
Modeling

Simulation

Implementation

Real-Time Workshop®

 For Use with Simulink ®

Getting Started
Version 5

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Getting Started with Real-Time Workshop
 COPYRIGHT 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 2002 First printing New for Version 5 (Release 13)

i

Contents

About This Guide

1
Introducing Real-Time Workshop

What Is Real-Time Workshop? . 1-2
Components and Features . 1-2
Capabilities and Benefits . 1-3
Accelerating Your Development Process 1-6

Installing Real-Time Workshop . 1-10
Third-Party Compiler Installation on Windows 1-11
Supported Compilers . 1-13
Compiler Optimization Settings . 1-14

Real-Time Workshop Demos . 1-15

Help and Documentation . 1-18
Online Documentation . 1-18
Printing the Documentation . 1-19
For Further Information . 1-19

Related Products . 1-20

Typographical Conventions . 1-23

ii Contents

2
Building an Application

Automatic Program Building . 2-2

Steps in the Build Process . 2-4
1. Analyze the Model . 2-5
2. Call the Target Language Compiler to Generate Code 2-5
3. Generate a Customized Makefile . 2-6
4. Create the Executable . 2-7
Summary of Files Created by the Build Procedure 2-9

3
Working with Real-Time Workshop

Basic Real-Time Workshop Concepts 3-2
Target and Host . 3-3
Available Target Configurations . 3-3
Code Formats . 3-3
The Generic Real-Time Target . 3-4
Target Language Compiler Files . 3-4
Template Makefiles . 3-5
The Build Process . 3-5
Model Parameters and Code Generation 3-6

Quick Start Tutorials . 3-7
Tutorial 1: Building a Generic Real-Time Program 3-8
Tutorial 2: Data Logging . 3-15
Tutorial 3: Code Validation . 3-19
Tutorial 4: A First Look at Generated Code 3-23
Tutorial 5: Getting Started with External Mode Using GRT . 3-33

A
Glossary

About This Guide

 About This Guide

iv

Real-Time Workshop® builds applications from Simulink diagrams for
prototyping, testing, and deploying real-time systems on a variety of target
computing platforms. Users of Real-Time Workshop can direct it to generate
source code that accommodates the compilers, input and output devices,
memory models, communication modes, and other characteristics that their
applications may require.

This guide summarizes the concepts, capabilities, user interface, and
applications of Real-Time Workshop, to help you become productive with it as
quickly as possible. It includes the following chapters:

• Introducing Real-Time Workshop — Presents an overview of installation
procedures, Real-Time Workshop demos, available documentation, and
descriptions of related products.

• Building an Application — Describes how Real-Time Workshop compiles
models to construct stand-alone applications, what files are generated, and
how they are organized.

• Working with Real-Time Workshop — Summarizes Real-Time Workshop
concepts and terms, and provides a set of tutorials to get you started
generating code right away.

This Getting Started guide is an introduction to the Real-Time Workshop
documentation, which covers in detail technical topics such as code formats,
rapid prototyping, communications, optimizations, and targeting. You may
further customize code for targets and blocks by preparing Target Language
Compiler scripts. The Target Language Compiler Reference Guide, which is
also part of this documentation set, describes these advanced techniques.

1
Introducing Real-Time
Workshop

We begin this guide with a high-level overview of Real-Time Workshop®, describing its purpose, its
component parts, its major features, and the ways in which it leverages the modeling power of
Simulink® for developing real-time applications on a variety of platforms.

You will also find here helpful information about installing Real-Time Workshop, including
discussions of related products from The MathWorks and compilers from third parties, as well as
pointers to demos and online and printable documentation. The chapter is laid out as follows:

What Is Real-Time Workshop? (p. 1-2) What it is, and what it can do for you

Installing Real-Time Workshop (p. 1-10) Information on supported compilers

Real-Time Workshop Demos (p. 1-15) Demonstrations you can summon that illustrate code
generation capabilities

Help and Documentation (p. 1-18) Locating and using online and printed help documents

Related Products (p. 1-20) Other products from The MathWorks that extend and
amplify Real-Time Workshop

Typographical Conventions (p. 1-23) Styles used in this document

1 Introducing Real-Time Workshop

1-2

What Is Real-Time Workshop?
Real-Time Workshop® is an extension of capabilities found in Simulink® and
MATLAB® to enable rapid prototyping of real-time software applications on a
variety of systems. Real-Time Workshop, along with other tools and
components from The MathWorks, provides

• Automatic code generation tailored for a variety of target platforms

• A rapid and direct path from system design to implementation

• Seamless integration with MATLAB and Simulink

• A simple graphical user interface

• An open architecture and extensible make process

Components and Features
The principal components and features of Real-Time Workshop are

• Simulink Code Generator — Automatically generates C code from your
Simulink model.

• Make Process — The Real-Time Workshop user-extensible make process lets
you create your own production or rapid prototyping target.

• Simulink External Mode — External mode enables communication between
Simulink and a model executing on a real-time test environment, or in
another process on the same machine. External mode lets you perform
real-time parameter tuning and data viewing using Simulink as a front end.

• Targeting Support — Using the targets bundled with Real-Time Workshop,
you can build systems for a number of environments, including Tornado and
DOS. The generic real-time and embedded real-time targets provide a
framework for developing customized rapid prototyping or production target
environments. In addition to the bundled targets, the Real-Time Windows
Target and the xPC Target let you turn almost any PC into a rapid
prototyping target, or a small to medium volume production target.

• Rapid Simulations — Using Simulink Accelerator (part of the Simulink
Performance Tools product), the S-function Target, or the Rapid Simulation
Target, you can accelerate your simulations by 5 to 20 times on average.
Executables built with these targets bypass normal Simulink interpretive
simulation mode. Code generated by Simulink Accelerator, S-function

What Is Real-Time Workshop?

1-3

Target, and Rapid Simulation Target is highly optimized to execute only the
algorithms used in your specific model. In addition, these targets apply many
optimizations, such as eliminating ones and zeros in computations for filter
blocks.

Capabilities and Benefits
Specific capabilities and benefits of Real-Time Workshop include

• Code generator for Simulink models
- Generates optimized, customizable code. There are several styles of

generated code, which can be classified as either embedded (production
phase) or rapid prototyping.

- Supports all Simulink features, including 8, 16, and 32 bit integers and
floating-point data types.

- Fixed-point capabilities of Real-Time Workshop allow for scaling of integer
words ranging from 2 to 128 bits. Code generation is limited by the
implementation of char, short, int, and long in embedded C compiler
environments (usually 8, 16, and 32 bits, respectively).

- Generated code is processor independent. The generated code represents
your model exactly. A separate run-time interface is used to execute this
code. We provide several example run-time interfaces as well as
production run-time interfaces.

- Supports any single or multitasking operating system, as well as
“bare-board” (no operating system) environments.

- The flexible scripting capabilities of the Target Language Compiler enable
you to fully customize generated code.

- Efficient code for S-functions (user-created blocks) can be crafted using
Target Language Compiler instructions (called TLC scripts) and
automatically integrated with generated code.

• Extensive model-based debugging support
- External mode enables you to examine what the generated code is doing

by uploading data from your target to the graphical display elements in
your model. There is no need to use a conventional source-level debugger
to look at your generated code.

- External mode also enables you to tune the generated code via your
Simulink model. When you change a parametric value of a block in your

1 Introducing Real-Time Workshop

1-4

model, the new value is passed down to the generated code, running on
your target, and the corresponding target memory location is updated.
Again, there is no need to use an embedded compiler debugger to perform
this type of operation. Your model is your debugger user interface.

• Integration with Simulink
- Code validation. You can generate code for your model and create a

stand-alone executable that exercises the generated code and produces a
MAT-file containing the execution results.

- Generated code contains system and block identification tags to help you
identify the block, in your source model, that generated a given line of
code. The MATLAB command hilite_system recognizes these tags and
highlights the corresponding blocks in your model.

- Support for Simulink data objects lets you define how your signals and
block parameters interface to the external world.

• Rapid simulations
- Real-Time Workshop supports several ways to speed up your simulations

by creating optimized, model-specific executables.

• Target support
- Turnkey solutions for rapid prototyping substantially reduce design

cycles, allowing for fast turnaround of design iterations.

- Bundled rapid prototyping example targets provide working code you can
modify and use quickly.

- Add-on targets (Real-Time Windows Target and xPC Target) for PC-based
hardware are available from The MathWorks. These targets enable you to
turn a PC with fast, high-quality, low-cost hardware into a rapid
prototyping system.

- Supports a variety of third-party hardware and tools, with extensible
device driver support.

• Extensible make process
- Allows for easy integration with any embedded compiler and linker.

- Provides for easy linkage with your hand-written supervisory or
supporting code.

What Is Real-Time Workshop?

1-5

In addition to the above benefits, the Real-Time Workshop Embedded Coder
provides:

• Customizable, portable, and readable C code that is designed to be placed in
a production embedded environment.

• More efficient code, because inlined S-functions are required and continuous
time states are not allowed.

• Software-in-the-loop. With the Real-Time Workshop Embedded Coder, you
can generate code for your embedded application and bring it back into
Simulink for verification via simulation.

• Web-viewable code generation report, which describes in detail code
modules, analyzes the generated code, and helps to identify code generation
optimizations relevant to your program.

• Annotation of the generated code using the Description block property.

• Signal logging options and external parameter tuning, enabling easy
interfacing of the generated code in your real-time system.

1 Introducing Real-Time Workshop

1-6

Accelerating Your Development Process
The MathWorks does not tell you how to work by suggesting or imposing a
particular software design methodology. The MathWorks gives you the ability
to simplify and accelerate most phases of software development, and at the
same time to eliminate paperwork and other mundane tasks. Our tools lend
themselves particularly well to the spiral design process shown below.

Figure 1-1: Spiral Design Process

When you work with tools from The MathWorks, your model represents your
understanding of your system. This understanding is passed from one phase of
modeling to the next, reducing the need to backtrack. In the event that rework

START

FINISH

System-level
Design

Detailed
Design

Software
and Hardware
Implementation

Design
Validation
via Testing

Production and
Manufacturing
Testing

Problem/Task
Formulation

SPECIFICATION

DESIGN

SOFTWARE IMPLEMENTATION

INTEGRATION

VERIFICATION

What Is Real-Time Workshop?

1-7

is necessary in a previous phase, it is easier to step back one or more phases,
because the same model and tools are used throughout.

A spiral design process iterates quickly between phases, enabling engineers to
work on innovative features. To do this cost effectively, they need to use tools
that make it easy to move from one phase to another. For example, in a matter
of minutes a control system engineer or a signal processing engineer can
validate an algorithm on a real-world rapid prototyping system. The spiral
process lends itself naturally to parallelism in the overall development process.
You can provide early working models to validation and production groups,
involving them in your system development process from the start. This helps
compress the overall development cycle while increasing quality.

Simulink facilitates the first three phases described in Figure 1-1. You can
build applications from built-in blocks from the Simulink and Stateflow®
libraries, incorporate specialized blocks from the Communications, DSP,
Nonlinear Control Design, and other MathWorks blocksets, and develop your
own blocks by writing S-functions.

Real-Time Workshop (optionally extended by the Real-Time Workshop
Embedded Coder, the Real-Time Windows Target, and the xPC Target)
completes the spiral process. It closes the rapid protoyping loop, by generating
and optimizing code for given tasks and environments.

1 Introducing Real-Time Workshop

1-8

The figure below illustrates where products from The MathWorks, including
Real-Time Workshop, help you in your development process.

Figure 1-2: Roles of MathWorks Products in Software Development

Early in the design process, you use MATLAB and Simulink to help you
formulate your objectives, problems, and constraints to create your initial
design. Real-Time Workshop helps with this process by enabling high-speed
simulations via Simulink Accelerator (part of Simulink Performance Tools),
and the S-function Target to componentize and speed up models.

After you have a functional model, you may need to tune your model’s
coefficients. You can do this quickly using the Real-Time Workshop Rapid
Simulation Target for Monte-Carlo type simulations (varying coefficients over
many simulations).

Interactive modeling and simulation

and
Toolboxes

Customer-defined
monitoring and

parameter tuning

High speed simulation
Accelerator,

S-function Targets

Interactive design

MATLAB

Rapid SimulationTarget

Batch design validation

Rapid Prototyping

Targets (real-time)

System development testing

Em
bedded Code

M
odules

Software unit testing

Embedded Code
in Custom Target

Software integration

System testing and tuning

Embedded Code
in Custom Target

Deployed system

Embedded Code
in Custom Target

Design
Cycle

Simulink
Stateflow

 Blocksets

 Real-Time
Workshop

What Is Real-Time Workshop?

1-9

Once you’ve tuned your model, you can move into system development testing
by exercising your model on a rapid prototyping system such as the Real-Time
Windows Target or the xPC Target. With a rapid prototyping target, you
connect your model to your physical system. This lets you locate design flaws
and modeling errors quickly.

After your prototype system is created, you can use the Real-Time Workshop
Embedded Coder to create code for deployment on your custom target. The
signal monitoring and parameter tuning capabilities enable you to easily
integrate the embedded code into a production environment equipped with
debugging and upgrade capabilities.

1 Introducing Real-Time Workshop

1-10

Installing Real-Time Workshop
Your platform-specific MATLAB installation documentation provides all of the
information you need to install the Real-Time Workshop.

Prior to installing Real-Time Workshop, you must obtain a License File or
Personal License Password from The MathWorks. The License File or Personal
License Password identifies the products you are permitted to install and use.

As the installation process proceeds, it displays a dialog similar to the one
below, letting you indicate which products to install.

In the product window you can only select for installation MATLAB products
for which you are licensed.

Installing Real-Time Workshop

1-11

Real-Time Workshop has certain product prerequisites that must be met for
proper installation and execution.

If you experience installation difficulties and have Web access, connect to the
MathWorks home page (http://www.mathworks.com). Use the resources found
on the Installation, License Changes, and Passwords page at
http://www.mathworks.com/support/install/ to help you through the
process.

Third-Party Compiler Installation on Windows
Several of the Real-Time Workshop targets create an executable that runs on
your workstation. When creating the executable, Real-Time Workshop must be
able to access an appropriate compiler. The following sections describe how to
configure your system so that Real-Time Workshop can access your compiler.

Borland
Make sure that your Borland environment variable is defined and correctly
points to the directory in which your Borland compiler resides. To check this,
type

set BORLAND

at the DOS prompt. The return from this includes the selected directory.

Licensed
Product

Prerequisite
Products

Additional Information

Simulink MATLAB 6.5
(Release 13)

Allows installation of Simulink.

Real-Time
Workshop

Simulink 5
(Release 13)

Requires Borland C, LCC, Visual
C/C++, or Watcom C compiler to
create MATLAB MEX-files on your
platform.

The Real-Time
Workshop
Embedded
Coder

Real-Time
Workshop 5

1 Introducing Real-Time Workshop

1-12

If the BORLAND environment variable is not defined, you must define it to point
to where you installed your Borland compiler. On Microsoft Windows 95 or 98,
add

set BORLAND=<path to your compiler>

to your autoexec.bat file.

On Microsoft Windows NT or 2000, in the control panel select System, click on
the Advanced tab, select Environment, and define BORLAND to be the path to
your compiler.

LCC
The freeware LCC C compiler is shipped with MATLAB, and is installed with
the product. If you want to use LCC to build programs generated by Real-Time
Workshop, use the version that is currently shipped with the product.
Information about LCC is available at
http://www.cs.virginia.edu/~lcc-win32/.

Microsoft Visual C/C++
Define the environment variable MSDevDir to be

MSDevDir=<path to compiler>\SharedIDE for Visual C/C++ 5.0
MSDevDir=<path to compiler>\Common\MSDev98 for Visual C/C++ 6.0

Watcom

Note The Watcom C compiler is no longer available from the manufacturer.
Development of this compiler has been taken over by the Open Watcom
organization (http://www.openwatcom.org), which, as of this printing, has
released a binary patch update (11.0c) for existing Watcom C/C++ and Fortran
customers. Real-Time Workshop continues to ship with Watcom-related target
configurations. However, this policy may be subject to change in the future.

Make sure that your Watcom environment variable is defined and correctly
points to the directory in which your Watcom compiler resides. To check this,
type

set WATCOM

Installing Real-Time Workshop

1-13

at the DOS prompt. The return from this includes the selected directory.

If the WATCOM environment variable is not defined, you must define it to point
to where you installed your Watcom compiler. On Windows 95 or 98, add

set WATCOM=<path to your compiler>

to your autoexec.bat file.

On Microsoft Windows NT or 2000, in the control panel select System, click on
the Advanced tab, select Environment, and define WATCOM to be the path to
your compiler.

Out-of-Environment Error Message
If you are receiving out-of-environment space error messages, you can
right-click your mouse on the program that is causing the problem (for
example, dosprmpt or autoexec.bat) and choose Properties. From there
choose Memory. Set the Initial Environment to the maximum allowed and
click Apply. This should increase the amount of environment space available.

Supported Compilers

On Windows. eWe have tested the Real-Time Workshop with these compilers on
Windows.

Typically you must make modifications to your setup when a new version of
your compiler is released. See the MathWorks home page,
http://www.mathworks.com, for up-to-date information on newer compilers.

Compiler Versions

Borland 5.2, 5.3, 5.4, 5.5, 5.6

LCC Use the version of LCC shipped
with MATLAB.

Microsoft Visual C/C++ 5.0, 6.0, 7.0

Watcom 10.6, 11.0 (see “Watcom” above)

1 Introducing Real-Time Workshop

1-14

On UNIX. On UNIX, the Real-Time Workshop build process uses the default
compiler. cc is the default on all platforms except SunOS, where gcc is the
default.

For further information, please see Technical Note 1601, “What Compilers are
Supported?” at
http://www.mathworks.com/support/tech-notes/1600/1601.shtml.

Compiler Optimization Settings
In some very rare instances, due to compiler defects, compiler optimizations
applied to Real-Time Workshop generated code may cause the executable
program to produce incorrect results, even though the code itself is correct.

Real-Time Workshop uses the default optimization level for each supported
compiler. You can usually work around problems caused by compiler
optimizations by lowering the optimization level of the compiler, or turning off
optimizations. Please refer to your compiler's documentation for information
on how to do this.

Real-Time Workshop Demos

1-15

Real-Time Workshop Demos
A good way to familiarize yourself with Real-Time Workshop is by running a
set of demos we provide, and then inspecting code generated from these models.
These demos illustrate a number of Real-Time Workshop features, though
certainly not all of them. Note that one of the suites demonstrates features of
the Real-Time Workshop Embedded Coder, which you will need in order to run
those demos. Some of the following demos are set up to build ERT targets, but
will default to GRT if Real-Time Workshop Embedded Coder is not installed.

If you are using the MATLAB Help browser to read this, you can launch the
demos by clicking on the links in the Command column of Table 1-1.

Alternatively, you can access the demo suite by typing commands from the
Demo Command column of the following table, at the MATLAB command
prompt, as in this example:

rtwdemos

Table 1-1: Real-Time Workshop and Related Simulink Demos

 Demo Command Demo Topic

rtwdemos Top-level demo containing buttons to launch specific
Real-Time Workshop demos (double-click to activate)

asyncdemo Simulate and generate code for single-, multi-, and
asynchronous rate models

sl_subsys_seman
tics

Illustrates differences among types of subsystem,
when and how to use them, and common mistakes.

atomicdemo How to preserve the boundary of a virtual subsystem
using reusable atomic subsystems

condinputexec Illustrates how conditional input branch execution
improves simulation and generated code efficiency

cbdemo Demonstrates Simulink's ability to recognize patterns
and eliminate redundant operations

1 Introducing Real-Time Workshop

1-16

exprfolding Demonstrates how Real-Time Workshop folds
(combines) expressions to dramatically improve code
efficiency and readability.

ecifdemo Demonstrates how Real-Time Workshop generates
production code for Simulink software constructs if,
case, for, and while.

sfexfold Demonstrates the seamless integration between
Simulink and Stateflow, using a variation of the model
for the exprfolding demo.

hierdemo Demonstrates hierarchical name resolution in a
masked subsystem

objectdemo Demonstrates how attributes of data objects are
available throughout all stages of simulation, report
generation, and code generation.

tunabledemo Demonstrates the preservation of tunable expressions
in the generated code despite mask transformations

asap2demo Demonstrates ASAP2 (a data definition standard
proposed by the Association for Standardization of
Automation and Measuring Systems) data export

rsimtfdemo Demonstrates using the Rapid Simulation (rsim)
Target to create an accelerated, stand-alone
simulation environment.

signalcapidemo Automatically generate a C-API interface for the
signals in your model

ptdemo Automatically generate a C-API interface for the
parameters in your model

ecoderdemos Tour of the Real-Time Workshop Embedded Coder
(menu for demo suite)

Table 1-1: Real-Time Workshop and Related Simulink Demos (Continued)

 Demo Command Demo Topic

Real-Time Workshop Demos

1-17

rtwprofiledemo Demonstrates the hooks provided by Real-Time
Workshop to profile generated code

multimallocdemo Illustrates how to combine code for multiple models

Table 1-1: Real-Time Workshop and Related Simulink Demos (Continued)

 Demo Command Demo Topic

1 Introducing Real-Time Workshop

1-18

Help and Documentation
Real-Time Workshop software is shipped with this Getting Started guide.
Users of this book should be familiar with

• Using Simulink and Stateflow to create models as block diagrams, and
running such simulations in Simulink, and interpreting output in the
MATLAB workspace

• High-level programming language concepts applied to real-time systems

While you do not need to program in C or other programming languages in
order to create, test, and deploy real-time systems using Real-Time Workshop,
successful emulation and deployment of real-time systems involves working
familiarity with their parameters and design constraints. The Real-Time
Workshop documentation assumes you have a basic understanding of real-time
system concepts, terminology, and environments. The documentation is
available online at http://www.mathworks.com, through the MATLAB Help
browser, and also in the form of PDF documents that you can view online or
print.

This section includes the following topics:

• “Online Documentation” on page 1-18—Where to find Help online (HTML
documents)

• “Printing the Documentation” on page 1-19—Printable versions (PDF
documents)

• “For Further Information” on page 1-19—A guide to major help topics

Online Documentation
Access to the online information for Real-Time Workshop is through MATLAB
or from the MathWorks Web site at http://www.mathworks.com/support/.
Click on that page’s Documentation link. To access the documentation with
the MATLAB Help browser, use the following procedure:

1 In the MATLAB window, and from the View menu, click Help. Or from the
Help menu, click Full Product Family Help.

The Help browser window opens.

Help and Documentation

1-19

2 In the left pane, click the Real-Time Workshop book icon.

The Help browser displays the Real-Time Workshop Roadmap page in the
right pane. Click on any link there, or click on the “+” sign to the left of the
book icon in the left pane to reveal the table of contents. When you do so, the
“+” changes to a “-”, which will hide the topics under it when you click on it.

Printing the Documentation
The following manuals are available on the documentation CD as PDF files.
You can also download them from the Real-Time Workshop Roadmap Web
page:
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/rtw.shtml

The CD locations listed below assume your CD-ROM drive is listed as Z:.

• Getting Started with Real-Time Workshop—Located at
Z:\help\pdf_doc\rtw\rtw_gs.pdf

• Real-Time Workshop User’s Guide—Located at
Z:\help\pdf_doc\rtw\rtw_ug.pdf

• Target Language Compiler Reference Guide—Located at
Z:\help\pdf_doc\rtw\targetlanguagecompiler.pdf

The last two books are not distributed in printed form. You are welcome to
print the PDF versions. When preparing to print, please be aware that each one
has more than 500 pages.

For Further Information
The Real-Time Workshop User’s Guide documents in detail the capabilities of
Real-Time Workshop. For a topical overview of its contents, see “How Do I...”
on page 1-14.

You can extensively customize output from Real-Time Workshop at the block,
target, and makefile levels. For advanced uses, you may have to prepare or
modify Target Language Compiler files. See the Target Language Compiler
documentation for further descriptions.

1 Introducing Real-Time Workshop

1-20

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with Real-Time Workshop. They are listed in
the table below.

Real-Time Workshop needs to run in the same environment as MATLAB and
requires these products:

• MATLAB 6.5 (Release 13) or later

• Simulink 5.0 (Release 13) or later

• A supported compiler (See “Supported Compilers” on page 1-13 and
“Third-Party Compiler Installation on Windows” on page 1-11)

MATLAB documentation—For information on using MATLAB, see the
MATLAB documentation collection. It explains how to work with data and how
to use the functions supplied with MATLAB. For a reference describing the
functions supplied with MATLAB, see the online MATLAB Function
Reference.

Simulink documentation—For information on using Simulink, see the
Simulink documentation. It explains how to connect blocks to build models and
change block parameters. It also provides a reference that describes each block
in the standard Simulink library.

For more information about any of these products, see either

• The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

• Appropriate sections within MATLAB Release Notes for Release 13

• The “products” section on the MathWorks Web site at
http://www.mathworks.com

Note The toolboxes listed below all include functions that extend the
capabilities of MATLAB. The blocksets listed below all include blocks that
extend capabilities of Simulink.

Related Products

1-21

Product Description

CDMA Reference
Blockset

Design and simulate IS-95A mobile phone
equipment

Communications
Blockset

Design and simulate communication systems

Communications Toolbox Design and analyze communication systems

Control System Toolbox Design and analyze feedback control systems

Data Acquisition Toolbox Acquire and send out data from plug-in data
acquisition boards

Dials & Gauges Blockset Monitor signals and control simulation
parameters with graphical instruments

DSP Blockset Design and simulate DSP systems

Embedded Target for
Motorola® MPC555

Generate Real-Time Workshop Embedded
Coder production code for the Motorola
MPC555

Embedded Target for the
TI TMS320C6000™ DSP
Platform

Deploy and validate DSP designs on Texas
Instruments C6000 digital signal processors

Fixed-Point Blockset Design and simulate fixed-point systems

Fuzzy Logic Toolbox Design and simulate fuzzy logic systems

Instrument Control
Toolbox

Control and communicate with test and
measurement instruments

MATLAB Compiler Convert MATLAB M-files to C and C++ code

Nonlinear Control
Design Blockset

Optimize design parameters in nonlinear
control systems

1 Introducing Real-Time Workshop

1-22

Real-Time Windows
Target

Run Simulink and Stateflow models on a PC in
real time

Real-Time Workshop
Embedded Coder

Generate production code for embedded
systems

Simulink Design and simulate continuous- and
discrete-time systems

Simulink Performance
Tools

Manage and optimize the performance of large
Simulink models

Simulink Report
Generator

Automatically generate documentation for
Simulink and Stateflow models

Stateflow Design and simulate event-driven systems

Stateflow Coder Generate C code from Stateflow charts

xPC Target Perform real-time rapid prototyping using PC
hardware

xPC Target Embedded
Option

Deploy real-time applications on PC hardware

Product Description

Typographical Conventions

1-23

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, and user input

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

1 Introducing Real-Time Workshop

1-24

2
Building an Application

This chapter expands the high-level discussion of code generation and the build process given in
Chapter 1, “Introducing Real-Time Workshop.” It provides a foundation of understanding for tutorial
exercises in Chapter 3, “Working with Real-Time Workshop.”

Automatic Program Building (p. 2-2) Describes the flow of control for code generation

Steps in the Build Process (p. 2-4) Details the sequence of events that take place when you
click the Build button, including the files that are used
and created by the Target Language Compiler.

2 Building an Application

2-2

Automatic Program Building
The Real-Time Workshop automatic program building process creates
programs for real-time applications in a variety of host environments.
Automatic program building uses the make utility to control the compilation
and linking of generated source code.

The figure below illustrates the complete process. The shaded box highlights
the portions of it executed by Real-Time Workshop.

Figure 2-1: Automatic Program Building

Simulink
Model

Template
Makefile

Your

model.mk

Generate
Code

Generate

make –f mk

Model

c

Custom
Makefile

Makefile

system.tmf

make_rtw.m

Code

h

model

model.mk

model.exe
Program

Generate
Code

Generate

make –f model.mk

Model Code
model.c

Custom
Makefile

Makefile

system.tmf

User-developed model and
template makefile

Automated build process

Executable C program

model.h

model_private.h
...

Automatic Program Building

2-3

A high-level M-file command controls the Real-Time Workshop build process.
The default command, used with most targets, is make_rtw. Real-Time
Workshop normally issues this command, although you may do so from the
MATLAB control window at any time. If you are curious about how Real-Time
Workshop choreographs its activities, you can inspect this M-file (but never
edit it), located in matlabroot/toolbox/rtw/rtw.

2 Building an Application

2-4

Steps in the Build Process
Code generation begins with a two-step process, which is followed by two
more steps whenever an executable is being compiled. The four steps (also
summarized in “The Build Process” on page 3-5) are automatically completed
when you click the Build button on the Real-Time Workshop dialog
(assuming that Real-Time Workshop detects no constraints to generating
code for your model; if it does, it will issue warnings):

1 Real-Time Workshop analyzes your block diagram and compiles it into an
intermediate hierarchical representation called model.rtw.

2 The Target Language Compiler reads model.rtw and translates it to C
code, which it places in a build directory within your working directory.

If you have selected the Generate code only check box (in which case the
Build button will be labeled Generate code), the process halts there.

3 The Target Language Compiler constructs a makefile from the appropriate
target makefile template, and places it in the build directory.

4 Your system’s make utility reads the makefile to compile source code, link
object files and libraries, and generate an executable (called model or
model.exe), which is left in your working directory.

If Generate HTML report was selected (the default) under General code
generation options, the MATLAB Help browser will display the report
once the build is done. The report files occupy a directory called /html
within the build directory. The report contents vary depending on the
target, but all reports feature clickable links to generated source files, as
well as hyperlinks in source header comments that cause the respective
block in the model diagram to be highlighted.

The model.rtw file will be deleted unless you selected Retain .rtw file
under TLC Debugging options. There is no benefit to preserving this file
(which is produced every time Real-Time Workshop generates code for a
model, even if no changes were made), other than to refer to when
debugging TLC scripts.

Additional details about each of the four steps are given below.

Steps in the Build Process

2-5

1. Analyze the Model
The build process begins with the analysis of your Simulink block diagram.
The analysis process consists of these tasks:

• Evaluating simulation and block parameters

• Propagating signal widths and sample times

• Determining the execution order of blocks within the model

• Computing work vector sizes such as those used by S-functions (for more
information about work vectors, refer to the Simulink Writing S-Functions
documentation.)

During this phase, Real-Time Workshop reads your model file (model.mdl)
and compiles an intermediate representation of the model. This intermediate
description is stored, in a language-independent format, in the ASCII file
model.rtw. The model.rtw file is the input to the next stage of the build
process.

model.rtw files are similar in format to Simulink model (.mdl) files.
“Overview of a model.rtw File” on page 2-10 explains the basic structure of
a .rtw file. For a detailed description of the model.rtw architecture, see
“model.rtw File Contents” in the Target Language Compiler documentation.

2. Call the Target Language Compiler to Generate
Code
In the second stage of the build procedure, the Target Language Compiler
transforms the intermediate model description stored in model.rtw into
target-specific code.

The Target Language Compiler is an interpreted programming language
designed for the sole purpose of converting a model description into code. The
Target Language Compiler executes a TLC program comprising several
target files (.tlc script files). The TLC scripts specify how to generate code
from the model, using the model.rtw file as input.

The TLC program consists of

• The system target file

The system target file is the entry point or main file.

2 Building an Application

2-6

• Block target files

For each block in a Simulink model, there is a block target file that specifies
how to translate that block into target-specific code.

• The Target Language Compiler function library

The Target Language Compiler function library contains functions that
support the code generation process.

The Target Language Compiler begins by reading in the model.rtw file. It
then compiles and executes the commands in the target files — first the
system target file, then the individual block target files. The output of the
Target Language Compiler is a source code version of the Simulink block
diagram.

3. Generate a Customized Makefile
The third step in the build procedure is to generate a customized makefile,
model.mk. The generated makefile instructs the make utility to compile and
link source code generated from the model, as well as any required harness
program, libraries, or user-provided modules.

Real-Time Workshop creates model.mk from a system template makefile,
system.tmf (where system stands for the selected target name). The system
template makefile is designed for your target environment. The template
makefile allows you to specify compilers, compiler options, and additional
information used during the creation of the executable.

The model.mk file is created by copying the contents of system.tmf and
expanding lexical tokens (symbolic names) that describe your model’s
configuration.

Real-Time Workshop provides many system template makefiles, configured
for specific target environments and development systems. “The System
Target File Browser” in Chapter 2 of the Real-Time Workshop documentation
lists all template makefiles that are bundled with Real-Time Workshop.

You can fully customize your build process by modifying an existing template
makefile or providing your own template makefile.

Steps in the Build Process

2-7

4. Create the Executable
Creation of an executable program is the final stage of the build process. This
stage is optional, as illustrated by the control logic in Figure 2-2.

If you are targeting a system such as an embedded micro controller or a DSP
board, you can choose to generate only source code. You can then cross
compile your code and download it to your target hardware. “Making an
Executable” in Chapter 2 of the Real-Time Workshop documentation
discusses the options that control whether or not the build creates an
executable.

The creation of the executable, if enabled, takes place after the model.mk file
has been created. At this point, the build process invokes the make utility,
which in turn runs the compiler. To avoid unnecessary recompilation of C
files, the make utility performs date checking on the dependencies between
the object and C files; only out-of-date source files are compiled.

Optionally, make can also download the executable to your target hardware.

2 Building an Application

2-8

Figure 2-2: How Automatic Program Building Is Controlled

CustomGenerate
Makefile

Click Build
Button

Create
Executable? No

Invoke

Yes

Generate
Code

Template
Makefile

Simulink
Model

Makefile
model.mk

make

model.c

model.h

model_private.h

Stop

Steps in the Build Process

2-9

Summary of Files Created by the Build Procedure
The following is a list of the model.* files created during the code generation
and build process for the GRT and GRT malloc targets. Many of the files
derive from model.mdl, created by Simulink, which you can think of as a very
high-level programming language source file. Files generated for embedded
applications by Real-Time Workshop Embedded Coder are packaged slightly
differently. Depending on model architectures and code generation options,
other files may also be created by the build process:

• model.rtw, generated by Real-Time Workshop build process, is analogous
to the object file created from a high-level language source program. This
“compiled model” is deleted by default once the build is over, but may be
retained for inspection.

• model.c, generated by the Target Language Compiler, is the C source code
corresponding to the model.mdl file. It contains

- All data except data placed in model_data.c

- Include files model.h and model_private.h

- Algorithm code

• model_data.c, generated by the Target Language Compiler, is a
conditionally-generated C source file that when present contains

- Constant block i/o parameters

- Include files model.h and model_private.h

- Constant parameters

• model_private.h, generated by the Target Language Compiler, is a header
file that contains

- Imported Simulink data symbols

- Imported Stateflow machine parented data

- Stateflow entry points

- Real-Time Workshop-specific details (various macros, enums, etc.
private to the code)

• model.h, generated by the Target Language Compiler, is a header file that
includes model_private.h and also defines

- Exported Simulink data symbols

- Exported Stateflow machine parented data

2 Building an Application

2-10

- Model data structures, including rtM

- Model entry point functions

• subsystem.c, containing executable code for each noninlined nonvirtual
subsystem or copy thereof (when its code cannot be reused).

• subsystem.h, containing exported symbols for noninlined nonvirtual
subsystems, analogous to model.h.

• model.mk, generated by the Real-Time Workshop build process, is the
customized makefile used to build an executable.

• model.exe (on PC) or model (on UNIX), is an executable program, created
under control of the make utility by your development system (unless you
have specified Generate code only on the Target configuration portion
of the Real-Time Workshop pane).

In addition, for each build when the HTML report option is selected, a set of
.html files (one for each source file plus a model_contents.html index file) is
generated in the /html subdirectory within your build directory.

For more information, see “Generated Source Files” in Chapter 2 of the
Real-Time Workshop documentation.

Overview of a model.rtw File
This section examines the basic features of a model.rtw file, which serves as
input to the code generation process. The .rtw file shown is generated from
the source model shown below.

This model is saved in a file called example.mdl. Real-Time Workshop
generates example.rtw., an ASCII file by compiling the model into structured
records from which code can be generated. The example.rtw file consists of
parameter name/parameter value pairs, stored in a hierarchical structure of
nested text records.

Below is an excerpt from example.rtw. The majority of lines have been elided
to highlight on the structure of the file rather than its specific contents. You
can find a more extensive example of a model.rtw file in the “Code

Steps in the Build Process

2-11

Generation Architecture” section of the Target Language Compiler
documentation.

CompiledModel {

Name "example"

.

.

.

System {

Type root

.

.

.

}

NumBlocks 3

.

.

.

}

Block {

Type Sin

.

.

.

}

}

All compiled information is placed within the
CompiledModel record.

This parameter name /parameter value pair
identifies the name of your model.

Your model consists of one or more system
records. There is one record for your “root”
window and one record for each conditionally
executed subsystem.

This is the number of nonvirtual blocks in this
system record. A nonvirtual block is any block that
performs some algorithm, such as a Gain block. A
virtual block is a “connection” or graphical block,
for example, a Mux block.

There is only one block record for each nonvirtual
block in this system record. The block record
contains information such as the width of the
input and output ports.

2 Building an Application

2-12

For more information on these files, see the Appendix A of the Target
Language Compiler documentation, which details all records comprising
model.rtw files. The documentation also provides tutorials on processing
such record files.

Directories Used in the Build Process
Real-Time Workshop creates output files in two directories during the build
process:

• The working directory

If an executable is created, it is written to your working directory. The
executable is named model.exe (on PC) or model (on UNIX).

• The build directory

The build process creates a subdirectory, called the build directory, within
your working directory. The build directory name is model_target_rtw,
where model is the name of the source model and target is the type of the
chosen target (e.g., grt for generic real-time). The build directory stores
generated source code and all other files created during the build process
(except the executable).

The build directory always contains the generated code modules model.c,
model.h, and model_export.h, and the generated makefile model.mk.

Depending upon the target and code generation and build options selected,
additional files in the build directory may include

• model.rtw

• Object (.obj or .o) files

• Code modules generated from subsystems

• HTML summary reports of files generated (in its /html subdirectory)

• TLC profiler report files

• Block I/O (model_bio.c) and parameter tuning (model_pt.c) information
files

• Real-Time Workshop project (model.tmw) files

3
Working with Real-Time
Workshop

This chapter provides an overview of the ideas and technology behind Real-Time Workshop, and
hands-on exercises to help you to get started generating code as quickly as possible. It includes the
following topics:

To get the maximum benefit from this chapter and subsequent ones, we recommend that you study
and work all the tutorials, in the order presented.

Basic Real-Time Workshop Concepts
(p. 3-2)

Terms and definitions, such as host, target, code format,
makefile, and more, used in the documentation

Quick Start Tutorials (p. 3-7) Hands-on exercises that demonstrate essential features
of Real-Time Workshop

3 Working with Real-Time Workshop

3-2

Basic Real-Time Workshop Concepts
Even if you have experience in building real-time systems, you may find it
helpful to review the following descriptions to be sure of understanding the
nomenclature that Real Time Workshop documentation uses. A more
extensive list of terms may be found in Appendix A, “Glossary.”

The process of generating source code from Simulink models is shown in the
following diagram. The terms and concepts involved are described below.

Figure 3-1: Real-Time Workshop Code Generation Process

Run-time interface
support files

Simulink

Real-Time Workshop

Real-Time Workshop Build

model.rtw

Target
Language
Compiler

TLC program:

• System target file

• Block target files

• Inlined S-function
target files

• Target Language
Compiler function
library

model.c

model.mdl

model.exe

Make model.mk

Basic Real-Time Workshop Concepts

3-3

Target and Host
A target is an environment—hardware or operating system—on which your
generated code will run. The process of specifying this environment is called
targeting.

The process of generating target-specific code is controlled by a system target
file, a template makefile, and a make command. To select a desired target, you
can specify these items individually, or you can choose from a wide variety of
ready-to-run configurations.

The host is the system you use to run MATLAB, Simulink, and Real-Time
Workshop. Using the build tools on the host, you create code and an
executable that runs on your target system.

Available Target Configurations
Real-Time Workshop supports many target environments. These include
ready-to-run configurations and third-party targets. You can also develop
your own custom target.

For a complete list of bundled targets, with their associated system target
files and template makefiles, see “The System Target File Browser” in
Chapter 2 of the Real-Time Workshop documentation.

Code Formats
A code format specifies a framework for code generation suited for specific
applications.

When you choose a target configuration, you implicitly choose a code format.
If you use Real-Time Workshop Embedded Coder, for example, the code
generated will be in embedded C format. The embedded C code format is a
compact format designed for production code generation. Its small code size,
use of static memory, and simple call structure make it optimal for embedded
applications.

Many other targets, such as the generic real-time (GRT) target, use the
real-time code format. This format, less compact but more flexible, is optimal
for rapid prototyping applications.

For a complete discussion of available code formats, see “Generated Code
Formats” in Chapter 3 of the Real-Time Workshop documentation.

3 Working with Real-Time Workshop

3-4

The Generic Real-Time Target
Real-Time Workshop provides a generic real-time development target. The
GRT target provides an environment for simulating fixed-step models in
single or multitasking mode. A program generated with the GRT target runs
your model, in simulated time, as a stand-alone program on your workstation.

The GRT target allows you to perform code validation by logging system
outputs, states, and simulation time to a data file. The data file can then be
loaded into the MATLAB workspace for analysis or comparison with the
output of the original model.

The GRT target also provides a starting point for targeting custom hardware.
You can modify the GRT harness program, grt_main.c, to execute code
generated from your model at interrupt level under control of a real-time
clock.

Target Language Compiler Files
Real-Time Workshop generates source code for models and blocks through
the Target Language Compiler, which reads script files (or TLC files) that
specify the format and content of output source files. Two types of TLC files
are used:

1 A system target file, which describes how to generate code for a chosen
target, is the entry point for the TLC program that creates the executable.

2 Block target files define how the code looks for each of the Simulink blocks
in your model.

System and block target files have the extension .tlc. By convention, a
system target file has a name corresponding to your target. For example,
grt.tlc is the system target file for the GRT target.

If you need to incorporate legacy code or maximize the efficiency of code for
models containing S-functions, you will need to prepare your own TLC files to
augment code generation for such models. These and other advanced uses of
TLC scripts are explained in the Target Language Compiler Reference Guide,
which provides a set of tutorials to help you get started.

Basic Real-Time Workshop Concepts

3-5

Template Makefiles
Real-Time Workshop uses template makefiles to build an executable from the
generated code.

The Real-Time Workshop build process creates a makefile from the template
makefile. Each line from the template makefile is copied into the makefile;
tokens encountered during this process are expanded into the makefile.

The name of the makefile created by the build process is model.mk (where
model is the name of the Simulink model). The model.mk file is passed to a
make utility, which compiles and links an executable from a set of files.

By convention, a template makefile has an extension of .tmf and a name
corresponding to your target and compiler. For example, grt_vc.tmf is the
template makefile for building a generic real-time program under Visual
C/C++.

You specify system target files and template makefiles using the Real-Time
Workshop pane of the Simulation Parameters dialog box, either by typing
their filenames or choosing them with the Target File Browser. “Tutorial 1:
Building a Generic Real-Time Program” on page 3-8 below introduces these
interfaces. See “Target Configuration Options” in Chapter 2 for additional
documentation.

The Build Process
A high-level M-file command controls the Real-Time Workshop build process.
The default command, used with most targets, is make_rtw. When you initiate
a build, Real-Time Workshop invokes make_rtw. The make_rtw command, in
turn, invokes the Target Language Compiler and utilities such as make. The
build process consists of the following stages:

1 First, make_rtw compiles the block diagram and generates a model
description file, model.rtw.

2 Next, make_rtw invokes the Target Language Compiler to generate
target-specific code, processing model.rtw as specified by the selected
system target file.

3 Next, make_rtw creates a makefile, model.mk, from the selected template
makefile.

3 Working with Real-Time Workshop

3-6

4 Finally, make is invoked. make compiles and links a program from the
generated code, as instructed in the generated makefile.

“Automatic Program Building” on page 2-2 gives an overview of the build
process. “Simulation Parameters and Code Generation” in Chapter 2 of the
Real-Time Workshop documentation expands on how model data affects code
generation.

Model Parameters and Code Generation
The simulation parameters of your model directly affect code generation and
program building. For example, if your model is configured to stop execution
after 60 seconds, the program generated from your model will also run for 60
seconds.

Before you generate code and build an executable, you must verify that you
have set the model parameters correctly in the Simulation Parameters
dialog box. See “Simulation Parameters and Code Generation” in Chapter 2
of the Real-Time Workshop documentation for more information. Real-Time
workshop will refuse to generate code and issue diagnostics when certain
parameters (such as solver type) are set inappropriately. However, when
other parameters (such as Production Hardware Characteristics) have
inappropriate values, code generated by Real-Time Workshop can yield
incorrect results.

Real-Time Workshop imposes certain requirements and restrictions on the
model from which code is generated. Many of these, for example, the use of
variable-step solvers, are target specific. The following sections in the
Real-Time Workshop documentation may help you understand restrictions
on code generation that may apply:

• “Choosing a Code Format for Your Application” in Chapter 3 compares
features that Real-Time Workshop supports for different targets.

• “Parameters: Storage, Interfacing, and Tuning” in Chapter 5 describes how
Real-Time Workshop structures parameter data.

• “Interfacing Parameters and Signals” in Chapter 14 provides more
advanced information on how to access parameter data in generated code.

Quick Start Tutorials

3-7

Quick Start Tutorials
This section provides hands-on experience with the code generation, program
building, data logging, and code validation capabilities of Real-Time
Workshop.

“Tutorial 1: Building a Generic Real-Time Program” on page 3-8 shows how
to generate C code from a Simulink demonstration model and build an
executable program.

“Tutorial 2: Data Logging” on page 3-15 explains how to modify the
demonstration program to save data in a MATLAB MAT-file, for plotting.

“Tutorial 3: Code Validation” on page 3-19 demonstrates how to validate the
generated program by comparing its output to that of the original model.

“Tutorial 4: A First Look at Generated Code” on page 3-23 examines code
generated from a very simple model, illustrating the effect of some of the
Real-Time Workshop code generation options.

“Tutorial 5: Getting Started with External Mode Using GRT” on page 3–33
acquaints you with the basics of using external mode on a single computer,
and demonstrates the value of external mode to rapid prototyping.

These tutorials assume basic familiarity with MATLAB and Simulink. You
should also read “Building an Application” on page 2-1 before proceeding.

The procedures for building, running, and testing your programs are almost
identical in UNIX and PC environments. The discussion notes differences
where applicable.

Make sure that a MATLAB compatible C compiler is installed on your system
before proceeding with these tutorials. See “Supported Compilers” in Chapter
1 of the Real-Time Workshop documentation or more information on
supported compilers and compiler installation.

The f14 Demonstration Model
Tutorials 1-3 use a demonstration Simulink model, f14.mdl, from the
matlabroot/toolbox/simulink/simdemos/aerospace directory. (By default,
this directory is on your MATLAB path; matlabroot is the location of
MATLAB on your system.) f14 is a model of a flight controller for the
longitudinal motion of a Grumman Aerospace F-14 aircraft. Activate the F-14

3 Working with Real-Time Workshop

3-8

model by typing f14 at the MATLAB prompt. The diagram below displays the
top level of this model.

The model simulates the pilot’s stick input with a square wave having a
frequency of 0.5 (radians per second) and an amplitude of ± 1. The system
outputs are the aircraft angle of attack and the G forces experienced by the
pilot. The input and outputs are visually monitored by Scope blocks.

Tutorial 1: Building a Generic Real-Time Program
This tutorial walks through the process of generating C code and building an
executable program from the demonstration model. The resultant
stand-alone program runs on your workstation, independent of external
timing and events.

Working and Build Directories
It is convenient to work with a local copy of the f14 model, stored in its own
directory, f14example. This discussion assumes that the f14example
directory resides on drive d:. Set up your working directory as follows:

1 Create the directory from the MATLAB command line by typing

Quick Start Tutorials

3-9

!mkdir d:\f14example (on PC)

or

!mkdir ~/f14example (on UNIX)

2 Make f14example your working directory (drive d: used as example).

cd d:/f14example

3 Open the f14 model.

f14

The model appears in the Simulink window.

4 From the File menu, choose Save As. Save a copy of the f14 model
as d:/f14example/f14rtw.mdl.

Be aware that during code generation, Real-Time Workshop creates a build
directory within your working directory. The build directory name is
model_target_rtw, derived from the name of the source model and the
chosen target. The build directory stores generated source code and other files
created during the build process. We examine the build directory and its
contents at the end of this tutorial.

Setting Program Parameters
To generate code correctly from the f14rtw model, you must change some of
the simulation parameters. In particular, note that generic real-time (GRT)
and most other targets require that the model specify a fixed-step solver.

Note Real-Time Workshop can generate code for models using variable-step
solvers for Rapid Simulation (rsim) and S-function targets only. A Simulink
license is checked out when rsim targets execute. See “Licensing Protocols
for Using Simulink Solvers in Executables” in Chapter 11 of the Real-Time
Workshop documentation for details.

To set parameters, use the Simulation Parameters dialog box as follows:

1 From the Simulation menu, choose Simulation Parameters. The
Simulation Parameters dialog box opens.

3 Working with Real-Time Workshop

3-10

2 Click the Solver tab and enter the following parameter values on the
Solver pane.

Start Time: 0.0

Stop Time: 60

Solver options: set Type to Fixed-step. Select the ode5
(Dormand-Prince) solver algorithm.

Fixed step size: 0.05

Mode: SingleTasking

3 Click Apply. Then click OK to close the dialog box.

4 Save the model. Simulation parameters persist with the model, for use in
future sessions.

The Solver pane with the correct parameter settings is shown below.

Selecting the Target Configuration
To specify the desired target configuration, you choose a system target file, a
template makefile, and a make command.

Quick Start Tutorials

3-11

In these tutorials, you do not need to specify these parameters individually.
Instead, you use the ready-to-run generic real-time target configuration. The
GRT target is designed to build a stand-alone executable program that runs
on your workstation.

To select the GRT target:

1 From the Simulation menu, choose Simulation Parameters. The
Simulation Parameters dialog box opens.

2 Click on the Real-Time Workshop tab of the Simulation Parameters
dialog box. The Real-Time Workshop pane activates.

3 The Real-Time Workshop pane has several parts, which are selected via
the Category menu. Select Target configuration from the Category
menu, as shown below.

.

4 Click the Browse button next to the System target file field. This opens
the System Target File Browser, illustrated below. The browser displays a
list of all currently available target configurations. When you select a
target configuration, Real-Time Workshop automatically chooses the
appropriate system target file, template makefile, and make command.

3 Working with Real-Time Workshop

3-12

5 From the list of available configurations, select Generic Real-Time
Target (as shown above) and then click OK.

6 The Real-Time Workshop pane now displays the correct system target file
(grt.tlc), template makefile (grt_default_tmf), and make command
(make_rtw), as shown below.

7 Select General code generation options from the Category menu. The
options displayed here are common to all target configurations. Make sure
that all options are set to their defaults, as shown below.

Quick Start Tutorials

3-13

8 Select GRT code generation options from the Category menu. The
options displayed here are specific to the GRT target. Make sure that all
options are set to their defaults, as below.

9 Select TLC debugging from the Category menu. Make sure that all options
in this category are cleared.

10 Select Target configuration from the Category menu. Make sure that
the Generate code only option is not selected.

3 Working with Real-Time Workshop

3-14

11 Save the model.

Building and Running the Program
The Real-Time Workshop build process generates C code from the model, and
then compiles and links the generated program. To build and run the
program:

1 Click the Build button in the Simulation Parameters dialog box to start
the build process.

2 A number of messages concerning code generation and compilation appear
in the MATLAB command window. The initial messages are

Starting Real-Time Workshop build procedure for model:
f14rtw
Generating code into build directory: .\f14rtw_grt_rtw

The content of the succeeding messages depends on your compiler and
operating system.The final message is

Successful completion of Real-Time Workshop build procedure
for model: f14rtw

3 The working directory now contains an executable, f14rtw.exe (on PC), or
f14rtw (on UNIX). In addition, a build directory, f14rtw_grt_rtw, has
been created.

To observe the contents of the working directory after the build, type the
dir command from the MATLAB command window.

dir
. f14rtw.exe f14rtw_grt_rtw
.. f14rtw.mdl

4 To run the executable from the MATLAB command window, type

!f14rtw

The “!” character passes the command that follows it to the operating
system, which runs the stand-alone f14rtw program.

Quick Start Tutorials

3-15

The program produces one line of output:

starting the model

5 Finally, to see the contents of the build directory, type

dir f14rtw_grt_rtw

Contents of the Build Directory
The build process creates a build directory and names it model_target_rtw,
concatenating the name of the source model and the chosen target. In this
example, the build directory is named f14rtw_grt_rtw.

f14rtw_grt_rtw contains these generated source code files:

• f14rtw.c — the stand-alone C code that implements the model.

• f14rtw_data.c — initial parameter values used by the model.

• f14rtw.h — an include header file containing definitions of parameter and
state variables

• f14rtw_types.h — forward declarations of data types used in the code.

• f14rtw_private.h — a header file containing common include definitions

• rtmodel.h — a master header file for including generated code in the static
main program (its name never changes, and it simply includes f14rtw.h).

The build directory also contains other files used in the build process, such as
the object (.obj) files and the generated makefile (f14rtw.mk).

Tutorial 2: Data Logging
The Real-Time Workshop MAT-file data logging facility enables a generated
program to save system states, outputs, and simulation time at each model
execution time step. The data is written to a MAT-file, named (by default)
model.mat, where model is the name of your model. In this tutorial, data
generated by the model f14rtw.mdl is logged to the file f14rtw.mat. Refer to
“Tutorial 1: Building a Generic Real-Time Program” on page 3-8 for
instructions on setting up f14rtw.mdl in a working directory if you have not
done so already.

3 Working with Real-Time Workshop

3-16

To configure data logging, you use the Workspace I/O pane of the Simulation
Parameters dialog box. The process is nearly the same as configuring a
Simulink model to save output to the MATLAB workspace. For each
workspace return variable you define and enable, Real-Time Workshop
defines a parallel MAT-file variable. For example, if you save simulation time
to the variable tout, your generated program logs the same data to a variable
named (by default) rt_tout.

In this tutorial, you will modify the f14rtw model such that the generated
program saves the simulation time and system outputs to the file
f14rtw.mat. Then, you will load the data into the MATLAB workspace and
plot simulation time against one of the outputs.

To use the data logging feature:

1 Select the Workspace I/O tab of the Simulation Parameters dialog box.
The Workspace I/O pane specifies how outport data is loaded from and
saved to the workspace.

2 Select the Time option. Enabling the Time option causes Real-Time
Workshop to generate code that logs the simulation time to the MAT-file
matrix rt_tout.

Quick Start Tutorials

3-17

3 Select the Output option. Enabling the Output option causes Real-Time
Workshop to generate code that logs the root Output blocks (Angle of
Attack and Pilot G Force) to the MAT-file matrix rt_yout.

The sort order of the rt_yout array is based on the port number of the
Outport blocks, starting with 1. Angle of Attack and Pilot G Force will be
logged to rt_yout(:,1) and rt_yout(:,2), respectively.

4 If any other options are enabled, clear them. Set Decimation to 1 and
Format to Array. Then click Apply.

5 Open the Pilot G Force Scope block. To run the model, click on the Start
button in the toolbar of the Simulink window. The scope displays below.

6 Verify that the simulation time and Pilot G Force outputs have been
correctly saved to the workspace by plotting simulation time versus Pilot
G Force.

plot(tout,yout(:,2))

The resultant plot is shown below.

3 Working with Real-Time Workshop

3-18

7 The f14rtw program must be rebuilt, because you have changed the model
by enabling data logging. Select Build Model from the Real-Time
Workshop menu of the Tools menu in the Simulink window. This is an
alternative way to start the Real-Time Workshop build process. It is
identical to using Build button in the Simulation Parameters dialog box.

8 When the build concludes, run the executable with the command

!f14rtw

9 The program now produces two message lines, indicating that the
MAT-file has been written.

starting the model
** created f14rtw.mat **

Quick Start Tutorials

3-19

10 Clear the workspace, load the MAT-file data, and look at the workspace
variables:

clear
load f14rtw.mat
whos

11 Observe that the variables rt_tout (time) and rt_yout (G Force and Angle
of Attack) have been loaded from the file. Plot G Force as a function of time.

plot(rt_tout,rt_yout(:,2))

12 The plot should appear identical to the plot you produced in step 5 above.

Tutorial 3: Code Validation
In this tutorial, the code generated from the f14rtw model is validated
against the model. The code is validated by capturing and comparing data
from runs of the Simulink model and the generated program.

Note To obtain a valid comparison between outputs of the model and the
generated program, make sure that you have selected the same integration
scheme (fixed-step, ode5 (Dormand-Prince)) and the same step size (0.05)
for both the Simulink run and the Real-Time Workshop build process. Also,
make sure that the model is configured to save simulation time, as in
Tutorial 2.

Logging Signals via Scope Blocks
This example uses Scope blocks (rather than Outport blocks) to log both input
and output data. To configure the Scope blocks to log data:

1 Before proceeding with this tutorial, clear the workspace and reload the
model so that the proper workspace variables are declared and initialized:

clear
f14rtw

2 Open the Stick Input Scope block and click on the Parameters button on
the toolbar of the Scope window. The Scope Properties dialog box opens.

3 Working with Real-Time Workshop

3-20

3 Select the Data History tab of the Scope Properties dialog box.

4 Select the Save data to workspace option and enter the name of the
variable (Stick_input) that is to receive the scope data.

In the example above, the Stick Input signal to the scope block will be
logged to the array Stick_input during simulation. The generated code
will log the same signal data to the MAT-file variable rt_Stick_input
during a run of the executable program.

5 Click the Apply button.

6 Configure the Pilot G Force and Angle of Attack Scope blocks similarly,
using the variable names Pilot_G_force and Angle_of_attack.

7 Save the model.

Logging Simulation Data
The next step is to run the simulation and log the signal data from the Scope
blocks:

1 Open the Stick Input, Pilot G Force, and Angle of Attack Scope blocks.

2 Run the model. The Scope blocks display.

Quick Start Tutorials

3-21

3 Use the whos command to observe that the array variables Stick_input,
Pilot_G_force, and Angle_of_attack have been saved to the workspace.

4 Plot one or more of the logged variables against simulation time. For
example:

plot(tout, Stick_input(:,2))

Logging Data from the Generated Program
Since you have modified the model, you must rebuild and run the f14rtw
executable in order to obtain a valid data file:

1 Select Build Model from the Real-Time Workshop menu of the Tools
menu in the Simulink window.

2 When the build completes, run the stand-alone program from MATLAB:

!f14rtw

3 Load the data file f14rtw.mat and observe the workspace variables:

load f14rtw
whos

The data loaded from the MAT-file will include rt_Pilot_G_force,
rt_Angle_of_attack, rt_Stick_input, and rt_tout.

4 You can now use MATLAB to plot the three workspace variables as a
function of time.

3 Working with Real-Time Workshop

3-22

plot(rt_tout,rt_Stick_input(:,2))
figure
plot(rt_tout,rt_Pilot_G_force(:,2))
figure
plot(rt_tout,rt_Angle_of_attack(:,2))

Comparing Results of the Simulation
and the Generated Program
Your Simulink simulations and the generated code should produce nearly
identical output.

You have now obtained data from a Simulink run of the model, and from a
run of the program generated from the model. It is a simple matter to
compare the f14rtw model output to the results achieved by Real-Time
Workshop.

Comparing Angle_of_attack (simulation output) to rt_Angle_of_attack
(generated program output) produces

max(abs(rt_Angle_of_attack-Angle_of_attack))
ans =
 1.0e-015 *
 0 0.4441

Comparing Pilot_G_force (simulation output) to rt_Pilot_G_force
(generated program output) produces

max(abs(rt_Pilot_G_force-Pilot_G_force))

Quick Start Tutorials

3-23

ans =
 1.0e-013 *
 0 0.7283

Overall agreement is within 10-13. This slight error can be caused by many
factors, including

• Different compiler optimizations

• Statement ordering

• Run-time libraries

For example, a function such as sin(2.0) may return a slightly different
value, depending on which C library you are using.

For the same reasons, your comparison results may not be identical to those
above.

Tutorial 4: A First Look at Generated Code
In this tutorial, you examine code generated from a simple model, to observe
the effects of some of the many code optimization features available in
Real-Time Workshop.

Note You can view the code generated from this example using the
MATLAB editor. You may also view the code in the MATLAB Help browser if
you enable the Create HTML report option before generating code. See the
following section, “HTML Code Generation Reports” on page 3-31 for an
introduction to using the HTML report feature.

The source model, example.mdl, is shown below.

3 Working with Real-Time Workshop

3-24

Setting up the Model
First, create the model and set up basic Simulink and Real-Time Workshop
parameters as follows:

1 Create a directory example_codegen and make it your working directory:

!mkdir example_codegen
cd example_codegen

2 Create a new model and save it as example.mdl.

3 Add Sine Wave, Gain, and Out1 blocks to your model and connect them as
shown in the above diagram. Label the signals as shown.

4 From the Simulation menu, choose Simulation Parameters. The
Simulation Parameters dialog box opens.

5 Click the Solver tab and enter the following parameter values on the
Solver pane:

Solver options: set Type to Fixed-step. Select the ode5
(Dormand-Prince) solver algorithm.

Leave the other Solver pane parameters set to their default values.

6 Click Apply.

7 Click the Workspace I/O tab and make sure all check boxes are cleared.

8 Click Apply.

9 Click the Real-Time Workshop tab. Select Target configuration from
the Category menu. Next, select the Generate code only option. This
option causes Real-Time Workshop to generate code without invoking make
to compile and link the code. This option is convenient for this exercise, as
we are only interested in looking at the generated code. Note that the
Build button caption changes to Generate code.

Also, make sure that the generic real-time (GRT) target is selected. The
pane should appear as below.

Quick Start Tutorials

3-25

10 Click Apply.

11 Save the model.

Generating Code Without Buffer Optimization
When the block I/O optimization feature is enabled, Real-Time Workshop
uses local storage for block outputs wherever possible. We now disable this
option to see what the nonoptimized generated code looks like:

1 From the Simulation menu, choose Simulation Parameters. The
Simulation Parameters dialog box opens.

2 Click the Advanced tab. Select the Signal storage reuse option and
select the Off radio button, as shown below.

3 Working with Real-Time Workshop

3-26

3 Click Apply.

4 Click the Real-Time Workshop tab and select Target configuration
from the Category menu. Then click the Generate code button.

5 Because the Generate code only option was selected, Real-Time
Workshop does not invoke your make utility. The code generation process
ends with the message

Successful completion of Real-Time Workshop build procedure
for model: example

6 The generated code is in the build directory, example_grt_rtw. The file
example_grt_rtw\example.c contains the output computation for the
model. Open this file into the MATLAB editor:

edit example_grt_rtw\example.c

7 In example.c, find the function MdlOutputs.

The generated C code consists of procedures that implement the algorithms
defined by your Simulink block diagram. Your target’s execution engine
executes the procedures as time moves forward. The modules that implement
the execution engine and other capabilities are referred to collectively as the

Quick Start Tutorials

3-27

run-time interface modules. See “Program Architecture” in Chapter 7 of the
Real-Time Workshop documentation for a complete discussion of how
Real-Time Workshop interfaces and executes application, system-dependent,
and system-independent modules, in each of the two styles of generated code.

In our example, the generated MdlOutputs function implements the actual
algorithm for multiplying a sine wave by a gain. The MdlOutputs function
computes the model’s block outputs. The run-time interface must call
MdlOutputs at every time step.

With buffer optimizations turned off, MdlOutputs assigns unique buffers to
each block output. These buffers (rtB.sin_out, rtB.gain_out) are members
of a global data structure, rtB. The code is shown below:

void MdlOutputs(int_T tid)
{
 /* Sin Block: <Root>/Sine Wave */
 rtB.sin_out = rtP.Sine_Wave_Amp *
 sin(rtP.Sine_Wave_Freq * ssGetT(rtS) +

rtP.Sine_Wave_Phase) + rtP.Sine_Wave_Bias;

 /* Gain Block: <Root>/Gain */
 rtB.gain_out = rtB.sin_out * rtP.Gain_Gain;

 /* Outport Block: <Root>/Out1 */
 rtY.Out1 = rtB.gain_out;
}

We now turn buffer optimizations on and observe how these optimizations
improve the code.

Generating Code with Buffer Optimization
Enable buffer optimizations and regenerate the code as follows:

1 From the Simulation menu, choose Simulation Parameters. The
Simulation Parameters dialog box opens.

2 Click the Advanced tab. Select the Signal storage reuse option and
select the On radio button.

3 Click Apply.

3 Working with Real-Time Workshop

3-28

4 Click the Real-Time Workshop tab. Select General code generation
options from the Category menu.

5 Make sure that the Local block outputs option is selected, as shown
above.

6 Click Apply.

7 Select General code generation options (cont.) from the Category
menu.

Quick Start Tutorials

3-29

8 Make sure that the Buffer reuse option is selected, as shown above. Make
sure that the Expression folding option is off, which will disable the two
options below it, as shown. We will observe the effects of Expression
folding later in this tutorial.

9 Click Apply.

10 Click the Generate code button.

11 As before, Real-Time Workshop generates code in the example_grt_rtw
directory. Note that the previously generated code is overwritten.

12 Edit example_grt_rtw/example.c, and examine the function MdlOutputs.

With buffer optimizations enabled, the code in MdlOutputs reuses rtb_temp0,
a temporary buffer with local scope, rather than assigning global buffers to
each input and output:

void MdlOutputs(int_T tid)
{
 /* local block i/o variables */
 real_T rtb_temp0;

 /* Sin Block: <Root>/Sine Wave */
rtb_temp0 = rtP.Sine_Wave_Amp *
sin(rtP.Sine_Wave_Freq * ssGetT(rtS) + rtP.Sine_Wave_Phase) +
rtP.Sine_Wave_Bias;

/* Gain Block: <Root>/Gain
* Gain value: rtP.Gain_Gain
*/
 rtb_temp0 *= rtP.Gain_Gain;

 /* Outport Block: <Root>/Out1 */
 rtY.Out1 = rtb_temp0;
}

This code is more efficient in terms of memory usage. The efficiency
improvement gained by enabling Buffer reuse and Local block outputs
would be more significant in a large model with many signals.

3 Working with Real-Time Workshop

3-30

A Further Optimization: Expression Folding
As a final optimization, we will turn on expression folding, a code
optimization technique that minimizes the computation of intermediate
results and the use of temporary buffers or variables.

Enable expression folding and regenerate the code as follows:

1 Select General code generation options (cont.) from the Category
menu, if you have not already done so.

2 Select the Expression folding option. Make sure that the options Fold
unrolled vectors and Enforce integer downcast (below Expression
folding) are selected, as shown.

3 Make sure that Buffer reuse is still selected, as shown.

4 Click Apply.

5 Click the Generate code button.

6 As before, Real-Time Workshop generates code in the example_grt_rtw
directory.

7 Edit example_grt_rtw/example.c, and examine the function MdlOutputs.

Quick Start Tutorials

3-31

In the previous examples, the Gain block computation was computed in a
separate code statement and the result was stored in a temporary location
before the final output computation.

With Expression folding selected, there is a subtle but significant difference
in the generated code: the gain computation is incorporated (or “folded”)
directly into the Outport computation, eliminating the temporary location
and separate code statement. This computation is on the last line of the
MdlOutputs function:

void MdlOutputs(int_T tid)
{
 /* local block i/o variables */
 real_T rtb_sin_out;

 /* Sin Block: <Root>/Sine Wave */
rtb_sin_out = rtP.Sine_Wave_Amp *

 sin(rtP.Sine_Wave_Freq * ssGetT(rtS) + rtP.Sine_Wave_Phase)
+
 rtP.Sine_Wave_Bias;

 /* Outport: <Root>/Out1 incorporates:
 * Gain: <Root>/Gain
 *
 * Regarding <Root>/Gain :
 * Gain value: rtP.Gain_Gain
 */
 rtY.Out1 = (rtP.Gain_Gain * rtb_sin_out);
}

In many cases, Expression folding can incorporate entire model
computations into a single, highly optimized line of code. Expression folding
is turned on by default. We strongly recommend that you use this option.

HTML Code Generation Reports
When the Generate HTML report option under General code generation
options is selected (see figure below), a navigable summary of source files is
produced when the model is built.

3 Working with Real-Time Workshop

3-32

Code generation causes Real-Time Workshop to produce an HTML file for
each source file, plus a summary and an index file, in a directory named /html
within the build directory. Unless you are running MATLAB in -nodesktop
mode (a UNIX option only), the HTML summary and index are automatically
loaded into the MATLAB Help browser and displayed, as the following figure
illustrates. You can click on links in the report to inspect source and include
files, and view relevant documentation. Block header comments in source
files displayed in the browser have hyperlinks back to the model that cause
the block that generated that section of code to be highlighted. To review any
HTML report at a later time, use any Web browser to open the file
html/model_codgen_rpt.html within your build directory.

Note The contents of HTML reports for different target types will vary, and
reports for models with subsystems will feature additional information.

For further information, consult these sections of the Real-Time Workshop
documentation:

• “Code Generation and the Build Process” in Chapter 2 contains details on
buffer optimizations and other code generation options.

• See “Optimizing the Model for Code Generation” in Chapter 9 for full
details on Expression folding and on other code optimization techniques.

Quick Start Tutorials

3-33

• For details on the structure and execution of model.c files, refer to
“Program Architecture” in Chapter 7 of the Real-Time Workshop
documentation.

HTML Report for Code Generated for a GRT Target

Tutorial 5: Getting Started with External Mode
Using GRT
This section provides step-by-step instructions for getting started with
external mode, a very useful environment for rapid prototyping. The tutorial
consists of four parts, each of which depends on completion of the preceding
ones, in order. The four parts correspond to the steps that you would follow in
simulating, building, and tuning an actual real-time application:

• Part 1: Setting Up the Model

• Part 2: Building the Target Executable

• Part 3: Running the External Mode Target Program

• Part 4: Tuning Parameters

The example presented uses the generic real-time target, and does not
require any hardware other than the computer on which you run Simulink
and Real-Time Workshop. The generated executable in this example runs on
the host computer under a separate process from MATLAB and Simulink.

3 Working with Real-Time Workshop

3-34

The procedures for building, running, and testing your programs are almost
identical in UNIX and PC environments. The discussion notes differences
where applicable.

For a more thorough description of external mode, including a discussion of
all the options available, see “Using the External Mode User Interface” in
Chapter 6 of the Real-Time Workshop documentation.

Part 1: Setting Up the Model
In this part of the tutorial, you create a simple model, ext_example, and a
directory called ext_mode_example to store the model and the generated
executable:

1 Create the directory from the MATLAB command line by typing

mkdir ext_mode_example

2 Make ext_mode_example your working directory:

cd ext_mode_example

3 Create a model in Simulink with a Sine Wave block for the input signal,
two Gain blocks in parallel, and two Scope blocks. The model is shown
below. Label the Gain and Scope blocks as shown.

4 Define and assign two variables A and B in the MATLAB workspace as
follows:

A = 2; B = 3;

5 Open Gain block A and set its Gain parameter to the variable A as shown
below.

Quick Start Tutorials

3-35

6 Similarly, open Gain block B and set its Gain parameter to the variable B.

When the target program is built and connected to Simulink in external
mode, new gain values can be downloaded to the executing target program
by assigning new values to workspace variables A and B, or by editing the
values in the block parameter dialog boxes.

7 Verify correct operation of the model. Open the Scope blocks and run the
model. Given that A=2 and B=3, the output should look like this.

8 From the File menu, choose Save As. Save the model as ext_example.mdl.

3 Working with Real-Time Workshop

3-36

Part 2: Building the Target Executable
In this section, you set up the model and code generation parameters required
for an external mode compatible target program. Then you generate code and
build the target executable.

1 Open the Simulation Parameters dialog box. On the Solver pane, set the
Solver options Type to Fixed-step, select the discrete (no continuous
states) solver algorithm. Set Fixed step size to 0.01. Leave the other
parameters at their default values.

2 On the Workspace I/O pane, clear the Time and Output check boxes. In
this exercise, data will not be logged to the workspace or to a MAT-file.

3 On the Real-Time Workshop pane, select Target configuration from the
Category menu.

By default, the GRT target should be selected, as shown in this figure.

If the GRT target is not selected, click the Browse button and select the
GRT target from the System Target File Browser. Then click OK to close
the browser. Return to the Real-Time Workshop pane and click Apply.

Quick Start Tutorials

3-37

4 Select GRT code generation options from the Category menu and select
the External mode option.This enables generation of external mode
support code.

5 Click Apply.

6 On the Advanced pane, make sure that the Inline parameters option is
not selected. External mode supports inlined parameters, but we will not
be using inlined parameters in this tutorial.

The Advanced pane looks like the figure below.

3 Working with Real-Time Workshop

3-38

7 From the Tools menu, select External Mode Control Panel. The
External Mode Control Panel lets you configure host and target
communications, signal monitoring, and data archiving. It also lets you
connect to the target program and start and stop execution of the model
code.

The top four buttons are for use after the target program has started. The
three lower buttons open three separate dialog boxes:

- The Target interface button opens the External Target Interface
dialog box, which configures the external mode communications channel.

- The Signal & triggering button opens the External Signal &
Triggering dialog box, which configures which signals are viewed and
how signals are acquired.

- The Data archiving button opens the External Data Archiving dialog
box. Data archiving lets you save data sets generated by the target
program for future analysis. This example does not use data archiving.
See “Data Archiving Dialog Box” in Chapter 6 of the Real-Time
Workshop documentation for more information.

8 Click the Target interface button to open the External Target Interface
dialog box. This dialog box configures the external mode interface options.

The MEX-file for external interface field specifies the name of a MEX-file
that supports host and target communications on the host side. The
default is ext_comm, a MEX-file provided by Real-Time Workshop.
ext_comm supports communication via the TCP/IP communications
protocol.

Quick Start Tutorials

3-39

The MEX-file arguments field lets you specify arguments, such as a
TCP/IP server port number, to be passed to the external interface program.
Note that these arguments are specific to the external interface file you are
using.

For information on these arguments, see “The External Interface
MEX-File” in Chapter 6 of the Real-Time Workshop documentation.

This exercise uses the default arguments. Leave the MEX-file arguments
field blank.

The External Target Interface dialog box should appear as shown below.

9 Click OK to close the External Target Interface dialog box.

10 Close the External Mode Control Panel.

11 Save the model.

12 Return to the Real-Time Workshop pane. Click Build to generate code and
create the target program. The content of subsequent messages depends on
your compiler and operating system.The final message is

Successful completion of Real-Time Workshop build procedure
for model: ext_example

In the next section, you will run the ext_example executable and use
Simulink as an interactive front end to the running target program.

3 Working with Real-Time Workshop

3-40

Part 3: Running the External Mode Target Program
The target executable, ext_example, is now in your working directory. In this
section, you run the target program and establish communication between
Simulink and the target.

The External Signal & Triggering dialog box displays a list of all the blocks
in your model that support external mode signal monitoring and logging. The
External Signal & Triggering dialog box also lets you configure which
signals are viewed and how they are acquired and displayed. You can
reconfigure the External Signal & Triggering dialog box while the target
program runs.

In this exercise you will observe and use the default settings of the External
Signal & Triggering dialog box.

1 From the Tools menu, select External Mode Control Panel.

2 In the External Mode Control Panel, click the Signal & triggering
button.

3 The External Signal & Triggering dialog box opens. The default
configuration of the External Signal & Triggering dialog box is designed
to ensure that all signals are selected for monitoring. The default
configuration also ensures that signal monitoring will begin as soon as the
host and target programs have connected. The figure below shows the
default configuration for ext_example.

Quick Start Tutorials

3-41

4 Make sure that the External Signal & Triggering dialog box is set to the
defaults as shown:

- Select all check box is selected. All signals in the Signal selection list
are marked with an X in the Block column.)

- Trigger Source: manual

- Trigger Mode: normal

- Duration: 1000

- Delay: 0

- Arm when connect to target: selected

Click Close, and then close the External Mode Control Panel.

5 To run the target program, you must open a command prompt window (on
UNIX systems, an Xterm window). At the command prompt, change to the

3 Working with Real-Time Workshop

3-42

ext_mode_example directory that you created in step 1. The target
program is in this directory:

cd ext_mode_example

Next, type the following command

ext_example -tf inf -w

and press Return. The target program begins execution. Note that the
target program is in a wait state, so there is no activity in the command
prompt window.

The -tf switch overrides the stop time set for the model in Simulink. The
inf value directs the model to run indefinitely. The model code will run
until the target program receives a stop message from Simulink.

The -w switch instructs the target program to enter a wait state until it
receives a Start real-time code message from the host. This switch is
required if you want to view data from time step 0 of the target program
execution, or if you want to modify parameters before the target program
begins execution of model code.

6 Open Scope blocks A and B. At this point, no signals are visible on the
scopes. When you connect Simulink to the target program and begin model
execution, the signals generated by the target program will be visible on
the scope displays.

7 The model must be in external mode before communication between the
model and the target program can begin. To enable external mode, select
External from the simulation mode pull-down menu located on the right
side of the toolbar of the Simulink window. Alternatively, you can select
External from the Simulation menu.

8 Reopen the External Mode Control Panel and click Connect. This
initiates a handshake between Simulink and the target program. When
Simulink and the target are connected, the Start real-time code button
becomes enabled, and the caption of the Connect button changes to
Disconnect.

Quick Start Tutorials

3-43

9 Click the Start real-time code button.You should see the outputs of Gain
blocks A and B on the two scopes in your model. With A=2 and B=3, the
output looks like this.

Having established communication between Simulink and the running target
program, you can tune block parameters in Simulink and observe the effects
the parameter changes have on the target program. You will do this in the
next section.

Part 4: Tuning Parameters
You can change the gain factor of either Gain block by assigning new values
to the variables A or B in the MATLAB workspace. When you change block
parameter values in the workspace during a simulation, you must explicitly
update the block diagram with these changes. When the block diagram is
updated, the new values are downloaded to the target program. To tune the
variables A and B:

1 In the MATLAB command window, assign new values to both variables,
for example:

A = 0.5;B = 3.5;

2 Activate the ext_example model window. Select Update Diagram from
the Edit menu, or press the Ctrl+D keys. As soon as Simulink has updated
the block parameters, the new gain values are downloaded to the target
program, and the effect of the gain change becomes visible on the scopes.

3 Working with Real-Time Workshop

3-44

You can also enter gain values directly into the Gain blocks. To do this:

3 Open the dialog box for Gain block A or B in the model.

4 Enter a new numerical value for the gain and click Apply. As soon as you
click Apply, the new value is downloaded to the target program and the
effect of the gain change becomes visible on the scope.

Similarly, you can change the frequency, amplitude, or phase of the sine
wave signal by opening the dialog box for the Sine Wave block and entering
a new numerical value in the appropriate field.

Note, however, that you cannot change the sample time of the Sine Wave
block. Block sample times are part of the structural definition of the model
and are part of the generated code. Therefore, if you want to change a block
sample time, you must stop the external mode simulation and rebuild the
executable.

5 To simultaneously disconnect host/target communication and end
execution of the target program, pull down the Simulation menu and
select Stop real-time code.

A

Glossary

A Glossary

A-2

Application modules — With respect to Real-Time Workshop program
architecture, these are collections of programs that implement functions
carried out by the system dependent, system independent, and application
components.

Atomic subsystem — A subsystem whose blocks are executed as a unit before
moving on. Conditionally executed subsystems are atomic, and atomic
subsystems are nonvirtual. Unconditionally executed subsystems are virtual
by default, but can be designated as atomic. Real-Time Workshop can generate
reusable code only for nonvirtual subsystems.

Block target file — A file that describes how a specific Simulink block is to be
transformed to a language such as C, based on the block’s description in the
Real-Time Workshop file (model.rtw). Typically, there is one block target file
for each Simulink block.

Code reuse — An optimization whereby code generated for identical
nonvirtual subsystems is collapsed into one function that is called for each
subsystem instance with appropriate parameters. Code reuse, along with
expression folding, can dramatically reduce the amount of generated code.

Embedded Real-Time (ERT) target − A target configuration that generates
model code for execution on an independent embedded real-time system.
Requires Real-Time Workshop Embedded Coder.

Expression folding — A code optimization technique that minimizes the
computation of intermediate results at block outputs and the storage of such
results in temporary buffers or variables. It can dramatically improve the
efficiency of generated code, achieving results that compare favorably to
hand-optimized code.

File extensions — The table below lists the file extensions associated with
Simulink, the Target Language Compiler, and Real-Time Workshop.

Extension Created by Description

.c Target Language
Compiler

The generated C code

.h Target Language
Compiler

A C include header file used by the .c
program

A-3

Generic Real-Time (GRT) target — A target configuration that generates
model code for a real-time system, with the resulting code executed on your
workstation. (Note that execution is not tied to a real-time clock.) You can use
GRT as a starting point for targeting custom hardware.

Host system — The computer system on which you create and may compile
your real-time application.

Inline — Generally, this means to place something directly in the generated
source code. You can inline parameters and S-functions using Real-Time
Workshop.

Inlined parameters (Target Language Compiler Boolean global variable:
InlineParameters) — The numerical values of the block parameters are hard
coded into the generated code. Advantages include faster execution and less
memory use, but you lose the ability to change the block parameter values at
run-time.

.mdl Simulink Contains structures associated with
Simulink block diagrams

.mk Real-Time Workshop A makefile specific to your model that
is derived from the template makefile

.rtw Real-Time Workshop An intermediate compilation
(“model.rtw”) of a .mdl file used in
generating C code

.tlc The MathWorks and
Real-Time Workshop
users

Target Language Compiler script
files that Real-Time Workshop uses
to generate code for targets and
blocks

.tmf Supplied with
Real-Time Workshop

Template makefiles

.tmw Real-Time Workshop A project marker file inside a build
directory that identifies the date and
product version of generated code

Extension Created by Description

A Glossary

A-4

Inlined S-function — An S-function can be inlined into the generated code by
implementing it as a .tlc file. The code for this S-function is placed in the
generated model code itself. In contrast, noninlined S-functions require a
function call to S-function residing in an external MEX-file.

Interrupt Service Routine (ISR) — A piece of code that your processor
executes when an external event, such as a timer, occurs.

Loop rolling (Target Language Compiler global variable: RollThreshold) —
Depending on the block's operation and the width of the input/output ports, the
generated code uses a for statement (rolled code) instead of repeating identical
lines of code (flat code) over the signal width.

Make — A utility to maintain, update, and regenerate related programs and
files. The commands to be executed are placed in a makefile.

Makefiles — Files that contain a collection of commands that allow groups of
programs, object files, libraries, etc., to interact. Makefiles are executed by your
development system’s make utility.

Multitasking — A process by which your microprocessor schedules the
handling of multiple tasks. The number of tasks is equal to the number of
sample times in your model.

Noninlined S-function — In the context of Real-Time Workshop, this is any C
MEX S-function that is not implemented using a customized .tlc file. If you
create an C MEX S-function as part of a Simulink model, it is by default
noninlined unless you write your own .tlc file that inlines it.

Nonreal-time — A simulation environment of a block diagram provided for
high-speed simulation of your model. Execution is not tied to a real-time clock.

Nonvirtual block — Any block that performs some algorithm, such as a Gain
block. Real-Time Workshop generates code for all nonvirtual blocks, either
inline or as separate functions and files, as directed by users.

Pseudomultitasking — n processors that do not offer multitasking support,
you can perform pseudomultitasking by scheduling events on a fixed
time-sharing basis.

Real-time model data structure — Real-Time Workshop encapsulates
information about the root model in the real-time model data structure, often
abbreviated as rtM. rtM contains global information related to timing, solvers,
and logging, and model data such as inputs, outputs, states, and parameters.

A-5

Real-time system — A computer that processes real-world events as they
happen, under the constraint of a real-time clock, and which may implement
algorithms in dedicated hardware. Examples include mobile telephones, test
and measurement devices, and avionic and automotive control systems.

Run-time interface — A wrapper around the generated code that can be built
into a stand-alone executable. The run-time interface consists of routines to
move the time forward, save logged variables at the appropriate time steps, etc.
The run-time interface is responsible for managing the execution of the
real-time program created from your Simulink block diagram.

S-function — A customized Simulink block written in C, Fortran, or M-code.
Real-Time Workshop can target C-code S-functions “as is” or users can inline
C-code S-functions through preparing TLC scripts for them.

Simstruct — A Simulink data structure and associated application
programming interface (API) that enables S-functions to communicate with
other entities in models. Simstructs are included in code generated by
Real-Time Workshop for noninlined S-functions.

Singletasking — A mode in which a model runs in one task.

System target file — The entry point to the Target Language Compiler
program, used to transform the Real-Time Workshop file into target specific
code.

Target file — A file that is compiled and executed by the Target Language
Compiler. The block and system target TLC files used specify how to transform
the Real-Time Workshop file (model.rtw) into target-specific code.

Targeting — The process of creating software modules appropriate for
execution on your target system.

Target Language Compiler (TLC) — A program that compiles and executes
system and target files by translating a model.rtw file into a target language
by means of TLC scripts and template makefiles.

Target Language Compiler program — One or more TLC script files that
describe how to convert a model.rtw file into generated code. There is one TLC
file for the target, plus one for each built-in block. Users can provide their own
TLC files in order to inline S-functions or to “wrap” existing user code.

Target system — The specific or generic computer system on which your
real-time application executes.

A Glossary

A-6

Template makefile — A line-for-line makefile used by a make utility. The
template makefile is converted to a makefile by copying the contents of the
template makefile (usually system.tmf) to a makefile (usually system.mk)
replacing tokens describing your model’s configuration.

Task identifier (tid) — In generated code, each sample rate in a multirate
model is assigned a task identifier (tid). The tid is passed to the model output
and update routines to control which portion of your model should execute at a
given time step. Single-rate systems ignore the tid.

Virtual block — A connection or graphical block, for example a Mux block, that
has no algorithmic functionality. Virtual blocks incur no real-time overhead as
no code is generated for them.

I-1

Index

B
block target file 2-6
blocks

nonvirtual 2-11
virtual 2-11

buffer optimization 3-27
build directory

contents of 2-12
f14 example 3-15
naming convention 2-12

build process
steps in 2-4

C
code format

definition of 3-3
code generation

tutorial 3-23
code validation

tutorial 3-19
compilers

optimization settings 1-14
supported on UNIX 1-14
supported on Windows 1-13

D
data logging

from generated code 3-21
tutorial 3-15
via Scope blocks

example 3-19
directories

build 3-8
working 3-8

documentation

online 1-18
printing 1-19

E
expression folding 3-30
external mode

building executable 3-36
control panel 3-38
model setup 3-34
parameter tuning 3-43
running executable 3-40
tutorial 3-33

F
files

generated See generated files

G
generated files 2-9

model (UNIX executable) 2-10
model.c 2-9
model.exe (PC executable) 2-10
model.h 2-9
model.mdl 2-9
model.mk 2-10
model.rtw 2-9
model_data.c 2-9
model_private.h 2-9
subsystem.c 2-10
subsystem.h 2-10

generic real-time (GRT) target 3-4
tutorial 3-8

Index

I-2

H
host

and target 3-3

M
make utility 2-2

components 3-3
MAT-files

loading 3-21
MATLAB 1-2

required for Real-Time Workshop 1-20
model.rtw file

location of 2-12
overview 2-10

N
nonvirtual blocks 2-11

P
parameters

and code generation 3-6
setting correctly 3-9

R
Real-Time Workshop

basic concepts 3-2
capabilities and benefits 1-3
components and features 1-2
demos 1-15
installing 1-10
integration with Simulink 1-4
model-based debugging support 1-3
software development with 1-6

third-part compiler support 1-11
related products 1-20
related products (table) 1-21
run-time interface modules 3-27

S
Simulink 1-2

code generator 1-3
required for Real-Time Workshop 1-20

Stateflow 1-7
system records 2-11
system target file 2-5

T
target

available configurations 3-3
generic real-time See generic real-time (GRT)

target
target file

block 2-6
system 2-5

Target Language Compiler
block target file 3-4
function library 2-6
generation of code by 2-5
system target file 3-4
TLC scripts 2-5

template makefile 3-5
tutorials

building generic real-time program 3-8
code generation 3-23
code validation 3-19
data logging 3-15
external mode 3-33

typographical conventions (table) 1-23

Index

I-3

V
virtual blocks 2-11

W
working directory 3-8

Index

I-4

	About This Guide
	Introducing Real-Time Workshop
	What Is Real-Time Workshop?
	Components and Features
	Capabilities and Benefits
	Accelerating Your Development Process

	Installing Real-Time Workshop
	Third-Party Compiler Installation on Windows
	Supported Compilers
	Compiler Optimization Settings

	Real-Time Workshop Demos
	Help and Documentation
	Online Documentation
	Printing the Documentation
	For Further Information

	Related Products
	Typographical Conventions

	Building an Application
	Automatic Program Building
	Steps in the Build Process
	1. Analyze the Model
	2. Call the Target Language Compiler to Generate Code
	3. Generate a Customized Makefile
	4. Create the Executable
	Summary of Files Created by the Build Procedure

	Working with Real-Time Workshop
	Basic Real-Time Workshop Concepts
	Target and Host
	Available Target Configurations
	Code Formats
	The Generic Real-Time Target
	Target Language Compiler Files
	Template Makefiles
	The Build Process
	Model Parameters and Code Generation

	Quick Start Tutorials
	Tutorial 1: Building a Generic Real-Time Program
	Tutorial 2: Data Logging
	Tutorial 3: Code Validation
	Tutorial 4: A First Look at Generated Code
	Tutorial 5: Getting Started with External Mode Using GRT

	Glossary
	Index

