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What Are the Symbolic Math Toolboxes?
The Symbolic Math Toolboxes incorporate symbolic computation into the 
numeric environment of MATLAB®. These toolboxes supplement MATLAB 
numeric and graphical facilities with several other types of mathematical 
computation, which are summarized in following table.

The computational engine underlying the toolboxes is the kernel of Maple®, a 
system developed primarily at the University of Waterloo, Canada and, more 
recently, at the Eidgenössiche Technische Hochschule, Zürich, Switzerland. 
Maple is marketed and supported by Waterloo Maple, Inc. 

These versions of the Symbolic Math Toolboxes are designed to work with 
MATLAB 6 or greater and Maple V, Version 5.

Facility Covers

Calculus Differentiation, integration, limits, summation, and 
Taylor series

Linear Algebra Inverses, determinants, eigenvalues, singular value 
decomposition, and canonical forms of symbolic 
matrices

Simplification Methods of simplifying algebraic expressions

Solution of 
Equations

Symbolic and numerical solutions to algebraic and 
differential equations

Special 
Mathematical 
Functions

Special functions of classical applied mathematics

Variable-Precision 
Arithmetic

Numerical evaluation of mathematical expressions 
to any specified accuracy

Transforms Fourier, Laplace, z-transform, and corresponding 
inverse transforms
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The Symbolic Math Toolboxes
There are two toolboxes: 

• The basic Symbolic Math Toolbox is a collection of more than 100 MATLAB 
functions that provide access to the Maple kernel using a syntax and style 
that is a natural extension of the MATLAB language. The basic toolbox also 
allows you to access functions in the Maple linear algebra package. 

• The Extended Symbolic Math Toolbox augments this functionality to include 
access to all nongraphics Maple packages, Maple programming features, and 
user-defined procedures. With both toolboxes, you can write your own M-files 
to access Maple functions and the Maple workspace.

If you already have a copy of the Maple V, release 5 library, you can use it 
instead of the copy of the Maple Library that is distributed with the Symbolic 
Math toolboxes by changing the path to the library in the MATLAB M-file 
mapleinit.m. See the reference page for mapleinit to learn how to do this.
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Related Products
The MathWorks provides several products that are especially relevant to the 
kinds of tasks you can perform with the Symbolic Math Toolbox.

For more information about any of these products, see either

• The online documentation for that product if it is installed or if you are 
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products” 
section

Note  The toolboxes listed below all include functions that extend the 
capabilities of MATLAB. The blocksets all include blocks that extend the 
capabilities of Simulink®.

Product Description

Control System Toolbox Design and analyze feedback control systems

Financial Toolbox Model financial data and develop financial 
analysis algorithms

Optimization Toolbox Solve standard and large-scale optimization 
problems
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Using This Guide
This guide is divided into the following sections.

If you are new to the Symbolic Math Toolbox, you should begin by reading 
“Getting Started” on page 1-1. If you are already familiar with the functionality 
of the toolbox, you can proceed to “Using the Symbolic Math Toolbox” on 
page 2-1.

Supplementing This Guide with Command-Line Help
As a supplement to this guide, you can find information on Symbolic Math 
Toolbox functions using the MATLAB command line help system. You can 
obtain help for all MATLAB functions by typing

help function

where function is the name of the MATLAB function for which you need help.

The Symbolic Math Toolbox “overloads” many of the numeric functions of 
MATLAB. That is, it provides symbolic-specific implementations of the 
functions, using the same function name. To obtain help for the symbolic 
version of an overloaded function, type

help sym/function

where function is the overloaded function’s name. For example, to obtain help 
on the symbolic version of the overloaded function, diff, type

help sym/diff

“Getting Started” on 
page 1-1

An introduction to the toolbox for new users

“Using the Symbolic 
Math Toolbox” on 
page 2-1

A detailed description of how to use the toolbox

“Function Reference” on 
page 3-1

Reference pages for the functions in the 
toolbox
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To obtain information on the numeric version, type

help diff

To determine whether a function is overloaded, check whether the help for the 
numeric version contains a section “Overloaded methods” that has a reference 
help sym/function.m. For example, the help for the diff function contains the 
section

Overloaded methods
    help char/diff.m
    help sym/diff.m

This tells you that there are two other diff commands that operate on 
expressions of class char and class sym, respectively. See the next section for 
information on class sym. See the MATLAB topic “Programming and Data 
Types” for more information on overloaded commands.

You can use the mhelp command to obtain help on Maple commands. For 
example, to obtain help on the Maple diff command, type mhelp diff. This 
returns the help page for the Maple diff function. For more information on the 
mhelp command, type help mhelp or read the section “Using Maple Functions” 
on page 2-88.

Demos
To get a quick online introduction to the Symbolic Math Toolbox, type demos at 
the MATLAB command line. MATLAB displays the MATLAB Demos dialog 
box. Select Symbolic Math (in the left list box), and then select Introduction 
(in the right list box).
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Configuration Information
To determine if the Symbolic Math Toolboxes are installed on your system, go 
to the MATLAB prompt and type

ver

MATLAB displays information about the version of MATLAB you are running, 
including a list of installed add-on products and their version numbers. Check 
the list to see if the Symbolic Math Toolbox or the Extended Symbolic Math 
Toolbox appears.

For information about installing the toolbox, refer to the MATLAB Installation 
Guide for your platform. If you experience installation difficulties and have 
Web access, look for the installation and license information at the MathWorks 
Web site http://www.mathworks.com/support.



 

1

Getting Started 

This section describes how to create and use symbolic objects. It also describes the default symbolic 
variable. 

If you already have a copy of the Maple V, release 5 library, see the reference page for mapleinit 
before proceeding.

Symbolic Objects (p. 1-2) Describes symbolic objects and explains how they differ 
from standard MATLAB data types.

Creating Symbolic Variables and 
Expressions (p. 1-4)

Explains how to create symbolic objects. 

Symbolic and Numeric Conversions 
(p. 1-6)

Explains how to convert between symbolic objects and 
numeric values.

Creating Symbolic Math Functions 
(p. 1-14)

Explains how to create functions that operate on symbolic 
objects.
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Symbolic Objects
The Symbolic Math Toolbox defines a new MATLAB data type called a 
symbolic object or sym (see the MATLAB topic “Programming and Data Types” 
for an introduction to MATLAB classes and objects). Internally, a symbolic 
object is a data structure that stores a string representation of the symbol. The 
Symbolic Math Toolbox uses symbolic objects to represent symbolic variables, 
expressions, and matrices.

The following example illustrates the difference between a standard MATLAB 
data type, such as double, and the corresponding symbolic object. The 
MATLAB command

sqrt(2)

returns a floating-point decimal number:

ans =
1.4142

On the other hand, if you convert 2 to a symbolic object using the sym command, 
and then take its square root by entering

a = sqrt(sym(2))

the result is

a =
2^(1/2)

MATLAB gives the result 2^(1/2), which means 21/2, or , using symbolic 
notation for the square root operation, without actually calculating a numerical 
value. MATLAB records this symbolic expression in the string that represents 
2^(1/2). You can always obtain the numerical value of a symbolic object with 
the double command:

double(a)
ans =
1.4142

2
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When you create a fraction involving symbolic objects, MATLAB records the 
numerator and denominator. For example: 

sym(2)/sym(5)
ans =
2/5

MATLAB performs arithmetic on symbolic objects differently than it does on 
standard data types. If you two fractions that are of data type double, 
MATLAB gives the answer as a decimal fraction. For example: 

2/5 + 1/3
ans =
0.7333

If you add the same fractions as symbolic objects, MATLAB finds their common 
denominator and combines them by the usual procedure for adding rational 
numbers:

sym(2)/sym(5) + sym(1)/sym(3)
ans =
11/15

The Symbolic Math Toolbox enables you to perform a variety of symbolic 
calculations that arise in mathematics and science. These are described in 
detail in “Using the Symbolic Math Toolbox” on page 2-1.
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Creating Symbolic Variables and Expressions
The sym command lets you construct symbolic variables and expressions. For 
example, the commands

x = sym('x')
a = sym('alpha')

create a symbolic variable x that prints as x and a symbolic variable a that 
prints as alpha.

Suppose you want to use a symbolic variable to represent the golden ratio

The command

rho = sym('(1 + sqrt(5))/2')

achieves this goal. Now you can perform various mathematical operations on 
rho. For example,

f = rho^2 - rho - 1

returns

f =
 
(1/2+1/2*5^(1/2))^2-3/2-1/2*5^(1/2)

Then

simplify(f)

returns

0

Now suppose you want to study the quadratic function . The 
statement

f = sym('a*x^2 + b*x + c')

assigns the symbolic expression  to the variable f. Observe that in 
this case, the Symbolic Math Toolbox does not create variables corresponding 

ρ 1 5+
2

-----------------=

f ax2 bx c+ +=

ax2 bx c+ +
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to the terms of the expression, , , , and . To perform symbolic math 
operations (e.g., integration, differentiation, substitution, etc.) on f, you need 
to create the variables explicitly. You can do this by typing

a = sym('a')
b = sym('b')
c = sym('c')
x = sym('x')

or simply

syms a b c x

In general, you can use sym or syms to create symbolic variables. We 
recommend you use syms because it requires less typing.

a b c x
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Symbolic and Numeric Conversions
Consider the ordinary MATLAB quantity

t = 0.1

The sym function has four options for returning a symbolic representation of 
the numeric value stored in t. The 'f' option 

sym(t,'f')

returns a symbolic floating-point representation 

'1.999999999999a'*2^(-4)

The 'r' option

sym(t,'r')

returns the rational form

1/10

This is the default setting for sym. That is, calling sym without a second 
argument is the same as using sym with the 'r' option:

sym(t)
 
ans =
1/10

The third option 'e' returns the rational form of t plus the difference between 
the theoretical rational expression for t and its actual (machine) floating-point 
value in terms of eps (the floating-point relative accuracy):

sym(t,'e')
 
ans =
1/10+eps/40

The fourth option 'd' returns the decimal expansion of t up to the number of 
significant digits specified by digits:

sym(t,'d')
 
ans =
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.10000000000000000555111512312578

The default value of digits is 32 (hence, sym(t,'d') returns a number with 32 
significant digits), but if you prefer a shorter representation, use the digits 
command as follows:

digits(7)
sym(t,'d')
 
ans =
.1000000

A particularly effective use of sym is to convert a matrix from numeric to 
symbolic form. The command

A = hilb(3)

generates the 3-by-3 Hilbert matrix:

A =
 
    1.0000    0.5000    0.3333
    0.5000    0.3333    0.2500
    0.3333    0.2500    0.2000

By applying sym to A

A = sym(A)

you can obtain the (infinitely precise) symbolic form of the 3-by-3 Hilbert 
matrix:

A =
 
[   1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

Constructing Real and Complex Variables
The sym command allows you to specify the mathematical properties of 
symbolic variables by using the 'real' option. That is, the statements

x = sym('x','real'); y = sym('y','real');
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or more efficiently

syms x y real
z = x + i*y

create symbolic variables x and y that have the added mathematical property 
of being real variables. Specifically this means that the expression

f = x^2 + y^2

is strictly nonnegative. Hence, z is a (formal) complex variable and can be 
manipulated as such. Thus, the commands

conj(x), conj(z), expand(z*conj(z))

return the complex conjugates of the variables

x, x-i*y, x^2+y^2

The conj command is the complex conjugate operator for the toolbox. If 
conj(x) == x returns 1, then x is a real variable.

To clear x of its “real” property, you must type

syms x unreal

or

x = sym('x','unreal')

The command

clear x

does not make x a nonreal variable.

Creating Abstract Functions
If you want to create an abstract (i.e., indeterminant) function , type

f = sym('f(x)')

Then f acts like  and can be manipulated by the toolbox commands. To 
construct the first difference ratio, for example, type

df = (subs(f,'x','x+h') - f)/'h'

or

f x( )

f x( )
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syms x h
df = (subs(f,x,x+h)-f)/h

which returns

df =
(f(x+h)-f(x))/h

This application of sym is useful when computing Fourier, Laplace, and 
z-transforms.

Using sym to Access Maple Functions
Similarly, you can access Maple’s factorial function k!, using sym:

kfac = sym('k!')

To compute 6! or n!, type

syms k n
subs(kfac,k,6), subs(kfac,k,n)
 
ans =
720

ans =
n!

Or, if you want to compute, for example, 12!, simply use the prod function

prod(1:12)

Example: Creating a Symbolic Matrix
A circulant matrix has the property that each row is obtained from the previous 
one by cyclically permuting the entries one step forward. We create the 
circulant matrix A whose elements are a, b, and c, using the commands

syms a b c
A = [a b c; b c a; c a b]

which return

A = 
[ a, b, c ]
[ b, c, a ]
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[ c, a, b ]

Since A is circulant, the sum over each row and column is the same. Let’s check 
this for the first row and second column. The command

sum(A(1,:))

returns

ans =
a+b+c

The command

sum(A(1,:)) == sum(A(:,2)) % This is a logical test.

returns

ans =
     1

Now replace the (2,3) entry of A with beta and the variable b with alpha. The 
commands

syms alpha beta;
A(2,3) = beta;
A = subs(A,b,alpha)

return

A = 
[     a, alpha,     c]
[ alpha,     c,  beta]
[     c,     a, alpha]

From this example, you can see that using symbolic objects is very similar to 
using regular MATLAB numeric objects.
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The Default Symbolic Variable
When manipulating mathematical functions, the choice of the independent 
variable is often clear from context. For example, consider the expressions in 
the table below.

If we ask for the derivatives of these expressions, without specifying the 
independent variable, then by mathematical convention we obtain , 

, and . Let’s assume that the 
independent variables in these three expressions are , , and , respectively. 
The other symbols, , , , and , are usually regarded as “constants” or 
“parameters.” If, however, we wanted to differentiate the first expression with 
respect to , for example, we could write

to get .

By mathematical convention, independent variables are often lower-case 
letters found near the end of the Latin alphabet (e.g., x, y, or z). This is the idea 
behind findsym, a utility function in the toolbox used to determine default 
symbolic variables. Default symbolic variables are utilized by the calculus, 
simplification, equation-solving, and transform functions. To apply this utility 
to the example discussed above, type

syms a b n nu t x z
f = x^n; g = sin(a*t + b); h = besselj(nu,z);

This creates the symbolic expressions f, g, and h to match the example. To 
differentiate these expressions, we use diff.

diff(f)

Mathematical Function MATLAB Command 

f = x^n

g = sin(a*t + b)

h = besselj(nu,z)

f xn
=

g at b+( )sin=

h Jv z( )=

f ′ nxn
=

g′ a at b+( )cos= h ′ Jv z( ) v z⁄( ) Jv 1+ z( )–=
x t z

n a b v

n

 or d
dn
-------f x( ) d

dn
-------xn

xn xln
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returns

ans =
x^n*n/x

See the section “Differentiation” on page 2-2 for a more detailed discussion of 
differentiation and the diff command.

Here, as above, we did not specify the variable with respect to differentiation. 
How did the toolbox determine that we wanted to differentiate with respect to 
x? The answer is the findsym command

findsym(f,1)

which returns

ans =
x

Similarly, findsym(g,1) and findsym(h,1) return t and z, respectively. Here 
the second argument of findsym denotes the number of symbolic variables we 
want to find in the symbolic object f, using the findsym rule (see below). The 
absence of a second argument in findsym results in a list of all symbolic 
variables in a given symbolic expression. We see this demonstrated below. The 
command

findsym(g)

returns the result

ans =
a, b, t

Note  The default symbolic variable in a symbolic expression is the letter that 
is closest to 'x' alphabetically. If there are two equally close, the letter later in 
the alphabet is chosen.
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Here are some examples.

Expression Variable Returned by findsym

x^n x

sin(a*t+b) t

besselj(nu,z) z

w*y + v*z y

exp(i*theta) theta

log(alpha*x1) x1

y*(4+3*i) + 6*j y

sqrt(pi*alpha) alpha
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Creating Symbolic Math Functions
There are two ways to create functions:

• Use symbolic expressions

• Create an M-file

Using Symbolic Expressions
The sequence of commands

syms x y z
r = sqrt(x^2 + y^2 + z^2)
t = atan(y/x)
f = sin(x*y)/(x*y)

generates the symbolic expressions r, t, and f. You can use diff, int, subs, 
and other Symbolic Math Toolbox functions to manipulate such expressions.

Creating an M-File
M-files permit a more general use of functions. Suppose, for example, you want 
to create the sinc function sin(x)/x. To do this, create an M-file in the @sym 
directory:

function z = sinc(x)
%SINC The symbolic sinc function
%     sin(x)/x. This function
%     accepts a sym as the input argument.
if isequal(x,sym(0))
   z = 1;
else
   z = sin(x)/x;
end

You can extend such examples to functions of several variables. See the 
MATLAB topic “Programming and Data Types” for a more detailed discussion 
on object-oriented programming.
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Calculus
The Symbolic Math Toolboxes provide functions to do the basic operations of 
calculus; differentiation, limits, integration, summation, and Taylor series 
expansion. The following sections outline these functions.

Differentiation
Let’s create a symbolic expression:

syms a x     
f = sin(a*x)

Then 

diff(f)

differentiates f with respect to its symbolic variable (in this case x), as 
determined by findsym: 

ans =
cos(a*x)*a

To differentiate with respect to the variable a, type

diff(f,a)

which returns :

ans =
cos(a*x)*x

To calculate the second derivatives with respect to x and a, respectively, type

diff(f,2)

or

diff(f,x,2)

which returns

ans =
-sin(a*x)*a^2

and

df da⁄
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diff(f,a,2)

which returns

ans =
-sin(a*x)*x^2

Define a, b, x, n, t, and theta in the MATLAB workspace, using the sym 
command. The table below illustrates the diff command.

To differentiate the Bessel function of the first kind, besselj(nu,z), with 
respect to z, type

syms nu z
b = besselj(nu,z);
db = diff(b)

which returns

db =
-besselj(nu+1,z)+nu/z*besselj(nu,z)

The diff function can also take a symbolic matrix as its input. In this case, the 
differentiation is done element-by-element. Consider the example

syms a x
A = [cos(a*x),sin(a*x);-sin(a*x),cos(a*x)]

which returns

A =
[  cos(a*x),  sin(a*x)]
[ -sin(a*x),  cos(a*x)]

The command

diff(A)

f diff(f)

x^n x^n*n/x

sin(a*t+b) cos(a*t+b)*a

exp(i*theta) i*exp(i*theta)
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returns

ans =
[ -sin(a*x)*a,  cos(a*x)*a]
[ -cos(a*x)*a, -sin(a*x)*a]

You can also perform differentiation of a column vector with respect to a row 
vector. Consider the transformation from Euclidean (x, y, z) to spherical 

 coordinates as given by , , and 
. Note that  corresponds to elevation or latitude while  denotes 

azimuth or longitude.
 

To calculate the Jacobian matrix, J, of this transformation, use the jacobian 
function. The mathematical notation for J is

For the purposes of toolbox syntax, we use l for  and f for . The commands

syms r l f
x = r*cos(l)*cos(f); y = r*cos(l)*sin(f); z = r*sin(l);
J = jacobian([x; y; z], [r l f])

return the Jacobian

J =
[    cos(l)*cos(f), -r*sin(l)*cos(f), -r*cos(l)*sin(f)]
[    cos(l)*sin(f), -r*sin(l)*sin(f),  r*cos(l)*cos(f)]

r λ ϕ, ,( ) x r λ ϕcoscos= y r λ ϕsincos=
z r λsin= λ ϕ

z

y

x

(x,y,z)

ϕ

λ

r

J x y x, ,( )∂
r λ ϕ, ,( )∂

-----------------------=

λ ϕ
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[           sin(l),         r*cos(l),                0]

and the command

detJ = simple(det(J))

returns

detJ = 
-cos(l)*r^2

Notice that the first argument of the jacobian function must be a column 
vector and the second argument a row vector. Moreover, since the determinant 
of the Jacobian is a rather complicated trigonometric expression, we used the 
simple command to make trigonometric substitutions and reductions 
(simplifications). The section “Simplifications and Substitutions” discusses 
simplification in more detail.

A table summarizing diff and jacobian follows.

Limits
The fundamental idea in calculus is to make calculations on functions as a 
variable “gets close to” or approaches a certain value. Recall that the definition 
of the derivative is given by a limit

provided this limit exists. The Symbolic Math Toolbox allows you to compute 
the limits of functions in a direct manner. The commands

syms h n x

Mathematical Operator MATLAB Command

diff(f) or diff(f,x)

diff(f,a)

diff(f,b,2)

J = jacobian([r:t],[u,v])

df
dx
-------
df
da
-------

d2f

db2
----------

J r t,( )∂
u v,( )∂

-----------------=

f ′ x( ) f x h+( ) f x( )–
h

----------------------------------
h 0→
lim=
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limit( (cos(x+h) - cos(x))/h,h,0 )

which return

ans =
-sin(x)

and

limit( (1 + x/n)^n,n,inf )

which returns

ans =
exp(x)

illustrate two of the most important limits in mathematics: the derivative (in 
this case of cos x) and the exponential function. While many limits

are “two sided” (that is, the result is the same whether the approach is from the 
right or left of a), limits at the singularities of  are not. Hence, the three 
limits

yield the three distinct results: undefined, , and , respectively.

In the case of undefined limits, the Symbolic Math Toolbox returns NaN (not a 
number). The command

limit(1/x,x,0)

or

limit(1/x)

returns

ans =
NaN

The command

f x( )
x a→
lim

f x( )

, , and 1
x
---

x 0→
lim 1

x
---

x 0-→
lim 1

x
---

x 0+→
lim

∞– +∞
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limit(1/x,x,0,'left')

returns

ans =
-inf

while the command

limit(1/x,x,0,'right')

returns

ans =
inf

Observe that the default case, limit(f) is the same as limit(f,x,0). Explore 
the options for the limit command in this table. Here, we assume that f is a 
function of the symbolic object x.

Integration
If f is a symbolic expression, then

int(f)

attempts to find another symbolic expression, F, so that diff(F) = f. That is, 
int(f) returns the indefinite integral or antiderivative of f (provided one 
exists in closed form). Similar to differentiation,

int(f,v)

 Mathematical Operation MATLAB Command 

limit(f)

limit(f,x,a) or
limit(f,a)

limit(f,x,a,'left')

limit(f,x,a,'right')

f x( )
x 0→
lim

f x( )
x a→
lim

f x( )
x a-→
lim

f x( )
x a+→
lim
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uses the symbolic object v as the variable of integration, rather than the 
variable determined by findsym. See how int works by looking at this table.

In contrast to differentiation, symbolic integration is a more complicated task. 
A number of difficulties can arise in computing the integral. The 
antiderivative, F, may not exist in closed form; it may define an unfamiliar 
function; it may exist, but the software can’t find the antiderivative; the 
software could find it on a larger computer, but runs out of time or memory on 
the available machine. Nevertheless, in many cases, MATLAB can perform 
symbolic integration successfully. For example, create the symbolic variables

syms a b theta x y n x1 u z

These tables illustrate integration of expressions containing those variables.

 Mathematical Operation MATLAB Command 

int(x^n) or
int(x^n,x)

 int(sin(2*x),0,pi/2) or 
int(sin(2*x),x,0,pi/2)

g = cos(a*t + b)
int(g) or
int(g,t)

int(besselj(1,z)) or
int(besselj(1,z),z)

f int(f)

x^n x^(n+1)/(n+1)

y^(-1) log(y)

n^x 1/log(n)*n^x

sin(a*theta+b) -1/a*cos(a*theta+b)

xn xd∫ xn 1+

n 1+
-------------=

2x( )sin xd

0

π 2⁄

∫ 1=

g at b+( )cos=

g t( ) td∫ at b+( )sin a⁄=

J1 z( )∫ dz J– 0 z( )=
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The last example shows what happens if the toolbox can’t find the 
antiderivative; it simply returns the command, including the variable of 
integration, unevaluated.

Definite integration is also possible. The commands

int(f,a,b)

and

int(f,v,a,b)

are used to find a symbolic expression for

respectively.

Here are some additional examples.

For the Bessel function (besselj) example, it is possible to compute a 
numerical approximation to the value of the integral, using the double 
function. The command

a = int(besselj(1,z),0,1)

exp(-x1^2) 1/2*pi^(1/2)*erf(x1)

1/(1+u^2) atan(u)

f a, b int(f,a,b)

x^7 0, 1 1/8

1/x 1, 2 log(2)

log(x)*sqrt(x) 0, 1 -4/9

exp(-x^2) 0, inf 1/2*pi^(1/2)

besselj(1,z) 0, 1 1/4*hypergeom([1],[2, 2],-1/4)

f int(f)

 and  f x( )
a

b

∫ dx f v( ) vd
a

b

∫
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returns

a =
1/4*hypergeom([1],[2, 2],-1/4)

and the command

a = double(a)

returns

a =
  0.2348

Integration with Real Constants
One of the subtleties involved in symbolic integration is the “value” of various 
parameters. For example, the expression

 

is the positive, bell shaped curve that tends to 0 as x tends to  for any real 
number k. An example of this curve is depicted below with

 

and generated, using these commands:

syms x
k = sym(1/sqrt(2));
f = exp(-(k*x)^2);
ezplot(f)

e kx( )– 2

∞±

k 1
2

-------=
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The Maple kernel, however, does not, a priori, treat the expressions  or  
as positive numbers. To the contrary, Maple assumes that the symbolic 
variables  and  as a priori indeterminate. That is, they are purely formal 
variables with no mathematical properties. Consequently, the initial attempt 
to compute the integral

 

in the Symbolic Math Toolbox, using the commands

syms x k;
f = exp(-(k*x)^2);
int(f,x,-inf,inf)

results in the output

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

x

exp(−1/2 x2)

k2 x2

x k

e kx( )– 2

∞–

∞

∫ dx
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Definite integration: Can't determine if the integral is 
convergent.
Need to know the sign of --> k^2
Will now try indefinite integration and then take limits.

Warning: Explicit integral could not be found.
ans =
int(exp(-k^2*x^2),x= -inf..inf)

In the next section, you will see how to make  a real variable and therefore 
 positive.

Real Variables via sym
Notice that Maple is not able to determine the sign of the expression k^2. How 
does one surmount this obstacle? The answer is to make k a real variable, using 
the sym command. One particularly useful feature of sym, namely the real 
option, allows you to declare k to be a real variable. Consequently, the integral 
above is computed, in the toolbox, using the sequence

syms k real
int(f,x,-inf,inf)

which returns

ans =
signum(k)/k*pi^(1/2)

Notice that k is now a symbolic object in the MATLAB workspace and a real 
variable in the Maple kernel workspace. By typing 

clear k

you only clear k in the MATLAB workspace. To ensure that k has no formal 
properties (that is, to ensure k is a purely formal variable), type

syms k unreal

This variation of the syms command clears k in the Maple workspace. You can 
also declare a sequence of symbolic variables w, y, x, z to be real, using

syms w x y z real

k
k2
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In this case, all of the variables in between the words syms and real are 
assigned the property real. That is, they are real variables in the Maple 
workspace.

Symbolic Summation
You can compute symbolic summations, when they exist, by using the symsum 
command. For example, the p-series

adds to , while the geometric series  adds to , 
provided . Three summations are demonstrated below:

syms x k
s1 = symsum(1/k^2,1,inf)
s2 = symsum(x^k,k,0,inf)

s1 =
 
1/6*pi^2

s2 =
 
-1/(x-1)

1 1

22
------ 1

32
------ …+ + +

π2 6⁄ 1 x x2 …+ + + 1 1 x–( )⁄
x 1<
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Taylor Series
The statements

syms x
f = 1/(5+4*cos(x))
T = taylor(f,8)

return

T =
1/9+2/81*x^2+5/1458*x^4+49/131220*x^6

which is all the terms up to, but not including, order eight  in the 
Taylor series for :

Technically, T is a Maclaurin series, since its basepoint is a = 0.

The command

pretty(T)

prints T in a format resembling typeset mathematics:

            2           4     49    6
1/9 + 2/81 x  + 5/1458 x  + ------ x
                           131220

These commands

syms x
g = exp(x*sin(x))
t = taylor(g,12,2);

generate the first 12 nonzero terms of the Taylor series for g about x = 2.

Let’s plot these functions together to see how well this Taylor approximation 
compares to the actual function g: 

xd = 1:0.05:3; yd = subs(g,x,xd);
ezplot(t, [1,3]); hold on;
plot(xd, yd, 'r-.')

O x8( )( )
f x( )

x a–( )n

n 0=

∞

∑
f n( ) a( )

n!
-----------------
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title('Taylor approximation vs. actual function');
legend('Taylor','Function')

Special thanks to Professor Gunnar Bäckstrøm of UMEA in Sweden for this 
example.

Extended Calculus Example 
The function

provides a starting point for illustrating several calculus operations in the 
toolbox. It is also an interesting function in its own right. The statements

syms x 
f = 1/(5+4*cos(x))

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

2

3

4

5

6

x

Taylor approximation vs. actual function

Taylor
Function

f x( ) 1
5 4 x( )cos+
------------------------------=
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store the symbolic expression defining the function in f. 

The function ezplot(f) produces the plot of  as shown below.

The ezplot function tries to make reasonable choices for the range of the x-axis 
and for the resulting scale of the y-axis. Its choices can be overridden by an 
additional input argument, or by subsequent axis commands. The default 
domain for a function displayed by ezplot is . To produce a graph 
of  for , type

ezplot(f,[a b])

Let’s now look at the second derivative of the function f:

f2 = diff(f,2)

f2 =
32/(5+4*cos(x))^3*sin(x)^2+4/(5+4*cos(x))^2*cos(x)

f x( )

−6 −4 −2 0 2 4 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

1/(5+4 cos(x))

2π– x 2π≤ ≤
f x( ) a x b≤ ≤
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Equivalently, we can type f2 = diff(f,x,2). The default scaling in ezplot 
cuts off part of f2’s graph. Set the axes limits manually to see the entire 
function:

ezplot(f2)   
axis([-2*pi 2*pi -5 2])

From the graph, it appears that the values of  lie between -4 and 1. As it 
turns out, this is not true. We can calculate the exact range for f (i.e., compute 
its actual maximum and minimum).

The actual maxima and minima of  occur at the zeros of . The 
statements

f3 = diff(f2);
pretty(f3)

compute  and display it in a more readable format:

3

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

x

32/(5+4 cos(x))3 sin(x)2+4/(5+4 cos(x))2 cos(x)

f ′ ′ x( )

f ′ ′ x( ) f ′ ′′ x( )

f ′ ′′ x( )
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sin(x)            sin(x) cos(x)          sin(x)
384 --------------- + 96 --------------- - 4 ---------------

4                    3                   2
(5 + 4 cos(x))       (5 + 4 cos(x))      (5 + 4 cos(x))

We can simplify this expression using the statements

f3 = simple(f3);
pretty(f3)

2                        2
                sin(x) (96 sin(x)  + 80 cos(x) + 80 cos(x)  - 25)
              4 -------------------------------------------------
                                               4
                                 (5 + 4 cos(x))

Now use the solve function to find the zeros of .

z = solve(f3)

returns a 5-by-1 symbolic matrix

z =
[                                                  0]
[       atan((-255-60*19^(1/2))^(1/2),10+3*19^(1/2))]
[      atan(-(-255-60*19^(1/2))^(1/2),10+3*19^(1/2))]
[  atan((-255+60*19^(1/2))^(1/2)/(10-3*19^(1/2)))+pi]
[ -atan((-255+60*19^(1/2))^(1/2)/(10-3*19^(1/2)))-pi]

each of whose entries is a zero of : The commands

format; % Default format of 5 digits
zr = double(z)

convert the zeros to double form:

f ′ ′′ x( )

f ′ ′′ x( )
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zr =
 
        0         
        0+ 2.4381i
        0- 2.4381i
   2.4483         
  -2.4483         

So far, we have found three real zeros and two complex zeros. However, a graph 
of f3 shows that we have not yet found all its zeros:

ezplot(f3)
hold on;
plot(zr,0*zr,'ro')
plot([-2*pi,2*pi], [0,0],'g-.');
title('Zeros of f3')

−6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

x

Zeros of f3
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This occurs because  contains a factor of , which is zero at integer 
multiples of . The function, solve(sin(x)), however, only reports the zero at 
x = 0.

We can obtain a complete list of the real zeros by translating zr

zr = [0 zr(4) pi 2*pi-zr(4)]

by multiples of :

zr = [zr-2*pi zr zr+2*pi];

Now let’s plot the transformed zr on our graph for a complete picture of the 
zeros of f3:

plot(zr,0*zr,'kX')

The first zero of  found by solve is at x = 0. We substitute 0 for the 
symbolic variable in f2 

f20 = subs(f2,x,0)

f ′ ′′ x( ) x( )sin
π

2π

−6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

x

Zeros of f3

f ′ ′′ x( )
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to compute the corresponding value of :

f20 =
    0.0494

A look at the graph of  shows that this is only a local minimum, which we 
demonstrate by replotting f2:

clf
ezplot(f2)
axis([-2*pi 2*pi -4.25 1.25])
ylabel('f2');
title('Plot of f2 = f''''(x)')
hold on
plot(0,double(f20),'ro')   
text(-1,-0.25,'Local minimum')

The resulting plot

f ′ ′ 0( )

f ′ ′ x( )

−6 −4 −2 0 2 4 6

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

Plot of f2 = f’’(x)

f2

Local minimum
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indicates that the global minima occur near  and . We can 
demonstrate that they occur exactly at , using the following sequence of 
commands. First we try substituting  and  into :

simple([subs(f3,x,-sym(pi)),subs(f3,x,sym(pi))])

The result

ans =
[ 0, 0]

shows that  and  happen to be critical points of . We can see that  
and  are global minima by plotting f2(-pi) and f2(pi) against f2(x).

m1 = double(subs(f2,x,-pi)); m2 = double(subs(f2,x,pi));
plot(-pi,m1,'go',pi,m2,'go')
text(-1,-4,'Global minima')

The actual minima are m1, m2

ans = 
[ -4, -4]

as shown in the following plot.

x π–= x π=
x π±=
π– π f ′ ′′ x( )

π– π f ′ ′′ x( ) π–
π
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The foregoing analysis confirms part of our original guess that the range of 
 is [-4, 1]. We can confirm the other part by examining the fourth zero 

of  found by solve. First extract the fourth zero from z and assign it to a 
separate variable

s = z(4) 

to obtain

s =
atan((-255+60*19^(1/2))^(1/2)/(10-3*19^(1/2)))+pi

Executing

sd = double(s)

displays the zero s corresponding numeric value:

sd =
2.4483

−6 −4 −2 0 2 4 6

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

Plot of f2 = f’’(x)

f2

Local minimum

Global minima

f ′ ′ x( )
f ′ ′′ x( )
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Plotting the point (s, f2(s)) against f2, using

M1 = double(subs(f2,x,s));
plot(sd,M1,'ko')
text(-1,1,'Global maximum')

visually confirms that s is a maximum.

The maximum is M1 = 1.0051.

Therefore, our guess that the maximum of  is [-4, 1] was close, but 
incorrect. The actual range is [-4, 1.0051].

Now, let’s see if integrating  twice with respect to x recovers our original 
function . The command

g = int(int(f2))

−6 −4 −2 0 2 4 6

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

Plot of f2 = f’’(x)

f2

Local minimum

Global minima

Global maximum

f ′ ′ x( )

f ′ ′ x( )
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returns

g =
-8/(tan(1/2*x)^2+9)

This is certainly not the original expression for . Let’s look at the difference 
.

d = f - g
pretty(d)

1                8
------------ + ---------------
5 + 4 cos(x)             2

tan(1/2 x)  + 9

We can simplify this using simple(d) or simplify(d). Either command 
produces

ans =
1

This illustrates the concept that differentiating  twice, then integrating the 
result twice, produces a function that may differ from  by a linear function 
of . 

Finally, integrate  once more:

F = int(f)

The result

F =
2/3*atan(1/3*tan(1/2*x))

involves the arctangent function.

Though  is the antiderivative of a continuous function, it is itself 
discontinuous as the following plot shows.

ezplot(F)
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f x( ) g x( )–
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x
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Note that  has jumps at . This occurs because  is singular at 
.
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In fact, as

ezplot(atan(tan(x)))

shows, the numerical value of atan(tan(x))differs from x by a piecewise 
constant function that has jumps at odd multiples of .

To obtain a representation of  that does not have jumps at these points, we 
must introduce a second function, , that compensates for the 
discontinuities. Then we add the appropriate multiple of  to 

J = sym('round(x/(2*pi))');
c = sym('2/3*pi');
F1 = F+c*J
F1 =
2/3*atan(1/3*tan(1/2*x))+2/3*pi*round(1/2*x/pi)

π 2⁄
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and plot the result:

ezplot(F1,[-6.28,6.28])

This representation does have a continuous graph.

Notice that we use the domain [-6.28, 6.28] in ezplot rather than the default 
domain . The reason for this is to prevent an evaluation of 

 at the singular points  and  where 
the jumps in F and J do not cancel out one another. The proper handling of 
branch cut discontinuities in multivalued functions like arctan x is a deep and 
difficult problem in symbolic computation. Although MATLAB and Maple 
cannot do this entirely automatically, they do provide the tools for 
investigating such questions.
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Simplifications and Substitutions
There are several functions that simplify symbolic expressions and are used to 
perform symbolic substitutions:

Simplifications
Here are three different symbolic expressions.

syms x
f = x^3-6*x^2+11*x-6
g = (x-1)*(x-2)*(x-3)
h = x*(x*(x-6)+11)-6

Here are their prettyprinted forms, generated by

pretty(f), pretty(g), pretty(h)

 3     2
x - 6 x  + 11 x - 6

(x - 1) (x - 2) (x - 3)

x (x (x - 6) + 11) - 6

These expressions are three different representations of the same 
mathematical function, a cubic polynomial in x. 

Each of the three forms is preferable to the others in different situations. The 
first form, f, is the most commonly used representation of a polynomial. It is 
simply a linear combination of the powers of x. The second form, g, is the 
factored form. It displays the roots of the polynomial and is the most accurate 
for numerical evaluation near the roots. But, if a polynomial does not have such 
simple roots, its factored form may not be so convenient. The third form, h, is 
the Horner, or nested, representation. For numerical evaluation, it involves the 
fewest arithmetic operations and is the most accurate for some other ranges of 
x.

The symbolic simplification problem involves the verification that these three 
expressions represent the same function. It also involves a less clearly defined 
objective — which of these representations is “the simplest”?



2 Using the Symbolic Math Toolbox

2-30

This toolbox provides several functions that apply various algebraic and 
trigonometric identities to transform one representation of a function into 
another, possibly simpler, representation. These functions are collect, 
expand, horner, factor, simplify, and simple.

collect
The statement

collect(f)

views f as a polynomial in its symbolic variable, say x, and collects all the 
coefficients with the same power of x. A second argument can specify the 
variable in which to collect terms if there is more than one candidate. Here are 
a few examples.

f collect(f)

(x-1)*(x-2)*(x-3) x^3-6*x^2+11*x-6

x*(x*(x-6)+11)-6 x^3-6*x^2+11*x-6

(1+x)*t + x*t 2*x*t+t
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expand
The statement

expand(f)

distributes products over sums and applies other identities involving functions 
of sums as shown in the examples below.

horner
The statement

horner(f)

transforms a symbolic polynomial f into its Horner, or nested, representation 
as shown in the following examples.

f expand(f)

a∗ (x + y) a∗ x + a∗ y

(x-1)∗ (x-2)∗ (x-3) x^3-6∗ x^2+11∗ x-6

x∗ (x∗ (x-6)+11)-6 x^3-6∗ x^2+11∗ x-6

exp(a+b) exp(a)∗ exp(b)

cos(x+y) cos(x)*cos(y)-sin(x)*sin(y)

cos(3∗ acos(x)) 4∗ x^3-3∗ x

f horner(f)

x^3-6∗ x^2+11∗ x-6 -6+(11+(-6+x)*x)*x

1.1+2.2∗ x+3.3∗ x^2 11/10+(11/5+33/10*x)*x
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factor
If f is a polynomial with rational coefficients, the statement

factor(f)

expresses f as a product of polynomials of lower degree with rational 
coefficients. If f cannot be factored over the rational numbers, the result is f 
itself. Here are several examples.

Here is another example involving factor. It factors polynomials of the form 
x^n + 1. This code

syms x;
n = (1:9)';    
p = x.^n + 1;
f = factor(p);
[p, f]

returns a matrix with the polynomials in its first column and their factored 
forms in its second.

[                        x+1,                             x+1 ]
[                      x^2+1,                           x^2+1 ]
[                      x^3+1,                 (x+1)*(x^2-x+1) ]
[                      x^4+1,                           x^4+1 ]
[                      x^5+1,         (x+1)*(x^4-x^3+x^2-x+1) ]
[                      x^6+1,             (x^2+1)*(x^4-x^2+1) ]
[                      x^7+1, (x+1)*(1-x+x^2-x^3+x^4-x^5+x^6) ]
[                      x^8+1,                           x^8+1 ]
[                      x^9+1,     (x+1)*(x^2-x+1)*(x^6-x^3+1) ]

f factor(f)

x^3-6∗ x^2+11∗ x-6 (x-1)∗ (x-2)∗ (x-3)

x^3-6∗ x^2+11∗ x-5 x^3-6∗ x^2+11∗ x-5

x^6+1 (x^2+1)∗ (x^4-x^2+1)
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As an aside at this point, we mention that factor can also factor symbolic 
objects containing integers. This is an alternative to using the factor function 
in the MATLAB specfun directory. For example, the following code segment

N = sym(1);
for k = 2:11
   N(k) = 10*N(k-1)+1;
end
[N' factor(N')]

 displays the factors of symbolic integers consisting of 1s:

[                      1,                      1]
[                     11,                   (11)]
[                    111,               (3)*(37)]
[                   1111,             (11)*(101)]
[                  11111,             (41)*(271)]
[                 111111, (3)*(7)*(11)*(13)*(37)]
[                1111111,           (239)*(4649)]
[               11111111,  (11)*(73)*(101)*(137)]
[              111111111,    (3)^2*(37)*(333667)]
[             1111111111, (11)*(41)*(271)*(9091)]
[            11111111111,       (513239)*(21649)]
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simplify
The simplify function is a powerful, general purpose tool that applies a 
number of algebraic identities involving sums, integral powers, square roots 
and other fractional powers, as well as a number of functional identities 
involving trig functions, exponential and log functions, Bessel functions, 
hypergeometric functions, and the gamma function. Here are some examples.

simple
The simple function has the unorthodox mathematical goal of finding a 
simplification of an expression that has the fewest number of characters. Of 
course, there is little mathematical justification for claiming that one 
expression is “simpler” than another just because its ASCII representation is 
shorter, but this often proves satisfactory in practice.

The simple function achieves its goal by independently applying simplify, 
collect, factor, and other simplification functions to an expression and 
keeping track of the lengths of the results. The simple function then returns 
the shortest result.

The simple function has several forms, each returning different output. The 
form

simple(f)

f simplify(f)

x∗ (x∗ (x-6)+11)-6 x^3-6∗ x^2+11∗ x-6

(1-x^2)/(1-x) x+1

(1/a^3+6/a^2+12/a+8)^(1/3) ((2*a+1)^3/a^3)^(1/3)

syms x y positive
log(x∗ y) log(x)+log(y)

exp(x) ∗  exp(y) exp(x+y)

besselj(2,x) + besselj(0,x) 2/x*besselj(1,x)

gamma(x+1)-x*gamma(x) 0

cos(x)^2 + sin(x)^2 1
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displays each trial simplification and the simplification function that produced 
it in the MATLAB command window. The simple function then returns the 
shortest result. For example, the command

simple(cos(x)^2 + sin(x)^2)

displays the following alternative simplifications in the MATLAB command 
window

simplify:
1

radsimp:
cos(x)^2+sin(x)^2

combine(trig):
1
 
factor:
cos(x)^2+sin(x)^2
 
expand:
cos(x)^2+sin(x)^2
  
convert(exp):
(1/2*exp(i*x)+1/2/exp(i*x))^2-1/4*(exp(i*x)-1/exp(i*x))^2
 
convert(sincos):
cos(x)^2+sin(x)^2
 
 
convert(tan):
(1-tan(1/2*x)^2)^2/(1+tan(1/2*x)^2)^2+4*tan(1/2*x)^2/
(1+tan(1/2*x)^2)^2
 
collect(x):
cos(x)^2+sin(x)^2

and returns

ans =
1
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This form is useful when you want to check, for example, whether the shortest 
form is indeed the simplest. If you are not interested in how simple achieves 
its result, use the form

f = simple(f)

This form simply returns the shortest expression found. For example, the 
statement

f = simple(cos(x)^2+sin(x)^2)

returns

f =
1

If you want to know which simplification returned the shortest result, use the 
multiple output form:

[F, how] = simple(f)

This form returns the shortest result in the first variable and the simplification 
method used to achieve the result in the second variable. For example, the 
statement

[f, how] = simple(cos(x)^2+sin(x)^2)

returns

f =
1
  
how =
combine

The simple function sometimes improves on the result returned by simplify, 
one of the simplifications that it tries. For example, when applied to the 
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examples given for simplify, simple returns a simpler (or at least shorter) 
result in two cases.

In some cases, it is advantageous to apply simple twice to obtain the effect of 
two different simplification functions. For example, the statements

f = (1/a^3+6/a^2+12/a+8)^(1/3);
simple(simple(f))

return

2+1/a

The first application, simple(f), uses radsimp to produce (2*a+1)/a; the 
second application uses combine(trig) to transform this to 1/a+2.

The simple function is particularly effective on expressions involving 
trigonometric functions. Here are some examples.

f simplify(f) simple(f)

(1/a^3+6/a^2+12/a+8)^(1/3) ((2*a+1)^3/a^3)^(1/3) (2*a+1)/a

syms x y positive
log(x∗ y) log(x)+log(y) log(x*y)

f simple(f)

cos(x)^2+sin(x)^2 1

2∗ cos(x)^2-sin(x)^2 3∗ cos(x)^2-1

cos(x)^2-sin(x)^2 cos(2∗ x)

cos(x)+(-sin(x)^2)^(1/2) cos(x)+i∗ sin(x)

cos(x)+i∗ sin(x) exp(i∗ x)

cos(3∗ acos(x)) 4∗ x^3-3∗ x
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Substitutions
There are two functions for symbolic substitution: subexpr and subs.

subexpr
These commands

syms a x
s = solve(x^3+a*x+1) 

solve the equation x^3+a*x+1 = 0 for x:

s =
[                        1/6*(-108+12*(12*a^3+81)^(1/2))^(1/3)-2*a/
                             (-108+12*(12*a^3+81)^(1/2))^(1/3)]
[ -1/12*(-108+12*(12*a^3+81)^(1/2))^(1/3)+a/
     (-108+12*(12*a^3+81)^(1/2))^(1/3)+1/2*i*3^(1/2)*(1/
     6*(-108+12*(12*a^3+81)^(1/2))^(1/3)+2*a/
     (-108+12*(12*a^3+81)^(1/2))^(1/3))]
[ -1/12*(-108+12*(12*a^3+81)^(1/2))^(1/3)+a/
     (-108+12*(12*a^3+81)^(1/2))^(1/3)-1/2*i*3^(1/2)*(1/
     6*(-108+12*(12*a^3+81)^(1/2))^(1/3)+2*a/
     (-108+12*(12*a^3+81)^(1/2))^(1/3))]
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Use the pretty function to display s in a more readable form:

pretty(s)
 
s =

[                        1/3       a                    ]
[                  1/6 %1    - 2 -----                  ]
[                                  1/3                  ]
[                                %1                     ]
[                                                       ]
[         1/3     a            1/2 /      1/3       a  \]
[- 1/12 %1    + ----- + 1/2 i 3    |1/6 %1    + 2 -----|]
[                 1/3              |                1/3|]
[               %1                 \              %1   /]
[                                                       ]
[         1/3     a            1/2 /      1/3       a  \]
[- 1/12 %1    + ----- - 1/2 i 3    |1/6 %1    + 2 -----|]
[                 1/3              |                1/3|]
[               %1                 \              %1   /]

                                    3      1/2
               %1 := -108 + 12 (12 a  + 81)

The pretty command inherits the %n (n, an integer) notation from Maple to 
denote subexpressions that occur multiple times in the symbolic object. The 
subexpr function allows you to save these common subexpressions as well as 
the symbolic object rewritten in terms of the subexpressions. The 
subexpressions are saved in a column vector called sigma.

Continuing with the example

r = subexpr(s)

returns

sigma =
-108+12*(12*a^3+81)^(1/2)
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r =
[                                   1/6*sigma^(1/3)-2*a/sigma^(1/3)]
[ -1/12*sigma^(1/3)+a/sigma^(1/3)+1/2*i*3^(1/2)*(1/6*sigma^
     (1/3)+2*a/sigma^(1/3))]
[ -1/12*sigma^(1/3)+a/sigma^(1/3)-1/2*i*3^(1/2)*(1/6*sigma^
     (1/3)+2*a/sigma^(1/3))]

Notice that subexpr creates the variable sigma in the MATLAB workspace. 
You can verify this by typing whos, or the command

 sigma

which returns

sigma =
-108+12*(12*a^3+81)^(1/2)

subs
Let’s find the eigenvalues and eigenvectors of a circulant matrix A:

syms a b c
A = [a b c; b c a; c a b];
[v,E] = eig(A)

v =

[ -(a+(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)-b)/(a-c),
          -(a-(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)-b)/(a-c),  1]
[ -(b-c-(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2))/(a-c),
          -(b-c+(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2))/(a-c),  1]
[ 1,
         1,                                              1]

E =

[ (b^2-b*a-c*b-
   c*a+a^2+c^2)^(1/2),                    0,            0]
[                   0,   -(b^2-b*a-c*b-
                         c*a+a^2+c^2)^(1/2),            0]
[                   0,                    0,        b+c+a]
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Suppose we want to replace the rather lengthy expression

(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)

throughout v and E. We first use subexpr

v = subexpr(v,'S')

which returns

S =
(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)

v =
[ -(a+S-b)/(a-c), -(a-S-b)/(a-c),              1]
[ -(b-c-S)/(a-c), -(b-c+S)/(a-c),              1]
[              1,              1,              1]

Next, substitute the symbol S into E with

E = subs(E,S,'S')

E =
[     S,     0,     0]
[     0,    -S,     0]
[     0,     0, b+c+a]

Now suppose we want to evaluate v at a = 10. We can do this using the subs 
command:

subs(v,a,10)

This replaces all occurrences of a in v with 10. 

[ -(10+S-b)/(10-c), -(10-S-b)/(10-c),                1]
[  -(b-c-S)/(10-c),  -(b-c+S)/(10-c),                1]
[                1,                1,                1]

Notice, however, that the symbolic expression represented by S is unaffected by 
this substitution. That is, the symbol a in S is not replaced by 10. The subs 
command is also a useful function for substituting in a variety of values for 
several variables in a particular expression. Let’s look at S. Suppose that in 
addition to substituting a = 10, we also want to substitute the values for 2 and 
10 for b and c, respectively. The way to do this is to set values for a, b, and c in 
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the workspace. Then subs evaluates its input using the existing symbolic and 
double variables in the current workspace. In our example, we first set

a = 10; b = 2; c = 10;
subs(S)

ans =
8

To look at the contents of our workspace, type whos, which gives

Name      Size         Bytes  Class

  A         3x3            878  sym object
  E         3x3            888  sym object
  S         1x1            186  sym object
  a         1x1              8  double array
  ans       1x1            140  sym object
  b         1x1              8  double array
  c         1x1              8  double array
  v         3x3            982  sym object

a, b, and c are now variables of class double while A, E, S, and v remain symbolic 
expressions (class sym).

If you want to preserve a, b, and c as symbolic variables, but still alter their 
value within S, use this procedure.

syms a b c
subs(S,{a,b,c},{10,2,10})

ans =
8

Typing whos reveals that a, b, and c remain 1-by-1 sym objects.

The subs command can be combined with double to evaluate a symbolic 
expression numerically. Suppose we have

syms t
M = (1-t^2)*exp(-1/2*t^2);
P = (1-t^2)*sech(t);

and want to see how M and P differ graphically.
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One approach is to type

ezplot(M); hold on; ezplot(P)

but this plot does not readily help us identify the curves.
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Instead, combine subs, double, and plot

T = -6:0.05:6;
MT = double(subs(M,t,T));
PT = double(subs(P,t,T));
plot(T,MT,'b',T,PT,'r-.')
title(' ')
legend('M','P')
xlabel('t'); grid

to produce a multicolored graph that indicates the difference between M and P.

Finally the use of subs with strings greatly facilitates the solution of problems 
involving the Fourier, Laplace, or z-transforms.
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Variable-Precision Arithmetic

Overview
There are three different kinds of arithmetic operations in this toolbox:

For example, the MATLAB statements

format long
1/2+1/3

use numeric computation to produce

0.83333333333333

With the Symbolic Math Toolbox, the statement

sym(1/2)+1/3

uses symbolic computation to yield

5/6

And, also with the toolbox, the statements

digits(25)
vpa('1/2+1/3')

use variable-precision arithmetic to return

.8333333333333333333333333

The floating-point operations used by numeric arithmetic are the fastest of the 
three, and require the least computer memory, but the results are not exact. 
The number of digits in the printed output of MATLAB double quantities is 
controlled by the format statement, but the internal representation is always 
the eight-byte floating-point representation provided by the particular 
computer hardware.

Numeric MATLAB floating-point arithmetic

Rational Maple’s exact symbolic arithmetic

VPA Maple’s variable-precision arithmetic
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In the computation of the numeric result above, there are actually three 
roundoff errors, one in the division of 1 by 3, one in the addition of 1/2 to the 
result of the division, and one in the binary to decimal conversion for the 
printed output. On computers that use IEEE floating-point standard 
arithmetic, the resulting internal value is the binary expansion of 5/6, 
truncated to 53 bits. This is approximately 16 decimal digits. But, in this 
particular case, the printed output shows only 15 digits.

The symbolic operations used by rational arithmetic are potentially the most 
expensive of the three, in terms of both computer time and memory. The results 
are exact, as long as enough time and memory are available to complete the 
computations.

Variable-precision arithmetic falls in between the other two in terms of both 
cost and accuracy. A global parameter, set by the function digits, controls the 
number of significant decimal digits. Increasing the number of digits increases 
the accuracy, but also increases both the time and memory requirements. The 
default value of digits is 32, corresponding roughly to floating-point accuracy.

The Maple documentation uses the term “hardware floating-point” for what we 
are calling “numeric” or “floating-point” and uses the term “floating-point 
arithmetic” for what we are calling “variable-precision arithmetic.”

Example: Using the Different Kinds of Arithmetic

Rational Arithmetic
By default, the Symbolic Math Toolbox uses rational arithmetic operations, i.e., 
Maple’s exact symbolic arithmetic. Rational arithmetic is invoked when you 
create symbolic variables using the sym function. 

The sym function converts a double matrix to its symbolic form. For example, if 
the double matrix is

A =
1.1000    1.2000    1.3000
2.1000    2.2000    2.3000
3.1000    3.2000    3.3000
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its symbolic form, S = sym(A), is

S =
[11/10,  6/5, 13/10]
[21/10, 11/5, 23/10]
[31/10, 16/5, 33/10]

For this matrix A, it is possible to discover that the elements are the ratios of 
small integers, so the symbolic representation is formed from those integers. 
On the other hand, the statement

E = [exp(1) sqrt(2); log(3) rand]

returns a matrix

E =
2.71828182845905   1.41421356237310
1.09861228866811   0.21895918632809

whose elements are not the ratios of small integers, so sym(E) reproduces the 
floating-point representation in a symbolic form:

[3060513257434037*2^(-50), 3184525836262886*2^(-51)]
[2473854946935174*2^(-51), 3944418039826132*2^(-54)]

Variable-Precision Numbers
Variable-precision numbers are distinguished from the exact rational 
representation by the presence of a decimal point. A power of 10 scale factor, 
denoted by 'e', is allowed. To use variable-precision instead of rational 
arithmetic, create your variables using the vpa function. 

For matrices with purely double entries, the vpa function generates the 
representation that is used with variable-precision arithmetic. Continuing on 
with our example, and using digits(4), applying vpa to the matrix S 

vpa(S)

generates the output

S = 
[1.100, 1.200, 1.300]
[2.100, 2.200, 2.300]
[3.100, 3.200, 3.300]
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and with digits(25)

F = vpa(E)

generates

F = 
[2.718281828459045534884808, 1.414213562373094923430017]
[1.098612288668110004152823, .2189591863280899719512718]

Converting to Floating-Point
To convert a rational or variable-precision number to its MATLAB 
floating-point representation, use the double function.

In our example, both double(sym(E)) and double(vpa(E)) return E.

Another Example
The next example is perhaps more interesting. Start with the symbolic 
expression

f = sym('exp(pi*sqrt(163))')

The statement

double(f)

produces the printed floating-point value

2.625374126407687e+17

Using the second argument of vpa to specify the number of digits,

vpa(f,18)

returns

262537412640768744.

whereas

vpa(f,25)

returns

262537412640768744.0000000
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We suspect that f might actually have an integer value. This suspicion is 
reinforced by the 30 digit value, vpa(f,30)

262537412640768743.999999999999

Finally, the 40 digit value, vpa(f,40)

262537412640768743.9999999999992500725944

shows that f is very close to, but not exactly equal to, an integer.
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Linear Algebra

Basic Algebraic Operations
Basic algebraic operations on symbolic objects are the same as operations on 
MATLAB objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle t. The 
statements

syms t;
G = [cos(t) sin(t); -sin(t) cos(t)]

create this transformation matrix.

G =
[  cos(t),  sin(t) ]
[ -sin(t),  cos(t) ]

Applying the Givens transformation twice should simply be a rotation through 
twice the angle. The corresponding matrix can be computed by multiplying G 
by itself or by raising G to the second power. Both

A = G*G

and

A = G^2

produce

A =
[cos(t)^2-sin(t)^2,   2*cos(t)*sin(t)]
[ -2*cos(t)*sin(t), cos(t)^2-sin(t)^2]

The simple function

A = simple(A)

uses a trigonometric identity to return the expected form by trying several 
different identities and picking the one that produces the shortest 
representation.



Linear Algebra

2-51

A =
[ cos(2*t), sin(2*t)]
[-sin(2*t), cos(2*t)]

The Givens rotation is an orthogonal matrix, so its transpose is its inverse. 
Confirming this by

I = G.' *G

which produces

I =
[cos(t)^2+sin(t)^2,                 0]
[                0, cos(t)^2+sin(t)^2]

and then

I = simple(I)
I =
[1, 0]
[0, 1]

Linear Algebraic Operations
Let’s do several basic linear algebraic operations.

The command

H = hilb(3)

generates the 3-by-3 Hilbert matrix. With format short, MATLAB prints

H =
1.0000    0.5000    0.3333
0.5000    0.3333    0.2500
0.3333    0.2500    0.2000

The computed elements of H are floating-point numbers that are the ratios of 
small integers. Indeed, H is a MATLAB array of class double. Converting H to 
a symbolic matrix

H = sym(H)
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gives

[  1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

This allows subsequent symbolic operations on H to produce results that 
correspond to the infinitely precise Hilbert matrix, sym(hilb(3)), not its 
floating-point approximation, hilb(3). Therefore,

inv(H)

produces

[  9,  -36,   30]
[-36,  192, -180]
[ 30, -180,  180]

and

det(H)

yields

1/2160

We can use the backslash operator to solve a system of simultaneous linear 
equations. The commands

b = [1 1 1]'
x = H\b % Solve Hx = b

produce the solution

[  3]
[-24]
[ 30]

All three of these results, the inverse, the determinant, and the solution to the 
linear system, are the exact results corresponding to the infinitely precise, 
rational, Hilbert matrix. On the other hand, using digits(16), the command

V = vpa(hilb(3))
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returns

[               1., .5000000000000000, .3333333333333333]
[.5000000000000000, .3333333333333333, .2500000000000000]
[.3333333333333333, .2500000000000000, .2000000000000000]

The decimal points in the representation of the individual elements are the 
signal to use variable-precision arithmetic. The result of each arithmetic 
operation is rounded to 16 significant decimal digits. When inverting the 
matrix, these errors are magnified by the matrix condition number, which for 
hilb(3) is about 500. Consequently,

inv(V)

which returns

[ 9.000000000000082, -36.00000000000039,  30.00000000000035]
[-36.00000000000039,  192.0000000000021, -180.0000000000019]
[ 30.00000000000035, -180.0000000000019,  180.0000000000019]

shows the loss of two digits. So does

det(V)

which gives

.462962962962958e-3

and

V\b

which is

[ 3.000000000000041]
[-24.00000000000021]
[ 30.00000000000019]

Since H is nonsingular, the null space of H

null(H)

and the column space of H

colspace(H)
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produce an empty matrix and a permutation of the identity matrix, 
respectively. To make a more interesting example, let’s try to find a value s for 
H(1,1) that makes H singular. The commands

syms s
H(1,1) = s
Z = det(H)
sol = solve(Z)

produce

H =
[  s, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Z =
1/240*s-1/270

sol = 
8/9

Then

H = subs(H,s,sol)

substitutes the computed value of sol for s in H to give

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Now, the command

det(H)

returns

ans =
0

and

inv(H)
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produces an error message

??? error using ==> inv
Error, (in inverse) singular matrix

because H is singular. For this matrix, Z = null(H) and C = colspace(H) are 
nontrivial:

Z =
[   1]
[  -4]
[10/3]

C =
[  0,     1]
[  1,     0]
[6/5, -3/10]

It should be pointed out that even though H is singular, vpa(H) is not. For any 
integer value d, setting

digits(d)

and then computing

det(vpa(H))
inv(vpa(H))

results in a determinant of size 10^(-d) and an inverse with elements on the 
order of 10^d.

Eigenvalues
The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues and 
eigenvectors of A are computed, respectively, using the commands

E = eig(A)
[V,E] = eig(A)

The variable-precision counterparts are

E = eig(vpa(A))
[V,E] = eig(vpa(A))
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The eigenvalues of A are the zeros of the characteristic polynomial of A, 
det(A-x*I), which is computed by

poly(A)

The matrix H from the last section provides our first example:

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

The matrix is singular, so one of its eigenvalues must be zero. The statement

[T,E] = eig(H)

produces the matrices T and E. The columns of T are the eigenvectors of H:

T =
 
[    1, 28/153+2/153*12589^(1/2),  28/153-2/153*12589^(12)]
[   -4,                        1,                        1]
[ 10/3, 92/255-1/255*12589^(1/2), 292/255+1/255*12589^(12)]

Similarly, the diagonal elements of E are the eigenvalues of H:

E =
 
[0,                       0,                       0]
[0, 32/45+1/180*12589^(1/2),                       0]
[0,                       0, 32/45-1/180*12589^(1/2)]

It may be easier to understand the structure of the matrices of eigenvectors, T, 
and eigenvalues, E, if we convert T and E to decimal notation. We proceed as 
follows. The commands

Td = double(T)
Ed = double(E)

return

Td =
    1.0000    1.6497   -1.2837
   -4.0000    1.0000    1.0000
    3.3333    0.7051    1.5851
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Ed =
    0         0         0
    0    1.3344         0
    0         0    0.0878

The first eigenvalue is zero. The corresponding eigenvector (the first column of 
Td) is the same as the basis for the null space found in the last section. The 
other two eigenvalues are the result of applying the quadratic formula to 

x^2-64/45*x+253/2160

which is the quadratic factor in factor(poly(H)).

syms x
g = simple(factor(poly(H))/x);
solve(g)

Closed form symbolic expressions for the eigenvalues are possible only when 
the characteristic polynomial can be expressed as a product of rational 
polynomials of degree four or less. The Rosser matrix is a classic numerical 
analysis test matrix that happens to illustrate this requirement. The 
statement

R = sym(gallery('rosser'))

generates

 R = 
[ 611   196  -192   407    -8   -52   -49    29]
[ 196 899   113  -192   -71   -43    -8   -44]
[-192 113   899   196    61    49     8    52]
[ 407 -192   196   611     8    44    59   -23]
[ -8 -71    61     8   411  -599   208   208]
[ -52   -43    49    44  -599   411   208   208]
[ -49    -8     8    59   208   208    99  -911]
[ 29   -44    52   -23   208   208  -911    99]

The commands

p = poly(R);
pretty(factor(p))
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produce

                2                  2                      2
 x (x - 1020) (x  - 1020 x + 100)(x  - 1040500) (x - 1000)   

The characteristic polynomial (of degree 8) factors nicely into the product of two 
linear terms and three quadratic terms. We can see immediately that four of 
the eigenvalues are 0, 1020, and a double root at 1000. The other four roots are 
obtained from the remaining quadratics. Use

eig(R)

to find all these values

[               0]
[            1020]
[510+100*26^(1/2)]
[510-100*26^(1/2)]
[  10*10405^(1/2)]
[ -10*10405^(1/2)]
[            1000]
[            1000]

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix to 
have a characteristic polynomial that factors into such simple form. If we 
change the two “corner” elements of R from 29 to 30 with the commands

S = R;  S(1,8) = 30;  S(8,1) = 30;

and then try

p = poly(S)

we find 

p =
40250968213600000+51264008540948000*x-
   1082699388411166000*x^2+4287832912719760*x^-3-
   5327831918568*x^4+82706090*x^5+5079941*x^6-
   4040*x^7+x^8

We also find that factor(p) is p itself. That is, the characteristic polynomial 
cannot be factored over the rationals.
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For this modified Rosser matrix

F = eig(S)

returns

F =
[ -1020.0532142558915165931894252600]
[ -.17053529728768998575200874607757]
[  .21803980548301606860857564424981]
[  999.94691786044276755320289228602]
[  1000.1206982933841335712817075454]
[  1019.5243552632016358324933278291]
[  1019.9935501291629257348091808173]
[  1020.4201882015047278185457498840]

Notice that these values are close to the eigenvalues of the original Rosser 
matrix. Further, the numerical values of F are a result of Maple’s floating-point 
arithmetic. Consequently, different settings of digits do not alter the number 
of digits to the right of the decimal place.

It is also possible to try to compute eigenvalues of symbolic matrices, but closed 
form solutions are rare. The Givens transformation is generated as the matrix 
exponential of the elementary matrix

The Symbolic Math Toolbox commands

syms t
A = sym([0 1; -1 0]);
G = expm(t*A)

return

[  cos(t),  sin(t)]
[ -sin(t),  cos(t)]

Next, the command

g = eig(G)

produces

A 0 1
1– 0

=
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g =
[ cos(t)+(cos(t)^2-1)^(1/2)]
[ cos(t)-(cos(t)^2-1)^(1/2)]

We can use simple to simplify this form of g. Indeed, a repeated application of 
simple

for  j = 1:4
[g,how] = simple(g)

end

produces the best result:

g =
[ cos(t)+(-sin(t)^2)^(1/2)]
[ cos(t)-(-sin(t)^2)^(1/2)]

how =
simplify

g =
[ cos(t)+i*sin(t)]
[ cos(t)-i*sin(t)]
 
how =
radsimp
 
g =
[   exp(i*t)]
[ 1/exp(i*t)]

how =
convert(exp)

g =
[  exp(i*t)]
[ exp(-i*t)]
 
how =
combine
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Notice the first application of simple uses simplify to produce a sum of sines 
and cosines. Next, simple invokes radsimp to produce cos(t) + i*sin(t) for 
the first eigenvector. The third application of simple uses convert(exp) to 
change the sines and cosines to complex exponentials. The last application of 
simple uses simplify to obtain the final form.

Jordan Canonical Form
The Jordan canonical form results from attempts to diagonalize a matrix by a 
similarity transformation. For a given matrix A, find a nonsingular matrix V, 
so that inv(V)*A*V, or, more succinctly, J = V\A*V, is “as close to diagonal as 
possible.” For almost all matrices, the Jordan canonical form is the diagonal 
matrix of eigenvalues and the columns of the transformation matrix are the 
eigenvectors. This always happens if the matrix is symmetric or if it has 
distinct eigenvalues. Some nonsymmetric matrices with multiple eigenvalues 
cannot be diagonalized. The Jordan form has the eigenvalues on its diagonal, 
but some of the superdiagonal elements are one, instead of zero. The statement

J = jordan(A)

computes the Jordan canonical form of A. The statement

[V,J] = jordan(A)

also computes the similarity transformation. The columns of V are the 
generalized eigenvectors of A.

The Jordan form is extremely sensitive to perturbations. Almost any change in 
A causes its Jordan form to be diagonal. This makes it very difficult to compute 
the Jordan form reliably with floating-point arithmetic. It also implies that A 
must be known exactly (i.e., without round-off error, etc.). Its elements must be 
integers, or ratios of small integers. In particular, the variable-precision 
calculation, jordan(vpa(A)), is not allowed.

For example, let 

A = sym([12,32,66,116;-25,-76,-164,-294;
21,66,143,256;-6,-19,-41,-73])

A =
[   12,   32,   66,  116]
[  -25,  -76, -164, -294]
[   21,   66,  143,  256]
[   -6,  -19,  -41,  -73]
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Then

[V,J] = jordan(A)

produces

V =
[   4,  -2,   4,   3]
[  -6,   8, -11,  -8]
[   4,  -7,  10,   7]
[  -1,   2,  -3,  -2]

J =
[ 1, 1, 0, 0]
[ 0, 1, 0, 0]
[ 0, 0, 2, 1]
[ 0, 0, 0, 2]

Therefore A has a double eigenvalue at 1, with a single Jordan block, and a 
double eigenvalue at 2, also with a single Jordan block. The matrix has only 
two eigenvectors, V(:,1) and V(:,3). They satisfy

A*V(:,1) = 1*V(:,1)
A*V(:,3) = 2*V(:,3)

The other two columns of V are generalized eigenvectors of grade 2. They 
satisfy

A*V(:,2) = 1*V(:,2) + V(:,1)
A*V(:,4) = 2*V(:,4) + V(:,3)

In mathematical notation, with vj = v(:,j), the columns of V and eigenvalues 
satisfy the relationships

Singular Value Decomposition
Only the variable-precision numeric computation of the complete singular 
vector decomposition is available in the toolbox. One reason for this is that the 
formulas that result from symbolic computation are usually too long and 

A λ2I–( )v4 v3=

A λ1I–( )v2 v1=
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complicated to be of much use. If A is a symbolic matrix of floating-point or 
variable-precision numbers, then

S = svd(A)

computes the singular values of A to an accuracy determined by the current 
setting of digits. And

[U,S,V] = svd(A);

produces two orthogonal matrices, U and V, and a diagonal matrix, S, so that 

A = U*S*V';

Let’s look at the n-by-n matrix A with elements defined by

A(i,j) = 1/(i-j+1/2)

For n = 5, the matrix is

[ 2    -2   -2/3   -2/5   -2/7]
[2/3     2     -2   -2/3   -2/5]
[2/5   2/3      2     -2   -2/3]
[2/7   2/5    2/3      2     -2]
[2/9   2/7    2/5    2/3      2]

It turns out many of the singular values of these matrices are close to .

The most obvious way of generating this matrix is 

for i=1:n
    for j=1:n
      A(i,j) = sym(1/(i-j+1/2));

end
end

The most efficient way to generate the matrix is 

[J,I] = meshgrid(1:n);
A = sym(1./(I - J+1/2));

Since the elements of A are the ratios of small integers, vpa(A) produces a 
variable-precision representation, which is accurate to digits precision. Hence

S = svd(vpa(A))

π
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computes the desired singular values to full accuracy. With n = 16 and 
digits(30), the result is

S = 
[ 1.20968137605668985332455685357 ]
[ 2.69162158686066606774782763594 ]
[ 3.07790297231119748658424727354 ]
[ 3.13504054399744654843898901261 ]
[ 3.14106044663470063805218371924 ]
[ 3.14155754359918083691050658260 ]
[ 3.14159075458605848728982577119 ]
[ 3.14159256925492306470284863102 ]
[ 3.14159265052654880815569479613 ]
[ 3.14159265349961053143856838564 ]
[ 3.14159265358767361712392612384 ]
[ 3.14159265358975439206849907220 ]
[ 3.14159265358979270342635559051 ]
[ 3.14159265358979323325290142781 ]
[ 3.14159265358979323843066846712 ]
[ 3.14159265358979323846255035974 ]

There are two ways to compare S with pi, the floating-point representation of 
. In the vector below, the first element is computed by subtraction with 

variable-precision arithmetic and then converted to a double. The second 
element is computed with floating-point arithmetic:

format short e
[double(pi*ones(16,1)-S)  pi-double(S)]  

π
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The results are

   1.9319e+00   1.9319e+00
   4.4997e-01   4.4997e-01
   6.3690e-02   6.3690e-02
   6.5521e-03   6.5521e-03
   5.3221e-04   5.3221e-04
   3.5110e-05   3.5110e-05
   1.8990e-06   1.8990e-06
   8.4335e-08   8.4335e-08
   3.0632e-09   3.0632e-09
   9.0183e-11   9.0183e-11
   2.1196e-12   2.1196e-12
   3.8846e-14   3.8636e-14
   5.3504e-16   4.4409e-16
   5.2097e-18            0
   3.1975e-20            0
   9.3024e-23            0

Since the relative accuracy of pi is pi*eps, which is 6.9757e-16, either column 
confirms our suspicion that four of the singular values of the 16-by-16 example 
equal  to floating-point accuracy.

Eigenvalue Trajectories
This example applies several numeric, symbolic, and graphic techniques to 
study the behavior of matrix eigenvalues as a parameter in the matrix is 
varied. This particular setting involves numerical analysis and perturbation 
theory, but the techniques illustrated are more widely applicable.

In this example, we consider a 3-by-3 matrix A whose eigenvalues are 1, 2, 3. 
First, we perturb A by another matrix E and parameter . As t 
increases from 0 to 10-6, the eigenvalues , ,  change to 

, , .

π

t: A A tE+→
λ1 1= λ2 2= λ3 3=

λ1 ′ 1.5596 0.2726i+≈ λ2 ′ 1.5596 0.2726i–≈ λ3 ′ 2.8808≈
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This, in turn, means that for some value of , the perturbed 
matrix  has a double eigenvalue .

Let’s find the value of t, called , where this happens.

The starting point is a MATLAB test example, known as gallery(3).

A = gallery(3)
A =
  -149      -50     -154
   537      180      546
   -27       -9      -25

This is an example of a matrix whose eigenvalues are sensitive to the effects of 
roundoff errors introduced during their computation. The actual computed 
eigenvalues may vary from one machine to another, but on a typical 
workstation, the statements

0 0.5 1 1.5 2 2.5 3 3.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

λ(1) λ(2) λ(3)

λ’(1)

λ’(2)

λ’(3)

t τ 0 τ 10 6–< <,=
A t( ) A tE+= λ1 λ2=

τ
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format long
e = eig(A)

produce

e =  
   0.99999999999642   
   2.00000000000579  
   2.99999999999780

Of course, the example was created so that its eigenvalues are actually 1, 2, and 
3. Note that three or four digits have been lost to roundoff. This can be easily 
verified with the toolbox. The statements

B = sym(A);
e = eig(B)'
p = poly(B)
f = factor(p)

produce

e =
[1,  2,  3]

p =
x^3-6*x^2+11*x-6

f =
(x-1)*(x-2)*(x-3)

Are the eigenvalues sensitive to the perturbations caused by roundoff error 
because they are “close together”? Ordinarily, the values 1, 2, and 3 would be 
regarded as “well separated.” But, in this case, the separation should be viewed 
on the scale of the original matrix. If A were replaced by A/1000, the 
eigenvalues, which would be .001, .002, .003, would “seem” to be closer 
together.

But eigenvalue sensitivity is more subtle than just “closeness.” With a carefully 
chosen perturbation of the matrix, it is possible to make two of its eigenvalues 
coalesce into an actual double root that is extremely sensitive to roundoff and 
other errors.
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One good perturbation direction can be obtained from the outer product of the 
left and right eigenvectors associated with the most sensitive eigenvalue. The 
following statement creates

E = [130,-390,0;43,-129,0;133,-399,0]

the perturbation matrix

E =
130  -390     0
 43  -129    0
133  -399     0

The perturbation can now be expressed in terms of a single, scalar parameter 
t. The statements

syms x t
A = A+t*E

replace A with the symbolic representation of its perturbation:

A = 
[-149+130*t, -50-390*t, -154]
[  537+43*t, 180-129*t,  546]
[ -27+133*t,  -9-399*t,  -25]

Computing the characteristic polynomial of this new A

p = poly(A)

gives

p =
x^3-6*x^2+11*x-t*x^2+492512*t*x-6-1221271*t

Prettyprinting

pretty(collect(p,x))

shows more clearly that p is a cubic in x whose coefficients vary linearly with t.

3              2
  x  + (- t - 6) x  + (492512 t + 11) x - 6 - 1221271 t  
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It turns out that when t is varied over a very small interval, from 0 to 1.0e-6, 
the desired double root appears. This can best be seen graphically. The first 
figure shows plots of p, considered as a function of x, for three different values 
of t: t = 0, t = 0.5e-6, and t = 1.0e-6. For each value, the eigenvalues are 
computed numerically and also plotted:

x = .8:.01:3.2;   
for k = 0:2

c = sym2poly(subs(p,t,k*0.5e-6));
y = polyval(c,x);
lambda = eig(double(subs(A,t,k*0.5e-6)));
subplot(3,1,3-k)
 plot(x,y,'-',x,0*x,':',lambda,0*lambda,'o')
axis([.8 3.2 -.5 .5])
text(2.25,.35,['t = ' num2str( k*0.5e-6 )]);

end

1 1.5 2 2.5 3
−0.5

0

0.5
t = 0

1 1.5 2 2.5 3
−0.5

0

0.5
t = 5e−007

1 1.5 2 2.5 3
−0.5

0

0.5
t = 1e−006
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The bottom subplot shows the unperturbed polynomial, with its three roots at 
1, 2, and 3. The middle subplot shows the first two roots approaching each 
other. In the top subplot, these two roots have become complex and only one 
real root remains.

The next statements compute and display the actual eigenvalues

e = eig(A);
pretty(e)

showing that e(2) and e(3) form a complex conjugate pair:

[                        1/3                                     ]
[                  1/3 %1    - 3 %2 + 2 + 1/3 t                  ]
[                                                                ]
[        1/3                               1/2        1/3        ]
[- 1/6 %1    + 3/2 %2 + 2 + 1/3 t + 1/2 i 3    (1/3 %1    + 3 %2)]
[                                                                ]
[        1/3                               1/2        1/3        ]
[- 1/6 %1    + 3/2 %2 + 2 + 1/3 t - 1/2 i 3    (1/3 %1    + 3 %2)]
 
                           2    3                     
%1 := 3189393 t - 2216286 t  + t  + 3 (-3 + 4432572 t 
                      2                      3
     - 1052829647418 t + 358392752910068940 t  
                     4 1/2
     - 181922388795 t )
 
                                2
      - 1/3 + 492508/3 t - 1/9 t
%2 := ---------------------------
                   1/3
                 %1
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Next, the symbolic representations of the three eigenvalues are evaluated at 
many values of t

tvals = (2:-.02:0)' * 1.e-6;
r = size(tvals,1);
c = size(e,1);
lambda = zeros(r,c);
for k = 1:c

lambda(:,k) = double(subs(e(k),t,tvals));
end
plot(lambda,tvals)
xlabel('\lambda'); ylabel('t');
title('Eigenvalue Transition')

to produce a plot of their trajectories.

Above t = 0.8e-6, the graphs of two of the eigenvalues intersect, while below 
t = 0.8e-6, two real roots become a complex conjugate pair. What is the precise 
value of t that marks this transition? Let  denote this value of t.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−6

λ

t

Eigenvalue Transition

τ
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One way to find the exact value of  involves polynomial discriminants. The 
discriminant of a quadratic polynomial is the familiar quantity under the 
square root sign in the quadratic formula. When it is negative, the two roots 
are complex.

There is no discrim function in the toolbox, but there is one in Maple and it can 
be accessed through the toolbox’s maple function. The statement

mhelp discrim

provides a brief explanation. Use these commands

syms a b c x
maple('discrim', a*x^2+b*x+c, x)

to show the generic quadratic’s discriminant, b2 - 4ac:

ans =
-4*a*c+b^2

The discriminant for the perturbed cubic characteristic polynomial is obtained, 
using

discrim = maple('discrim',p,x)

which produces

[discrim =
4-5910096*t+1403772863224*t^2-477857003880091920*t^3+24256318506
0*t^4]

The quantity  is one of the four roots of this quartic. Let’s find a numeric value 
for .

digits(24)     
s = solve(discrim);
tau = vpa(s)

tau =
[                        1970031.04061804553618913]
[                                 .783792490602e-6]
[ .1076924816049e-5+.318896441018863170083895e-5*i]
[ .1076924816049e-5-.318896441018863170083895e-5*i]

τ

τ
τ
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Of the four solutions, we know that 

tau = tau(2)

is the transition point

tau =
.783792490602e-6

because it is closest to our previous estimate.

A more generally applicable method for finding  is based on the fact that, at 
a double root, both the function and its derivative must vanish. This results in 
two polynomial equations to be solved for two unknowns. The statement

sol = solve(p,diff(p,'x'))

solves the pair of algebraic equations p = 0 and dp/dx = 0 and produces

sol = 
    t: [4x1 sym]
    x: [4x1 sym]

Find  now by

tau = double(sol.t(2))

which reveals that the second element of sol.t is the desired value of :

format short
tau =

7.8379e-07

Therefore, the second element of sol.x

sigma = double(sol.x(2))

is the double eigenvalue

sigma =
1.5476

τ

τ

τ
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Let’s verify that this value of  does indeed produce a double eigenvalue at 
. To achieve this, substitute  for t in the perturbed matrix 

 and find the eigenvalues of . That is,

e = eig(double(subs(A,t,tau)))

e =
 
   1.5476
   1.5476
   2.9047

confirms that  is a double eigenvalue of  for t = 7.8379e-07.

τ
σ 1.5476= τ
A t( ) A tE+= A t( )

σ 1.5476= A t( )
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Solving Equations

Solving Algebraic Equations
If S is a symbolic expression,

solve(S)

attempts to find values of the symbolic variable in S (as determined by 
findsym) for which S is zero. For example,

syms a b c x
S = a*x^2 + b*x + c;
solve(S)

uses the familiar quadratic formula to produce

ans =
[1/2/a*(-b+(b^2-4*a*c)^(1/2))]
[1/2/a*(-b-(b^2-4*a*c)^(1/2))]

This is a symbolic vector whose elements are the two solutions.

If you want to solve for a specific variable, you must specify that variable as an 
additional argument. For example, if you want to solve S for b, use the 
command

b = solve(S,b)

which returns

b =
-(a*x^2+c)/x

Note that these examples assume equations of the form . If you need 
to solve equations of the form , you must use quoted strings. In 
particular, the command

s = solve('cos(2*x)+sin(x)=1')

returns a vector with four solutions.

f x( ) 0=
f x( ) q x( )=
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s =
[      0]
[     pi]
[ 1/6*pi]
[ 5/6*pi]

Several Algebraic Equations
Now let’s look at systems of equations. Suppose we have the system

and we want to solve for x and y. First create the necessary symbolic objects.

syms x y alpha

There are several ways to address the output of solve. One is to use a 
two-output call

[x,y] = solve(x^2*y^2, x-y/2-alpha)

which returns

x = 
[     0]
[     0]
[ alpha]
[ alpha]

y = 
[ -2*alpha]
[ -2*alpha]
[        0]
[        0]

Consequently, the solution vector

v = [x, y]

x2y2 0=

x y
2
---– α=
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appears to have redundant components. This is due to the first equation 
, which has two solutions in x and y: , . Changing the 

equations to

eqs1 = 'x^2*y^2=1, x-y/2-alpha'
[x,y] = solve(eqs1)

produces four distinct solutions:

x =
[ 1/2*alpha+1/2*(alpha^2+2)^(1/2)]
[ 1/2*alpha-1/2*(alpha^2+2)^(1/2)]
[ 1/2*alpha+1/2*(alpha^2-2)^(1/2)]
[ 1/2*alpha-1/2*(alpha^2-2)^(1/2)]
 
 
y =
[ -alpha+(alpha^2+2)^(1/2)]
[ -alpha-(alpha^2+2)^(1/2)]
[ -alpha+(alpha^2-2)^(1/2)]
[ -alpha-(alpha^2-2)^(1/2)]

Since we did not specify the dependent variables, solve uses findsym to 
determine the variables.

This way of assigning output from solve is quite successful for “small” systems. 
Plainly, if we had, say, a 10-by-10 system of equations, typing

[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] = solve(...)

is both awkward and time consuming. To circumvent this difficulty, solve can 
return a structure whose fields are the solutions. In particular, consider the 
system u^2-v^2 = a^2, u + v = 1, a^2-2*a = 3. The command

S = solve('u^2-v^2 = a^2','u + v = 1','a^2-2*a = 3')

returns

S = 
    a: [2x1 sym]
    u: [2x1 sym]
    v: [2x1 sym]

The solutions for a reside in the “a-field” of S. That is,

x2y2 0= x 0±= y 0±=
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S.a

produces

ans =
[ -1]
[  3]

Similar comments apply to the solutions for u and v. The structure S can now 
be manipulated by field and index to access a particular portion of the solution. 
For example, if we want to examine the second solution, we can use the 
following statement

s2 = [S.a(2), S.u(2), S.v(2)]

to extract the second component of each field.

s2 =
[  3,  5, -4]

The following statement 

M = [S.a, S.u, S.v]

creates the solution matrix M

M = 
[ -1,  1,  0]
[  3,  5, -4]

whose rows comprise the distinct solutions of the system.

Linear systems of simultaneous equations can also be solved using matrix 
division. For example, 

clear u v x y
syms u v x y
S = solve(x+2*y-u, 4*x+5*y-v);
sol = [S.x;S.y]

and

A = [1 2; 4 5];
b = [u; v];
z = A\b
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result in

sol =
 
[ -5/3*u+2/3*v]
[  4/3*u-1/3*v]

z =
[ -5/3*u+2/3*v]
[  4/3*u-1/3*v]

Thus s and z produce the same solution, although the results are assigned to 
different variables.

Single Differential Equation
The function dsolve computes symbolic solutions to ordinary differential 
equations. The equations are specified by symbolic expressions containing the 
letter D to denote differentiation. The symbols D2, D3, ... DN, correspond to the 
second, third, ..., Nth derivative, respectively. Thus, D2y is the Symbolic Math 
Toolbox equivalent of . The dependent variables are those preceded by 
D and the default independent variable is t. Note that names of symbolic 
variables should not contain D. The independent variable can be changed from 
t to some other symbolic variable by including that variable as the last input 
argument.

Initial conditions can be specified by additional equations. If initial conditions 
are not specified, the solutions contain constants of integration, C1, C2, etc.

The output from dsolve parallels the output from solve. That is, you can call 
dsolve with the number of output variables equal to the number of dependent 
variables or place the output in a structure whose fields contain the solutions 
of the differential equations.

Example 1
The following call to dsolve

dsolve('Dy=1+y^2')

uses y as the dependent variable and t as the default independent variable. 
The output of this command is

d2y dt2⁄
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ans = 
tan(t+C1)

To specify an initial condition, use

y = dsolve('Dy=1+y^2','y(0)=1')

This produces

y =
tan(t+1/4*pi)

Notice that y is in the MATLAB workspace, but the independent variable t is 
not. Thus, the command diff(y,t) returns an error. To place t in the 
workspace, type syms t.

Example 2
Nonlinear equations may have multiple solutions, even when initial conditions 
are given:

x = dsolve('(Dx)^2+x^2=1','x(0)=0')

results in

x =
[-sin(t)]
[ sin(t)]

Example 3
Here is a second order differential equation with two initial conditions. The 
commands

y = dsolve('D2y=cos(2*x)-y','y(0)=1','Dy(0)=0', 'x')
simplify(y)

produce

y =
-2/3*cos(x)^2+1/3+4/3*cos(x)

The key issues in this example are the order of the equation and the initial 
conditions. To solve the ordinary differential equation



Solving Equations

2-81

simply type

u = dsolve('D3u=u','u(0)=1','Du(0)=-1','D2u(0) = pi','x')

Use D3u to represent  and D2u(0) for .

Several Differential Equations
The function dsolve can also handle several ordinary differential equations in 
several variables, with or without initial conditions. For example, here is a pair 
of linear, first-order equations.

S = dsolve('Df = 3*f+4*g', 'Dg = -4*f+3*g')

The computed solutions are returned in the structure S. You can determine the 
values of f and g by typing

f = S.f
f = 
exp(3*t)*(cos(4*t)*C1+sin(4*t)*C2)

g = S.g
g =
exp(3*t)*(-sin(4*t)*C1+cos(4*t)*C2)

If you prefer to recover f and g directly as well as include initial conditions, 
type

[f,g] = dsolve('Df=3*f+4*g, Dg =-4*f+3*g', 'f(0) = 0, g(0) = 1')

f =
exp(3*t)*sin(4*t)

g =
exp(3*t)*cos(4*t)

x3

3

d

d u u=

u 0( ) 1 u ′ 0( ), 1, u″ 0( )– π= = =

d3u dx3⁄ u ′′ 0( )
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This table details some examples and Symbolic Math Toolbox syntax. Note that 
the final entry in the table is the Airy differential equation whose solution is 
referred to as the Airy function.

The Airy function plays an important role in the mathematical modeling of the 
dispersion of water waves. It is a nontrivial exercise to show that the Fourier 
transform of the Airy function is exp(iw3/3). 

Differential Equation MATLAB Command

y = dsolve('Dy+4*y = exp(-t)', 
'y(0) = 1')

y = dsolve('D2y+4*y = exp(-2*x)', 
'y(0)=0', 'y(pi) = 0', 'x')

(The Airy equation)

y = dsolve('D2y = x*y','y(0) = 0', 
'y(3) = besselk(1/3, 2*sqrt(3))/pi', 
'x')

td
dy 4y t( )+ e t–

=

y 0( ) 1=

x2

2

d

d y 4y x( )+ e 2x–
=

y 0( ) 0 y π( ) 0=,=

x2

2

d

d y xy x( )=

y 0( ) 0 y 3( ) 1
π
---K1

3
---

2 3( )=,=
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Special Mathematical Functions
Over fifty of the special functions of classical applied mathematics are 
available in the toolbox. These functions are accessed with the mfun function, 
which numerically evaluates a special function for the specified parameters. 
This allows you to evaluate functions that are not available in standard 
MATLAB, such as the Fresnel cosine integral. In addition, you can evaluate 
several MATLAB special functions in the complex plane, such as the error 
function.

For example, suppose you want to evaluate the hyperbolic cosine integral at 
the points 2+i, 0, and 4.5. First type 

help mfunlist

to see the list of functions available for mfun. This list provides a brief 
mathematical description of each function, its Maple name, and the 
parameters it needs. From the list, you can see that the hyperbolic cosine 
integral is called Chi, and it takes one complex argument. For additional 
information, you can access Maple help on the hyperbolic cosine integral using

mhelp Chi

Now type

z = [2+i 0 4.5];
w = mfun('Chi',z)

which returns

w = 
   2.0303 + 1.7227i     NaN       13.9658

mfun returns NaNs where the function has a singularity. The hyperbolic cosine 
integral has a singularity at z = 0.

These special functions can be used with the mfun function:

• Airy Functions

• Binomial Coefficients

• Riemann Zeta Functions

• Bernoulli Numbers and Polynomials

• Euler Numbers and Polynomials
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• Harmonic Function

• Exponential Integrals

• Logarithmic Integral

• Sine and Cosine Integrals

• Hyperbolic Sine and Cosine Integrals

• Shifted Sine Integral

• Fresnel Sine and Cosine Integral

• Dawson’s Integral

• Error Function

• Complementary Error Function and its Iterated Integrals

• Gamma Function

• Logarithm of the Gamma Function

• Incomplete Gamma Function

• Digamma Function

• Polygamma Function

• Generalized Hypergeometric Function

• Bessel Functions

• Incomplete Elliptic Integrals

• Complete Elliptic Integrals

• Complete Elliptic Integrals with Complementary Modulus

• Beta Function

• Dilogarithm Integral

• Lambert’s W Function

• Dirac Delta Function (distribution)

• Heaviside Function (distribution)

The orthogonal polynomials listed below are available with the Extended 
Symbolic Math Toolbox: 

• Gegenbauer 

• Hermite

• Laguerre
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• Generalized Laguerre

• Legendre

• Jacobi

• Chebyshev of the First and Second Kind

Diffraction
This example is from diffraction theory in classical electrodynamics. (J.D. 
Jackson, Classical Electrodynamics, John Wiley & Sons, 1962.) 

Suppose we have a plane wave of intensity I0 and wave number k. We assume 
that the plane wave is parallel to the xy-plane and travels along the z-axis as 
shown below. This plane wave is called the incident wave. A perfectly 
conducting flat diffraction screen occupies half of the xy-plane, that is x < 0. The 
plane wave strikes the diffraction screen, and we observe the diffracted wave 
from the line whose coordinates are (x, 0, z0), where z0 > 0.

The intensity of the diffracted wave is given by

Diffraction screen

x

z
y

Line of observation
(x0,0,z0)

Incident plane wave

I
I0
2
----- C ζ( ) 1

2
---+ 

  2
S ζ( ) 1

2
---+ 

  2
+=
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where

and  and  are the Fresnel cosine and sine integrals:

 

How does the intensity of the diffracted wave behave along the line of 
observation? Since k and z0 are constants independent of x, we set

and assume an initial intensity of I0 = 1 for simplicity.

The following code generates a plot of intensity as a function of x:

x = -50:50;
C = mfun('FresnelC',x);
S = mfun('FresnelS',x);
I0 = 1;
T = (C+1/2).^2 + (S+1/2).^2;
I = (I0/2)*T;
plot(x,I);
xlabel('x');
ylabel('I(x)');
title('Intensity of Diffracted Wave');

ζ k
2z0
--------- x⋅=

C ζ( ) S ζ( )

C ζ( ) π
2
--- t2

– 
  tdcos

0

ζ

∫=

S ζ( ) π
2
--- t2

– 
 sin td

0

ζ

∫=

k
2z0
--------- 1=
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We see from the graph that the diffraction effect is most prominent near the 
edge of the diffraction screen (x = 0), as we expect. 

Note that values of x that are large and positive correspond to observation 
points far away from the screen. Here, we would expect the screen to have no 
effect on the incident wave. That is, the intensity of the diffracted wave should 
be the same as that of the incident wave. Similarly, x values that are large and 
negative correspond to observation points under the screen that are far away 
from the screen edge. Here, we would expect the diffracted wave to have zero 
intensity. These results can be verified by setting 

x = [Inf -Inf] 

in the code to calculate I.
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Using Maple Functions
The maple function lets you access Maple functions directly. This function 
takes sym objects, strings, and doubles as inputs. It returns a symbolic object, 
character string, or double corresponding to the class of the input. You can also 
use the maple function to debug symbolic math programs that you develop.

Simple Example
Suppose we want to write an M-file that takes two polynomials or two integers 
and returns their greatest common divisor. For example, the greatest common 
divisor of 14 and 21 is 7. The greatest common divisor of x^2-y^2 and x^3-y^3 
is x - y. 

The first thing we need to know is how to call the greatest common divisor 
function in Maple. We use the mhelp function to bring up the Maple online help 
for the greatest common divisor (gcd).

Let’s try the gcd function

mhelp gcd

which returns

gcd - greatest common divisor of polynomials

lcm - least common multiple of polynomials

Calling Sequence:
     gcd(a,b,'cofa','cofb')
     lcm(a,b,...)

Parameters:
     a, b      - multivariate polynomials over an algebraic number

field or an algebraic function field 
     cofa,cofb - (optional) unevaluated names 

Description:
- The gcd function computes the greatest common divisor of two 
polynomials a and b. 
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- If the coefficients of a and b are integers, then a primitive 
unit normal greatest common divisor is returned. In other words, 
the coefficients of the result are relatively prime integers and 
the leading coefficient is a positive integer. 

- If the coefficients of a or b are rational numbers or belong to 
an algebraic number or function field, then the monic greatest 
common divisor of a and b is computed. See type,algnum and 
type,algfun.

- Algebraic numbers and functions may be represented by radicals 
(see type,radical) or with the RootOf notation. See evala.

- Names occurring inside a RootOf or a radical are viewed as 
elements of the coefficient field, provided the RootOf defines an 
algebraic function. Therefore, they may occur in denominators as 
well. Other names are not allowed in denominators. 

- If a or b contains objects that are not algebraic numbers or 
algebraic functions, these objects will be frozen before the 
computation proceeds. See frontend.

- The RootOf and the radicals defining the algebraic numbers must 
form an independent set of algebraic quantities, otherwise an 
error is returned. Note that this condition needs not be satisfied 
if the expression contains only algebraic numbers in radical 
notation (i.e. 2^(1/2), 3^(1/2), 6^(1/2)). A basis over Q for the 
radicals can be computed by Maple in this case. 

- Since the ordering of the variables depends on the session, the 
result may also depend on the session when a and b have several 
variables. 

- The lcm function computes the least common multiple of an 
arbitrary number of polynomials. 

- The optional third argument cofa is assigned the cofactor 
a/gcd(a,b). 



2 Using the Symbolic Math Toolbox

2-90

- The optional fourth argument cofb is assigned the cofactor 
b/gcd(a,b). 
.
.
.

Since we now know the Maple calling syntax for gcd, we can write a simple 
M-file to calculate the greatest common divisor. First, create the M-file gcd in 
the @sym directory and include the commands below.

function g = gcd(a, b)
g = maple('gcd',a, b);

If we run this file

syms x y
z = gcd(x^2-y^2,x^3-y^3)
w = gcd(6, 24)

we get

z = 
-y+x

w = 
6

Now let’s extend our function so that we can take the gcd of two matrices in a 
pointwise fashion: 

function g = gcd(a,b)

if any(size(a) ~= size(b))
  error('Inputs must have the same size.')
end

for k = 1: prod(size(a))
  g(k) = maple('gcd',a(k), b(k));
end

g = reshape(g,size(a));
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Running this on some test data

A = sym([2 4 6; 3 5 6; 3 6 4]);
B = sym([40 30 8; 17 60 20; 6 3 20]);
gcd(A,B)

we get the result

ans =
[ 2, 2, 2 ]
[ 1, 5, 2 ]
[ 3, 3, 4 ]

Vectorized Example
Suppose we want to calculate the sine of a symbolic matrix. One way to do this 
is

function y = sin1(x)

for k = 1: prod(size(x))
   y(k) = maple('sin',x(k));
end

y = reshape(y,size(x));

So the statements

syms x y
A = [0 x; y pi/4]
sin1(A)

return

A =
[    0,    x ]
[    y, pi/4 ]
 
ans =
[           0,      sin(x) ]
[      sin(y), 1/2*2^(1/2) ]
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A more efficient way to do this is to call Maple just once, using the Maple map 
function. The map function applies a Maple function to each element of an 
array. In our sine calculation example, this looks like 

function y = sin2(x)

if  prod(size(x)) == 1
% scalar case
   y = maple('sin',x);

else
% array case
   y = maple('map','sin',x);

end

Note that our sin2 function treats scalar and array cases differently. It applies 
the map function to arrays but not to scalars. This is because map applies a 
function to each operand of a scalar.

Because our sin2 function calls Maple only once, it is considerably faster than 
our sin1 function, which calls Maple prod(size(A)) number of times.

The map function can also be used for Maple functions that require multiple 
input arguments. In this case, the syntax is

maple('map', Maple function, sym array, arg2, arg3, ..., argn)

For example, one way to call the collect M-file is collect(S,x). In this case, 
the collect function collects all the coefficients with the same power of x for 
each element in S. The core section of the implementation is shown below.

r = maple('map','collect',sym(s),sym(x));

For additional information on the Maple map function, type

mhelp map
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Debugging
The maple command provides two debugging facilities: trace mode and a status 
output argument. 

Trace Mode
The command maple traceon causes all subsequent Maple statements and 
results to be printed to the screen. For example,

maple traceon 
a = sym('a');
exp(2*a)

prints all calls made to the Maple kernel for calculating exp(2*a):

statement:
   (2)*(a);
result:
   2*a
statement:
   2*a;
result:
   2*a
statement:
   exp(2*a);
result:
   exp(2*a)
statement:
   exp(2*a);
result:
   exp(2*a)
 
ans =
 
exp(2*a)

To revert back to suppressed printing, use maple traceoff.

Status Output Argument
The maple function optionally returns two output arguments, result and 
status. If the maple call succeeds, Maple returns the result in the result 
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argument and zero in the status argument. If the call fails, Maple returns an 
error code (a positive integer) in the status argument and a corresponding 
warning/error message in the result argument. 

For example, the Maple discrim function calculates the discriminant of a 
polynomial and has the syntax discrim(p,x), where p is a polynomial in x. 
Suppose we forget to supply the second argument when calling the discrim 
function

syms a b c x
[result, status] = maple('discrim', a*x^2+b*x+c)

Maple returns

result =
Error, (in discrim) invalid arguments

status =
     2

If we then include x 

[result, status] = maple('discrim', a*x^2+b*x+c, x)

we get the following 

result =
-4*a*c+b^2

status =
     0
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Extended Symbolic Math Toolbox
The Extended Symbolic Math Toolbox allows you to access all nongraphics 
Maple packages, Maple programming features, and Maple procedures. The 
Extended Toolbox thus provides access to a large body of mathematical 
software written in the Maple language. 

Maple programming features include looping (for ... do ... od, while ... 
do ... od) and conditionals (if ... elif ... else ... fi). Please see The 
Maple Handbook for information on how to use these and other features.

This section explains how to load Maple packages and how to use Maple 
procedures. For additional information, please consult these references.

Char, B.W., K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M. 
Watt, First Leaves: A Tutorial Introduction to Maple V, Springer-Verlag, NY, 
1991.

Char, B.W., K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M. 
Watt, Maple V Language Reference Manual, Springer-Verlag, NY, 1991.

Char, B.W., K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M. 
Watt, Maple V Library Reference Manual, Springer-Verlag, NY, 1991.

Heck, A., Introduction to Maple, Springer-Verlag, NY, 1996.

Nicolaides, R. and N. Walkington, Maple: A Comprehensive Introduction, 
Cambridge University Press, Cambridge, 1996.

Packages of Library Functions
Specialized libraries, or “packages,” can be used through the Extended Toolbox. 
These packages include

• Combinatorial Functions

• Differential Equation Tools

• Differential Forms

• Domains of Computation

• Euclidean Geometry

• Gaussian Integers

• Gröbner Bases
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• Permutation and Finitely Presented Groups

• Lie Symmetries

• Boolean Logic

• Graph Networks

• Newman-Penrose Formalism

• Number Theory

• Numerical Approximation

• Orthogonal Polynomials

• p-adic Numbers

• Formal Power Series

• Projective Geometry

• Simplex Linear Optimization

• Statistics

• Total Orders on Names

• Galois Fields

• Linear Recurrence Relation Tools

• Financial Mathematics

• Rational Generating Functions

• Tensor Computations

You can use the Maple with command to load these packages. Say, for example, 
that you want to use the orthogonal polynomials package. First get the Maple 
name of this package, using the statement

mhelp index[packages]

which returns

Index of descriptions for packages of library functions

Description:
- The following packages are available: 

...
orthopoly   orthogonal polynomials 
...
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You can then can access information about the package

mhelp orthopoly

To load the package, type

maple('with(orthopoly);')

This returns

ans =
[G, H, L, P, T, U]

which is a listing of function names in the orthopoly package. These functions 
are now loaded in the Maple workspace, and you can use them as you would 
any regular Maple function.

Procedure Example
The following example shows how you can access a Maple procedure through 
the Extended Symbolic Math Toolbox. The example computes either symbolic 
or variable-precision numeric approximations to , using a method derived by 
Richard Brent based from the arithmetic-geometric mean algorithm of Gauss. 
Here is the Maple source code:

pie := proc(n)
  # pie(n) takes n steps of an arithmetic geometric mean
  # algorithm for computing pi. The result is a symbolic
  # expression whose length roughly doubles with each step.
  # The number of correct digits in the evaluated string also
  # roughly doubles with each step.

  # Example: pie(5) is a symbolic expression with 1167
  # characters which, when evaluated, agrees with pi to 84
  # decimal digits.

  local a,b,c,d,k,t;

  a := 1:
  b := sqrt(1/2):
  c := 1/4:
  t := 1:

π
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  for k from 1 to n do
     d := (b-a)/2:
     b := sqrt(a*b):
     a := a+d:
     c := c-t*d^2:
     t := 2*t:
  od;

  (a+b)^2/(4*c):

end;

Assume the source code for this Maple procedure is stored in the file pie.src. 
Using the Extended Symbolic Math Toolbox, the MATLAB statement 

procread('pie.src')

reads the specified file, deletes comments and newline characters, and sends 
the resulting string to Maple. (The MATLAB ans variable then contains a 
string representation of the pie.src file.)

You can use the pie function, using the maple function. The statement 

p = maple('pie',5)

returns a string representing the solution that begins and ends with

p = 
1/4*(1/32+1/64*2^(1/2)+1/32*2^(3/4)+ ...

... *2^(1/2))*2^(3/4))^(1/2))^(1/2))^2)

You can use the SYM command to convert the string to a symbolic object. It is 
interesting to change the computation from symbolic to numeric. The 
assignment to the variable b in the second executable line is key. If the 
assignment statement is simply 

b := sqrt(1/2)

the entire computation is done symbolically. But if the assignment statement 
is modified to include decimal points

b := sqrt(1./2.)
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the entire computation uses variable-precision arithmetic at the current 
setting of digits. If this change is made, then

digits(100)
procread('pie.src')
p = maple('pie',5)

produces a 100-digit result:

p =
3.14159265358979323 ... 5628703211672038

The last 16 digits differ from those of  because, with five iterations, the 
algorithm gives only 84 digits.

Note that you can define your own MATLAB M-file that accesses a Maple 
procedure:

function p = pie1(n)
p = maple('pie',n)

π
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Precompiled Maple Procedures
When Maple loads a source (ASCII text) procedure into its workspace, it 
compiles (translates) the procedure into an internal format. You can 
subsequently use the maple function to save the procedures in the internal 
format. The advantage is you avoid recompiling the procedure the next time 
you load it, thereby speeding up the process. 

For example, you can convert the pie.src procedure developed in the 
preceding example to a precompiled Maple procedure, using the commands

clear maplemex
procread('pie.src')
maple('save(`pi.m`)');

The clear maplemex command resets the Maple workspace to its initial state. 
Since the Maple save command saves all variables in the current session, we 
want to remove extraneous variables. Note that you must use back quotes 
around the function name.

To read the precompiled procedure into a subsequent MATLAB session, type

maple('read','`pie.m`');

Again, as with the ASCII text form, you can access the function using maple:

p = maple('pie',5)

Note that precompiled Maple procedures have .m extensions. Hence, you must 
take care to avoid confusing them with MATLAB M-files, which also have .m 
extensions.
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Functions — By Category
This chapter provides detailed descriptions of all Symbolic Math Toolbox 
functions. It begins with tables of these functions and continues with the 
reference pages for the functions in alphabetical order.

Calculus

Linear Algebra

diff Differentiate

int Integrate

jacobian Jacobian matrix

limit Limit of an expression

symsum Summation of series

taylor Taylor series expansion

colspace Basis for column space

det Determinant

diag Create or extract diagonals

eig Eigenvalues and eigenvectors

expm Matrix exponential

inv Matrix inverse

jordan Jordan canonical form

null Basis for null space

poly Characteristic polynomial

rank Matrix rank

rref Reduced row echelon form

svd Singular value decomposition
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Simplification

Solution of Equations

Variable Precision Arithmetic

Arithmetic Operations

tril Lower triangle

triu Upper triangle

collect Collect common terms

expand Expand polynomials and elementary functions

factor Factor

horner Nested polynomial representation

numden Numerator and denominator

simple Search for shortest form

simplify Simplification

subexpr Rewrite in terms of subexpressions

compose Functional composition

dsolve Solution of differential equations

finverse Functional inverse

solve Solution of algebraic equations

digits Set variable precision accuracy

vpa Variable precision arithmetic

+ Addition

- Subtraction

* Multiplication
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Special Functions

Access To Maple

.* Array multiplication

/ Right division

./ Array right division

\ Left division

.\ Array left division

^ Matrix or scalar raised to a power

.^ Array raised to a power

' Complex conjugate transpose

.' Real transpose

cosint Cosine integral, Ci(x)

hypergeom Generalized hypergeometric function

lambertw Solution of 

sinint Sine integral, Si(x)

zeta Riemann zeta function

maple Access Maple kernel

mapleinit Initialize Maple

mfun Numeric evaluation of Maple functions

mhelp Maple help

mfunlist List of functions for mfun

procread Install a Maple procedure

λ x( )eλ x( ) x=
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Pedagogical and Graphical Applications

Conversions

Basic Operations

ezcontour Contour plotter

ezcontourf Filled contour plotter

ezmesh Mesh plotter

ezmeshc Combined mesh and contour plotter

ezplot Function plotter

ezplot3 3-D curve plotter

ezpolar Polar coordinate plotter

ezsurf Surface plotter

ezsurfc Combined surface and contour plotter

funtool Function calculator

rsums Riemann sums

taylortool Taylor series calculator

char Convert sym object to string

double Convert symbolic matrix to double

poly2sym Function calculator

sym2poly Symbolic polynomial to coefficient vector

ccode C code representation of a symbolic expression

conj Complex conjugate

findsym Determine symbolic variables

fortran Fortran representation of a symbolic expression

imag Imaginary part of a complex number
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Integral Transforms

latex LaTeX representation of a symbolic expression

pretty Pretty print a symbolic expression

real Real part of an imaginary number

sym Create symbolic object

syms Shortcut for creating multiple symbolic objects

fourier Fourier transform

ifourier Inverse Fourier transform

ilaplace Inverse Laplace transform

iztrans Inverse z-transform

laplace Laplace transform

ztrans z-transform
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Functions — Alphabetical List 3

Arithmetic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10
ccode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-13
collect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-14
colspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-15
compose  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-16
conj  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-17
cosint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-18
det . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-19
diag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-20
diff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-22
digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-23
double . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-24
dsolve  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-25
eig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-27
expm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-29
expand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-30
ezcontour  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-31
ezcontourf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-33
ezmesh  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-35
ezmeshc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-37
ezplot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-39
ezplot3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-42
ezpolar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-44
ezsurf  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-45
ezsurfc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-47
factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-49
findsym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-50
finverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-51
fortran  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-52
fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-53
funtool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-56
horner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-59
hypergeom  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-60
ifourier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-61
ilaplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-64
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imag  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-66
int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-67
inv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-68
iztrans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-70
jacobian  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-72
jordan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-73
lambertw  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-75
laplace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-76
latex  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-78
limit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-79
maple  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-80
mapleinit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-82
mfun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-83
mfunlist  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-84
mhelp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-93
null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-94
numden  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-95
poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-96
poly2sym  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-97
pretty  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-98
procread  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-99
rank  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-100
real  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-101
rref  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-102
rsums  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-103
simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-104
simplify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-105
sinint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-106
size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-107
solve  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-108
subexpr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-110
subs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-111
svd  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-113
sym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-115
syms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-117
sym2poly  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-118
symsum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-119
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3Arithmetic OperationsPurpose Perform arithmetic operations on symbols

Syntax A+B
A-B
A*B A.*B
A\B A.\B
A/B A./B
A^B A.^B
A' A.'

Description + Matrix addition. A + B adds A and B. A and B must have the same 
dimensions, unless one is scalar.

- Matrix subtraction. A - B subtracts B from A. A and B must have the 
same dimensions, unless one is scalar.

* Matrix multiplication. A*B is the linear algebraic product of A and B. The 
number of columns of A must equal the number of rows of B, unless one 
is a scalar.

.* Array multiplication. A.*B is the entry-by-entry product of A and B. A 
and B must have the same dimensions, unless one is scalar.

\ Matrix left division. X = A\B solves the symbolic linear equations A*X=B. 
Note that A\B is roughly equivalent to inv(A)*B. Warning messages are 
produced if X does not exist or is not unique. Rectangular matrices A are 
allowed, but the equations must be consistent; a least squares solution 
is not computed.

.\ Array left division. A.\B is the matrix with entries B(i,j)/A(i,j). A 
and B must have the same dimensions, unless one is scalar.

/ Matrix right division. X=B/A solves the symbolic linear equation X*A=B. 
Note that B/A is the same as (A.'\B.').'. Warning messages are 
produced if X does not exist or is not unique. Rectangular matrices A are 
allowed, but the equations must be consistent; a least squares solution 
is not computed.

./ Array right division. A./B is the matrix with entries A(i,j)/B(i,j). A 
and B must have the same dimensions, unless one is scalar.
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^ Matrix power. X^P raises the square matrix X to the integer power P. If 
X is a scalar and P is a square matrix, X^P raises X to the matrix power 
P, using eigenvalues and eigenvectors. X^P, where X and P are both 
matrices, is an error.

.^ Array power. A.^B is the matrix with entries A(i,j)^B(i,j). A and B 
must have the same dimensions, unless one is scalar.

' Matrix Hermition transpose. If A is complex, A' is the complex 
conjugate transpose.

.' Array transpose. A.' is the real transpose of A. A.' does not conjugate 
complex entries.

Examples The following statements

syms a b c d;
A = [a b; c d];
A*A/A
A*A-A^2

return

[ a, b]
[ c, d]

[ 0, 0]
[ 0, 0]

The following statements

syms a11 a12 a21 a22 b1 b2;
A = [a11 a12; a21 a22];
B = [b1 b2];
X = B/A;
x1 = X(1)
x2 = X(2)

return

x1 =
(-a21*b2+b1*a22)/(a11*a22-a12*a21)



Arithmetic Operations

3-12

x2 =
(a11*b2-a12*b1)/(a11*a22-a12*a21)

See Also null, solve
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3ccodePurpose C code representation of a symbolic expression

Syntax ccode(s)

Description ccode(s) returns a fragment of C that evaluates the symbolic expression s.

Examples The statements

syms x
f = taylor(log(1+x));
ccode(f) 

return

t0 = x-x*x/2.0+x*x*x/3.0-x*x*x*x/4.0+x*x*x*x*x/5.0;

 The statements

H = sym(hilb(3));
ccode(H)

return

H[0][0] = 1.0; H[0][1] = 1.0/2.0;      H[0][2] = 1.0/3.0;
H[1][0] = 1.0/2.0; H[1][1] = 1.0/3.0;      H[1][2] = 1.0/4.0;
H[2][0] = 1.0/3.0; H[2][1] = 1.0/4.0;      H[2][2] = 1.0/5.0;

    See Also fortran, latex, pretty
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3collectPurpose Collect coefficients

Syntax R = collect(S)
R = collect(S,v)

Description For each polynomial in the array S of polynomials, collect(S) collects terms 
containing the variable v (or x, if v is not specified). The result is an array 
containing the collected polynomials.

Examples The following statements

syms x y;
R1 = collect((exp(x)+x)*(x+2))
R2 = collect((x+y)*(x^2+y^2+1), y)
R3 = collect([(x+1)*(y+1),x+y])

return

R1 = 
x^2+(exp(x)+2)*x+2*exp(x)

R2 = 
y^3+x*y^2+(x^2+1)*y+x*(x^2+1)

R3 = 
[(y+1)*x+y+1, x+y]

See Also expand, factor, simple, simplify, syms
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3colspacePurpose Basis for column space

Syntax B = colspace(A)

Description colspace(A) returns a matrix whose columns form a basis for the column 
space of A. A is a symbolic or numeric matrix. Note that size(colspace(A),2) 
returns the rank of A.

Examples The statements 

A = sym([2,0;3,4;0,5])
B = colspace(A)

return

A =
[2,0]
[3,4]
[0,5]

B =
[    1,   0]
[    0,   1]
[-15/8, 5/4]

See Also null

orth in the online MATLAB Function Reference



compose

3-16

3composePurpose Functional composition

Syntax compose(f,g)
compose(f,g,z)
compose(f,g,x,z)
compose(f,g,x,y,z)

Description compose(f,g) returns f(g(y)) where f = f(x) and g = g(y). Here x is the 
symbolic variable of f as defined by findsym and y is the symbolic variable of g 
as defined by findsym.

compose(f,g,z) returns f(g(z)) where f = f(x), g = g(y), and x and y are 
the symbolic variables of f and g as defined by findsym. 

compose(f,g,x,z) returns f(g(z)) and makes x the independent variable for 
f. That is, if f = cos(x/t), then compose(f,g,x,z) returns cos(g(z)/t) 
whereas compose(f,g,t,z) returns cos(x/g(z)).

compose(f,g,x,y,z) returns f(g(z)) and makes x the independent variable 
for f and y the independent variable for g. For f = cos(x/t) and
g = sin(y/u), compose(f,g,x,y,z) returns cos(sin(z/u)/t) whereas 
compose(f,g,x,u,z) returns cos(sin(y/z)/t).

Examples Suppose

syms x y z t u;
f = 1/(1 + x^2); g = sin(y); h = x^t; p = exp(-y/u);

Then

compose(f,g)       ->  1/(1+sin(y)^2) 
compose(f,g,t)     ->  1/(1+sin(t)^2)
compose(h,g,x,z)   ->  sin(z)^t
compose(h,g,t,z)   ->  x^sin(z)
compose(h,p,x,y,z) ->  exp(-z/u)^t 
compose(h,p,t,u,z) ->  x^exp(-y/z) 

See Also finverse, subs, syms
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3conjPurpose Symbolic conjugate

Syntax conj(X)

Description conj(X) is the complex conjugate of X.

For a complex X, conj(X) = real(X) - i*imag(X).

See Also real, imag
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3cosintPurpose Cosine integral function

Syntax Y = cosint(X)

Description cosint(X) evaluates the cosine integral function at the elements of X, a 
numeric matrix, or a symbolic matrix. The cosine integral function is defined 
by

where  is Euler’s constant 0.577215664...

Examples cosint(7.2) returns 0.0960.

cosint([0:0.1:1]) returns

Columns 1 through 7 

Inf   -1.7279   -1.0422   -0.6492   -0.3788   -0.1778   -0.0223
 
Columns 8 through 11 
 
    0.1005    0.1983    0.2761    0.3374

The statements

syms x;
f = cosint(x);
diff(f)

return

cos(x)/x

See Also sinint

Ci x( ) γ x( )ln tcos 1–
t

-------------------- td

0

x

∫+ +=

γ
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3detPurpose Matrix determinant

Syntax r = det(A)

Description det(A) computes the determinant of A, where A is a symbolic or numeric 
matrix. det(A) returns a symbolic expression, if A is symbolic; a numeric value, 
if A is numeric.

Examples The statements

syms a b c d;
det([a, b; c, d])

return

a*d - b*c

The statements

A = sym([2/3 1/3;1 1])
r = det(A)

return

A =
[ 2/3, 1/3]
[   1,   1]

r = 1/3
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3diagPurpose Create or extract symbolic diagonals

Syntax diag(A,k)
diag(A)

Description diag(A,k), where A is a row or column vector with n components, returns a 
square symbolic matrix of order n+abs(k), with the elements of A on the k-th 
diagonal. k = 0 signifies the main diagonal; k > 0, the k-th diagonal above the 
main diagonal; k < 0, the k-th diagonal below the main diagonal. 

diag(A,k), where A is a square symbolic matrix, returns a column vector 
formed from the elements of the k-th diagonal of A. 

diag(A), where A is a vector with n components, returns an n-by-n diagonal 
matrix having A as its main diagonal. 

diag(A), where A is a square symbolic matrix, returns the main diagonal of A. 

    Examples  Suppose

v = [a b c]

Then both diag(v) and diag(v,0) return

[ a, 0, 0 ]
[ 0, b, 0 ]
[ 0, 0, c ]

 diag(v,-2) returns

[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ a, 0, 0, 0, 0]
[ 0, b, 0, 0, 0]
[ 0, 0, c, 0, 0]

Suppose

A =
[ a, b, c ]
[ 1, 2, 3 ]
[ x, y, z ]
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diag(A) returns

[ a ]
[ 2 ]
[ z ]

diag(A,1) returns

[ b ]
[ 3 ]

See Also tril, triu
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3diffPurpose Differentiate

Syntax diff(S,'v')
diff(S,n)
diff(S,'v',n)

Description diff(S) differentiates a symbolic expression S with respect to its free variable 
as determined by findsym.

diff(S,'v') or diff(S,sym('v')) differentiates S with respect to v.

diff(S,n), for a positive integer n, differentiates S n times.

diff(S,'v',n) and diff(S,n,'v') are also acceptable.

Examples Assume

syms x t

Then

diff(sin(x^2))

returns

2*cos(x^2)*x

and

diff(t^6,6)

returns

720

See also int, jacobian, findsym
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3digitsPurpose Set variable precision accuracy

Syntax digits(d)
d = digits
digits

Description digits specifies the number of significant decimal digits that Maple uses to do 
variable precision arithmetic (VPA). The default value is 32 digits.

digits(d) sets the current VPA accuracy to d digits.

digits returns the current VPA accuracy.

Examples If

z = 1.0e-16
x = 1.0e+2
digits(14)

then

y = vpa(x*z+1)

uses 14-digit decimal arithmetic and returns

y =
1.0000000000000

Whereas

digits(15)
y = vpa(x*z+1)

used 15-digit decimal arithmetic and returns 

y =
1.00000000000001

See Also double, vpa
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3doublePurpose Convert symbolic matrix to MATLAB numeric form

Syntax R = double(S)

Description double(S) converts the symbolic object S to a numeric object. If S is a symbolic 
constant or constant expression, double returns a double-precision 
floating-point number representing the value of S. If S is a symbolic matrix 
whose entries are constants or constant expressions, double returns a matrix 
of double precision floating-point numbers representing the values of S’s 
entries. 

Examples double(sym('(1+sqrt(5))/2')) returns 1.6180.

The following statements

a = sym(2*sqrt(2));
b = sym((1-sqrt(3))^2);
T = [a, b]
double(T)

return

ans =
2.8284    0.5359

See Also sym, vpa
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3dsolvePurpose Symbolic solution of ordinary differential equations

Syntax r = dsolve('eq1,eq2,...', 'cond1,cond2,...', 'v')
r = dsolve('eq1','eq2',...,'cond1','cond2',...,'v')

Description dsolve('eq1,eq2,...', 'cond1,cond2,...', 'v') symbolically solves the 
ordinary differential equation(s) specified by eq1, eq2,... using v as the 
independent variable and the boundary and/or initial condition(s) specified by 
cond1,cond2,....

The default independent variable is t. 

The letter D denotes differentiation with respect to the independent variable; 
with the primary default, this is d/dx. A D followed by a digit denotes repeated 
differentiation. For example, D2 is d2/dx2. Any character immediately 
following a differentiation operator is a dependent variable. For example, D3y 
denotes the third derivative of y(x) or y(t).

Initial/boundary conditions are specified with equations like y(a) = b or 
Dy(a) = b, where y is a dependent variable and a and b are constants. If the 
number of initial conditions specified is less than the number of dependent 
variables, the resulting solutions will contain the arbitrary constants C1, 
C2,....

You can also input each equation and/or initial condition as a separate 
symbolic equation. dsolve accepts up to 12 input arguments.

With no output arguments, dsolve returns a list of solutions.

dsolve returns a warning message, if it cannot find an analytic solution for an 
equation. In such a case, you can find a numeric solution, using MATLAB’s 
ode23 or ode45 function.

Examples dsolve('Dy = a*y') returns

C1*exp(a*t)

dsolve('Df = f + sin(t)') returns

-1/2*cos(t)-1/2*sin(t)+exp(t)*C1
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dsolve('(Dy)^2 + y^2 = 1','s') returns

[         -1]
[          1]
[  sin(s-C1)]
[ -sin(s-C1)]

dsolve('Dy = a*y', 'y(0) = b') returns

b*exp(a*t)

dsolve('D2y = -a^2*y', 'y(0) = 1', 'Dy(pi/a) = 0') returns

cos(a*t) 

dsolve('Dx = y', 'Dy = -x') returns

    x: [1x1 sym]
    y: [1x1 sym]

Diagnostics If dsolve cannot find an analytic solution for an equation, it prints the warning

Warning: explicit solution could not be found

and return an empty sym object.

See Also syms
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3eigPurpose Symbolic matrix eigenvalues and eigenvectors

Syntax lambda = eig(A)
[V,D] = eig(A)
[V,D,P] = eig(A)
lambda = eig(vpa(A))
[V,D] = eig(vpa(A))

Description lambda=eig(A) returns a symbolic vector containing the eigenvalues of the 
square symbolic matrix A.

[V,D] = eig(A) returns a matrix V whose columns are eigenvectors and a 
diagonal matrix D containing eigenvalues. If the resulting V is the same size as 
A, then A has a full set of linearly independent eigenvectors that satisfy 
A*V = V*D.

[V,D,P]=eig(A) also returns P, a vector of indices whose length is the total 
number of linearly independent eigenvectors, so that A*V = V*D(P,P).

lambda = eig(VPA(A)) and [V,D] = eig(VPA(A)) compute numeric 
eigenvalues and eigenvectors, respectively, using variable precision 
arithmetic. If A does not have a full set of eigenvectors, the columns of V will not 
be linearly independent.

Examples The statements

R = sym(gallery('rosser'));
eig(R)

return

ans =
[                0]
[             1020]
[ 510+100*26^(1/2)]
[ 510-100*26^(1/2)]
[   10*10405^(1/2)]
[  -10*10405^(1/2)]
[             1000]
[             1000]
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eig(vpa(R)) returns

ans =
 

[    -1020.0490184299968238463137913055]
[ .56512999999999999999999999999800e-28]
[  .98048640721516997177589097485157e-1]
[     1000.0000000000000000000000000002]
[     1000.0000000000000000000000000003]
[     1019.9019513592784830028224109024]
[     1020.0000000000000000000000000003]
[     1020.0490184299968238463137913055]

The statements

A = sym(gallery(5));
[v,lambda] = eig(A) 

return

v =
[       0]
[  21/256]
[ -71/128]
[ 973/256]
[       1]

lambda =
 
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]

See Also jordan, poly, svd, vpa
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3expmPurpose Symbolic matrix exponential

Syntax expm(A)

Description expm(A) is the matrix exponential of the symbolic matrix A.

Examples The statements

syms t;
A = [0 1; -1 0];
expm(t*A)

return

[  cos(t),  sin(t)]
[ -sin(t),  cos(t)]
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3expandPurpose Symbolic expansion

Syntax R = expand(S)

Description expand(S) writes each element of a symbolic expression S as a product of its 
factors. expand is most often used only with polynomials, but also expands 
trigonometric, exponential, and logarithmic functions.

Examples expand((x-2)*(x-4)) returns

 x^2-6*x+8

expand(cos(x+y)) returns 

cos(x)*cos(y)-sin(x)*sin(y)

expand(exp((a+b)^2)) returns

exp(a^2)*exp(a*b)^2*exp(b^2)

expand([sin(2*t), cos(2*t)]) returns 

[2*sin(t)*cos(t), 2*cos(t)^2-1]

See Also collect, factor, horner, simple, simplify, syms
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3ezcontourPurpose Contour plotter

Syntax ezcontour(f)
ezcontour(f,domain)
ezcontour(...,n)

Description ezcontour(f) plots the contour lines of f(x,y), where f is a symbolic expression 
that represents a mathematical function of two variables, such as x and y. 

The function f is plotted over the default domain , . 
MATLAB chooses the computational grid according to the amount of variation 
that occurs; if the function f is not defined (singular) for points on the grid, then 
these points are not plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can be 
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] 
(where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain 
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, 
ezcontour(u^2 - v^3,[0,1],[3,6]) plots the contour lines for u2 - v3 over
0 < u < 1, 3 < v < 6.

ezcontour(...,n) plots f over the default domain using an n-by-n grid. The 
default value for n is 60.

ezcontour automatically adds a title and axis labels.

Examples The following mathematical expression defines a function of two variables, x 
and y.

ezcontour requires a sym argument that expresses this function using 
MATLAB syntax to represent exponents, natural logs, etc. This function is 
represented by the symbolic expression

syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2) ... 
   - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ... 
   - 1/3*exp(-(x+1)^2 - y^2);

2π– x 2π< < 2π– y 2π< <

f x y,( ) 3 1 x–( )2e x2– y 1+( )2– 10 x
5
--- x3– y5– 
  e x2– y2––

1
3
---e x 1+( )2– y2––=
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For convenience, this expression is written on three lines. 

Pass the sym f to ezcontour along with a domain ranging from -3 to 3 and 
specify a computational grid of 49-by-49.

ezcontour(f,[-3,3],49)

In this particular case, the title is too long to fit at the top of the graph so 
MATLAB abbreviates the string.

See Also contour, ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf, 
ezsurfc

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

3 (1−x)2 exp(−x2−(y+1)2)−...−1/3 exp(−(x+1)2−y2)
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3ezcontourfPurpose Filled contour plotter

Syntax ezcontourf(f)
ezcontourf(f,domain)
ezcontourf(...,n)

Description ezcontour(f) plots the contour lines of f(x,y), where f is a sym that represents 
a mathematical function of two variables, such as x and y. 

The function f is plotted over the default domain , . 
MATLAB chooses the computational grid according to the amount of variation 
that occurs; if the function f is not defined (singular) for points on the grid, then 
these points are not plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can be 
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] 
(where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain 
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, 
ezcontourf(u^2 - v^3,[0,1],[3,6]) plots the contour lines for u2 - v3 over 0 
< u < 1, 3 < v < 6.

ezcontourf(...,n) plots f over the default domain using an n-by-n grid. The 
default value for n is 60.

ezcontourf automatically adds a title and axis labels.

Examples The following mathematical expression defines a function of two variables, x 
and y.

ezcontourf requires a sym argument that expresses this function using 
MATLAB syntax to represent exponents, natural logs, etc. This function is 
represented by the symbolic expression

syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2) ... 
   - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ... 
   - 1/3*exp(-(x+1)^2 - y^2);

2π– x 2π< < 2π– y 2π< <

f x y,( ) 3 1 x–( )2e x2– y 1+( )2– 10 x
5
--- x3– y5– 
  e x2– y2––

1
3
---e x 1+( )2– y2––=
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For convenience, this expression is written on three lines. 

Pass the sym f to ezcontourf along with a domain ranging from -3 to 3 and 
specify a grid of 49-by-49.

ezcontourf(f,[-3,3],49)

In this particular case, the title is too long to fit at the top of the graph so 
MATLAB abbreviates the string.

See Also contourf, ezcontour, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf, 
ezsurfc

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

3 (1−x)2 exp(−x2−(y+1)2)−...−1/3 exp(−(x+1)2−y2)
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3ezmeshPurpose 3-D mesh plotter

Syntax ezmesh(f)
ezmesh(f,domain)
ezmesh(x,y,z)
ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max])
ezmesh(...,n)
ezmesh(...,'circ')

Description ezmesh(f) creates a graph of f(x,y), where f is a symbolic expression that 
represents a mathematical function of two variables, such as x and y. 

The function f is plotted over the default domain , . 
MATLAB chooses the computational grid according to the amount of variation 
that occurs; if the function f is not defined (singular) for points on the grid, then 
these points are not plotted.

ezmesh(f,domain) plots f over the specified domain. domain can be either a 
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, 
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain 
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, 
ezmesh(u^2 - v^3,[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezmesh(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t) 
over the square , .

ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max]) plots 
the parametric surface using the specified domain.

ezmesh(...,n) plots f over the default domain using an n-by-n grid. The 
default value for n is 60.

ezmesh(...,'circ') plots f over a disk centered on the domain

Examples This example visualizes the function,

2π– x 2π< < 2π– y 2π< <

2π– s 2π< < 2π– t 2π< <

f x y,( ) xe x– 2 y2–
=
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with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a uniform 
blue color by setting the colormap to a single color.

syms x y
ezmesh(x*exp(-x^2-y^2),[-2.5,2.5],40)
colormap([0 0 1])

See Also ezcontour, ezcontourf, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc, 
mesh
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3ezmeshcPurpose Combined mesh/contour plotter

Syntax ezmeshc(f)
ezmeshc(f,domain)
ezmeshc(x,y,z)
ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or ezmeshc(x,y,z,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')

Description ezmeshc(f) creates a graph of f(x,y), where f is a symbolic expression that 
represents a mathematical function of two variables, such as x and y. 

The function f is plotted over the default domain , . 
MATLAB chooses the computational grid according to the amount of variation 
that occurs; if the function f is not defined (singular) for points on the grid, then 
these points are not plotted.

ezmeshc(f,domain) plots f over the specified domain. domain can be either a 
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, 
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain 
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, 
ezmeshc(u^2 - v^3,[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezmeshc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t) 
over the square , .

ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or ezmeshc(x,y,z,[min,max]) 
plots the parametric surface using the specified domain.

ezmeshc(...,n) plots f over the default domain using an n-by-n grid. The 
default value for n is 60.

ezmeshc(...,'circ') plots f over a disk centered on the domain

Examples Create a mesh/contour graph of the expression,

over the domain -5 < x < 5, -2*pi < y < 2*pi.

2π– x 2π< < 2π– y 2π< <

2π– s 2π< < 2π– t 2π< <

f x y,( ) y

1 x2 y2
+ +

---------------------------=
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syms x y
ezmeshc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi])

Use the mouse to rotate the axes to better observe the contour lines (this 
picture uses a view of azimuth = -65 and elevation = 26).

See Also ezcontour, ezcontourf, ezmesh, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc, 
meshc
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3ezplotPurpose Function plotter

Syntax ezplot(f)
ezplot(f,[min,max])
ezplot(f,[xmin,xmax,ymin,ymax])
ezplot(x,y)
ezplot(x,y,[tmin,tmax])
ezplot(...,figure)

Description ezplot(f) plots the expression f = f(x) over the default domain . 

ezplot(f,[xmin xmax]) plots f = f(x) over the specified domain. It opens and 
displays the result in a window labeled Figure No. 1. If any plot windows are 
already open, ezplot displays the result in the highest numbered window.

ezplot(f,[xmin xmax],fign) opens (if necessary) and displays the plot in the 
window labeled fign.

For implicitly defined functions, f = f(x,y).

ezplot(f) plots f(x,y) = 0 over the default domain , .

ezplot(f,[xmin,xmax,ymin,ymax]) plots f(x,y) = 0 over xmin < x < xmax and 
ymin < y < ymax.

ezplot(f,[min,max])plots f(x,y) = 0 over min < x < max and min < y < max.

If f is a function of the variables u and v (rather than x and y), then the domain 
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, 
ezplot(u^2 - v^2 - 1,[-3,2,-2,3]) plots u2 - v2 - 1 = 0 over -3 < u < 2, 
-2 < v < 3.

ezplot(x,y) plots the parametrically defined planar curve x = x(t) and y = y(t) 
over the default domain .

ezplot(x,y,[tmin,tmax]) plots x = x(t) and y = y(t) over tmin < t < tmax.

ezplot(...,figure) plots the given function over the specified domain in the 
figure window identified by the handle figure.

Algorithm If you do not specify a plot range, ezplot samples the function between -2*pi 
and 2*pi and selects a subinterval where the variation is significant as the plot 

2π– x 2π< <

2π– x 2π< < 2π– y 2π< <

0 t 2π< <
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domain. For the range, ezplot omits extreme values associated with 
singularities.

Examples This example plots the implicitly defined function,

x2 - y4 = 0

over the domain 

syms x y
ezplot(x^2-y^4)

2π– 2π[ , ]
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The following statements

syms x
ezplot(erf(x))
grid

plot a graph of the error function.

See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot3, ezpolar, ezsurf, ezsurfc, 
plot
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3ezplot3Purpose 3-D parametric curve plotter

Syntax ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(...,'animate')

Description ezplot3(x,y,z) plots the spatial curve x = x(t), y = y(t), and z = z(t) over the 
default domain .

ezplot3(x,y,z,[tmin,tmax]) plots the curve x = x(t), y = y(t), and z = z(t) over 
the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial curve.

Examples This example plots the parametric curve, 

over the domain 

syms t; ezplot3(sin(t), cos(t), t,[0,6*pi])
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See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurf, ezsurfc, 
plot3
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3ezpolarPurpose Polar coordinate plotter

Syntax ezpolar(f)
ezpolar(f,[a,b])

Description ezpolar(f) plots the polar curve rho = f(theta) over the default domain 
.

ezpolar(f,[a,b]) plots f for a < theta < b.

Example This example creates a polar plot of the function,

1 + cos(t)

over the domain 

syms t
ezpolar(1+cos(t))
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3ezsurfPurpose 3-D colored surface plotter

Syntax ezsurf(f)
ezsurf(f,domain)
ezsurf(x,y,z)
ezsurf(x,y,z,[smin,smax,tmin,tmax]) or ezsurf(x,y,z,[min,max])
ezsurf(...,n)
ezsurf(...,'circ')

Purpose ezsurf(f) creates a graph of f(x,y), where f is a symbolic expression that 
represents a mathematical function of two variables, such as x and y. 

The function f is plotted over the default domain , . 
MATLAB chooses the computational grid according to the amount of variation 
that occurs; if the function f is not defined (singular) for points on the grid, then 
these points are not plotted.

ezsurf(f,domain) plots f over the specified domain. domain can be either a 
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, 
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain 
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, 
ezsurf(u^2 - v^3,[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezsurf(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t) 
over the square , .

ezsurf(x,y,z,[smin,smax,tmin,tmax]) or ezsurf(x,y,z,[min,max]) plots 
the parametric surface using the specified domain.

ezsurf(...,n) plots f over the default domain using an n-by-n grid. The 
default value for n is 60.

ezsurf(...,'circ') plots f over a disk centered on the domain

Examples ezsurf does not graph points where the mathematical function is not defined 
(these data points are set to NaNs, which MATLAB does not plot). This example 
illustrates this filtering of singularities/discontinuous points by graphing the 
function,

2π– x 2π< < 2π– y 2π< <

2π– s 2π< < 2π– t 2π< <
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over the default domain , 

syms x y
ezsurf(real(atan(x+i*y)))

Note also that ezsurf creates graphs that have axis labels, a title, and extend 
to the axis limits.

See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurfc, surf
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3ezsurfcPurpose Combined surface/contour plotter

Syntax ezsurfc(f)
ezsurfc(f,domain)
ezsurfc(x,y,z)
ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max])
ezsurfc(...,n)
ezsurfc(...,'circ')

Description ezsurfc(f) creates a graph of f(x,y), where f is a symbolic expression that 
represents a mathematical function of two variables, such as x and y. 

The function f is plotted over the default domain , . 
MATLAB chooses the computational grid according to the amount of variation 
that occurs; if the function f is not defined (singular) for points on the grid, then 
these points are not plotted.

ezsurfc(f,domain) plots f over the specified domain. domain can be either a 
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, 
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain 
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, 
ezsurfc(u^2 - v^3,[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezsurfc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t) 
over the square , .

ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max]) 
plots the parametric surface using the specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid. The 
default value for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

2π– x 2π< < 2π– y 2π< <

2π– s 2π< < 2π– t 2π< <
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Examples Create a surface/contour plot of the expression,

over the domain -5 < x < 5, -2*pi < y < 2*pi, with a computational grid of size 
35-by-35

syms x y
ezsurfc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi],35)

Use the mouse to rotate the axes to better observe the contour lines (this 
picture uses a view of azimuth = -65 and elevation = 26).

See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurf, surfc
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3factorPurpose Factorization

Syntax factor(X)

Description factor can take a positive integer, an array of symbolic expressions, or an 
array of symbolic integers as an argument. If N is a positive integer, factor(N) 
returns the prime factorization of N.

If S is a matrix of polynomials or integers, factor(S) factors each element. If 
any element of an integer array has more than 16 digits, you must use sym to 
create that element, for example, sym('N').

Examples factor(x^3-y^3) returns

(x-y)*(x^2+x*y+y^2)

factor([a^2-b^2, a^3+b^3]) returns

[(a-b)*(a+b), (a+b)*(a^2-a*b+b^2)]

factor(sym('12345678901234567890')) returns

(2)*(3)^2*(5)*(101)*(3803)*(3607)*(27961)*(3541)

See Also collect, expand, horner, simplify, simple
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3findsymPurpose Finds the variables in a symbolic expression or matrix

Syntax r = findsym(S)
r = findsym(S,n)

Description findsym(S) returns all symbolic variables in S in alphabetical order, separated 
by commas. If S does not contain any variables, findsym returns an empty 
string.

findsym(S,n) returns the n variables alphabetically closest to x.

Note  A symbolic variable is an alphanumeric name, other than i or j, that 
begins with an alphabetic character.

Examples syms a x y z t

findsym(sin(pi*t)) returns t.

findsym(x+i*y-j*z) returns x, y, z.

findsym(a+y,1) returns y.

See Also compose, diff, int, limit, taylor
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3finversePurpose Functional inverse

Syntax g = finverse(f)
g = finverse(f,u)

Description g = finverse(f) returns the functional inverse of f. f is a scalar sym 
representing a function of one symbolic variable, say x. Then g is a scalar sym 
that satisfies g(f(x)) = x. That is, finverse(f) returns , provided  
exists.

g = finverse(f,v) uses the symbolic variable v, where v is a sym, as the 
independent variable. Then g is a scalar sym that satisfies g(f(v)) = v. Use 
this form when f contains more than one symbolic variable.

Examples finverse(1/tan(x)) returns

atan(1/x)

finverse(exp(u-2*v),u) returns

2*v+log(u)

See Also compose, syms

f 1– f 1–
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3fortranPurpose Fortran representation of a symbolic expression

Syntax fortran(S)

Description fortran(S)returns the Fortran code equivalent to the expression S.

Examples The statements

syms x
f = taylor(log(1+x));
fortran(f) 

return

t0 = x-x**2/2+x**3/3-x**4/4+x**5/5

 The statements

H = sym(hilb(3));
fortran(H)

return

H(1,1) = 1            H(1,2) = 1.E0/2.E0    H(1,3) = 1.E0/3.E0
H(2,1) = 1.E0/2.E0    H(2,2) = 1.E0/3.E0    H(2,3) = 1.E0/4.E0
H(3,1) = 1.E0/3.E0    H(3,2) = 1.E0/4.E0    H(3,3) = 1.E0/5.E0

See Also ccode, latex, pretty
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3fourierPurpose Fourier integral transform

Syntax F = fourier(f)
F = fourier(f,v)
F = fourier(f,u,v)

Description F = fourier(f) is the Fourier transform of the symbolic scalar f with default 
independent variable x. The default return is a function of w. The Fourier 
transform is applied to a function of x and returns a function of w. 

If f = f(w), fourier returns a function of t. 

By definition

where x is the symbolic variable in f as determined by findsym.

F = fourier(f,v) makes F a function of the symbol v instead of the default w.

F = fourier(f,u,v) makes f a function of u and F a function of v instead of 
the default variables x and w, respectively.

f f x( )= F F w( )=⇒

F F t( )=

F w( ) f x( )e iwx– xd

∞–

∞

∫=

F v( ) f x( )e ivx– xd

∞–

∞

∫=

F v( ) f u( )e ivu– ud

∞–

∞

∫=
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Examples

Fourier Transform MATLAB Command

f = exp(-x^2)

fourier(f)

returns

pi^(1/2)*exp(-1/4*w^2)

g = exp(-abs(w))

fourier(g)

returns
2/(1+t^2)

f = x*exp(-abs(x))

fourier(f,u)

returns
-4*i/(1+u^2)^2*u

f x( ) e x2–
=

F f[ ] w( ) f x( )e ixw– xd

∞–

∞

∫=

πe w– 2 4⁄
=

g w( ) e w–
=

F g[ ] t( ) g w( )e itw– wd

∞–

∞

∫=

2

1 t2
+

--------------=

f x( ) xe x–
=

F f[ ] u( ) f x( )e ixu– xd

∞–

∞

∫=

4i

1 u2
+( )

2u
---------------------------–=
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See Also ifourier, laplace, ztrans

syms x real
f = exp(-x^2*abs(v))*sin(v)/v

fourier(f,v,u)

returns
-atan((u-1)/x^2)+atan((u+1)/x^2)

Fourier Transform MATLAB Command

f x v,( ) e x2 v– vsin
v

------------ x real,=

F f v( )[ ] u( ) f x v,( )e ivu– vd

∞–

∞

∫=

u 1–

x2
-------------atan– u 1+

x2
-------------atan+=
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3funtoolPurpose Function calculator

Syntax funtool

Description funtool is a visual function calculator that manipulates and displays functions 
of one variable. At the click of a button, for example, funtool draws a graph 
representing the sum, product, difference, or ratio of two functions that you 
specify. funtool includes a function memory that allows you to store functions 
for later retrieval.

At startup, funtool displays graphs of a pair of functions, f(x) = x and
g(x) = 1. The graphs plot the functions over the domain [-2*pi, 2*pi]. 
funtool also displays a control panel that lets you save, retrieve, redefine, 
combine, and transform f and g.

Text Fields. The top of the control panel contains a group of editable text fields. 

f= Displays a symbolic expression representing f. Edit this field to 
redefine f.

g= Displays a symbolic expression representing g. Edit this field to 
redefine g.
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x= Displays the domain used to plot f and g. Edit this field to 
specify a different domain.

a= Displays a constant factor used to modify f (see button 
descriptions in the next section). Edit this field to change the 
value of the constant factor.

funtool redraws f and g to reflect any changes you make to the contents of the 
control panel’s text fields.

Control Buttons. The bottom part of the control panel contains an array of 
buttons that transform f and perform other operations.

The first row of control buttons replaces f with various transformations of f.

df/dx Derivative of f

int f Integral of f

simple f Simplified form of f, if possible

num f Numerator of f

den f Denominator of f

1/f Reciprocal of f

finv Inverse of f

The operators intf and finv may fail if the corresponding symbolic expressions 
do not exist in closed form.

The second row of buttons translates and scales f and the domain of f by a 
constant factor. To specify the factor, enter its value in the field labeled a= on 
the calculator control panel. The operations are

f+a Replaces f(x) by f(x) + a.

f-a Replaces f(x) by f(x) - a.

f*a Replaces f(x) by f(x) * a.

f/a Replaces f(x) by f(x) / a.

f^a Replaces f(x) by f(x) ^ a.

f(x+a) Replaces f(x) by f(x + a ).
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f(x*a) Replaces f(x) by f(x * a).

The first four buttons of the third row replace f with a combination of f and g.

f+g Replaces f(x) by f(x) + g(x).

f-g Replaces f(x) by f(x)-g(x).

f*g Replaces f(x) by f(x) * g(x).

f/g Replaces f(x) by f(x) / g(x).

The remaining buttons on the third row interchange f and g.

g=f Replaces g with f.

swap Replaces f with g and g with f.

The first three buttons in the fourth row allow you to store and retrieve 
functions from the calculator’s function memory.

Insert Adds f to the end of the list of stored functions.

Cycle Replaces f with the next item on the function list.

Delete Deletes f from the list of stored functions.

The other four buttons on the fourth row perform miscellaneous functions:

Reset Resets the calculator to its initial state.

Help Displays the online help for the calculator.

Demo Runs a short demo of the calculator.

Close Closes the calculator’s windows.

See Also ezplot, syms
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3hornerPurpose Horner polynomial representation

Syntax R = horner(P)

Description Suppose P is a matrix of symbolic polynomials. horner(P) transforms each 
element of P into its Horner, or nested, representation.

Examples horner(x^3-6*x^2+11*x-6) returns

-6+(11+(-6+x)*x)*x

horner([x^2+x;y^3-2*y]) returns

[   (1+x)*x]
[(-2+y^2)*y]

See Also expand, factor, simple, simplify, syms
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3hypergeomPurpose Generalized hypergeometric function

Syntax hypergeom(n, d, z)

Description hypergeom(n, d, z) is the generalized hypergeometric function F(n, d, z),   also 
known as the Barnes extended hypergeometric function and denoted by   jFk 
where j = length(n) and k = length(d).   For scalar a, b, and c,   
hypergeom([a,b],c,z) is the Gauss hypergeometric function 2F1(a,b;c;z).   

The definition by a formal power series is

where

Either of the first two arguments may be a vector providing the coefficient   
parameters for a single function evaluation. If the third argument is a vector, 
the function is evaluated pointwise. The result is numeric if all the arguments 
are numeric and symbolic if any of the arguments is symbolic.

See Abramowitz and Stegun, Handbook of Mathematical Functions, chapter 
15.

Examples syms a z

hypergeom([],[],z) returns   exp(z)

hypergeom(1,[],z) returns   -1/(-1+z)

hypergeom(1,2,'z') returns   (exp(z)-1)/z

hypergeom([1,2],[2,3],'z') returns 2*(exp(z)-1-z)/z^2

hypergeom(a,[],z) returns (1-z)^(-a)

hypergeom([],1,-z^2/4) returns besselj(0,z)

F n d z, ,( )
Cn k,
Cd k,
------------ zk

k!
-----⋅

k 0=

∞

∑=

Cv k,
Γ vj k+( )

Γ vj( )
-----------------------

j 1=

v

∏=
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3ifourierPurpose Inverse Fourier integral transform

Syntax f = ifourier(F)
f = ifourier(F,u)
f = ifourier(F,v,u)

Description f = ifourier(F) is the inverse Fourier transform of the scalar symbolic object 
F with default independent variable w. The default return is a function of x. The 
inverse Fourier transform is applied to a function of w and returns a function 
of x.

If F = F(x), ifourier returns a function of t.

By definition

f = ifourier(F,u) makes f a function of u instead of the default x.

Here u is a scalar symbolic object.

f = ifourier(F,v,u) takes F to be a function of v and f to be a function of u 
instead of the default w and x, respectively.

F F w( )= f f x( )=⇒

f f t( )=

f x( ) 1 2π( )⁄ F w( )eiwx wd

∞–

∞

∫=

f u( ) 1 2π( )⁄ F w( )eiwu wd

∞–

∞

∫=

f u( ) 1 2π( )⁄ F v( )eivu vd

∞–

∞

∫=
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Examples

Inverse Fourier Transform MATLAB Command

syms a real
f = exp(-w^2/(4*a^2))

F = ifourier(f)
F = simple(F)

returns
a*exp(-x^2*a^2)/pi^(1/2)

g = exp(-abs(x))

ifourier(g)

returns
1/(1+t^2)/pi

f = 2*exp(-abs(w)) - 1

simple(ifourier(f,t))

returns
-(-2+pi*Dirac(t))/(1+t^2)/pi

f w( ) ew2 4a2( )⁄
=

F 1– f[ ] x( ) f w( )eixw wd

∞–

∞

∫=

a
π

-------e ax( )2–
=

g x( ) e x–
=

F 1– g[ ] t( ) g x( )eitx xd

∞–

∞

∫=

π

1 t2
+

--------------=

f w( ) 2e w– 1–=

F 1– f[ ] t( ) f w( )eitw wd

∞–

∞

∫=

2– πδ t( )+( )–

1 t2
+( )
π

-------------------

------------------------------------=
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See Also fourier, ilaplace, iztrans

syms w real
f = exp(-w^2*abs(v))*sin(v)/v

ifourier(f,v,t)

returns
-1/2*(-atan((t+1)/w^2)
+atan((-1+t)/w^2))/pi

Inverse Fourier Transform MATLAB Command

f w v,( ) e w2 v– vsin
v

------------ w real,=

F 1– f v( )[ ] t( ) f w v,( )eivt vd

∞–

∞

∫=

1
2π
------ t 1+

w2
-----------atan t 1–

w2
-----------atan– 

 =
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3ilaplacePurpose Inverse Laplace transform

Syntax F = ilaplace(L)
F = ilaplace(L,y)
F = ilaplace(L,y,x)

Description F = ilaplace(L) is the inverse Laplace transform of the scalar symbolic object 
L with default independent variable s. The default return is a function of t. The 
inverse Laplace transform is applied to a function of s and returns a function 
of t.

If L = L(t), ilaplace returns a function of x.

By definition

where c is a real number selected so that all singularities of L(s) are to the left 
of the line s = c, i.

F = ilaplace(L,y) makes F a function of y instead of the default t.

Here y is a scalar symbolic object.

F = ilaplace(L,y,x) takes F to be a function of x and L a function of y instead 
of the default variables t and s, respectively.

L L s( )= F F t( )=⇒

F F x( )=

F t( ) L s( )est sd

c i∞–

c i∞+

∫=

F y( ) L y( )esy sd

c i∞–

c i∞+

∫=

F x( ) L y( )exy yd

c i∞–

c i∞+

∫=
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Examples

See Also ifourier, iztrans, laplace

Inverse Laplace Transform MATLAB Command

f = 1/s^2

ilaplace(f)

returns

t

g = 1/(t-a)^2

ilaplace(g)

returns

x*exp(a*x)

syms x u
syms a real
f = 1/(u^2-a^2)

simplify(ilaplace(f,x))

returns

sinh(x*abs(a))/abs(a)

f s( ) 1

s2
-----=

L 1– f[ ] 1
2πi
--------- f s( )est sd

c i∞–

c i∞+

∫=

t=

g t( ) 1

t a–( )2
-------------------=

L 1– g[ ] 1
2πi
--------- g t( )ext td

c i∞–

c i∞+

∫=

xeax
=

f u( ) 1

u2 a2
–

------------------=

L 1– f[ ] 1
2πi
--------- g u( )exu ud

c i∞–

c i∞+

∫=

x a( )sinh
a

---------------------------=
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3imagPurpose Symbolic imaginary part

Syntax imag(Z)

Description imag(Z) is the imaginary part of a symbolic Z.

See Also conj, real
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3intPurpose Integrate

Syntax R = int(S)
R = int(S,v)
R = int(S,a,b)
R = int(S,v,a,b)

Description int(S) returns the indefinite integral of S with respect to its symbolic variable 
as defined by findsym.

int(S,v) returns the indefinite integral of S with respect to the symbolic scalar 
variable v.

int(S,a,b) returns the definite integral from a to b of each element of S with 
respect to each element’s default symbolic variable. a and b are symbolic or 
double scalars.

int(S,v,a,b) returns the definite integral of S with respect to v from a to b.

Examples int(-2*x/(1+x^2)^2) returns

1/(1+x^2)

int(x/(1+z^2),z) returns

x*atan(z)

int(x*log(1+x),0,1) returns

1/4

int(2*x, sin(t), 1) returns

1-sin(t)^2

int([exp(t),exp(alpha*t)]) returns 

[exp(t), 1/alpha*exp(alpha*t)]

See Also diff, symsum
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3invPurpose Matrix inverse

Syntax R = inv(A)

Description inv(A) returns inverse of the symbolic matrix A.

Examples The statements

A = sym([2,-1,0;-1,2,-1;0,-1,2]);
inv(A)

return

[ 3/4, 1/2, 1/4]
[ 1/2,   1, 1/2]
[ 1/4, 1/2, 3/4]

The statements

syms a b c d
A = [a b; c d]
inv(A)

return

[  d/(a*d-b*c), -b/(a*d-b*c)]
[ -c/(a*d-b*c),  a/(a*d-b*c)]

Suppose you have created the following M-file.

%% Generate a symbolic N-by-N Hilbert matrix.
function A = genhilb(N)
syms t;
for i = 1:N
        for j = 1:N
        A(i,j) = 1/(i + j - t);
        end
end

Then, the following statement

inv(genhilb(2))

returns
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[    -(-3+t)^2*(-2+t), (-3+t)*(-2+t)*(-4+t)] 
[(-3+t)*(-2+t)*(-4+t),     -(-3+t)^2*(-4+t)] 

the symbolic inverse of the 2-by-2 Hilbert matrix.

See Also vpa

Arithmetic Operations page
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3iztransPurpose Inverse z-transform

Syntax f = iztrans(F)
f = iztrans(F,k)
f = iztrans(F,w,k)

Description f = iztrans(F) is the inverse z-transform of the scalar symbolic object F with 
default independent variable z. The default return is a function of n. 

where R is a positive number chosen so that the function F(z) is analytic on and 
outside the circle |z| = R.

If F = F(n), iztrans returns a function of k.

f = iztrans(F,k) makes f a function of k instead of the default n. Here k is a 
scalar symbolic object.

f = iztrans(F,w,k) takes F to be a function of w instead of the default 
findsym(F) and returns a function of k.

Examples

f n( ) 1
2πi
--------- F z( )zn 1– z n 1 2 …, ,=,d

z R=
∫°=

f f k( )=

F F w( )= f f k( )=⇒

Inverse Z-Transform MATLAB Operation

f = 2*z/(z-2)^2

iztrans(f)

returns

2^n*n

f z( ) 2z

z 2–( )2
-------------------=

Z 1– f[ ] 1
2πi
--------- f s( )zn 1– dz

z R=
∫°=

n2n
=
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See Also ifourier, ilaplace, ztrans

g = n*(n+1)/(n^2+2*n+1)

iztrans(g)

returns

(-1)^k

f = z/(z-a)

iztrans(f,k)

returns

a^k

Inverse Z-Transform MATLAB Operation

g n( ) n n 1+( )

n2 2n 1+ +
------------------------------=

Z 1– g[ ] 1
2πi
--------- g n( )nk 1– dn

n R=
∫°=

1–
k

=

f z( ) z
z a–
------------=

Z 1– f[ ] 1
2πi
--------- f z( )zk 1– dz

z R=
∫°=

ak
=
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3jacobianPurpose Jacobian matrix

Syntax R = jacobian(w,v)

Description jacobian(w,v) computes the Jacobian of w with respect to v. w is a symbolic 
scalar expression or a symbolic column vector. v is a symbolic row vector. The 
(i,j)-th entry of the result is .

Examples The statements

w = [x*y*z; y; x+z];
v = [x,y,z];        
R = jacobian(w,v)
b = jacobian(x+z, v)

return

R =
[y*z, x*z, x*y]
[  0,   1,   0]
[  1,   0,   1]

b =
[1, 0, 1]

See Also diff

∂w i( ) ∂v j( )⁄
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3jordanPurpose Jordan canonical form

Syntax J = jordan(A)
[V,J] = jordan(A)

Description jordan(A) computes the Jordan canonical (normal) form of A, where A is a 
symbolic or numeric matrix. The matrix must be known exactly. Thus, its 
elements must be integers or ratios of small integers. Any errors in the input 
matrix may completely change the Jordan canonical form.

[V,J] = jordan(A) computes both J, the Jordan canonical form, and the 
similarity transform, V, whose columns are the generalized eigenvectors. 
Moreover, V\A*V=J.

Examples The statements

A = [1 -3 -2; -1  1 -1; 2 4 5]
[V,J] = jordan(A)

return

A =
     1    -3    -2
    -1     1    -1
     2     4     5

V =
    -1    -1     1
     0    -1     0
     1     2     0

J =
     3     0     0
     0     2     1
     0     0     2

Then the statement

V\A*V

returns
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ans =
     3    0    0
     0    2    1
     0    0    2

See Also eig, poly
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3lambertwPurpose Lambert’s W function

Syntax Y = lambertw(X)

Description lambertw(X) evaluates Lambert’s W function at the elements of X, a numeric 
matrix or a symbolic matrix. Lambert’s W solves the equation

for w as a function of x.

Examples lambertw([0 -exp(-1); pi 1]) returns

         0   -1.0000 
    1.0737    0.5671 

The statements

syms x y
lambertw([0 x;1 y])

return

[           0, lambertw(x)]
[ lambertw(1), lambertw(y)]

References [1] Corless, R.M, Gonnet, G.H., Hare, D.E.G., and Jeffrey, D.J., Lambert's W 
Function in Maple, Technical Report, Dept. of Applied Math., Univ. of Western 
Ontario, London, Ontario, Canada.

[2] Corless, R.M, Gonnet, G.H., Hare, D.E.G., and Jeffrey, D.J., On Lambert's 
W Function, Technical Report, Dept. of Applied Math., Univ. of Western 
Ontario, London, Ontario, Canada.

Both papers are available by anonymous FTP from

cs-archive.uwaterloo.ca

wew x=
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3laplacePurpose Laplace transform

Syntax laplace(F)
laplace(F,t)
fourier(F,w,z)

Description L = laplace(F) is the Laplace transform of the scalar symbol F with default 
independent variable t. The default return is a function of s. The Laplace 
transform is applied to a function of t and returns a function of s.

If F = F(s), laplace returns a function of t.

By definition

where t is the symbolic variable in F as determined by findsym.

L = laplace(F,t) makes L a function of t instead of the default s.

Here L is returned as a scalar symbol.

L = laplace(F,w,z) makes L a function of z and F a function of w instead of 
the default variables s and t, respectively.

F F t( )= L L s( )=⇒

L L t( )=

L s( ) F t( )e st– td

0

∞

∫=

L t( ) F x( )e tx– xd

0

∞

∫=

L z( ) F w( )e zw– wd

0

∞

∫=
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Examples

See Also fourier, ilaplace, ztrans

Laplace Transform MATLAB Command

f = t^4

laplace(f)

returns

24/s^5

g = 1/sqrt(s)

laplace(g)

returns

(pi/t)^(1/2)

f = exp(-a*t)

laplace(f,x)

returns

1/(x + a)

f t( ) t4
=

L f[ ] f t( )e ts– td

0

∞

∫=

24

s5
------=

g s( ) 1
s

------=

L g[ ] t( ) g s( )e st– sd

0

∞

∫=

π
t
---=

f t( ) e at–
=

L f[ ] x( ) f t( )e tx– td

0

∞

∫=

1
x a+
------------=



latex

3-78

3latexPurpose LaTeX representation of a symbolic expression

Syntax latex(S)

Description latex(S) returns the LaTeX representation of the symbolic expression S.

Examples The statements

syms x
f = taylor(log(1+x));
latex(f)

return

x-1/2\,{x}^{2}+1/3\,{x}^{3}-1/4\,{x}^{4}+1/5\,{x}^{5}

The statements

H = sym(hilb(3));
latex(H) 

return

\left [\begin {array}{ccc} 1&1/2&1/3\\\noalign{\medskip}1/2&1/
3&1/4
\\\noalign{\medskip}1/3&1/4&1/5\end {array}\right ]

The statements

syms alpha t
A = [alpha t alpha*t];
latex(A)

return

\left [\begin {array}{ccc} \alpha&t&\alpha\,t\end {array}\right ]

See Also pretty, ccode, fortran
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3limitPurpose Limit of a symbolic expression

Syntax limit(F,x,a)

limit(F,a)
limit(F)
limit(F,x,a,'right')
limit(F,x,a,'left')

Description limit(F,x,a) takes the limit of the symbolic expression F as x -> a.

limit(F,a) uses findsym(F) as the independent variable.

limit(F) uses a = 0 as the limit point.

limit(F,x,a,'right') or limit(F,x,a,'left') specify the direction of a 
one-sided limit.

Examples Assume

syms x a t h;

Then

limit(sin(x)/x) => 1
limit(1/x,x,0,'right') => inf
limit(1/x,x,0,'left')           => -inf
limit((sin(x+h)-sin(x))/h,h,0)  => cos(x)
v = [(1 + a/x)^x, exp(-x)];
limit(v,x,inf,'left')           => [exp(a),  0]

See Also pretty, ccode, fortran
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3maplePurpose Access Maple kernel

Syntax r = maple('statement')
r = maple('function',arg1,arg2,...)
[r, status] = maple(...)
maple('traceon') or maple trace on
maple('traceoff') or maple trace off

Description maple('statement') sends statement to the Maple kernel and returns the 
result. A semicolon for the Maple syntax is appended to statement if necessary.

maple('function',arg1,arg2,...) accepts the quoted name of any Maple 
function and associated input arguments. The arguments are converted to 
symbolic expressions if necessary, and function is then called with the given 
arguments. If the input arguments are syms, then maple returns a sym. 
Otherwise, it returns a result of class char.

[r,status] = maple(...) is an option that returns the warning/error status. 
When the statement execution is successful, r is the result and status is 0. If 
the execution fails, r is the corresponding warning/error message, and status 
is a positive integer.

maple('traceon') (or maple trace on) causes all subsequent Maple 
statements and results to be printed. maple('traceoff') (or maple trace 
off) turns this feature off.

Examples Each of the following statements evaluate  to 100 digits.

maple('evalf(Pi,100)')
maple evalf Pi 100
maple('evalf','Pi',100)

The statement

[result,status] = maple('BesselK',4.3)

returns the following output because Maple’s BesselK function needs two input 
arguments.

π
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result =
Error, (in BesselK) expecting 2 arguments, got 1
status =
2

The traceon command shows how Symbolic Math Toolbox commands interact 
with Maple. For example, the statements

syms x
v = [x^2-1;x^2-4]
maple traceon % or maple trace on
w = factor(v)

return

v =
[ x^2-1]
[ x^2-4]
 
statement:
   map(ifactor,array([[x^2-1],[x^2-4]]));
result:
   Error, (in ifactor) invalid arguments
statement:
   map(factor,array([[x^2-1],[x^2-4]]));
result:
   matrix([[(x-1)*(x+1)], [(x-2)*(x+2)]])
 
w =
 
[ (x-1)*(x+1)]
[ (x-2)*(x+2)]

This example reveals that the factor statement first invokes Maple’s integer 
factor (ifactor) statement to determine whether the argument is a factorable 
integer. If Maple’s integer factor statement returns an error, the Symbolic 
Math Toolbox factor statement then invokes Maple’s expression factoring 
statement.

See Also mhelp, procread



mapleinit

3-82

3mapleinitPurpose Initialize the Maple kernel

Syntax mapleinit

Description mapleinit determines the path to the directory containing the Maple Library, 
loads the Maple linear algebra and integral transform packages, initializes 
digits, and establishes several aliases. mapleinit is called by the MEX-file 
interface to Maple.

You can edit the mapleinit M-file to change the pathname to the Maple 
library. You do this by changing the initstring variable in mapleinit.m to the 
full pathname of the Maple library, as described below. 

UNIX. Suppose you already have a copy of the Library for Maple V, Release 5 
in the UNIX directory /usr/local/Maple/lib. You can edit mapleinit.m to 
contain

maplelib = '/usr/local/Maple/lib'

and then delete the copy of the Maple Library that is distributed with 
MATLAB.

Microsoft-Windows. Suppose you already have a copy of the Library for Maple 
V, Release 5 in the directory C:\MAPLE\LIB. You can edit mapleinit.m to 
contain

maplelib = 'C:\MAPLE\LIB'

and then delete the copy of the Maple Library that is distributed with the 
Symbolic Math toolboxes.
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3mfunPurpose Numeric evaluation of Maple mathematical function

Syntax Y = mfun('function',par1,par2,par3,par4)

Description mfun('function',par1,par2,par3,par4) numerically evaluates one of the 
special mathematical functions known to Maple. Each par argument is a 
numeric quantity corresponding to a Maple parameter for function. You can 
use up to four parameters. The last parameter specified can be a matrix, 
usually corresponding to X. The dimensions of all other parameters depend on 
the Maple specifications for function. You can access parameter information 
for Maple functions using one of the following commands:

help mfunlist
mhelp function

Maple evaluates function using 16 digit accuracy. Each element of the result 
is a MATLAB numeric quantity. Any singularity in function is returned as 
NaN. 

Examples mfun('FresnelC',0:5) returns

0    0.7799    0.4883    0.6057    0.4984    0.5636

mfun('Chi',[3*i 0]) returns

0.1196 + 1.5708i   NaN

See Also mfunlist, mhelp
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3mfunlistPurpose List special functions for use with mfun

Syntax mfunlist

Description mfunlist lists the special mathematical functions for use with the mfun 
function. The following tables describe these special functions. 

You can access more detailed descriptions by typing

mhelp function

Limitations In general, the accuracy of a function will be lower near its roots and when its 
arguments are relatively large.

Run-time depends on the specific function and its parameters. In general, 
calculations are slower than standard MATLAB calculations.

See Also mfun, mhelp

References [1] Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, 
Dover Publications, 1965.

Table 
Conventions

The following conventions are used in Table 2-1, MFUN Special Functions, 
unless otherwise indicated in the Arguments column.

x, y real argument

z , z1, z2 complex argument

m , n integer argument
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Table 2-1:  MFUN Special Functions

Function Name Definition mfun Name Arguments

Bernoulli 
Numbers and 
Polynomials

Generating functions: bernoulli(n)
bernoulli(n,t)

Bessel Functions BesselI, BesselJ – Bessel 
functions of the first kind.
BesselK, BesselY – Bessel 
functions of the second kind.

BesselJ(v,x)
BesselY(v,x)
BesselI(v,x)
BesselK(v,x)

v is real.

Beta Function Beta(x,y)

Binomial 
Coefficients

binomial(m,n)

ext

et 1–
------------- Bn x( ) tn 1–

n!
------------⋅

n 0=

∞

∑=

n 0≥
0 t 2π< <

B x y,( ) Γ x( ) Γ y( )⋅
Γ x y+( )

----------------------------=

m
n 
  m!

n! m n–( )!
---------------------------=

Γ m 1+( )
Γ n 1+( )Γ m n 1+–( )
--------------------------------------------------------=
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Complete Elliptic 
Integrals

Legendre’s complete elliptic 
integrals of the first, second, and 
third kind.

EllipticK(k)
EllipticE(k)
EllipticPi(a,k)

a is real

k is real

Complete Elliptic 
Integrals with 
Complementary 
Modulus

Associated complete elliptic 
integrals of the first, second, and 
third kind using complementary 
modulus.

EllipticCK(k)
EllipticCE(k)
EllipticCPi(a,k)

a is real

k is real

Complementary 
Error Function 
and Its Iterated 
Integrals

erfc(z)
erfc(n,z)

Dawson’s Integral dawson(x)

Table 2-1:  MFUN Special Functions (Continued)

Function Name Definition mfun Name Arguments

∞– a ∞< <

0 k 1< <

∞– a ∞< <

0 k 1< <

erfc z( ) 2
π

------- e t– 2

t 1 erf z( )–=d

z

∞

∫⋅=

erfc 1 z,–( ) 2
π

------- e z– 2

⋅=

erfc n z,( ) erfc n 1– z,( ) td

z

∞

∫=

n 0>

F x( ) e x2– e t2– td

0

x

∫⋅=
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Digamma 
Function

Psi(x)

Dilogarithm 
Integral

dilog(x)

Error Function erf(z)

Euler Numbers 
and Polynomials

Generating function for Euler 
numbers:

euler(n)
euler(n,z)

Table 2-1:  MFUN Special Functions (Continued)

Function Name Definition mfun Name Arguments

ψ x( )
xd

d Γ x( )( )ln Γ′ x( )
Γ x( )
-------------= =

f x( ) t( )ln
1 t–
------------- td

1

x

∫=

x 1>

erf z( ) 2
π

------- e t– 2

td

0

z

∫=

1
ch t( )
-------------- En

tn

n!
-----

n 0=

∞

∑=

n 0≥

t π
2
---<



mfunlist

3-88

Exponential 
Integrals

Ei(n,z)
Ei(x)

Fresnel Sine and 
Cosine Integrals

FresnelC(x)
FresnelS(x)

Gamma Function GAMMA(z)

Harmonic 
Function

harmonic(n)

Table 2-1:  MFUN Special Functions (Continued)

Function Name Definition mfun Name Arguments

Ei n z,( ) e zt–

tn
--------- td

1

∞

∫=

Ei x( ) PV et

t
----

∞–

x

∫–=

n 0≥
Real z( ) 0>

C x( ) π
2
--- t2⋅ 
 cos td

0

x

∫=

S x( ) π
2
--- t2⋅ 
 sin td

0

x

∫=

Γ z( ) tz 1– e t– td

0

∞

∫=

h n( ) 1
k
---

k 1=

n

∑ ψ n 1+( ) γ+= =

n 0>
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Hyperbolic Sine 
and Cosine 
Integrals

Shi(z)
Chi(z)

(Generalized) 
Hypergeometric 
Function

where j and m are the number of 
terms in n and d, respectively.

hypergeom(n,d,x)

where
n = [n1,n2,...]
d = [d1,d2,...]

n1,n2,... are 
real. 
d1,d2,... are 
real and 
non-negative.

Incomplete 
Elliptic Integrals

Legendre's incomplete elliptic 
integrals of the first, second, and 
third kind.

EllipticF(x,k)

EllipticE(x,k)

EllipticPi(x,a,k) a is real

k is real

Table 2-1:  MFUN Special Functions (Continued)

Function Name Definition mfun Name Arguments

Shi z( ) t( )sinh
t

------------------- td

0

z

∫=

Chi z( ) γ z( )ln t( )cosh 1–
t

----------------------------- td

0

z

∫+ +=

F n d z, ,( )

Γ ni k+( )
Γ ni( )

------------------------ zk⋅

i 1=

j

∏

Γ di k+( )
Γ di( )

------------------------ k!⋅

i 1=

m

∏
---------------------------------------------

k 0=

∞

∑=

0 x ∞≤<

∞– a ∞< <

0 k 1< <
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Incomplete 
Gamma Function

GAMMA(z1,z2)

Logarithm of the 
Gamma Function

lnGAMMA(z)

Logarithmic 
Integral

Li(x)

Table 2-1:  MFUN Special Functions (Continued)

Function Name Definition mfun Name Arguments

Γ a z,( ) e t– ta 1–⋅ td

z

∞

∫=

Γ z( )ln Γ z( )( )ln=

Li x( ) PV td
tln

--------

0

x

∫
 
 
 
 
 

Ei xln( )= =

x 1>
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Orthogonal 
Polynomials

The following functions require the Maple Orthogonal Polynomial Package. 
They are available only with the Extended Symbolic Math Toolbox. Before 
using these functions, you must first initialize the Orthogonal Polynomial 
Package by typing

maple('with','orthopoly')

Note that in all cases, n is a non-negative integer and x is real.

Polygamma 
Function

where is the Digamma 
function.

Psi(n,z)

Shifted Sine 
Integral

Ssi(z)

Table 2-1:  MFUN Special Functions (Continued)

Function Name Definition mfun Name Arguments

ψ n( ) z( )
z

n

d
d ψ z( )=

ψ z( )

n 0≥

Ssi z( ) Si z( ) π
2
---–=

Table 3-1:  Orthogonal Polynomials 

Polynomial Maple Name Arguments

Gegenbauer G(n,a,x) a is a nonrational algebraic 
expression or a rational number 
greater than -1/2.

Hermite H(n,x)

Laguerre L(n,x)
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Generalized 
Laguerre 

L(n,a,x) a is a nonrational algebraic 
expression or a rational number 
greater than -1. 

Legendre P(n,x)  

Jacobi P(n,a,b,x) a, b are nonrational algebraic 
expressions or rational numbers 
greater than -1. 

Chebyshev of 
the First and 
Second Kind

T(n,x)
U(n,x)

Table 3-1:  Orthogonal Polynomials  (Continued)

Polynomial Maple Name Arguments
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3mhelpPurpose Maple help

Syntax mhelp topic
mhelp('topic')

Description mhelp topic and mhelp('topic') both return Maple’s online documentation 
for the specified Maple topic.

Examples mhelp BesselI and mhelp('BesselI') both return Maple’s online 
documentation for the Maple BesselI function.

See Also maple
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3nullPurpose Basis for null space

Syntax Z = null(A)

Description The columns of Z = null(A) form a basis for the null space of A.

size(Z,2) is the nullity of A.

A*Z is zero.

If A has full rank, Z is empty.

Examples The statements

A = sym(magic(4));
Z = null(A)
A*Z

return

[ -1]
[ -3]
[  3]
[  1]

[ 0]
[ 0]
[ 0]
[ 0]

See Also arithmetic operators, colspace, rank, rref, svd 
null in the online MATLAB Function Reference.
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3numdenPurpose Numerator and denominator

Syntax [N,D] = numden(A)

Description [N,D] = numden(A) converts each element of A to a rational form where the 
numerator and denominator are relatively prime polynomials with integer 
coefficients. A is a symbolic or a numeric matrix. N is the symbolic matrix of 
numerators, and D is the symbolic matrix of denominators. 

Examples [n,d] = numden(sym(4/5)) returns n = 4 and d = 5.

[n,d] = numden(x/y + y/x) returns

n = 
x^2+y^2

d = 
y*x

The statements

A = [a, 1/b]
[n,d] = numden(A)

return

A =
[a, 1/b]
 
n =
[a, 1]

d =
[1, b]
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3polyPurpose Characteristic polynomial of a matrix

Syntax p = poly(A)
p = poly(A, v)

Description If A is a numeric array, poly(A) returns the coefficients of the characteristic 
polynomial of A. If A is symbolic, poly(A) returns the characteristic polynomial 
of A in terms of the default variable x. The variable v can be specified in the 
second input argument.

Note that if A is numeric, poly(sym(A)) approximately equals 
poly2sym(poly(A)). The approximation is due to roundoff error.

Examples The statements

syms z
A = gallery(3) 
p = poly(A)
q = poly(sym(A))
s = poly(sym(A),z)

 return

A = 
  -149   -50  -154
   537   180   546
   -27    -9   -25

p = 
1.0000   -6.0000   11.0000   -6.0000

q=
x^3-6*x^2+11*x-6

s =
z^3-6*z^2+11*z-6

See Also poly2sym, jordan, eig, solve
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3poly2symPurpose Polynomial coefficient vector to symbolic polynomial

Syntax r = poly2sym(c)
r = poly2sym(c, v)

Description r = poly2sym(c) returns a symbolic representation of the polynomial whose 
coefficients are in the numeric vector c. The default symbolic variable is x. The 
variable v can be specified as a second input argument. If c = [c1 c2 ... cn], 
r=poly2sym(c) has the form

poly2sym uses sym’s default (rational) conversion mode to convert the numeric 
coefficients to symbolic constants. This mode expresses the symbolic coefficient 
approximately as a ratio of integers, if sym can find a simple ratio that 
approximates the numeric value, otherwise as an integer multiplied by a power 
of 2.

If x has a numeric value and sym expresses the elements of c exactly, 
eval(poly2sym(c)) returns the same value as polyval(c,x).

Examples poly2sym([1 3 2]) returns

x^2 + 3*x + 2

poly2sym([.694228, .333, 6.2832]) returns

6253049924220329/9007199254740992*x^2+333/1000*x+3927/625

poly2sym([1 0 1 -1 2], y) returns

y^4+y^2-y+2

See Also sym, sym2poly 
polyval in the online MATLAB Function Reference

c1xn 1– c2xn 2– … cn+ + +
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3prettyPurpose Prettyprint symbolic expressions

Syntax pretty(S)
pretty(S,n)

Description The pretty function prints symbolic output in a format that resembles typeset 
mathematics.

pretty(S) prettyprints the symbolic matrix S using the default line width of 
79.

pretty(S,n) prettyprints S using line width n instead of 79.

Examples The following statements

A = sym(pascal(2))
B = eig(A)
pretty(B)

return

A =
[1, 1]
[1, 2]

B =
[3/2+1/2*5^(1/2)]
[3/2-1/2*5^(1/2)]

[            1/2 ]
[ 3/2 + 1/2 5    ]
[                ]
[            1/2 ]
[ 3/2 - 1/2 5    ]
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3procreadPurpose Install a Maple procedure

Syntax procread('filename')

Description procread('filename') reads the specified file, which should contain the 
source text for a Maple procedure. It deletes any comments and newline 
characters, then sends the resulting string to Maple.

The Extended Symbolic Math Toolbox is required.

Examples Suppose the file ident.src contains the following source text for a Maple 
procedure.

ident := proc(A)
# ident(A) computes A*inverse(A)

local X;
X := inverse(A);
evalm(A &* X);

end;

Then the statement

procread('ident.src') 

installs the procedure. It can be accessed with 

maple('ident',magic(3))

or

maple('ident',vpa(magic(3)))

See Also maple
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3rankPurpose Symbolic matrix rank

Syntax rank(A)

Description rank(A) is the rank of the symbolic matrix A.

Examples rank([a b;c d]) is 2.

rank(sym(magic(4))) is 3.
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3realPurpose Symbolic real part

Syntax real(Z)

Description real(Z) is the real part of a symbolic Z.

See Also conj, imag
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3rrefPurpose Reduced row echelon form

Syntax rref(A)

Description rref(A) is the reduced row echelon form of the symbolic matrix A.

Examples rref(sym(magic(4))) returns

[  1,  0,  0,  1]
[  0,  1,  0,  3]
[  0,  0,  1, -3]
[  0,  0,  0,  0]
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3rsumsPurpose Interactive evaluation of Riemann sums

Syntax rsums(f)

Description rsums(f) interactively approximates the integral of f(x) by Riemann sums. 
rsums(f) displays a graph of . You can then adjust the number of terms 
taken in the Riemann sum by using the slider below the graph. The number of 
terms available ranges from 2 to 128.

Examples rsums exp(-5*x^2) creates the following plot.

f x( )
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3simplePurpose Search for a symbolic expression’s simplest form

Syntax r = simple(S)
[r,how] = simple(S)

Description simple(S) tries several different algebraic simplifications of the symbolic 
expression S, displays any that shorten the length of S’s representation, and 
returns the shortest. S is a sym. If S is a matrix, the result represents the 
shortest representation of the entire matrix, which is not necessarily the 
shortest representation of each individual element. If no return output is given, 
simple(S) displays all possible representations and returns the shortest.

[r,how] = simple(S) does not display intermediate simplifications, but 
returns the shortest found, as well as a string describing the particular 
simplification. r is a sym. how is a string.

Examples

See Also collect, expand, factor, horner, simplify

Expression Simplification Simplification Method

cos(x)^2+sin(x)^2 1 simplify

2*cos(x)^2-sin(x)^2 3*cos(x)^2-1 simplify

cos(x)^2-sin(x)^2 cos(2*x) combine(trig)

cos(x)+ 
(-sin(x)^2)^(1/2)

cos(x)+i*sin(x) radsimp

cos(x)+i*sin(x) exp(i*x) convert(exp)

(x+1)*x*(x-1) x^3-x collect(x)

x^3+3*x^2+3*x+1 (x+1)^3 factor

cos(3*acos(x)) 4*x^3-3*x expand
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3simplifyPurpose Symbolic simplification

Syntax R = simplify(S)

Description simplify(S) simplifies each element of the symbolic matrix S using Maple 
simplification rules.

Examples simplify(sin(x)^2 + cos(x)^2) returns

1

simplify(exp(c*log(sqrt(a+b)))) returns

(a+b)^(1/2*c)

The statements

S = [(x^2+5*x+6)/(x+2),sqrt(16)];
R = simplify(S)

 return

R = [x+3,4]

See Also collect, expand, factor, horner, simple
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3sinintPurpose Sine integral function

Syntax Y = sinint(X)

Description sinint(X) evaluates the sine integral function at the elements of X, a numeric 
matrix, or a symbolic matrix. The result is a numeric matrix. The sine integral 
function is defined by

Examples sinint([pi 0;-2.2 exp(3)]) returns

    1.8519         0
   -1.6876    1.5522

sinint(1.2) returns 1.1080.

diff(sinint(x)) returns sin(x)/x.

See Also cosint

Si x( )
tsin

t
----------- td

0

x

∫=
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3sizePurpose Symbolic matrix dimensions

Syntax d = size(A)
[m,n] = size(A)
d= size(A, n)

Description Suppose A is an m-by-n symbolic or numeric matrix. The statement 
d = size(A) returns a numeric vector with two integer components, d = [m,n]. 

The multiple assignment statement [m,n] = size(A) returns the two integers 
in two separate variables.

The statement d = size(A,n) returns the length of the dimension specified by 
the scalar n. For example, size(A,1) is the number of rows of A and size(A,2) 
is the number of columns of A.

Examples The statements

syms a b c d
A = [a b c ; a b d; d c b; c b a];
d = size(A)
r = size(A, 2)

return

d =
     4     3

r =
     3

See Also length, ndims in the online MATLAB Function Reference
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3solvePurpose Symbolic solution of algebraic equations

Syntax g = solve(eq)
g = solve(eq,var)
g = solve(eq1,eq2,...,eqn)
g = solve(eq1,eq2,...,eqn,var1,var2,...,varn)

Description Single Equation/Expression. The input to solve can be either symbolic 
expressions or strings. If eq is a symbolic expression (x^2-2*x+1) or a string 
that does not contain an equal sign ('x^2-2*x+1'), then solve(eq) solves the 
equation eq=0 for its default variable (as determined by findsym).

solve(eq,var) solves the equation eq (or eq=0 in the two cases cited above) for 
the variable var.

System of Equations. The inputs are either symbolic expressions or strings 
specifying equations. solve(eq1,eq2,...,eqn) solves the system of equations 
implied by eq1,eq2,...,eqn in the n variables determined by applying 
findsym to the system.

Three different types of output are possible. For one equation and one output, 
the resulting solution is returned with multiple solutions for a nonlinear 
equation. For a system of equations and an equal number of outputs, the 
results are sorted alphabetically and assigned to the outputs. For a system of 
equations and a single output, a structure containing the solutions is returned.

For both a single equation and a system of equations, numeric solutions are 
returned if symbolic solutions cannot be determined.

Examples solve('a*x^2 + b*x + c') returns 

[ 1/2/a*(-b+(b^2-4*a*c)^(1/2)), 
1/2/a*(-b-(b^2-4*a*c)^(1/2))]

solve('a*x^2 + b*x + c','b') returns

-(a*x^2+c)/x

S = solve('x + y  = 1','x - 11*y = 5') returns a structure S with

 S.y = -1/3, S.x = 4/3
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A = solve('a*u^2 + v^2', 'u - v = 1', 'a^2 - 5*a + 6')

returns

A = 

    a: [4x1 sym]
    u: [4x1 sym]
    v: [4x1 sym]

where

A.a =
[ 2]
[ 2]
[ 3]
[ 3]

A.u =
[ 1/3+1/3*i*2^(1/2)]
[ 1/3-1/3*i*2^(1/2)]
[ 1/4+1/4*i*3^(1/2)]
[ 1/4-1/4*i*3^(1/2)]

A.v =
[ -2/3+1/3*i*2^(1/2)]
[ -2/3-1/3*i*2^(1/2)]
[ -3/4+1/4*i*3^(1/2)]
[ -3/4-1/4*i*3^(1/2)]

See Also arithmetic operators, dsolve, findsym
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3subexprPurpose Rewrite a symbolic expression in terms of common subexpressions

Syntax [Y,SIGMA] = subexpr(X,SIGMA)
[Y,SIGMA] = subexpr(X,'SIGMA')

Description [Y,SIGMA] = subexpr(X,SIGMA) or [Y,SIGMA] = subexpr(X,'SIGMA') 
rewrites the symbolic expression X in terms of its common subexpressions. 
These are the subexpressions that are written as %1, %2, etc. by pretty(S).

Examples The statements

t = solve('a*x^3+b*x^2+c*x+d = 0');
[r,s] = subexpr(t,'s');

return the rewritten expression for t in r in terms of a common subexpression, 
which is returned in s.

See Also pretty, simple, subs
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3subsPurpose Symbolic substitution in a symbolic expression or matrix

Syntax R = subs(S) 
R = subs(S,old,new) 

Description subs(S) replaces all occurrences of variables in the symbolic expression S with 
values obtained from the calling function, or the MATLAB workspace.

subs(S,old,new) replaces old with new in the symbolic expression S. old is a 
symbolic variable or a string representing a variable name. new is a symbolic 
or numeric variable or expression.

If old and new are cell arrays of the same size, each element of old is replaced 
by the corresponding element of new. If S and old are scalars and new is an 
array or cell array, the scalars are expanded to produce an array result. If new 
is a cell array of numeric matrices, the substitutions are performed 
elementwise (i.e., subs(x*y,{x,y},{A,B}) returns A.*B when A and B are 
numeric).

If subs(s,old,new) does not change s, subs(s,new,old)is tried. This provides 
backwards compatibility with previous versions and eliminates the need to 
remember the order of the arguments. subs(s,old,new) does not switch the 
arguments if s does not change.

Examples Single input.

Suppose a = 980 and C1 = 3 exist in the workspace.

The statement

y = dsolve('Dy = -a*y')

produces

y = C1*exp(-a*t)

Then the statement

subs(y)

produces

ans = 3*exp(-980*t)
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Single Substitution.

subs(a+b,a,4) returns 4+b.

Multiple Substitutions.

subs(cos(a)+sin(b),{a,b},{sym('alpha'),2}) returns

cos(alpha)+sin(2)

Scalar Expansion Case.

subs(exp(a*t),'a',-magic(2)) returns

[   exp(-t), exp(-3*t)]
[ exp(-4*t), exp(-2*t)]

Multiple Scalar Expansion.

subs(x*y,{x,y},{[0 1;-1 0],[1 -1;-2 1]}) returns

     0    -1
     2     0

See Also simplify, subexpr
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3svdPurpose Symbolic singular value decomposition

Syntax sigma = svd(A)
sigma = svd(vpa(A))
[U,S,V] = svd(A)
[U,S,V] = svd(vpa(A))

Description sigma = svd(A) is a symbolic vector containing the singular values of a 
symbolic matrix A.

sigma = svd(vpa(A)) computes numeric singular values, using variable 
precision arithmetic.

[U,S,V] = svd(A) and [U,S,V] = svd(vpa(A)) return numeric unitary 
matrices U and V whose columns are the singular vectors and a diagonal matrix 
S containing the singular values. Together, they satisfy A = U*S*V'.

Symbolic singular vectors are not available.

Examples The statements

digits(3)
A = sym(magic(4));
svd(A)
svd(vpa(A))
[U,S,V] = svd(A)

return

[         0]
[        34]
[ 2*5^(1/2)]
[ 8*5^(1/2)]

[ .311e-6*i]
[      4.47]
[      17.9]
[      34.1]
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U =
 
[ -.500,  .671,  .500, -.224]
[ -.500, -.224, -.500, -.671]
[ -.500,  .224, -.500,  .671]
[ -.500, -.671,  .500,  .224]
 
 
S =
 
[     34.0,        0,        0,        0]
[        0,     17.9,        0,        0]
[        0,        0,     4.47,        0]
[        0,        0,        0, .835e-15]
 
 
V =
 
[ -.500,  .500,  .671, -.224]
[ -.500, -.500, -.224, -.671]
[ -.500, -.500,  .224,  .671]
[ -.500,  .500, -.671,  .224]

See Also digits, eig, vpa
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3symPurpose Construct symbolic numbers, variables and objects

Syntax S = sym(A)
x = sym('x')
x = sym('x','real')
x = sym('x','unreal')
S = sym(A,flag) where flag is one of 'r', 'd', 'e', or 'f'.

Description S = sym(A) constructs an object S, of class 'sym', from A. If the input argument 
is a string, the result is a symbolic number or variable. If the input argument 
is a numeric scalar or matrix, the result is a symbolic representation of the 
given numeric values.

x = sym('x') creates the symbolic variable with name 'x' and stores the 
result in x. x = sym('x','real') also assumes that x is real, so that conj(x) 
is equal to x. alpha = sym('alpha') and r = sym('Rho','real') are other 
examples. x = sym('x','unreal') makes x a purely formal variable with no 
additional properties (i.e., ensures that x is not real). See also the reference 
pages on syms.

Statements like pi = sym('pi') and delta = sym('1/10') create symbolic 
numbers that avoid the floating-point approximations inherent in the values of 
pi and 1/10. The pi created in this way temporarily replaces the built-in 
numeric function with the same name.

S = sym(A,flag) converts a numeric scalar or matrix to symbolic form. The 
technique for converting floating-point numbers is specified by the optional 
second argument, which can be 'f', 'r', 'e' or 'd'. The default is 'r'.

'f' stands for “floating-point.” All values are represented in the form 
'1.F'*2^(e) or '-1.F'*2^(e) where F is a string of 13 hexadecimal digits and 
e is an integer. This captures the floating-point values exactly, but may not be 
convenient for subsequent manipulation. For example, sym(1/10,'f') is 
'1.999999999999a'*2^(-4) because 1/10 cannot be represented exactly in 
floating-point.

'r' stands for “rational.” Floating-point numbers obtained by evaluating 
expressions of the form p/q, p*pi/q, sqrt(p), 2^q, and 10^q for modest sized 
integers p and q are converted to the corresponding symbolic form. This 
effectively compensates for the roundoff error involved in the original 
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evaluation, but may not represent the floating-point value precisely. If no 
simple rational approximation can be found, an expression of the form p*2^q 
with large integers p and q reproduces the floating-point value exactly. For 
example, sym(4/3,'r') is '4/3', but sym(1+sqrt(5),'r') is 
7286977268806824*2^(-51)

'e' stands for “estimate error.” The 'r' form is supplemented by a term 
involving the variable 'eps', which estimates the difference between the 
theoretical rational expression and its actual floating-point value. For 
example, sym(3*pi/4) is 3*pi/4-103*eps/249.

'd' stands for “decimal.” The number of digits is taken from the current setting 
of digits used by vpa. Fewer than 16 digits loses some accuracy, while more 
than 16 digits may not be warranted. For example, with digits(10), 
sym(4/3,'d') is 1.333333333, while with digits digits(20), sym(4/3,'d') is 
1.3333333333333332593, which does not end in a string of 3's, but is an 
accurate decimal representation of the floating-point number nearest to 4/3.

See Also digits, double, syms

eps in the online MATLAB Function Reference
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3symsPurpose Short-cut for constructing symbolic objects

Syntax syms arg1 arg2 ...
syms arg1 arg2 ... real
syms arg1 arg2 ... unreal

Description syms arg1 arg2 ... is short-hand notation for

arg1 = sym('arg1');
arg2 = sym('arg2'); ...

syms arg1 arg2 ... real is short-hand notation for

arg1 = sym('arg1','real');
arg2 = sym('arg2','real'); ...

syms arg1 arg2 ... unreal is short-hand notation for

arg1 = sym('arg1','unreal');
arg2 = sym('arg2','unreal'); ...

Each input argument must begin with a letter and can contain only 
alphanumeric characters.

Examples syms x beta real is equivalent to

x = sym('x','real');
beta = sym('beta','real');

To clear the symbolic objects x and beta of 'real' status, type

syms x beta unreal

Note  clear x will not clear the symbolic object x of its status 'real'. You 
can achieve this, using the commands syms x unreal or clear mex or clear 
all. In the latter two cases, the Maple kernel will have to be reloaded in the 
MATLAB workspace. (This is inefficient and time consuming).

See Also sym
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3sym2polyPurpose Symbolic-to-numeric polynomial conversion

Syntax c = sym2poly(s)

Description sym2poly returns a row vector containing the numeric coefficients of a symbolic 
polynomial. The coefficients are ordered in descending powers of the 
polynomial’s independent variable. In other words, the vector’s first entry 
contains the coefficient of the polynomial’s highest term; the second entry, the 
coefficient of the second highest term; and so on.

Examples The commands

syms x u v;
sym2poly(x^3 - 2*x - 5)

return 

1     0    -2    -5

while sym2poly(u^4 - 3 + 5*u^2) returns

1     0     5     0    -3

and sym2poly(sin(pi/6)*v + exp(1)*v^2) returns 

2.7183    0.5000         0

See Also poly2sym 
polyval in the online MATLAB Function Reference
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3symsumPurpose Symbolic summation

Syntax r = symsum(s)
r = symsum(s,v)
r = symsum(s,a,b)
r = symsum(s,v,a,b)

Description symsum(s) is the summation of the symbolic expression s with respect to its 
symbolic variable k as determined by findsym from 0 to k-1.

symsum(s,v) is the summation of the symbolic expression s with respect to the 
symbolic variable v from 0 to v-1.

symsum(s,a,b) and symsum(s,v,a,b) are the definite summations of the 
symbolic expression from v=a to v=b.

Examples The commands

syms k n x
symsum(k^2)

return

1/3*k^3-1/2*k^2+1/6*k

symsum(k) returns

1/2*k^2-1/2*k

symsum(sin(k*pi)/k,0,n) returns

-1/2*sin(k*(n+1))/k+1/2*sin(k)/k/(cos(k)-1)*cos(k*(n+1))-
1/2*sin(k)/k/(cos(k)-1)

symsum(k^2,0,10) returns

385

symsum(x^k/sym('k!'), k, 0,inf) returns

exp(x)
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Note  The preceding example uses sym to create the symbolic expression k! 
in order to bypass MATLAB’s expression parser, which does not recognize ! as 
a factorial operator.

See Also findsym, int, syms
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3taylorPurpose Taylor series expansion

Syntax r = taylor(f)
r = taylor(f,n,v)
r = taylor(f,n,v,a)

Description taylor(f,n,v) returns the (n-1)-order Maclaurin polynomial approximation 
to f, where f is a symbolic expression representing a function and v specifies 
the independent variable in the expression. v can be a string or symbolic 
variable.

taylor(f,n,v,a) returns the Taylor series approximation to f about a. The 
argument a can be a numeric value, a symbol, or a string representing a 
numeric value or an unknown.

You can supply the arguments n, v, and a in any order. taylor determines the 
purpose of the arguments from their position and type.

You can also omit any of the arguments n, v, and a. If you do not specify v, 
taylor uses findsym to determine the function’s independent variable. n 
defaults to 6.

The Taylor series for an analytic function f(x) about the basepoint x=a is given 
below.

Examples This table describes the various uses of the taylor command and its relation 
to Taylor and MacLaurin series.

f x( ) x a–( )n f n( ) a( )
n!

------------------⋅

n 0=

∞

∑=

Mathematical Operation MATLAB

syms x
taylor(f)

xn f n( ) 0( )
n!

------------------⋅

n 0=

5

∑
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In the case where f is a function of two or more variables (f=f(x,y,...)), there 
is a fourth parameter that allows you to select the variable for the Taylor 
expansion. Look at this table for illustrations of this feature.

, m is a positive integer taylor(f,m)
m is a positive integer

, a is a real number taylor(f,a)
a is a real number

m1, m2 are positive integers

taylor(f,m1,m2)
m1, m2 are positive 
integers

a is real and m is a positive integer

taylor(f,m,a)
a is real and m is a 
positive integer

Mathematical Operation MATLAB

taylor(f,y)

Mathematical Operation MATLAB

xn f n( ) 0( )
n!

------------------⋅

n 0=

m

∑

x a–( )n f n( ) a( )
n!

------------------⋅

n 0=

5

∑

x m2–( )n
f n( ) m2( )

n!
-----------------------⋅

n 0=

m1

∑

x a–( )n f n( ) a( )
n!

------------------⋅

n 0=

m

∑

yn

n!
------

yn

n

∂

∂ f x y 0=,( )⋅

n 0=

5

∑
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See Also findsym

m is a positive integer

taylor(f,y,m) or 
taylor(f,m,y)
m is a positive integer

a is real and m is a positive integer

taylor(f,m,y,a)
a is real and m is a positive 
integer

a is real

taylor(f,y,a)
a is real

Mathematical Operation MATLAB

yn

n!
------

yn

n

∂

∂ f x y 0=,( )⋅

n 0=

m

∑

y a–( )n

n!
--------------------

yn

n

∂

∂ f x y a=,( )⋅

n 0=

m

∑

y a–( )n

n!
--------------------

yn

n

∂

∂ f x y a=,( )⋅

n 0=

5

∑
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3taylortoolPurpose Taylor series calculator

Syntax taylortool
taylortool('f')

Description taylortool initiates a GUI that graphs a function against the Nth partial sum 
of its Taylor series about a basepoint x = a. The default function, value of N, 
basepoint, and interval of computation for taylortool are f = x*cos(x),
N = 7, a = 0, and [-2*pi,2*pi], respectively.

taylortool('f') initiates the GUI for the given expression f.

Examples taylortool('exp(x*sin(x))')

taylortool('sin(tan(x)) - tan(sin(x))')

See Also funtool, rsums
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3trilPurpose Symbolic lower triangle

Syntax tril(X)
tril(X,K)

Description tril(X) is the lower triangular part of X.

tril(X,K) returns a lower triangular matrix that retains the elements of X on 
and below the k-th diagonal and sets the remaining elements to 0. The values 
k=0, k>0, and k<0 correspond to the main, superdiagonals, and subdiagonals, 
respectively.

Examples Suppose

A =
[   a,   b,   c ]
[   1,   2,   3 ]
[ a+1, b+2, c+3 ]

Then tril(A) returns

[   a,   0,   0 ]
[   1,   2,   0 ]
[ a+1, b+2, c+3 ]

tril(A,1) returns

[   a,   b,   0 ]
[   1,   2,   3 ]
[ a+1, b+2, c+3 ]

tril(A,-1) returns

[   0,   0,   0 ]
[   1,   0,   0 ]
[ a+1, b+2,   0 ]

See Also diag, triu
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3triuPurpose Symbolic upper triangle

Syntax triu(X)
triu(X, K)

Description triu(X) is the upper triangular part of X.

triu(X, K) returns an upper triangular matrix that retains the elements of X 
on and above the k-th diagonal and sets the remaining elements to 0. The 
values k=0, k>0, and k<0 correspond to the main, superdiagonals, and 
subdiagonals, respectively.

Examples Suppose

A =
[   a,   b,   c ]
[   1,   2,   3 ]
[ a+1, b+2, c+3 ]

  

Then triu(A) returns

[   a,   b,   c ]
[   0,   2,   3 ]
[   0,   0, c+3 ]

triu(A,1) returns

[ 0, b, c ]
[ 0, 0, 3 ]
[ 0, 0, 0 ]

triu(A,-1) returns

[   a,   b,   c ]
[   1,   2,   3 ]
[   0, b+2, c+3 ]

See Also diag, tril
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3vpaPurpose Variable precision arithmetic

Syntax R = vpa(A)
R = vpa(A,d)

Description vpa(A) uses variable-precision arithmetic (VPA) to compute each element of A 
to d decimal digits of accuracy, where d is the current setting of digits. Each 
element of the result is a symbolic expression.

vpa(A,d) uses d digits, instead of the current setting of digits.

Examples The statements

digits(25)
q = vpa(sin(sym('pi')/6))
p = vpa(pi)
w = vpa('(1+sqrt(5))/2')

return

q =
.5000000000000000000000000

p = 3.141592653589793238462643

w =
1.618033988749894848204587

vpa pi 75 computes  to 75 digits.

The statements

A = vpa(hilb(2),25)
B = vpa(hilb(2),5)

return

A =
[                        1., .5000000000000000000000000]
[.5000000000000000000000000, .3333333333333333333333333]

π
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B =
[    1., .50000]
[.50000, .33333]

See Also digits, double
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3zetaPurpose Riemann Zeta function

Syntax Y = zeta(X)
Y = zeta(n, X)

Description zeta(X) evaluates the Zeta function at the elements of X, a numeric matrix, or 
a symbolic matrix. The Zeta function is defined by

zeta(n, X) returns the n-th derivative of zeta(X).

Examples zeta(1.5) returns 2.6124.

zeta(1.2:0.1:2.1) returns 

Columns 1 through 7 
 
    5.5916    3.9319    3.1055    2.6124    2.2858    2.0543    1.8822
 
Columns 8 through 10 
 
    1.7497    1.6449    1.5602

zeta([x 2;4 x+y]) returns

[   zeta(x),  1/6*pi^2]
[ 1/90*pi^4, zeta(x+y)]

diff(zeta(x),x,3) returns zeta(3,x).

ζ w( ) 1

kw
-------

k 1=

∞

∑=
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3ztransPurpose z-transform

Syntax F = ztrans(f)
F = ztrans(f,w)
F = ztrans(f,k,w)

Description F = ztrans(f) is the z-transform of the scalar symbol f with default 
independent variable n. The default return is a function of z.

The z-transform of f is defined as

where n is f’s symbolic variable as determined by findsym. If f = f(z), then 
ztrans(f) returns a function of w.

F = ztrans(f,w) makes F a function of the symbol w instead of the default z.

F = ztrans(f,k,w) takes f to be a function of the symbolic variable k.

f f n( )= F F z( )=⇒

F z( ) f n( )

zn
----------

0

∞

∑=

F F w( )=

F w( ) f n( )

wn
----------

0

∞

∑=

F w( ) f k( )

wk
----------

0

∞

∑=
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Examples

See Also fourier, iztrans, laplace

Z-Transform MATLAB Operation

f = n^4

ztrans(f)

returns

z*(z^3+11*z^2+11*z+1)/(z-1)^5

g = a^z

simplify(ztrans(g))

returns

-w/(-w+a)

f = sin(a*n)

ztrans(f,w)

returns

w*sin(a)/(w^2-2*w*cos(a)+1)

f n( ) n4
=

Z f[ ] f n( )z n–

z z3 11z2 11z 1+ + +( )

z 1–( )5
----------------------------------------------------------=

n 0=

∞

∑=

g z( ) az
=

Z g[ ] g z( )w z–

w
a w–
--------------=

z 0=

∞

∑=

f n( ) ansin=

Z f[ ] f n( )w n–

w asin

1 2w acos– w2
+

--------------------------------------------=

n 0=

∞

∑=
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Compatibility with Earlier Versions
Earlier versions of the Symbolic Math Toolboxes work with version 4.0 or 4.1 
of MATLAB and Maple V, release 2. The goal was to provide access to Maple 
with a language syntax that is familiar to MATLAB users. This was been done 
without modifying either of the two underlying systems.

However, it is not possible to provide completely seamless integration without 
modifying MATLAB. For example, if f and g are strings representing symbolic 
expressions, we would prefer to use the notation f+g for their sum, instead of 
symadd(f,g). But f+g attempts to add the individual characters in the two 
strings, rather than concatenate them with a plus sign in between. Similarly, 
if A is a matrix whose elements are symbolic expressions, we would prefer to 
use A(i,j) to access a individual expression, instead of sym(A,i,j). But if A is 
a matrix of strings, then A(i,j) is a single character, not a complete 
expression.

This version of the Symbolic Math Toolboxes makes extensive use of the new 
MATLAB object capabilities and works with Maple V, release 5. For this 
reason, it is not fully compatible with version 1 of the Symbolic Math Toolbox. 
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Obsolete Functions
This version maintains some compatibility with version 1. For example, the 
following obsolete functions continue to be available in version 2, though you 
should avoid using them as future releases may not include them.

In version 1, these functions accepted strings as arguments and returned 
strings as results. In version 2, they accept either strings or symbolic objects as 
input arguments and produce symbolic objects as results. Version 2 provides 
overloaded MATLAB operators or new functions that you can use to replace 
most of these functions in your existing code.

For example, the version 1 statements

f = '1/(5+4*cos(x))'
g = int(int(diff(f,2)))
e = symsub(f,g)
simple(e)

Function Description

determ Symbolic matrix determinant

linsolve Solve simultaneous linear equations

eigensys Symbolic eigenvalues and eigenvectors

singvals Symbolic singular values and singular vectors

numeric Convert symbolic matrix to numeric form

symop Symbolic operations

symadd Add symbolic expressions

symsub Subtract symbolic expressions

symmul Multiply symbolic expressions

symdiv Divide symbolic expressions

sympow Power of symbolic expression

eval Evaluate a symbolic expression
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continue to work in version 2. However, with version 2, the preferred approach 
is

syms x
f = 1/(5+4*cos(x))
g = int(int(diff(f,2)))
e = f - g
simple(e)

The version 1 statements

H = sym(hilb(3))
I = sym(eye(3))
X = linsolve(H,I)
t = sym(0)
for j = 1:3
   t = symadd(t,sym(X,j,j))
end
t

continue to work in version 2. However, the preferred approach is

H = sym(hilb(3))
I = eye(3)
X = H\I
t = sum(diag(X))

You can no longer use the sym function in this way:

M = sym(3,3,'1/(i+j-t)')

Instead, you must change the code to something like this:

syms t
[J,I] = meshgrid(1:3)
M = 1./(I+J-t)

As in version 1, you can supply diff, int, solve, and dsolve with string 
arguments in version 2. In version 2, however, these functions return symbolic 
objects instead of strings. 

For some computations, the new release of Maple produces results in a 
different format. 
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For example, with version 1, the statement

[x,y] = solve('x^2 + 2*x*y + y^2 = 4', 'x^3 + 4*y^3 = 1')

produces

x =
      [   -RootOf(_Z^3-2*_Z^2-4*_Z-3)-2]
      [-RootOf(3*_Z^3+6*_Z^2-12*_Z+7)+2]
   
y =
      [   RootOf(_Z^3-2*_Z^2-4*_Z-3)]
      [RootOf(3*_Z^3+6*_Z^2-12*_Z+7)]

The same statement works in version 2, but produces results with the RootOf 
expressions expanded to exhibit the multiple solutions.
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Index

Symbols
- 3-10
* 3-10
+ 3-10
. 3-10
.* 3-10
./ 3-10
.^ 3-11
.  3-11
/ 3-10
@sym directory 1-14
\ 2-52, 3-10
^ 3-11
 3-11

A
abstract functions 1-8
Airy differential equation 2-82
Airy function 2-82, 2-83
algebraic equations

solving 3-108
arithmetic operations 3-10

left division
array 3-10
matrix 3-10

matrix addition 3-10
matrix subtraction 3-10
multiplication

array 3-10
matrix 3-10

power
array 3-11
matrix 3-11

right division
array 3-10
matrix 3-10

transpose
array 3-11
matrix 3-11

B
backslash operator 2-52
Bernoulli polynomials 2-83
Bessel functions 2-84

differentiating 2-3
integrating 2-9

besselj 2-3
besselk 2-82
beta function 2-84
binomial coefficients 2-83
branch cut 2-28

C
calculus 2-2
ccode 3-13
characteristic polynomial 2-56, 2-58, 3-96
Chebyshev polynomial 2-85
circulant matrix 1-9, 2-40
clear 2-12
clearing variables

Maple workspace 2-12
MATLAB workspace 2-12, 3-117

collect 2-30, 3-14
colspace 3-15
column space 2-53
complementary error function 2-84
complex conjugate 3-17
complex number

imaginary part of 3-66
real part of 3-101
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complex symbolic variables 1-7
compose 3-16
conj 1-8, 3-17
converting symbolic matrices to numeric form 

1-7
cosine integral function 3-18
cosine integrals 2-84
cosint 3-18

D
Dawson’s integral 2-84
decimal symbolic expressions 1-6
definite integration 2-9
det 3-19
diag 3-20
diff 2-2, 3-22
differentiation 2-2
diffraction 2-85
digamma function 2-84
digits 1-7, 3-23
Dirac Delta function 2-84
discontinuities 2-27
discrim 2-72
double 3-24

converting to floating-point with 2-48
dsolve 2-79, 3-25

E
eig 2-55, 3-27
eigenvalue trajectories 2-65
eigenvalues 2-55, 2-66, 3-27

computing 2-55
eigenvector 2-56
elliptic integrals 2-84
eps 1-6

error function 2-84
Euler polynomials 2-83
expand 2-31, 3-30
expm 3-29
exponential integrals 2-84
Extended Symbolic Math Toolbox vii, 2-95, 3-91

orthogonal polynomials included with 2-84
ezcontour 3-31
ezplot 2-16

F
factor 3-49

example 2-32
factorial function 1-9
factorial operator 3-120
findsym 1-12, 3-50
finverse 3-51
floating-pint arithmetic

IEEE 2-46
floating-point arithmetic 2-45
floating-point symbolic expressions 1-6
format 2-45
fortran 3-52
fourier 3-53
Fourier transform 3-53
Fresnel integral 2-84
function calculator 3-56
functional composition 3-16
functional inverse 3-51
funtool 3-56

G
gamma function 2-84
Gegenbauer polynomial 2-84
generalized hypergeometric function 2-84
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Givens transformation 2-50, 2-59
golden ratio 1-4

H
harmonic function 2-84
Heaviside function 2-84
Hermite polynomial 2-84
Hilbert matrix 1-7, 2-51
horner 3-59

example 2-31
hyperbolic cosine function 2-84
hyperbolic sine function 2-84
hypergeometric function 2-84

I
IEEE floating-point arithmetic 2-46
ifourier 3-61
ilaplace 3-64
imag 3-66
incomplete gamma function 2-84
initializing the Maple kernel 3-82
initstring variable 3-82
int 2-7, 3-67

example 2-7
integration 2-7

definite 2-9
with real constants 2-9

inv 3-68
inverse Fourier transform 3-61
inverse Laplace transform 3-64
inverse z-transform 3-70
iztrans 3-70

J
Jacobi polynomial 2-85
jacobian 2-4, 3-72
Jacobian matrix 2-4, 3-72
jordan 3-73

example 2-61
Jordan canonical form 2-61, 3-73

L
Laguerre polynomial 2-84
Lambert’s W function 2-84, 3-75
lambertw 3-75
laplace 3-76
Laplace transform 3-76
latex 3-78
left division

array 3-10
matrix 3-10

Legendre polynomial 2-85
limit 2-6, 3-79
limits 2-5

two-sided 2-6
undefined 2-6

linear algebra 2-50
logarithm function 2-84
logarithmic integral 2-84

M
machine epsilon 1-6
Maclaurin series 2-14
Maple vi
maple 3-80

output argument 2-93
Maple functions

accessing 1-9, 2-88
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Maple help 3-93
Maple kernel

accessing 3-80
initializing 3-82

Maple library 3-82
Maple Orthogonal Polynomial Package 3-91
Maple packages 2-95

loading 2-96
Maple procedure 2-1, 2-95, 3-99

compiling 2-100
installing 3-99
writing 2-97

mapleinit 3-82
matrix

addition 3-10
condition number 2-53
diagonal 3-20
exponential 3-29
inverse 3-68
left division 3-10
lower triangular 3-125
multiplication 3-10
power 3-11
rank 3-100
right division 3-10
size 3-107
subtraction 3-10
transpose 3-11
upper triangular 3-126

M-file
creating 1-14

mfun 2-83, 3-83
mfunlist 3-84
mhelp 3-93
multiplication

array 3-10
matrix 3-10

N
null 3-94
null space 2-53
null space basis 3-94
numden 3-95
numeric symbolic expressions 1-6

O
ordinary differential equations

solving 3-25
orthogonal polynomials 2-84, 3-91

P
poly 2-56, 3-96
poly2sym 3-97
polygamma function 2-84
polynomial discriminants 2-72
power

array 3-11
matrix 3-11

pretty 3-98
example 2-14

procread 2-98, 3-99
prod 1-9

R
rank 3-100
rational arithmetic 2-46
rational symbolic expressions 1-6
real 3-101
real property 1-7
real symbolic variables 1-7, 2-12
reduced row echelon form 3-102
Riemann sums
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evaluating 3-103
Riemann Zeta function 2-83, 3-129
right division

array 3-10
matrix 3-10

Rosser matrix 2-57
rref 3-102
rsums 3-103

S
shifted sine integral 2-84
simple 2-34, 3-104
simplifications 2-29
simplify 2-34, 3-105
simultaneous differential equations

solving 2-81
simultaneous linear equations

solving systems of 2-52, 2-78
sine integral function 3-106
sine integrals 2-84
singular value decomposition 2-62, 3-113
sinint 3-106
solve 2-75, 3-108
solving equations 2-75

algebraic 2-75, 3-108
ordinary differential 2-79, 3-25

special functions 2-83
evaluating numerically 3-83
listing 3-84

spherical coordinates 2-4
subexpr 2-38, 3-110
subexpressions 2-38
subs 2-40, 3-111
substitutions 2-38

in symbolic expressions 3-111
summation

symbolic 2-13
svd 2-63, 3-113
sym 1-2, 1-4, 1-5, 1-7, 1-9, 2-12, 3-115
sym2poly 3-118
symbolic expressions 2-75

C code representation of 3-13
creating 1-4
decimal 1-6
differentiating 3-22
expanding 3-30
factoring 3-49
finding variables in 3-50
floating-point 1-6
Fortran representation of 3-52
integrating 3-67
LaTeX representation of 3-78
limit of 3-79
numeric 1-6
prettyprinting 3-98
rational 1-6
simplifying 3-104, 3-105, 3-110
substituting in 3-111
summation of 3-119
Taylor series expansion of 3-121

symbolic math functions
creating 1-14

symbolic math programs
debugging 2-93
writing 2-88

Symbolic Math Toolbox
compatibility with earlier versions A-2
demo x
obsolete functions A-3

symbolic matrix
computing eigenvalue of 2-58
converting to numeric form 1-7
creating 1-9
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differentiating 2-3
symbolic objects

about 1-2
creating 3-115, 3-117

symbolic polynomials
converting to numeric form 3-118
creating from coefficient vector 3-97
Horner representation of 3-59

symbolic summation 2-13
symbolic variables

clearing 3-117
complex 1-7
creating 1-4
default 1-11
real 1-7, 2-12

syms 1-5, 3-117
symsize 3-107
symsum 2-13, 3-119

T
taylor 2-14, 3-121
Taylor series 2-14
Taylor series expansion 3-121
taylortool 3-124
trace mode 2-93
transpose

array 3-11
matrix 3-11

tril 3-125
triu 3-126

U
unreal property 1-8

V
variable-precision arithmetic 2-45, 3-127

setting accuracy of 3-23
variable-precision numbers 2-47
vpa 2-47, 3-127

Z
zeta 3-129
ztrans 3-130
z-transform 3-130
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