUGFLAGS

- LINKFLAGS with CPPLINKFLAGS.

This process modifies your C options file to be a universal C/C++ options file.

Temporarily Changing the Compiler. To temporarily change your C or C++ compiler,
use the -f option, as in

mbuild -f <file>

The -f option tells the mbuild script to use the options file, <file>. If <file>
is not in the current directory, then <file> must be the full pathname to the
desired options file. Using the -f option tells the mbuild script to use the
specified options file for the current execution of mbuild only; it does not reset
the default compiler.

Microsoft Visual C/C++, Version 6.0 msvc60compp.bat

Microsoft Visual C/C++, Version 7.0 msvc70compp.bat

Table 4-3: Compiler Options Files on the PC (Continued)

Compiler Master Options File

4 Stand-Alone Applications

4-22

Verifying mbuild
There is C source code for an example, ex1.c, included in the
<matlab>\extern\examples\cmath directory, where <matlab> represents the
top-level directory where MATLAB is installed on your system. To verify that
mbuild is properly configured on your system to create stand-alone
applications, enter at the MATLAB prompt

mbuild ex1.c

This creates the file called ex1.exe. Stand-alone applications created on
Windows 98/2000/Me or Windows NT always have the extension exe. The
created application is a 32-bit MS-DOS console application.

Shared Libraries
All the libraries (WIN32 Dynamic Link Libraries, or DLLs) for MATLAB, the
MATLAB Compiler, and the MATLAB Math Library are in the directory

<matlab>\bin\win32

The .DEF files for the Microsoft and Borland compilers are in the
<matlab>\extern\include directory. All of the relevant libraries for building
stand-alone applications are WIN32 Dynamic Link Libraries. Before running
a stand-alone application, you must ensure that the directory containing the
DLLs is on your path. The directory must be on your operating system $PATH
environment variable. On Windows NT, use the Control Panel to set the value.

Running Your Application
You can now run your stand-alone application by launching it from the DOS
command line. For example:

ex1
ans =

 1 3 5
 2 4 6

ans =

Building Stand-Alone Applications on PCs

4-23

 1.0000 + 7.0000i 4.0000 +10.0000i
 2.0000 + 8.0000i 5.0000 +11.0000i
 3.0000 + 9.0000i 6.0000 +12.0000i

Verifying the MATLAB Compiler
There is MATLAB code for an example, hello.m, included in the
<matlab>\extern\examples\compiler directory. To verify that the MATLAB
Compiler can generate stand-alone applications on your system, type the
following at the MATLAB prompt.

mcc -m hello.m

This command should complete without errors. To run the stand-alone
application, hello, invoke it as you would any other Windows console
application, by typing its name on the MS-DOS command line. The application
should run and display the message Hello, World.

When you execute the mcc command to link files and libraries, mcc actually
calls the mbuild script to perform the functions.

About the mbuild Script
The mbuild script supports various options that allow you to customize the
building and linking of your code. Many users do not need to know any
additional details of the mbuild script; they use it in its simplest form. For
complete information about the mbuild script and its options, see the mbuild
reference page.

Using an Integrated Development Environment
The MathWorks provides a MATLAB add-in for the Visual Studio development
system that lets you work easily within the Microsoft Visual C/C++ (MSVC)
integrated development environment (IDE). The MATLAB add-in for Visual
Studio greatly simplifies using M-files in the MSVC environment. The add-in
automates the integration of M-files into Visual C++ projects. It is fully
integrated with the MSVC environment.

4 Stand-Alone Applications

4-24

Note The MATLAB add-in for Visual Studio does not currently work with
Microsoft Visual C/C++, Version 7.0.

The add-in for Visual Studio is automatically installed on your system when
you run either mbuild -setup or mex -setup and select Microsoft Visual C/C++
version 5 or 6. However, there are several steps you must follow in order to use
the add-in:

1 To build MEX-files with the add-in for Visual Studio, run the following
command at the MATLAB command prompt:

mex -setup

Follow the menus and choose either Microsoft Visual C/C++ 5.0 or 6.0. This
configures mex to use the selected Microsoft compiler and also installs the
necessary add-in files in your Microsoft Visual C/C++ directories.

2 To build stand-alone applications with the MATLAB add-in for Visual
Studio (requires the MATLAB Compiler and the MATLAB C/C++ Math
Libraries), run the following command at the MATLAB command prompt:

mbuild -setup

Follow the menus and choose either Microsoft Visual C/C++ 5.0 or 6.0. This
configures mbuild to use the selected Microsoft compiler and also installs the
necessary add-in files into your Microsoft Visual C/C++ directories. (It is not
a problem if these overlap with the files installed by the mex -setup
command.)

3 For either mex or stand-alone support, you should also run the following
commands at the MATLAB prompt:

cd(prefdir); mccsavepath;

These commands save your current MATLAB path to a file named mccpath
in your user preferences directory. (Type prefdir to see the name of your
user preferences directory.)

This step is necessary because the MATLAB add-in for Visual Studio runs
outside of the MATLAB environment, so it would have no way to determine

Building Stand-Alone Applications on PCs

4-25

your MATLAB path. If you add directories to your MATLAB path and want
them to be visible to the MATLAB add-in, rerun the cd and mccsavepath
commands shown in this step and replace prefdir with the desired
pathname.

4 To configure the MATLAB add-in for Visual Studio to work with Microsoft
Visual C/C++:

a Select Tools -> Customize from the MSVC menu.

b Click on the Add-ins and Macro Files tab.

c Select MATLAB for Visual Studio on the Add-ins and Macro Files list
and click Close. The floating MATLAB add-in for Visual Studio toolbar
appears. Selecting MATLAB for Visual Studio directs MSVC to
automatically load the add-in when you start MSVC again.

Configuring on Windows 98 and Windows Me Systems

Windows 98. To run the MATLAB add-in for Visual Studio on Windows 98
systems, add this line to your config.sys file:

shell=c:\command.com /e:32768 /p

Windows Me. To run the MATLAB add-in for Visual Studio on Windows Me
systems, do the following:

1 Find C:\windows\system\conagent.exe in the Windows Explorer.

2 Right-click on the conagent.exe icon.

3 Select Properties from the context menu. This brings up the
CONAGENT.EXE Properties window.

4 Select the Memory tab in the CONAGENT.EXE Properties window.

5 Set the Initial Environment field to 4096.

6 Click Apply.

7 Click OK.

For additional information on the MATLAB add-in for Visual Studio:

4 Stand-Alone Applications

4-26

• See the MATLABAddin.hlp file in the <matlab>\bin\win32 directory, or

• Click on the Help icon in the MATLAB add-in for Visual Studio toolbar

Packaging Windows Applications for Distribution
To distribute a stand-alone Windows application, you must create a package
containing these files:

• Your application executable.

• The contents, if any, of a directory named bin, created by mbuild in the same
directory as your application executable. Note: mbuild does not create a bin
directory for every stand-alone application.

• Any custom MEX-files your application uses.

• All the MATLAB run-time libraries.

For specific information about packaging these files, see “Distributing
Stand-Alone Applications” on page 4-27.

Help Icon

Distributing Stand-Alone Applications

4-27

Distributing Stand-Alone Applications
To make packaging an application easier, all the necessary MATLAB run-time
libraries are prepackaged into a single, self-extracting archive file. For more
information about how you can use this archive, see “Packaging the MATLAB
Run-Time Libraries”. For information about how customers who receive your
application can use this archive, see “Installing Your Application” on page 4-27.

Packaging the MATLAB Run-Time Libraries
All the MATLAB run-time libraries required by stand-alone applications are
prepackaged into a single, self-extracting archive file, called the MATLAB
Compiler Run-Time Library Installer. Instead of including all the run-time
libraries individually in your stand-alone application distribution package, you
can simply include this archive file.

The following table lists the name of the archive file for both UNIX and PC
systems. In the table <MATLAB> represents your MATLAB installation directory
and <ARCH> represents your UNIX platform.

Installing Your Application
To install your application, your customers must

• Run the MATLAB Compiler Run-Time Library Installer. This program
extracts the libraries from the archive and installs them in subdirectories of
a directory specified by the user.

• Add the bin/<ARCH> subdirectory to their path. This is the only MATLAB
Compiler Run-Time Library subdirectory that needs to be added to the path.

Platform MATLAB Compiler Run-Time Library Installer

UNIX systems <MATLAB>/extern/lib/<ARCH>/mglinstaller

PCs <MATLAB>\extern\lib\win32\mglinstaller.exe

4 Stand-Alone Applications

4-28

Note If customers already have the MATLAB math and graphics run-time
libraries installed on their system, they do not need to reinstall them. They
only need to ensure that the library search path is configured correctly.

On UNIX Systems
On UNIX systems, your customers run the MATLAB Compiler Run-Time
Library Installer by executing the mglinstaller command at the system
prompt. Your customers can specify the name of the directory into which they
want to install the libraries. By default, the installer puts the files in the
current directory.

After the installer unpacks and uncompresses the libraries, your customers
must add the name of the bin/<ARCH> subdirectory to the LD_LIBRARY_PATH
environment variable. (The equivalent variable on HP-UX systems is the
SHLIB_PATH and LIBPATH on IBM AIX systems.)

For example, if customers working on a Linux system specify the installation
directory mgl_runtime_dir, then they must add
mgl_runtime_dir/bin/glnx86 to the LD_LIBRARY_PATH environment variable.

On PCs
On PCs, your customers run the MATLAB Compiler Run-Time Library
Installer by double-clicking on the mglinstaller.exe file. Your customers can
specify the name of the directory into which they want to install the libraries.
By default, the installer puts the files in the current directory.

After the installer unpacks and uncompresses the libraries, your customers
must add the bin\win32 subdirectory to the system path variable (PATH).

For example, if your customers specify the installation directory
mgl_runtime_dir, then they must add mgl_runtime_dir\bin\win32 to PATH.

Problem Starting Stand-Alone Application
Your application may compile successfully but fail when you or one of your
customers tries to start it. If you run the application from a DOS command
window, you or one of your customers may see an error message such as:

Distributing Stand-Alone Applications

4-29

The ordinal #### could not be located in the dynamic-link library
dforrt.dll.

To fix this problem, locate dforrt.dll or dformd.dll in your Windows system
directory and replace them with the corresponding files in the
<MATLAB>\bin\win32 directory, where <MATLAB> represents the name of your
MATLAB installation directory.

This same solution works for customers of your application who encounter the
same problem. Your customers can replace these files in the Windows system
directory with the corresponding versions in the
<MGLRUNTIMELIBRARY>\bin\win32 directory, where <MGLRUNTIMELIBRARY> is
the name of the directory in which they installed the MATLAB Compiler
Run-Time Libraries.

4 Stand-Alone Applications

4-30

Building Shared Libraries
You can use mbuild to build C shared libraries on both UNIX and the PC. All
of the mbuild options that pertain to creating stand-alone applications also
pertain to creating C shared libraries.

To create a C shared library, specify one or more files with the .exports
extension. The .exports files are text files that contain the names of the
functions to export from the shared library, one per line. You can include
comments in your code by beginning a line (first column) with # or a *. mbuild
treats these lines as comments and ignores them. mbuild merges multiple
.exports files into one master exports list.

For example, given file1.exports as

times2
times3

and file1.c as

int times2(int x)
{

return 2 * x;
}

int times3(int x)
{

return 3 * x;
}

The command

mbuild file1.c file1.exports

creates a shared library named file1.ext, where ext is the
platform-dependent shared library extension. For example, on the PC, it would
be called file1.dll. The shared library exports the symbols times2 and
times3.

Building COM Objects

4-31

Building COM Objects

Note To create COM components from the MATLAB Compiler, you must
have the MATLAB COM Builder installed on your system.

You can use mbuild to create Component Object Model (COM) objects from
MATLAB M-files. The collection of M-files is translated into a single COM
class. MATLAB COM Builder supports multiple classes per component.

The interface to the COM class is the same set of functions that are exported
from a C shared library, but the Compiler supports both C and C++ code
generation in producing COM objects.

mbuild automatically:

• Invokes the Microsoft Interface Definition Language (MIDL) compiler

• Invokes the resource compiler

• Specifies the .DEF files

Using mbuild options you can enable auto registration of the COM-compatible
DLL.

Note Creating COM objects from MATLAB M-files is available on Windows
only. The only compilers that support the building of COM objects with the
MATLAB Compiler are Borland C++Builder (versions 3.0, 4.0, and 5.0) and
Microsoft Visual C/C++ (versions 5.0, 6.0, and 7.0).

For example, to compile plus1.m into a COM object, use

mcc -B 'ccom:addin,addin,1.0' plus1.m

For more information, see the MATLAB COM Builder documentation.

4 Stand-Alone Applications

4-32

Building Excel Plug-Ins

Note To create Excel plug-ins from the MATLAB Compiler, you must have
the MATLAB Excel Builder installed on your system.

You can use mbuild to create a COM object from MATLAB M-files that can be
used as an Excel plug-in. The collection of M-files is translated into a single
Excel plug-in. MATLAB Excel Builder supports one class per component.

The interface to the COM class is the same set of functions that are exported
from a C shared library, but the Compiler supports both C and C++ code
generation in producing COM objects.

mbuild automatically:

• Invokes the Microsoft Interface Definition Language (MIDL) compiler

• Invokes the resource compiler

• Specifies the .DEF files

Using mbuild options you can enable auto registration of the COM-compatible
DLL.

Note Creating Excel plug-ins from MATLAB M-files is available on Windows
only. The only compilers that support the building of Excel plug-ins with the
MATLAB Compiler are Borland C++Builder (versions 3.0, 4.0, and 5.0) and
Microsoft Visual C/C++ (versions 5.0, 6.0, and 7.0).

For example, to compile plus1.m into an Excel plug-in, use

mcc -B 'cexcel:addin,addin,1.0' plus1.m

For more information, see the MATLAB Excel Builder documentation.

Troubleshooting

4-33

Troubleshooting

Troubleshooting mbuild
This section identifies some of the more common problems that might occur
when configuring mbuild to create stand-alone applications.

Options File Not Writeable. When you run mbuild -setup, mbuild makes a copy of
the appropriate options file and writes some information to it. If the options file
is not writeable, you are asked if you want to overwrite the existing options file.
If you choose to do so, the existing options file is copied to a new location and a
new options file is created.

Out of Environment Space Running mex or mbuild. On Windows 98 systems, the mex
and mbuild scripts require more than the default amount of environment
space. If you get the error, out of environment space, add this line to your
config.sys file:

shell=c:\command.com /e:32768 /p

On Windows Me systems, if you encounter this problem and are using the
MATLAB add-in for Visual Studio, follow the procedure in “Configuring on
Windows 98 and Windows Me Systems” on page 4-25.

Directory or File Not Writeable. If a destination directory or file is not writeable,
ensure that the permissions are properly set. In certain cases, make sure that
the file is not in use.

mbuild Generates Errors. On UNIX, if you run mbuild filename and get errors, it
may be because you are not using the proper options file. Run mbuild -setup
to ensure proper compiler and linker settings.

Compiler and/or Linker Not Found. On PCs running Windows, if you get errors
such as unrecognized command or file not found, make sure the command
line tools are installed and the path and other environment variables are set
correctly in the options file.

mbuild Not a Recognized Command. If mbuild is not recognized, verify that
<MATLAB>\bin is on your path. On UNIX, it may be necessary to rehash.

4 Stand-Alone Applications

4-34

mbuild Works from Shell but Not from MATLAB (UNIX). If the command

mbuild ex1.c

works from the UNIX command prompt but does not work from the MATLAB
prompt, you may have a problem with your .cshrc file. When MATLAB
launches a new C shell to perform compilations, it executes the .cshrc script.
If this script causes unexpected changes to the PATH environment variable, an
error may occur. You can test this by performing a

set SHELL=/bin/sh

prior to launching MATLAB. If this works correctly, then you should check
your .cshrc file for problems setting the PATH environment variable.

Cannot Locate Your Compiler (PC). If mbuild has difficulty locating your installed
compilers, it is useful to know how it goes about finding compilers. mbuild
automatically detects your installed compilers by first searching for locations
specified in the following environment variables:

• BORLAND for Borland C/C++, Version 5.3

• MSVCDIR for Microsoft Visual C/C++, Version 5.0, 6.0, or 7.0

Next, mbuild searches the Windows registry for compiler entries.

Internal Error When Using mbuild -setup (PC). Some antivirus software packages
such as Cheyenne AntiVirus and Dr. Solomon may conflict with the
mbuild -setup process. If you get an error message during mbuild -setup of
the following form

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and rerun
mbuild -setup. After you have successfully run the setup option, you can
reenable your antivirus software.

Verification of mbuild Fails. If none of the previous solutions addresses your
difficulty with mbuild, contact Technical Support at The MathWorks at
support@mathworks.com.

Troubleshooting

4-35

Troubleshooting the Compiler
Typically, problems that occur when building stand-alone C and C++
applications involve mbuild. However, it is possible that you may run into some
difficulty with the MATLAB Compiler. One problem that might occur when you
try to generate a stand-alone application involves licensing.

Licensing Problem. If you do not have a valid license for the MATLAB Compiler,
you will get an error message similar to the following when you try to access
the Compiler:

Error: Could not check out a Compiler License:
No such feature exists.

If you have a licensing problem, contact The MathWorks. A list of contacts at
The MathWorks is provided at the beginning of this manual.

MATLAB Compiler Does Not Generate Application. If you experience other problems
with the MATLAB Compiler, contact Technical Support at The MathWorks at
support@mathworks.com.

Missing Functions In Callbacks. If your application includes a call to a function in a
callback string or in a string passed as an argument to the feval function or
an ODE solver, and this is the only place in your M-file this function is called,
the Compiler will not compile the function. The Compiler does not look in these
text strings for the names of functions to compile. See “Fixing Callback
Problems: Missing Functions” on page 1-20 for more information.

4 Stand-Alone Applications

4-36

Coding with M-Files Only
One way to create a stand-alone application is to write all the source code in
one or more M-files or MEX-files. Coding an application in M-files allows you
to take advantage of the MATLAB interpretive development environment.
Then, after getting the M-file version of your program working properly,
compile the code and build it into a stand-alone application.

Note It is good practice to avoid manually modifying the C or C++ code that
the MATLAB Compiler generates. If the generated C or C++ code is not to
your liking, modify the M-file (and/or the compiler options) and then
recompile. If you do edit the generated C or C++ code, remember that your
changes will be erased the next time you recompile the M-file. For more
information, see “Compiling MATLAB Provided M-Files Separately” on page
4-40 and “Interfacing M-Code to C/C++ Code” on page 5-46.

Consider a very simple application whose source code consists of two M-files,
mrank.m and main.m. This example involves C code; you use a similar process
(described below) for C++ code. In this example, the line r = zeros(n,1)
preallocates memory to help the performance of the Compiler.

mrank.m returns a vector of integers, r. Each element of r represents the rank
of a magic square. For example, after the function completes, r(3) contains the
rank of a 3-by-3 magic square:

function r = mrank(n)
r = zeros(n,1);
for k = 1:n
 r(k) = rank(magic(k));
end

main.m contains a “main routine” that calls mrank and then prints the results:

function main
r = mrank(5)

To compile these into code that can be built into a stand-alone application,
invoke the MATLAB Compiler:

mcc -mc main mrank

Coding with M-Files Only

4-37

The -m option flag causes the MATLAB Compiler to generate C source code
suitable for stand-alone applications. For example, the MATLAB Compiler
generates C source code files main.c, main_main.c, and mrank.c. main_main.c
contains a C function named main; main.c and mrank.c contain a C functions
named mlfMain and mlfMrank. (The -c option flag inhibits invocation of
mbuild.)

To build an executable application, you can use mbuild to compile and link
these files. Or, you can automate the entire build process (invoke the MATLAB
Compiler twice, use mbuild to compile the files with your ANSI C compiler, and
link the code) by using the command

mcc -m main mrank

Figure 4-2, Building Two M-Files into a Stand-Alone C Application, illustrates
the process of building a stand-alone C application from two M-files. The
commands to compile and link depend on the operating system being used. See
“Building Stand-Alone C/C++ Applications” on page 4-4 for details.

4 Stand-Alone Applications

4-38

Figure 4-2: Building Two M-Files into a Stand-Alone C Application

mrank.m

mcc -t mrank.m

mrank.c

C Compiler

Object File

C Compiler

Object File

Linker

Stand-Alone
C Application

main_main.c

mcc -W main -t main

main.m

main.c

MATLAB M-File Math Library

MATLAB Math Built-In Library

MATLAB API Library

MATLAB Utility Library

ANSI C Library MATLAB C/C++ Graphics Library

• Shaded blocks are user-written code.

• Shadowed blocks are tools.

• Unshaded blocks are MATLAB
Compiler-generated code.

• Dotted block s are C/C++ compiler-generated
executable.

mbuild does
this part.

Coding with M-Files Only

4-39

For C++ code, add -L cpp to the previous commands and use a C++ compiler
instead of a C compiler.

4 Stand-Alone Applications

4-40

Alternative Ways of Compiling M-Files
The previous section showed how to compile main.m and mrank.m separately.
This section explores two other ways of compiling M-files.

Note These two alternative ways of compiling M-files apply to C++ as well as
to C code; the only difference is that you add -L cpp for C++.

Compiling MATLAB Provided M-Files Separately
The M-file mrank.m contains a call to rank. The MATLAB Compiler translates
the call to rank into a C call to mlfRank. The mlfRank routine is part of the
MATLAB M-File Math Library. The mlfRank routine behaves in stand-alone
applications exactly as the rank function behaves in the MATLAB interpreter.
However, if this default behavior is not desirable, you can create your own
version of rank or mlfRank.

One way to create a new version of rank is to copy the MATLAB source code for
rank and then to edit this copy. MATLAB implements rank as the M-file
rank.m rather than as a built-in command. To see the MATLAB code for
rank.m, enter

type rank

Copy this code into a file named rank.m located in the same directory as
mrank.m and main.m. Then, modify your version of rank.m. After completing the
modifications, compile rank.m:

mcc -t rank

Compiling rank.m generates file rank.c, which contains a function named
mlfRank. Then, compile the other M-files composing the stand-alone
application.

mcc -t main.m (produces main.c)
mcc -t mrank.m (produces mrank.c)
mcc -W main main mrank rank.m (produces main_main.c)

To compile and link all four C source code files (main.c, rank.c, mrank.c, and
main_main.c) into a stand-alone application, use

Alternative Ways of Compiling M-Files

4-41

mcc -m main_main.c main.c rank.c mrank.c

The resulting stand-alone application uses your customized version of mlfRank
rather than the default version of mlfRank stored in the MATLAB M-File Math
Library.

Note On PCs running Windows, as well as SGI, SGI64, and IBM, if a
function in the MATLAB M-File Math Library calls mlfRank, it will call the
one found in the Library and not your customized version. We recommend that
you call your version of rank something else, for example, myrank.m.

Compiling mrank.m and rank.m as Helper
Functions
Another way of building the mrank stand-alone application is to compile rank.m
and mrank.m as helper functions to main.m. In other words, instead of invoking
the MATLAB Compiler three separate times, invoke the MATLAB Compiler
only once. For C

mcc -m main rank

For C++

mcc -p main rank

These commands create files containing the C or C++ source code. The macro
options -m and -p automatically compile all helper functions.

4 Stand-Alone Applications

4-42

Mixing M-Files and C or C++
The examples in this section illustrate how to mix M-files and C or C++ source
code files:

• The first example is a simple application that mixes M-files and C code.

• The second example illustrates how to write C code that calls a compiled
M-file.

One way to create a stand-alone application is to code some of it as one or more
function M-files and to code other parts directly in C or C++. To write a
stand-alone application this way, you must know how to

• Call the external C or C++ functions generated by the MATLAB Compiler.

• Handle the results these C or C++ functions return.

Note If you include compiled M code into a larger application, you must
produce a library wrapper file even if you do not actually create a separate
library. For more information on creating libraries, see the library sections in
“Supported Executable Types” on page 5-21.

Simple Example
This example involves mixing M-files and C code. Consider a simple
application whose source code consists of mrank.m and mrankp.c.

mrank.m
mrank.m contains a function that returns a vector of the ranks of the magic
squares from 1 to n:

function r = mrank(n)
r = zeros(n,1);
for k = 1:n
 r(k) = rank(magic(k));
end

Mixing M-Files and C or C++

4-43

The Build Process
The steps needed to build this stand-alone application are

1 Compile the M-code.

2 Generate the library wrapper file.

To perform these steps, use

mcc -t -W lib:Pkg -T link:exe -h mrank mrankp.c libmmfile.mlib

The MATLAB Compiler generates C source code files named mrank.c, Pkg.c,
and Pkg.h. This command invokes mbuild to compile the resulting
Compiler-generated source files (mrank.c, Pkg.c, Pkg.h) with the existing C
source file (mrankp.c) and links against the required libraries. For details, see
“Building Stand-Alone C/C++ Applications” on page 4-4.

The MATLAB Compiler provides two different versions of mrankp.c in the
<matlab>/extern/examples/compiler directory:

• mrankp.c contains a POSIX-compliant main function. mrankp.c sends its
output to the standard output stream and gathers its input from the
standard input stream.

• mrankwin.c contains a Windows version of mrankp.c.

4 Stand-Alone Applications

4-44

Figure 4-3: Mixing M-Files and C Code to Form a Stand-Alone Application

mrank.m

mcc -t -W lib:Pkg -T link:exe
mrank mrankp.c

mrank.c, Pkg.c, Pkg.h

C Compiler

Object File

C Compiler

Object File

Linker

Stand-Alone C
Application

mrankp.c

MATLAB M-File Math Library

MATLAB Math Built-In Library

MATLAB API Library

MATLAB Utility Library

ANSI C Library MATLAB C/C++ Graphics Library

• Shaded blocks are user-written code.

• Shadowed blocks are tools.

• Unshaded blocks are MATLAB
Compiler-generated code.

• Dotted blocks are C/C++ compiler-generated
code.

mbuild does
this part.

Mixing M-Files and C or C++

4-45

mrankp.c
The code in mrankp.c calls mrank and outputs the values that mrank returns:

/*
 * MRANKP.C
 * "Posix" C main program illustrating the use of the MATLAB Math
* Library.

 * Calls mlfMrank, obtained by using MCC to compile mrank.m.
 *
 * $Revision: 1.3 $
 *
 */

#include <stdio.h>
#include <math.h>
#include "matlab.h"

/* Prototype for mlfMrank */
extern mxArray *mlfMrank(mxArray *);

main(int argc, char **argv)
{
 mxArray *N; /* Matrix containing n. */
 mxArray *R; /* Result matrix. */
 int n; /* Integer parameter from command line. */

 /* Get any command line parameter. */
 if (argc >= 2) {
 n = atoi(argv[1]);
 } else {
 n = 12;
 }
 PkgInitialize(); /* Initialize the library of M-Functions */

 /* Create a 1-by-1 matrix containing n. */
 N = mlfScalar(n);

 /* Call mlfMrank, the compiled version of mrank.m. */
 R = mlfMrank(N);

4 Stand-Alone Applications

4-46

 /* Print the results. */
 mlfPrintMatrix(R);

 /* Free the matrices allocated during this computation. */
 mxDestroyArray(N);
 mxDestroyArray(R);

 PkgTerminate(); /* Terminate the library of M-functions */
}

An Explanation of mrankp.c
The heart of mrankp.c is a call to the mlfMrank function. Most of what comes
before this call is code that creates an input argument to mlfMrank. Most of
what comes after this call is code that displays the vector that mlfMrank
returns. First, the code must call the Compiler-generated library initialization
function.

PkgInitialize();/* Initialize the library of M-Functions */

To understand how to call mlfMrank, examine its C function header, which is

mxArray *mlfMrank(mxArray *n_rhs_)

According to the function header, mlfMrank expects one input parameter and
returns one value. All input and output parameters are pointers to the mxArray
data type. (See “External Interfaces/API” in the MATLAB online
documentation for details on the mxArray data type.) To create and manipulate
mxArray * variables in your C code, you can call the mx routines described in
the “External Interfaces/API” or any routine in the MATLAB C/C++ Math
Library. For example, to create a 1-by-1 mxArray * variable named N with real
data, mrankp calls mlfScalar:

N = mlfScalar(n);

mrankp can now call mlfMrank, passing the initialized N as the sole input
argument.

R = mlfMrank(N);

mlfMrank returns a pointer to an mxArray * variable named R. The easiest way
to display the contents of R is to call the mlfPrintMatrix convenience function:

mlfPrintMatrix(R);

Mixing M-Files and C or C++

4-47

mlfPrintMatrix is one of the many routines in the MATLAB Math Built-In
Library, which is part of the MATLAB Math Library.

Finally, mrankp must free the heap memory allocated to hold matrices and call
the Compiler-generated termination function:

mxDestroyArray(N);
mxDestroyArray(R);
PkgTerminate();/* Terminate the library of M-functions */

Advanced C Example
This section illustrates an advanced example of how to write C code that calls
a compiled M-file. Consider a stand-alone application whose source code
consists of two files:

• multarg.m, which contains a function named multarg

• multargp.c, which contains a C function named main

multarg.m specifies two input parameters and returns two output parameters:

function [a,b] = multarg(x,y)
a = (x + y) * pi;
b = svd(svd(a));

The code in multargp.c calls mlfMultarg and then displays the two values that
mlfMultarg returns.

#include <stdio.h>
#include <string.h>
#include <math.h>
#include "matlab.h"
#include "multpkg.h"/* Include Compiler-generated header file */

static void PrintHandler(const char *text)
{
 printf(text);
}

int main() /* Programmer written coded to call mlfMultarg */
{
#define ROWS 3
#define COLS 3

4 Stand-Alone Applications

4-48

 mxArray *a, *b, *x, *y;
 double x_pr[ROWS * COLS] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 double x_pi[ROWS * COLS] = {9, 2, 3, 4, 5, 6, 7, 8, 1};
 double y_pr[ROWS * COLS] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 double y_pi[ROWS * COLS] = {2, 9, 3, 4, 5, 6, 7, 1, 8};
 double *a_pr, *a_pi, value_of_scalar_b;

multpkgInitialize();/* Call multpkg initialization */

 /* Install a print handler to tell mlfPrintMatrix how to
 * display its output.
 */
 mlfSetPrintHandler(PrintHandler);

 /* Create input matrix "x" */
 x = mxCreateDoubleMatrix(ROWS, COLS, mxCOMPLEX);
 memcpy(mxGetPr(x), x_pr, ROWS * COLS * sizeof(double));
 memcpy(mxGetPi(x), x_pi, ROWS * COLS * sizeof(double));

 /* Create input matrix "y" */
 y = mxCreateDoubleMatrix(ROWS, COLS, mxCOMPLEX);
 memcpy(mxGetPr(y), y_pr, ROWS * COLS * sizeof(double));
 memcpy(mxGetPi(y), y_pi, ROWS * COLS * sizeof(double));

 /* Call the mlfMultarg function. */
 a = (mxArray *)mlfMultarg(&b, x, y);

 /* Display the entire contents of output matrix "a". */
 mlfPrintMatrix(a);

 /* Display the entire contents of output scalar "b" */
 mlfPrintMatrix(b);

 /* Deallocate temporary matrices. */
 mxDestroyArray(a);
 mxDestroyArray(b);

multpkgTerminate();/* Call multpkg termination */
return(0);

}

Mixing M-Files and C or C++

4-49

You can build this program into a stand-alone application by using the
command

mcc -t -W lib:multpkg -T link:exe multarg multargp.c
libmmfile.mlib

The program first displays the contents of a 3-by-3 matrix a and then displays
the contents of scalar b:

 6.2832 +34.5575i 25.1327 +25.1327i 43.9823 +43.9823i
 12.5664 +34.5575i 31.4159 +31.4159i 50.2655 +28.2743i
 18.8496 +18.8496i 37.6991 +37.6991i 56.5487 +28.2743i

 143.4164

An Explanation of This C Code
Invoking the MATLAB Compiler on multarg.m generates the C function
prototype:

extern mxArray * mlfMultarg(mxArray * * b, mxArray * x,
mxArray * y);

extern void mlxMultarg(int nlhs, mxArray * plhs[], int nrhs,
mxArray * prhs[]);

This C function header shows two input arguments (mxArray *x and
mxArray *y) and two output arguments (the return value and mxArray **b).

Use mxCreateDoubleMatrix to create the two input matrices (x and y). Both x
and y contain real and imaginary components. The memcpy function initializes
the components, for example:

x = mxCreateDoubleMatrix(ROWS, COLS, COMPLEX);
memcpy(mxGetPr(x), x_pr, ROWS * COLS * sizeof(double));
memcpy(mxGetPi(y), y_pi, ROWS * COLS * sizeof(double));

The code in this example initializes variable x from two arrays (x_pr and x_pi)
of predefined constants. A more realistic example would read the array values
from a data file or a database.

After creating the input matrices, main calls mlfMultarg:

a = (mxArray *)mlfMultarg(&b, x, y);

4 Stand-Alone Applications

4-50

The mlfMultarg function returns matrices a and b. a has both real and
imaginary components; b is a scalar having only a real component. The
program uses mlfPrintMatrix to output the matrices, for example:

mlfPrintMatrix(a);

5
Controlling
Code Generation

This chapter describes the code generated by the MATLAB Compiler and the options that you can use
to control code generation.

Code Generation Overview (p. 5-2) Sample source files and generated filenames

Compiling Private and Method
Functions (p. 5-5)

Working with private and method functions

The Generated Header Files (p. 5-8) Generated C and C++ header files

Internal Interface Functions (p. 5-11) Generated C and C++ interface functions

Supported Executable Types (p. 5-21) Generated wrapper functions

Formatting Compiler-Generated Code
(p. 5-35)

Controlling the look of generated C/C++ code

Including M-File Information in
Compiler Output (p. 5-40)

Controlling annotation in generated C/C++ code

Interfacing M-Code to C/C++ Code
(p. 5-46)

Calling C/C++ functions from M-code

5 Controlling Code Generation

5-2

Code Generation Overview

Example M-Files
To generate the various files created by the Compiler, this chapter uses several
different M-files — gasket.m, foo.m, fun.m, and sample.m.

Sierpinski Gasket M-File
function theImage = gasket(numPoints)
%GASKET An image of a Sierpinski Gasket.
% IM = GASKET(NUMPOINTS)
%
% Example:
% x = gasket(50000);
% imagesc(x);colormap([0 0 0;1 1 1]);
% axis equal tight

% Copyright (c) 1984-98 by The MathWorks, Inc
% $Revision: 1.1 $ $Date: 1998/09/11 20:05:06 $

theImage = zeros(1000,1000);

corners = [866 1;1 500;866 1000];
startPoint = [866 1];
theRand = rand(numPoints,1);
theRand = ceil(theRand*3);

for i=1:numPoints
startPoint = floor((corners(theRand(i),:)+startPoint)/2);
theImage(startPoint(1),startPoint(2)) = 1;

end

foo M-File
function [a, b] = foo(x, y)
if nargout == 0
elseif nargout == 1

a = x;
elseif nargout == 2

a = x;

Code Generation Overview

5-3

b = y;
end

fun M-File
function a = fun(b)
a(1) = b(1) .* b(1);
a(2) = b(1) + b(2);
a(3) = b(2) / 4;

sample M-File
function y = sample(varargin)
varargin{:}
y = 0;

Generated Code
This chapter investigates the generated header files, interface functions, and
wrapper functions for the C MEX, stand-alone C and C++ targets, and C and
C++ libraries.

When you use the MATLAB Compiler to compile an M-file, it generates these
files:

• C or C++ code, depending on your target language (-L) specification

• Header file

• Wrapper file, depending on the -W option

The C or C++ code that is generated by the Compiler and the header file are
independent of the final target type and target platform. That is, the C or C++
code and header file are identical no matter what the desired final output. The
wrapper file provides the code necessary to support the output executable type.
So, the wrapper file is different for each executable type.

Table 5-1, Compiler-Generated Files, shows the names of the files generated
when you compile a generic M-file Table 5-1(file.m) for the MEX and
stand-alone targets. The table also shows the files generated when you compile
a set of files (filelist) for the library target and the COM target.

5 Controlling Code Generation

5-4

Note Many of the code snippets generated by the MATLAB Compiler that
are used in this chapter use the -F page-width option to produce readable
code that fits nicely on the book’s printed page. For more information about
the page-width option, see “Formatting Compiler-Generated Code” on page
5-35.

Table 5-1: Compiler-Generated Files

C C++

Header file.h file.hpp

Code file.c file.cpp

Main Wrapper
(-W main)

file_main.c file_main.cpp

MEX Wrapper
(-W mex)

file_mex.c N/A (C++
MEX-files are not
supported.)

Simulink Wrapper
(-W simulink)

file_simulink.c N/A (C++
MEX-files are not
supported.)

Library
(-W lib:filelist)

filelist.c
filelist.h
filelist.exports
filelist.mlib

filelist.cpp
filelist.hpp
filelist.mlib

COM Component
(-W com:compname[,classname[,major.minor]])
(-W comHG:compname[,classname[,major.minor]])

compname_idl.idl
compname_com.hpp
compname_com.cpp
compname_dll.cpp
compname.def
compname.rc

compname_idl.idl
compname_com.hpp
compname_com.cpp
compname_dll.cpp
compname.def
compname.rc

Compiling Private and Method Functions

5-5

Compiling Private and Method Functions
Private functions are functions that reside in subdirectories with the special
name private, and are visible only to functions in the parent directory. Since
private functions are invisible outside of the parent directory, they can use the
same names as functions in other directories. Because MATLAB looks for
private functions before standard M-file functions, it will find a private
function before a nonprivate one.

Method functions are implementations specific to a particular MATLAB type
or user-defined object. Method functions are only invoked when the argument
list contains an object of the correct class.

In order to compile a method function, you must specify the name of the method
along with the classname so that the Compiler can differentiate the method
function from a nonmethod (normal) function.

Note Although MATLAB Compiler 3.0 can currently compile method
functions, it does not support overloading of methods as implemented in
MATLAB. This feature is provided in anticipation of support of overloaded
methods being added.

Method directories can contain private directories. Private functions are found
only when executing a method from the parent method directory. Taking all of
this into account, the Compiler command line needs to be able to differentiate
between these various functions that have the same name. A file called foo.m
that contains a function called foo can appear in all of these locations at the
same time. The conventions used on the Compiler command line are
documented in this table.

Name Description

foo.m Default version of foo.m

xxx/private/foo.m foo.m private to the xxx directory

5 Controlling Code Generation

5-6

This table lists the functions you can specify on the command line and their
corresponding function and filenames.

For private functions, the name given in the table above may be ambiguous.
The MATLAB Compiler generates a warning when it cannot distinguish which
private function to use. For example, given these two foo.m private functions
and their locations

/Z/X/private/foo.m
/Y/X/private/foo.m

the Compiler searches up only one level and determines the path to the file as

X/private/foo.m

@cell/foo.m foo.m method to operate on cell arrays

@cell/private/foo.m foo.m private to methods that operate on
cell arrays

Name Description

Function C Function C++ Function Filename

foo mlfFoo
mlxFoo
mlNFoo
mlfNFoo
mlfVFoo

foo
Nfoo
Vfoo
mlxFoo

foo.c
foo.h
foo.cpp
foo.hpp

@cell/foo mlf_cell_foo
mlx_cell_foo
mlN_cell_foo
mlfN_cell_foo
mlfV_cell_foo

_cell_foo
N_cell_foo
V_cell_foo
mlx_cell_foo

_cell_foo.c
_cell_foo.h
_cell_foo.cpp
_cell_foo.hpp

xxx/private/foo mlfXXX_private_foo
mlxXXX_private_foo
mlNXXX_private_foo
mlfNXXX_private_foo
mlfVXXX_private_foo

XXX_private_foo
NXXX_private_foo
VXXX_private_foo
mlxXXX_private_foo

_XXX_private_foo.c
_XXX_private_foo.h
_XXX_private_foo.cpp
_XXX_private_foo.hpp

@cell/private/foo mlfcell_private_foo
mlxcell_private_Foo
mlNcell_private_Foo
mlfNcell_private_Foo
mlfVcell_private_Foo

_cell_private_foo
N_cell_private_foo
V_cell_private_foo
mlx_cell_private_foo

_cell_private_foo.c
_cell_private_foo.h
_cell_private_foo.cpp
_cell_private_foo.hpp

Compiling Private and Method Functions

5-7

Since it is ambiguous which foo.m you are requesting, it generates the warning

Warning: The specified private directory is not unique. Both
/Z/X/private and /Y/X/private are found on the path for this
private directory.

5 Controlling Code Generation

5-8

The Generated Header Files
This section highlights the two header files that the Compiler can generate for
the Sierpinski Gasket (gasket.m) example.

C Header File
If the target language is C, the Compiler generates the header file, gasket.h.
This example uses the Compiler command

mcc -t -L C -T codegen -F page-width:60 gasket

to generate the associated files. The C header file, gasket.h, is

/*
 * MATLAB Compiler: 3.0
 * Date: Wed Jan 23 14:51:45 2002
 * Arguments: "-B" "macro_default" "-O" "all" "-O"
 * "fold_scalar_mxarrays:on" "-O"
 * "fold_non_scalar_mxarrays:on" "-O"
 * "optimize_integer_for_loops:on" "-O" "array_indexing:on"
 * "-O" "optimize_conditionals:on" "-t" "-L" "C" "-T"
 * "codegen" "-F" "page-width:60" "gasket"
 */

#ifndef MLF_V2
#define MLF_V2 1
#endif

#ifndef __gasket_h
#define __gasket_h 1

#ifdef __cplusplus
extern "C" {
#endif

#include "libmatlb.h"

extern void InitializeModule_gasket(void);
extern void TerminateModule_gasket(void);
extern _mexLocalFunctionTable _local_function_table_gasket;

The Generated Header Files

5-9

extern mxArray * mlfGasket(mxArray * numPoints);
extern void mlxGasket(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);

#ifdef __cplusplus
}
#endif

#endif

C++ Header File
If the target language is C++, the Compiler generates the header file,
gasket.hpp. This example uses the Compiler command

mcc -t -L Cpp -T codegen -F page-width:60 gasket

to generate the associated files. The C++ header file, gasket.hpp, is

//
// MATLAB Compiler: 3.0
// Date: Wed Jan 23 14:54:22 2002
// Arguments: "-B" "macro_default" "-O" "all" "-O"
// "fold_scalar_mxarrays:on" "-O"
// "fold_non_scalar_mxarrays:on" "-O"
// "optimize_integer_for_loops:on" "-O" "array_indexing:on"
// "-O" "optimize_conditionals:on" "-t" "-L" "Cpp" "-T"
// "codegen" "-F" "page-width:60" "gasket"
//
#ifndef __gasket_hpp
#define __gasket_hpp 1

#include "libmatlb.hpp"

extern void InitializeModule_gasket();
extern void TerminateModule_gasket();
extern _mexLocalFunctionTable _local_function_table_gasket;

5 Controlling Code Generation

5-10

extern mwArray gasket(mwArray numPoints = mwArray::DIN);
#ifdef __cplusplus
extern "C"
#endif
void mlxGasket(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);

#endif

Internal Interface Functions

5-11

Internal Interface Functions
This section uses the Sierpinski Gasket example (gasket.m) to show several of
the generated interface functions for the C and C++ cases. The remaining
interface functions are generated by the example foo.m as described earlier in
this chapter.

Interface functions perform argument translation between the standard
calling conventions and the Compiler-generated code.

C Interface Functions
The C interface functions process any input arguments and pass them to the
implementation version of the function, Mf.

mlxF Interface Function
The Compiler always generates the mlxF interface function, which is used by
feval. At times, the Compiler needs to use feval to perform argument
matching even if the user does not specifically call feval. For example,

x = cell(1,5);
y = {1 2 3 4 5};
[x{:}] = deal(y{:});

would use the feval interface. The following C code is the corresponding feval
interface (mlxGasket) from the Sierpinski Gasket example. This function calls
the C Mgasket function.

Note Comments have been added to the generated code to highlight where
the input and output arguments are processed and where functions are called.

/*
 * The function "mlxGasket" contains the feval interface
 * for the "gasket" M-function from file
 * "<matlab>\extern\examples\compiler\gasket.m" (lines 1-23).
 * The feval function calls the implementation version of
 * gasket through this function. This function processes
 * any input arguments and passes them to the
 * implementation version of the function, appearing above.

5 Controlling Code Generation

5-12

 */
void mlxGasket(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]) {
 mxArray * mprhs[1];
 mxArray * mplhs[1];
 int i;
/* ------------- Input Argument Processing ------------ */
 if (nlhs > 1) {
 mlfError(
 mxCreateString(
 "Run-time Error: File: gasket Line: 1 Column: "
 "1 The function \"gasket\" was called with mor"
 "e than the declared number of outputs (1)."),
 NULL);
 }
 if (nrhs > 1) {
 mlfError(
 mxCreateString(
 "Run-time Error: File: gasket Line: 1 Column: "
 "1 The function \"gasket\" was called with mor"
 "e than the declared number of inputs (1)."),
 NULL);
 }
 for (i = 0; i < 1; ++i) {
 mplhs[i] = NULL;
 }
 for (i = 0; i < 1 && i < nrhs; ++i) {
 mprhs[i] = prhs[i];
 }
 for (; i < 1; ++i) {
 mprhs[i] = NULL;
 }

/* -- */
mlfEnterNewContext(0, 1, mprhs[0]);

/* -------- Call to C Implementation Function --------- */
 mplhs[0] = Mgasket(nlhs, mprhs[0]);

Internal Interface Functions

5-13

/* ------------- Output Argument Processing ----------- */
 mlfRestorePreviousContext(0, 1, mprhs[0]);
 plhs[0] = mplhs[0];
}

mlfF Interface Function
The Compiler always generates the mlfF interface function, which contains the
“normal” C interface to the function. This code is the corresponding C interface
function (mlfGasket) from the Sierpinski Gasket example. This function calls
the C mgasket function:

/*
 * The function "mlfGasket" contains the normal interface
 * for the "gasket" M-function from file
 * "<matlab>\extern\examples\compiler\gasket.m" (lines 1-23).
 * This function processes any input arguments and passes
 * them to the implementation version of the function,
 * appearing above.
 */
mxArray * mlfGasket(mxArray * numPoints) {

int nargout = 1;
/* ------------- Input Argument Processing ------------ */

mxArray * theImage = NULL;
mlfEnterNewContext(0, 1, numPoints);

/* ----------------- Call M-Function ------------------ */
theImage = Mgasket(nargout, numPoints);

/* ------------- Output Argument Processing ----------- */
mlfRestorePreviousContext(0, 1, numPoints);
return mlfReturnValue(theImage);

}

mlfNF Interface Function
The Compiler produces this interface function only when the M-function uses
the variable nargout.The nargout interface allows you to specify the number
of requested outputs via the int nargout argument, as opposed to the normal
interface that dynamically calculates the number of outputs based on the
number of non-NULL inputs it receives.

5 Controlling Code Generation

5-14

This is the corresponding mlfNF interface function (mlfNFoo) for the foo.m
example described earlier in this chapter. This function calls the Mfoo function
that appears in foo.c:

/*
 * The function "mlfNFoo" contains the nargout interface
 * for the "foo" M-function from file
 * "<matlab>\extern\examples\compiler\foo.m" (lines 1-8).
 * This interface is only produced if the M-function uses
 * the special variable "nargout". The nargout interface
 * allows the number of requested outputs to be specified
 * via the nargout argument, as opposed to the normal
 * interface, which dynamically calculates the number of
 * outputs based on the number of non-NULL inputs it
 * receives. This function processes any input arguments
 * and passes them to the implementation version of the
 * function, appearing above.
 */
mxArray * mlfNFoo(int nargout,

mxArray * * b,
mxArray * x,
mxArray * y) {

/* ------------- Input Argument Processing ------------ */
mxArray * a = NULL;

 mxArray * b__ = NULL;
mlfEnterNewContext(1, 2, b, x, y);

/* ----------------- Call M-Function ------------------ */
a = Mfoo(&b__, nargout, x, y);

/* ------------- Output Argument Processing ----------- */
 mlfRestorePreviousContext(1, 2, b, x, y);
 if (b != NULL) {
 mclCopyOutputArg(b, b__);
 } else {
 mxDestroyArray(b__);
 }
 return mlfReturnValue(a);
}

Internal Interface Functions

5-15

mlfVF Interface Function
The Compiler produces this interface function only when the M-function uses
the variable nargout and has at least one output. This void interface function
specifies zero output arguments to the implementation version of the function,
and in the event that the implementation version still returns an output
(which, in MATLAB, would be assigned to the ans variable), it deallocates the
output.

This is the corresponding mlfVF interface function (mlfVFoo) for the foo.m
example described at the beginning of this section. This function calls the C
Mfoo implementation function that appears in foo.c:

/*
 * The function "mlfVFoo" contains the void interface for
 * the "foo" M-function from file
 * "<matlab>\extern\examples\compiler\foo.m" (lines 1-8). The
 * void interface is only produced if the M-function uses
 * the special variable "nargout", and has at least one
 * output. The void interface function specifies zero
 * output arguments to the implementation version of the
 * function, and in the event that the implementation
 * version still returns an output (which, in MATLAB, would
 * be assigned to the "ans" variable), it deallocates the
 * output. This function processes any input arguments and
 * passes them to the implementation version of the
 * function, appearing above.
 */
void mlfVFoo(mxArray * x, mxArray * y) {
/* ------------- Input Argument Processing ------------ */
 mxArray * a = NULL;
 mxArray * b = NULL;
 mlfEnterNewContext(0, 2, x, y);
/* ----------------- Call M-Function ------------------ */
 a = Mfoo(&b, 0, x, y);
/* ------------- Output Argument Processing ----------- */
 mlfRestorePreviousContext(0, 2, x, y);
 mxDestroyArray(a);
 mxDestroyArray(b);
}

5 Controlling Code Generation

5-16

C++ Interface Functions
The C++ interface functions process any input arguments and pass them to the
implementation version of the function.

Note In C++, the mlxF interface functions are also C functions in order to
allow the feval interface to be uniform between C and C++.

mlxF Interface Function
The Compiler always generates the mlxF interface function, which is used by
feval. At times, the Compiler needs to use feval to perform argument
matching even if the user does not specifically call feval. For example,

x = cell(1,5);
y = {1 2 3 4 5};
[x{:}] = deal(y{:});

would use the feval interface. The following C++ code is the corresponding
feval interface (mlxGasket) from the Sierpinski Gasket example. This function
calls the C++ Mgasket function:

//
// The function "mlxGasket" contains the feval interface
// for the "gasket" M-function from file
// "<matlab>\extern\examples\compiler\gasket.m" (lines 1-23).
// The feval function calls the implementation version of
// gasket through this function. This function processes
// any input arguments and passes them to the
// implementation version of the function, appearing above.
//
void mlxGasket(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]) {
 MW_BEGIN_MLX();

{
// ------------- Input Argument Processing ---------------

mwArray mprhs[1];
 mwArray mplhs[1];

Internal Interface Functions

5-17

 int i;
mclCppUndefineArrays(1, mplhs);

 if (nlhs > 1) {
 error(
 mwVarargin(
 mwArray(
 "Run-time Error: File: gasket Line:"
 " 1 Column: 1 The function \"gasket"
 "\" was called with more than the d"
 "eclared number of outputs (1).")));
 }
 if (nrhs > 1) {
 error(
 mwVarargin(
 mwArray(
 "Run-time Error: File: gasket Line:"
 " 1 Column: 1 The function \"gasket"
 "\" was called with more than the d"
 "eclared number of inputs (1).")));
 }

for (i = 0; i < 1 && i < nrhs; ++i) {
 mprhs[i] = mwArray(prhs[i], 0);
 }
 for (; i < 1; ++i) {
 mprhs[i].MakeDIN();
 }
// ----------------- Call M-Function ---------------------

mplhs[0] = Mgasket(nlhs, mprhs[0]);
// ------------- Output Argument Processing --------------
 plhs[0] = mplhs[0].FreezeData();
 }
 MW_END_MLX();
}

F Interface Function
The Compiler always generates the F interface function, which contains the
“normal” C++ interface to the function. This code is the corresponding C++
interface function (gasket) from the Sierpinski Gasket example. This function
calls the C++ code:

5 Controlling Code Generation

5-18

//
// The function "gasket" contains the normal interface for
// the "gasket" M-function from file
// "<matlab>\extern\examples\compiler\gasket.m" (lines 1-23).
// This function processes any input arguments and passes
// them to the implementation version of the function,
// appearing above.
//
mwArray gasket(mwArray numPoints) {
 int nargout = 1;
 mwArray theImage = mwArray::UNDEFINED;
// ----------------- Call M-Function ---------------------
 theImage = Mgasket(nargout, numPoints);
// ------------- Output Argument Processing --------------
 return theImage;
}

NF Interface Function
The Compiler produces this interface function only when the M-function uses
the variable nargout. The nargout interface allows the number of requested
outputs to be specified via the nargout argument, as opposed to the normal
interface that dynamically calculates the number of outputs based on the
number of non-NULL inputs it receives.

This is the corresponding NF interface function (NFoo) for the foo.m example
described earlier in this chapter. This function calls the Mfoo function
appearing in foo.cpp:

//
// The function "Nfoo" contains the nargout interface for
// the "foo" M-function from file
// "<matlab>\extern\examples\compiler\foo.m" (lines 1-8).
// This interface is only produced if the M-function uses
// the special variable "nargout". The nargout interface
// allows the number of requested outputs to be specified
// via the nargout argument, as opposed to the normal
// interface, which dynamically calculates the number of
// outputs based on the number of non-NULL inputs it
// receives. This function processes any input arguments
// and passes them to the implementation version of the

Internal Interface Functions

5-19

// function, appearing above.
//
mwArray Nfoo(int nargout,
 mwArray * b,
 mwArray x,
 mwArray y) {
// ------------- Input Argument Processing ---------------
 mwArray a = mwArray::UNDEFINED;
 mwArray b__ = mwArray::UNDEFINED;
// ----------------- Call M-Function ---------------------

a = Mfoo(&b__, nargout, x, y);
// ------------- Input Argument Processing ---------------
 if (b != NULL) {
 *b = b__;
 }
// ------------- Output Argument Processing --------------
 return a;
}

5 Controlling Code Generation

5-20

VF Interface Function
The Compiler produces this interface function only when the M-function uses
the variable nargout and has at least one output. The void interface function
specifies zero output arguments to the implementation version of the function,
and in the event that the implementation version still returns an output
(which, in MATLAB, would be assigned to the ans variable), it deallocates the
output.

This is the corresponding VF interface function (VFoo) for the foo.m example
described earlier in this chapter. This function calls the Mfoo function
appearing in foo.cpp:

//
// The function "Vfoo" contains the void interface for the
// "foo" M-function from file
// "<matlab>\extern\examples\compiler\foo.m" (lines 1-8).
// The void interface is only produced if the M-function
// uses the special variable "nargout", and has at least
// one output. The void interface function specifies zero
// output arguments to the implementation version of the
// function, and in the event that the implementation
// version still returns an output (which, in MATLAB, would
// be assigned to the "ans" variable), it deallocates the
// output. This function processes any input arguments and
// passes them to the implementation version of the
// function, appearing above.
//
void Vfoo(mwArray x, mwArray y) {
// ------------- Input Argument Processing ---------------
 mwArray a = mwArray::UNDEFINED;
 mwArray b = mwArray::UNDEFINED;
// ----------------- Call M-Function ---------------------
 a = Mfoo(&b, 0, x, y);
}

Supported Executable Types

5-21

Supported Executable Types
Wrapper functions create a link between the Compiler-generated code and a
supported executable type by providing the required interface that allows the
code to operate in the desired execution environment.

The wrapper functions differ depending on the execution environment,
whereas the C and C++ header files and code that are generated by the
Compiler are the same for MEX-functions, stand-alone applications, and
libraries.

To provide the required interface, the wrapper

• Defines persistent/global variables

• Initializes the feval function table for run-time feval support

• Performs wrapper-specific initialization and termination

• Initializes the constant pools generated by optimization

This section discusses the various wrappers that can be generated using the
MATLAB Compiler.

Note When the Compiler generates a wrapper function, it must examine all
of the .m files that will be included into the executable. If you do not include all
the files, the Compiler may not define all of the global variables. Optimized
code will not run at all without initialization.

Generating Files
You can use the -t option of the Compiler to generate source files in addition
to wrapper files. For example,

mcc -W main -h x.m

examines x.m and all M-files referenced by x.m, but generates only the
x_main.c wrapper file. However, including the -t option in

mcc -W main -h -t x.m

generates x_main.c, x.c, and all M-files referenced by x.m.

5 Controlling Code Generation

5-22

MEX-Files
The -W mex -L C options produce the MEX-file wrapper, which includes the
mexFunction interface that is standard to all MATLAB plug-ins. For more
information about the requirements of the mex interface, see External
Interfaces/API in the MATLAB documentation.

In addition to declaring globals and initializing the feval function table, the
MEX-file wrapper function includes interface and definition functions for all
M-files not included into the set of compiled files. These functions are
implemented as callbacks to MATLAB.

Note By default, the -x option does not include any functions that do not
appear on the command line. Functions that do not appear on the command
line would generate a callback to MATLAB. Specify -h if you want all
functions called to be compiled into your MEX-file.

Main Files
You can generate C or C++ application wrappers that are suitable for building
C or C++ stand-alone applications, respectively. These POSIX-compliant main
wrappers accept strings from the POSIX shell and return a status code. They
are meant to translate “command-like” M-files into POSIX main applications.

POSIX Main Wrapper
The POSIX main() function wrapper behaves exactly the same as the
command/function duality mode of MATLAB. That is, any command of the
form

command argument

can also be written in the functional form

command('argument')

If you write a function that accepts strings in MATLAB, that function will
compile to a POSIX main wrapper in such a way that it behaves the same from
the DOS/UNIX command line as it does from within MATLAB.

Supported Executable Types

5-23

The Compiler processes the string arguments passed to the main() function
and sends them into the compiled M-function as strings.

For example, consider this M-file, sample.m.

function y = sample(varargin)
varargin{:}
y = 0;

You can compile sample.m into a POSIX main application. If you call sample
from MATLAB, you get

sample hello world

ans =
hello

ans =
world

ans =
0

If you compile sample.m and call it from the DOS shell, you get

C:\> sample hello world

ans =
hello

ans =
world

C:\>

The difference between the MATLAB and DOS/UNIX environments is the
handling of the return value. In MATLAB, the return value is handled by
printing its value; in the DOS/UNIX shell, the return value is handled as the
return status code. When you compile a function into a POSIX main
application, the first return value from the function is coerced to a scalar and
is returned to the POSIX shell.

5 Controlling Code Generation

5-24

Simulink S-Functions
The -W simulink -L C options produce a Simulink S-function wrapper.
Simulink S-function wrappers conform to the Simulink C S-function
conventions. The wrappers initialize

• The sizes structure

• The S-function’s sample times array

• The S-function’s states and work vectors

• The global variables and constant pool

For more information about Simulink S-function requirements, see “Writing
S-Functions” in the Simulink documentation.

Note By default, the -S command does not include any functions that do not
appear on the command line. Functions that do not appear on the command
line would generate a callback to MATLAB. Specify -h if you want all
functions called to be compiled into your MEX-file.

C Libraries
The intent of the C library wrapper files is to allow the inclusion of an arbitrary
set of M-files into a static library or shared library. The header file contains all
of the entry points for all of the compiled M functions. The export list contains
the set of symbols that are exported from a C shared library.

Another benefit of creating a library is that you can compile a common set of
functions once. You can then compile other M-functions that depend on them
without recompiling the original functions. You can accomplish this using mlib
files, which are automatically generated when you generate the library. For
more information about mlib files, see “mlib Files” on page 5-26.

Note Even if you are not producing a shared library, you must generate a
library wrapper file when including any Compiler-generated code into a larger
application.

Supported Executable Types

5-25

This example uses several functions from the toolbox\matlab\timefun
directory (weekday, date, tic, calendar, toc) to create a library wrapper. The
-W lib:libtimefun -L C options produce the files shown in this table.

libtimefun.c
The C wrapper file (libtimefun.c) contains the initialization
(libtimefunInitialize) and termination (libtimefunTerminate) functions
for the library. You must call libtimefunInitialize before you call any
Compiler-generated code. This function initializes the state of
Compiler-generated functions so that those functions can be called from C code
not generated by the Compiler. You must also call libtimefunTerminate before
you unload the library.

The library files in this example are produced from the command

mcc -W lib:libtimefun -L C weekday date tic calendar toc

C Shared Library
The MATLAB Compiler allows you to build a shared library from the files
created in the previous section, “C Libraries.” To build the shared library,
libtimefun.ext, in one step, use

mcc -B csharedlib:libtimefun weekday data tic calendar toc

This example uses the csharedlib bundle file

-t -W lib:filename -T link:lib -h libmmfile.mlib

The bundle file option, -B <filename>:[<a1>,<a2>,...,<an>], replaces the
entire expression on the mcc command line with the contents of the specified
file and it allows you to use replacement parameters. This example uses the
csharedlib bundle file and replaces the expression

File Description

libtimefun.c C wrapper file

libtimefun.h C header file

libtimefun.exports C export list

libtimefun.mlib M-file library

5 Controlling Code Generation

5-26

-B csharedlib:libtimefun

with

-t -W lib:libtimefun -T link:lib -h libmmfile.mlib

giving the new statement

mcc -t -W lib:libtimefun -T link:lib -h libmmfile.mlib weekday data tic calendar toc

The -t option tells the Compiler to generate C code from each of the listed
M-files. The -T link:lib option tells the Compiler to compile and link a shared
library. The -h option tells the Compiler to include any other M-functions
called from those listed on the mcc command line, i.e., helper functions.

Note You can use the -B option with a replacement expression as is at the
DOS or UNIX prompt. To use -B with a replacement expression at the
MATLAB prompt, you must enclose the expression that follows the -B in
single quotes when there is more than one parameter passed. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only
parameter being passed. If the example had two or more parameters, then the
quotes would be necessary as in

>>mcc -B 'cexcel:component,class,1.0' weekday data tic calendar toc

mlib Files
Shared libraries, like libraries, let you compile a common set of functions once
and then compile other M-functions that depend on them without compiling
them again.You accomplish this using mlib files, which are automatically
generated when you generate the shared library.

Creating an mlib File. When you create a library wrapper file, you also get a .mlib
file with the same base name. For example,

mcc -W lib:libtimefun -L C -t -T link:lib -h weekday date tic calendar toc

creates

Supported Executable Types

5-27

libtimefun.c
libtimefun.h
libtimefun.exports
libtimefun.mlib
libtimefun.ext

The last file, libtimefun.ext, is the shared library file for your platform. For
example, on the PC, the shared library is

libtimefun.dll

Using an mlib File. This example uses two functions, tic and toc, that are in the
shared library. Consider a new function, timer, defined as

function timer
tic

x = fft(1:1000);
toc

Prior to mlib files, if you compiled timer using

mcc -m timer

both tic and toc would be recompiled due to the implicit -h option included in
the -m macro. Using mlib files, you would use

mcc -m timer libtimefun.mlib

At compile time, function definitions for tic and toc are located in the
libtimefun.mlib file, indicating that all future references to tic and toc
should come from the mlib files’s corresponding shared library. When the
executable is created, it is linked against the shared library. For example, on
the PC, the executable timer.exe is created and it is linked against
libtimefun.dll.

An advantage of using mlib files is that the generated code is smaller because
some of the code is now located in the shared library.

5 Controlling Code Generation

5-28

Note On the mcc command line, you can access any mlib file by including the
full path to the file. For example:

mcc -m timer /pathname/libtimefun.mlib

Restrictions.

• (UNIX) The first three characters of the filename must be lib.

• (PC and UNIX) You cannot rename the file.

• (PC and UNIX) Both the shared library and the mlib file must be in the same
directory at compile time.

• (PC and UNIX) At run time, the path to the shared library must be on the
system’s search path. For more information about setting the path on the PC,
see “Shared Libraries” on page 4-22. For UNIX information, see “Locating
Shared Libraries” on page 4-11. You do not need the mlib file present when
running the executable that links to the shared library.

C++ Libraries
The intent of the C++ library wrapper files is to allow the inclusion of an
arbitrary set of M-files into a library. The header file contains all of the entry
points for all of the compiled M functions.

Note Even if you are not producing a separate library, you must generate a
library wrapper file when including any Compiler-generated code into a larger
application.

Supported Executable Types

5-29

This example uses several functions from the toolbox\matlab\timefun
directory (weekday, date, tic, calendar, toc) to create a C++ library called
libtimefun. The -W lib:libtimefun -L Cpp options produce the C++ library
files shown in this table.

Note On some platforms, including Microsoft Windows NT, support for C++
shared libraries is limited and the C++ mangled function names must be
exported. Refer to your vendor-supplied documentation for details on creating
C++ shared libraries.

libtimefun.cpp
The C++ wrapper file (libtimefun.cpp) initializes the state of
Compiler-generated functions so that those functions can be called from C++
code not generated by the Compiler. These files are produced from the
command

mcc -W lib:libtimefun -L Cpp weekday date tic calendar toc

or using the cpplib bundle file

mcc -B cpplib:libtimefun weekday date tic calendar toc

COM Components
The COM wrapper file allows you to create COM components from MATLAB
M-files. The Compiler options that generate the COM wrappers are

-W com:<component_name>[,<class_name>[,<major>.<minor>]]
-W comhg:<component_name>[,<class_name>[,<major>.<minor>]]
-W excel:<component_name>[,<class_name>[,<major>.<minor>]]
-W excelhg:<component_name>[,<class_name>[,<major>.<minor>]]

File Description

libtimefun.cpp C++ wrapper file

libtimefun.hpp C++ header file

5 Controlling Code Generation

5-30

The COM wrapper options create a superset of the files created when
producing a C or C++ library wrapper. In addition to the C or C++ library files,
the COM wrapper creates the files shown in the following table.

If the <class_name> is not specified, it defaults to <component_name>. If the
version number is not specified, it defaults to the latest version built or 1.0, if
there is no previous version.

The COM wrapper option creates all the required code and files to create a
single COM object that contains all of the compiler-generated interfaces. It
creates a single COM class with the same name as the specified <class_name>
and a corresponding interface class called I<class_name>. It uses the major
and minor version numbers to control the major and minor version numbers of
the COM interface that is produced.

The Compiler can generate either C or C++ code for the compiler M-files, but
the created COM interface will always require C++. This is a requirement of
COM and not particular to the MATLAB Compiler.

All of the extra files generated by the MATLAB Compiler that are required for
producing the COM objects are added to the mbuild command line. The details
of how mbuild processes the new file types (.def, .rc, and .idl) are specified
in “How mbuild Processes the File Types” on page 5-32.

If the major and minor version numbers are specified, the Compiler replaces
any existing type library with the specified new version number. If no version
numbers are specified and there is an existing type library, the Compiler
replaces the current version.

File Description

<component_name>_idl.idl Interface description file for COM

<component_name>_com.hpp C++ header file for the COM class

<component_name>_com.cpp C++ source file for the COM class

<component_name>_dll.cpp DLL interface for the COM object

<component_name>.def Definition file for the COM DLL

<component_name>.rc Resource file for the COM DLL

Supported Executable Types

5-31

When calling mbuild to link a library, the .dll file will be
<component_name>_<major>_<minor>.dll. This will prevent new versions
from conflicting with each other. The user never uses the DLL name. It is not
necessary to specify this name to the system because COM locates component
DLLs using the Window’s registry.

The MATLAB Compiler uses the -b option to generate a Visual Basic (.bas) file
that contains the Microsoft Excel Formula Function interface to the
compiler-generated COM object. When imported into the workbook, this Visual
Basic code allows the MATLAB function to be seen as a cell formula function.

The -i option causes the Compiler to include only the M-files that are specified
on the command line as exported interfaces. If additional M-files are compiled
as a result of being located by the -h option, they are not included in the
exported interface that is produced by the MATLAB Compiler.

The bundle option (-B) provides a means to replace its expression on the mcc
command line with the contents of the specified file. Also, it lets you include
replacement parameters so that any Compiler options that accept names and
version numbers will be expanded properly.

For more information on the bundle option including the available bundle files,
see “-B <filename>:[<a1>,<a2>,...,<an>] (Bundle of Compiler Settings)” on
page 7-41.

Note You can use the -B option with a replacement expression as is at the
DOS or UNIX prompt. To use -B with a replacement expression at the
MATLAB prompt, you must enclose the expression that follows the -B in
single quotes when there is more than one parameter passed. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only
parameter being passed. If the example had two or more parameters, then the
quotes would be necessary as in

>>mcc -B 'cexcel:component,class,1.0' weekday data tic calendar toc

5 Controlling Code Generation

5-32

How mbuild Processes the File Types
The mbuild option, -regsvr, uses the mwregsvr32 program to register the
resulting shared library at the end of compilation. The Compiler uses this
option whenever it produces a COM wrapper file.

<filename>.idl. You can specify IDL source files on the mbuild command line.
These files are compiled using the MIDL Compiler. The compiler adds any
generated .idl files to the mbuild command line.

<filename>.def. You can specify DEF files on the mbuild command line to
indicate the symbols exported from a given shared library. It is an error to have
more than one .def file specified on the command line.

<filename>.rc. You can specify an RC file on the MATLAB Compiler command
line and it is added into the DLL as required. It is an error to have more than
one .rc file specified on the command line.

COM Signature
When using the MATLAB Compiler and its COM wrapper option with an
M-file, the Compiler produces and registers a COM-compatible DLL.

The Compiler produces the necessary function calls in accordance with these
signatures.

M-Function Signature.

[Y1, Y2, , Varargout] = f(X1, X2, , Varargin)

Supported Executable Types

5-33

C Signature.

void mlxF(int nlhs, mxArray* plhs[],
 int nrhs, const mxArray* prhs[]);

mxArray *mlfNF(int nargout,
mxArray ** y1,
mxArray **y2,

 .
 .

mxArray *x1,
 mxArray *x2,
 .

.

...);

COM/IDL Signature.

HRESULT f([in] long nargout,
 [in,out] VARIANT* Y1,
 [in,out] VARIANT* Y2,
 .
 .
 [in,out] VARIANT* varargout,
 [in] VARIANT X1,
 [in] VARIANT X2,
 .
 .
 [in] VARIANT varargin);

The COM run-time performs all of the conversion between the COM types and
MATLAB arrays. For details on this conversion, see the MATLAB Excel
Builder or MATLAB COM Builder documentation.

5 Controlling Code Generation

5-34

Porting Generated Code to a Different Platform
The code generated by the MATLAB Compiler is portable among platforms.
However, if you build an executable from foo.m on a PC running Windows, that
same file will not run on a UNIX system.

For example, you cannot simply copy foo.mex (where the mex extension varies
by platform) from a PC to a Sun system and expect the code to work, because
binary formats are different on different platforms (all supported executable
types are binary). However, you could copy either all of the generated C code or
foo.m from the PC to the Sun system. Then, on the Sun platform you could use
mex or mcc to produce a foo.mex that would work on the Sun system.

Note Stand-alone applications require that the MATLAB C/C++ Math
Library be purchased for each platform where the Compiler-generated code
will be executed.

Formatting Compiler-Generated Code

5-35

Formatting Compiler-Generated Code
The formatting options allow you to control the look of the Compiler-generated
C or C++ code. These options let you set the width of the generated code and
the indentation levels for statements and expressions. To control code
formatting, use

-F <option>

The remaining sections focus on the different choices you can use.

Note To improve the readability of your generated code, turn off
optimizations with -O none or -g. The examples in this section have
optimizations off.

Listing All Formatting Options
To view a list of all available formatting options, use

mcc -F list

Setting Page Width
Use the page-width:n option to set the maximum width of the generated code
to n, an integer. The default is 80 columns wide, so not selecting any page width
formatting option will automatically limit your columns to 80 characters.

Setting the page width to a desired value does not guarantee that all generated
lines of code will not exceed that value. There are cases where, due to
indentation perhaps, a variable name may not fit within the width limit. Since
variable names cannot be split, they may extend beyond the set limit. Also, to
maintain the syntactic integrity of the original M source, annotations included
from the M source file are not wrapped.

Note When using -A line:on, which is the default with the MATLAB add-in
for Visual Studio, the page width is set as large as possible to support
source-level debugging and this setting is ignored.

5 Controlling Code Generation

5-36

Default Width
Not specifying a page width formatting option uses the default of 80. Using

mcc -xg gasket

generates this code segment:

0 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 for (mclForStart(
 &viter__, mlfScalar(1), mclVa(numPoints, "numPoints"), NULL);
 mclForNext(&viter__, &i);
) {
 /*
 * startPoint = floor((corners(theRand(i),:)+startPoint)/2);
 */
 mclMline(21);
 mlfAssign(
 &startPoint,
 mlfFloor(
 mclMrdivide(
 mclPlus(
 mlfIndexRef(
 mclVv(corners, "corners"),
 "(?,?)",
 mlfIndexRef(
 mclVv(theRand, "theRand"), "(?)", mclVv(i, "i")),
 mlfCreateColonIndex()),
 mclVv(startPoint, "startPoint")),
 mlfScalar(2))));

.

.

.

Page Width = 40
This example specifies a page width of 40:

mcc -xg -F page-width:40 gasket

The segment of generated code is

0 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 mclMline(13);
 mlfAssign(
 &theImage,
 mlfZeros(
 mlfScalar(1000),
 mlfScalar(1000),

Formatting Compiler-Generated Code

5-37

 NULL));
 /*
 *
 * corners = [866 1;1 500;866 1000];
 */
 mclMline(15);
 mlfAssign(
 &corners,
 mlfDoubleMatrix(
 3,
 2,
 array0,
 (double *)NULL));
 /*
 * startPoint = [866 1];
 */
 mclMline(16);
 mlfAssign(
 &startPoint,
 mlfDoubleMatrix(
 1,
 2,
 array1,
 (double *)NULL));
 /*
 * theRand = rand(numPoints,1);
 */
 mclMline(17);
 mlfAssign(
 &theRand,
 mlfNRand(
 1,
 mclVa(numPoints, "numPoints"),
 mlfScalar(1),
 NULL));

.

.

.

Setting Indentation Spacing
Use the statement-indent:n option to set the indentation of all statements to
n, an integer. The default is 4 spaces of indentation. To set the indentation for
expressions, use expression-indent:n. This sets the number of spaces of
indentation to n, an integer, and defaults to two spaces of indentation.

5 Controlling Code Generation

5-38

Default Indentation
Not specifying indent formatting options uses the default of four spaces for
statements and two spaces for expressions. For example, using

mcc -xg gasket

generates the following code segment:

0 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

void mlxGasket(int nlhs, mxArray * plhs[], int nrhs, mxArray * prhs[]) {
 mxArray * mprhs[1];
 mxArray * mplhs[1];
 int i;
 if (nlhs > 1) {
 mlfError(
 mxCreateString(
 "Run-time Error: File: gasket Line: 1 Column: "
 "1 The function \"gasket\" was called with mor"
 "e than the declared number of outputs (1)."),
 NULL);
 }
 if (nrhs > 1) {
 mlfError(
 mxCreateString(
 "Run-time Error: File: gasket Line: 1 Column: "
 "1 The function \"gasket\" was called with mor"
 "e than the declared number of inputs (1)."),
 NULL);
 }
 for (i = 0; i < 1; ++i) {
 mplhs[i] = NULL;
 }
 for (i = 0; i < 1 && i < nrhs; ++i) {
 mprhs[i] = prhs[i];
 }
 for (; i < 1; ++i) {
 mprhs[i] = NULL;
 }
 mlfEnterNewContext(0, 1, mprhs[0]);
 mplhs[0] = Mgasket(nlhs, mprhs[0]);
 mlfRestorePreviousContext(0, 1, mprhs[0]);
 plhs[0] = mplhs[0];
}

Formatting Compiler-Generated Code

5-39

Modified Indentation
This example shows the same segment of code using a statement indentation
of two and an expression indentation of one:

mcc -F statement-indent:2 -F expression-indent:1 -xg gasket

generates the following code segment:

0 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

void mlxGasket(int nlhs, mxArray * plhs[], int nrhs, mxArray * prhs[]) {
 mxArray * mprhs[1];
 mxArray * mplhs[1];
 int i;
 if (nlhs > 1) {
 mlfError(
 mxCreateString(
 "Run-time Error: File: gasket Line: 1 Column: 1 The function \"gaske"
 "t\" was called with more than the declared number of outputs (1)."),
 NULL);
 }
 if (nrhs > 1) {
 mlfError(
 mxCreateString(
 "Run-time Error: File: gasket Line: 1 Column: 1 The function \"gaske"
 "t\" was called with more than the declared number of inputs (1)."),
 NULL);
 }
 for (i = 0; i < 1; ++i) {
 mplhs[i] = NULL;
 }
 for (i = 0; i < 1 && i < nrhs; ++i) {
 mprhs[i] = prhs[i];
 }
 for (; i < 1; ++i) {
 mprhs[i] = NULL;
 }
 mlfEnterNewContext(0, 1, mprhs[0]);
 mplhs[0] = Mgasket(nlhs, mprhs[0]);
 mlfRestorePreviousContext(0, 1, mprhs[0]);
 plhs[0] = mplhs[0];
}

5 Controlling Code Generation

5-40

Including M-File Information in Compiler Output
The annotation options allow you to control the type of annotation in the
Compiler-generated C or C++ code. These options let you include the comments
and/or source code from the initial M-file(s) as well as #line preprocessor
directives. You can also use an annotation option to generate source file and
line number information when you receive run-time error messages. To control
code annotation, use

-A <option>

You can combine annotation options, for example, selecting both comments and
#line directives. The remaining sections focus on the different choices you can
use.

Controlling Comments in Output Code
Use the annotation:type option to include your initial M-file comments and
code in your generated C or C++ output. The possible values for type are

• all

• comments

• none

Not specifying any annotation type uses the default of all, which includes the
complete source of the M-file (comments and code) interleaved with the
generated C/C++ source.

The following sections show segments of the generated code from this simple
Hello, World example:

function hello
% This is the hello, world function written in M code

fprintf(1,'Hello, World\n');

Note To improve the readability of your generated code, turn off
optimizations with -O none or -g. The examples in this section have
optimizations off.

Including M-File Information in Compiler Output

5-41

Comments Annotation
To include only comments from the source M-file in the generated output, use

mcc -A annotation:comments

This code snippet shows the generated code containing only the comments
(“This is the hello ...”) in the middle of the routine:

static void Mhello(void) {
 mclMlineEnterFunction("D:\\work\\hello.m", "hello")
 mexLocalFunctionTable save_local_function_table_
 = mclSetCurrentLocalFunctionTable(&_local_function_table_hello);
 mxArray * ans = NULL;
 /*
 * This is the hello, world function written in M code
 */
 mclMline(3);
 mclAssignAns(
 &ans,
 mlfNFprintf(0, mlfScalar(1), mxCreateString("Hello, World\\n"), NULL));
 mxDestroyArray(ans);
 mclSetCurrentLocalFunctionTable(save_local_function_table_);
 mclMlineExitFunction();
}

All Annotation
To include both comments and source code from the source M-file in the
generated output, use

mcc -A annotation:all

or do not stipulate the annotation option, thus using the default of all.

This code snippet contains both comments and source code:

static void Mhello(void) {
 mclMlineEnterFunction("D:\\work\\hello.m", "hello")
 mexLocalFunctionTable save_local_function_table_
 = mclSetCurrentLocalFunctionTable(&_local_function_table_hello);
 mxArray * ans = NULL;
 /*
 * % This is the hello, world function written in M code
 * fprintf(1,'Hello, World\n');
 */
 mclMline(3);
 mclAssignAns(
 &ans,
 mlfNFprintf(0, mlfScalar(1), mxCreateString("Hello, World\\n"), NULL));

5 Controlling Code Generation

5-42

 mxDestroyArray(ans);
 mclSetCurrentLocalFunctionTable(save_local_function_table_);
 mclMlineExitFunction();
}

No Annotation
To include no source from the initial M-file in the generated output, use

mcc -A annotation:none

This code snippet shows the generated code without comments and source code:

static void Mhello(void) {
 mclMlineEnterFunction("D:\\work\\hello.m", "hello")
 mexLocalFunctionTable save_local_function_table_
 = mclSetCurrentLocalFunctionTable(&_local_function_table_hello);
 mxArray * ans = NULL;
 mclMline(3);
 mclAssignAns(
 &ans,
 mlfNFprintf(0, mlfScalar(1), mxCreateString("Hello, World\\n"), NULL));
 mxDestroyArray(ans);
 mclSetCurrentLocalFunctionTable(save_local_function_table_);
 mclMlineExitFunction();
}

Controlling #line Directives in Output Code
#line preprocessing directives inform a C/C++ compiler that the C/C++ code
was generated by another tool (MATLAB Compiler) and they identify the
correspondence between the generated code and the original source code
(M-file). You can use the #line directives to help debug your M-file(s). Most C
language debuggers can display your M-file source code. These debuggers allow
you to set breakpoints, single step, and so on at the M-file code level when you
use the #line directives.

Use the line:setting option to include #line preprocessor directives in your
generated C or C++ output. The possible values for setting are

• on

• off

Not specifying any line setting uses the default of off, which does not include
any #line preprocessor directives in the generated C/C++ source.

Including M-File Information in Compiler Output

5-43

Note When using the #line directive, the page-width directive is disabled in
order to make the code work properly with the C debugger.

Include #line Directives
To include #line directives in your generated C or C++ code, use

mcc -A line:on

The Hello, World example produces the following code segment when this
option is selected. (Note that several lines have been truncated for readability.)

#line 1 "D:\\work\\hello.m" /* Line 1 */
static void Mhello(void) {
 #line 1 "D:\\work\\hello.m" /* Line 1 */
 mclMlineEnterFunction("D:\\work\\hello.m", "hello")
 #line 1 "D:\\work\\hello.m" /* Line 1 */
 mexLocalFunctionTable save_local_function_table_ = -->
 #line 1 "D:\\work\\hello.m" /* Line 1 */
 mxArray * ans = NULL;
 /*
 * % This is the hello, world function written in M code
 * fprintf(1,'Hello, World\n');
 */
 #line 3 "D:\\work\\hello.m" /* Line 3 */
 mclMline(3);
 #line 3 "D:\\work\\hello.m" /* Line 3 */
 mclAssignAns(&ans, mlfNFprintf(0, mlfScalar(1), mxCreateString("Hello,-->
 #line 3 "D:\\work\\hello.m" /* Line 3 */
 mxDestroyArray(ans);
 #line 3 "D:\\work\\hello.m" /* Line 3 */
 mclSetCurrentLocalFunctionTable(save_local_function_table_);
 #line 3 "D:\\work\\hello.m" /* Line 3 */
 mclMlineExitFunction();
 #line 3 "D:\\work\\hello.m" /* Line 3 */
}

In this example, Line 1 points to lines in the generated C code that were
produced by line 1 from the M-file, that is

function hello

Line 3 points to lines in the C code that were produced by line 3 of the M-file, or

fprintf(1,'Hello, World\n');

5 Controlling Code Generation

5-44

Controlling Information in Run-Time Errors
Use the debugline:setting option to include source filenames and line
numbers in run-time error messages. The possible values for setting are

• on

• off

Not specifying any debugline setting uses the default of off, which does not
include filenames and line numbers in the generated run-time error messages.

For example, given the M-file, tmmult.m, which in MATLAB would produce the
error message Inner matrix dimensions must agree:

function tmmult
 a = ones(2,3);
 b = ones(4,5);

 y = mmult(a,b)

function y = mmult(a,b)
 y = a*b;

If you create a Compiler-generated MEX-file with the command

mcc -x tmmult

and run it, your results are

tmmult
??? Error using ==> *
Inner matrix dimensions must agree.

Error in ==> <matlab>\toolbox\compiler\mmult.m
On line 2 ==> y = a*b;
??? Error using ==> *
Inner matrix dimensions must agree.

Error in ==> <matlab>\toolbox\compiler\tmmult.dll

The information about where the error occurred is not available. However, if
you compile tmmult.m and use the -A debugline:on option as in

mcc -x -A debugline:on tmmult

Including M-File Information in Compiler Output

5-45

your results are

??? Error using ==> tmmult
Error using ==> *
Inner matrix dimensions must agree.
Error in File: "<matlab>\extern\examples\compiler\tmmult.m",

Function: "tmmult", Line: 4.

Note When using the -A debugline:on option, the lasterr function returns
a string that includes the line number information. If, in your M-code, you
compare against the string value of lasterr, you will get different behavior
when using this option.

Since try catch end is not available in g++, do not use the -A debugline:on
option on Linux when generating a C++ application.

5 Controlling Code Generation

5-46

Interfacing M-Code to C/C++ Code
The MATLAB Compiler supports calling arbitrary C/C++ functions from your
M-code. You simply provide an M-function stub that determines how the code
will behave in M, and then provide an implementation of the body of the
function in C or C++.

C Example
Suppose you have a C function that reads data from a measurement device. In
M-code, you want to simulate the device by providing a sine wave output. In
production, you want to provide a function that returns the measurement
obtained from the device. You have a C function called
measure_from_device() that returns a double, which is the current
measurement.

collect.m contains the M-code for the simulation of your application:

function collect

y = zeros(1, 100); %Pre-allocate the matrix
for i = 1:100
 y(i) = collect_one;
end

function y = collect_one

persistent t;
if (isempty(t))

t = 0;
end
t = t + 0.05;
y = sin(t);

The next step is to replace the implementation of the collect_one function
with a C implementation that provides the correct value from the device each
time it is requested. This is accomplished by using the %#external pragma.

The %#external pragma informs the MATLAB Compiler that the
implementation version of the function (Mf) will be hand written and will not
be generated from the M-code. This pragma affects only the single function in
which it appears. Any M-function may contain this pragma (local, global,

Interfacing M-Code to C/C++ Code

5-47

private, or method). When using this pragma, the Compiler will generate an
additional header file called file_external.h or file_external.hpp, where
file is the name of the initial M-file containing the %#external pragma. This
header file will contain the extern declaration of the function that the user
must provide. This function must conform to the same interface as the
Compiler-generated code.

The Compiler will still generate a .c or .cpp file from the .m file in question.
The Compiler will generate the feval table, which includes the function and
all of the required interface functions for the M-function, but the body of
M-code from that function will be ignored. It will be replaced by the
hand-written code. The Compiler will generate the interface for any functions
that contain the %#external pragma into a separate file called
file_external.h or file_external.hpp. The Compiler-generated C or C++
file will include this header file to get the declaration of the function being
provided.

In this example, place the pragma in the collect_one local function:

function collect

y = zeros(1, 100); % pre-allocate the matrix
for i = 1:100

y(i) = collect_one;
end

function y = collect_one

%#external
persistent t;
if (isempty(t))

t = 0;
end
t = t + 0.05;
end
y = sin(t);

When this file is compiled, the Compiler creates the additional header file
collect_external.h, which contains the interface between the
Compiler-generated code and your code. In this example, it would contain

extern mxArray * Mcollect_collect_one(int nargout_);

5 Controlling Code Generation

5-48

We recommend that you include this header file when defining the function.
This function could be implemented in this C file, measure.c, using the
measure_from_device() function.

#include "matlab.h"
#include "collect_external.h"
#include <math.h>

extern double measure_from_device(void);

mxArray * Mcollect_collect_one(int nargout_);
{

return(mlfScalar(measure_from_device()));
}
double measure_from_device(void)
{

static double t = 0.0;
t = t + 0.05;
return sin(t);

}

In general, the Compiler will use the same interface for this function as it
would generate. To generate the C code and header file, use

mcc -mc collect.m

By examining the Compiler-generated C code, you should easily be able to
determine how to implement this interface. To compile collect.m to a
MEX-file, use

mcc -x collect.m measure.c

Using Pragmas

Using feval
In stand-alone C and C++ modes, the pragma

%#function <function_name-list>

informs the MATLAB Compiler that the specified function(s) will be called
through an feval call or through a MATLAB function that accepts a function
to feval as an argument or contains an eval string or Handle Graphics

Interfacing M-Code to C/C++ Code

5-49

callback that references the specified function. Without this pragma, the -h
option will not be able to locate and compile all M-files used in your application.

If you are using the %#function pragma to define functions that are not
available in M-code, you must write a dummy M-function that identifies the
number of input and output parameters to the M-file function with the same
name used on the %#function line. For example:

%#function myfunctionwritteninc

This implies that myfunctionwritteninc is an M-function that will be called
using feval. The Compiler will look up this function to determine the correct
number of input and output variables.

Compiling MEX-Files
If the Compiler finds both a function M-file and a .mex file in the same
directory, it will assume that the .mex file is the compiled version of the M-file.
In those cases, if the M-file version is not desired, use the %#mex pragma to force
the Compiler to use the MEX-file. For example:

function y = gamma(x)
%#mex
error('gamma MEX-file is missing');

5 Controlling Code Generation

5-50

6

Optimizing Performance

The MATLAB Compiler can perform various optimizations on your M-file source code that can make
the performance of the generated C/C++ code much faster than the performance of the M-code in the
MATLAB interpreter.

MATLAB Compiler 3.0 provides a series of optimizations that can help speed up your compiled code.
This chapter describes the optimization options.

The only times you would choose not to optimize are if you are debugging your code or you want to
maintain the readability of your code.

Optimization Bundles (p. 6-2) Bundles that allow you to select the most common
optimization options

Optimizing Arrays (p. 6-4) Improving the performance of code that manipulates
scalar arrays

Optimizing Loops (p. 6-6) Improviing the performance of simple one- and
two-dimensional array index expressions

Optimizing Conditionals (p. 6-9) Reducing the MATLAB conditional operators to scalar C
conditional operators

Optimizing MATLAB Arrays (p. 6-10) Accelerates scalar math operations

6 Optimizing Performance

6-2

Optimization Bundles
All optimizations are controlled separately, and you can enable or disable any
of the optimizations. To simplify the process, you can use the provided bundles
of Compiler settings that allow you to select the most common optimization
options. For more information on bundles, see “-B
<filename>:[<a1>,<a2>,...,<an>] (Bundle of Compiler Settings)” on page 7-41.

Turn On All Optimizations
To turn on all optimizations, use

-O all

This bundle is stored in
<matlab>/toolbox/compiler/bundles/opt_bundle_all. By default, all
optimizations, except speculate, are on unless you specifically disable them or
use the -g option for debugging. The -g option disables all optimizations.

Turn Off All Optimizations
To turn off all optimizations, use

-O none

This bundle is stored in
<matlab>/toolbox/compiler/bundles/opt_bundle_none. This optimization
setting is used whenever you use -g for debugging.

Turn On Individual Optimizations
You can enable or disable each individual optimization. To enable/disable an
optimization, use

-O <optimization option>:[on|off]

where <optimization option> is

• array_indexing

• fold_mxarrays

• fold_non_scalar_mxarrays

• fold_scalar_mxarrays

• optimize_conditionals

Optimization Bundles

6-3

• optimize_integer_for_loops

• percolate_simple_types

• speculate

List All Optimizations
To list all available optimizations, use

-O list

6 Optimizing Performance

6-4

Optimizing Arrays

Scalar Arrays
(fold_scalar_mxarrays) When this optimization is enabled, all constant,
scalar-valued array operations are folded at compile time and are stored in a
constant pool that is created once at program initialization time. Folding
reduces the number of computations that are performed at run-time, thus
improving run-time performance.

Scalar folding can dramatically improve the performance of code that is
manipulating scalar arrays, but it makes the code less readable. For example:

function y = foo(x)
y = 2*pi*x;

If you compile this with the -O none option, you get

...
mlfAssign(&y, mclMtimes(mlfScalar(6.283185307179586),

mclVa(x, "x")));
...

Compiling with -O none -O fold_scalar_mxarrays:on, gives

...
mlfAssign(&y, mclMtimes(_mxarray0_, mclVa(x, "x")));
...

In the optimized case, this code uses _mxarray0_, which is initialized at
program start-up to hold the correct value. All constants with the same value
use the same mxArray variable in the constant pool.

Nonscalar Arrays
(fold_non_scalar_mxarrays) This optimization is very similar to
fold_scalar_mxarrays. It folds nonscalar mxArray values into compile-time
arrays that are initialized at program start-up. This can have a large
performance impact if you are constructing arrays that use [] or {} within a
loop. This optimization makes the code less readable. For example:

function y = test
y = [1 0; 0 1] * [pi pi/2; -pi -pi/2];

Optimizing Arrays

6-5

If you compile this with the -O none option, you get

...
mlfAssign(

&y,
mclMtimes(
mlfDoubleMatrix(2, 2, _array0_, (double *)NULL),
mlfDoubleMatrix(2, 2, _array1_, (double *)NULL)));

...

Compiling with -O none -O fold_non_scalar_mxarrays:on gives

...
mlfAssign(&y, _mxarray4_);
...

Scalars
(fold_mxarrays) This option is equivalent to using both
fold_scalar_mxarrays and fold_non_scalar_mxarrays. It is included for
compatibility with P-code generation.

6 Optimizing Performance

6-6

Optimizing Loops

Simple Indexing
(array_indexing) This optimization improves the performance of simple one-
and two-dimensional array index expressions. Without this optimization, all
array indexing uses the fully general array indexing function, which is not
optimized for one- and two-dimensional indexing. With this optimization
enabled, indexing uses faster routines that are optimized for simple indexing.
For example:

function y = test(x,i1,i2);
y = x(i1,i2);

If you compile this with the -O none option, you get

...
mlfAssign(
&y,
mlfIndexRef(mclVa(x, "x"), "(?,?)", mclVa(i1, "i1"),

mclVa(i2, "i2")));
...

Compiling with -O none -O array_indexing:on gives

...
mlfAssign(
&y, mclArrayRef2(mclVa(x, "x"), mclVa(i1, "i1"),

mclVa(i2,"i2")));
...

The mclArrayRef2 function is optimized for two-dimensional indexing.
mclArrayRef1 is used for one-dimensional indexing.

Loop Simplification
(optimize_integer_for_loops) This optimization detects when a loop starts
and increments with integers. It replaces the loop with a much simpler loop
that uses C integer variables instead of array-valued variables. The
performance improvements with this optimization can be dramatic.

Optimizing Loops

6-7

Note This optimization causes the variable names in the resulting C
program to differ from those in the M-file. Therefore, we recommend that you
do not use this option when debugging.

For example:

function test(x)
for i = 1:length(x)-1

x(i) = x(i) + x(i+1)
end

If you compile this with the -O none option, you get

...
{

mclForLoopIterator viter__;
for (mclForStart(

&viter__,
mlfScalar(1),
mclMinus(mlfLength(mclVa(x, "x")),
mlfScalar(1)), NULL);

mclForNext(&viter__, &i);
) {
...

}
mclDestroyForLoopIterator(viter__);

}
...

Compiling with -O none -O optimize_integer_for_loops:on gives

...
{

int v_ = mclForIntStart(1);
int e_ = mclLengthInt(mclVa(x, "x")) - 1;
if (v_ > e_) {

mlfAssign(&i, _mxarray0_);
} else {

...

6 Optimizing Performance

6-8

for (; ;) {
...
if (v_ == e_) {

break;
}
++v_;

}
mlfAssign(&i, mlfScalar(v_));

}
...

Optimizing Conditionals

6-9

Optimizing Conditionals
(optimize_conditionals) This optimization reduces the MATLAB conditional
operators to scalar C conditional operators when both operands are known to
be integer scalars. The Compiler “knows” that nargin, nargout, and for-loop
control variables (when using the above optimization) are integer scalars. For
example:

function test(a,b,c,d)
if (nargin < 4)

d = 0.0;
end

If you compile this with the -O none option, you get

...
if (mlfTobool(mclLt(mlfScalar(nargin_), mlfScalar(4)))) {
...

Compiling with -O none -O optimize_conditionals:on gives

...
if (nargin_ < 4) {
...

6 Optimizing Performance

6-10

Optimizing MATLAB Arrays

Scalars
(percolate_simple_types) This optimization reduces the strength of
operations on simple types (scalars) by reducing operations to scalar double
operations whenever possible. For example, if your code uses sin(v) and v is
known to be double and scalar, this optimization uses the scalar double sin
function. This optimization is always on when compiling to C/C++ and cannot
be disabled. It is provided for compatibility with P-code generation.

Scalar Doubles
(speculate) This optimization is similar to the technology used by MATLAB to
accelerate scalar double math operations. It makes educated guesses about the
type of MATLAB arrays, and optimizes the code accordingly. This optimization
can have dramatic impact on scalar double MATLAB code and more modest
impact on small array operations. This optimization is off by default.

7

Reference

7 Reference

7-2

Functions — By Category

Pragmas

Compiler Functions

Command Line Tools

%#external Call arbitrary C/C++ functions.

%#function feval pragma.

%#mex Prefer the MEX-file over an existing M-file.

mbchar Impute char matrix.

mbcharscalar Impute character scalar.

mbcharvector Impute char vector.

mbint Impute integer.

mbintscalar Impute integer scalar.

mbintvector Impute integer vector.

mbreal Impute real.

mbrealscalar Impute real scalar.

mbrealvector Impute real vector.

mbscalar Impute scalar.

mbvector Impute vector.

mbuild Customize building and linking.

mcc Invoke MATLAB Compiler.

MATLAB Compiler
Options Flags

Overview of Compiler options.

Macro Options Simplify basic compilation tasks.

7-3

Code Generation
Options

Control Compiler output.

Optimization Options Improve the performance of the generated C/C++
code.

Compiler and
Environment Options

Control Compiler behavior.

mbuild/mex Options Control mbuild and mex.

7

7-4

Functions — By Name 7

%#external . 7-5
%#function . 7-6
%#mex . 7-7
mbchar . 7-8
mbcharscalar . 7-9
mbcharvector . 7-10
mbint . 7-11
mbintscalar . 7-13
mbintvector . 7-14
mbreal . 7-15
mbrealscalar . 7-16
mbrealvector . 7-17
mbscalar . 7-18
mbvector . 7-19
mbuild . 7-20
mcc . 7-25

%#external

7-5

7%#externalPurpose Pragma to call arbitrary C/C++ functions from your M-code

Syntax %#external

Description The %#external pragma informs the Compiler that the implementation
version of the function (Mf) will be hand written and will not be generated from
the M-code. This pragma affects only the single function in which it appears,
and any M-function may contain this pragma (local, global, private, or method).

When using this pragma, the Compiler will generate an additional header file
called file_external.h or file_external.hpp, where file is the name of the
initial M-file containing the %#external pragma. This header file will contain
the extern declaration of the function that the user must provide. This function
must conform to the same interface as the Compiler-generated code. For more
information on the %#external pragma, see “Interfacing M-Code to C/C++
Code” on page 5-46.

%#function

7-6

7%#functionPurpose feval pragma

Syntax %#function <function_name-list>

Description This pragma informs the MATLAB Compiler that the specified function(s) will
be called through an feval, eval, or Handle Graphics callback. You need to
specify this pragma only to assist the Compiler in locating and automatically
compiling the set of functions when using the -h option.

If you are using the %#function pragma to define functions that are not
available in M-code, you should use the %#external pragma to define the
function. For example:

%#function myfunctionwritteninc

This implies that myfunctionwritteninc is an M-function that will be called
using feval. The Compiler will look up this function to determine the correct
number of input and output variables. Therefore, you need to provide a dummy
M-function that contains a function line and a %#external pragma, such as

function y = myfunctionwritteninc(a, b, c);
%#external

The function statement indicates that the function takes three inputs (a, b, c)
and returns a single output variable (y). No additional lines need to be present
in the M-file.

%#mex

7-7

7%#mexPurpose mex pragma

Syntax %#mex

Description This pragma informs the MATLAB Compiler to select the MEX-file over an
existing M-file.

If you are using the %#function pragma to define functions that are not
available in M-code, you should use the %#external pragma to define the
function. For example:

function y = gamma(x)
%#mex
error('gamma MEX-file is missing');

mbchar

7-8

7mbcharPurpose Assert variable is a MATLAB character string

Syntax mbchar(x)

Description The statement

mbchar(x)

causes the MATLAB Compiler to impute that x is a char matrix. At run-time,
if mbchar determines that x does not hold a char matrix, mbchar issues an error
message and halts execution of the MEX-file.

mbchar tells the MATLAB interpreter to check whether x holds a char matrix.
If x does not, mbchar issues an error message and halts execution of the M-file.
The MATLAB interpreter does not use mbchar to impute x.

Note that mbchar only tests x at the point in an M-file or MEX-file where an
mbchar call appears. In other words, an mbchar call tests the value of x only
once. If x becomes something other than a char matrix after the mbchar test,
mbchar cannot issue an error message.

A char matrix is any scalar, vector, or matrix that contains only the char data
type.

Example This code in MATLAB causes mbchar to generate an error message because n
does not contain a char matrix:

n = 17;
mbchar(n);
??? Error using ==> mbchar
Argument to mbchar must be of class 'char'.

See Also mbcharvector, mbcharscalar, mbreal, mbscalar, mbvector, mbintscalar,
mbintvector, mcc

mbcharscalar

7-9

7mbcharscalarPurpose Assert variable is a character scalar

Syntax mbcharscalar(x)

Description The statement

mbcharscalar(x)

causes the MATLAB Compiler to impute that x is a character scalar, i.e., an
unsigned short variable. At run-time, if mbcharscalar determines that x holds
a value other than a character scalar, mbcharscalar issues an error message
and halts execution of the MEX-file.

mbcharscalar tells the MATLAB interpreter to check whether x holds a
character scalar value. If x does not, mbcharscalar issues an error message
and halts execution of the M-file. The MATLAB interpreter does not use
mbcharscalar to impute x.

Note that mbcharscalar only tests x at the point in an M-file or MEX-file where
an mbcharscalar call appears. In other words, an mbcharscalar call tests the
value of x only once. If x becomes a vector after the mbcharscalar test,
mbcharscalar cannot issue an error message.

mbcharscalar defines a character scalar as any value that meets the criteria of
both mbchar and mbscalar.

Example This code in MATLAB generates an error message:

n = ['hello' 'world'];
mbcharscalar(n)
??? Error using ==> mbscalar
Argument of mbscalar must be scalar.

See Also mbchar, mbcharvector, mbreal, mbscalar, mbvector, mbintscalar,
mbintvector, mcc

mbcharvector

7-10

7mbcharvectorPurpose Assert variable is a character vector, i.e., a MATLAB string

Syntax mbcharvector(x)

Description The statement

mbcharvector(x)

causes the MATLAB Compiler to impute that x is a char vector. At run-time,
if mbcharvector determines that x holds a value other than a char vector,
mbcharvector issues an error message and halts execution of the MEX-file.

mbcharvector tells the MATLAB interpreter to check whether x holds a char
vector value. If x does not, mbcharvector issues an error message and halts
execution of the M-file. The MATLAB interpreter does not use mbcharvector
to impute x.

Note that mbcharvector only tests x at the point in an M-file or MEX-file where
an mbcharvector call appears. In other words, an mbcharvector call tests the
value of x only once. If x becomes something other than a char vector after the
mbcharvector test, mbcharvector cannot issue an error message.

mbcharvector defines a char vector as any value that meets the criteria of both
mbchar and mbvector. Note that mbcharvector considers char scalars as char
vectors as well.

Example This code in MATLAB causes mbcharvector to generate an error message
because, although n is a vector, n contains one value that is not a char:

n = [1:5];
mbcharvector(n)
??? Error using ==> mbchar
Argument to mbchar must be of class 'char'.

See Also mbchar, mbcharscalar, mbreal, mbscalar, mbvector, mbintscalar,
mbintvector, mcc

mbint

7-11

7mbintPurpose Assert variable is integer

Syntax mbint(n)

Description The statement

mbint(x)

causes the MATLAB Compiler to impute that x is an integer. At run-time, if
mbint determines that x holds a noninteger value, the generated code issues an
error message and halts execution of the MEX-file.

mbint tells the MATLAB interpreter to check whether x holds an integer value.
If x does not, mbint issues an error message and halts execution of the M-file.
The MATLAB interpreter does not use mbint to impute a data type to x.

Note that mbint only tests x at the point in an M-file or MEX-file where an
mbint call appears. In other words, an mbint call tests the value of x only once.
If x becomes a noninteger after the mbint test, mbint cannot issue an error
message.

mbint defines an integer as any scalar, vector, or matrix that contains only
integer or string values. For example, mbint considers n to be an integer
because all elements in n are integers.

n = [5 7 9];

If even one element of n contains a fractional component, for example,

n = [5 7 9.2];

then mbint assumes that n is not an integer.

mbint considers all strings to be integers.

If n is a complex number, then mbint considers n to be an integer if both its real
and imaginary parts are integers. For example, mbint considers the value of n
an integer.

n = 4 + 7i

mbint does not consider the value of x an integer because one of the parts (the
imaginary) has a fractional component:

mbint

7-12

x = 4 + 7.5i;

Example This code in MATLAB causes mbint to generate an error message because n
does not hold an integer value:

n = 17.4;
mbint(n);
??? Error using ==> mbint
Argument to mbint must be integer.

See Also mbintscalar, mbintvector, mcc

mbintscalar

7-13

7mbintscalarPurpose Assert variable is integer scalar

Syntax mbintscalar(n)

Description The statement

mbintscalar(x)

causes the MATLAB Compiler to impute that x is an integer scalar. At
run-time, if mbintscalar determines that x holds a value other than an integer
scalar, mbintscalar issues an error message and halts execution of the
MEX-file.

mbintscalar tells the MATLAB interpreter to check whether x holds an
integer scalar value. If x does not, mbintscalar issues an error message and
halts execution of the M-file. The MATLAB interpreter does not use
mbintscalar to impute x.

Note that mbintscalar only tests x at the point in an M-file or MEX-file where
an mbintscalar call appears. In other words, an mbintscalar call tests the
value of x only once. If x becomes a vector after the mbintscalar test,
mbintscalar cannot issue an error message.

mbintscalar defines an integer scalar as any value that meets the criteria of
both mbint and mbscalar.

Example This code in MATLAB causes mbintscalar to generate an error message
because, although n is a scalar, n does not hold an integer value:

n = 4.2;
mbintscalar(n)
??? Error using ==> mbint
Argument to mbint must be integer.

See Also mbint, mbscalar, mcc

mbintvector

7-14

7mbintvectorPurpose Assert variable is integer vector

Syntax mbintvector(n)

Description The statement

mbintvector(x)

causes the MATLAB Compiler to impute that x is an integer vector. At
run-time, if mbintvector determines that x holds a value other than an integer
vector, mbintvector issues an error message and halts execution of the
MEX-file.

mbintvector tells the MATLAB interpreter to check whether x holds an
integer vector value. If x does not, mbintvector issues an error message and
halts execution of the M-file. The MATLAB interpreter does not use
mbintvector to impute x.

Note that mbintvector only tests x at the point in an M-file or MEX-file where
an mbintvector call appears. In other words, an mbintvector call tests the
value of x only once. If x becomes a two-dimensional matrix after the
mbintvector test, mbintvector cannot issue an error message.

mbintvector defines an integer vector as any value that meets the criteria of
both mbint and mbvector. Note that mbintvector considers integer scalars to
be integer vectors as well.

Example This code in MATLAB causes mbintvector to generate an error message
because, although all the values of n are integers, n is a matrix rather than a
vector:

n = magic(2)
n =
 1 3
 4 2
mbintvector(n)
??? Error using ==> mbvector
Argument to mbvector must be a vector.

See Also mbint, mbvector, mbintscalar, mcc

mbreal

7-15

7mbrealPurpose Assert variable is real

Syntax mbreal(n)

Description The statement

mbreal(x)

causes the MATLAB Compiler to impute that x is real (not complex). At
run-time, if mbreal determines that x holds a complex value, mbreal issues an
error message and halts execution of the MEX-file.

mbreal tells the MATLAB interpreter to check whether x holds a real value. If
x does not, mbreal issues an error message and halts execution of the M-file.
The MATLAB interpreter does not use mbreal to impute x.

Note that mbreal only tests x at the point in an M-file or MEX-file where an
mbreal call appears. In other words, an mbreal call tests the value of x only
once. If x becomes complex after the mbreal test, mbreal cannot issue an error
message.

A real value is any scalar, vector, or matrix that contains no imaginary
components.

Example This code in MATLAB causes mbreal to generate an error message because n
contains an imaginary component:

n = 17 + 5i;
mbreal(n);
??? Error using ==> mbreal
Argument to mbreal must be real.

See Also mbrealscalar, mbrealvector, mcc

mbrealscalar

7-16

7mbrealscalarPurpose Assert variable is real scalar

Syntax mbrealscalar(n)

Description The statement

mbrealscalar(x)

causes the MATLAB Compiler to impute that x is a real scalar. At run-time, if
mbrealscalar determines that x holds a value other than a real scalar,
mbrealscalar issues an error message and halts execution of the MEX-file.

mbrealscalar tells the MATLAB interpreter to check whether x holds a real
scalar value. If x does not, mbrealscalar issues an error message and halts
execution of the M-file. The MATLAB interpreter does not use mbrealscalar
to impute x.

Note that mbrealscalar only tests x at the point in an M-file or MEX-file where
an mbrealscalar call appears. In other words, an mbrealscalar call tests the
value of x only once. If x becomes a vector after the mbrealscalar test,
mbrealscalar cannot issue an error message.

mbrealscalar defines a real scalar as any value that meets the criteria of both
mbreal and mbscalar.

Example This code in MATLAB causes mbrealscalar to generate an error message
because, although n contains only real numbers, n is not a scalar:

n = [17.2 15.3];
mbrealscalar(n)
??? Error using ==> mbscalar
Argument of mbscalar must be scalar.

See Also mbreal, mbscalar, mbrealvector, mcc

mbrealvector

7-17

7mbrealvectorPurpose Assert variable is a real vector

Syntax mbrealvector(n)

Description The statement

mbrealvector(x)

causes the MATLAB Compiler to impute that x is a real vector. At run-time, if
mbrealvector determines that x holds a value other than a real vector,
mbrealvector issues an error message and halts execution of the MEX-file.

mbrealvector tells the MATLAB interpreter to check whether x holds a real
vector value. If x does not, mbrealvector issues an error message and halts
execution of the M-file. The MATLAB interpreter does not use mbrealvector
to impute x.

Note that mbrealvector only tests x at the point in an M-file or MEX-file where
an mbrealvector call appears. In other words, an mbrealvector call tests the
value of x only once. If x becomes complex after the mbrealvector test,
mbrealvector cannot issue an error message.

mbrealvector defines a real vector as any value that meets the criteria of both
mbreal and mbvector. Note that mbrealvector considers real scalars to be real
vectors as well.

Example This code in MATLAB causes mbrealvector to generate an error message
because, although n is a vector, n contains one imaginary number:

n = [5 2+3i];
mbrealvector(n)
??? Error using ==> mbreal
Argument to mbreal must be real.

See Also mbreal, mbrealscalar, mbvector, mcc

mbscalar

7-18

7mbscalarPurpose Assert variable is scalar

Syntax mbscalar(n)

Description The statement

mbscalar(x)

causes the MATLAB Compiler to impute that x is a scalar. At run-time, if
mbscalar determines that x holds a nonscalar value, mbscalar issues an error
message and halts execution of the MEX-file.

mbscalar tells the MATLAB interpreter to check whether x holds a scalar
value. If x does not, mbscalar issues an error message and halts execution of
the M-file. The MATLAB interpreter does not use mbscalar to impute x.

Note that mbscalar only tests x at the point in an M-file or MEX-file where an
mbscalar call appears. In other words, an mbscalar call tests the value of x only
once. If x becomes nonscalar after the mbscalar test, mbscalar cannot issue an
error message.

mbscalar defines a scalar as a matrix whose dimensions are 1-by-1.

Example This code in MATLAB causes mbscalar to generate an error message because
n does not hold a scalar:

n = [1 2 3];
mbscalar(n);
??? Error using ==> mbscalar
Argument of mbscalar must be scalar.

See Also mbint, mbintscalar, mbintvector, mbreal, mbrealscalar, mbrealvector,
mbvector, mcc

mbvector

7-19

7mbvectorPurpose Assert variable is vector

Syntax mbvector(n)

Description The statement

mbvector(x)

causes the MATLAB Compiler to impute that x is a vector. At run-time, if
mbvector determines that x holds a nonvector value, mbvector issues an error
message and halts execution of the MEX-file.

mbvector causes the MATLAB interpreter to check whether x holds a vector
value. If x does not, mbvector issues an error message and halts execution of
the M-file. The MATLAB interpreter does not use mbvector to impute x.

Note that mbvector only tests x at the point in an M-file or MEX-file where an
mbvector call appears. In other words, an mbvector call tests the value of x only
once. If x becomes a nonvector after the mbvector test, mbvector cannot issue
an error message.

mbvector defines a vector as any matrix whose dimensions are 1-by-n or n-by-1.
All scalars are also vectors (though most vectors are not scalars).

Example This code in MATLAB causes mbvector to generate an error message because
the dimensions of n are 2-by-2:

n = magic(2)
n =
 1 3
 4 2
mbvector(n)
??? Error using ==> mbvector
Argument to mbvector must be a vector.

See Also mbint, mbintscalar, mbintvector, mbreal, mbrealscalar, mbscalar,
mbrealvector, mcc

mbuild

7-20

7mbuildPurpose Compile and link source files that call functions in the MATLAB C/C++ Math
Library or MATLAB C/C++ Graphics Library into a stand-alone executable or
shared library

Syntax mbuild [option1 ... optionN] sourcefile1 [... sourcefileN]
 [objectfile1 ... objectfileN] [libraryfile1 ... libraryfileN]
 [exportfile1 ... exportfileN]

Note Supported types of source files are: .c, .cpp, .idl, .rc. To specify IDL
source files to be compiled with the MIDL Compiler, add <filename>.idl to
the mbuild command line; to specify a DEF file, add <filename>.def to the
command line; to specify an RC file, add <filename>.rc to the command line.
Source files that are not one of the supported types are passed to the linker.

Description mbuild is a script that supports various options that allow you to customize the
building and linking of your code. Table 7-1, mbuild Options, lists the mbuild
options. If no platform is listed, the option is available on both UNIX and
Microsoft Windows.

Table 7-1: mbuild Options

Option Description

-<arch> (UNIX) Assume local host has architecture
<arch>. Possible values for <arch> include
sol2, hpux, hp700, alpha, ibm_rs, sgi, and
glnx86.

@<response_file> (Windows) Replace @<response_file> on the
mbuild command line with the contents of the
text file, response_file.

-c Compile only. Do not link. Creates an object file
but not an executable.

-D<name> Define a symbol name to the C/C++
preprocessor. Equivalent to a #define <name>
directive in the source.

mbuild

7-21

-D<name>#<value> Define a symbol name and value to the C/C++
preprocessor. Equivalent to a
#define <name> <value> directive in the
source.

-D<name>=<value> (UNIX) Define a symbol name and value to the
C preprocessor. Equivalent to a
#define <name> <value> directive in the
source.

-f <<optionsfile>> Specify location and name of options file to use.
Overrides the mbuild default options file search
mechanism.

-g Create a debuggable executable. If this option is
specified, mbuild appends the value of options
file variables ending in DEBUGFLAGS with their
corresponding base variable. This option also
disables the mbuild default behavior of
optimizing built object code.

-h[elp] Help; prints a description of mbuild and the list
of options.

-I<pathname> Add <pathname> to the list of directories to
search for #include files.

-inline Inline matrix accessor functions (mx*). The
generated executable may not be compatible
with future versions of the MATLAB C/C++
Math Library or MATLAB C/C++ Graphics
Library.

-l<name> (UNIX) Link with object library lib<name>.

-L<directory> (UNIX) Add <directory> to the list of
directories containing object-library routines.

Table 7-1: mbuild Options (Continued)

Option Description

mbuild

7-22

-lang <language> Specify compiler language. <language> can be c
or cpp. By default, mbuild determines which
compiler (C or C++) to use by inspection of the
source file’s extension. This option overrides
that mechanism. This option is necessary when
you use an unsupported file extension, or when
you pass in all .o files and libraries.

-n No execute mode. Print out any commands that
mbuild would execute, but do not actually
execute any of them.

-nohg Do not link against the MATLAB C/C++
Graphics Library (Handle Graphics).

-O Optimize the object code by including the
optimization flags listed in the options file. If
this option is specified, mbuild appends the
value of options file variables ending in
OPTIMFLAGS with their corresponding base
variable. Note that optimizations are enabled by
default, are disabled by the -g option, but are
reenabled by -O.

-outdir <dirname> Place any generated object, resource, or
executable files in the directory <dirname>. Do
not combine this option with -output if the
-output option gives a full pathname.

-output <resultname> Create an executable named <resultname>. An
appropriate executable extension is
automatically appended. Overrides the mbuild
default executable naming mechanism.

Table 7-1: mbuild Options (Continued)

Option Description

mbuild

7-23

-regsvr (Windows) Use the regsvr32 program to
register the resulting shared library at the end
of compilation. The Compiler uses this option
whenever it produces a COM wrapper file.

-setup Interactively specify the compiler options file to
use as default for future invocations of mbuild
by placing it in
<UserProfile>\Application Data\MathWorks\
MATLAB\R13 (Windows) or $HOME/.matlab/R13
(UNIX). When this option is specified, no other
command line input is accepted.

-U<name> Remove any initial definition of the C
preprocessor symbol <name>. (Inverse of the -D
option.)

-v Verbose; Print the values for important internal
variables after the options file is processed and
all command line arguments are considered.
Prints each compile step and final link step fully
evaluated to see which options and files were
used. Very useful for debugging.

Table 7-1: mbuild Options (Continued)

Option Description

mbuild

7-24

Note Some of these options (-f, -g, and -v) are available on the mcc
command line and are passed along to mbuild. Others can be passed along
using the -M option to mcc. For details on the -M option, see the mcc reference
page.

<name>=<value> (UNIX) Override an options file variable for
variable <name>. If <value> contains spaces,
enclose it in single quotes, e.g., CFLAGS='opt1
opt2'. The definition, <def>, can reference
other variables defined in the options file. To
reference a variable in the options file, prepend
the variable name with a $, e.g.,
CFLAGS='$CFLAGS opt2'.

<name>#<value> Override an options file variable for variable
<name>. If <def> contains spaces, enclose it in
single quotes, e.g., CFLAGS='opt1 opt2'. The
definition, <def>, can reference other variables
defined in the options file. To reference a
variable in the options file, prepend the variable
name with a $, e.g., CFLAGS='$CFLAGS opt2'.

Table 7-1: mbuild Options (Continued)

Option Description

mcc

7-25

7mccPurpose Invoke MATLAB Compiler

Syntax mcc [-options] mfile1 [mfile2 ... mfileN]
[C/C++file1 ... C/C++fileN]

Description mcc is the MATLAB command that invokes the MATLAB Compiler. You can
issue the mcc command either from the MATLAB command prompt (MATLAB
mode) or the DOS or UNIX command line (stand-alone mode).

Command Line Syntax
You may specify one or more MATLAB Compiler option flags to mcc. Most
option flags have a one-letter name. You can list options separately on the
command line, for example:

mcc -m -g myfun

You can group options that do not take arguments by preceding the list of
option flags with a single dash (-), for example:

mcc -mg myfun

Options that take arguments cannot be combined unless you place the option
with its arguments last in the list. For example, these formats are valid:

mcc -m -A full myfun % Options listed separately
mcc -mA full myfun % Options combined, A option last

This format is not valid:

mcc -Am full myfun % Options combined, A option not last

In cases where you have more than one option that takes arguments, you can
only include one of those options in a combined list and that option must be
last. You can place multiple combined lists on the mcc command line.

If you include any C or C++ filenames on the mcc command line, the files are
passed directly to mex or mbuild, along with any Compiler-generated C or C++
files.

Using Macros to Simplify Compilation
The MATLAB Compiler, through its exhaustive set of options, gives you access
to the tools you need to do your job. If you want a simplified approach to

mcc

7-26

compilation, you can use one simple option, i.e., macro, that allows you to
quickly accomplish basic compilation tasks. If you want to take advantage of
the power of the Compiler, you can do whatever you desire to do by choosing
various Compiler options.

Table 7-2, Macro Options, shows the relationship between the macro approach
to accomplish a standard compilation and the multioption alternative.

Understanding a Macro Option. The -m option tells the Compiler to produce a
stand-alone C application. The -m macro is equivalent to the series of options

-t -W main -L C -T link:exe -h libmmfile.mlib

Table 7-2: Macro Options

Macro
Option

Bundle File Creates Option Equivalence

Translate M to C/C++
| Function Wrapper
| | Target Language
| | | Output Stage
| | | | Helper Functions
| | | | |
| | | | | M-File Library
| | | | | |

-m macro_option_m Stand-alone C
application

-t -W main -L C -T link:exe -h libmmfile.mlib

-p macro_option_p Stand-alone
C++
application

-t -W main -L Cpp -T link:exe -h libmmfile.mlib

-x macro_option_x MEX-function -t -W mex -L C -T link:mexlibrary libmatlbmx.mlib

-S macro_option_S Simulink
S-function

-t -W simulink -L C -T link:mex libmatlbmx.mlib

-g macro_option_g Enable debug -G -A debugline:on -O none

mcc

7-27

Table 7-3, -m Macro, shows the options that compose the -m macro and the
information that they provide to the Compiler.

Changing Macro Options. You can change the meaning of a macro option by
editing the corresponding macro_option file bundle file in
<matlab>/toolbox/compiler/bundles. For example, to change the -x macro,
edit the file macro_option_x in the bundles directory.

Setting Up Default Options
If you have some command line options that you wish always to pass to mcc,
you can do so by setting up an mccstartup file. Create a text file containing the
desired command line options and name the file mccstartup. Place this file in
one of two directories:

• The current working directory, or

• Your preferences directory ($HOME/.matlab/R13 on UNIX,
<system root>\profiles\<user>\application data\mathworks\matlab\
R13 on PC)

mcc searches for the mccstartup file in these two directories in the order shown
above. If it finds an mccstartup file, it reads it and processes the options within
the file as if they had appeared on the mcc command line before any actual

Table 7-3: -m Macro

Option Function

-t Translate M code to C/C++ code.

-W main Produce a wrapper file suitable for a stand-alone
application.

-L C Generate C code as the target language.

-T link:exe Create an executable as the output.

-h Automatically, find and compile helper functions
included in the source M-file.

libmmfile.mlib Link to this shared library whenever necessary.

mcc

7-28

command line options. Both the mccstartup file and the -B option are
processed the same way.

Note If you need to change the meaning of a macro to satisfy your individual
requirements, you should create or modify your mccstartup file in the
preferences directory. Changing the file macro_option_x in the bundles
directory changes the option for all Compiler users. To see the name of your
preferences directory, type prefdir at the command prompt.

Setting a MATLAB Path in the Stand-Alone MATLAB Compiler
Unlike the MATLAB version of the Compiler, which inherits a MATLAB path
from MATLAB, the stand-alone version has no initial path. If you want to set
up a default path, you can do so by making an mccpath file. To do this:

1 Create a text file containing the text -I <your_directory_here> for each
directory you want on the default path, and name this file mccpath.
(Alternately, you can call the mccsavepath M-function from MATLAB to
create an mccpath file.)

2 Place this file in your preferences directory. To do so, run the following
commands at the MATLAB prompt:
cd(prefdir); mccsavepath;

These commands save your current MATLAB path to a file named mccpath
in your user preferences directory. (Type prefdir to see the name of your
preferences directory.)

The stand-alone version of the MATLAB Compiler searches for the mccpath file
in your current directory and then your preferences directory. If it finds an
mccpath file, it processes the directories specified within the file and uses them
to initialize its search path. Note that you may still use the -I option on the
command line or in mccstartup files to add other directories to the search path.
Directories specified this way are searched after those directories specified in
the mccpath file.

mcc

7-29

Conflicting Options on Command Line
If you use conflicting options, the Compiler resolves them from left to right,
with the rightmost option taking precedence. For example, using the
equivalencies in Table 7-2, Macro Options,

mcc -m -W none test.m

is equivalent to

mcc -t -W main -L C -T link:exe -h -W none test.m

In this example, there are two conflicting -W options. After working from left to
right, the Compiler determines that the rightmost option takes precedence,
namely, -W none, and the Compiler does not generate a wrapper.

Note Macros and regular options may both affect the same settings and may
therefore override each other depending on their order in the command line.

Handling Full Pathnames
If you specify a full pathname to an M-file on the mcc command line, the
Compiler:

1 Breaks the full name into the corresponding path- and filenames (<path>
and <file>).

2 Replaces the full pathname in the argument list with “-I <path> <file>”.
For example,

mcc -m /home/user/myfile.m

would be treated as
mcc -m -I /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion. For
example, suppose you have two different M-files that are both named myfile.m
and they reside in /home/user/dir1 and /home/user/dir2. The command

mcc -m -I /home/user/dir1 /home/user/dir2/myfile.m

would be equivalent to

mcc

7-30

mcc -m -I /home/user/dir1 -I /home/user/dir2 myfile.m

The Compiler finds the myfile.m in dir1 and compiles it instead of the one in
dir2 because of the behavior of the -I option. If you are concerned that this
might be happening, you can specify the -v option and then see which M-file
the Compiler parses. The -v option prints the full pathname to the M-file.

Note The Compiler produces a warning (specified_file_mismatch) if a file
with a full pathname is included on the command line and it finds it
somewhere else.

Compiling Embedded M-Files
If the M-file you are compiling calls other M-files, you can list the called M-files
on the command line. Doing so causes the MATLAB Compiler to build all the
M-files into a single MEX-file, which usually executes faster than separate
MEX-files. Note, however, that the single MEX-file has only one entry point
regardless of the number of input M-files. The entry point is the first M-file on
the command line. For example, suppose that bell.m calls watson.m.
Compiling with

mcc -x bell watson

creates bell.mex. The entry point of bell.mex is the compiled code from
bell.m. The compiled version of bell.m can call the compiled version of
watson.m. However, compiling as

mcc -x watson bell

creates watson.mex. The entry point of watson.mex is the compiled code from
watson.m. The code from bell.m never gets executed.

As another example, suppose that x.m calls y.m and that y.m calls z.m. In this
case, make sure that x.m is the first M-file on the command line. After x.m, it
does not matter which order you specify y.m and z.m.

mcc

7-31

MATLAB Compiler Option Flags
The MATLAB Compiler option flags perform various functions that affect the
generated code and how the Compiler behaves. Table 7-4, Compiler Option
Categories, shows the categories of options.

The remainder of this reference page is subdivided into sections that
correspond to the Compiler option categories. Each section provides a full
description of all of the options in the category.

Macro Options
The macro options provide a simplified way to accomplish basic compilation
tasks.

-g (Debug). This option is a macro that is equivalent to

-G -A debugline:on -O none

or

-B macro_option_g

Table 7-4: Compiler Option Categories

Category Purpose

Macros The macro options simplify the compilation
process by combining the most common
compilation tasks into single options.

Code Generation These options affect the actual code that
the Compiler generates. For example, -L
specifies the target language as either C or
C++.

Compiler and Environment These options provide information to the
Compiler such as where to put (-d) and find
(-I) particular files.

mbuild/mex These options provide information for the
mbuild and/or mex scripts.

mcc

7-32

In addition to the -G option, the -g option includes the -A debugline:on option.
This will have an impact on performance of the generated code. If you want to
have debugging information, but do not want the performance degradation
associated with the debug line information, use -g -A debugline:off. The -g
option also includes the -O none option, causing all compiler optimizations to
be turned off. If you want to have some optimizations on, you may specify them
after the debug option.

-m (Stand-Alone C). Produce a stand-alone C application. It includes helper
functions by default (-h), and then generates a stand-alone C wrapper
(-W main). In the final stage, this option compiles your code into a stand-alone
executable and links it to the MATLAB C/C++ Math Library (-T link:exe).
For example, to translate an M-file named mymfile.m into C and to create a
stand-alone executable that can be run without MATLAB, use

mcc -m mymfile

The -m option is equivalent to the series of options

-W main -L C -t -T link:exe -h libmmfile.mlib

or

-B macro_option_m

-p (Stand-Alone C++). Produce a stand-alone C++ application. It includes helper
functions by default (-h), and then generates a stand-alone C++ wrapper (-W
main). In the final stage, this option compiles your code into a stand-alone
executable and links it to the MATLAB C/C++ Math Library (-T link:exe).
For example, to translate an M-file named mymfile.m into C++ and to create a
stand-alone executable that can be run without MATLAB, use

mcc -p mymfile

The -p option is equivalent to the series of options

-W main -L Cpp -t -T link:exe -h libmmfile.mlib

or

-B macro_option_p

mcc

7-33

-S (Simulink S-Function). Produce a Simulink S-function that is compatible with
the Simulink S-Function block. For example, to translate an M-file named
mymfile.m into C and to create the corresponding Simulink S-function using
dynamically sized inputs and outputs, use

mcc -S mymfile

The -S option is equivalent to the series of options

-W simulink -L C -t -T link:mex libmatlbmx.mlib

or

-B macro_option_s

-x (MEX-Function). Produce a MEX-function. For example, to translate an M-file
named mymfile.m into C and to create the corresponding MEX-file that can be
called directly from MATLAB, use

mcc -x mymfile

The -x option is equivalent to the series of options

-W mex -L C -t -T link:mexlibrary libmatlbmx.mlib

or

-B macro_option_x

Bundle Files

-B ccom (C COM Object). Produce a C COM object. The -B ccom option is
equivalent to the series of options

-t -W com:<component_name>,<class_name>,<version> -T link:lib
-h libmmfile.mlib -i

-B cexcel (C Excel COM Object). Produce a C Excel COM object. The -B cexcel
option is equivalent to the series of options

-B excel:<component_name>,<class_name>,<version> -T link:lib
-h libmmfile.mlib -b -i

-B csglcom (C Handle Graphics COM Object). Produce a C COM object that uses
Handle Graphics. The -B csglcom option is equivalent to the series of options

mcc

7-34

-B sgl -t -W comhg:<component_name>,<class_name>,<version>
-T link:lib -h libmmfile.mlib -i

-B csglexcel (C Handle Graphics Excel COM Object). Produce a C Excel COM object
that uses Handle Graphics. The -B csglexcel option is equivalent to the series
of options

-B sgl -t -W excelhg:<component_name>,<class_name>,<version>
-T link:lib -h libmmfile.mlib -b -i

-B csglsharedlib (C Handle Graphics Shared Library). Produce a C shared library that
uses Handle Graphics. The -B csglsharedlib option is equivalent to the series
of options

-t -W libhg:<shared_library_name> -T link:lib -h libmmfile.mlib
libmwsglm.mlib

-B cppcom (C++ COM Object). Produce a C++ COM object. The -B cppcom option is
equivalent to the series of options

-B ccom:<component_name>,<class_name>,<version> -L cpp

-B cppexcel (C++ Excel COM Object). Produce a C++ Excel COM object. The
-B cppexcel option is equivalent to the series of options

-B cexcel:<component_name>,<class_name>,<version> -L cpp

-B cppsglcom (C++ Handle Graphics COM Object). Produce a C++ COM object that
uses Handle Graphics. The -B cppsglcom option is equivalent to the series of
options

-B csglcom:<component_name>,<class_name>,<version> -L cpp

-B cppsglexcel (C++ Handle Graphics Excel COM Object). Produce a C++ Excel COM
object that uses Handle Graphics. The -B cppsglexcel option is equivalent to
the series of options

-B csglexcel:<component_name>,<class_name>,<version> -L cpp

-B cpplib (C++ Library). Produce a C++ library. The -B cpplib option is
equivalent to the series of options

-B csharedlib:<shared_library_name> -L cpp -T compile:lib

mcc

7-35

-B csharedlib (C Shared Library). Produce a C shared library. The -B csharedlib
option is equivalent to the series of options

-t -W lib:<shared_library_name> -T link:lib -h libmmfile.mlib

-B pcode (MATLAB P-Code). Produce MATLAB P-code.

The -B pcode option is equivalent to the series of options

-t -L P

-B sgl (Stand-Alone C Graphics Library). Produce a stand-alone C application that
uses Handle Graphics.

The -B sgl option is equivalent to the series of options

-m -W mainhg libmwsglm.mlib

-B sglcpp (Stand-Alone C++ Graphics Library). Produce a stand-alone C++
application that uses Handle Graphics.

The -B sglcpp option is equivalent to the series of options

-p -W mainhg libmwsglm.mlib

Code Generation Options

-A (Annotation Control for Output Source). Control the type of annotation in the
resulting C/C++ source file. The types of annotation you can control are

• M-file code and/or comment inclusion (annotation)

• #line preprocessor directive inclusion (line)

• Whether error messages report the source file and line number (debugline)

To control the M-file code that is included in the generated C/C++ source, use

mcc -A annotation:type

mcc

7-36

Table 7-5, Code/Comment Annotation Options, shows the available annotation
options.

To control the #line preprocessor directives that are included in the generated
C/C++ source, use

mcc -A line:setting

Table 7-6, Line Annotation Options, shows the available #line directive
settings.

To control if run-time error messages report the source file and line number,
use

mcc -A debugline:on

Table 7-5: Code/Comment Annotation Options

Type Description

all Provides the complete source of the M-file interleaved
with the generated C/C++ source. The default is all.

comments Provides all of the comments from the M-file
interleaved with the generated C/C++ source.

none No comments or code from the M-file are added to code.

Table 7-6: Line Annotation Options

Setting Description

on Adds #line preprocessor directives to the generated
C/C++ source code to enable source M-file debugging.
Note: The page width option is ignored when this is on.

off Adds no #line preprocessor directives to the generated
C/C++ source code. The default is off.

mcc

7-37

Table 7-7, Run-Time Error Annotation Options, shows the available debugline
directive settings.

For example, to include all of your M-code, including comments, in the
generated file and the standard #line preprocessor directives, use

mcc -A annotation:all -A line:on
or
mcc -A line:on (The default is all for code/comment inclusion.)

To include none of your M-code and no #line preprocessor directives, use

mcc -A annotation:none -A line:off

To include the standard #line preprocessor directives in your generated C/C++
source code as well as source file and line number information in your run-time
error messages, use

mcc -A line:on -A debugline:on

-F <option> (Formatting). Control the formatting of the generated code. Table 7-8,
Formatting Options, shows the available options.

Table 7-7: Run-Time Error Annotation Options

Setting Description

on Specifies the presence of source file and line number
information in run-time error messages.

off Specifies no source file and line number information in
run-time error messages. The default is off.

Table 7-8: Formatting Options

<Option> Description

list Generates a table of all the available formatting
options.

expression-indent:n Sets the number of spaces of indentation for all
expressions to n, where n is an integer. The
default indent is 4.

mcc

7-38

-l (Line Numbers) . Generate C/C++ code that prints filename and line numbers
on run-time errors. This option flag is useful for debugging, but causes the
executable to run slightly slower. This option is equivalent to

mcc -A debugline:on

-L <language> (Target Language). Specify the target language of the compilation.
Possible values for language are C or Cpp. The default is C. Note that these
values are case insensitive.

-O <option> (Optimization Options). Optimize your M-file source code so that the
performance of the generated C/C++ code may be faster than the performance
of the M-code in the MATLAB interpreter. Table 7-9, Optimization Options,
shows the available options.

page-width:n Sets maximum width of generated code to n,
where n is an integer. The default width is 80.

statement-indent:n Sets the number of spaces of indentation for all
statements to n, where n is an integer. The
default indent is 2.

Table 7-9: Optimization Options

<Option> Description

-O list Lists all available optimizations.

-O all Turns on all optimizations; all is the
default. Equivalent to -B opt_bundle_all.

Table 7-8: Formatting Options (Continued)

<Option> Description

mcc

7-39

-u (Number of Inputs). Provide more control over the number of valid inputs for
your Simulink S-function. This option specifically sets the number of inputs (u)
for your function. If -u is omitted, the input will be dynamically sized. (Use this
with the -S option.)

-W <type> (Function Wrapper). Control the generation of function wrappers for a
collection of Compiler-generated M-files. You provide a list of functions and the
Compiler generates the wrapper functions and any appropriate global variable
definitions. Table 7-10, Function Wrapper Types, shows the valid options.

-O none Turns off all optimizations. Equivalent to
-B opt_bundle_none.

-O <opt option>:[on|off] Enables or disables individual
optimizations, where
<opt option> is:

• array_indexing

• fold_mxarrays

• fold_non_scalar_mxarrays

• fold_scalar_mxarrays

• optimize_conditionals

• optimize_integer_for_loops

• percolate_simple_types

• speculate

Table 7-9: Optimization Options (Continued)

<Option> Description

Table 7-10: Function Wrapper Types

<Type> Description

mex Produces a mexFunction() interface.

main Produces a POSIX shell main() function.

simulink Produces a Simulink C MEX S-function
interface.

mcc

7-40

Caution When generating function wrappers, you must specify all M-files
that are being linked together on the command line. These files are used to
produce the initialization and termination functions as well as global variable
definitions. If the functions are not specified in this manner, undefined
symbols will be produced at link time or run-time crashes may occur.

lib:<string> Produces an initialization and termination
function for use when compiling this
Compiler-generated code into a larger
application. This option also produces a
header file containing prototypes for all
public functions in all M-files specified.
<string> becomes the base (file) name for the
generated C/C++ and header file. Creates a
.exports file that contains all nonstatic
function names.

com:<component_name>[,<class_name>
[,<major>.<minor>]]

Produces a COM object from MATLAB
M-files.

comhg:<component_name>[,<class_name>
[,<major>.<minor>]]

Produces a Handle Graphics COM object from
MATLAB M-files.

excel:<component_name>[,<class_name>
[,<major>.<minor>]]

Produces a COM object from MATLAB
M-files.

excelhg:<component_name>[,<class_name>
[,<major>.<minor>]]

Produces a Handle Graphics COM object from
MATLAB M-files.

none Does not produce a wrapper file. The default
is none.

Table 7-10: Function Wrapper Types (Continued)

<Type> Description

mcc

7-41

-y (Number of Outputs). Provide more control over the number of valid outputs for
your Simulink S-function. This option specifically sets the number of outputs
(y) for your function. If -y is omitted, the output will be dynamically sized. (Use
this with the -S option.)

Compiler and Environment Options

 -b (Visual Basic File). Generate a Visual Basic file (.bas) that contains the
Microsoft Excel Formula Function interface to the Compiler-generated COM
object.When imported into the workbook Visual Basic code, this code allows the
MATLAB function to be seen as a cell formula function.

-B <filename>:[<a1>,<a2>,...,<an>] (Bundle of Compiler Settings). Replace
-B <filename>:[<a1>,<a2>,...,<an>] on the mcc command line with the
contents of the specified file. The file should contain only mcc command line
options and corresponding arguments and/or other filenames. The file may
contain other -B options.

A bundle file can include replacement parameters for Compiler options that
accept names and version numbers. For example, there is a bundle file for C
shared libraries, csharedlib, that consists of

-t -W lib:%1% -T link:lib -h libmmfile.mlib

To invoke the Compiler to produce a C shared library using this bundle, you
would use

mcc -B csharedlib:mysharedlib <f1>,<f2>,...

In general, each %n% in the bundle file will be replaced with the corresponding
option specified to the bundle file. Use %% to include a % character. It is an error
to have too many or too few options to the bundle file.

You can place options that you always set in an mccstartup file. For more
information, see “Setting Up Default Options” on page 7-27.

mcc

7-42

Note You can use the -B option with a replacement expression as is at the
DOS or UNIX prompt. To use -B with a replacement expression at the
MATLAB prompt, you must enclose the expression that follows the -B in
single quotation marks. For example:

>>mcc -B 'csharedlib:libtimefun' weekday data tic calendar toc

This table shows the available bundle files.

Bundle File Name Contents

ccom -t -W com:<component_name>,<class_name>,<version> -T link:lib
-h libmmfile.mlib -i

cexcel -B excel:<component_name>,<class_name>,<version> -T link:lib
-h libmmfile.mlib -b -i

csglcom -B sgl -t -W comhg:<component_name>,<class_name>,<version>
-T link:lib -h libmmfile.mlib

csglexcel -B sgl -t -W excelhg:<component_name>,<class_name>,<version>
-T link:lib -h libmmfile.mlib -b -i

csglsharedlib -t -W libhg:<shared_library_name> -T link:lib -h libmmfile.mlib
libmwsglm.mlib

cppcom -B ccom:<component_name>,<class_name>,<version> -L cpp

cppexcel -B cexcel:<component_name>,<class_name>,<version> -L cpp

cppsglcom -B chgcom:<component_name>,<class_name>,<version> -L cpp

cppsglexcel -B csglexcel:<component_name>,<class_name>,<version> -L cpp

cpplib -B csharedlib:<shared_library_name> -L cpp -T compile:lib

csharedlib -t -W lib:<shared_library_name> -T link:lib -h libmmfile.mlib

macro_default -O all

macro_option_g -G -A debugline:on -O none

mcc

7-43

-c (C Code Only). When used with a macro option, generate C code but do not
invoke mex or mbuild, i.e., do not produce a MEX-file or stand-alone
application. This is equivalent to -T codegen placed at the end of the mcc
command line.

-d <directory> (Output Directory). Place the output files from the compilation in the
directory specified by the -d option.

-h (Helper Functions). Compile helper functions. Any helper functions that are
called will be compiled into the resulting MEX or stand-alone application. The
-m option automatically compiles all helper functions, so -m effectively calls -h.

Using the -h option is equivalent to listing the M-files explicitly on the mcc
command line.

macro_option_m -W main -L C -t -T link:exe -h libmmfile.mlib

macro_option_p -W main -L cpp -t -T link:exe -h libmmfile.mlib

macro_option_S -W simulink -L C -t -T link:mex libmatlbmx.mlib

macro_option_x -W mex -L C -t -T link:mexlibrary libmatlbmx.mlib

opt_bundle_all -O fold_scalar_mxarrays:on
-O fold_non_scalar_mxarrays:on
-O optimize_integer_for_loops:on
-O array_indexing:on
-O optimize_conditionals:on

opt_bundle_none -O fold_scalar_mxarrays:off
-O fold_non_scalar_mxarrays:off
-O optimize_integer_for_loops:off
-O array_indexing:off
-O optimize_conditionals:off
-O speculate:off

pcode -t -L P

sgl -m -W mainhg libmwsglm.mlib

sglcpp -p -W mainhg libmwsglm.mlib

Bundle File Name Contents

mcc

7-44

The -h option purposely does not include built-in functions or functions that
appear in the MATLAB M-File Math Library portion of the C/C++ Math
Libraries. This prevents compiling functions that are already part of the C/C++
Math Libraries. If you want to compile these functions as helper functions, you
should specify them explicitly on the command line. For example, use

mcc -m minimize_it fminsearch

instead of

mcc -m -h minimize_it

-i (Include Exported Interfaces). Cause the Compiler to include only the M-files that
are specified on the command line as exported interfaces. If additional M-files
are compiled as a result of being located by the -h option, they are not included
in the exported interface that is produced by the MATLAB Compiler.

-I <directory> (Directory Path). Add a new directory path to the list of included
directories. Each -I option adds a directory to the end of the current search
path. For example,

-I <directory1> -I <directory2>

would set up the search path so that directory1 is searched first for M-files,
followed by directory2. This option is important for stand-alone compilation
where the MATLAB path is not available.

-o <outputfile>. Specify the basename of the final executable output (stand-alone
applications only) of the Compiler. A suitable, possibly platform-dependent,
extension is added to the specified basename (e.g., .exe for PC stand-alone
applications).

Note You cannot use this option to specify a different name for a MEX-file.

-t (Translate M to C/C++). Translate M-files specified on the command line to
C/C++ files.

-T <target> (Output Stage). Specify the desired output stage. Table 7-11, Output
Stage Options, gives the possible values of target.

mcc

7-45

Table 7-11: Output Stage Options

<Target> Description

codegen Translates M-files to C/C++ files and generates a
wrapper file. The default is codegen.

compile:mex Same as codegen plus compiles C/C++ files to
object form suitable for linking into a Simulink
S-function MEX-file.

compile:mexlibrary Same as codegen plus compiles C/C++ files to
object form suitable for linking into an ordinary
(non-S-function) MEX-file.

compile:exe Same as codegen plus compiles C/C++ files to
object form suitable for linking into a standalone
executable.

compile:lib Same as codegen plus compiles C/C++ files to
object form suitable for linking into a shared
library/DLL.

link:mex Same as compile:mex plus links object files into a
Simulink S-function MEX-file.

link:mexlibrary Same as compile:mexlibrary plus links object
files into an ordinary (non-S-function) MEX-file.

link:exe Same as compile:exe plus links object files into a
standalone executable.

link:lib Same as compile:lib plus links object files into a
shared library/DLL.

mex and mexlibrary use the mex script to build a MEX-file; exe uses
the mbuild script to build an executable; lib uses mbuild to build a
shared library.

mcc

7-46

-v (Verbose). Display the steps in compilation, including

• The Compiler version number

• The source filenames as they are processed

• The names of the generated output files as they are created

• The invocation of mex or mbuild

The -v option passes the -v option to mex or mbuild and displays information
about mex or mbuild.

-w (Warning). Display warning messages. Table 7-12, Warning Option, shows
the various ways you can use the -w option.

Table 7-12: Warning Option

Syntax Description

(no -w option) Default; displays only serious warnings.

-w list Generates a table that maps <string> to
warning message for use with enable,
disable, and error. Appendix B, “Error and
Warning Messages” lists the same
information.

-w Enables complete warnings.

-w disable[:<string>] Disables specific warning associated with
<string>. Appendix B, “Error and Warning
Messages” lists the valid <string> values.
Leave off the optional :<string> to apply the
disable action to all warnings.

mcc

7-47

-Y <license.dat File>. Use license information in license.dat file when checking
out a Compiler license.

mbuild/mex Options

-f <filename> (Specifying Options File). Use the specified options file when calling
mex or mbuild. This option allows you to use different compilers for different
invocations of the MATLAB Compiler. This option is a direct pass-through to
the mex or mbuild script. See “External Interfaces/API” in the MATLAB
documentation for more information about using this option with the mex
script.

Note Although this option works as documented, we suggest that you use
mex -setup or mbuild -setup to switch compilers.

-G (Debug Only). Cause mex or mbuild to invoke the C/C++ compiler with the
appropriate C/C++ compiler options for debugging. You should specify -G if you
want to debug the MEX-file or stand-alone application with a debugger.

-M "string" (Direct Pass Through). Pass string directly to the mex or mbuild script.
This provides a useful mechanism for defining compile-time options, e.g.,
-M "-Dmacro=value".

-w enable[:<string>] Enables specific warning associated with
<string>. Appendix B, “Error and Warning
Messages” lists the valid <string> values.
Leave off the optional :<string> to apply the
enable action to all warnings.

-w error[:<string>] Treats specific warning associated with
<string> as error. Leave off the optional
:<string> to apply the error action to all
warnings.

Table 7-12: Warning Option (Continued)

Syntax Description

mcc

7-48

Note Multiple -M options do not accumulate; only the last -M option is used.

-z <path> (Specifying Library Paths). Specify the path to use for library and include
files. This option uses the specified path for compiler libraries instead of the
path returned by matlabroot.

Examples Make a C translation and a MEX-file for myfun.m:

mcc -x myfun

Make a C translation and a stand-alone executable for myfun.m:

mcc -m myfun

Make a C++ translation and a stand-alone executable for myfun.m:

mcc -p myfun

Make a C translation and a Simulink S-function for myfun.m (using
dynamically sized inputs and outputs):

mcc -S myfun

Make a C translation and a Simulink S-function for myfun.m (explicitly calling
for one input and two outputs):

mcc -S -u 1 -y 2 myfun

Make a C translation and stand-alone executable for myfun.m. Look for
myfun.m in the /files/source directory, and put the resulting C files and
executable in the /files/target directory:

mcc -m -I /files/source -d /files/target myfun

Make a C translation and a MEX-file for myfun.m. Also translate and include
all M-functions called directly or indirectly by myfun.m. Incorporate the full
text of the original M-files into their corresponding C files as C comments:

mcc -x -h -A annotation:all myfun

Make a generic C translation of myfun.m:

mcc

7-49

mcc -t -L C myfun

Make a generic C++ translation of myfun.m:

mcc -t -L Cpp myfun

Make a C MEX wrapper file from myfun1.m and myfun2.m:

mcc -W mex -L C myfun1 myfun2

Make a C translation and a stand-alone executable from myfun1.m and
myfun2.m (using one mcc call):

mcc -m myfun1 myfun2

Make a C translation and a stand-alone executable from myfun1.m and
myfun2.m (by generating each output file with a separate mcc call):

mcc -t -L C myfun1 % Yields myfun1.c
mcc -t -L C myfun2 % Yields myfun2.c
mcc -W main -L C myfun1 myfun2 % Yields myfun1_main.c
mcc -T compile:exe myfun1.c % Yields myfun1.o
mcc -T compile:exe myfun2.c % Yields myfun2.o
mcc -T compile:exe myfun1_main.c % Yields myfun1_main.o
mcc -T link:exe myfun1.o myfun2.o myfun1_main.o

Note On PCs, filenames ending with .o above would actually end with .obj.

Compile plus1.m into an Excel add-in:

mcc -B 'cexcel:addin:addin:1.0' plus1.m

mcc

7-50

A
MATLAB Compiler
Quick Reference

This appendix summarizes the Compiler options and provides brief descriptions of how to perform
common tasks.

Common Uses of the Compiler (p. A-2) Brief summary of how to use the Compiler

mcc (p. A-4) Quick reference table of Compiler options

A MATLAB Compiler Quick Reference

A-2

Common Uses of the Compiler
This section summarizes how to use the MATLAB Compiler to generate some
of its more standard results. The first four examples take advantage of the
macro options.

Create a MEX-File. To translate an M-file named mymfile.m into C and to create
the corresponding C MEX-file that can be called directly from MATLAB, use

mcc -x mymfile

Create a Simulink S-Function. To translate an M-file named mymfile.m into C and
to create the corresponding Simulink S-function using dynamically sized
inputs and outputs, use

mcc -S mymfile

Create a Stand-Alone C Application. To translate an M-file named mymfile.m into C
and to create a stand-alone executable that can be run without MATLAB, use

mcc -m mymfile

Create a Stand-Alone C++ Application. To translate an M-file named mymfile.m
into C++ and to create a stand-alone executable that can be run without
MATLAB, use

mcc -p mymfile

Create a Stand-Alone C Graphics Library Application. To translate an M-file named
mymfile.m that contains Handle Graphics functions into C and to create a
stand-alone executable that can be run without MATLAB, use

mcc -B sgl mymfile

Create a Stand-Alone C++ Graphics Library Application. To translate an M-file named
mymfile.m that contains Handle Graphics functions into C++ and to create a
stand-alone executable that can be run without MATLAB, use

mcc -B sglcpp mymfile

Create a C Library. To create a C library, use

mcc -m -W lib:libfoo -T link:lib foo.m

Common Uses of the Compiler

A-3

Create a C++ Library. To create a C++ library, use

mcc -p -W lib:libfoo -T compile:lib foo.m

Create a C Shared Library. To create a C shared library that performs specialized
calculations that you can call from your own programs, use

mcc -W lib:mylib -L C -t -T link:lib -h Function1 Function2

Create MATLAB P-Code. To translate an M-file named mymfile.m into MATLAB
P-code, use

mcc -B pcode mymfile

Note You can add the -g option to any of these for debugging purposes.

A MATLAB Compiler Quick Reference

A-4

mcc
Bold entries in the Comment/Options column indicate default values.

Table A-1: mcc Quick Reference

Option Description Comment/Options

A annotation:type Controls M-file
code/comment inclusion in
generated C/C++ source

type = all
comments
none

A debugline:setting Controls the inclusion of
source filename and line
numbers in run-time error
messages

setting = on
off

A line:setting Controls the #line
preprocessor directives
included in the generated
C/C++ source

setting = on
off

b Generates a Visual Basic
file containing the Microsoft
Excel Formula Function
interface to the
Compiler-generated COM
object.

B filename Replaces -B filename on
the mcc command line with
the contents of filename

The file should contain only mcc
command line options.

c When used with a macro
option, generates C code
only

Overrides -T option; equivalent to
-T codegen

d directory Places output in specified
directory

f filename Uses the specified options
file, filename

mex -setup and mbuild -setup are
recommended.

mcc

A-5

F option Specifies format parameters option = list
expression-indent:n
page-width:n
statement-indent:n

g Generates debugging
information

Equivalent to
-G -A debugline:on -O none

G Debug only. Simply turn
debugging on, so debugging
symbol information is
included.

h Compiles helper functions

i Causes Compiler to include
only M-files specified on the
command line as exported
interfaces.

I directory Adds new directory to path

l Generates code that reports
file and line numbers on
run-time errors

Equivalent to
-A debugline:on

L language Specifies output target
language

language = C
Cpp

m Macro to generate a C
stand-alone application

Equivalent to
-W main -L C -t -T link:exe
-h libmmfile.mlib

M string Passes string to mex or
mbuild

Use to define compile-time options.

o outputfile Specifies name/location of
final executable

Table A-1: mcc Quick Reference (Continued)

Option Description Comment/Options

A MATLAB Compiler Quick Reference

A-6

O option:[on|off]
O all
O none
O list

Build an optimized
executable.

option =
array_indexing
fold_mxarrays
fold_non_scalar_mxarrays
fold_scalar_mxarrays
optimize_conditionals
optimize_integer_for_loops
percolate_simple_types
speculate

p Macro to generate a C++
stand-alone application

Equivalent to
-W main -L Cpp -t -T link:exe
-h libmmfile.mlib

S Macro to generate Simulink
S-function

Equivalent to
-W simulink -L C -t -T link:mex
libmatlbmx.mlib

t Translates M code to C/C++
code

T target Specifies output stage target = codegen
compile:bin
link:bin

where bin = mex
exe
lib

u number Specifies number of inputs
for Simulink S-function

v Verbose; Displays
compilation steps

Table A-1: mcc Quick Reference (Continued)

Option Description Comment/Options

mcc

A-7

w option Displays warning messages option = list
level
level:string

where level = disable
enable
error

No w option displays only serious
warnings (default).

W type Controls the generation of
function wrappers

type = mex
main
simulink
lib:string
com:compnm[,clnm[,mj.mn]]

comhg:compnm[,clnm[,mj.mn]]

excel:compnm[,clnm[,mj.mn]]

excelhg:compnm[,clnm[,mj.mn]]

x Macro to generate
MEX-function

Equivalent to
-W mex -L C -t -T
link:mexlibrary libmatlbmx.mlib

y number Specifies number of outputs
for Simulink S-function

Y licensefile Uses licensefile when
checking out a Compiler
license

z path Specifies path for library
and include files

? Displays help message

Table A-1: mcc Quick Reference (Continued)

Option Description Comment/Options

A MATLAB Compiler Quick Reference

A-8

B
Error and Warning
Messages

This appendix lists and describes error messages and warnings generated by the MATLAB Compiler.
Compile-time messages are generated during the compile or link phase. It is useful to note that most
of these compile-time error messages should not occur if MATLAB can successfully execute the
corresponding M-file. Run-time messages are generated when the executable program runs.

Use this reference to

• Confirm that an error has been reported

• Determine possible causes for an error

• Determine possible ways to correct an error

When using the MATLAB Compiler, if you receive an internal error message, record the specific
message and report it to Technical Support at The MathWorks at support@mathworks.com.

Compile-Time Errors (p. B-2) Error messages generated at compile time

Warning Messages (p. B-11) User-controlled warnings generated by the Compiler

Run-Time Errors (p. B-18) Errors generated by the Compiler into your code

B Error and Warning Messages

B-2

Compile-Time Errors
Error: An error occurred while shelling out to mex/mbuild (error code = errorno). Unable to
build executable (specify the -v option for more information). The Compiler reports this
error if mbuild or mex generates an error.

Error: An error occurred writing to file "filename": reason. The file could not be
written. The reason is provided by the operating system. For example, you may
not have sufficient disk space available to write the file.

Error: Cannot recompile M-file "filename" because it is already in library "libraryname". A
procedure already exists in a library that has the same name as the M-file that
is being compiled. For example:

mcc -x sin.m % Incorrect

Error: Cannot write file "filename" because MCC has already created a file with that name, or
a file with that name was specified as a command line argument. The Compiler has
been instructed to generate two files with the same name. For example:

mcc -W lib:liba liba -t % Incorrect

Error: Could not check out a Compiler license. No additional Compiler licenses are
available for your workgroup.

Error: Could not find license file "filename". (Windows only) The license.dat file
could not be found in <MATLAB>\bin.

Error: Could not run mbuild. The MATLAB C/C++ Math Library must be installed in order to
build stand-alone applications. Install the MATLAB C/C++ Math Library.

Error: File: "filename" not found. A specified file could not be found on the path.
Verify that the file exists and that the path includes the file’s location. You can
use the -I option to add a directory to the search path

Error: File: "filename" is a script M-file which cannot be compiled with the current Compiler.
The MATLAB Compiler cannot compile script M-files. To learn how to convert
script M-files to function M-files, see “Converting Script M-Files to Function
M-Files” on page 3-10.

Error: File: filename Line: # Column: # != is not a MATLAB operator. Use ~= instead. Use
the MATLAB relational operator ~= (not equal).

Compile-Time Errors

B-3

Error: File: filename Line: # Column: # () indexing must appear last in an index expression.
If you use ordinary array indexing () to index into an expression, it must be
last in the index expression. For example, you can use X(1).value and
X{2}(1), but you cannot use X.value(1) or X(1){2}.

Error: File: filename Line: # Column: # A CONTINUE may only be used within a FOR or WHILE
loop. Use Continue to pass control to the next iteration of a for or while loop.

Error: File: filename Line: # Column: # A function declaration cannot appear within a script
M-file. There is a function declaration in the file to be compiled, but it is not at
the beginning of the file. Scripts cannot have any function declarations;
function M-files must start with a function.

Error: File: filename Line: # Column: # Assignment statements cannot produce a result. An
assignment statement cannot be used in a place where an expression, but not
a statement, is expected. In particular, this message often identifies errors
where an assignment was used, but an equality test was intended. For
example:

if x == y, z = w; end % Correct
if x = y, z = w; end % Incorrect

Error: File: filename Line: # Column: # A variable cannot be made storageclass1 after being
used as a storageclass2. You cannot change a variable’s storage class (global/
local/persistent). Even though MATLAB allows this type of change in scope, the
Compiler does not.

Error: File: filename Line: # Column: # An array for multiple LHS assignment must be a vector.
If the left-hand side of a statement is a multiple assignment, the list of
left-hand side variables must be a vector. For example:

[p1, p2, p3] = myfunc(a) % Correct
[p1; p2; p3] = myfunc(a) % Incorrect

Error: File: filename Line: # Column: # An array for multiple LHS assignment cannot be
empty. If the left-hand side of a statement is a multiple assignment, the list of
left-hand side variables cannot be empty. For example:

[p1, p2, p3] = myfunc(a) % Correct
[] = myfunc(a) % Incorrect

B Error and Warning Messages

B-4

Error: File: filename Line: # Column: # An array for multiple LHS assignment cannot contain
token. If the left-hand side of a statement is a multiple assignment, the vector
cannot contain this token. For example, you cannot assign to constants.

[p1] = myfunc(a) % Correct
[3] = myfunc(a) % Incorrect

Error: File: filename Line: # Column: # Expected a variable, function, or constant, found
"string". There is a syntax error in the specified line. See the online MATLAB
Function Reference pages.

Error: File: filename Line: # Column: # Expected one of , ; % or EOL, got "string". There is
a syntax error in the specified line. See the online MATLAB Function
Reference pages.

Error: File: filename Line: # Column: # Functions cannot be indexed using {} or . indexing.
You cannot use the cell array constructor, {}, or the structure field access
operator, ., to index into a function.

Error: File: filename Line: # Column: # Indexing expressions cannot return multiple results.
There is an assignment in which the left-hand side takes multiple values, but
the right-hand side is not a function call but rather a structure access. For
example:

[x, y] = f(z) % Correct
[x, y] = f.z % Incorrect

Error: File: filename Line: # Column: # Invalid multiple left-hand-side assignment. For
example, you try to assign to constants

[] = sin(1); % Incorrect

Error: File: filename Line: # Column: # MATLAB assignment cannot be nested. You cannot
use a syntax such as x = y = 2. Use y = 2, x = y instead.

Error: File: filename Line: # Column: # Missing operator, comma, or semicolon. There is a
syntax error in the file. Syntactically, an operator, a comma, or a semicolon is
expected, but is missing. For example:

if x == y, z = w; end % Correct
if x == y, z = w end % Incorrect

Compile-Time Errors

B-5

Error: File: filename Line: # Column: # Missing variable or function. An illegal name was
used for a variable or function. For example:

x % Correct
_x % Incorrect

Error: File: filename Line: # Column: # Only functions can return multiple values. In this
example, foo must be a function, it cannot be a variable.

[a, b] = foo;

Error: File: filename Line: # Column: # "string1" expected, "string2" found. There is a
syntax error in the specified line. See the online MATLAB Function Reference
pages accessible from the Help browser.

Error: File: filename Line: # Column: # The end operator can only be used within an array
index expression. You can use the end operator in an array index expression such
as sum(A(:, end)). You cannot use the end operator outside of such an
expression, for example: y = 1 + end.

Error: File: filename Line: # Column: # The name "parametername" occurs twice as an input
parameter. The variable names specified on the function declaration line must
be unique. For example:

function foo(bar1, bar2) % Correct
function foo(bar, bar) % Incorrect

Error: File: filename Line: # Column: # The name "parametername" occurs twice as an output
parameter. The variable names specified on the function declaration line must
be unique. For example:

function [bar1, bar2] = foo % Correct
function [bar, bar] = foo % Incorrect

Error: File: filename Line: # Column: # The "operatorname" operator may only produce a
single output. The primitive operator produces only a single output. For
example:

x = 1:10; % Correct
[x, y] = 1:10; % Incorrect

B Error and Warning Messages

B-6

Error: File: filename Line: # Column: # The PERSISTENT declaration must precede any use of
the variable variablename. In the text of the function, there is a reference to the
variable before the persistent declaration.

Error: File: filename Line: # Column: # The single colon operator (:) can only be used within an
array index expression. You can only use the : operator by itself as an array
index. For example: A(:) = 5; is okay, but y = :; is not.

Error: File: filename Line: # Column: # The variable variablename was mentioned more than
once as an input. The argument list has a repeated variable. For example:

function y = myfun(x, x) % Incorrect

Error: File: filename Line: # Column: # The variable variablename was mentioned more than
once as an output. The return value vector has a repeated variable. For example:

function [x, x] = myfun(y) % Incorrect

Error: File: filename Line: # Column: # This statement is incomplete. Variable arguments cannot
be made global or persistent. The variables varargin and varargout are not like
other variables. They cannot be declared either global or persistent. For
example:

global varargin % Incorrect

Error: File: filename Line: # Column: # Variable argument (varargin) must be last in input
argument list. The function call must specify the required arguments first
followed by varargin. For example:

function [out1, out2] = example1(a, b, varargin)% Correct
function [out1, out2] = example1(a, varargin, b)% Incorrect

Error: File: filename Line: # Column: # Variable argument (varargout) must be last in output
argument list. The function call must specify the required arguments first
followed by varargout. For example:

function [i, j, varargout]= ex2(x1, y1, x2, y2, val)% Correct
function [i, varargout, j]= ex2(x1, y1, x2, y2, val)% Incorrect

Error: File: filename Line: # Column: # variablename has been declared both as GLOBAL and
PERSISTENT. Declare variables as either global or persistent.

Compile-Time Errors

B-7

Error: Found illegal whitespace character in command line option: "string". The strings on the
left and right side of the space should be separate arguments to MCC. For example:

mcc('-A', 'none') % Correct
mcc('-A none') % Incorrect

Error: Improper usage of option -optionname. Type "mcc -?" for usage information. You
have incorrectly used a Compiler option. For more information about Compiler
options, see “MATLAB Compiler Option Flags” on page 7-31 or type mcc -? at
the command prompt.

Error: "languagename" is not a known language. The dialect option was given a
language argument for which there is no support yet. For example:

mcc -m -D japanese sample.m % Correct
mcc -m -D german sample.m % Incorrect

Error: libraryname library not found. MATLAB has been installed incorrectly.

Error: MEX-File "mexfilename" cannot be compiled into P-Code. Only M-files can be
compiled into P-code; MEX-files cannot be compiled into P-code.

Error: No source files were specified (-? for help). You must provide the Compiler
with the name of the source file(s) to compile.

Error: On UNIX, the name of an MLIB-file must begin with the letters "lib". 'filename' does not
adhere to this rule. The mlib file specified on the command line does not start
with the letters “lib” and the file being compiled uses procedures in that library.

Error: "optionname" is not a valid -option option argument. You must use an
argument that corresponds to the option. For example:

mcc -L Cpp % Correct
mcc -L COBOL % Incorrect

Error: Out of memory. Typically, this message occurs because the Compiler
requests a larger segment of memory from the operating system than is
currently available. Adding additional memory to your system could alleviate
this problem.

Error: Previous warning treated as error. When you use the -w error option, this
error displays immediately after a warning message.

B Error and Warning Messages

B-8

Error: The argument after the -option option must contain a colon. The format for this
argument requires a colon. For more information, see “MATLAB Compiler
Option Flags” on page 7-31 or type mcc -? at the command prompt.

Error: The environment variable MATLAB must be set to the MATLAB root directory. On
UNIX, the MATLAB and LM_LICENSE_FILE variables must be set. The mcc shell
script does this automatically when it is called the first time.

Error: The file filename cannot be written. When generating an mlib file, the
Compiler cannot write out the mlib file.

Error: The license manager failed to initialize (error code is errornumber). You do not
have a valid Compiler license or no additional Compiler licenses are available.

Error: The option -option is invalid in modename mode (specify -? for help). The specified
option is not available.

Error: The option -option must be immediately followed by whitespace (e.g.
"proper_example_usage"). These options require additional information, so they
cannot be combined.

-A, -B, -d, -f, -F, -I, -L, -M, -o, -T, -u, -W, -x, -y, -Y, -z

For example, you can use mcc -vc, but you cannot use
mcc -Ac annotation:all.

Error: The options specified will not generate any output files.
Please use one of the following options to generate an executable output file:
-x (generates a MEX-file executable using C)
-m (generates a stand-alone executable using C)
-p (generates a stand-alone executable using C++)
-S (generates a Simulink MEX S-function using C)
-B sgl (generates a stand-alone graphics library executable using C (requires the SGL))
-B sglcpp (generates a stand-alone graphics library executable using C++ (requires the SGL))
-B pcode (generates a MATLAB P-code file)
Or type mcc -? for more usage information. Use one of these options or another
option that generates an output file(s). See “MATLAB Compiler Option Flags”
on page 7-31 or type mcc -? at the command prompt for more information.

Compile-Time Errors

B-9

Error: The specified file "filename" cannot be read. There is a problem with your
specified file. For example, the file is not readable because there is no read
permission.

Error: The -option option cannot be combined with other options. The -V2.0 option
must appear separate from other options on the command line. For example:

mcc -V2.0 -L Cpp % Correct
mcc -V2.0L Cpp % Incorrect

Error: The -optionname option requires an argument (e.g. "proper_example_usage"). You
have incorrectly used a Compiler option. For more information about Compiler
options, see “MATLAB Compiler Option Flags” on page 7-31 or type mcc -? at
the command prompt.

Error: This version of MCC does not support the creation of C++ MEX code. You cannot
create C++ MEX functions with the current Compiler.

Error: Unable to open file "filename":<string>. There is a problem with your specified
file. For example, there is no write permission to the output directory, or the
disk is full.

Error: Unable to set license linger interval (error code is errornumber). A license
manager failure has occurred. Contact Technical Support at The MathWorks
with the full text of the error message.

Error: Uninterpretable number of inputs set on command line "commandline". When
generating a Simulink S-function, the inputs specified on the command line
was not a number. For example:

mcc -S -u 2 sample.m % Correct
mcc -S -u a sample.m % Incorrect

Error: Uninterpretable number of outputs set on command line "commandline". When
generating a Simulink S-function, the outputs specified on the command line
was not a number. For example:

mcc -S -y 2 sample.m % Correct
mcc -S -y a sample.m % Incorrect

Error: Uninterpretable width set on command line "commandline". The argument to the
page width option was not interpretable as a number.

B Error and Warning Messages

B-10

Error: Unknown annotation option: optionname. An invalid string was specified after
the -A option. For a complete list of the valid annotation options, see “MATLAB
Compiler Option Flags” on page 7-31 or type mcc -? at the command prompt.

Error: Unknown typesetting option: optionname. The valid typesetting options
available with -F are expression-indent:n, list, page-width, and
statement-indent:n.

Error: Unknown warning enable/disable string: warningstring. -w enable:, -w
disable:, and -w error: require you to use one of the warning string
identifiers listed in the “Warning Messages” on page B-11.

Error: Unrecognized option: -option. The option is not one of the valid options for
this version of the Compiler. See “MATLAB Compiler Option Flags” on page
7-31 for a complete list of valid options for MATLAB Compiler 3.0 or type
mcc -? at the command prompt.

Error: Use "-V2.0" to specify desired version. You specified -V without a version
number. You must use -V2.0 if you specify a version number.

Error: versionnumber is not a valid version number. Use "-V2.0". If you specify a
Compiler version number, it must be -V2.0. The default is -V2.0.

Warning Messages

B-11

Warning Messages
This section lists the warning messages that the MATLAB Compiler can
generate. Using the -w option for mcc, you can control which messages are
displayed. Each warning message contains a description and the warning
message identifier string (in parentheses) that you can enable or disable with
the -w option. For example, to enable the display of warnings related to
undefined variables, you can use

mcc -w enable:undefined_variable

To enable all warnings except those generated by the save command, use

mcc -w enable -w disable:save_options

To display a list of all the warning message identifier strings, use

mcc -w list

For additional information about the -w option, see “MATLAB Compiler Option
Flags” on page 7-31.

Warning: (PM) Warning: message. (path_manager_warning) The path manager
can experience file I/O problems when reading the directory structure
(permissions).

Warning: (PMI): message. (path_manager_inform) This is an informational path
manager message.

Warning: A line has number characters, violating the maximum page width width.
(max_page_width_violation) To increase the maximum page width, use the
-F page-width:n option and set n to a larger value.

Warning: File: filename Line: # Column: # A BREAK statement appeared outside of a loop. This
BREAK is interpreted as a RETURN. (break_without_loop) The break statement
should be used in conjunction with the for or while statements. When not used
in conjunction with these statements, the break statement acts as a return
from a function.

B Error and Warning Messages

B-12

Warning: File: filename Line: # Column: # The call to function "functionname" on this line could
not be bound to a function that is known at compile time. A run-time error will occur if this
code is executed. (no_matching_function) The called function was not found on
the search path.

Warning: File: filename Line: # Column: # Attempt to clear value when it has not been
previously defined. (clear_undefined_value) The variable was cleared with the
clear command prior to being defined.

Warning: File: filename Line: # Column: # Future versions of MATLAB will require that
whitespace, a comma, or a semicolon separate elements of a matrix. Please type "help
matrix_element_separators" at the MATLAB prompt for more information.
(separator_needed) It is still possible to leave out all separators when
constructing a matrix. For example, [5.5.5] has no separators. It is equivalent
to [5.5, 0.5].

Warning: File: filename Line: # Column: # References to "functionname" require the C/C++
Graphics Library when executing in stand-alone mode. You must specify -B sgl or -B sglcpp in
order to use the C/C++ Graphics Library. A run-time error will occur if the C/C++ Graphics
Library is not present. (using_graphics_function) This warning is produced when
a Graphics Library call is present in the code. It is only generated when
producing the main or library wrapper and not during normal compilation,
unless it is specifically enabled.

Warning: File: filename Line: # Column: # References to "variablename" will produce a
run-time error because it is an undefined function or variable.
(undefined_variable_or_unknown_function) This warning appears if you refer
to a variable but never provide it with a value. The most likely cause of this
warning is when you call a function that is not on the path or it is a method
function.

Note Inline objects are not supported in this release and will produce this
warning when used.

Warning: File: filename Line: # Column: # The #function pragma expects a list of function
names. (pragma_function_missing_names) This pragma informs the MATLAB
Compiler that the specified function(s) provided in the list of function names

Warning Messages

B-13

will be called through an feval call. This is used so that the -h option will
automatically compile the selected functions.

Warning: File: filename Line: # Column: # The call to function "functionname" on this line
passed quantity1 inputs and the function is declared with quantity2. A run-time error will occur
if this code is executed. (too_many_inputs) There is an inconsistency between the
number of formal and actual inputs to the function.

Warning: File: filename Line: # Column: # The call to function "functionname" on this line
requested quantity1 outputs and the function is declared with quantity2. A run-time error will
occur if this code is executed. (too_many_outputs) There is an inconsistency
between the number of formal and actual outputs for the function.

Warning: File: filename Line: # Column: # The clear function cannot process the "optionname"
argument in compiled code. (clear_cannot_handle_flag) You cannot use clear
variables, clear mex, clear functions, or clear all in compiled M-code.

Warning: File: filename Line: # Column: # The clear statement did not specifically list the names
of variables to be cleared as constant strings. A run-time error will be reported if this code is
executed. (clear_non_constant_strings) Use one of the forms of the clear
command that contains the names of the variables to be cleared. Use clear
name or clear('name'); do not use clear(name).

Warning: File: filename Line: # Column: # The Compiler does not support the optionname
option to save. This option is ignored. (save_option_ignored) You cannot use
-ascii, -double, or -tabs with the save command in compiled M-code.

Warning: File: filename Line: # Column: # The filename provided to load (save) was a cell array
or structure index that could possibly expand into a comma separated list. An error will occur
at run-time if a comma list is present for the filename. (load_save_filename) The
Compiler needs to know statically the number of variables that are involved in
a load or save. If a cell array is involved, the Compiler cannot make that
determination, and the generated code may behave differently from MATLAB.

Warning: File: filename Line: # Column: # The "functionname" function is only available in
MEX mode. A run-time error will occur if this code is executed in stand-alone mode.
(using_mex_only_function) This warning is produced if you call any built-in
function that is only available in mex mode. It is only generated when producing
the main or lib wrapper and not during normal compilation, unless specifically
enabled.

B Error and Warning Messages

B-14

Warning: File: filename Line: # Column: # The load statement cannot be translated unless it
specifically lists the names of variables to be loaded as constant strings.
(load_without_constant_strings) Use one of the forms of the load command
that contains the names of the variables to be loaded, for example:

load filename num or y = load('filename')

Warning: File: filename Line: # Column: # The logical expression(s) involving OR and AND
operators may have returned a different result in previous versions of MATLAB due to a change
in logical operator precedence. Use parentheses to make your code insensitive to this change.
Please type "help precedence" for more information. (and_or_precedence) Starting in
MATLAB 6.0, the precedence of the logical AND (&) and logical OR (|)
operators now obeys the standard relationship (AND being higher precedence
than OR) and the formal rules of Boolean algebra as implemented in most other
programming languages, as well as Simulink and Stateflow.

Previously, MATLAB would incorrectly treat the expression

y = a&b | c&d

as
y = (((a&b) |c) &d);

It now correctly treats it as

y = (a&b) | (c&d);

The form, y = a&b | c&d, will not elicit the warning message from the
Compiler. We recommend that you use parentheses to get the same behavior
now and in the future.

Warning: File: filename Line: # Column: # The MATLAB Compiler does not currently support
MATLAB object-oriented programming. References to the method "methodname" will produce
a run-time error. (matlab_method_used) This warning occurs if the file being
compiled references a function that has only a method definition.

Warning: File: filename Line: # Column: # The save statement cannot be translated unless it
specifically lists the names of variables to be saved as constant strings.
(save_without_constant_strings) Use one of the forms of the save command
that contains the names of the variables to be saved, for example:

save filename num

Warning Messages

B-15

Warning: File: filename Line: # Column: # The second output argument from the
"functionname" function is only available in MEX mode. A run-time error will occur if this code
is executed in stand-alone mode. (unix_dos_second_argument) The DOS command
can be called with two output arguments. That form cannot be compiled in
stand-alone mode. This warning occurs if the DOS command was called with
two output arguments in a file that is being compiled in stand-alone mode. For
example:

[r, s] = dos('ls'); % Causes a warning when compiling stand-alone

Warning: File: filename Line: # Column: # This load (save) statement referred to variable
"variablename" that was not referenced in the function. (load_save_unreferenced)
This warning occurs if a variable is loaded (saved) via a load (save) command,
but then does not occur elsewhere in scope.

Warning: File: filename Line: # Column: # Unmatched "end". (end_without_block) The
end statement does not have a corresponding for, while, switch, try, or if
statement.

Warning: File: filename Line: # Column: # Unrecognized Compiler pragma "pragmaname".
(unrecognized_pragma) Use one of the Compiler pragmas as described in
Chapter 7, “Reference”.

Warning: File: filename Line: # Column: # name has been used as both a function and a
variable, the variable is ignored. (inconsistent_variable) When a name represents
both a function and a variable, it is used as the function only.

Warning: File: filename Line: # Column: # "variablename" has not been defined prior to use
on this line. (undefined_variable) Variables should be defined prior to use.

Warning: Line: # Column: # Function with duplicate name "functionname" cannot be called.
(duplicate_function_name) This warning occurs when an M-file contains more
than one function with the same name.

Warning: filename is a P-file being referenced from "filename". NOTE: A link error will be
produced if a call to this function is made from stand-alone mode. (mex_or_p_file) The
Compiler cannot generate a call to a function in a P-file for stand-alone code.
The warning occurs if a call to a function that is defined in a P-file is detected.

B Error and Warning Messages

B-16

Warning: M-file "filename" was specified on the command line with full path of "pathname",
but was found on the search path in directory "directoryname" first.
(specified_file_mismatch) The Compiler detected an inconsistency between the
location of the M-file as given on the command line and in the search path. The
Compiler uses the location in the search path. This warning occurs when you
specify a full pathname on the mcc command line and a file with the same base
name (filename) is found earlier on the search path. This warning is issued in
the following example if the file afile.m exists in both dir1 and dir2.

mcc -x -I /dir1 /dir2/afile.m

Warning: No M-function source available for "functionname", assuming
function [varargout] = functionname(varargin) NOTE: This will produce a link error in
stand-alone code unless you provide a handwritten definition for this function.
(using_stub_function) The Compiler found a .p or .mex version of the function
and is substituting a generic function declaration in its place.

Warning: Overriding the -F page-width setting to width due to presence of -A line:on setting.
(page_width_override) The -A line:on setting overrides the page width. This
warning reminds you that the -F setting, although present, has no effect.

Warning: The function "functionname" is an intrinsic MATLAB function. The signature of the
function found in file "filename" does not match the known signature for this function:
known number of inputs = quant1,found number of inputs = quant2
known number of outputs = quant1found number of outputs = quant2
known varargin used = quant1,found varargin used = quant2
known varargout used = quant1,found varargout used = quant2
known nargout used = quant1,found nargout used = quant2.
(builtin_signature_mismatch) When compiling an M-file that is contained in
the MathWorks libraries, the number of inputs/outputs and the signatures to
the function must match exactly.

Warning: The file filename was repeated on the Compiler command line. (repeated_file)
This warning occurs when the same filename appears more than once on the
compiler command line. For example:

mcc -x sample.m sample.m % Will generate the warning

Warning Messages

B-17

Warning: The name of a shared library should begin with the letters "lib". "libraryname"
doesn’t. (missing_lib_sentinel) This warning is generated if the name of the
specified library does not begin with the letters “lib”. This warning is specific
to UNIX and does not occur on Windows. For example:

mcc -t -W lib:liba -T link:lib a0 a1 % No warning
mcc -t -W lib:a -T link:lib a0 a1 % Will generate a warning

Warning: The option optionname is ignored in modename mode (specify -? for help).
(switch_ignored) Modename = 1.2 or 2.0. Certain options only have meaning in
one or the other mode. For example, if you use the -e option, you can’t use the
-V2.0 option. For more information about Compiler options, see “MATLAB
Compiler Option Flags” on page 7-31.

Warning: The specified private directory is not unique. Both "directoryname1" and
"directoryname2" are found on the path for this private directory.
(duplicate_private_directories) The Compiler cannot distinguish which private
function to use. For more information, see “Compiling Private and Method
Functions” on page 5-5.

B Error and Warning Messages

B-18

Run-Time Errors

Note The error messages described in this section are generated by the
Compiler into the code exactly as they are written, but are not the only source
of run-time errors. You also can receive run-time errors can from the C/C++
Math Libraries; these errors are not documented in this book. Math Library
errors do not include the source file and line number information. If you
receive such an error and are not certain if it is coming from the C/C++ Math
Libraries or your M-code, compile with the -A debugline:on option to get
additional information about which part of the M source code is causing the
error. For more information about -A (the annotation option), see “MATLAB
Compiler Option Flags” on page 7-31.

Run-time Error: File: filename Line: # Column: # The call to function "functionname" that
appeared on this line was not a known function at compile time. The function was not
found at compile time.

Run-time Error: File: filename Line: # Column: # The call to function "functionname" on this line
passed quantity1 inputs and the function is declared with quantity2. There is an
inconsistency between the formal and actual number of inputs to a function.

Run-time Error: File: filename Line: # Column: # The call to function "functionname" on this line
requested quantity1 outputs and the function is declared with quantity2. There is an
inconsistency between the formal and actual number of outputs from a
function.

Run-time Error: File: filename Line: # Column: # The clear statement did not specifically list the
names of variables to be cleared as constant strings. Use one of the forms of the clear
command that contains the names of the variables to be cleared, for example:

clear name

Run-time Error: File: filename Line: # Column: # The Compiler does not support EVAL or INPUT
functions. Currently, these are unsupported functions.

Run-time Error: File: filename Line: # Column: # The function "functionname" was called with
more than the declared number of inputs (quantity1). There is an inconsistency
between the declared number of formal inputs and the actual number of inputs.

Run-Time Errors

B-19

Run-time Error: File: filename Line: # Column: # The function "functionname" was called with
more than the declared number of outputs (quantity1). There is an inconsistency
between the declared number of formal outputs and the actual number of
outputs.

Run-time Error: File: filename Line: # Column: # The load statement did not specifically list the
names of variables to be loaded as constant strings. Use one of the forms of the load
command that contains the names of the variables to be loaded, for example:

load filename num value

Run-time Error: File: filename Line: # Column: # The save statement did not specifically list the
names of variables to be saved as constant strings. Use one of the forms of the save
command that contains the names of the variables to be saved, for example:

save testdata num value

B Error and Warning Messages

B-20

I-1

Index

Symbols
#line directives 5-42
%#external 7-5
%#function 7-6
%#mex 7-7
%#mex pragma 7-7
.cshrc 4-11
.DEF file 4-22

A
-A option flag 7-35
add-in

MATLAB for Visual Studio 4-23
adding directory to path

-I option flag 7-44
algorithm hiding 1-16
annotating

-A option flag 7-35
code 5-40, 7-35
output 7-35

ANSI compiler
installing on Microsoft Windows 2-17
installing on UNIX 2-7

application
POSIX main 5-22

application coding with
M-files and C/C++ files 4-42
M-files only 4-36

array_indexing optimization 6-6
axes objects 1-21

B
-B ccom option flag 7-33
-B cexcel option flag 7-33
-B cppcom option flag 7-34

-B cppexcel option flag 7-34
-B cpplib option flag 7-34
-B cppsglcom option flag 7-34
-B cppsglexcel option flag 7-34
-B csglcom option flag 7-33
-B csglexcel option flag 7-34
-B csglsharedlib option flag 7-34
-B csharedlib option flag 7-35
-b option 7-41
-B option flag 7-41
-B pcode option flag 7-35
-B sgl option flag 7-35
-B sglcpp option flag 7-35
bcc53opts.bat 2-16
bcc54opts.bat 2-16
bcc55opts.bat 2-16
bcc56opts.bat 2-16
Borland compiler 2-14

environment variable 2-26
bundle file option 5-25, 7-41
bundle files 7-42
bundling compiler options

-B option flag 7-41

C
-c option flag 7-43
C

compilers
supported on PCs 2-14
supported on UNIX 2-4

generating 7-43
interfacing to M-code 5-46
shared library wrapper 5-24

Index

I-2

C++
compilers

supported on PCs 2-14
supported on UNIX 2-4

interfacing to M-code 5-46
library wrapper 5-28
required features

templates 4-6
callback problems, fixing 1-20
callback strings

searching M-files for 1-21
changing compiler on PC 2-20
changing license file

-Y option flag 7-47
code

controlling #line directives 5-42
controlling comments in 5-40
controlling run-time error information 5-44
hiding 1-16
porting 5-34
setting indentation 5-35
setting width 5-35

COM component
wrapper 5-29

COM object
building 4-31
files created 5-30
interface 4-31, 4-32
support 4-31
supported compilers 4-31, 4-32

command duality 5-22
compiler

C++ requirements 4-6
changing default on PC 4-18
changing default on UNIX 4-8
changing on PC 2-20
choosing on PC 4-17

choosing on UNIX 4-8
MIDL 4-31, 4-32
resource 4-31, 4-32
selecting on PC 2-19

Compiler 2.1. See MATLAB Compiler.
Compiler 2.3. See MATLAB Compiler.
Compiler library

on UNIX 4-11
Compiler. See MATLAB Compiler.
compiling

complete syntactic details 7-25–7-49
embedded M-file 7-30
getting started 3-1–3-5

compopts.bat 2-16
configuration problems 2-25
conflicting options

resolving 7-29
conventions in our documentation (table) xii
creating MEX-file 3-3
.cshrc 4-11

D
-d option flag 7-43
debugging

-G option flag 7-47
line numbers of errors 7-38

debugging symbol information 7-31
debugline setting 5-44
Digital Fortran 2-26
Digital UNIX

C++ shared libraries 4-13
Fortran shared libraries 4-13

directory
user profile 2-16

DLL. See shared library.

Index

I-3

duality
command/function 5-22

E
embedded M-file 7-30
environment variable 2-26

library path 4-11
out of environment space on Windows 2-25

error messages
Compiler B-1
compile-time B-2–B-10
internal error B-1
run-time B-18–B-19
warnings B-11–B-17

errors
getting line numbers of 7-38

Excel plug-in
building 4-32

executables. See wrapper file.
export list 5-24
exported interfaces

including 7-44
%#external 5-46, 7-5

F
-F option flag 5-35, 7-37
-f option flag 7-47
Fcn block 3-7
feval 5-48, 7-6

interface function 5-11, 5-16
feval pragma 7-5, 7-6
figure objects 1-21
file

license.dat 2-6, 2-17
mccpath 7-28

mlib 5-24, 5-26
wrapper 1-9

fold_mxarrays optimization 6-5
fold_non_scalar_mxarrays optimization 6-4
fold_scalar_mxarrays optimization 6-4
folding 6-4
formatting code 5-35

-F option flag 7-37
listing all options 5-35
setting indentation 5-37
setting page width 5-35

Fortran 2-26
full pathnames

handling 7-29
%#function 5-48, 7-6
function

calling from M-code 5-46
comparison to scripts 3-10
compiling

method 5-5
private 5-5

duality 5-22
feval interface 5-11, 5-16
hand-written implementation version 5-46
helper 4-41
implementation version 5-11
interface 5-11
mangled name 5-29
nargout interface 5-13, 5-18
normal interface 5-13, 5-17
unsupported in stand-alone mode 1-19
void interface 5-15, 5-20
wrapper 5-21

-W option flag 7-39
function M-file 3-10

Index

I-4

G
-G option flag 7-47
-g option flag 7-31
gasket.m 3-2
gcc compiler 2-4
generated Compiler files 5-3
generating P-code 7-35
graphics applications

trouble starting 4-28

H
-h option flag 7-43
Handle Graphics

Callback property 1-21
objects 1-21

header file
C example 5-8
C++ example 5-9

helper functions
-h option 7-43
in stand-alone applications 4-41

hiding code 1-16

I
-i option 7-44
-I option flag 7-44
IDE, using an 4-23
indentation

setting 5-37
inputs

dynamically sized 3-7
setting number 3-8

installation
Microsoft Windows 2-13
PC 2-14

verify from DOS prompt 2-23
verify from MATLAB prompt 2-23

UNIX 2-4
verify from MATLAB prompt 2-11
verify from UNIX prompt 2-11

integrated development environment, using 4-23
interface function 5-11
interfacing M-code to C/C++ code 5-46
internal error B-1
invoking

MEX-files 3-4

L
-L option flag 7-38
-l option flag 7-38
lasterr function 5-45
lccopts.bat 2-16
LD_LIBRARY_PATH

run-time libraries 4-28
LIBPATH

run-time libraries 4-28
library

path 4-11
shared

locating on PC 4-22
locating on UNIX 4-11

shared C 1-16
static C++ 1-16
wrapper 5-28

libtbx 1-17
license problem 1-8, 2-17, 2-27, 4-35
license.dat file 2-6, 2-17
licensing 1-7
limitations

PC compilers 2-15
UNIX compilers 2-5

Index

I-5

limitations of MATLAB Compiler 2.0 1-18
built-in functions 1-18
exist 1-18
objects 1-18
script M-file 1-18

#line directives 5-42
line numbers 7-38
Linux 2-4
locating shared libraries

on UNIX 4-11

M
-M option flag 7-47
-m option flag 4-37, 7-32
macro option 3-6

-B pcode 7-35
-B sgl 7-35
-B sglcpp 7-35
-m 7-32
-p 7-32
-S 7-33
-x 7-33

main program 5-22
main wrapper 5-22
main.m 4-36
makefile 4-10
mangled function names 5-29
MATLAB add-in for Visual Studio 2-22, 4-23

configuring on Windows 98 4-25
configuring on Windows ME 4-25

MATLAB Compiler
annotating code 5-40
capabilities 1-2, 1-14
code produced 1-9
compiling MATLAB-provided M-files 4-40
creating MEX-files 1-9

error messages B-1
executable types 1-9
flags 3-6
formatting code 5-35
generated files 5-3
generated header files 5-8
generated interface functions 5-11
generated wrapper functions 5-21
generating MEX-Files 2-2
generating source files 5-21
getting started 3-1
installing on

PC 2-13
UNIX 2-4, 2-6

installing on Microsoft Windows 2-17
license 1-7
limitations 1-18
macro 7-26
new features 1-4, 1-5
options 3-6, 7-31–7-49
options summarized A-4
setting path in stand-alone mode 7-28
Simulink S-function output 7-33
Simulink-specific options 3-7
supported executable types 5-21
syntax 7-25
system requirements

Microsoft Windows 2-13
UNIX 2-4

troubleshooting 2-27, 4-35
verbose output 7-46
warning messages B-1
warnings output 7-46
why compile M-files? 1-16

MATLAB interpreter 1-3
running a MEX-file 1-9

Index

I-6

MATLAB libraries
M-file Math 4-40, 7-44

MATLAB plug-ins. See MEX wrapper.
Matrix data type 1-17
mbchar 7-8
mbcharscalar 7-9
mbcharvector 7-10
mbint 7-11
mbintscalar 7-13
mbintvector 7-14
mbreal 7-15
mbrealscalar 7-16
mbrealvector 7-17
mbscalar 7-18
mbuild 4-6

options 7-20
overriding language on

PC 4-16
UNIX 4-7

-regsvr option 5-32
-setup option 4-18

PC 4-18
UNIX 4-8

troubleshooting 4-33
verbose option

PC 4-20
UNIX 4-10

verifying
PC 4-22
UNIX 4-11

mbuild script
PC options 4-23
UNIX options 4-13

mbvector 7-19
mcc 7-25

Compiler 2.3 options A-4
mccpath file 7-28

MCCSAVEPATH 7-28
mccstartup 7-27
method directory 5-5
method function

compiling 5-5
%#mex 5-49, 7-7
mex

configuring on PC 2-19
overview 1-9
suppressing invocation of 7-43
verifying

on Microsoft Windows 2-22
on UNIX 2-10

MEX wrapper 1-9, 5-22
MEX-file

bus error 2-25
comparison to stand-alone applications 4-2
compatibility 1-9
computation error 2-25
configuring 2-2
creating on

UNIX 2-9
example of creating 3-3
extension

Microsoft Windows 2-22
UNIX 2-10

for code hiding 1-16
generating with MATLAB Compiler 2-2
invoking 3-4
precedence 3-4
problems 2-25–2-26
segmentation error 2-25
timing 3-4
troubleshooting 2-25

MEX-function 7-33
mexopts.bat 2-16
MFC42.dll 4-28

Index

I-7

M-file
compiling embedded 7-30
example

gasket.m 3-2
houdini.m 3-10
main.m 4-36
mrank.m 4-36, 4-42

function 3-10
MATLAB-provided 4-40
script 1-18, 3-10

M-files
searching for callback strings 1-21

mglinstaller 4-27
mglinstaller.exe 4-28
Microsoft Interface Definition Language (MIDL)

compiler 4-31, 4-32
Microsoft Visual C++ 2-14

environment variable 2-26
Microsoft Windows

building stand-alone applications 4-15
Compiler installation 2-13
system requirements 2-13

Microsoft Windows registry 2-26
MIDL compiler 4-31, 4-32
mlib files 5-24, 5-26
mrank.m 4-36, 4-42
MSVC. See Microsoft Visual C++.
msvc50opts.bat 2-16
msvc60opts.bat 2-16
msvc70opts.bat 2-16
mwMatrix data type 1-17

N
nargout

interface function 5-13, 5-18

new features 1-4, 1-5
normal interface function 5-13, 5-17

O
-o option flag 7-44
objects (Handle Graphics)

axes 1-21
controls 1-21
figures 1-21
menus 1-21

optimize_conditionals optimization 6-9
optimize_integer_for_loops optimization 6-6
optimizing performance 6-1

conditionals 6-9
disabling all 6-2
enabling all 6-2
enabling selected 6-2
listing all optimizations 6-3
loop simplification 6-6
nonscalar arrays 6-4
-O <optimization option> 6-2
-O all 6-2
-O list 6-3
-O none 6-2
optimization bundles 6-2
scalar arrays 6-4
scalar doubles 6-10
scalars 6-5, 6-10
simple indexing 6-6
when not to optimize 6-1

options 3-6
Compiler 2.3 A-4
macro 3-6
resolving conflicting 7-29
setting default 7-27

Index

I-8

options file
combining customized on PC 4-21
locating 2-16
locating on PC 4-16
locating on UNIX 4-8
making changes persist on

PC 4-20
UNIX 4-10

modifying on
PC 2-21, 4-19
UNIX 4-10

PC 2-16
purpose 4-6
temporarily changing on

PC 4-21
UNIX 4-10

UNIX 2-6
out of environment space on Windows 2-25
outputs

dynamically sized 3-7
setting number 3-8

P
-p option flag 7-32
page width

setting 5-35
pass through

-M option flag 7-47
PATH

run-time libraries 4-28
path

setting in stand-alone mode 7-28
pathnames

handling full 7-29

PC
options file 2-16
running stand-alone application 4-22
supported compilers 2-14

PC compiler
limitations 2-15

percolate_simple_types optimization 6-10
personal license password 2-17
PLP 2-17
porting code 5-34
POSIX main application 5-22
POSIX main wrapper 5-22
pragma

%#external 5-46, 7-5
%#function 7-6
%#mex 7-7
feval 7-6

private function
ambiguous names 5-6
compiling 5-5

problem with license 2-17

R
rank 4-40
registry 2-26
resolving conflicting options 7-29
resource compiler 4-31, 4-32
run-time errors

controlling information 5-44

S
-S option flag 3-7, 7-33
sample time 3-8

specifying 3-8

Index

I-9

scalar arrays
folding 6-4

script M-file 1-18, 3-10
converting to function M-files 3-10

setting default options 7-27
S-function 3-7

generating 3-7
passing inputs 3-7
passing outputs 3-7

shared library 1-16, 4-30
distributing with stand-alone application 4-5
header file 5-24
locating on PC 4-22
locating on UNIX 4-11
UNIX 4-11
wrapper 5-24

SHLIB_PATH

run-time libraries 4-28
Sierpinski Gasket 5-2
Simulink

compatible code 3-7
S-function 3-7
-u option flag 7-39
wrapper 5-24
-y option flag 7-41

Simulink S-function
output 7-33
restrictions on 3-9

specifying option file
-f option flag 7-47

specifying output directory
-d option flag 7-43

specifying output file
-o option flag 7-44

specifying output stage
-T option flag 7-44

speculate optimization 6-10

stand-alone applications 4-1
distributing on PC 4-27
distributing on UNIX 4-13
distributing on Windows 4-26
generating C applications 7-32
generating C++ applications 7-32
helper functions 4-41
overview 4-4

C 1-11
C++ 1-11

process comparison to MEX-files 4-2
restrictions on 1-19
restrictions on Compiler 2.3 1-19
UNIX 4-7
writing your own function 4-40

stand-alone C applications
system requirements 4-2

stand-alone C++ applications
system requirements 4-3

stand-alone Compiler
setting path 7-28

stand-alone graphics applications
generating C applications 7-35
generating C++ applications 7-35

startup script 4-11
static library 1-16
supported executables 5-21
system requirements

Microsoft Windows 2-13
UNIX 2-4

T
-T option flag 7-44
-t option flag 5-21, 7-44
target language

-L option flag 7-38

Index

I-10

templates requirement 4-6
translate M to C

-t option flag 7-44
troubleshooting

Compiler problems 2-27, 4-35
mbuild problems 4-33
MEX-file problems 2-25
missing functions 1-20
starting stand-alone graphics applications

4-28

U
-u option flag 3-8, 7-39
uicontrol objects 1-21
uimenu objects 1-21
UNIX

building stand-alone applications 4-7
Compiler installation 2-4
options file 2-6
running stand-alone application 4-12
supported compilers 2-4
system requirements 2-4

UNIX compiler
limitations 2-5

unsupported functions in stand-alone mode 1-19
upgrading

from Compiler 1.0/1.1 1-17
from Compiler 2.0/2.1/2.2/2.3 1-17

user profile directory 2-16

V
-v option flag 7-46
verbose compiler output 7-46
Visual Basic file

generating 7-41
Visual Studio

add-in 4-23
void interface function 5-15, 5-20

W
-W option flag 7-39
-w option flag 7-46
warning message

Compiler B-1
warnings in compiler output 7-46
wat11copts.bat 2-16
Watcom

environment variable 2-26
watcopts.bat 2-16
Windows. See Microsoft Windows.
wrapper

C shared library 5-24
C++ library 5-28
COM component 5-29
main 5-22
MEX 5-22
Simulink S-function 5-24

wrapper file 1-9
MEX 1-9
target types 1-15

wrapper function 5-21

X
-x option flag 7-33

Y
-Y option flag 7-47
-y option flag 3-8, 7-41

Z
-z option flag 7-48

	Preface
	Related Products
	Using this Guide
	Typographical Conventions

	Introducing the MATLAB Compiler
	Introduction
	Before You Begin

	New Features
	MATLAB Compiler 3.0
	MATLAB Compiler 2.3
	MATLAB Compiler 2.1
	Compiler Licensing Changes

	Uses of the Compiler
	Creating MEX-Files
	Creating Stand-Alone Applications

	The MATLAB Compiler Family
	Why Compile M-Files?
	Stand-Alone Applications and Libraries
	Excel Plug-Ins
	COM Components
	Hiding Proprietary Algorithms

	Upgrading from Previous Versions of the Compiler
	Upgrading from MATLAB Compiler 2.0/2.1/2.2/2.3
	Upgrading from MATLAB Compiler 1.0/1.1

	Limitations and Restrictions
	MATLAB Code
	Stand-Alone Applications
	Fixing Callback Problems: Missing Functions

	Installation and Configuration
	System Configuration for MEX-Files
	UNIX Workstation
	System Requirements
	Installation
	mex Verification
	MATLAB Compiler Verification

	Microsoft Windows on PCs
	System Requirements
	Installation
	mex Verification
	MATLAB Compiler Verification

	Troubleshooting
	mex Troubleshooting
	Troubleshooting the Compiler

	Working with MEX-Files
	A Simple Example — The Sierpinski Gasket
	Compiling the M-File into a MEX-File
	Invoking the MEX-File

	Compiler Options and Macros
	Generating Simulink S-Functions
	Simulink Specific Options
	Specifying S-Function Characteristics

	Converting Script M-Files to Function M-Files

	Stand-Alone Applications
	Differences Between MEX-Files and Stand-Alone Applications
	Stand-Alone C Applications
	Stand-Alone C++ Applications

	Building Stand-Alone C/C++ Applications
	Overview
	Getting Started

	Building Stand-Alone Applications on UNIX
	Configuring for C or C++
	Preparing to Compile
	Verifying mbuild
	Verifying the MATLAB Compiler
	About the mbuild Script
	Packaging UNIX Applications

	Building Stand-Alone Applications on PCs
	Configuring for C or C++
	Preparing to Compile
	Verifying mbuild
	Verifying the MATLAB Compiler
	About the mbuild Script
	Using an Integrated Development Environment
	Packaging Windows Applications for Distribution

	Distributing Stand-Alone Applications
	Packaging the MATLAB Run-Time Libraries
	Installing Your Application
	Problem Starting Stand-Alone Application

	Building Shared Libraries
	Building COM Objects
	Building Excel Plug-Ins
	Troubleshooting
	Troubleshooting mbuild
	Troubleshooting the Compiler

	Coding with M-Files Only
	Alternative Ways of Compiling M-Files
	Compiling MATLAB Provided M-Files Separately
	Compiling mrank.m and rank.m as Helper �Functions

	Mixing M-Files and C or C++
	Simple Example
	Advanced C Example

	Controlling Code Generation
	Code Generation Overview
	Example M-Files
	Generated Code

	Compiling Private and Method Functions
	The Generated Header Files
	C Header File
	C++ Header File

	Internal Interface Functions
	C Interface Functions
	C++ Interface Functions

	Supported Executable Types
	Generating Files
	MEX-Files
	Main Files
	Simulink S-Functions
	C Libraries
	C Shared Library
	C++ Libraries
	COM Components
	Porting Generated Code to a Different Platform

	Formatting Compiler-Generated Code
	Listing All Formatting Options
	Setting Page Width
	Setting Indentation Spacing

	Including M-File Information in Compiler Output
	Controlling Comments in Output Code
	Controlling #line Directives in Output Code
	Controlling Information in Run-Time Errors

	Interfacing M-Code to C/C++ Code
	C Example
	Using Pragmas

	Optimizing Performance
	Optimization Bundles
	Optimizing Arrays
	Scalar Arrays
	Nonscalar Arrays
	Scalars

	Optimizing Loops
	Simple Indexing
	Loop Simplification

	Optimizing Conditionals
	Optimizing MATLAB Arrays
	Scalars
	Scalar Doubles

	Reference
	Functions — By Category
	Pragmas
	Compiler Functions
	Command Line Tools

	Functions — By Name

	MATLAB Compiler Quick Reference
	Common Uses of the Compiler
	mcc

	Error and Warning Messages
	Compile-Time Errors
	Warning Messages
	Run-Time Errors

	Index

