Real-Time
Windows Target

For Use with Real-Time Workshop’

Modeling
—

Simulation
—

Implementation
—

User’s Guide e ‘\The MathWorks

Version 2

X LB

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Windows Target User’s Guide
0 COPYRIGHT 1999-2002 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: January 1999 First printing ~ New for Version 1.0 (Release 11.0)

January 2000 Second printing Revised for Version 1.5 (Release 11.1+)
September 2000 Third printing Revised for Version 2.0 (Release R12)
June 2001 Online only Revised for Version 2.1 (Release R12.1)

July 2002 Online only Revised for Version 2.2 (Release 13)

1]

Preface

Required Products ix
MATLAB .. e ix
Simulink X
Real-Time Workshopc. ... xi
CCompiler e e xi
Related Products i xii
UsingThisGuide i, xiii
Expected Background xiii
Organizationttt xiv
Conventions i, XV
Terminologyottt e XV
Typographical Conventions xvii
Introduction

What Is the Real-Time Windows Target? 1-3
Features e 14
Real-Time Kernel 14
Real-Time Application 1-5
Signal Acquisition and Analysis 1-6
Parameter Tuning 1-7

Contents

ii

Hardware Environment 1-8

PC Compatible Computer 1-8
Input/Output Driver Support 1-8
Software Environment 1-10
Nonreal-Time Simulation 1-10
Real-Time Execution 1-10
Development Processc.iiiiiiiin... 1-11
System Concepts 1-12
Simulink External Mode 1-12
Data Buffers and Transferring Data 1-13

Installation and Configuration

2

System Requirements 2-3
Hardware Requirements 2-3
Software Requirements 24

Real-Time Windows Target 2-5
Getting or Updating Your License 2-5
InstallingfromaCD 0ttt 2-6
Installing fromthe Web 2-7
Files on the Your Computer 2-9

Initial Working Directory 2-11
Setting the Working Directory from Desktop Icon 2-11
Setting the Working Directory from MATLAB 2-11

Third Party C Compiler 2-12
Selecting a Default C Compiler 2-12

Real-Time Windows Target Kernel 2-14
Installingthe Kernel 2-14
Uninstallingthe Kernel 2-16

Contents

Testing the Installation 2-18

Running the Model rtvdp.mdl 2-18
Displaying Status Information 2-21
Detecting Excessive Sample Rates 2-22
Demo Library 2-22

Basic Procedures

3|

Simulink Model 3-3
Creating a Simulink Model 3-3
Entering Simulation Parameters for Simulink 3-7
Entering Scope Parameters for Signal Tracing 3-9
Running a Nonreal-Time Simulation 3-12

Real-Time Application 3-14
Entering Simulation Parameters for
Real-Time Workshop 3-14
Entering Scope Parameters for Signal Tracing 3-17
Creating a Real-Time Application 3-20
Entering Additional Scope Parameters for Signal Tracing ... 3-21
Running a Real-Time Application 3-25
Running a Real-Time Application
from the MATLAB Command Line 3-28

Signal Logging to the MATLAB Workspace 3-29
Entering Scope Parameters 3-29
Entering Signal and Triggering Properties 3-31
Plotting Logged Signal Data 3-35

Signal Logging toa Disk Drive 3-37
Entering Scope Parameters 3-37
Entering Signal and Triggering Properties 3-40
Entering Data Archiving Parameters 3-43
Plotting Logged SignalData 3-46

iii

iv

Contents

Parameter Tuning 3-48

Types of Parameters i, 3-48
Changing Model Parameters 3-49

Advanced Procedures

HOBoardsiiii e 4-3
I/OBoard Dialog Box, 4-3
ISABusBoard 4-5
PCIBusBoard 4-6
PC/104 Board e 4-6
Compact PCIBoard 4-6
PCMCIA Boardot 4-6

IVODriverBlocks 4-8
Real-Time Windows Target Library 4-8
Simulink Library 4-10
Analog InputBlock 4-12
Analog OutputBlock 4-14
Digital Input Block, 4-17
Digital Output Block 4-19
Counter Input Block 4-22
Encoder Input Block 4-25
Output Signals froman I/OBlock 4-27
Variations with Channel Selection 4-29

Using AnalogI/ODrivers 4-32
I/O Driver Characteristics 4-32
Normalized Scaling for Analog Inputs 4-33

Troubleshooting

5]

Al

Plots Not Visible in Simulink Scope Block 5-2
Compiler Error Messagec.coiiiiinnennnnn... 5-3
Failure to Connect to Target 5-3
Sample Time TooFast 5-4
S-Functions Using Math Functions 5-5

Supported I/0 Boards
ISA BUS . oo A-2
PCMCIABUS ...t e e e e A-11
PCIBuUS A-12
Compact PCI A-14
PXIBUS . .ottt e A-14
PC/104BUS . ..ot e A-15
Standard Devicesc.iiiiiiiiiii ., A-16

Custom I/0 Driver Blocks

B

Source Code for DOS Target Drivers B-2
Incompatibility with Win32 APICalls B-3
Nonsupported C Functions B-3

Supported C Functions B4

vi Contents

Preface

Required Products .

MATLAB .

Simulink
Real-Time Workshop
C Compiler .

Related Products .

Using This Guide .

Expected Background .

Organization

Conventions .
Terminology .

Typographical Conventions .

. IX
. Ix
. xi
. X1
.Xii
xiii
Xiii
X1v

. XV
. XV

. XVil

Preface

viii

The Real-Time Windows Target is part of a family of software products that
you use to create real-time control systems. Some of these products are
required while others you use for special applications.

This chapter includes the following sections:
¢ Required Products — MATLAB®, Simulink®, Real-Time Workshop®, the
Real-Time Windows Target, and a C compiler

® Related Products — Stateﬂow®, Stateflow Coder, Dials & Gauges Blockset,
DSP Blockset, Virtual Reality Toolbox, and Fixed-Point Blockset

¢ Using This Guide — Suggestions for learning about the Real-Time Windows
Target, finding information, and a description of the chapters

¢ Conventions — Terms that may have various meanings and text formats in
this guide

® Typographical Conventions — Overview of the format of code, MATLAB
output, and menu items.

Required Products

Required Products

The Real-Time Windows Target is a self-targeting system where the host and
the target computer are the same computer. You can install it on a
PC-compatible computer running Microsoft Windows 98, Windows NT 4.0,
Windows 2000, Windows Millennium Edition, or Windows XP.

The Real-Time Windows Target requires the following products:

¢ MATLAB — Command line interface for the Real-Time Windows Target

¢ Simulink — Environment to model physical systems and controllers using
block diagrams

¢ Real-Time Workshop — Converts Simulink blocks and code from Stateflow
Coder into C code

¢ C Compiler — Converts C code from Real-Time Workshop into executable
code. Choose either Microsoft Visual C/C++ or Watcom C/C++

MATLAB

MATLAB provides the design and analysis tools that you use when creating
Simulink block diagrams.

Note Version 2.2 of the Real-Time Windows Target requires MATLAB
Version 6.5 on the Release 13 CD.

MATLAB documentation — For information on using MATLAB, see the
Getting Started documentation. It explains how to work with data and how to
use the functions supplied with MATLAB. For a reference describing the

functions supplied with MATLAB, see the online MATLAB Function
Reference.

ix

Preface

Simulink

Simulink provides an environment where you model your physical system and
controller as a block diagram. You create the block diagram by using a mouse
to connect blocks and a keyboard to edit block parameters.

Nonsupported Simulink blocks — You can use the Real-Time Windows
Target with most Simulink blocks including discrete-time and continuous-time
systems. The Real-Time Windows Target does not support blocks that do not
run in real-time and the following blocks: To Workspace and To File blocks.

Limitations with Real-Time Workshop — When you use a continuous-time
system and generate code with Real-Time Workshop, you must use a fixed-step
integration algorithm. C-code S-functions are supported by Real-Time
Workshop. However, M-code S-functions are not supported.

Real-Time Windows Target I/0 driver blocks — With the Real-Time
Windows Target, you can remove the physical system model and replace it with
I/0 driver blocks connected to your sensors and actuators. The Real-Time
Windows Target I/O library supports more than 200 boards.

Note Some of the functions on a board may not be supported by the
Real-Time Windows Target. Check the MathWorks Web site for an updated
list of supported boards and functions at: http://www.mathworks.com/
products/rtwt/ioboards.shtml.

Note Version 2.2 of the Real-Time Windows Target requires Simulink
Version 5.0 on the Release 13 CD.

Simulink documentation — For information on using Simulink, see the
Using Simulink documentation. It explains how to connect blocks to build
models and change block parameters. It also provides a reference that
describes each block in the standard Simulink library.

Required Products

Real-Time Workshop

Real-Time Workshop provides the utilities to convert your Simulink models
into C code, and then with a third-party C compiler, compile the code into a
real-time executable.

The Real-Time Windows Target is designed for maximum flexibility during
rapid prototyping. This flexibility allows parameter tuning and signal tracing
during a real-time run, but increases the size of the generated code. However,
Real-Time Workshop has other code formats that generate the more compact
code needed for embedded applications.

Note Version 2.2 of the Real-Time Windows Target requires Real-Time
Workshop Version 5.0 on the Release 13 CD.

More information about Real-Time Workshop — For information on code
generation, see the Real-Time Workshop documentation.

C Compiler

The C compiler creates executable code from the C code generated from
Real-Time Workshop and the C-code S-functions you have created.

In addition to the products from The MathWorks, you need to install a
C compiler. Real-Time Workshop and the Real-Time Windows Target support
the following C compilers:

® Microsoft Visual C/C++ — Version 2.2 of the Real-Time Windows Target
requires the Professional Edition of Microsoft Visual C/C++ Version 5.0, 6.0,
or 7.0. The Standard Edition does not include all of the features needed to
work with the Real-Time Windows Target.

¢ Watcom C/C++ — Version 2.2 of the Real-Time Windows Target requires
Watcom C/C++ Version 10.6 or 11.0.

xi

Preface

xii

Related Products

The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Real-Time Windows Target.

For more information about any of these products, see either

The online documentation for that product if it is installed or if you are reading
the documentation from the CD

® The MathWorks Web site, at http: //www.mathworks.com; see the “products”

section

Note The toolboxes listed below all include functions that extend the
capabilities of MATLAB. The blocksets all include blocks that extend the

capabilities of Simulink.

Product

Description

Dials & Gauges Blockset

DSP Blockset
Fixed-Point Blockset
Stateflow

Stateflow Coder
Virtual Reality Toolbox

Monitor signals and control simulation
parameters with graphical instruments

Design and simulate DSP systems

Design and simulate fixed-point systems
Design and simulate event-driven systems
Generate C code from Stateflow charts

Create and manipulate virtual reality worlds
from within MATLAB and Simulink

Using This Guide

Using This Guide

To help you effectively read and use this guide, we have provided a brief
description of the chapters and a suggested reading path.

This section includes the following topics:

¢ “Expected Background” on page xiii
® “Organization” on page xiv

Expected Background
To benefit from reading this book, you should be familiar with

¢ Using Simulink and Stateflow to create models as block diagrams, and
simulating those models in Simulink

¢ The concepts and use of Real-Time Workshop to generate executable code

When using Real-Time Workshop and the Real-Time Windows Target, you do
not need to program in C or other low-level programming languages to create
and test real-time systems.

If You Are a New User — Begin with Chapter 1, “Introduction.” This chapter
gives you an overview of the Real-Time Windows Target features and the
development environment. Next, read and try the examples in Chapter 3,
“Basic Procedures.”

If You Are an Experienced Real-Time Windows Target User — We suggest
you review the sections on signal tracing and signal logging in Chapter 3,
“Basic Procedures.” After you are familiar with using the Real-Time Windows
Target, read how to add I/O drivers to your Simulink model in Chapter 4,
“Advanced Procedures.”

xiii

Preface

xXiv

Organization

The following table lists the organization of this guide.

Chapter or Appendix

Description

Introduction
Installation and
Configuration

Basic Procedures
Advanced Procedures
Troubleshooting

Supported I/O Boards

Custom I/O Driver Blocks

Overview of the functions and features of
the Real-Time Windows Target

Procedures to install the Real-Time
Windows Target on your computer

Procedures to help you become familiar with
using the Real-Time Windows Target

Procedures for using I/O drivers with the
Real-Time Windows Target

Solutions to some common problems

List of I/O boards supported by the
Real-Time Windows Target with Simulink
driver blocks

Procedures and notes for creating your own
Simulink blocks using C-code S-functions

Conventions

Conventions

To help you effectively read this guide, we use some conventions. Conventions
are the ways of consistently formatting the text and graphics.

This section includes the following topics:

¢ “Terminology” on page xv

* “Typographical Conventions” on page xvii

Terminology

The following table lists some of the terms we use in this guide.

Term

Definition

application

build process

execution

executable code

external mode

kernel

parameter tuning

See real-time application.

Process of generating C code from your Simulink
model, compiling and inlining the generated code to
create a real-time executable.

Running the executable code on the target PC in
real time.

See real-time application.

Simulink mode that uses a Simulink block diagram
as a graphical user interface to a real-time
executable. This interface provides parameter
downloading and signal uploading for display using
Scope blocks.

Software component that handles system
interrupts and regulates time interrupts when
model code is stepped.

Process of changing block parameters and
downloading the new values to a real-time
executable while it is running.

XV

Preface

xvi

Term Definition
real-time Code ready to run in real time with the kernel.
application

sample rate
sample time
self-targeting
system

signal logging

signal tracing

Inverse of the sample time given as samples per
second.

Length of time, in seconds, between each interrupt
that the model is stepped.

A system where both the development environment
and real-time environment use the same processor.

Acquire and save signal data created during a
real-time execution.

Acquire and display of a sequence of bursts of
signal data created during real-time execution. The
burst length corresponds with the time axis at the
Scope block.

Typographical Conventions

Typographical Conventions

This manual uses some or all of these conventions.

Item

Convention

Example

Example code

Function names, syntax,
filenames, directory/folder
names, and user input

Buttons and keys

Literal strings (in syntax
descriptions in reference
chapters)

Mathematical
expressions

MATLAB output

Menu and dialog box titles

New terms and for
emphasis

Omitted input arguments

String variables (from a
finite list)

Monospace font

Monospace font

Boldface with book title caps

Monospace bold for literals

Italics for variables

Standard text font for functions,
operators, and constants

Monospace font

Boldface with book title caps

Italics

(...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

Monospace italics

To assign the value 5 to A,
enter

A=25

The cos function finds the
cosine of each array element.

Syntax line example is
MLGetVar ML_var_name

Press the Enter key.

f = freqspace(n, 'whole')

This vector represents the
polynomial p = x? + 2x + 3.

MATLAB responds with
A =
5

Choose the File Options
menu.

An array is an ordered
collection of information.

[c,ia,ib] = union(...)

sysc = d2c(sysd, 'method')

xvii

Preface

XV1ll

Introduction

What Is the Real-Time Windows Target?

Features .

Real-Time Kernel

Real-Time Application .
Signal Acquisition and Analysis
Parameter Tuning

Hardware Environment .
PC Compatible Computer
Input/Output Driver Support .

Software Environment
Nonreal-Time Simulation
Real-Time Execution
Development Process .

System Concepts .
Simulink External Mode

Data Buffers and Transferring Data .

1-3

1-4

1-5
1-6
1-7

1-8
1-8
1-8

. 1-10
. 1-10
. 1-10
.1-11

. 1-12
.1-12
.1-13

1 Introduction

The Real-Time Windows Target has many features. An introduction to these
features and the Real-Time Windows Target software environment will help
you develop a model for working with Real-Time Windows Target.

This chapter includes the following sections:
¢ What Is the Real-Time Windows Target? — A PC solution for prototyping
and testing real-time systems

¢ Features —Real-time kernel, real-time application, signal acquisition and
analysis, and parameter tuning

¢ Hardware Environment — PC compatible computer and I/O support
boards

¢ Software Environment — Nonreal-time simulation of Simulink models and
real-time execution of applications

¢ System Concepts — Simulink external mode and data buffers

What Is the Real-Time Windows Targef?

What Is the Real-Time Windows Target?

The Real-Time Windows Target is a PC solution for prototyping and testing
real-time systems. It is an environment where you use a single computer as a
host and target.

In this environment you use your desktop or laptop PC with MATLAB®,
Simulink®, and Stateflow® (optional) to create models using Simulink blocks
and Stateflow diagrams.

After creating a model and simulating it with Simulink in normal mode, you
can generate executable code with Real-Time Workshop®, Stateflow Coder
(optional) and a C compiler. Then, you can run your application in real time
with Simulink external mode.

Integration between Simulink external mode and the Real-Time Windows
Target allows you to use your Simulink model as a graphical user interface for

¢ Signal visualization — Use the same Simulink Scope blocks that you use to
visualize signals during a nonreal-time simulation, to visualize signals while
running a real-time application.

¢ Parameter tuning — Use the Block Parameter dialog boxes to change
parameters in your application while it is running in real time.

Typical applications for the Real-Time Windows Target include

¢ Real-time control — Create a prototype of automotive, computer
peripheral, and instrumentation control systems.

¢ Real-time hardware-in-the-loop simulation — Create a prototype of
controllers connected to a physical plant. For example, the physical plant
could be an automotive engine. Create a prototype of a plant connected to an
actual controller. For example, the prototyped plant could be an aircraft
engine.

¢ Education — Teach concepts and procedures for modeling, simulating,
testing real-time systems, and iterating designs.

1-3

1 Introduction

1-4

Features

The Real-Time Windows Target software environment includes many features
to help you prototype and test real-time applications.

This section includes the following topics:

“Real-Time Kernel” on page 1-4

“Real-Time Application” on page 1-5

“Signal Acquisition and Analysis” on page 1-6
“Parameter Tuning” on page 1-7

Real-Time Kernel

The Real-Time Windows Target uses a small real-time kernel to ensure the
real-time application runs in real time. The real-time kernel runs at CPU ring
zero (privileged or kernel mode) and uses the built-in PC clock as its primary
source of time:

Timer interrupt — The kernel intercepts the interrupt from the PC clock
before the Windows operating system receives it. This blocks any calls to the
Windows operating system. Because of this, you cannot use Win32 calls in
your C-code S-function.

The kernel then uses the interrupt to trigger the execution of the compiled
model. As a result, the kernel is able to give the real-time application the
highest priority available.

To achieve precise sampling, the kernel reprograms the PC clock to a higher
frequency. Because the PC clock is also the primary source of time for the
Windows operating system, the kernel sends a timer interrupt to the
operating system at the original interrupt rate.

Technically, the kernel is provided as a VxD on Windows 98, and Windows
Millennium Edition and as a kernel-mode driver on Windows 2000, Windows
NT, and Windows XP.

Scheduler — The timer interrupt clocks a simple scheduler that runs the
executable. The number of tasks is equal to the number of sampling periods
in the model with multitasking mode. With single-tasking mode, there is
only one task. The maximum number of tasks is 32 and faster tasks have

Features

higher priorities than slower tasks. For example, a faster task can interrupt

a slower task.

During execution, the executable stores data in buffers. Later, the data in
these buffers is retrieved by the Scope block. The scheduling, data storing,
data transferring, and running the executable all run at CPU ring zero.

¢ Communication with hardware — The kernel interfaces and
communicates with I/O hardware using I/O driver blocks, and it checks for
proper installation of the I/O board. If the board has been properly installed,
the drivers allow your real-time application to run.

The Analog Input, Analog Output, Digital Input, Digital Output, Counter
Input, and Encoder Input blocks call the drivers for input and output. You
can choose to have a driver block use values equal to voltage, normalize
values from 0 to +1, normalize values from -1 to +1, or use the raw integer
values from the A/D or D/A conversion press. Drivers also run at CPU ring
zZero.

¢ Simulink external mode — Communication between Simulink and the
real-time application is through the Simulink external mode interface
module. This module talks directly to the real-time kernel, and is used to

start the real-time application, change parameters, and retrieve scope data.

Real-Time Application

The real-time application runs in real time on your PC computer and has the
following characteristics:

¢ Compiled code — Created from the generated C code using either a
Microsoft Visual C/C++ compiler or a Watcom C/C++ compiler.

¢ Relation to your Simulink model — The executable contains a binary form
of all Simulink model components, connections between blocks, time
dependencies, and variables in the Simulink blocks.

® Relation to the kernel — The executable must be loaded and executed
directly by the Real-Time Windows Target kernel. It cannot be executed
without the kernel.

1 Introduction

1-6

The kernel runs as a VxD or kernel-mode driver, intercepts timer interrupts
from the PC clock, maintains clock signals for the Windows operating
system, and ensures real-time execution of the real-time application. As a
result, both the kernel and the real-time application run at CPU ring zero.

¢ Checksum — The Simulink model and the executable contain a checksum
value. The kernel uses this checksum value to determine if the Simulink
model structure, at the time of code generation, is consistent with the
real-time application structure during execution. This ensures that when
you change parameters during an execution, the mapping of Simulink model
parameters to the correct memory locations in the real-time application is
correct.

If you make structural changes to your Simulink model, the Simulink
checksum value will not match the executable checksum value. You will have
to rebuild your executable before you can connect it to your Simulink model.

Signal Acquisition and Analysis

Signals may be acquired, displayed, and saved by using Simulink Scope blocks
and Simulink external mode. This lets you observe the behavior of your model
during a simulation or your application while it runs in real time.

You can acquire signal data while running your real-time application using

¢ Signal Tracing — This is the process of acquiring and visualizing signals
during a real-time run. It allows you to acquire signal data and visualize it
on your computer while the executable is running.

¢ Signal Logging — This is the process for acquiring signal data during a
real-time run. After the run reaches its final time or you manually stop the
run, you can plot and analyze the data.

You can save (log) data to variables in the MATLAB workspace or save data
to your disk drive with MAT-files.

Signal logging differs from signal tracing. With signal logging you can only look
at a signal after a run is finished.

For more information, see the sections “Signal Logging to the MATLAB
Workspace” on page 3-29 and “Signal Logging to a Disk Drive” on page 3-37.

Features

Parameter Tuning

Change the parameters in your Simulink model and observe the effect of those
changes during a simulation or while running an application in real time.

Simulink external mode — You use Simulink external mode to connect your
Simulink block diagram to your real-time application. The block diagram
becomes a graphical user interface (GUI) to that executable.

Simulink external mode allows you to change parameters by editing the block
diagram while running Simulink in external mode. New parameter values are
automatically transferred to the real-time application while it is running.

Changing parameters — There are different types of model parameters that
you can change while running your real-time application. For example,
parameters include the amplitude of a gain and the frequency of a sine wave.
After you connect your real-time application to your Simulink model, you can
change parameters. These parameters can be changed before or while your
real-time application is running by using one of the following methods:

¢ Block parameters — Change values in the dialog boxes associated with the
Simulink blocks.

¢ Block parameters for masked subsystems — Change values in
user-created dialog boxes associated with a subsystem.

* MATLAB variables — Create MATLAB variables that represent Simulink
block parameters, and then change parameter values by entering the
changes through the MATLAB command line.

For more information about parameter tuning, see the section “Parameter
Tuning” on page 3-48.

1 Introduction

Hardware Environment

The hardware environment consists of a PC compatible computer and I/O
boards.

This section includes the following topics:

¢ “PC Compatible Computer” on page 1-8
¢ “Input/Output Driver Support” on page 1-8

PC Compatible Computer

You can use any PC compatible computer that runs Microsoft Windows 98,
Windows NT 4.0, Windows 2000, Windows Millennium Edition, or Windows
XP.

Your computer can be a desktop, laptop, or notebook PC.

Input/Output Driver Support

The Real-Time Windows Target uses standard and inexpensive I/0 boards for
PC compatible computers. When running your models in real time, the
Real-Time Windows Target captures the sampled data from one or more input
channels, uses the data as inputs to your block diagram model, immediately
processes the data, and sends it back to the outside world through an output
channel on your I/O board.

I/0O boards — The Real-Time Windows Target supports a wide range of I/O
boards. The list of supported I/O boards includes ISA, PCI, and PCMCIA
boards. This includes analog-to-digital (A/D), digital-to-analog (D/A), digital
inputs, digital outputs, and encoder inputs. In total, over 200 I/O boards are
currently supported.

For a list of supported boards, see Appendix A, “Supported I/O Boards.”

Note Some of the functions on a board may not be supported by the
Real-Time Windows Target. Check the MathWorks Web site for an updated
list of supported boards and functions at http://www.mathworks.com/
products/rtwt/ioboards.shtml.

Hardware Environment

I/0 driver block library — The Real-Time Windows Target provides a custom
Simulink block library. The I/O driver block library contains universal drivers
for supported I/0O boards. These universal blocks are configured to operate with
the library of supported drivers. This allows easy location of driver blocks and
easy configuration of I/O boards.

You drag-and-drop a universal I/O driver block from the I/O library the same
way as you would from a standard Simulink block library. And you connect
an I/0O driver block to your model just as you would connect any standard
Simulink block.

You create a real-time application in the same way as you create any other
Simulink model by using standard blocks and C-code S-functions. You can add
input and output devices to your Simulink model by

¢ Using the I/O driver blocks from the rtwinlib library provided with the
Real-Time Windows Target. This library contains the blocks: Analog Input,
Analog Output, Digital Input, and Digital Output.

¢ Using I/O driver blocks from the DOSLIB library provided with Real-Time
Workshop.Use these drivers, for Keithley Metrabyte’s DAS-1600 board, as a
starting point to create you own custom drivers.

The Real-Time Windows Target provides driver blocks for more than 200 I/0
boards. These driver blocks connect the physical world to your real-time
application:

® Sensors and actuators are connected to I/O boards

¢ 1/O boards convert voltages to numerical values and numerical values to
voltages

¢ Numerical values are read from or written to I/O boards by the I/O drivers
Writing your own custom I/O drivers — If you need to write your own

drivers, you can use the DOS Target drivers provided with Real-Time
Workshop as a starting point. See Appendix B, “Custom I/O Driver Blocks.”

1 Introduction

Software Environment

1-10

The software environment is a place to design, build, and test an application in
nonreal-time and real time.

This section includes the following topics:

® “Nonreal-Time Simulation” on page 1-10
® “Real-Time Execution” on page 1-10
® “Development Process” on page 1-11

Nonreal-Time Simulation

You create a Simulink model and use Simulink in normal mode for
nonreal-time simulation on your PC computer.

Simulink model — Create block diagrams in Simulink using simple
drag-and-drop operations, and then enter values for the block parameters and
select a sample rate.

Nonreal-time simulation — Simulink uses a computed time vector to step
your Simulink model. After the outputs are computed for a given time value,
Simulink immediately repeats the computations for the next time value. This
process is repeated until it reaches the stop time.

Because this computed time vector is not connected to a hardware clock, the
outputs are calculated in nonreal-time as fast as your computer can run. The
time to run a simulation can differ significantly from real time.

Real-Time Execution

For real-time execution on your PC computer, create a real-time application
and use Simulink in external mode.

Real-time application — Real-Time Workshop, the Real-Time Windows
Target, and your C compiler produce an executable that the kernel can run in
real time. This real-time application uses the initial parameters available from
your Simulink model at the time of code generation.

If you use continuous-time components in your model and generate code with
Real-Time Workshop, you must use a fixed-step integration algorithm.

Software Environment

Real-time execution — The Real-Time Windows Target provides the
necessary software that uses the real-time resources on your computer
hardware. Based on your selected sample rate, the Real-Time Windows Target
uses interrupts to step your application in real time at the proper rate. With
each new interrupt, the executable computes all of the block outputs from your
model.

Development Process

In the Real-Time Windows Target environment, you use your desktop PC with
MATLAB, Simulink, Real-Time Workshop, and the Real-Time Windows
Target to

Design a control system — Use MATLAB and the Control System Toolbox
to design and select the system coefficients for your controller.

Create a Simulink model — Use Simulink blocks to graphically model your
physical system.

Run a simulation in nonreal time — Check the behavior of your model
before you create a real-time application. For example, you can check the
stability of your model.

Create a real-time application — Real-Time Workshop generates C code
from your Simulink model. A third-party C compiler compiles the C code to
an executable that runs with the Real-Time Windows Target kernel.

Run an application in real time — Your desktop PC is the target computer
to run the real-time application.

Analyze and visualize signal data — Use MATLAB functions to plot data
saved to the MATLAB workspace or a disk.

1-11

1 Introduction

System Concepts

1-12

A more detailed understanding of Real-Time Workshop and the Real-Time
Windows Target can help you when creating and running your real-time
applications.

This section includes the following topics:

¢ “Simulink External Mode” on page 1-12
¢ “Data Buffers and Transferring Data” on page 1-13

Simulink External Mode

External mode requires a communications interface to pass parameters
external to Simulink, and on the receiving end, the same communications
protocol must be used to accept new parameter values and insert them in the
proper memory locations for use by the real-time application. In some
Real-Time Workshop targets such as Tornado/VME targets, the
communications interface uses TCP/IP protocol. In the case of the Real-Time
Windows Target, the host computer also serves as the target computer.
Therefore, only a virtual device driver is needed to exchange parameters
between MATLAB and Simulink memory space and memory that is accessible
by the real-time application.

Signal acquisition — You can capture and display signals from your real-time
application while it is running. Signal data is retrieved from the real-time
application and displayed in the same Simulink Scope blocks you used for
simulating your model.

Parameter tuning — You can change parameters in your Simulink block
diagram and have the new parameters passed automatically to the real-time
application. Simulink external mode changes parameters in your real-time
application while it is running in real time.

As a user of the Real-Time Windows Target, you will find that the
requirements for setup are minimal. You start by enabling external mode and
specifying the correct name for the MEX-file interface. Then, after you have
built the real-time application, you are ready for external mode operation.

System Concepts

Data Buffers and Transferring Data

At each sample interval of the real-time application, Simulink stores
contiguous data points in memory until filling a data buffer. Once the data
buffer is filled, Simulink suspends data capture while the data is transferred
back to MATLAB through Simulink external mode. Your real-time application,
however, continues to run. Transfer of data is less critical than maintaining
deterministic real-time updates at the selected sample interval. Therefore,
data transfer runs at a lower priority in the remaining CPU time after model
computations are performed while waiting for another interrupt to trigger the
next model update.

Data captured within one buffer is contiguous. When a buffer of data has been
transferred to Simulink, it is immediately plotted in a Simulink Scope block, or
it can be saved directly to a MAT-file using the data archiving feature of the
Simulink external mode.

With data archiving, each buffer of data can be saved to its own MAT-file. The
MAT-filenames can be automatically incremented, allowing you to capture and
automatically store many data buffers. Although points within a buffer are
contiguous, the time required to transfer data back to Simulink forces an
intermission for data collection until the entire buffer has been transferred and
may result in lost sample points between data buffers.

1-13

1 Introduction

1-14

Installation and
Configuration

System Requirements .
Hardware Requirements
Software Requirements .

Real-Time Windows Target
Getting or Updating Your License .
Installing from a CD .
Installing from the Web .

Files on the Your Computer

Initial Working Directory .

Setting the Working Directory from Desktop Icon

Setting the Working Directory from MATLAB .

Third Party C Compiler .
Selecting a Default C Compiler .

Real-Time Windows Target Kernel .
Installing the Kernel
Uninstalling the Kernel .

Testing the Installation .
Running the Model rtvdp.mdl
Displaying Status Information
Detecting Excessive Sample Rates
Demo Library .

2 |nsiallation and Configuration

The Real-Time Windows Target requires the installation of MATLAB,
Simulink, Real-Time Workshop, a C compiler, and the Real-Time Windows

Target kernel. Also, make sure you set your working directory outside of the
MATLAB root directory.

This chapter includes the following sections:

¢ System Requirements — Use any PC compatible computer with MATLAB,
Simulink, Real-Time Workshop, the Real-Time Windows Target, and a C
compiler

¢ Real-Time Windows Target — Install from a CD or download from the Web

¢ Initial Working Directory — Select a directory outside of the MATLAB root
directory

¢ Third Party C Compiler — Install Microsoft Visual C/C++ or Watcom C/
C++ to convert the C code from Real-Time Workshop to a real-time
application

¢ Real-Time Windows Target Kernel — Install the kernel after installing the
Real-Time Windows Target

¢ Testing the Installation — Use the Simulink model rtvdp.mdl to test the
build process and a real-time application

System Requirements

System Requirements

The Real-Time Windows Target requires a PC compatible computer.
This section includes the following topics:

¢ “Hardware Requirements” on page 2-3
® “Software Requirements” on page 2-4

Hardware Requirements

The following table lists the minimum hardware resources the Real-Time
Windows Target (Version 2.2) requires on your computer.

Hardware Description

CPU Pentium or higher in a desktop, laptop, or compact PCI
or PC104 industrial computer
Note The Real-Time Windows Target does not support
DEC alpha computers.

Peripherals Hard disk drive with 16 megabytes of free space

Data acquisition board

Note For a list of supported boards, please see http://
www.mathworks.com/products/rtwt/boards/
ioboards.shtml

CD-ROM drive

RAM 32 megabytes or more

When using a laptop computer, the Real-Time Windows Target is a portable
environment where your computer uses PCMCIA cards to interface to real
world devices.

2 |nsiallation and Configuration

Software Requirements

The Real-Time Windows Target (Version 2.2) has certain product prerequisites
that must be met for proper installation and execution.

The following table lists the software you need to install on your computer to
run the Real-Time Windows Target.

Software Description

Operating system On supported Windows platforms

C compiler Microsoft Visual C/C++ (Version 5.0, 6.0, or 7.0)
Professional Edition
Watcom C/C++ (Version 10.6 or 11.0)

MATLAB 6.5 On the Release 13 CD. Allows installation of

Simulink 5.0

Real-Time
Workshop 5.0

Real-Time
Windows Target 2.2

Simulink
On the Release 13 CD

On the Release 13 CD. Allows installation of the
Real-Time Windows Target

On the Release 13 CD or downloaded from the Web

Real-Time Windows Target

Real-Time Windows Target

The Real-Time Windows Target (Version 2.2) is available on CD or as a Web
downloadable.

If you installed the Real-Time Windows Target (Version 1.0 or 1.5) and the
kernel — You need to uninstall the kernel before you can install the Real-Time
Windows Target (Version 2.2). This removes the old version of the kernel.

If you did not install the Real-Time Windows Target (Version 1.0 or 1.5) —
You only need to install the Real-Time Windows Target (Version 2.2).

This section includes the following topics:

® “Getting or Updating Your License” on page 2-5
¢ “Uninstalling the Kernel” on page 2-16

¢ “Installing from a CD” on page 2-6

¢ “Installing from the Web” on page 2-7

Getting or Updating Your License

Before you install the Real-Time Windows Target, you must have a valid
Personal License Password (PLP) for each of the products you purchased.

When you purchase a product, The MathWorks sends you a Personal License
Password (PLP) in an e-mail message. If you have not received a PLP number,
contact the MathWorks.

Internet http://www.mathworks.com/mla

Log into MATLAB Access using your last name and Access
number. Follow the license links to determine your PLP

number

E-mail mailto:service@mathworks.com. Include your license
number

Telephone 508-647-7000. Ask for Customer Service

Fax 508-647-7001. Include your license number

2 |nsiallation and Configuration

Installing from a CD

We distribute the Real-Time Windows Target (Version 2.2) on the MathWorks
Release 13 CD with the general installation program.

After you get a valid Personal License Password (PLP), you can install the
Real-Time Windows Target software. For detailed information about the
installation process, see the MATLAB Installation Guide for Windows
documentation:

1 Insert the Release 13 CD into your host CD-ROM drive.

The installation program starts automatically after a few seconds. If the
installation program does not start automatically, run setup.exe on the CD.

Real-Time Windows Target

During the installation process a screen similar to the one shown below
allows you to select which products to install.

Product List

1. Select directary where products will be inzstalled. Space available:

| Browse ... | 30145 M

2. Select installation options.

Space required far

& nstall products and documentation. product(s], if ary:

 Install products only, bare Optiars .. |
' Install documentation anly.

3. Select language of documentation.

B31 M

Space required far
&' English anly. documentation, if

' English and Japanese, if available. any.

252 W
4. Select products and/ar docurnentation.

[Honlinear Control Design Blockset 1.
[Optimization Toolbox 2.
[Partial Differential Equation Toolbox 1.
[Power Svstem Elockset

IEdFeal-Tine Windows Target

[Real-Time Workshop

[Real-Time Workshop Ada Coder

Help | < Back I Ment » I LCancel |

Kl |+

Taotal zpace
reguired;

PSS |, J U S
(SRS | J I T |

883 M

2 Follow the instructions on each dialog box.

The Real-Time Windows Target installation is now complete.

Your next task is to install the Real-Time Windows Target kernel. See
“Installing the Kernel” on page 2-14.

Installing from the Web

We distribute the Real-Time Windows Target Version 2.2 as a single,
self-extracting file. This file is not an update, but a complete product, and does
not require you to install the Real-Time Windows Target Version 1.0 or 1.5.

2-7

2 |nsiallation and Configuration

Also, this file includes the Real-Time Windows Target documentation as a PDF
file.

After you get a valid Personal License Password (PLP), you can install the
Real-Time Windows Target on your computer:

1 In the Web browser window, enter the following address:

http://www.mathworks.com

2 On the right side of the page, click the link labeled Downloads. On the
Downloads Web page, click the link labeled download products.

The MATLAB Access Web page opens.

3 Enter your last name and your MATLAB Access number. Click the Login
button.

The Downloads Web page opens.

4 From the left list, select the Windows check box, and then click the
Continue button. From the Select Your Products list, select the Real-Time
Windows Target 2.2 check box, and then click the Continue button.

5 On the next Web page, click the Real-Time Windows Target link. In the
File Download dialog box, select Save this file to disk, and select the
directory where you installed MATLAB.

Your browser downloads the file Real-Time Windows_Target.exe to your
computer.

6 Double-click the self-extracting file Real-Time_Windows_Target.exe.

The install program copies extracted files to a temporary directory and
starts the MATLAB installation program.

7 Follow the instructions on each dialog box.

After MATLAB finishes the installation, the install program deletes all of
the files from the temporary directory.

The Real-Time Windows Target installation is now complete.

Real-Time Windows Target

Note A PDF version of the Real-Time Windows Target documentation is
located at MATLABROOT \help\pdf doc\rtwin\rtwin_target ug.pdf. Youneed
Adobe Acrobat Reader to view and print this document. You can download
Acrobat Reader from the Web at www.adobe . com.

Your next task is to install the Real-Time Windows Target kernel. See
“Real-Time Windows Target Kernel” on page 2-14.

Files on the Your Computer

When using the Real-Time Windows Target, you may find it helpful to know
where files are located:

* MATLAB working directory — Simulink models (model.md1) and the
Real-Time Windows Target executable (model. rwd)

Note Select a working directory outside of the MATLAB root. See “Initial
Working Directory” on page 2-11.

¢ Real-Time Workshop project directory — The Real-Time Workshop
C-code files (model.c, model.h) are in a subdirectory called model rtwin.

Real-Time Windows Target Files — The files included with the Real-Time
Windows Target are located in the directory

matlabroot\toolbox\rtw\targets\rtwin

2 |nsiallation and Configuration

2-10

The Real-Time Windows Target provides files to help Real-Time Workshop
generate C code from your Simulink model, and compile that code to a real-time
executable:

¢ System Target File (rtwin.tlc) — Defines the process of generating C code
for the Real-Time Windows Target.

¢ Template Makefile and Makefile (rtwintmf.m, model name.mk) — The
template makefile serves as a template for generating the real makefile,
which the make utility uses during model compilation. During the automatic
build procedure, the make command extracts information from the template
makefile rtwintmf.m and generates the makefile model_name.mk.

® Make Command (make rtw.m) — The standard make command supplied
with Real-Time Workshop.

Other files provided with the Real-Time Windows Target include

¢ T/O drivers (*rwd) — Binaries for I/O device drivers. The Real-Time
Windows Target does not link the driver object files with your real-time
executable. The drivers are loaded into memory and run by the kernel
separately.

¢ Simulink external mode interface (rtwinext.d1l) — MEX-file for
communicating between Simulink external mode and the Real-Time
Windows Target kernel.

Simulink external mode uses the MEX-file interface module to download
new parameter values to the real-time model and to retrieve signals from the
real-time model. You can display these signals in Simulink Scope blocks.

® Kernel install and uninstall commands (rtwintgt.m, rtwho.m) — M-file
scripts to install and uninstall the Real-Time Windows Target kernel and
check installation.

Initial Working Directory

Initial Working Directory

You should set your MATLAB working directory outside of the MATLAB root
directory. The default MATLAB root directory is c:\matlab.

This section includes the following topics:

¢ “Setting the Working Directory from Desktop Icon” on page 2-11
® “Setting the Working Directory from MATLAB” on page 2-11

Setting the Working Directory from Desktop Icon

Your initial working directory is specified in the shortcut file you use to start
MATLAB. To change this initial directory, use the following procedure:

1 Right-click the MATLAB desktop icon, or from the program menu,
right-click the MATLAB shortcut.

2 Click Properties. In the Start in text box, and enter the directory path you
want MATLAB to initially use outside of the MATLAB root directory.

3 Click OK, and then start MATLAB. To check your working directory, type
pwd or cd

Setting the Working Directory from MATLAB

Use the following procedure as an alternative, but temporary, procedure for
setting your MATLAB working directory:

1 In the MATLAB command window, type

cd c:\mwd

2 Check the current working directory, type
cd

MATLAB displays

ans = c:\mwd or c:\mwd

2-11

2 |nsiallation and Configuration

2-12

Third Party C Compiler

The Real-Time Windows Target requires one of the following C compilers not
included with the Real-Time Windows Target:
® Microsoft Visual C/C++ compiler — Version 5.0, 6.0, or 7.0.

¢ Watcom C/C++ compiler — Version 10.6 and 11.0. During installation of
your Watcom C/C++ compiler, be sure to specify a DOS target in addition to
a Windows target to have the necessary libraries available for linking.

After installation, run the MEX utility to select your compiler as the default
compiler for building real-time applications.

Selecting a Default C Compiler

Real-Time Workshop uses the default C compiler to generate executable code,
and the MEX utility uses this compiler to create MEX-files.

Use this procedure to select either a Microsoft Visual C/C++ compiler or a
Watcom C/C++ compiler before you build an application. Note, the LCC
compiler is not supported:

1 In the MATLAB window, type

mex -setup

MATLAB displays the following message:

Please choose your compiler for building external interface
(MEX) files. Would you like mex to locate installed
compilers?([y]l/n):

2 Type

y

MATLAB displays the following message:

Select a compiler:

[1] : WATCOM compiler in c:\watcom
[2] : Microsoft compiler in c:\visual
[0] : None

Compiler:

Third Party C Compiler

3 Type a number. For example, to select the Microsoft compiler, type
2

MATLAB displays the message:

Please verify your choices:

Compiler: Microsoft 5.0

Location: c:\visual

Are these correct?([y]l/n)
4 Type

y

MATLAB resets the default compiler and displays the message:

The default options file:
C:\WINNT\Profiles\username\Application
Data\MathWorks\MATLAB\mexopts.bat is being updated.

2-13

2 |nsiallation and Configuration

Real-Time Windows Target Kernel

A key component of the Real-Time Windows Target is a real-time kernel that
interfaces with the Windows operating system in a way that allows your
real-time executable to run at your selected sample rate. The kernel assigns
the highest priority of execution to your real-time executable.

This section includes the following topics:

® “Installing the Kernel” on page 2-14
¢ “Uninstalling the Kernel” on page 2-16

Installing the Kernel

During installation, all software for the Real-Time Windows Target is copied
onto your hard drive. The kernel, although copied to the hard drive, is not
automatically installed. Installing the kernel sets up the kernel to start
running in the background each time you start your computer.

After you install the Real-Time Windows Target (version 2.2), you can install
the kernel. You need to install the kernel before you can run a Real-Time
Windows Target executable:

1 In the MATLAB command window, type
rtwintgt -install

MATLAB displays the message

You are going to install the Real-Time Windows Target kernel.
Do you want to proceed? [y]

2 Continue installing the kernel. Type
y

MATLAB installs the kernel and displays the message

The Real-Time Windows Target kernel has been successfully
installed.

If a message is displayed asking you to restart your computer, you need to
restart your computer before the kernel runs correctly.

Real-Time Windows Target Kernel

3 Check that the kernel was correctly installed. Type

rtwho

MATLAB should display a message similar to

Real-Time Windows Target version 2.2 (C) The MathWorks, Inc.
1994-2002

MATLAB performance = 100.0%

Kernel timeslice period = 1 ms

Once the kernel is installed, you can leave it installed. After you have installed
the kernel, it remains idle, which allows Windows to control the execution of
any standard Windows application. Standard Windows applications include
internet browsers, word processors, and MATLAB.

It is only during real-time execution of your model that the kernel intervenes
to ensure that your model is given priority to use the CPU to execute each
model update at the prescribed sample intervals. Once the model update at a
particular sample interval completes, the kernel releases the CPU to run any
other Windows application that may need servicing.

2-15

2 |nsiallation and Configuration

Uninstalling the Kernel

If you encounter any problems with the Real-Time Windows Target, you can
uninstall the kernel. The kernel executable file remains on your hard drive so
that you can reinstall it:

1 In the MATLAB command window, type

rtwintgt -uninstall

MATLAB displays the message

You are going to uninstall the Real-Time Windows Target kernel.
Do you want to proceed? [y]

2 To continue uninstalling the kernel, type

y

MATLAB uninstalls the kernel by removing it from memory and displays
the message.

The Real-Time Windows Target kernel has been successfully
uninstalled.

3 To check that the kernel was correctly uninstalled, type

rtwho
MATLAB should displays the following message

-} Real-Time Windows Target x|

Real-Time "Windomws Target ingtallation iz not complete, Pleaze ype
‘tbwintgt -zetup’ to complete the installation. Type ‘help twintgt’ for
more information.

_x |

If you are running Windows 98, you need to reboot your computer before the
uninstall is complete.

Once uninstalled, the kernel is no longer active, and has no impact on the
operation of your computer.

Real-Time Windows Target Kernel

There are two additional ways to uninstall the Real-Time Windows Target
kernel. They are useful if you uninstall MATLAB before you uninstall the
kernel.

From the Start menu select Settings, Control Panel, and Add/Remove
Software. Choose Real-Time Windows Target to uninstall the kernel.

Alternately, from the DOS prompt of your computer, type

rtwintgt -uninstall
and the kernel will uninstall from your system. Typing
rtwintgt -forceuninstall

forcibly deregisters the kernel from the operating system without deleting any
files. This option should only be used when all other attempts to uninstall the
kernel fail. This command can be used both within MATLAB and at the DOS
prompt.

2-17

2 |nsiallation and Configuration

2-18

Testing the Installation

The Real-Time Widows Target includes several demo models. You can use one
of the demo models to test your installation. Demo models simplify testing of
your installation since they are configured with settings that include the
correct target, scope settings, sample time, and integration algorithm.

Once you have completed the installation of the Real-Time Windows Target
and the kernel, we recommend a quick test by at least running the model
rtvdp.mdl. If you change your installation or compiler, we also recommend
doing this test as a quick check to confirm that the Real-Time Windows Target
is still working.

This section includes the following topics:

® “Running the Model rtvdp.mdl” on page 2-18

® “Displaying Status Information” on page 2-21

® “Detecting Excessive Sample Rates” on page 2-22
® “Demo Library” on page 2-22

Running the Model rtvdp.mdl

The model rtvdp.mdl does not have any I/O blocks so that you can run this
model regardless of the I/O boards in your computer. Running this model will
test the installation by running Real-Time Workshop, your third-party

C compiler, the Real-Time Windows Target, and the Real-Time Windows
Target kernel.

After you have installed the Real-Time Windows Target kernel, you can test
the entire installation by building and running a real-time application. The
Real-Time Windows Target includes the model rtvdp.mdl, which already has
the correct Real-Time Workshop options selected for you:

1 In the MATLAB command window, type
rtvdp

Testing the Installation

The Simulink model rtvdp.mdl window opens.

_[O] x|
File Edit Wiew Simulakion Format Tools Help
Dl£n§|%ﬁlﬂ?l)?lhtemal 'Il@&”ﬁ{r@
wan der Pol Equation
xl PR xi . . Qutz 1
x x
Fen ¥2 # + _’®
Ll aut1
1T}
fd B
Ll
>
| . | .
Ll Ll
Saturation
Scope
Ready [100% | | |odes 4

2 From the Tools menu, point to Real-Time Workshop, and then click Build
Model.
The MATLAB command window displays the following messages:
Starting Real-Time Workshop build for model: rtvdp
Invoking Target Language Compiler on rtvdp.rtw
Compiling rtvdp.c

Created Real-Time Windows Target module rtvdp.rwd.
Successful completion of Real-Time Workshop build procedure
for model: rtvdp

2-19

2 |nsiallation and Configuration

3 From the Simulation menu, click External, and then click Connect to
target.

The MATLAB command window displays the following message:
Model rtvdp loaded

4 From Simulation menu, click Start real-time code.

The Scope window displays the output signals. If your Scope window looks
like the figure shown below, then you have successfully installed the
Real-Time Windows Target and have run a real-time application.

|2E(locee AEER D E R

5 From Simulation menu, click Stop real-time code.

The real-time application stops running, and the Scope window stops
displaying the output signals.

2-20

Testing the Installation

Displaying Status Information

The Real-Time Windows Target provides the command rtwho for accessing the
kernel and displaying status information. It lists information about the version
number, kernel performance, and history variables. Also, you can determine
whether or not the Real-Time Windows kernel is presently installed:

1 In the MATLAB command window, type

rtwho

MATLAB displays messages similar to those shown below.

Real-Time Windows Target version 2.2 (C) The MathWorks, Inc.
1994-2002

MATLAB performance = 100.0%

Kernel timeslice period = 1 ms

DRIVERS: Name Address Parameters
Humusoft AD512 0x300 [1

2 Interpret the message.

This message indicates that MATLAB and other nonreal-time applications
(for example, a word processor) are able to run at 100% performance because
no real-time applications are currently executing on your PC.

When a real-time application is executing, the MATLAB performance is at
a value below 100%. For example, if the MATLAB performance = 90.0%,
then the real-time application is using 10% of the CPU time.

We recommend that you select a sample rate so that rtwho returns a
MATLAB performance of at least 80%.

The kernel time slice period is the current frequency of the hardware timer
interrupt. One millisecond is the maximum value for models with large
sample times (slow sampling rate) or when an application has not been built.

This value changes when you select sampling times less then 1 millisecond.

2-21

2 |nsiallation and Configuration

2-22

Detecting Excessive Sample Rates

If your specified sample rate is too fast, the Real-Time Windows Target detects
and reports this during real-time execution. Sampling rates exceeding 10 kHz
can be achieved on Pentium computers. Once the model is running, the rtwho
command can be issued in the MATLAB command line to observe the system
performance. As indicated, MATLAB performance decreases as the system
becomes overloaded:

Real-Time Windows Target version 2.2 (C) The MathWorks, Inc.
1999-2002

MATLAB performance = 99.1%

Kernel timeslice period = 0.0999 ms

TIMERS: Number Period Running

1 0.01 Yes
DRIVERS: Name Address Parameters
Humusoft AD512 0x300 []
ecg 0 []

Demo Library

The demo library includes models with preset values and dialog boxes. These
models include a configuration of examples that use no I/0, A/D only, A/D and
D/A in a simple signal processing demo, as well as in a simple control demo.

Examples that use I/0 blocks require you to configure the Adapter block to
match the I/O board installed in your computer.

Testing the Installation

1 In the MATLAB command window, type

rtwtdemo

The rtwtdemo window opens and displays the demo models provided with
the Real-Time Windows Target.

=] rtwtdemo -0l =l
File Edit Wiew Simulation Format Tools
Help

T

Real-time R;?;::re
WDF dema Fenerator
Real-time Real-time
Filter Controller
FlLo0% | | lodeds 2

2 Double-click a demo block to open the model.

2-23

2 |nsiallation and Configuration

2-24

Basic Procedures

Simulink Model

Creating a Simulink Model . .
Entering Simulation Parameters for Slmuhnk .
Entering Scope Parameters for Signal Tracing .
Running a Nonreal-Time Simulation

Real-Time Application .
Entering Simulation Parameters for

Real-Time Workshop . . .
Entering Scope Parameters for Slgnal Tracmg .
Creating a Real-Time Application .

Entering Additional Scope Parameters for Slgnal Tracmg .

Running a Real-Time Application .
Running a Real-Time Application from the
MATLAB Command Line .

Signal Logging to the MATLAB Workspace .
Entering Scope Parameters . ..
Entering Signal and Triggering Propertles
Plotting Logged Signal Data . .

Signal Logging to a Disk Drive
Entering Scope Parameters .
Entering Signal and Triggering Propertles
Entering Data Archiving Parameters
Plotting Logged Signal Data .

Parameter Tuning
Types of Parameters .
Changing Model Parameters .

3-3
3-3
3-7
3-9

. 3-12
.3-14

.3-14
. 3-17
. 3-20
.3-21
. 3-25

. 3-28

. 3-29
. 3-29
. 3-31
. 3-35

. 3-37
. 3-37
. 3-40
. 3-43
. 3-46

. 3-48
. 3-48
. 3-49

3 Basic Procedures

3-2

The basic procedures explain how to create a Simulink or real-time application,
and how to run a simulation or execution.

This chapter includes the following sections:

¢ Simulink Model — Create a Simulink model and run a nonreal-time
simulation

¢ Real-Time Application — Create a real-time application, generate code
from that model, and run a real-time execution

* Signal Logging to the MATLAB Workspace — Save data from a
simulation or execution, and then analyze or visualize that data

® Signal Logging to a Disk Drive — Save data from a real-time execution,
and then analyze or visualize that data

¢ Parameter Tuning — Change parameters in your application while it is
running in real time

Simulink Model

Simulink Model

A Simulink model is a graphical representation of your physical system. You
create a Simulink model for nonreal-time simulation of your system, and then
you use the Simulink model to create a real-time application.

This section includes the following topics:

¢ “Creating a Simulink Model” on page 3-3

¢ “Entering Simulation Parameters for Simulink” on page 3-7
¢ “Entering Scope Parameters for Signal Tracing” on page 3-9
¢ “Running a Nonreal-Time Simulation” on page 3-12

Creating a Simulink Model

This procedure explains how to create a simple Simulink model. You use this
model as an example to learn other procedures in the Real-Time Windows
Target.

You need to create a Simulink model before you can run a simulation, or create
a real-time application:

1 In the MATLAB command window, type

simulink
The Simulink Library Browser window opens.

2 From the toolbar, click the Create a new model button.

(=1 Simulink Library Browser M=l

File Edit “iew Help
= - Find ||

Continuous: zimulink3/Continuous

3-3

3 Basic Procedures

An empty Simulink window opens.

[=] untitled o [=]

File Edit Yiew Simulation Format Tools Help

D|@H§|$E|§Q|H‘E—®| A | INDrmaI

Ready [100% | | \oded5 4

3 In the Simulink Library Browser window, double-click Simulink, and then
double-click Sources. Click-and-drag Signal Generator to the Simulink
window.

Double-click Continuous. Click-and-drag Transfer Fen to the Simulink
window.

Double-click Sinks. Click-and-drag Scope to the Simulink window.

4 Connect the Signal Generator output to the Transfer Fen input by
clicking-and-dragging a line between the blocks. Likewise, connect the
Transfer Fen output to the Scope input.

5 Double-click the Transfer Fcn block. The Block Parameters dialog box
opens. In the Numerator text box, enter

[10000]

In the Denominator text box, enter

[1 70 10000]

Simulink Model

Your Block Parameters dialog box will look similar to the figure shown
below.

Block Parameters: Transfer Fcn |

— Tranzfer Feon

bd atrix expression for numerator, vector expression for denominator.
Output width equals the number of rows in the numerator, Coefficients are
for descending powers of &

— Parameters
Mumerator;

|[1 nooq)

Drenominatar:
|[1 7010000]

Absolute tolerance;

Iauto

ak. I Cahicel Help Apply

6 Click OK.

7 Double-click the Signal Generator block. The Block Parameters dialog box
opens. From the Wave form list, select square.

In the Amplitude text box, enter
1

In the Frequency text box, enter

20

From the Units list, select rad/sec.

3-5

3 Basic Procedures

3-6

Your Block Parameters dialog box will look similar to the figure shown

below.

Block Parameters: Signal Generator

— Signal Generatar

Output various wave farms.

— Parameters

Wave fam: | square

Arnplitude:

h

Freguency:

|2n

Units: Irada’sec

[Interpret vector parameters as 1-00

0k I Cancel Help

Apply |

8 Click OK.

The completed Simulink block diagram is shown below.

Euntitled o

File Edit Wiew Simulakion Format Tools Help

=10l]

D|D"‘E§|¢H:E|DQ)lanlmaI 'I|§

ooon 10000
e | -
g2 +70s+10000
Signal Scope
Generator Transfer Fon
Ready [117% [odeas

Simulink Model

From the File menu, click Save As. The Save As dialog box opens. In the
File name text box, enter a filename for your Simulink model and click
Save. For example, type

rtwin_model

Simulink saves your model in the file rtwin_model.md1l.

Entering Simulation Parameters for Simulink

The simulation parameters give information to Simulink for running a
simulation.

After you create a Simulink model, you can enter the simulation parameters
for Simulink. This procedure uses the Simulink model rtwin_model.mdl as an
example and assumes you have already loaded that model:

In the Simulink window, and from the Simulation menu, click Simulation
parameters. In the Simulation Parameters dialog box, click the Solver
tab.

The Solver pane opens.

In the Start time box, enter 0.0. In the Stop time box, enter the amount of
time you want your model to run. For example, enter 10.0 seconds.

From the Type list, choose Fixed-step. Real-Time Workshop does not
support variable step solvers.

From the integration algorithm list, choose a solver. For example, choose the
general purpose solver ode5 (Dormand-Prince).

In the Fixed step size box, enter a sample time. For example, enter 0.001
seconds for a sample rate of 1000 samples/second.

From the Mode list, choose SingleTasking. For models with blocks that
have different sample times, choose MultiTasking.

3-7

3 Basic Procedures

Your Solver pane will look similar to the figure shown below.

-} Simulation Parameters: rtwin_model 101 x]

Salver

Workspacela’Dl Diagnosticsl .t’-‘n.dvancedl Heal-TimeWorkshopl

Simulation time

Start time: I [IR1] Stop time: I 0.0

Salver options
Type: IFiHed-step j IDdeE [Dormand-Frince] j

Fined step size: I 0.001 h e ISingIeTasking "I

Output options

Refine output j Erefire facton I 1

ok | Cancell Help | Apply |

7 Do one of the following:

= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Simulation
Parameters dialog box.

3-8

Simulink Model

Entering Scope Parameters for Signal Tracing

You enter or change scope parameters to specify the x-axis and y-axis in a Scope
window. Other properties include the number of graphs in one Scope window
and the sample time for models with discrete blocks.

After you add a Scope block to your Simulink model, you can enter the scope
parameters for signal tracing:

1 In the Simulink window, double-click the Scope block.
A Scope window opens.

2 Click the Parameters button.
u§p@,®lﬁ%| 8 &

Parameters

A Scope parameters dialog box opens.

3 Click the General tab. In the Number of axes box, enter the number of
graphs you want in one Scope window. For example, enter 1 for a single
graph. Do not select the floating scope check box.

In the Time range box, enter the upper value for the time range. For
example, enter 1 second. From the Tick labels list, choose all.

From the Sampling list, choose Sample time and enter 0 in the text box.
Entering 0 indicates that Simulink evaluates this block as a continuous time
block. If you have discrete blocks in your model, enter the Fixed step size
you entered in the Simulation Parameters dialog box.

3-9

3 Basic Procedures

Your Scope parameters dialog box will look similar to the figure shown

below.
') "Scope’ pari*‘neters M= E
General | Data higtor_pl Tip: try right clicking on axes
bues

Mumber of ares: I 1 [~ floating scope
Tirne range: |1

Tick. labels: | all -

Sampling
Sample time j IU

ok | I:ancell Help | Apply |

4 Do one of the following:

= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Scope
parameters dialog box.

3-10

Simulink Model

5 In the Scope window, point to the y-axis shown in the figure below, and
right-click.

scope P

|leE(ocer AEE 2 &R

Zoar auk
Aukoscale
Save current: axes setbings

Axes properties, ..

6 From the pop-up menu, click Axis Properties.

7 The Scope properties: axis 1 dialog box opens. In the Y-min and Y-max
text boxes, enter the range for the y-axis in the Scope window. For example,
enter -2 and 2 as shown in the figure below.

) 'Scope’ properties: axis 1 = o] |

Mk I -2 Y-ma:-t:l 2

Title ['%<SignalLabel:' replaced by sighnal name]:
| %<SignalLabel>

0K | Cancel | Apply

8 Do one of the following:

= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Simulation
Parameters dialog box.

3-11

3 Basic Procedures

3-12

Running a Nonreal-Time Simulation

You use Simulink in normal mode to run a nonreal-time simulation. Running
a simulation lets you observe the behavior of your model in nonreal-time.

After you load your Simulink model into the MATLAB workspace, you can run
a simulation. This procedure uses the Simulink model rtwin_model.mdl as an
example and assumes you have loaded that model:

1 In the Simulink window, double-click the Scope block.
Simulink opens a Scope window with an empty graph.

2 From the Simulation menu, click Normal, and then click Start.

letwin_model E =10 x|

File Edit Wiew | Simulation Format Tools Help

D|@némh—_|mma| ~|| i 6
- Stop

Simulation parameters,.. Cki+E
Mechanical enviranment. ..
oooo] v Mormal I:I
a0 Accelerator Bl
Signal __ Exernal Scape
Generator Transfer Fon
Start the sin[117% [[[odes Y

Simulink runs the simulation and plots the signal data in the Scope window.

Simulink Model

During the simulation, the Scope window displays the samples for one time
range, increases the time offset, and then displays the samples for the next
time range.

=101]

|2E(ocrr ABRE B E &

3 Do one of the following:
= Let the simulation run to the stop time.

= From the Simulation menu, click Stop.

The simulation stops. MATLAB does not display any messages.

3-13

3 Basic Procedures

3-14

Real-Time Application

You create a real-time application to let your system run while synchronized to
a real-time clock. This allows your system to control or interact with an
external system. This is necessary if you use your system to stabilize a physical
plant.

The process of creating and running a real-time application includes the
creation of a Simulink Model from the previous section:

® “Creating a Simulink Model” on page 3-3

¢ “Entering Simulation Parameters for Simulink” on page 3-7

This section includes the following topics:

¢ “Entering Simulation Parameters for Real-Time Workshop” on page 3-14

¢ “Entering Scope Parameters for Signal Tracing” on page 3-17

¢ “Creating a Real-Time Application” on page 3-20

¢ “Entering Additional Scope Parameters for Signal Tracing” on page 3-21

¢ “Running a Real-Time Application” on page 3-25

¢ “Running a Real-Time Application from the MATLAB Command Line” on
page 3-28

Entering Simulation Parameters for
Real-Time Workshop

The simulation parameters are used by Real-Time Workshop for generating
C code and building a real-time application.

After you create a Simulink model, you can enter the simulation parameters
for Real-Time Workshop. This procedure uses the Simulink model
rtwin_model.mdl as an example and assumes you have already loaded that
model:

1 In the Simulink window, and from the Simulation menu, click Simulation
parameters. In the Simulation Parameters dialog box, click the
Real-Time Workshop tab.

The Real-Time Workshop pane opens.

Real-Time Application

2 Click the Browse button.
The System Target File Browser opens.

3 Select the system target file for the Real-Time Windows Target.

rt_ada sim.tlc dda Jimmlation Target for GHNAT
rt ada tasking.tlc fAda Multitasking Beal-Time Target for G
rtwin. tlc Feal-Time Windows Target E
rtwsfeon. tlec S-function Target
4 Click OK.

The system target file rtwin.t1lc, the template makefile rtwintmf, and the
make command make rtw are automatically entered into the Real-Time
Workshop pane.

Although not visible in the Real-Time Workshop pane, the external target
interface MEX file rtwinext is also configured after you click OK. This
allows external mode to pass new parameters to the real-time application
and to return signal data from the real-time application. The data is
displayed in Scope blocks or saved with signal logging.

3-15

3 Basic Procedures

Your Real-Time Workshop pane will look similar to the figure shown below.

-} simulation Parameters: rtwin_model o] oA |

Solverl Workspacela’Dl Diagnosticsl Advancedl Real-Time Waorkshop

Cateqany: I Target configquration j Ewild |

Canfiguration
Syztem target file: I thwirHe Bmwse...l
Template mak efile: I Thwintmf

b ake command: I make rhw

[~ Generate code anly Stateflow options... |

ok | Cancell Help | Apply |

Do not select the Inline parameters check box on the Advanced tab.
Inlining parameters is used for custom targets when you want to reduce the
amount of RAM or ROM with embedded systems. Also, if you select inlining
parameters, the parameter tuning feature is disabled. Since PCs have more
memory than embedded systems, we recommend that you do not inline
parameters.

5 Do one of the following:

= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Simulation
Parameters dialog box.

3-16

Real-Time Application

Entering Scope Parameters for Signal Tracing

You enter or change scope parameters to format the x-axis and y-axis in a
Scope window. Other parameters include the number of graphs in a one Scope
window and whether the scope is connected to a continuous or discrete model.

If you entered the scope parameters for running a simulation, you can skip this
procedure. This information is repeated here if you did not run a simulation.

After you add a Scope block to your Simulink model, you can enter the scope
parameters for signal tracing:

1 In the Simulink window, double-click the Scope block.
A Scope window opens.

2 Click the Parameters button.
|leEpee AREB|IEE &

A Scope parameters dialog box opens.

3 Click the General tab. In the Number of axes box, enter the number of
graphs you want in one Scope window. For example, enter 1 for a single
graph. Do not select the floating scope check box.

In the Time range box, enter the upper value for the time range. For
example, enter 1 second. From the Tick labels list, choose all.

From the Sampling list, choose Sample time and enter 0 in the text box.
Entering 0 indicates that Simulink evaluates this block as a continuous time
block. If you have discrete blocks in your model, enter the Fixed step size
you entered in the Simulation Parameters dialog box.

3-17

3 Basic Procedures

Your Scope parameters dialog box will look similar to the figure shown

below.
') "Scope’ pari*‘neters M= E
General | Data higtor_pl Tip: try right clicking on axes
Aues

MHurnber of ares: I 1 [~ floating scope
Tirne range: |1

Tick. labels: | all -

Sampling
Sample time j IU

ok | I:ancell Help | Apply |

4 Do one of the following:

= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Scope
parameters dialog box.

5 In the Scope window, point to the y-axis and right-click. From the menu,
click Axis Properties.

The Scope properties: axis 1 dialog box opens.

3-18

Real-Time Application

6 In the Y-min and Y-max text boxes enter the range for the y-axis in the
Scope window. For example, enter -2 and 2.

") scope’ properties iz 3 SSSI[eIE]
ik I -2 Y-ma:-t:l 2

Title [+« SignalLabel:' replaced by signal name):
| #<SignalLabel>

0K | Cancel | Apply

7 Do one of the following:

= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Scope
properties: axis 1 dialog box.

3-19

3 Basic Procedures

Creating a Real-Time Application

Real-Time Workshop generates C code from your Simulink model, then a
third-party C compiler compiles and links that C code into a real-time
application.

After you enter parameters into the Simulation Parameters dialog box for
Real-Time Workshop, you can build a real-time application. This procedure
uses the Simulink model rtwin_model.mdl as an example, and assumes you
have loaded that model:

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Build Model.

The build process does the following:

= Real-Time Workshop creates the C code source files rtwin_model.c and
rtwin_model.h.

= The make utility make rtw.execreates the makefile rtwin_model.mk
from the template makefile rtwintmf.

= The make utility make rtw.exe builds the real-time application
rtwin_model.rwd using the makefile rtwin_model.mk created above. The
file rtwin_model.rwd is a binary file that we refer to as your real-time
application. You can run the real-time application with the Real-Time
Windows Target kernel.

2 Connect your Simulink model to your real-time application. See “Entering
Additional Scope Parameters for Signal Tracing” on page 3-21.

After you create a real-time application, you can exit MATLAB, start MATLAB
again, and then connect and run the executable without having to rebuild.

3-20

Real-Time Application

Entering Additional Scope Parameters for Signal
Tracing

Simulink external mode connects your Simulink model to your real-time
application. This connection allows you to use the Simulink block diagram as a
graphical user interface to your real-time application.

After you have created a real-time application, you can enter scope parameters
for signal tracing with Simulink external mode:

1 In the Simulation window, and from the Tools menu, click External Mode
Control Panel.

The External Mode Control Panel dialog box opens.

J} rtwin_model: External Mode Control Panel i] 4|

Connect | Start realtime code A brigger,

Farameter tuning

[Batch download

evmlaad |

Target interface .. | Signal&triggering...l D ata archiving ... |

Cloze |

Canfiguration

2 Click the Target Interface button.

3-21

3 Basic Procedures

The External Target Interface dialog box opens.

) rtwin_model: External Target Interfay =101 x|

MEXile options

ME-file for extemal interface;

I TRt

ME-file argurents:

ak. | Cancel |

3 In the MEX-file for external interface box, enter rtwinext.

The MEX-file, rtwinext.d11, is supplied with the Real-Time Windows
Target to work with Simulink external mode and support uploading signal
data and downloading parameter values.

4 Click OK.

5 Click the Signal & Triggering button.
The External Signal & Triggering dialog box opens.

6 Click the Select all button. From the Source list, choose manual. From the
Mode list, choose normal.

The X under Signal selection designates that a signal has been tagged for
data collection, and T designates that the signal has been tagged as a trigger
signal.

7 Inthe Duration box, enter the number of sample points in a data buffer. For
example, if you have a sample rate of 1000 samples/second and a stop time
of 10 seconds, you could enter

10000

3-22

Real-Time Application

8 Select the Arm when connect to target check box.

Note If you do not select this check box, data is not displayed in the scope

window.

The Signal & Triggering dialog box will look similar to the figure below.

.} rtwin_model: External Signal & Triggering o] |
Signal selection
Elock Path
Scope rtwin model e [<] ¥ Select
Clear all |
= on
= off

Trigger zignal |
;I Go bo block |

Trigger
Trigger signal: Fort: I 1 Element:l any

Sounce: Imanual vI Mode: Inormal 'I

thwin_model/ S cope -
Duration: | 10000 Delay: | 0 - . j
¥ Am when connect to target Directior: Irising VI Lewvel: I 0 Hizld-aff: I a
Rewert | Help | Apply | Cloze |

9 Do one of the following:
= Click Apply to apply the changes to your model and leave the dialog box

open.

3-23

3 Basic Procedures

= Click Close to apply the changes to your model and close the Simulation
Parameters dialog box.

Note You must click the Apply or Close button on the Signal and

Triggering dialog box for the changes you made to take effect. Generally it
is not necessary to rebuild your real-time application.

3-24

Real-Time Application

Running a Real-Time Application
You run your real-time application to observe the behavior of your model in
real time with the generated code.

The process of connecting consists of

¢ Establishing a connection between your Simulink model and the kernel to
allow exchange of commands, parameters, and logged data.

¢ Running the application in real time.
After you build the real-time application, you can run your model in real time.

This procedure uses the Simulink model rtwin_model.mdl as an example, and
assumes you have created a real-time application for that model:

1 From the Simulation menu, click External, and then click Connect to
target. Also, you can connect to the target from the toolbar by clicking ™ -

Elrtwin_model 10l =l
File Edit View | Simulation Format Tools Help
0 | = Stark realtime code ZErlH-T

Simulation parameters, ., gctrHE

Mechanical enviranment. ..

oooo Mormal
2a Acceleratar

Signal v External
Generator Transfer Feon

Conmect to [117% | |odes v

MATLAB displays the message

Model rtwin_model loaded

3-25

3 Basic Procedures

2 In the Simulation window, and from the Simulation menu, click Start
real-time code. Also, you can start the execution from the toolbar by
clicking ' p .

Ertwin_mndel _|- _||:| ﬂ
File Edit View | Simulation Format Tools Help

0 |D'=- = Stark real-time code k lml :

Disconnect From karget Chrl+T
Simulation parameters,,, ChrHE

Mechanical enviranment. ..

oooo armal T T
2a Aoceleratar
L a
Signal v External Scope
Generatar Transfer Fen

Skart the re [117% EEEEN [T=0.000 |odes v

Simulink runs the execution and plots the signal data in the Scope window.

In this example, the Scope window displays 1000 samples in 1 second,
increases the time offset, and then displays the samples for the next 1
second.

3-26

Real-Time Application

Note Transfer of data is less critical than calculating the signal outputs at
the selected sample interval. Therefore, data transfer runs at a lower priority
in the remaining CPU time after real-time application computations are
performed while waiting for another interrupt to trigger the next real-time
application update. The result may be a loss of data points displayed in the
Scope window.

=101 x|

2B (oo ABEE B L H

3 Do one of the following:
= Let the execution run until it reaches the stop time.

= From the Simulation menu, click Stop real-time code.

The real-time application stops, and MATLAB displays the message

Model rtwin_model unloaded

3-27

3 Basic Procedures

Running a Real-Time Application from the MATLAB
Command Line

You can use the MATLAB command line interface as an alternative to using
the Simulink GUI. Enter commands directly in the MATLAB command line
window or enter them in an M-file.

After you build the real-time application, you can run your model in real time.
This procedure uses the Simulink model rtwin_model.mdl as an example, and
assumes you have created a real-time application for that model:

1 In the MATLAB command line, type

set_param(gcs, 'SimulationMode', 'external')
Simulink changes to external mode.

2 Type,
set_param(gcs, 'SimulationCommand', 'connect')

MATLAB loads the real-time application, connects it to the Simulink block
diagram, and displays the message.

Model rtwin_model loaded

3 Type,
set_param(gcs, 'SimulationCommand', 'start')

Simulink starts running the real-time application.

4 Type,
set_param(gcs, 'SimulationCommand', 'stop')

Simulink stops the real-time application.

3-28

Signal logging to the MATLAB Workspace

Signal Logging to the MATLAB Workspace

Signal logging is the process of saving (logging) data to a variable in your
MATLAB workspace or to a MAT-file on your disk drive. This allows you to use
MATLAB functions for data analysis and MATLAB plotting functions for
visualization. You can save data to a variable during a simulation or during an
execution.

To use signal logging with the Real-Time Windows Target, you must add a
Scope block to your Simulink model.

This section includes the following topics:

* “Entering Scope Parameters” on page 3-29
¢ “Entering Signal and Triggering Properties” on page 3-31
¢ “Plotting Logged Signal Data” on page 3-35

Simulink external mode does not support data logging with Outport blocks in
your Simulink model. This means you do not enter or select parameters on the
Workspace I/O pane in the Simulation Parameters dialog box.

Entering Scope Parameters

Data is saved to the MATLAB workspace through a Simulink Scope block.
Scope block parameters need to be set for data to be saved.

After you create a Simulink model and add a Scope block, you can enter the
scope parameters for signal logging to the MATLAB workspace. This procedure
uses the Simulink model rtwin_model.mdl as an example and assumes you
have already loaded that model.

Note If you entered the scope parameters for running a simulation, you may
want to look over this procedure because the Scope parameters dialog box is
related to the External Signal and Triggering dialog box.

1 In the Simulink window, double-click the Scope block.

A Scope window opens.

3-29

3 Basic Procedures

2 On the toolbar, click the Parameters button.

H%D@@Iﬂ%l%ﬁ

A Scope parameters dialog box opens.

3 Click the Data history tab.

4 Do one of the following:

= Ifyou are running a simulation, you can select the Limit data points to
last check box, and enter the number of sample points to save.

= Ifyou are running an execution, do not select the Limit data points to last
check box.

Note The Limit data points to last check box is related to the Duration
value in the External Signal and Triggering dialog box. The smaller of
either value limits the number of sample points saved to the MATLAB
workspace. When using the Real-Time Windows Target, we recommend that
you use the Duration value to set the number of sample points you save.

To set the Duration value, see “Entering Signal and Triggering Properties”
on page 3-31.

5 Select the Save data to workspace check box. In the Variable name text
box, enter the name of a MATLAB variable. The default name is ScopeData.

6 From the Format list, choose either Structure with time, Structure, or
Array (compatible with V2.0-2.2). For example, to save the sample times and
signal values at those times, choose Structure with time.

3-30

Signal logging to the MATLAB Workspace

Your Data history pane will look similar to the figure shown below.

). "Scope’ parameters [_ [T x|

GEne[all Drata kistary | k Tip: try right clicking on axes

[~ Limit data points to last: I 1000

[¥ Save data to workspace

ariable narne: I ScopeData

Farmat: ISlruclure with tirme: j

QK | Cancell Help | Apply |

7 Do one of the following:

= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Scope
parameters dialog box.

Note When you modify anything in the Scope parameters dialog box, you
must click the Apply or OK button for the changes to take effect, and you
must rebuild your real-time application before connecting and starting it. If
you do not rebuild, an error dialog box will open. If you do not click Apply,
your executable will run, but it will use the old settings.

The reason why you need to rebuild is because the model checksum includes
settings from the Scope block used for signal logging. If the model checksum
does not match the checksum in the generated code, the real-time
application cannot run. Always rebuild your real-time application after
changing Scope parameters.

Entering Signal and Triggering Properties

Data is saved to the MATLAB workspace through a Simulink Scope block.
Signal and triggering properties need to be set only when running a real-time
application. If you are running a simulation, you can skip this procedure.

3-31

3 Basic Procedures

After you create a Simulink model and add a Scope block, you can enter the
signal and triggering properties for logging to the MATLAB workspace. This
procedure uses the Simulink model rtwin_model.mdl as an example and
assumes you have already loaded that model:

1 In the Simulink window, and from the Tools menu, click External Mode
Control Panel.

The External Mode control Panel dialog box opens.
2 Click the Signal & Triggering button.
The External Signal & Triggering dialog box opens.

3 Click the Select all button. From the Source list, choose manual. From the
Mode list, choose normal.

The X under Signal selection designates that a signal has been tagged for
data collection, and T designates that the signal has been tagged as a trigger
signal.

4 Inthe Duration box, enter the number of sample points in a data buffer. For
example, if you have a sample rate of 1000 samples/second and a stop time
of 10 seconds, you could enter

10000

Note The Duration value is related to the Limit data points to last value
in the Scope parameters dialog box. The smaller of either value limits the
number of sample points saved to the MATLAB workspace. We recommend
that you do not select the Limit data points to last check box, and use the
Duration value to set the number of sample points saved.

To clear the Limit data points to last check box, see “Entering Scope
Parameters” on page 3-29.

The Duration value specifies the number of contiguous points of data to be
collected in each buffer of data. We recommend that you enter a Duration

3-32

Signal logging to the MATLAB Workspace

value equal to the total number of sample points that you need to collect
rather then relying on a series of buffers to be continuous.

If you enter a value less than the total number of sample points, you will lose
sample points during the time needed to transfer values from the data buffer
to the MATLAB workspace. The Real-Time Windows Target ensures that
points are continuous only within one buffer. Between buffers, due to
transfer time, some samples will be omitted.

We also recommend setting the time axis for Simulink Scope blocks equal to
the sample interval (in seconds) times the number of points in each data
buffer. This setting will display one buffer of data across the entire Simulink
Scope plot.

3-33

3 Basic Procedures

The Signal & Triggering dialog box will look similar to the figure below.

J rtwin_model: External Signal & Triggering - |EI|5|
Signal gelection
Elock Path
¥T Scope rtwin nodel /Scope] ¥ Select al
[Elear all |
 on
= off

Trigger zignal |
j Go to block |

Trigger
Tirigger. sianal: Fart: I 1 Elemenl:l any

Source: Imanual 'I kode: Inormal "I

ttwin_models S cope -
Duration: | 10000 Delay: | 0 - ; j
' Am when connect to targe! irector: I[ising vI Lewel: I] Hizld-aff: I]
Rewvert | Help | Apply | Cloze |

5 Do one of the following:
= Click Apply to apply the changes to your model and leave the dialog box

open.
= Click Close to apply the changes to your model and close the Simulation
Parameters dialog box.

Note You must click the Apply or Close button on the Signal and
Triggering dialog box for the changes you made to take effect. Generally it
is not necessary to rebuild your real-time application.

3-34

Signal logging to the MATLAB Workspace

Plotting Logged Signal Data

You can use the MATLAB plotting functions for visualizing nonreal-time
simulated data or real-time application data.

After running your real-time application and logging data to the MATLAB
workspace, you can plot the data. This procedure uses the Simulink model
rtwin_model.mdl as an example, and assumes you saved your data to the
variable ScopeData:

1 In the MATLAB command window, type
ScopeData

MATLAB lists the structure of the variable ScopeData. The variable
ScopeData is a MATLAB structure containing the fields time vector, signal
structure, and a string containing the block name.

ScopeData =
time: [10000x1 double]
signals: [1x1 struct]
blockName: 'rtwin_model/Scope'

To list the contents of the structure signals, type

ScopeData.signals

3-35

3 Basic Procedures

MATLAB lists the structure of the variable ScopeData.signals. This
structure contains one or more vectors of signal data depending on the
number of signal inputs to the Scope block.

ans =
values: [10000x1 double]
label: "'
title: ''
plotStyle: 1

2 To plot the first 1000 points, type
plot(ScopeData.time(1:1000), ScopeData.signals.values(1:1000))

MATLAB plots the first 1000 samples from 0.0000 to 0.9990 seconds.

) Figure No. 1 ;lglil

File Edit Wiew Insert Tools ‘Window Help

DsE&E YA~/ 20

3 The variable ScopeData is not automatically saved to your hard disk. To
save the variable ScopeData, type

save ScopeData

MATLAB saves the scope data to the file ScopeData.mat.

3-36

Signal logging to a Disk Drive

Signal Logging to a Disk Drive

Signal logging is the process of saving (logging) data to a variable in your
MATLAB workspace and then saving that data to a MAT-file on your disk
drive. This allows you to use MATLAB functions for data analysis and
MATLAB plotting functions for visualization. Using the data archiving feature
provide in the External Mode Control Panel, you can save data to a file
during an execution. You cannot save data to a disk drive during a simulation.

To use the data archiving feature with the Real-Time Windows Target, you
must add a Scope block to your Simulink model, and you must run an execution
of a real-time application.

This section includes the following topics:

¢ “Entering Scope Parameters” on page 3-29

¢ “Entering Signal and Triggering Properties” on page 3-31
¢ “Entering Data Archiving Parameters” on page 3-43

¢ “Plotting Logged Signal Data” on page 3-35

Simulink external mode does not support data logging with Outport blocks in
your Simulink model. This means you do not enter or select parameters on the
Workspace I/0 pane in the Simulation Parameters dialog box.

Entering Scope Parameters

Datais saved to a disk drive by first saving the data to the MATLAB workspace
through a Simulink Scope block. Scope block parameters need to be set for data
to be saved.

After you create a Simulink model and add a Scope block, you can enter the
scope parameters for signal logging to a disk drive. This procedure uses the
Simulink model rtwin_model.mdl as an example and assumes you have
already loaded that model.

Note If you entered the scope parameters for running a simulation, you may
want to look over this procedure because the Scope parameters dialog box is
related to the External Signal and Triggering dialog box and the Data
Archiving dialog box.

3-37

3 Basic Procedures

1 In the Simulink window, double-click the Scope block.
A Scope window opens.

2 On the toolbar, click the Parameters button.
|eBlre AEE B E ®

A Scope parameters dialog box opens.

3 Click the Data history tab.

4 Do one of the following:

= If you are running a simulation, you can select the Limit data points to
last check box, and enter the number of sample points to save.

= If you are running an execution, do not select the select the Limit data
points to last check box.

Note The Limit data points to last check box is related to the Duration
value in the External Signal and Triggering dialog box. The smaller of
either value limits the number of sample points saved to the MATLAB
workspace. When using the Real-Time Windows Target, we recommend that
you use the Duration value to set the number of sample points you save.

To set the Duration value, see “Entering Signal and Triggering Properties”
on page 3-40.

5 Select the Save data to workspace check box. In the Variable name text
box, enter the name of a MATLAB variable. The default name is ScopeData.

3-38

Signal logging to a Disk Drive

Note The Scope parameters dialog box is related to the Data Archiving
dialog box. In the Scope parameters dialog box, you must select the Save
data to workspace check box to be able to save data to a disk drive for two
reasons:

= The data is first transferred from the data buffer to the MATLAB
workspace before being written to a MAT-file.

= The Variable name entered in the Scope parameters dialog box is the
same variable in the MATLAB workspace and the variable in the
MAT-file.

If you do not select the Save data to workspace check box, the MAT-files
for data logging will be created, but they will be empty.

From the Format list, choose either Structure with time, Structure, or
Array (compatible with V2.0-2.2). For example, to save the sample times and
signal values at those times, choose Structure with time.

Your Data history pane will look similar to the figure shown below.

‘) "Scope’ parameters M= B3

[~ Limit data paints to last: I 1a0a

Gemerall Drata histary Tip: try right clicking on axes

[+ Save data to workspace

Y ariable narne: I ScopeD ata

Format: IStructure with tirme: j

0k | Cancell Help | Apply |

3-39

3 Basic Procedures

7 Do one of the following:
= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Scope
parameters dialog box.

Note When you modify anything in the Scope parameters dialog box, you
must click the Apply or OK button for the changes to take effect. Also, you
must rebuild your real-time application before connecting and stating a
real-time application.

If you do not rebuild, an error dialog box will open. If you do not click Apply,
your executable will run, but it will use the old settings.

Entering Signal and Triggering Properties

Data is saved to a disk drive by first saving the data to the MATLAB workspace
through a Simulink Scope block. Signal and triggering properties need to be set
when running a real-time application.

After you create a Simulink model and add a Scope block, you can enter the
signal and triggering properties for data logging to a disk drive. This procedure
uses the Simulink model rtwin_model.mdl as an example and assumes you
have already loaded that model:

1 In the Simulink window, and from the Tools menu, click External Mode
Control Panel.

The External Mode Control Panel dialog box opens.
2 Click the Signal & Triggering button.
The External Signal & Triggering dialog box opens.

3 Click the Select all button. From the Source list, choose manual. From the
Mode list, choose normal.

The X under Signal selection designates that a signal has been tagged for
data collection, and T designates that the signal has been tagged as a trigger
signal.

3-40

Signal logging to a Disk Drive

4 Inthe Duration box, enter the number of sample points in a data buffer. For
example, if you have a sample rate of 1000 samples/second and a stop time
of 10 seconds, then enter

10000

Note The Duration value is related to the Limit data points to last value
in the Scope parameters dialog box. The smaller of either value limits the
number of sample points saved to the MATLAB workspace. We recommend
that you do not select the Limit data points to last check box, and use the
Duration value to set the number of sample points saved.

The Duration value specifies the number of contiguous points of data to be
collected in each buffer of data. We recommend that you enter a Duration
value equal to the total number of sample points you need to collect for a run.

If you enter a value much less than the total number of sample points, you
may lose logging sample points due to the time needed to transfer values
from the data buffer to the MATLAB workspace.

We also recommend setting the time axis for Simulink Scope blocks equal to
the sample interval (in seconds) times the number of points in each data
buffer. This setting will display one buffer of data across the entire Simulink
Scope plot.

3-41

3 Basic Procedures

The External Signal & Triggering dialog box will look similar to the figure
shown below.

J rtwin_model: External Signal & Triggering - |EI|5|
Signal gelection
Elock Path
T Scope rtwin model/Scope ¥ Select al
Clear all |
= on
= off

Trigger zignal |
;I Go bo block |

Trigger
Trigger signal: Fort: I 1 Element:l any

Sounce: Imanual vI Mode: Inormal 'I

thwin_model/ S cope -
Duration: | 10000 Delay: | 0 - . j
¥ Am when connect to target Directior: Irising VI Lewvel: I 0 Hizld-aff: I a
Rewert | Help | Apply | Cloze |

5 Do one of the following:
= Click Apply to apply the changes to your model and leave the dialog box

open.
= Click Close to apply the changes to your model and close the Simulation
Parameters dialog box.

Note You must click the Apply or Close button on the Signal and
Triggering dialog box for the changes you made to take effect, but you do
not have to rebuild your real-time application.

3-42

Signal logging to a Disk Drive

Entering Data Archiving Parameters

The Data Archiving dialog box is related to the Scope parameters dialog box.
In the Scope parameters dialog box, you must select the Save data to
workspace check box to be able to save data to a disk drive for two reasons:

¢ The data is first transferred from the scope data buffer to the MATLAB
workspace before being written to a MAT-file.

¢ The Variable name entered in the Scope parameters dialog box is the same
variable in the MATLAB workspace and the variable in the MAT-file.

If you do not select the Save data to workspace check box in the Scope
parameters dialog box, the MAT-files for data logging will be created, but they
will be empty.

After you create a Simulink model, you can enter the Data Archiving
Parameters for data logging to a disk drive:

1 In the Simulation window, and from the Tools menu, click External Mode
Control Panel.

The External Mode Control Panel dialog box opens.

J} rtwin_model: External Mode Control Pane:; o] |

Connect | Start real-time zade Ay rigger,
Parameter tuning
[" Batch dowrload
Downlaad |
Configuration
Target interface ... | Signal & triggering ... | [ata archiving ... |

Cloze |

2 Click the Data archiving button.

The External Data Archiving dialog box opens. This dialog box allows you
to specify data archiving options.

3-43

3 Basic Procedures

3 Select the Enable archiving check box.

4 In the Directory text box, enter the path to a directory on your disk drive.
For example, if your MATLAB working directory is named mwd, enter

c:\mwd

5 In the File text box, enter the filename prefix for the data files to be saved.
For example, enter

data

MATLAB names the files data_0.mat, data_1.mat ... The Number of files
= Total sample points / Duration. For example, if you set the Duration =
Total sample points, then only one file is created.

6 Select the Append file suffix to variable names check box.

Within each MAT-file, a variable is saved with the same name you entered
in the Variable name text box (Data History pane on the Scope parameters
dialog box). By selecting the Append file suffix to variable names check
box, the same suffix that is added to the MAT-file is added to the variable
name. For example, if you entered the variable name ScopeData, then
within the file data_0.mat will be a variable ScopeData_0.

3-44

Signal logging to a Disk Drive

Your External Data Archiving dialog box will look similar to the figure

shown below.

J rtwin_model: External Data Archiving

Data archiving

¥ Enable archiving

Directary: | e

File: I data

Edit directony note... |

Edit file nate. ..

[Increment directary when trigger amed
[~ Increment file after one-shot
v &ppend file sulfix to variable names

[~ ‘wiite intermediate results to waorkspace

Hevertl Help | Cloze |

=101]

7 Click the Close button.

The parameters you entered are applied to your model.

Note There is no Apply button with this dialog box. You must click the

Close button for the changes you make to take effect.

3-45

3 Basic Procedures

Plotting Logged Signal Data

You can use the MATLAB plotting functions for visualization of your
nonreal-time simulated data or your real-time executed data.

After running your real-time application and logging data to a disk drive, you
can plot the data. This procedure uses the Simulink model rtwin_model.mdl
as an example, and assumes you saved your data to the variable ScopeData:

1 In the MATLAB command window, type
ScopeData

MATLAB lists the structure of the variable ScopeData. The variable
ScopeData is a MATLAB structure containing the fields time vector, signal
structure, and a string containing the block name.

ScopeData =
time: [10000x1 double]
signals: [1x1 struct]
blockName: 'rtwin_model/Scope'

2 To list the MAT-files saved to your disk drive, type
dir *.mat
MATLAB displays the MAT-files in your current working directory.
data_0.mat

3 To clear the MATLAB workspace and load the scope data, type

clear
load data_0O
who

MATLAB displays
Your variables are:

ScopeData_0

3-46

Signal logging to a Disk Drive

4 To plot the first 1000 points, type
plot(ScopebData 0.time(1:1000),ScopeData 0.signals.values(1:1000))

MATLARB plots the first 1000 samples from 0.0000 to 0.9990 second.

J Figure No. 1 ;Iglll

File Edit Wiew Insert Tools ‘Window Help

DeEda "A A/ oo

3-47

3 Basic Procedures

3-48

Parameter Tuning

Simulink external mode connects your Simulink model to your real-time
application. The block diagram becomes a graphical user interface to the
real-time application.

This section includes the following topics:

® “T'ypes of Parameters” on page 3-48
¢ “Changing Model Parameters” on page 3-49

Types of Parameters

You can change parameter values while running the real-time application by
changing the values in

¢ Block parameters — Change block parameters by changing the values in
the dialog boxes associated with the Simulink blocks. Once you change a
value, and click Apply or OK, the new value immediately replaces the
existing parameter while the real-time application continues to run.

¢ Block parameters for masked subsystems — Change block parameters in
the user-created dialog boxes associated with a subsystem.

* MATLAB variables — Change MATLAB variables by entering the changes
through the MATLAB command line, and then press Ctrl+D for the changes
to be downloaded to your executable. An alternative method to download
parameters is to click Update Diagram from the Edit menu in your
Simulink window. Simply changing the value of the MATLAB variable at the
MATLAB command line is not sufficient for Simulink to know that the value
has changed.

Simulink external mode also supports side-effects functions. For example,
given an expression in a Gain block of 2*a+b, the expression is evaluated and
the resulting value is exported to the real-time application during execution.

When a parameter in a Simulink model is changed, the communication module
rtwinext.dll transfers the data to the external real-time application and
changes the model parameters. Only the parameters that do not result in
model structure modification can be changed. If the structure is modified, you
must recompile the model. Model structure changes are detected automatically
using model checksum and reported to the MATLAB command window to
avoid conflicts.

Parameter Tuning

Changing Model Parameters

You must use Simulink external mode to change model parameters. While
external mode is running, you can open any Simulink block and change a
parameter value. External mode will automatically transfer the new value to
the real-time application during execution.

After you start running a your real-time application, you can change
parameters and observe the changes to the signals. To start a real-time
application, see “Running a Real-Time Application” on page 3-25. This
procedure uses the Simulink model rtwin_model.mdl as an example. It
assumes you have created a real-time application and are running an
execution:

1 From the Simulation menu, click Start Real-Time code.

The real-time execution starts running and signal data is displayed in the
Scope window.

=10l x|

|le2Elcrp o ABEE B L F

3-49

3 Basic Procedures

2 From the Simulink block diagram, click the Transfer Function block.

The Block Parameters: Transfer Fen dialog box opens.

Block Parameters: Transfer Fcn |

— Tranzfer Fon

b atrix expression for numerator, vectaor expression far denominatar.
Output width egualz the number of roms in the numerator. Coefficients are
for descending powers of 2.

— Parameters
Mumerator:

|[1 00oo]

Drenominakar:
|[1 70 10000]

Absolute tolerance:

Iauto

0K I Cancel | Help | Apply |

3 In the Denominator box, change 70 to 30. Click OK. The effect of changing
a block parameter is shown in the Scope window.

=101]

lemlocop ABE|IPE &

3-50

Advanced Procedures

I/0 Boards . . . e
I/0 Board Dialog Box T s
ISABusBoard.45
PCIBusBoard. 46
PC/104Board 46
Compact PCIBoard 46
PCMCIABoard 46
I/O0 Driver Blocks . . . e e e 48
Real-Time Windows Target lerary e e e e 48
Simulink Library4-10
Analog InputBlock412
Analog OutputBlock414
Digital Input Block417
Digital OutputBlock419
Counter Input Block422
Encoder Input Block e e e e o oo 425
Output Signals from an I/O Block e |
Variations with Channel Selection4-29
Using Analog I/O Drivers432
I/O Driver Characteristics . . . e e e oo 432

Normalized Scaling for Analog Inputs e S 13

4 Advanced Procedures

The Real-Time Windows Target provides driver blocks for more than 200 I/O

boards. These driver blocks connect the physical world to your real-time
application.

This chapter includes the following sections:

¢ J/O Boards — Install I/O boards and enter hardware information

® 1/0 Driver Blocks — Select analog and digital driver blocks from the
Simulink library and add to your Simulink model

¢ Using Analog I/0 Drivers — Convert normalized I/O signals to more
meaningful model parameters

|/O Boards

1/0 Boards

Typically I/O boards are preset from the factory for certain base addresses,
voltage levels, and unipolar or bipolar modes of operation. Boards often include
switches or jumpers that allow you to change many of these initial settings. For
information about setting up and installing any I/O board, read the board
manufacturer’s documentation.

This section includes the following topics:

¢ 1/0 Board Dialog Box — Select the physical boards installed in your
computer, and enter board settings

¢ ISA Bus Board — Enter base address

¢ PCI Bus Board — Enter or determine slot number and install drivers from
the board manufacturer

¢ PC/104 Board — Enter base address

¢ Compact PCI Board — Enter or determine slot number and install drivers
from the board manufacturer

¢ PCMCIA Board — Install drivers from the board manufacturer

1/0 Board Dialog Box

Usually, the drivers with the Real-Time Windows Target provide the same
flexibility of settings offered by the board manufacturer. You enter the I/O
board settings in the I/O board dialog box. There are three types of settings:

* Software selectable — Select check boxes in the I/0 board dialog box. The
driver writes the settings you selected to the board. Examples include A/D
gain inputs, and selecting unipolar or bipolar D/A outputs.

¢ Jumper selectable and software readable — Set jumpers or switches on
the physical board. The driver reads the settings you selected.

¢ Jumper selectable, but not software readable — Set jumpers or switches
on the physical board, and then manually enter the same settings in the I/O
board dialog box. These entries must match the hardware switches or
jumpers you set on the board. This is necessary because some manufacturers
do not provide a means for the I/O driver to read all of the board settings with
software. Examples include base address, D/A gain, and differential or
single-ended A/D inputs.

4-3

4 Advanced Procedures

After you add an I/O driver block to your Simulink model, you can select and
configure the I/O board installed in your computer. This procedure uses the
AD512 I/0 board from Humusoft as an example:

1 Double-click an I/O driver block.
The Block Parameters dialog box opens.
2 Click the Install new board button. From the list, point to a manufacture,

and then click a board name. For example, point to Humusoft, and then click
AD512.

ot] sz,
Intelligent Instrumentation * mMFED4

The I/O board dialog box opens. The name of this dialog box depends on
which I/O board you selected. The dialog box for the Humusoft AD512 board
is shown below.

¢ Humusoft AD512 x| |

Address A9 A3 AT AR AR A4 AT
300 |2 2 I I I
0k | Test | Rewvert | Cancel |

3 Select one of the following:

= For an ISA bus board, enter a base address. This value must match the
base address switches or jumpers set on the physical board. For example,
to enter a base address of 0x300 in the address box, type

300

You can also select the base address by selecting check boxes A9 through
A3.

= For a PCI bus board, enter the PCI slot or select the Auto-detect check
box.

|/O Boards

4 C(lick the Test button.

The Real-Time Windows Target tries to connect to the selected board, and if
successful, displays the following message.

¢ Boardtest OK |

V The board prezence st the zelected address was verified.
Ok, |

5 On the message box, click OK, and then on the I/O board dialog box, click OK
again.

The I/O driver Block Parameters dialog box closes, and the parameter
values are saved with your Simulink model.

The I/O board information is included with each I/O driver block. You only
install and enter the board information once with the first I/O driver block you
add to your model. When you add another I/O driver block, choose the I/O board
from the list of installed boards. You do not need to enter any board
information.

ISA Bus Board

Most ISA bus I/O boards are preset with a base address of 0x300. If you are
using multiple I/O boards or other boards (for example, network cards) that
already use the address 0x300, you must set your board with another base
address.

In the I/0O board dialog box, enter the same base address that you set on the
physical board. You open the I/O board dialog box from any I/O driver Block
Parameters dialog box.

4 Advanced Procedures

PCl Bus Board
You do not have to set a base address with a PCI board.

The plug-and-play feature of Microsoft Windows assigns a PCI slot number.
You can enter the slot number into the I/O board dialog box, or you can let the
driver determine the slot number for you. You open the I/O board dialog box
from any I/O driver Block Parameters dialog box.

We recommend that before you use a PCI or PCMCIA board, you install the
drivers supplied by the board manufacturer. The Real-Time Windows Target
does not use these manufacturer supplied drivers. However, they sometimes
initiate the plug-and-play recognition of the board. Without these drivers
installed, the board may be invisible to your computer and Real-Time Windows
Target.

PC/104 Board

Most PC/104 bus I/O boards are preset with a base address of 0x300. If you are
using multiple I/O boards or other boards (for example, network cards) that
already use the address 0x300, you must set your board with another base
address.

In the I/0 board dialog box, enter the same base address that you set on the
physical board. You open the I/0 board dialog box from any I/O driver Block
Parameters dialog box.

Compact PCl Board
Using a compact-PCI board requires that you use a compact PC (industrial

PC). In addition, you need to install Windows, MATLAB, Simulink, the
Real-Time Windows Target, and a C compiler on the compact PC.

PCMCIA Board

The plug-and-play feature of Microsoft Windows assigns a base address
automatically. You can enter this address into the I/O board dialog box, or you
can let the driver determine the address for you. You open the I/O board dialog
box from any I/O driver Block Parameters dialog box.

We recommend that before you use a PCI or PCMCIA board, you install the
drivers supplied by the board manufacturer. The Real-Time Windows Target
does not use these manufacture supplied drivers. However, they sometimes

|/O Boards

initiate the plug-and-play recognition of the board. Without these drivers
installed, the board may be invisible to your computer and Real-Time Windows
Target.

4-7

4 Advanced Procedures

1/O Driver Blocks

The Analog Input, Analog Output, Digital Input, and Digital Output blocks
provide an interface to your physical I/O boards and your real-time application.
They ensure that the C code generated with Real-Time Workshop correctly
maps block diagram signals to the appropriate I/O channels.

You can have multiple blocks associated with each type of I/0 block and board.
For example, you can have one Analog Input block for channels 1-4 and another
block for channels 5-8.

This section includes the following topics:

¢ Real-Time Windows Target Library — Add an Analog Input block to your
Simulink model from the Real-Time Windows Target block library

¢ Simulink Library — Add an Analog Input block to your Simulink model
from the Simulink block library

¢ Analog Input Block — Select analog input channels and voltage range

¢ Analog Output Block — Select analog output channels, voltage range,
initial values, and final values

¢ Digital Input Block — Select digital lines or channels

¢ Digital Output Block — Select digital lines or channels, initial values, and
final values

¢ Counter Input Block — Select and connect specific counter input channels
to your Simulink model

¢ Encoder Input Block — Select and connect specific encoder input channels
to your Simulink model

Real-Time Windows Target Library

The Real-Time Windows Target I/O driver blocks allow you to select and
connect specific analog channels and digital lines to your Simulink model
through I/O driver blocks.

|/O Driver Blocks

After you create a Simulink model, you can add an I/O block. This procedure

adds an Analog Input block and uses the Simulink model rtwin_model.mdl as
an example:

1 In the MATLAB command window, type

rtwinlib

The Real-Time Windows Target block library window opens.

E!Lihrary: rtwinlib -0l =l

File Edit View Formab Help

Real-Time Windows Target 2.2

Analog Analog
Input Qutput
Analag Input Analog Qutput
[rigital Lrigital
Input Qutput
Digital Input Crigital Output
Counter
Input

Counter Input

Encoder
Input

Encader Input

Other Other
Input Qutput
Other Input Other Qutput
Real-time
Lemos

4-9

4 Advanced Procedures

2 Click-and drag the Analog Input block to your Simulink model. Connect the
Analog Input block to the Transfer Function block.

Your Simulink model will look similar to the following figure.

=] rtwin_model * _|O]

File Edit “iew Simulation Format Tools Help

10000

All:lalL-I:'tg . 5 - I:I
P s=4 705410000

Analog Input Transfer Function Scope

You next task to enter parameters for the Analog Input block. See “Analog
Input Block” on page 4-12.

Simulink Library

The Real-Time Windows Target I/O driver blocks allow you to select and
connect specific analog channels and digital lines to your Simulink model
through I/O driver blocks.

After you create a Simulink model, you can add an I/O block. This procedure
adds and Analog Input block and uses the Simulink model rtwin_model.mdl
as an example:

1 In the Simulink window, and from the View menu, click Show Library
Browser.

The Simulink Library Browser opens.

4-10

|/O Driver Blocks

2 Inthe left column, double-click Real-Time Windows Target. Click and drag
the Analog Input block to your Simulink model. Connect the Analog Input
block to the Transfer Function block.

Your Simulink model will look similar to the figure show below.

[=] rtwin_model * _ (Ol

Eile Edit “iew Simulation Format Tools Help

10000

ﬂl:allftg > 5 - I:I
P s=+70s+10000

Analog Input Transfer Function Scope

You next task is to enter parameters for the Analog Input block. See “Analog
Input Block” on page 4-12.

4-11

4 Advanced Procedures

Analog Input Block

The Real-Time Windows Target I/O blocks allow you to select and connect
specific analog channels to your Simulink model.

After you add an Analog Input block to your Simulink model, you can enter the
parameters for this I/O driver. This procedure uses Humusoft’'s AD512 I/O
board as an example:

1 Double-click the Analog Input block.
The Block Parameters: Analog Input dialog box opens.
2 Inthe Sample time box, enter the same value you entered in the Fixed step
size box from the Simulation Parameters dialog box. For example, enter
0.001
3 In the Input channels box, enter a channel vector that selects the analog
input channels you are using on this board. The vector can be any valid

MATLAB vector form. For example, to select all eight analog input channels
on the AD512 board, enter

[1,2,3,4,5,6,7,8] or [1:8]

If you want to use the first three analog input channels, enter

[1,2,3]

4 From the Input range list, choose the input range for all of the analog input
channels you entered in the Input channels box. For example, with the
AD512 board, choose -5 to 5 V.

Note If you want the input range to be different for different analog
channels, you need to add a I/O block for each different input range.

5 From the Block output signal list, choose from the following options:

= Volts — Returns a value equal to the analog voltage

= Normalized unipolar — Returns a full range value of 0 to +1 regardless
of the input voltage range. For example, an analog input range of 0 to +5
volts and -5 to +5 volts would both be converted to O to +1.

= Normalized bipolar — Returns a full range value of -1 to +1 regardless of
the input voltage range.

4-12

|/O Driver Blocks

= Raw — Returns a value of 0 to 2™ -1. For example, a 12-bit A/D converter
would return values of 0 to 212 -1 (0 to 4095). The advantage of this method
is the returned value is always an integer with no round-off errors.

If you chose Volts, your dialog box will look similar to the figure shown
below.

 Block Parameters: Analog Input = | |

— RTWin Analog Input [mazk] [link]

Real-Time Windows T arget analog input unit.

— Drata acquisition board

Inztall new board Delete current board |
IHumuSth ADST2 [300K] j Board zetup |
— Parameters
S ample tirme:
| 0.001

|nput channels:
| 1.2.3]

|nput range: |-5 b 5

L L

Block output zignal: I"v’u:ults

] | Cancel | Help | Apply |

6 Select one of the following:

= Click the Apply button to apply the changes to your model and leave the
dialog box open.

= Click the OK button to apply the changes to your model and close the
Block Parameters: Analog Input dialog box.

4-13

4 Advanced Procedures

Analog Output Block
The Real-Time Windows Target I/O blocks allow you to select and connect
specific analog channels to your Simulink model.

After you add an Analog Output block to your Simulink model, you can enter
the parameters for this I/O driver. This procedure uses Humusoft’'s AD512 I/0
board as an example:

1 Double-click the Analog Output block.
The Block Parameters: Analog Output dialog box opens.
2 Inthe Sample time box, enter the same value you entered in the Fixed step
size box from the Simulation Parameters dialog box. For example, enter
0.001
3 In the Output channels box, enter a channel vector that selects the analog
input channels you are using on this board. The vector can be any valid

MATLAB vector form. For example, to select both analog output channels on
the AD512 board, enter

[1,2] or [1:2]
4 From the Output range list, choose the input range for all of the analog
input channels you entered in the Input channels box. For example, with the
AD512 board, choose -5 to 5 V.

Note If you want the input range to be different for different analog
channels, you need to add a I/O block for each different input range.

4-14

|/O Driver Blocks

5 From the Block input signal list, choose from the following options:

= Volts — Expects a value equal to the analog output voltage

= Normalized unipolar — Expects a value between 0 to +1 that is converted
to the full range of the output voltage regardless of the output voltage
range. For example, an analog output range of 0 to +5 volts and -5 to +5
volts would both be converted from values between 0 and +1.

= Normalized bipolar — Expects a value between -1 to +1 that is converted
to the full range of the output voltage regardless of the output voltage
range.

= Raw — Expects a value of 0 to 2™ -1. For example, a 12-bit A/D converter
would expect a value between 0 and 212 -1 (0 to 4095). The advantage of
this method is the expected value is always an integer with no round-off
errors.

6 Enter the initial value for each analog output channels you entered in the
Output channels box. For example, if you entered [1,2] in the Output
channels box, and you want an initial value of 0 volts, enter [0,0].

7 Enter a final value for each analog channel you entered in the Output
channels box. For example, if you entered [1,2] in the Output channels
box, and you want final values of 0 volts, enter [0,0].

4-15

4 Advanced Procedures

If you chose Volts, your dialog box will look similar to the figure shown
below.

Block Parameters: Analog Output = =] |

— RTwin Analog Output [mazk] [link]

Real-Time Windows T arget analog output unit.

— Data acquizition board

Inztall new board Delete curent board |
IHumusaI‘t ADRTZ [300K] j Board setup |
— Parameters
Sample time:
| 0.001

Output channels:

[12]

Output ranges: I Hio bW j
Block input signal: I‘»-"u:ults j
Initial walue;
| (0.0
Final walue:
| 0.0

] Caricel Help Apply

8 Do one of the following:

= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Block
Parameters: Analog Output dialog box.

4-16

|/O Driver Blocks

Digital Input Block

The Real-Time Windows Target I/O blocks allow you to select and connect
specific digital lines or digital channels to your Simulink model.

After you have added and Digital Input block to your Simulink model, you can
enter the parameters for this I/O driver. This procedure uses Humusoft’s
AD512 I/O board as an example:

1 Double-click the Digital Input block.
The Block Parameters: Digital Input dialog box opens.

2 Inthe Sample time box, enter the same value you entered in the Fixed step
size box from the Simulation Parameters dialog box. For example, enter
0.001
3 In the Input channels box, enter a channel vector that selects the digital
input channels you are using on this board. The vector can be any valid

MATLAB vector form. For example, to select all eight digital input channels
on the AD512 board, enter

[1,2,3,4,5,6,7,8] or [1:8]

If you want to use the first four digital input lines, enter

[1,2,3,4]

If you have one 8-bit digital channel, enter [1]. If you have two 8-bit digital
channels, enter [1 9], and from the Channels mode list, choose Byte.

4-17

4 Advanced Procedures

4 From the Channel mode list, choose one of the following options:
= Bit — Returns a value of 0 or 1

= Byte — Groups eight digital lines into one digital channel and returns a
value of 0 to 255.

If you chose Bit, your dialog box will look similar to the figure shown below.
¢ Block Parameters: Digital Input == |

— RTwin Digital Input [mazk] [link)
Real-Time Windows T arget digital input unit.

— Data acquizition board

Inztall new board Delete curent board |

IHumusaI‘t ADRTZ [300K] j Board setup |

— Parameters

Sample time:

| 0.001

[nput channels:
|[1.2.3.4]

Channel mode: IEit j

Ok | Cancel Help | Apply |

5 Do one of the following:

= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Block
Parameters: Digital Input dialog box.

4-18

|/O Driver Blocks

Digital Output Block

The Real-Time Windows Target I/O blocks allow you to select and connect
specific digital lines or digital channels to your Simulink model.

After you have added and Digital Output block to your Simulink model, you can
enter the parameters for this I/O driver. This procedure uses Humusoft’s
AD512 I/O board as an example:

1 Double-click the Digital Output block.
The Block Parameters: Digital Output dialog box opens.
2 Inthe Sample time box, enter the same value you entered in the Fixed step
size box from the Simulation Parameters dialog box. For example, enter
0.001
3 In the Output channels box, enter a channel vector that selects the analog
input channels you are using on this board. The vector can be any valid

MATLAB vector form. For example, to select all eight analog input channels
on the AD512 board, enter

[1,2,3,4,5,6,7,8] or [1:8]
If you want to use the first four digital input lines, enter

[1,2,3,4]
If you have one 8-bit digital channel, enter [1]. If you have two 8-bit digital
channels, enter [1 9], and from the Channel mode list, choose Byte.

4 From the Channel mode list, choose from one of the following:

= Bit — Expects a value of 0 or 1

= Byte — Expects a value of 0 to 255 that is converted to one digital channel
of eight digital lines

4-19

4 Advanced Procedures

5 Enter the initial values for each digital output line or channel you entered
in the Output channels box. For example, if you entered [1,2,3,4] in the
Output channels box, and you want initial values of 0 and 1, enter

[0,0,1,1]

If from the Channel mode list, you choose Byte, then enter a value between
0 and 255 for each digital output channel. For example, for one byte

(8 digital lines) with an initial value of 25, enter [25]. For two bytes

(16 digital lines) with initial values of 25 and 50, enter [25 50].

6 Enter a final value for each digital output channel you entered in the
Output channels box. For example, if you entered [1,2,3,4] in the Output
channels box, and you want final values of 0, enter

[0,0,0,0]

If from the Channel mode list, you choose Byte, then enter a value between
0 and 255 for each digital output channel.

4-20

|/O Driver Blocks

If you chose Bit, your dialog box will look similar to the figure shown below.

¢ Block Parameters: Digital Output = =] |

— RTwin Digital Output [mazk] [link)

Real-Time ‘indows T anget digital output unit.

— Data acguizition board

Install new board Delete current board |

IHumusaft ADST2 [300K] j Board setup |

— Parameters

Sample time:

| 0.001

Qutput channels:
|[1.22.4]

Channel mode; I Bit j

Iritial wealue:
[001]

Final walue:

| [0.0.0.0

] 8 Cancel Help Apply

7 Do one of the following:

= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Block
Parameters: Digital Output dialog box.

4-21

4 Advanced Procedures

Counter Input Block

This Real -Time Windows Target I/O blocks allow you to select and connect
specific counter input channels to your Simulink model.

After you have added a Counter Input block to your Simulink model, you can
enter the parameters for this I/O driver. This procedure uses Humusoft’s
MF604 I/0 board as an example:

1 Double-click the Counter Input block.
The Block Parameters: Counter Input dialog box opens.

2 Inthe Sample time box, enter the same value you entered in the Fixed step
size box from the Simulation Parameters dialog box. For example, enter

0.001
3 In the Input channels box, enter a channel vector that selects the counter
input channels you are using on this board. The vector can be any valid

MATLAB vector form. For example, to select all 4 counter input channels on
the MF604 board, enter

[1,2,3,4] or [1:4]

4-22

|/O Driver Blocks

4 From Reset after read, which determines if the counter should be reset to
zero after its value has been read, choose one of the following options:

never — Do not reset after reading.
always — Always reset after reading.

level — Reset after reading is block input is nonzero. This will add an
input to the Counter Input block.

rising edge — Reset after reading if block input changes from zero to
nonzero between the last two successive readings. This will add an input
to the Counter Input block.

falling edge — Reset after reading if the block input changes from
nonzero to zero between last two successive readings. This will add an
input to the Counter Input block.

either edge — Reset after reading if the block input changes either from
zero to nonzero or from nonzero to zero between the last two successive
readings. This will add an input to the Counter Input block.

5 From Clock input active edge, which determines which clock edge should
increment the counter, select:

rising — Low to high transitions

falling — High to low transitions

Not all counter chips support selecting the input edge. In this case, the
pull-down menu will reflect the supported option only.

4-23

4 Advanced Procedures

6 From Gate input functionality, which defines the action of the counter’s

gate pin, select:

= none — Gate is disabled.

= enable when high — Counting is disabled when the gate is low and
enabled when the gate is high.

= enable when low — Counting is disabled when the gate is high and
enabled when the gate is low.

= start on rising edge — Counting is disabled until low to high transition
of the gate occurs.

= start on falling edge — Counting is disabled until high to low
transition of the gate occurs.

= reset on rising edge — Counter is reset when low to high transition of
the gate occurs.

= reset on falling edge — Counter is reset when high to low transition of
the gate occurs.

= latch on rising edge — The count of the counter is remembered when
low to high transition of the gate occurs.

= latch on falling edge — The count of the counter is remembered when
high to low transition of the gate occurs.

= latch & reset on rising edge — The count of the counter is remembered
and then the counter is reset when low to high transition of the gate
occurs.

= latch & reset on falling edge — The count of the counter is
remembered and then the counter is reset when high to low transition of
the gate occurs.

Not all counter chips support all gate modes. Only supported gate modes are
shown in the pull-down menu.

7 Do one of the following:

= Click Apply to apply the changes to your model and leave the dialog box
open.

= Click OK to apply the changes to your model and close the Block
Parameters: Counter Input dialog box.

4-24

|/O Driver Blocks

Encoder Input Block

This Real -Time Windows Target 1/O blocks allow you to select and connect
specific encoder input channels to your Simulink model.

After you have added an Encoder Input block to your Simulink model, you can
enter the parameters for this I/0O driver. This procedure uses Humusoft’s
MF604 I/0 board as an example:

1 Double-click the Encoder Input block.
The Block Parameters: Encoder Input dialog box opens.

2 In the Sample time box, enter the same value you entered in the Fixed step
size box from the Simulation Parameters dialog box. For example, enter

0.001
3 In the Input channels box, enter a channel vector that selects the encoder
input channels you are using on this board. The vector can be any valid

MATLAB vector form. For example, to select all 4 encoder input channels on
the MF604 board, enter

[1,2,3,4] or [1:4]

4-25

4 Advanced Procedures

4 Encoders typically use two sets of stripes, shifted in phase, to optically detect
the amplitude and direction of movement. The Quadrature mode
parameter specifies which encoder stripe edges should be counted.

= double — Counts the rising edges from both stripe sets
= single — Counts the rising edges from one stripe set
= quadruple — Counts rising and falling edges from both stripe sets

Quadruple mode yields 4 times more pulses per revolution than the single
mode. Therefore, quadruple is more precise and is recommended unless
other parameters dictate otherwise.

5 The encoder interface chip has a reset pin in addition to encoder inputs. This
pin is usually connected to the index output of the encoder. However, it can
be connected to any signal or may not be used at all. The Reset input
function specifies the function of this pin.

= gate — Enables encoder counting

= reset — Level reset of the encoder count

= rising edge index — Resets the encoder count on the rising edge

= falling edge index — Resets the encoder count on the falling edge

6 The encoder interface chip has a built-in lowpass filter that attempts to filter
out any high frequencies which are interpreted as noise. The Input filter
clock frequency is the cutoff frequency (Hz) of this filter. The cutoff
frequency you specify is rounded to the nearest frequency supported by the
chip.

If the encoder is moving slowly and high frequency noise is present, employ
the filter to eliminate the noise. This keeps the noise from being counted as
encoder pulses. If the encoder is moving quickly, the filter can filter out all of
the high frequency pulses including those you want to count. In this case,
consider leaving the filter disabled by setting the cutoff frequency to Inf.

7 Do one of the following:
= Click Apply to apply the changes to your model and leave the dialog box
open.
= Click OK to apply the changes to your model and close the Block
Parameters: Digital Input dialog box.

4-26

|/O Driver Blocks

Output Signals from an 1/0 Block

I/O driver blocks output multiple signals as a vector instead of individual
channels or lines. To connect the individual channels and lines to parts of your
Simulink model, you need to separate the vector with a Demux block.

After you add and configure an I/O driver block in your Simulink model, you
can separate and connect the output signals from the blocks:

1 In the Simulink window, and from the View menu, click Show Library
Browser.

The Simulink Library Browser opens.

2 Double-click Signal Routing. From the list in the right column,
click-and-drag Demux to your Simulink model.

3 Double-click the Demux block. The Block Parameters: Demux dialog box
opens. Enter the number of lines leaving the Demux block. For example, if
you entered three channels in the Analog Input driver block, enter 3 in the
Number of outputs box.

Block Parameters: Demux |

— Demux

Split either [a] vector zsignals into zcalars o smaller wectors, o [b] bug
zighals produced by the Mux block into their constituent scalar, vector, or
matris zignals.

Check 'Buz Selection Mode' ta zplit bus signals.

— Parameters
Mumber of outputs;
E
Display option: In.;,ne j

[~ Bus selection made

0k I Cancel Help Apply |

4 Click OK.

4-27

4 Advanced Procedures

5 Finish making connections and selecting display options.
= Connect the Analog Input block to the Demux block input.

= Connect each of the Demux block output lines to the input of other blocks.

= In the Simulink window, and from the Format menu, click Wide
Nonscalar Lines, and click Signal Dimensions.

Your model will look similar to the figure shown below. In this simple

example, inputs 1 and 2 are not connected, but they could be connected to
other Simulink blocks.

=] rtwin_model * _[O] x|

File Edit Wiew Simulation Format Tools Help

Analog |2 10000 |:|

Input 524+ 70s+10000

Analog Input Transfer Function Scope

4-28

|/O Driver Blocks

Variations with Channel Selection

For a better understanding of how to specify device settings when using both
analog and digital signals, this section uses the I/O board DAS-1601 from
Keithley-Metrabyte as an example. The following is a specification summary of
the DAS-1601 board:

¢ Analog input (A/D) — 16 single-ended or 8 differential analog inputs (12-bit),
polarity is switch configured as either unipolar (0 to 10 volts) or bipolar
(+/- 10 volts). Gain is software configured to 1, 10, 100, and 500.

¢ Digital input — Four unidirectional digital inputs

¢ Analog output (D/A) — Two analog outputs (12-bit). Gain is switch
configured as 0 to 5 volts, 0 to 10 volts, +/- 5 volts, or +/- 10 volts

¢ Digital output — Four unidirectional digital outputs

¢ Base address — Switch configured base address

This section explores different configurations for input signals.

Once an Analog Input block has been placed in the model and the I/O board
selected and configured, you can set up the Analog Input block to handle input
signals.

Single analog input — The most basic case is for a single analog input signal
that will be physically connected to the first analog input channel on the board.
In the Block Parameter: Analog Input dialog box, and the Input channels
box, enter

1 or [1]
The use of brackets is optional for a single input.

Input vector with differential analog — Analog channels are numbered
starting with channel 1 and continue until you reach a number corresponding
to the maximum number of analog signals supported by the I/O board.

In the case of the DAS-1601, when configured as differential inputs, eight
analog channels are supported. The analog input lines are numbered 1 through
8. The complete input vector is

[123 4567 8] or [1:8]
If you wanted to use the first four differential analog channels, enter

[1 23 4]

4-29

4 Advanced Procedures

Input vector with single-ended analog — Now, assume your DAS-1601
board is configured to be single-ended analog input. In this case, 16 analog
input channels are supported. The complete input vector is

[123 456789 10 11 12 13 14 15 16] or [1:16]
To use the first four single-ended analog input channels, enter
[1 23 4] or [1:4]

This illustration shows the resulting block diagram.

Channel
1
Analog > 2
Input 3
Analg Input 4

We do not recommend specifying more channels than you actually use in your
block diagram. This results in additional overhead for the processor with A/D
or D/A conversions. In this case, for example, even though some channels are
not actually used in the block diagram, these channels are still converted.

You could attach terminator blocks to channels 4 and 5 inside your block
diagram after passing the Analog Input block vector into a Demux block.
Adding terminator blocks provides you with graphical information in your
block diagram to clearly indicate which channels you connected or are
available. The penalty is that even the terminated channels are converted,
adding some computational overhead.

4-30

|/O Driver Blocks

This illustration shows the block implementation.

—
Analog .
Input "
- oo | i Temnirator
Analbog Inpu I.
TemnirztoE

Dernw:

Depending on the board and the number of channels used, I/O conversion time
can affect the maximum sample rate that can be achieved on your system.
Rather than converting unused channels, we recommend specifying only the
set of channels that are actually needed for your model.

4-31

4 Advanced Procedures

4-32

Using Analog 1/O Drivers

Control systems have unique requirements for I/O devices that the Real-Time
Windows Target supports.

This section includes the following topics:

¢ “I/O Driver Characteristics” on page 4-32
® “Normalized Scaling for Analog Inputs” on page 4-33

1/0O Driver Characteristics

The Real-Time Windows Target uses off-the-shelf I/O boards provided by many
hardware vendors. These boards are often used for data acquisition
independently of the Real-Time Windows Target. In such environments, board
manufacturers usually provide their own I/O device drivers for data acquisition
purposes. This use differs significantly from the behavior of drivers provided
with the Real-Time Windows Target.

In data acquisition applications, data is often collected in a burst or frame
consisting of many points, perhaps 1,000 or possibly more. The burst of data
becomes available once the final point is available. This approach is not
suitable for use in automatic control applications since it results in latencies
equal to 1000 * Tsample for each point of data.

In contrast, drivers used by the Real-Time Windows Target capture a single
point of data at each sample interval and considerable effort is made to
minimize the latency between collecting a data point and using the data in the
control system algorithm. This is the reason why a board that specifies a
maximum sample rate (for data acquisition) may be stated to achieve sample
rates well in excess of the rates that are achievable in the Real-Time Windows
Target. For data acquisition, such boards are usually acquiring data in bursts
and not in a point-by-point fashion which is more appropriate for stable control
systems.

Using Analog 1/O Drivers

Normalized Scaling for Analog Inputs

The Real-Time Windows Target allows you to normalize I/O signals internal to
the block diagram. Generally, inputs represent real-world values such as
angular velocity, position, temperature, pressure, and so on. This ability to
choose normalized signals allows you to

® Apply your own scale factors

® Work with meaningful units without having to convert from voltages

When using an Analog Input block, you select the range of the external
voltages that are received by the board, and you choose the block output signal.
For example, the voltage range could be set to 0 to +5 V, and the block output
signal could be chosen as Normalized unipolar, Normalized bipolar, Volts,
or Raw.

If you prefer to work with units of voltage within your Simulink block diagram,
you can choose Volts.

If you prefer to apply your own scaling factor, you can choose Normalized
unipolar or Normalized bipolar, add a Gain block, and add an offset to
convert to a meaningful value in your model.

If you prefer unrounded integer values from the analog-to-digital conversion
process, you can choose Raw.

Choose 0 to +5 Volts and Normalized Bipolar

From the Input range list, choose 0 to +5 V, and from the Block output signal
list, choose Normalized bipolar. This example converts a normalized bipolar
value to volts, but you could also easily convert directly to another parameter
in your model.

0 to 5 volts --> ([-1 to 1] normalized + 1) * 2.5

4-33

4 Advanced Procedures

In your block diagram, you can do this as follows.

Mormalized signal range Waltage range O to +5 waolts
in Simulink -1 to +1 as applied to the I¥0 board
Actual voltage
0 to +5 volts RT In G
Zain
RT In
1
Constant

Choose 0 to +5 Volts and Normalized Unipolar

From the Input range list, choose 0 to +5 V, and from the Block output
signal list, choose Normalized unipolar. This example converts a normalized
unipolar value to volts, but you could also easily convert directly to another
parameter in your model.

0 to 5 volts --> ([0 to 1] normalized * 5.0

In your block diagram, you can do this as follows.

Hormalized signal range oltage range Oto 5 volts
in Simulink Oto +1 as applied to the I¥0 board

Actual voltage
0 to 5 volts RT In

Zain

RT In

Choose -10 to +10 Volts and Normalized Bipolar

From the Input range list, choose -10 to +10 V, and from the Block output
signal list, choose Normalized bipolar. This example converts a normalized
bipolar value to volts, but you could also easily convert directly to another
parameter in your model.

-10 to 10 volts --> [-1 to +1] normalized * 10

4-34

Using Analog 1/O Drivers

In your block diagram, you can do this as follows.

HNormalized signal range “aoltage range -10 to +10 wvolts
in Simulink -1 ta +1 as applied to the W0 board

Actual voltage
-0 to +10 volts RT In

Zain

RT In

Choose -10 to +10 Volts and Normalized Unipolar

From the Input range list, choose -10 to +10 V, and from the Block output
signal list, choose Normalized unipolar. This example converts a normalized
bipolar value to volts, but you could also easily convert directly to another
parameter in your model.

-10 to 10 volts --> ([0 to 1] normalized - 0.5) * 20

In your block diagram, do this as follows.

HNormalized signal range “Waltage range-10 to 10 volts
in Simulink O to +1 as applied to the I¥0 board
Actual voltage
-10 to 10 volts RT In Q
Gain
RT In
-0.5
Constant

Normalized Scaling for Analog Outputs

Analog outputs are treated in an equivalent manner to analog inputs.

If the voltage range on the D/A converteris set to 0 to +5 volts, and the Block
input signal is chosen as Normalized bipolar, then a Simulink signal of

amplitude -1 results in an output voltage of 0 volts. Similarly, a Simulink
signal of amplitude +1 results in an output voltage of +5 volts.

4-35

4 Advanced Procedures

A voltage range on the D/A converter is setto -10 to +10 volts, and the Block
input signal is chosen as Normalized bipolar, then a Simulink signal of
amplitude -1 results in an output voltage of -10 volts. Similarly, a Simulink
signal of amplitude +1 results in an output voltage of +10 volts.

This may require that you adjust your signal amplitudes in Simulink using a
Gain block, Constant block, and Summer block depending on the selected
voltage range.

4-36

Troubleshooting

Plots Not Visible in Simulink Scope Block

Compiler Error Message .
Failure to Connect to Target .

Sample Time Too Fast
ns .

S-Functions Using Math Functio

5-2
5-3

5-4
5-5

5 Troubleshooting

Solutions have been worked out for some common errors and problems that can
occur when using the Real-Time Windows Target.

This chapter includes the following topics:

® “Plots Not Visible in Simulink Scope Block” on page 5-2
¢ “Compiler Error Message” on page 5-3

¢ “Failure to Connect to Target” on page 5-3

® “Sample Time Too Fast” on page 5-4

Plots Not Visible in Simulink Scope Block
For data to plot correctly in a Simulink Scope block, you must specify the
following:

® rtwinext as the MEX-File for external interface on the External Target
Interface dialog box

¢ External selected from the Simulation menu

* Connect to target selected from the Simulation menu

® Select one or more signals for capture (designated with “X”) in the External
Signal & Triggering dialog box

¢ Duration * Fixed Step Size close to or less than the X range in the Scope
block

® Correct mode (one-shot vs. normal)

® Appropriate signal levels to allow triggering

® Y range on Simulink Scope block axes large enough to span the signal
amplitude

® X range

* Arm when connect to target in the External Data Logging Configuration
dialog box or arm in the External Data Logging Control Panel

e Start real-time code selected from the Simulation menu

If you are unable to see signals plotted in your Simulink Scope blocks after all
of the above items have been selected, failure to obtain time responses in Scope
blocks may be due to insufficient CPU time. To determine CPU utilization, type
rtwho. The rtwho command returns information about MATLAB performance.
The value returned is an indicator of how much loading your model places on
the CPU. If Scope blocks fail to plot, this may be an indication that insufficient

time is available between sample intervals to allow data to be transferred back
to the MATLAB environment where the plotting is performed. To test for this
condition, you can run one of the demonstration models, or you can try running
your model at a significantly slower rate to determine whether this is the
cause. We recommend that MATLAB performance does not fall below 80%.

Compiler Error Message

Possible problem — During the build phase of your model, the Simulation
Errors dialog box displays

incorrect compiler installation

Solution — During the installation of the Watcom 10.6 or 11.0 compiler, select
the DOS target check box in addition to selecting the Windows target check
box.

Failure to Connect to Target

Possible Problem — When trying to connect to the target, the Simulation
Errors dialog box displays

Checksum mismatch. Target code needs to be rebuilt

Solution — This indicates that the model structure has changed since the last
time code was generated. You must rebuild the real-time application. If your
model fails to successfully build, we recommend that you delete .mk and .obj
files from the Real-Time Workshop project directory, and then select Build
from the Tools menu.

Possible Problem — When trying to connect to the target, the Simulink
diagnostic dialog box displays

External mode MEX-file "win_tgt" does not exist or is not on the
MATLAB path

Solution — The Real-Time Windows Target Versions 1.0 and 1.5 used the
MEX-file win_tgt. For the Real-Time Windows Target Version 2.2, the
MEX-file name was changed to rtwinext. If you create a new Simulink model,
the new filename is entered correctly. If you have Simulink models where you
used the Real-Time Windows Target 1.0 or 1.5, you need to change the filename
using the following procedure:

5-3

5 Troubleshooting

5-4

1 In the Simulink window, and from the Tools menu, click External mode
control panel.

2 On the External Mode Control Panel dialog box, click the Target interface
button.

3 In the External Target Interface dialog box, and in the MEX-file for
external mode text box, enter

rtwinext

4 Click Ok.

Sample Time Too Fast

During a run, you may not see any output in the Scope window. This could
indicate that the sample time is too small. In the MATLAB command window,

type

rtwho

Check the value for MATLAB performance. A value less than 80% indicates
that your sample time may be too small.

In general, we recommend that you start by choosing a slow sample rate. For
example, select a sample time of 0.01 second, and confirm your system runs
correctly and plots are displayed. Should you select a sample rate that exceeds
the capability of your computer, an error message is displayed and real-time
execution is terminated. If this occurs, select a slower sample rate. Then
rebuild the model, connect to the target, and start the real-time application
again. You must rebuild the real-time application after changing the sample
time.

Check the MATLAB performance value returned when typing rtwho. If
MATLAB performance is in the range of 98% or so, then consider decreasing
your sample time by one order of magnitude.

If you notice either slow updates of Scope blocks or a complete failure to plot
data in the Scope blocks, you may be reaching the upper threshold for the
sample rate on your hardware. Plotting data has a lower priority than
execution of your real-time application.

S-Functions Using Math Functions

Possible problem — When creating your own S-functions that include math
functions, the S-functions compile okay, but you cannot build the application.

Solution — Add the Real-Time Windows Target header to your S-function. For
example, add

#include<math.h>
#include"rtwintgt.h"

The header #include<math.h> must precede the header
#include"rtwintgt.h".

5-5

5 Troubleshooting

5-6

Supported I/O Boards

ISABus A-2
PCMCIABus A-11
PCIBus A-12
CompactPCI A-14
PXIBus A-14
PC/104Bus oL A-15

Standard Devices A-16

A Supported 1/O Boards

The Real-Time Windows Target includes support for more than 80 I/O boards.
Multiple boards may be used as I/O for a model provided they have
nonoverlapping base addresses. If you have a board that is not listed here, you
can support it by adding your own I/O driver.

This appendix includes the following topics:

® “ISA Bus” on page A-2

® “PCMCIA Bus” on page A-11

® “PCI Bus” on page A-12

® “Compact PCI” on page A-14

* “PXI Bus” on page A-14

® “PC/104 Bus” on page A-15

® “Standard Devices” on page A-16

Note Some of the functions on a board may not be supported by the
Real-Time Windows Target. Check the MathWorks Web site for an updated
list of supported boards and functions at http://www.mathworks.com/
products/rtwt/ioboards.shtml.

ISA Bus

This table lists the ISA bus I/O boards supported by the Real-Time Windows
Target.

Table A-1: ISA Bus Supported 1/0 Boards

Manufacturer Board Name

Advantech PCL-1800
PCL-711B
PCL-712

Table A-1: ISA Bus Supported 1/O Boards (Continued)

Manufacturer

Board Name

Analog Devices

PCL-714
PCL-722
PCL-724
PCL-725
PCL-726
PCL-727
PCL-728
PCL-730
PCL-731
PCL-733
PCL-734
PCL-735
PCL-812
PCL-812PG
PCL-814B
PCL-816
PCL-818
PCL-818H
PCL-818HD
PCL-818HG
PCL-818L
RTI-800

A Supported 1/O Boards

Table A-1: ISA Bus Supported 1/O Boards (Continued)

Manufacturer Board Name

RTI-800-A
RTI-800-F
RTI-815
RTI-815-A
RTI-815-F
Axiom AX503210
AX50641
AX50640
AX5215H
AX5244H
AX5412-H
AX5412-L
AX5611C-H
AX5611C-L

Table A-1: ISA Bus Supported 1/O Boards (Continued)

Manufacturer

Board Name

Computer Boards

CIO-DACO2
CIO-DAC02/16
CIO-DACO08
CIO-DACO08/16
CIO-DAC16
CIO-DAC16/16
CIO-DASO08
CIO-DAS08-AOH
CIO-DAS08-AOL
CIO-DAS08-AOM
CIO-DASO08/Jr

A Supported 1/O Boards

Table A-1: ISA Bus Supported 1/O Boards (Continued)

Manufacturer Board Name

CIO-DAS08/Jr-AO
CIO-DAS08/Jr/16
CIO-DAS08/Jr/16-A0
CIO-DAS08-PGH
CIO-DAS08-PGL
CIO-DAS08-PGM
CIO-DAS-1401/12
CIO-DAS-1402/12
CIO-DAS-1402/16
CIO-DAS16/330
CIO-DAS16/F
CIO-DAS16/Jr
CIO-DAS16Jr/16
CIO-DAS-1601/12
CIO-DAS-1602/12
CIO-DAS-1602/16
CIO-DAS48-PGA

Table A-1: ISA Bus Supported 1/O Boards (Continued)

Manufacturer

Board Name

CIO-DDAO6
CIO-DDAO6/JR
CIO-DDAO06/16
CIO-DDAO06/JR/16
CIO-DI48
CIO-DI96
CIO-DI192
CIO-DI1024
CIO-DIO24H
CIO-DIO48
CIO-DIO48H
CIO-DIOY%6
CIO-DI1I0O192
CIO-DIS0O48
CIO-DO24DD
CIO-D0O48DD
CIO-DO48H
CIO-DOY6H
CIO-DO192H
CIO-DUAL-AC5
CIO-PDISOS8
CIO-PDISO16

A Supported 1/O Boards

Table A-1: ISA Bus Supported 1/O Boards (Continued)

Manufacturer Board Name

CIO-QUADO02
CIO-QUADO04
CIO-RELAY08
CIO-RELAY16
CIO-RELAY24
CIO-RELAY32
Data Translation DT2801
DT2801-A
DT2801/5716
DT2805
DT2805/5716
DT-2809
DT2811-PGH
DT2811-PGL
DT2820
Humusoft AD512
MC101-CE150
MF604
Intelligent Instrumentation = PCI-20377W
MF604
Keithley-Metrabyte ADC-16
DAC-02

Table A-1: ISA Bus Supported 1/O Boards (Continued)

Manufacturer

Board Name

DAS-1201
DAS-1202
DAS-1401
DAS-1402
DAS-1601
DAS-1602
DAS-16G1
DAS-16G2
DAS-8
DAS-8/AO
DAS-8PGA
DAS-8PGA-G2
DDA-06
PDISO-8
PIO-12
PIO-24
PIO-32IN
PIO-32I0
PIO-320UT
PIO-96
PIO-HV
REL-16

A Supported 1/O Boards

Table A-1: ISA Bus Supported 1/O Boards (Continued)

Manufacturer

Board Name

National Instruments

Quanser

Scientific Solutions

Sensoray

Technology80

AT-MIO-16E-1
AT-MIO-16E-2
AT-MIO-64E-3
AT-MIO-16E-10
AT-MIO-16DE-10
AT-AI-16XE-10
AT-MIO-16XE-10
AT-MIO-16XE-50
Lab-PC

Lab-PC+
Lab-PC-1200
Lab-PC-1200-AI
PC-DIO-24
PC-DIO-24PnP
PC-OPDIO-16
MultiQ-3
MultiQ-PCI
LabMaster DMA-PGH
LabMaster DMA-PGL
Model 626

Model 5312B

A-10

PCMCIA Bus

This table lists the PCMCIA bus I/0 boards supported by the Real-Time
Windows Target.

Table A-2: PCMCIA Bus Supported 1/0 Boards

Manufacturer Board Name

Computer Boards PC-CARD-DAS16/12
PC-CARD-DAS16/16
PC-CARD-DAS16/330

PC-CARD-DIO48
PCM-DACO08
PCM-DASO08
PCM-DAS16S5/330
PCM-DAS16D/12
PCM-DAS16S/12
PCM-DAS16D/16
PCM-DAS16S/16
National Instruments DAQCard-700
DAQCard-1200
DAQCard-6024E
DAQCard-6062E
DAQCard-AI-16E-4
DAQCard-AI-16XE-50
DAQCard-DIO-24

A-11

A Supported 1/O Boards

PCI Bus

This table lists the PCI bus I/O boards supported by the Real-Time Windows
Target.

Table A-3: PCI Bus Supported I/O Boards

Manufacturer Board Name

Advantech PCI-1710
PCI-1710HG
PCI-1711
PCI-1713
PCI-1720
PCI-1731
PCI-1750
PCI-1751
PCI-1752
PCI-1753
PCI-1753E
PCI-1754
PCI-1756

Computer Boards PCI-DAS08
PCI-DAS1000
PCI-DAS1001
PCI-DAS1002
PCI-DAS1200
PCI-DAS1200/Jr

A-12

Table A-3: PCI Bus Supported 1/O Boards (Continued)

Manufacturer

Board Name

National Instruments

PCI-DAS1602/12
PCI-DAS1602/16
PCI-DAS1602/16/Jr
PCI-DIO24
PCI-DIO24H
PCI-DIO48H
PCI-DIO96
PCI-DIO96H
PCI-DUAL-AC5
PCIM-DDAO06/16
PCI-QUADO04
PCI-1200
PCI-6023E
PCI-6024E
PCI-6025E
PCI-6031E
PCI-6032E
PCI-6033E
PCI-6034E
PCI-6035E
PCI-6052E
PCI-6071E

A-13

A Supported 1/O Boards

Table A-3: PCI Bus Supported 1/O Boards (Continued)

Manufacturer Board Name

PCI-MIO-16E-1
PCI-MIO-16E-4
PCI-MIO-16XE-10
PCI-MIO-16XE-50

Compact PCI

This table lists the compact PCI I/O boards supported by the Real-Time
Windows Target.

Table A-4: Compact PCl Supported 1/0 Boards

Manufacturer Board Name

Computer Boards CPCI-DIO24H
CPCI-DIO48H
CPCI-DIO96H

PXI Bus

This table lists the PXI bus I/O boards supported by the Real-Time Windows
Target.

Table A-5: PXI Bus Supported 1/0 Boards

Manufacturer Board Name
National Instruments PXI-6025E
PXI-6030E

A-14

Table A-5: PXI Bus Supported 1/0 Boards (Continued)

Manufacturer Board Name
PXI-6031E
PXI-6035E

PXI-6040E
PXI-6052E
PXI-6070E
PXI-6071E

PC/104 Bus

This table lists PC/104 bus I/O devices supported by the Real-Time Windows
Target.

Table A-6: PC/104 Bus Supported 1/O Boards

Manufacturer Board Name
Advantech PCM-3718H
PCM-3718HG

PCM-3724
PCM-3725
PCM-3730
Computer Boards PC104-AC5

PC104-DACO06
PC104-DAS08
PC104-DAS16Jr/12
PC104-DAS16Jr/16

A-15

A Supported 1/O Boards

Table A-6: PC/104 Bus Supported 1/O Boards (Continued)

Manufacturer Board Name

PC104-DI0O48
PC104-DO48H
PC104-PDISOS8

Standard Devices

This table lists standard I/O devices supported by the Real-Time Windows
Target.

Table A-7: Standard Supported 1/O Devices

Manufacturer Board Name

Other Generic 8-bit Port
Generic 16-bit Port
Generic 32-bit Port
Generic 18255
Microsoft Windows Joystick
Microsoft Windows Mouse

Microsoft Windows Parallel Port (LPT)

A-16

Custom I/O Driver Blocks

Source Code for DOS Target Drivers B-2
Incompatibility with Win32 APICalls B-3
Nonsupported C Functions B-3

Supported C Functions B-4

B Custom |/O Driver Blocks

Custom I/O device drivers can be used in combination with the Real-Time
Windows Target. Due to the additional complexity of device drivers supplied
with the Real-Time Windows Target, we recommend that device drivers be
written in the same style as the device drivers that are provided with the DOS
target support included with Real-Time Workshop.

We do not recommend using Analog Input, Analog Output, Digital Input, or
Digital Output drivers as a starting point for creating custom device drivers.

This appendix includes the following topics:

® “Source Code for DOS Target Drivers” on page B-2
® “Incompatibility with Win32 API Calls” on page B-3
® “Nonsupported C Functions” on page B-3

¢ “Supported C Functions” on page B-4

Source Code for DOS Target Drivers

Source code for the DOS target device drivers is located in
matlabroot\rtw\c\dos\devices. This table lists the available DOS device
drivers.

Table B-1: DOS Device Drivers Included with the Real-Time Workshop

Type of Device Driver Filename

Analog to Digital dasi6ad.c
dasi6ad.h
dasi6ad.tlc

Digital to Analog dasi6da.c
dasi6éda.h
dasi6da.tlc

Digital Input dasi6di.c
dasi6di.h
dasi6di.tlc

Digital Output das16do.c
dasi16do.h
dasi6do.tlc

Device drivers written in this style (that is, as inlined S-functions) are
compatible with the Real-Time Windows Target. They may be used in
combination with the device drivers provided with the Real-Time Windows
Target.

See the Real-Time Workshop documentation for more information about these
I/0 device drivers and writing custom device drivers.

Incompatibility with Win32 API Calls

The Real-Time Windows Target kernel intercepts the interrupt from the
system clock. It then reprograms the system clock to operate at a higher
frequency for running your real-time application. At the original clock
frequency, it sends an interrupt to the Windows operating system to allow
Windows applications or any software using the Win32 API to run.

As a result, software that uses the Win32 API may not be executed as a
component of your real-time application. Any software you use to write I/O
drivers must not have any calls to the Win32 API.

Nonsupported C Functions
If you create your own custom I/O driver blocks, you should first check for C
functions that are supported by the Real-Time Windows Target.

Functions that use the Windows operating system are not supported with the
Real-Time Windows Target. This is because the kernel intercepts the system
clock and first runs the real-time application. If there is time left before the
next sample time, the kernel may allow a Windows application or function to
run.

The following list includes many, but not all of the nonsupported functions:

® File I/O — fopen freopen, fclose, fread, fwrite, fputs, fputc,
fgets, fgetc, gets, getc, getchar, puts, putc, putchar, fflush,
setbuf, setvbuf

® Console /O — printf, fprintf, sprintf, vfprintf, vprintf,
vsprintf, fscanf, scanf, sscanf

* Process management — spawn, exit, abort, atexit

® Signals and exceptions — signal, longimp, raise

B-3

B Custom |/O Driver Blocks

B-4

® Time functions — clock, time, difftime, asctime, ctime, difftime,
gmtime, localtime, mktime, strftime

® Win32 API functions. No Windows API functions are supported.

Supported C Functions

You can use ANSI C functions that do not use the Windows operating system
in your custom blocks or I/O drivers. The following includes a partial list of
supported functions:

® Data conversion functions — abs, atof, atoi, atol, itoa, labs,
1toa, strtod, strtol, strtoul, ultoa

® Memory allocation functions — calloc, free, malloc

® Memory manipulation functions — memccpy, memcpy, memchr, memcmp,
_memicmp, memmove, memset

® String manipulation functions — strcat, strchr, strcmp, strcpy,
strcspn, _strdup, _stricmp, strlen, _strlwr, strncat, strncmp,
strncpy, _strnset, strpbrk, strrchr, _strrev, _strset, strspn,
strstr, strtok, strupr

® Mathematical functions — acos, asin, atan, atan2, ceil, cos, cosh,
div, exp, fabs, floor, fmod, frexp, ldexp,ldiv, log, log10, max,
min, modf, pow, rand, sin, sinh, sqrt, srand, tan,tanh,uldiv

® Character class tests and conversion — isalnum, isalpha, isascii,
iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace,
isupper, isxdigit, isxupper, isxlower, _toascii, tolower, toupper

® Searching and sorting — bsearch, gsort

® Dummy functions — exit, fprintf, prinf

A
AD

See analog-to-digital
adding

Analog Input block 4-8

I/O driver blocks 4-8

input blocks 4-8
analog input

normalized scaling 4-33
Analog Input block

configuring 4-12
Analog Output block

configuring 4-14
analog-to-digital

channel selection 4-29
application

Real-Time Windows Target 1-5

before you install
obtaining a valid license 2-5
build process xv

C

C compiler
required product xi
third party 2-12
capturing and displaying signals 1-3
CD
installation 2-6
changing parameters
parameter tuning 1-7
channel selection
entering configurations 4-29
compact PCI

installing 4-6
compact PCI bus
supported boards A-14
compatibility
with MATLAB ix
with Real-Time Workshop xi
with Simulink x
with the MathWorks software 1-4
compiler
error message 5-3
Microsoft Visual C/C++ xi
required xi
selecting 2-12
third party 2-12
Watcom C/C++ 2-12
computer
PC compatible 1-8
configuring
Analog Input block 4-12
Analog Output block 4-14
Counter Input block 4-22
Digital Input block 4-17
Digital Output block 4-19
Encoder Input block 4-25
1/0 boards 4-3
connecting
real-time application 3-21
Simulink model 3-21
contacting The MathWorks
for valid license 2-5
conventions
in this guide xv
typographical xv
Counter Input block
configuring 4-22

I-1

Index

creating directories
real-time application 3-20 installed 2-9
Simulink model 1-11 MATLAB working 2-9
custom I/O drivers Real-Time Workshop working 2-9
creating B-2 working 2-9
DOS target drivers B-2 xpc 2-9
incompatible with Win32 B-3 xpcdemo 2-9
overview B-2 disk drive
source code B-2 plotting logged data 3-46
signal logging 3-37
documentation
D notational conventions xv
D/A terminology conventions xv
See digital-to-analog DOS target drivers
data archiving parameters use for custom drivers B-2
entering 3-43 DSP Blockset
logging data to disk drive 3-43 compatible software 1-4
data buffers 1-13
definitions
terms xv E
demo library education
opening 2-22 control engineers 1-3
Real-Time Windows Target 2-22 signal processing engineers 1-3
Demux block Encoder Input block
separating I/O signals 4-27 configuring 4-25
description entering
Simulink external mode 1-12 data archiving parameters 3-43
device drivers scope properties 3-37
channel selection 4-29 signal and triggering properties 3-40
custom I/O 4-36 simulation parameters for Real-Time Workshop
writing custom B-2 3-14
Digital Input block simulation parameters for Simulink 3-7
configuring 4-17 error message
Digital Output block with compiler 5-3
configuring 4-19 execution
digital-to-analog real-time 1-10

channel selection 4-29 running in real time 1-11

Index

expected background
experienced users xiii
new users xiii

external interface MEX-file
rtwinext 5-3
win_tgt 5-3

external mode
description 1-12
parameter tuning 1-7

F

failure to connect
troubleshooting 5-3

features
signal logging 1-6
signal tracing 1-6

files
application 2-9
external mode interface 2-9
I/O drivers 2-9
installed 2-9
kernel install command 2-9
make command 2-9
makefile 2-9
project directory 2-9
system target 2-9
system target file 2-10
template makefile 2-10
working directory 2-9
xpc directory 2-9
xpcdemos directory 2-9

Fixed-Point Blockset
compatible software 1-4

hardware

requirements 2-3
system requirements 2-3

1/0 blocks

Analog Input block 4-12
Analog Output block 4-14
Counter Input block 4-22
Digital Input block 4-17
Digital Output block 4-19
Encoder Input block 4-25
input and output 4-8
separating signals 4-27
with Simulink x

I/0 boards

compact PCI boards 4-6
configuring 4-3
installing 4-3

ISA bus 4-5

list of supported A-2
overview 4-3

PC/104 bus 4-6

PCI bus 4-6

PCMCIA 4-6

1/0O drivers

characteristics 4-32
custom B-2
using 4-32

input blocks

adding Analog Input blocks 4-8
overview 4-8

input/output

support 1-8

I3

Index

I-4

installation
CD 2-6
from Web downloadable 2-7
installing
compact PCI 4-6
1/O boards 4-3
kernel overview 2-14
Real-Time Windows Target 2-5
testing installation 2-18
ISA bus
installing 4-5
ISA-bus
supported boards A-2

J
joystick
supported device A-16

K

kernel
communication with hardware 1-4
installing 2-14
scheduler 1-4
timer interrupt 1-4
uninstalling 2-16

L

licenses

getting or updating 2-5

system requirements 2-5
list

supported I/O boards A-2
logging

data to disk drive 3-43

data to workspace 3-29

M
makefile 2-10
MathWorks
compatible software 1-4
DSP Blockset 1-4
Fixed-Point Blockset 1-4
Simulink blocks 1-4
Stateflow/Stateflow Coder 1-4
MATLAB
compatibility ix
required product ix
MATLAB workspace
signal logging 3-29
MEX utility
selecting compiler 2-12
Microsoft
Visual C/C++ compiler xi
Microsoft Visual C/C++
compatible versions xi
model parameters
changing 3-49
parameter tuning 3-49
mouse
supported device A-16

N

nonreal-time
simulation 3-12

normalized scaling
analog input 4-33

Index

o
opening
demo library 2-22
organization
of this document xiv
output blocks
overview 4-8
overview
custom I/O drivers B-2
I/0 boards 4-3
input blocks 4-8
installing kernel 2-14
output blocks 4-8
parameter tuning 3-48
real-time application 3-14
Real-Time Windows Target 1-3
system concepts 1-12
system requirements 2-3
testing installation 2-18

P
parallel port
supported device A-16
parameter tuning
changing model parameters 3-49
changing parameters 1-7
external mode 1-7
feature 1-7
overview 3-48
PCI bus
installing 4-6
PCI-bus
supported boards A-12
PCMCIA bus
installing 4-6
supported boards A-11

plots not visible
troubleshooting 5-2

plotting
logged data from disk 3-46
logged data from workspace 3-35

R

real-time
control 1-3
execution 1-10
hardware-in-the-loop 1-3
signal processing 1-3

real-time application
and the development process 1-11
connecting to Simulink model 3-21
creating 3-20
overview 3-14
Real-Time Windows Target 1-5
Real-Time Workshop parameters 3-14
scope properties for signal tracing 3-17
simulation parameters for Real-Time Work-

shop 3-14

software environment 1-5
starting 3-25
stopping 3-25

real-time kernel
Real-Time Windows Target 1-4
scheduler 1-4
software environment 1-4
timer interrupt 1-4

I-5

Index

I-6

Real-Time Windows Target
application 1-5
custom I/O device drivers 4-36
demo library 2-22
development process 1-11
files 2-9
I/O board support A-2
installing kernel 2-14
overview 1-3
overview of install 2-5
real-time application 1-5
real-time kernel 1-4
required products ix
software environment 1-10
uninstalling kernel 2-16
what is it? 1-3
Real-Time Workshop
compatibility xi
entering simulation parameters 3-14
required product xi
required products
C language compiler xi
MATLAB ix
overview ix
Real-Time Workshop xi
Simulink x
requirements
hardware 2-3
software 2-4
rtvdp.mdl
Simulink model 2-18
rtwinext
external interface MEX-file 5-3
running
execution in real time 1-11
real-time application 3-25
simulation in nonreal time 3-12

S

sample rates
excessive 2-22
sample time
too fast 5-4
scope properties
entering 3-37
entering for signal tracing 3-17
for signal logging to disk drive 3-37
for signal logging to workspace 3-29
selecting
C compiler 2-12
separating
I/0O signals 4-27
setting
initial working directory 2-11
working directory 2-11
signal and triggering
entering properties 3-31
properties 3-40
signal archiving
See signal logging
signal data
plotting from disk drive 3-46
plotting from workspace 3-35
signal logging
entering scope properties 3-29
feature 1-6
plotting data 3-35
signal and triggering properties 3-40
to disk drive 3-37
to MATLAB workspace 3-29
signal logging to disk drive
data archiving parameters 3-43
signal and triggering properties 3-40

Index

signal logging to workspace

scope properties 3-29

signal and triggering properties 3-31
signal processing

DSP Blockset 1-4
signal tracing

feature 1-6

scope properties 3-17
signals

capturing and displaying 1-3
simulation

nonreal-time 3-12

running in nonreal time 1-11
simulation parameters

entering 3-7

for Real-Time Workshop 3-14
Simulink

compatibility x

compatible software 1-4

required product x

running a simulation 3-12
Simulink external mode

description 1-12

parameter tuning 1-7
Simulink model

and the development process 1-11

connect to real-time application 3-21

creating 1-11

rtvdp.mdl 2-18
software

system requirements 2-4
software environment

overview 1-10

real-time application 1-5

real-time kernel 1-4

requirements 2-4
standard devices

joystick A-16

mouse A-16

parallel port A-16
starting

real-time application 3-25
Stateflow

compatible software 1-4
stopping

real-time application 3-25
support

input/output 1-8
supported I/O boards

compact PCI bus A-14

ISA bus A-2

list A-2

PC/104 bus A-15

PCI bus A-12

PCMCIA bus A-11

PXI bus A-14
system concepts

data buffers 1-13

overview 1-12

transferring data 1-13
system requirements

hardware 2-3

licenses 2-5

overview 2-3

software 2-4

software environment 2-4

updating licenses 2-5
system target file 2-10

T
template makefile 2-10

terms
definitions xv

I-7

Index

I-8

testing installation
overview 2-18
third-party
C compiler 2-12
transferring data 1-13
troubleshooting
compiler error message 5-3
failure to connect 5-3
incorrect MEX-file 5-3
plots not visible 5-2
sample time too fast 5-4
typographical conventions (table) xvii

U

uninstalling
kernel 2-16
using
I/0 device drivers 4-32
using this guide
conventions xv
organization xiv

\

valid license
obtaining 2-5

Visual C/C++
compatible versions xi
compiler 2-12

w

Watcom
C/C++ compiler 2-12

Web downloadable
installing from 2-7

Win32

incompatible with I/O drivers B-3
Windows Target

See Real-Time Windows Target
working directory

initial 2-11

setting 2-11

setting initial 2-11
writing customized device drivers B-2

	Preface
	Required Products
	MATLAB
	Simulink
	Real-Time Workshop
	C Compiler

	Related Products
	Using This Guide
	Expected Background
	Organization

	Conventions
	Terminology

	Typographical Conventions

	Introduction
	What Is the Real-Time Windows Target?
	Features
	Real-Time Kernel
	Real-Time Application
	Signal Acquisition and Analysis
	Parameter Tuning

	Hardware Environment
	PC Compatible Computer
	Input/Output Driver Support

	Software Environment
	Nonreal-Time Simulation
	Real-Time Execution
	Development Process

	System Concepts
	Simulink External Mode
	Data Buffers and Transferring Data

	Installation and Configuration
	System Requirements
	Hardware Requirements
	Software Requirements

	Real-Time Windows Target
	Getting or Updating Your License
	Installing from a CD
	Installing from the Web
	Files on the Your Computer

	Initial Working Directory
	Setting the Working Directory from Desktop Icon
	Setting the Working Directory from MATLAB

	Third Party C Compiler
	Selecting a Default C Compiler

	Real-Time Windows Target Kernel
	Installing the Kernel
	Uninstalling the Kernel

	Testing the Installation
	Running the Model rtvdp.mdl
	Displaying Status Information
	Detecting Excessive Sample Rates
	Demo Library

	Basic Procedures
	Simulink Model
	Creating a Simulink Model
	Entering Simulation Parameters for Simulink
	Entering Scope Parameters for Signal Tracing
	Running a Nonreal-Time Simulation

	Real-Time Application
	Entering Simulation Parameters for Real-Time Workshop
	Entering Scope Parameters for Signal Tracing
	Creating a Real-Time Application
	Entering Additional Scope Parameters for Signal Tracing
	Running a Real-Time Application
	Running a Real-Time Application from the MATLAB Command Line

	Signal Logging to the MATLAB Workspace
	Entering Scope Parameters
	Entering Signal and Triggering Properties
	Plotting Logged Signal Data

	Signal Logging to a Disk Drive
	Entering Scope Parameters
	Entering Signal and Triggering Properties
	Entering Data Archiving Parameters
	Plotting Logged Signal Data

	Parameter Tuning
	Types of Parameters
	Changing Model Parameters

	Advanced Procedures
	I/O Boards
	I/O Board Dialog Box
	ISA Bus Board
	PCI Bus Board
	PC/104 Board
	Compact PCI Board
	PCMCIA Board

	I/O Driver Blocks
	Real-Time Windows Target Library
	Simulink Library
	Analog Input Block
	Analog Output Block
	Digital Input Block
	Digital Output Block
	Counter Input Block
	Encoder Input Block
	Output Signals from an I/O Block
	Variations with Channel Selection

	Using Analog I/O Drivers
	I/O Driver Characteristics
	Normalized Scaling for Analog Inputs

	Troubleshooting
	Plots Not Visible in Simulink Scope Block
	Compiler Error Message
	Failure to Connect to Target
	Sample Time Too Fast
	S-Functions Using Math Functions

	Supported I/O Boards
	ISA Bus
	PCMCIA Bus
	PCI Bus
	Compact PCI
	PXI Bus
	PC/104 Bus
	Standard Devices

	Custom I/O Driver Blocks
	Source Code for DOS Target Drivers
	Incompatibility with Win32 API Calls
	Nonsupported C Functions
	Supported C Functions

	Index

