
Modeling

Simulation

Implementation

For Use with MATLAB and Simulink
® ®

User’s Guide
Version 3

Virtual Reality
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Virtual Reality Toolbox User’s Guide
 COPYRIGHT 2001-2002 by HUMUSOFT s.r.o. and The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: August 2001 First printing New for Version 2.0 (Release 12.1)
July 2002 Second printing Revised for Version 3.0 (Release 13)

i

Contents

Preface

Required Products . viii
MATLAB . viii
Simulink . viii
VRML Viewer . ix
VRML Editor . x

Related Products . xi

Documentation and Help . xiii
Installing Online Documentation . xiii
Viewing Online Documentation . xiv
Printing the Documentation . xv
Product News Pages . xvi

Using This Guide . xvii
Expected Background . xvii
Organization . xviii

Conventions . xix
Terminology . xix

Typographical Conventions . xxi

ii Contents

1
Introduction

What Is the Virtual Reality Toolbox? . 1-2

Features of the Virtual Reality Toolbox 1-3
VRML Support . 1-3
MATLAB Interface . 1-4
Simulink Interface . 1-4
VRML Viewers . 1-5
VRML Editor . 1-5
Real-Time Workshop Support . 1-6
SimMechanics Support . 1-6
Hardware Support . 1-6
Client-Server Architecture . 1-6

VRML Overview . 1-8
VRML History . 1-8
VRML Coordinate System . 1-9
VRML File Format . 1-10

Examples Using the Virtual Reality Toolbox 1-14
Simulink Interface Examples . 1-14
MATLAB Interface Examples . 1-21

Implementation Notes . 1-23
Virtual Reality Toolbox Server . 1-23
VRML Compatibility . 1-24

iii

2
Installation

System Requirements . 2-2
Supported Computer Platforms . 2-2
Host Computer . 2-4
Client Computer . 2-7

Installing the Virtual Reality Toolbox
on the Host Computer . 2-9

Getting or Updating Your License . 2-9
Components on a Host Computer . 2-10
Installing from CD (Windows) . 2-11
Installing from CD (UNIX/Linux) . 2-12
Downloading from the Web . 2-14

Installing the VRML Viewer on the Host Computer 2-15
Virtual Reality Toolbox Viewer . 2-15
Installing a VRML Plug-In (Windows) 2-16
Installing a VRML Plug-in (UNIX/Linux) 2-19
Setting the Default Viewer of Virtual Scenes 2-20

Installing the VRML Editor on the Host Computer 2-25
Installing VRML Editor (Windows) . 2-25
VRML Editor (UNIX/Linux) . 2-26
Setting the Default Editor of Virtual Scenes 2-26

Removing Components . 2-31
Removing the Virtual Reality Toolbox and V-Realm Builder . 2-31
Removing the blaxxun Contact Plug-In 2-31

Installation on the Client Computer 2-33
Installing a VRML Plug-In (Windows) 2-33
VRML Plug-In (UNIX/Linux) . 2-34

Testing the Installation . 2-35
Running a Simulink Interface Example 2-35
Running a MATLAB Interface Example 2-40

iv Contents

3
Simulink Interface

Associating a Virtual World with Simulink 3-2
Adding a Virtual Reality Toolbox Block 3-2
Changing the Virtual World Associated
with a Simulink Block . 3-10

Using the Simulink Interface . 3-13
Displaying a Virtual World and Starting Simulation 3-13
View a Virtual World with a Web Browser
on the Host Computer . 3-16
View a Virtual World with a Web Browser
on the Client Computer . 3-19

4
MATLAB Interface

Creating Virtual Reality Toolbox Objects 4-2
Creating a vrworld Object . 4-2

Using the MATLAB Interface . 4-4
Opening a Virtual World . 4-4
Interacting with a Virtual World . 4-5
Closing and Deleting a vrworld Object . 4-8

5
Virtual Worlds

VRML Editing Tools . 5-2
Editors for Virtual Worlds . 5-2
V-Realm Builder . 5-4

v

Deformation of a Sphere Example . 5-5
Defining the Problem . 5-5
Adding a Virtual Reality Toolbox Block 5-6
Creating a Sphere in a Virtual World . 5-8
Creating a Box in a Virtual World . 5-13
Connecting a Simulink Model to a Virtual World 5-17

Viewing a Virtual World . 5-21
Virtual Reality Toolbox Viewer . 5-21
blaxxun Contact VRML Plug-in . 5-33
blaxxun Contact Settings . 5-36

VRML Data Types . 5-37
VRML Field Data Types . 5-37
VRML Data Class Types . 5-39

6
Block Reference

7
Function Reference

8
vrworld Object Reference

vrworld Object Properties . 8-2

vrworld Object Methods . 8-4

vi Contents

9
vrnode Object Reference

vrnode Object Properties . 9-2

vrnode Object Methods . 9-3

10
vrfigure Object Reference

vrfigure Object Properties . 10-2

vrfigure Object Methods . 10-5

Index

Preface

The Virtual Reality Toolbox is part of a family of software products that you use to create and
visualize dynamic systems. Some of these products are required, while other products you use for
special applications.

Required Products (p. viii) MATLAB®, Simulink®, Virtual Reality Toolbox Viewer,
Web browser with VRML plug-in (optional if you use the
viewer), VRML editor

Related Products (p. xi) Stateflow®, Stateflow Coder, SimMechanics, Real-Time
Workshop®, Real-Time Windows Target, and xPC Target

Documentation and Help (p. xiii) Location and installation of online HTML and PDF files

Using This Guide (p. xvii) Suggestions for learning the Virtual Reality Toolbox and
a description of the chapters

Conventions (p. xix) Terms that can have various meanings, and text formats
used in this guide

Typographical Conventions (p. xxi) Conventions used throughout this guide.

 Preface

viii

Required Products
The Virtual Reality Toolbox is part of a family of products from The
MathWorks. You need to install some of these products and other third-party
products to use the Virtual Reality Toolbox.

This section includes the following topics:

• MATLAB — Create objects in the MATLAB workspace, connect these objects
to a virtual world, and then use a command-line interface to control and
make changes to the virtual world.

• Simulink — Create a model of your physical system and controller using a
block diagram, connect your block diagram to a virtual world, and then use
the block diagram to make changes to your model and view those changes in
the virtual world.

• VRML Viewer — View virtual worlds described with VRML.

• VRML Editor — Create virtual worlds described with VRML.

MATLAB
MATLAB provides the tools you use to write scripts and functions in M-code.
You can use your M-code scripts to set positions and properties of VRML
objects, create callbacks from GUIs, and map data to virtual objects.

Note Version 3.0 of Virtual Reality Toolbox requires MATLAB Version 6.5 on
the Release 13 CD. The product is also available for Web download.

MATLAB documentation — For information on using MATLAB, see the
MATLAB documentation. It explains how to work with data and how to use the
functions supplied with MATLAB. For a reference describing the functions
specific to the Virtual Reality Toolbox, see Chapter 7, “Function Reference” of
this guide.

Simulink
Simulink provides an environment where you model your physical system and
controller as a block diagram. You create the block diagram by using a mouse
to connect blocks and a keyboard to edit block parameters.

Required Products

ix

With the Virtual Reality Toolbox, you can view the model you created with
Simulink blocks. You can also view the simulation of your dynamic system over
time.

Note Version 3.0 of the Virtual Reality Toolbox requires Simulink Version
5.0, which is available on the Release 13 CD.

Simulink documentation — For information on using Simulink, see the
Simulink documentation. It explains how to connect blocks, build models, and
change block parameters. For a reference describing the Virtual Reality
Toolbox blocks, see Chapter 6, “Block Reference” in this guide.

VRML Viewer
You use a VRML viewer to visualize and explore virtual worlds described with
VRML. The following are descriptions of VRML viewers:

• Virtual Reality Toolbox viewer — This viewer is installed with the Virtual
Reality Toolbox and is the default viewer for virtual worlds. You can access
this viewer from either a Virtual Reality Toolbox block in your Simulink
model, or by using the vrview and vrfigure functions with MATLAB.

The Virtual Reality Toolbox viewer is a client to the Virtual Reality Toolbox
server. It does not require a Web browser and it is available on more
platforms than any other VRML97 viewer. It is supported on PC, UNIX, and
Linux platforms. The viewer is the recommended method for viewing virtual
worlds on a host computer.

• blaxxun Contact Version 4.4 — VRML plug-in shipped with the PC version
of the Virtual Reality Toolbox. This VRML plug-in allows you to view virtual
worlds in your Web browser. The blaxxun Contact plug-in is the only
supported VRML plug-in.

You can view a virtual world in the Virtual Reality Toolbox viewer as soon
as you install the Virtual Reality Toolbox. If you want to view the virtual
world in your Web browser, you need to use the vrinstall command to
install the blaxxun Contact plug-in. See “Installing a VRML Plug-In
(Windows)” on page 2-16.

 Preface

x

For information on using a Web browser to view virtual worlds, see “Testing
the Installation” on page 2-35. To download the blaxxun Contact plug-in, see
http://www.mathworks.com/support/product/VR.

Note Every VRML plug-in installs Java classes into the Web browser. It is
best to limit the number of plug-ins you use in order to avoid Java errors and
conflicts. For this reason, use only the Virtual Reality Toolbox viewer or the
blaxxun Contact VRML plug-in on PC platforms. On UNIX and Linux
platforms, use only the Virtual Reality Toolbox viewer.

VRML Editor
You use a VRML editor to create the virtual worlds you connect to Simulink
block diagrams:

• PC platforms — V-Realm Builder Version 2.0 is included with the Virtual
Reality Toolbox. If you do not want to use V-Realm Builder, you can use your
favorite VRML editor.

Use the command vrinstall to install the editor before editing a virtual
world. See “Installing VRML Editor (Windows)” on page 2-25.

For information on using V-Realm Builder with the Virtual Reality Toolbox,
see Chapter 5, “Virtual Worlds.”

• UNIX/Linux platforms — The default VRML editor for UNIX/Linux
platforms is the MATLAB editor. If you do not want to use the MATLAB
editor, you can set the Editor preference to your favorite text editor.

Note V-Realm Builder is the only supported VRML editor. It is provided with
the PC version of the Virtual Reality Toolbox.

Related Products

xi

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Virtual Reality Toolbox.

For more information about any of these products, see either

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Note The toolboxes listed below all include functions that extend the
capabilities of MATLAB. The blocksets all include blocks that extend the
capabilities of Simulink.

Product Description

Aerospace Blockset Model, analyze, integrate, and simulate
aircraft, spacecraft, missile, weapon, and
propulsion systems

Dials & Gauges Blockset Monitor signals and control simulation
parameters with graphical instruments

Real-Time Windows
Target

Run Simulink and Stateflow models on a PC in
real time

Real-Time Workshop Generate C code from Simulink models

SimMechanics Model and simulate mechanical systems

Simulink Design and simulate continuous- and
discrete-time systems

Stateflow Design and simulate event-driven systems

 Preface

xii

Stateflow Coder Generate C code from Stateflow charts

xPC Target Perform real-time rapid prototyping using PC
hardware

xPC Target Embedded
Option

Deploy real-time applications on PC hardware

Product Description

Documentation and Help

xiii

Documentation and Help
The Virtual Reality Toolbox software ships with printed documentation.This
documentation is available online through the MATLAB Help browser, or as a
PDF file that you can print or view online.

Documentation from The MathWorks does not include the VRML97 standard
reference. You can view this reference online at
http://www.web3d.org/fs_specifications.htm.

This section includes the following topics:

• Installing Online Documentation — Install HTML files from the
Documentation CD or from a Web download.

• Viewing Online Documentation — View HTML files from your hard drive,
the documentation CD, or the MathWorks Web site.

• Printing the Documentation — Locate and print PDF files on the
Documentation CD or the MathWorks Web site.

• Product News Pages— View product information for the Virtual Reality
Toolbox.

Installing Online Documentation
Installing the online documentation is part of the normal MathWorks
installation process:

• Documentation from a CD — Start the MathWorks installer, and when
prompted, select the Product and Documentation check boxes. During the
installation process you are asked to insert the documentation CD.

• Documentation from a Web download — If you update the Virtual Reality
Toolbox using a Web download, and you want to view the documentation
with the MathWorks Help browser, you must install the documentation on
your hard drive. Start the Web installer, and as before, select the Product
and Documentation check boxes.

 Preface

xiv

Note During normal installation of the Virtual Reality Toolbox from a CD or
a Web download, the PDF files for the documentation are not copied to your
hard drive. When you select to install the documentation, only the HTML files
are copied.

Viewing Online Documentation
You can access the online documentation from HTML files you install on your
hard drive, from the documentation CD, or through the MathWorks technical
support Web pages.

To Access HTML Documentation on Your Hard Drive or the Documentation
CD

1 In the MATLAB window, from the Help menu, click Full Product Family
Help.

The Help browser window opens.

2 In the left pane, click Virtual Reality Toolbox.

In the right pane, the Help browser displays the Virtual Reality Toolbox
Roadmap page. If you did not install the HTML help files on your hard drive,
a message box opens asking you to insert the documentation CD.

3 Under the section titled Required and Related Products, select Related
Products.

The Help browser displays the Virtual Reality Toolbox Release 13 Related
Products information.

Note If you installed the Virtual Reality Toolbox from a Web download, and
you chose not to install the HTML help files, the current documentation is
neither on your hard drive, nor on the documentation CD. You need to use
the MathWorks technical support Web site.

Documentation and Help

xv

To Access HTML Documentation from MathWorks Technical Support
Alternatively, you can view the documentation from the MathWorks technical
support Web site. The Web pages are identical to the latest release whether it
was distributed from a CD or a Web download:

1 Open a Web browser.

2 In the address box, enter

http://www.mathworks.com/access/helpdesk/help/toolbox/vr/vr.shtml

3 Under the section titled Required and Related Products, select Related
Products.

4 The Web browser displays the Virtual Reality Toolbox Related Products
information.

Printing the Documentation
The documentation for the Virtual Reality Toolbox is available as PDF files.
You need to install Adobe Acrobat Reader 4.0 or later to open and read these
files. To download a free copy of Acrobat Reader, see
http://www.adobe.com/products/acrobat/main.html.

To Access PDF Documentation on the Documentation CD

1 Insert the documentation CD into your CD drive.

2 In the MATLAB window, from the Help menu, click Full Product Family
Help.

The MathWorks Help browser window opens.

3 In the left pane, click Virtual Reality Toolbox.

In the right pane, the Help browser displays the Virtual Reality Toolbox
Roadmap page.

 Preface

xvi

4 Under the section titled Printing the Documentation, select the PDF file you
want to print.

Note If you installed the Virtual Reality Toolbox from a Web download, and
you chose not to install the HTML help files, the current documentation is
neither on your hard drive, nor on the documentation CD. You need to use
the MathWorks technical support Web site.

Product News Pages
The developers for the Virtual Reality Toolbox maintain a Product News page.
Information such as bug fixes, enhancements, and tips on how to use the
product can be found on this page. To view the Product News page, navigate to

http://www.mathworks.com/support/product/VR/

Then, click on the Product News link.

Using This Guide

xvii

Using This Guide
To help you effectively read and use this guide, here is a brief description of the
chapters and a suggested reading path.

This section includes the following topics:

• Expected Background — Working knowledge of MATLAB and Simulink

• Organization — Chapters, sections, and topics with procedures and
reference information

Expected Background
This manual assumes that you are already familiar with

• MATLAB, to write scripts and functions with M-code, and to use functions
with the command-line interface

• Simulink and Stateflow, to create models as block diagrams and simulate
those models

If You Are a New User — You might want to review

• Chapter 1, “Introduction” — This chapter gives you an overview of the
Virtual Reality Toolbox features.

• Chapter 3, “Simulink Interface” — Interact with a virtual world from
Simulink.

• Chapter 4, “MATLAB Interface” — Interact with a virtual world from
MATLAB.

If You Are an Experienced Virtual Reality Toolbox User — You might want
to review

• Chapter 6, “Block Reference” — Additional functionality has been added to
the Virtual Reality Toolbox library.

• Chapter 8, “vrworld Object Reference” — Description of vrworld object
properties and methods.

• Chapter 9, “vrnode Object Reference” — Description of vrnode object
properties and methods.

 Preface

xviii

• Chapter 10, “vrfigure Object Reference” — Description of vrfigure object
properties and methods. Version 3.0 of the Virtual Reality Toolbox includes
the new object vrfigure.

Organization
The following table lists the chapters of this guide.

Chapter or Appendix Description

Chapter 1, “Introduction” Overview of the functions and features of
the Virtual Reality Toolbox

Chapter 2, “Installation” Procedures to install the Virtual Reality
Toolbox, VRML plug-in, and VRML editor

Chapter 3, “Simulink
Interface”

Procedures to add Virtual Reality Toolbox
blocks to your Simulink model and associate
those blocks with virtual worlds

Chapter 4, “MATLAB
Interface”

Procedures for creating scripts and
functions to control and change virtual
worlds using MATLAB objects

Chapter 5, “Virtual Worlds” Procedures for creating a simple virtual
world using V-Realm Builder

Chapter 6, “Block
Reference”

Reference for blocks in the Virtual Reality
Toolbox

Chapter 7, “Function
Reference”

Functions for the Virtual Reality Toolbox
environment

Chapter 8, “vrworld Object
Reference”

Reference for vrworld objects, including
methods and properties

Chapter 9, “vrnode Object
Reference”

Reference for vrnode objects, including
methods and properties

Chapter 10, “vrfigure
Object Reference”

Reference for vrfigure objects, including
methods and properties

Conventions

xix

Conventions
To help you effectively use this guide, there are some conventions. Conventions
consist of ways of consistently formatting the text and graphics, and the
meanings for common terms.

The topics in this section are

• Terminology— Terms specific to the Virtual Reality Toolbox and terms that
can have multiple meanings

• Typographical Conventions — Formatting conventions to indicate
user-selected objects, system messages, and filenames

Terminology
The following table lists some of the terms used in this guide.

Term Definition

application See real-time application.

build process The process of generating C code from your
Simulink model, compiling and inlining the
generated code to create a real-time executable.

external mode A Simulink mode that uses a Simulink block
diagram as a graphical user interface to a real-time
executable. This interface provides parameter
downloading and signal uploading for display using
Scope blocks.

real-time
application

Code that is ready to run in real time with the
kernel.

simulation The process of running a dynamic system in
nonreal time to observe its behavior.

Virtual Reality
Modeling
Language

The specification for displaying three-dimensional
objects using a VRML viewer.

 Preface

xx

virtual figure
object

A handle to a Virtual Reality Toolbox viewer
window.

virtual node object A handle to a node in a virtual world that allows
access to the node’s properties.

virtual world An imaginary world where you can navigate
around objects in three dimensions.

virtual world
object

A handle to a virtual world that allows you to
interact with and control the world.

VRML See “VRML Overview” on page 1-8 of this guide.

Term Definition (Continued)

Typographical Conventions

xxi

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, user input, items in
drop-down lists

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

 Preface

xxii

1

Introduction

The Virtual Reality Toolbox allows you to connect a virtual world, defined with VRML, to Simulink
and MATLAB. Understanding the features of the Virtual Reality Toolbox and some basic VRML
concepts will help you to use this product more effectively.

What Is the Virtual Reality Toolbox?
(p. 1-2)

Solution for virtual interaction with models of dynamic
systems over time

Features of the Virtual Reality Toolbox
(p. 1-3)

Description of the many features available to create and
view dynamic systems

VRML Overview (p. 1-8) Brief history of VRML, differences between the VRML
and MATLAB coordinate systems, and the format of
VRML files

Examples Using the Virtual Reality
Toolbox (p. 1-14)

VRML worlds with an interface to Simulink block
diagrams and an interface to MATLAB objects and
functions

Implementation Notes (p. 1-23) Outlines the Virtual Reality Toolbox Server and VRML
compatibility

1 Introduction

1-2

What Is the Virtual Reality Toolbox?
The Virtual Reality Toolbox is a solution for viewing and interacting with
dynamic systems in a three-dimensional virtual reality environment. It
extends the capabilities of MATLAB and Simulink into the world of virtual
reality graphics.

• Virtual worlds — Create virtual worlds or three-dimensional scenes using
standard Virtual Reality Modeling Language (VRML) technology.

• Dynamic systems — Create and define dynamic systems with MATLAB and
Simulink.

• Animation — View moving three-dimensional scenes driven by signals from
the Simulink environment.

• Manipulation — Change the position and properties of objects in a virtual
world, or change parameters in your Simulink model while running a
simulation.

To provide a complete working environment, the Virtual Reality Toolbox
includes additional components:

• VRML viewer — Use either the Virtual Reality Toolbox viewer or, for PC
platforms, the blaxxun Contact plug-in for Web browsers to display your
virtual worlds.

• VRML editor — For PC platforms, use V-Realm Builder to create and edit
VRML code. For UNIX or Linux platforms, use the MATLAB text editor to
write VRML code to create virtual worlds.

Features of the Virtual Reality Toolbox

1-3

Features of the Virtual Reality Toolbox
The Virtual Reality Toolbox includes many features for you to create and
visualize dynamic systems. It also provides real-time virtual interaction with
dynamic models.

This section includes the following topics that describe these features:

• VRML Support —Use VRML to define a virtual world

• MATLAB Interface — Control the virtual world from the MATLAB
interface

• Simulink Interface — Use Virtual Reality Toolbox blocks to connect your
Simulink model to a virtual world

• VRML Viewers — View your virtual world with the Virtual Reality Toolbox
viewer or your Web browser

• VRML Editor — Create virtual worlds using a VRML authoring tool or text
editor

• Real-Time Workshop Support — Support for simulations that use code
generated by Real-Time Workshop

• SimMechanics Support — View the behavior of your SimMechanics model
in a virtual world

• Hardware Support — Functions for using special hardware devices

• Client-Server Architecture — Provide client-server architecture for a
single computer or network operation

VRML Support
The Virtual Reality Modeling Language (VRML) is an ISO standard that is
open, text-based, and uses a WWW-oriented format. You use VRML to define a
virtual world that you can display with a VRML viewer and connect to a
Simulink model.

The Virtual Reality Toolbox uses many of the advanced features defined in the
current VRML97 specification. The term VRML, in this guide, always refers to
VRML as defined in the VRML97 standard ISO/IEC 14772-1:1997. This format
includes a description of 3-D scenes, sounds, internal actions, and WWW
anchors.

1 Introduction

1-4

The Virtual Reality Toolbox analyzes the structure of the virtual world,
determines what signals are available, and makes the signals available from
MATLAB and Simulink.

The Virtual Reality Toolbox viewer supports the majority of VRML97 standard
nodes, allowing you almost complete control over associated virtual worlds.
The blaxxun Contact plug-in supports all of VRML97 standard nodes.

The Virtual Reality Toolbox makes sure that the changes made to a virtual
world are reflected in MATLAB and Simulink. If you change the viewpoint in
your virtual world, this change occurs in the vrworld object properties in
MATLAB and Simulink.

The Virtual Reality Toolbox includes functions for retrieving and changing
virtual world properties.

MATLAB Interface
The Virtual Reality Toolbox provides a flexible MATLAB interface to virtual
reality worlds. After creating MATLAB objects and associating them with a
virtual world, you can control the virtual world by using functions and
methods.

From MATLAB, you can set positions and properties of VRML objects, create
callbacks from graphical user interfaces (GUIs), and map data to virtual
objects. You can also view the world with a VRML viewer, determine its
structure, and assign new values to all available nodes and their fields.

The Virtual Reality Toolbox includes functions for retrieving and changing the
virtual world properties and for saving the VRML files corresponding to the
actual structure of a virtual world.

MATLAB provides communication for control and manipulation of virtual
reality objects using MATLAB objects.

Simulink Interface
With a Simulink model, you can observe a simulation of your dynamic system
over time in a visually realistic 3-D model.

The Virtual Reality Toolbox provides blocks to directly connect Simulink
signals with virtual worlds. This connection lets you visualize your model as a
three-dimensional animation.

Features of the Virtual Reality Toolbox

1-5

You can implement most of the Virtual Reality Toolbox features with Simulink
blocks. Once you include these blocks in a Simulink diagram, you can select a
virtual world and connect Simulink signals to the virtual world. The Virtual
Reality Toolbox automatically scans a virtual world for available VRML nodes
that Simulink can drive.

All the VRML node properties are listed in a hierarchical tree-style viewer. You
select the degrees of freedom to control from within Simulink. After you close
a Block Parameters dialog box, Simulink updates the block with the inputs
and outputs corresponding to selected nodes in the virtual world. After
connecting these inputs to appropriate Simulink signals, you can view the
simulation with a VRML viewer.

Simulink provides communication for control and manipulation of virtual
reality objects, using Virtual Reality Toolbox blocks.

VRML Viewers
The Virtual Reality Toolbox contains a viewer that is the default viewing
method for virtual worlds. This Virtual Reality Toolbox viewer is supported on
PC, UNIX, and Linux platforms.

If you are on a PC or SGI platform, you can install a VRML plug-in and view a
virtual world in your preferred Web browser. For PC platforms, the Virtual
Reality Toolbox includes the popular VRML plug-in blaxxun Contact. This is
the only supported VRML plug-in. For SGI platforms, use the Cosmo Player
VRML plug-in.

The Virtual Reality Toolbox connects MATLAB and Simulink with a
VRML-enabled browser to display a simulated process using the TCP/IP
protocol. This allows you to watch a simulated virtual world not only on the
computer where MATLAB and Simulink are running, but also on other
computers connected through the Internet.

VRML Editor
For PC platforms, the Virtual Reality Toolbox includes one of the classic VRML
authoring tools, V-Realm Builder by Ligos Corp. With the addition of this
VRML authoring tool, the Virtual Reality Toolbox provides a complete
authoring, development, and working environment for carrying out 3-D visual
simulations.

1 Introduction

1-6

For UNIX and Linux platforms, you can use the MATLAB text editor to write
VRML code to create virtual worlds. You can also use your favorite text editor.

Real-Time Workshop Support
The Virtual Reality Toolbox seamlessly integrates with Real-Time Workshop
targets. It supports simulations that use code generated by Real-Time
Workshop and a third-party compiler on your desktop computer. The Virtual
Reality Toolbox also supports code executed in real time on external target
computers. It enables interaction with real-time code generated by Real-Time
Workshop and compiled with a third-party C/C++ compiler.

SimMechanics Support
You can use the Virtual Reality Toolbox to view the behavior of a model created
with SimMechanics. First, you build a model of a machine in Simulink using
SimMechanics blocks. SimMechanics creates a rough visual schematic of the
model. You can then view the animation of this model using a VRML viewer.

Alternatively, you can create a more detailed picture of your machine in a
virtual world, connect this world to the SimMechanics body sensor output, and
then view the behavior of the body in a VRML viewer.

Hardware Support
The Virtual Reality Toolbox contains functions for using special hardware
devices, including Joystick and SpaceMouse. It can also connect to common
hardware devices, including joysticks and Magellan SpaceMouse, using
Simulink blocks.

Client-Server Architecture
• Multiple clients connected to one server

• Adjustable parameters for tuning network performance

• Provides client-server architecture for a single computer or network
operation

Features of the Virtual Reality Toolbox

1-7

The Virtual Reality Toolbox connects MATLAB and Simulink to a
VRML-enabled Web browser using the TCP/IP protocol. The toolbox can be
used in two configurations:

• Single computer — MATLAB, Simulink, and the virtual reality
representations run on the same host computer.

• Network computer — You can view an animated virtual world on a
computer separate from the computer with the Virtual Reality Toolbox
server.

1 Introduction

1-8

VRML Overview
The Virtual Reality Modeling Language (VRML) is the language you use to
display three-dimensional objects with a VRML viewer.

This section includes the following topics:

• VRML History — Events leading up to the creation of the VRML97
standard.

• VRML Coordinate System — The VRML coordinate system is different
from the MATLAB coordinate system.

• VRML File Format — VRML files use a hierarchical structure to describe
three-dimensional objects and their movements.

VRML History
Since people started to publish their documents on the World Wide Web
(WWW), there has been an effort to enhance the content of Web pages with
advanced three-dimensional graphics and interaction with those graphics.

The term Virtual Reality Markup Language (VRML) was first used by Tim
Berners-Lee at a European Web conference in 1994 when he talked about a
need for a 3-D Web standard. Soon afterward, an active group of artists and
engineers formed around a mailing list called www-vrml. They changed the
name of the standard to Virtual Reality Modeling Language to emphasize the
role of graphics. The result of their effort was to produce the VRML 1
specification. As a basis for this specification they used a subset of the Inventor
file format from Silicon Graphics.

The VRML 1 standard was implemented in several VRML browsers, but it only
allowed you to create static virtual worlds. This limitation reduced the
possibility of its widespread use. Quickly it became clear that the language
needed a robust extension to add animation and interactivity, and bring life to
a virtual world. The VRML 2 standard was developed, and in the year 1997 it
was adopted as International Standard ISO/IEC 14772-1:1997. Since then it is
referred to as VRML97.

VRML97 represents an open and flexible platform for creating interactive
three-dimensional scenes (virtual worlds). As computers improve in
computational power and graphic capability, and communication lines become
faster, the use of 3-D graphics becomes more popular outside the traditional

VRML Overview

1-9

domain of art and games. There are now a number of VRML97-enabled
browsers available on several platforms. Also, there are an increasing number
of VRML authoring tools from which to choose. In addition, many traditional
graphical software packages (CAD, visual art, and so on) offer VRML97
import/export features.

The Virtual Reality Toolbox uses VRML97 technology to deliver a unique, open
3-D visualization solution for MATLAB users. It is a useful contribution to a
wide use of VRML97 in the field of technical and scientific computation and
interactive 3-D animation.

The VRML97 standard continues to be improved by the Web 3D Consortium.
The newly released X3D (eXtensible 3D) standard is the successor to VRML97.
X3D is an extensible standard that provides compatibility with existing VRML
content and browsers. For more information, see http://www.web3d.org.

VRML Coordinate System
VRML uses the right-handed Cartesian coordinate system. If your thumb,
index finger, and middle finger of the right hand are held so that they form
three right angles, then your thumb symbolizes the x-axis, your index finger
the y-axis (pointing up), and your middle finger the z-axis.

The VRML coordinate system is different from the MATLAB, Aerospace
Blockset, and SimMechanics coordinate systems. VRML uses the world
coordinate system in which the y-axis points upward and the z-axis places
objects nearer or farther from the front of the screen. It is important to realize

MATLAB graphics coordinate system VRML coordinate system

1 Introduction

1-10

this fact in situations involving the interaction of these different coordinate
systems.

Rotation angles — In VRML, rotation angles are defined using the right-hand
rule. Imagine your right hand holding an axis while your thumb points in the
direction of the axis towards its positive end. Your four remaining fingers point
in a counter-clockwise direction. This counter-clockwise direction is the
positive rotation angle of an object moving around that axis.

Child objects — In the hierarchical structure of a VRML file, the position and
orientation of child objects are specified relative to the parent object. The
parent object has its local coordinate space defined by its own position and
orientation. Moving the parent object also moves the child objects relative to
the parent object.

Measurement units — All lengths and distances are measured in meters, and
all angles are measured in radians.

VRML File Format
You need not have any substantial knowledge of the VRML format to use the
VRML authoring tools to create virtual worlds. However, it is useful to have a
basic knowledge of VRML scene description. This helps you to create virtual
worlds more effectively, and gives you a good understanding of how the virtual
world elements can be controlled using the Virtual Reality Toolbox.

VRML Overview

1-11

This section is an introduction to VRML. For more information, refer to the
VRML97 Reference. This reference is available online at
http://www.vrml.org/Specifications/VRML97. There are many specialized
VRML books that can help you understand VRML concepts and create your
own virtual worlds. We recommend the book Teach Yourself VRML2 in 21 days
by Chris Marrin and Bruce Campbell (1997).

In VRML, a 3-D scene is described by a hierarchical tree structure of objects
(nodes). Every node in the tree represents some functionality of the scene.
There are 54 different types of nodes. Some of them are shape nodes
(representing real 3-D objects), and some of them are grouping nodes used for
holding child nodes. Here are some examples:

• Box node — Represents a box in a scene.

• Transform node — Defines position, scale, scale orientation, rotation,
translation, and children of its subtree (grouping node).

• Material node — Corresponds to material in a scene.

• DirectionalLight node — Represents lighting in a scene.

• Fog node — Allows you to modify the environment optical properties.

• ProximitySensor node — Brings interactivity to VRML97. This node
generates events when the user enters, exits, and moves within the defined
region in space.

Each node contains a list of fields that hold values defining parameters for its
function.

Nodes can be placed in the top level of a tree or as children of other nodes in the
tree hierarchy. When you change a value in the field of a certain node, all nodes
in its subtree are affected. This feature allows you to define relative positions
inside complicated compound objects.

You can mark every node with a specific name by using the keyword DEF in the
VRML scene syntax. For example, the statement DEF MyNodeName Box sets the
name for this box node to MyNodeName. You can only access the fields of those
nodes that you name in a virtual world.

1 Introduction

1-12

In the following example of a simple VRML file, two graphical objects are
modeled in a 3-D scene: A floor is represented by a flat box with a red ball above
it. Note that VRML file is a readable text file that you can write in any text
editor.

#VRML V2.0 utf8
This is a comment line
WorldInfo {
title "Bouncing Ball"

}
Viewpoint {
position 0 5 30
description"Side View"

}
DEF Floor Box {
size 6 0.2 6

}
DEF Ball Transform {
translation 0 10 0
children Shape {
appearance Appearance {
material Material {
diffuseColor 1 0 0

}
}
geometry Sphere {
}

}
}

The first line is the VRML header line. Every VRML file must start with this
header line. It indicates that this is a VRML 2 file and that the text objects in
the file are encoded according to the UTF8 standard. You use the number sign
(#) to comment VRML worlds. Everything on a line after the # sign is ignored
by a VRML viewer, with the exception of the first header line.

Most of the box properties are left at their default values — distance from the
center of coordinate system, material, color, and so on. Only the name Floor
and the dimensions are assigned to the box. To be able to control the position
and other properties of the ball, it is defined as a child node of a Transform type
node. Here, the default unit sphere is assigned a red color and a position 10 m

VRML Overview

1-13

above the floor. In addition, the virtual world title is used by VRML viewers to
distinguish between virtual worlds. A suitable initial viewpoint is defined in
the virtual world VRML file.

When displayed in V-Realm builder, the floor and red ball look like

1 Introduction

1-14

Examples Using the Virtual Reality Toolbox
The Virtual Reality Toolbox includes examples using both the Simulink and
MATLAB interfaces. You can use these examples to learn what you can do with
the Virtual Reality Toolbox.

This section includes the following topics:

• Simulink Interface Examples— Examples that use the VR Sink and VR
Source blocks in Simulink block diagrams

• MATLAB Interface Examples — Examples that use MATLAB objects to
interact with a virtual world

Simulink Interface Examples
For all the examples that have a Simulink model, use the following procedure
to view a virtual world.

1 In the MATLAB Command Window, enter the name of a Simulink model.
For example, enter

vrbounce

A Simulink window opens with the block diagram for the model. If the Open
VRML viewer automatically check box is selected, a virtual world opens in
the Virtual Reality Toolbox viewer or in your VRML-enabled Web browser.

2 In the Simulink window, double-click the VR Sink block.

A Block Parameters dialog box opens. Notice that the Open the VRML
viewer automatically check box is selected for all Virtual Reality Toolbox
demos.

If you close the virtual world window, you can display it again by clicking the
View button.

3 In the Simulink window, from the Simulation menu, click Start.

A simulation starts running and the virtual world is animated using signal
data from the simulation.

Examples Using the Virtual Reality Toolbox

1-15

The following table lists the Simulink examples provided with the Virtual
Reality Toolbox. Descriptions of the examples follow the table.

Bouncing Ball Example (vrbounce)
The vrbounce example represents a ball bouncing from a floor. The ball
deforms as it hits the floor, keeping the volume of the ball constant. The
deformation is achieved by modifying the scale field of the ball.

Example RTW
Ready

VR
Source

VR
Sink

Joystick SpaceMouse

vrbounce X X

vrcrane X X

vrlights X

vrmaglev X X X

vrmaglev_rtwin X X X

vrmanipul X X

vrmemb1 X

vrpend X X X

vrplanets X X

vrtkoff X

1 Introduction

1-16

Tower Crane with Weight Example (vrcrane)
The vrcrane example illustrates how to control a Simulink model from a
virtual world. In the associated VRML file, the Joystick PROTO is defined.
The VR Source block receives the X output from this PROTO to actuate the
motor that drives the crane. The crane dynamics are modeled according to the
following equations, using the differential equations editor.

The VR Sink block is used to output the position of the motor and the angle of
the rope to the virtual world.

Lighting Example (vrlights)
vrlights is an example with light sources. In the associated VRML file, several
viewpoints are defined that allow you to observe the gradual changes in light
from various perspectives.

Magnetic Levitation Model Example (vrmaglev)
vrmaglev is an example showing the interaction between dynamic models in
Simulink and virtual worlds. The Simulink model represents the HUMUSOFT
CE 152 Magnetic Levitation educational / presentation scale model. The plant
model is controlled by a PID controller with feed-forward to cope with the
nonlinearity of the magnetic levitation system.

The position of the ball responds to the changing value of the set point. You can
observe this change not only in the Scope window, but also with a VRML viewer
displaying the virtual world. To display the virtual world, double-click the VR
Sink block, then click the View button in the dialog box. After switching the
input from the signal generator to the VR Source block, you can use your mouse
to drag the ball to a new position. Note that the position of the ball represents
the real dynamics of the system. If you switch the VRML viewer to the Camera
3 viewpoint, you can observe and control the ball more easily.

m M+ Ml θ()cos

Ml θ()cos Ml2
x··

θ··
F Ml θ()θ·

2
sin+

Mgl θ()sin–
=

Examples Using the Virtual Reality Toolbox

1-17

You achieve the dragging effect by using the VRML PlaneSensor attached to
the ball geometry with its output restricted to <0,1> in the vertical coordinate
and processed by the VR Source block.

Magnetic Levitation Model for Real-Time Windows Target Example
(vrmaglev_rtwin)
In addition to the vrmaglev example, the vrmaglev_rtwin example works
directly with the actual CE 152 scale model hardware in real time. The
MathWorks created this model to work with Real Time Workshop, Real Time
Windows Target, and the HUMUSOFT AD 512 data acquisition board.
However, you can adapt this model for other targets and acquisition boards. A
digital IIR filter, from the Signal Processing Toolbox, filters the physical
system output. You can bypass the physical system by using the built-in plant
model.

Running this model in real time is an example showing the capabilities of
Simulink in control systems design and rapid prototyping. When you change
the position of the virtual ball using your mouse, the real ball follows the
position you set. When you push the real ball up or down against the coil force,
the position of the virtual ball changes in the virtual world. If you remove the
ball from the real system, the ball also disappears from the virtual world.

It is important to realize the power of this virtual reality operator control
concept. Instead of saying, "I want the ball at the position of 0.4" you can say,
"I want the object to be here," and it goes there.

Note that after enabling the remote view in the VR Sink block dialog box, you
can control the Simulink model even from a client computer. This can be useful
for distributing the computing power between a real-time Simulink model
running on one machine and the rendering of a virtual reality world on another
machine.

To work with this model, use as powerful a machine as possible or split the
computing/rendering over two machines.

Manipulator with SpaceMouse Example (vrmanipul)
This example illustrates the use of the Virtual Reality Toolbox for virtual
reality prototyping and testing the viability of designs before the
implementation phase. Also, this example illustrates the use of the Magellan
SpaceMouse for manipulating objects in a virtual world. Note that you must
have the Magellan SpaceMouse in order to run this demo.

1 Introduction

1-18

The VRML model represents a nuclear hot chamber manipulator. It is
manipulated by a simple Simulink model containing the SpaceMouse Input
block. This model uses all six degrees of freedom of the SpaceMouse for
manipulating the mechanical arm, and this model uses mouse button 1 to close
the grip of the manipulator jaws.

Magellan SpaceMouse is an input device with six degrees of freedom. It is
useful for navigating and manipulating objects in a virtual world. SpaceMouse
is also suitable as a general input device for Simulink models. This professional
three-dimensional device greatly facilitates all the previously mentioned tasks.
You can use the SpaceMouse for higher performance applications and user
comfort. SpaceMouse is supported through the SpaceMouse Input block, which
is included in the Virtual Reality Toolbox block library for Simulink.

The SpaceMouse Input block can operate in three modes to cover the most
typical use of such a device in a three-dimensional context:

• Speeds

• Positions

• Viewpoint coordinates

Examples Using the Virtual Reality Toolbox

1-19

Rotating Membrane Example (vrmemb1)
The vrmemb1 example is similar to the vrmemb example, but this time the
associated virtual world is driven from a Simulink model.

Inverted Pendulum Example (vrpend)
The vrpend example illustrates the various ways a dynamic model in Simulink
can interact with a virtual reality scene. It is the model of a two-dimensional
inverted pendulum controlled by a PID controller. What distinguishes this
model from “common” inverted pendulum models are the methods for setting
the set point. You visualize and interact with a virtual world by using a
Trajectory Graph and VR Sink blocks. The Trajectory Graph block allows you
to track the history of the pendulum position and change the set point in three
ways:

• Mouse — Click and drag a mouse pointer in the Trajectory Graph
two-dimensional window

• Input Signal — External Trajectory Graph input in this model (driven by a
random number generator)

• VR Sensor — Activates the input from a VRML TouchSensor

When the pointing device in the VRML viewer moves over an active
TouchSensor area, the cursor shape changes. The triggering logic in this
model is set to apply the new set point value with a left mouse button click.

Notice the pseudoorthographic view defined in the associated VRML file. This
effect is achieved by creating a Viewpoint that is located far from the object of
interest with a very narrow view defined by the VRML FieldOfView
parameter. An orthographic view is useful for eliminating the panoramic
distortion that occurs when you are using a wide-angle lens. The disadvantage
of this technique is that locating the viewpoint at a distance makes the
standard viewer navigation tricky or difficult in some navigation modes, such
as the Examine mode. If you want to navigate around the virtual pendulum
bench, you should use some other viewpoint.

1 Introduction

1-20

Solar System Example (vrplanets)
The vrplanets example shows the dynamic representation of the first four
planets of the Solar system, Moon orbiting around Earth, and Sun itself. The
model uses the real properties of the celestial bodies. Only the relative planet
sizes and the distance between the Earth and the Moon are adjusted, to provide
an interesting view.

There are several viewpoints defined in the virtual scene, both static and
attached to an observer on Earth. You can see that the planet bodies are not
represented as perfect spheres. Using the VRML Sphere graphic primitive,
which is rendered this way, simplified the model. If you want to make the
planets more realistic, you could use the more complex IndexedFaceSet node
type.

Mutual gravity accelerations of the bodies are computed using Simulink
matrix-type data support.

Plane Takeoff Example (vrtkoff)
The vrtkoff example represents a simplified aircraft taking off from a runway.
There are several viewpoints defined in this model, both static and attached to
the plane, allowing you to see the takeoff from various perspectives.

The model demonstrates the technique of combining several objects imported
or obtained from different sources (CAD packages, general 3-D modelers, and
so on) into a virtual reality scene. Usually it is necessary for you to wrap such
imported objects with an additional VRML Transform node. This wrapper
allows you to set appropriately the scaling, position, and orientation of the
objects to fit in the scene. In this example, the aircraft model from the V-Realm
Builder Object Library is incorporated into the scene. The file vrtkoff2.wrl
uses the same scene with a different type of aircraft.

Examples Using the Virtual Reality Toolbox

1-21

MATLAB Interface Examples
The following table is a list of the MATLAB interface examples provided with
the Virtual Reality Toolbox. Descriptions of the examples follow the table.

Car in the Mountains Example(vrcar)
This demonstration illustrates the use of the Virtual Reality Toolbox with the
MATLAB interface. In a step-by-step tutorial, it shows commands for
navigating a virtual car along a path through the mountains.

1 In the MATLAB Command Window, type

vrcar

A tutorial script starts running. Follow the instructions in the MATLAB
Command Window.

Heat Transfer Example (vrheat)
This demonstration illustrates the use of the Virtual Reality Toolbox with the
MATLAB interface for manipulating complex objects.

In this demonstration, matrix-type data is transferred between MATLAB and
a virtual reality world. Using this feature, you can achieve massive color
changes or morphing. This is useful for representing various physical
processes. Precalculated data of time-based temperature distribution is used in
an L-shaped metal block. The data is then sent to the virtual world. This forms
an animation with relatively large changes.

Example RTW
Ready

VR
Source

VR
Sink

Joystick Space
Mouse

vrcar X

vrheat X

vrmemb X

1 Introduction

1-22

This is a step-by-step demonstration. Shown are the following features:

• Reshaping the object

• Applying the color palette to represent distributed parameters across an
object shape

• Working with VRML text objects

• Animating a scene using MATLAB interface

• Synchronization of multiple scene properties

At the end of this example, you can preserve the virtual world object in the
MATLAB workspace, then save the resulting scene to a corresponding VRML
file or carry out other subsequent operations on it.

Rotating Membrane with MATLAB GUI Example (vrmemb)
The vrmemb example shows how to use a MATLAB-generated 3-D graphic
object with the Virtual Reality Toolbox. The membrane was generated by the
logo function and saved in the VRML format using the standard vrml function.
You can save all Handle Graphics objects this way and use them with the
Virtual Reality Toolbox as components of associated virtual worlds.

After starting the demo, you see a control panel with two sliders and three
check boxes. Use the sliders to rotate and zoom the membrane while you use
the check boxes to determine the axis to rotate around.

In the VRML scene, notice the text object. It is a child of the VRML Billboard
node. You can configure this node so that its local z-axis turns to point to the
viewer at all times. This can be useful for modeling virtual control panels and
head-up displays (HUDs).

Implementation Notes

1-23

Implementation Notes
This section includes the following topics:

• Virtual Reality Toolbox Server — Accesses information about VRML
scenes, provides an interface between MATLAB and Simulink, and
communicates with clients

• VRML Compatibility — Limitations on support for VRML97 features

Virtual Reality Toolbox Server
The Virtual Reality Toolbox uses an internal HTTP Server for communication
between a Web browser and the MATLAB/Simulink environment. It generates
the main Virtual Reality Toolbox HTML page with the list of currently
available virtual worlds and sends VRML and other requested files and data to
clients (VRML viewers).

The server is started when the Virtual Reality Toolbox is loaded into MATLAB.
This happens whenever you use a Virtual Reality Toolbox block in a Simulink
block diagram, or whenever you open a vrworld object in the MATLAB
interface. The HTTP Server is shut down when you close all Simulink models
that contain Virtual Reality Toolbox blocks, or use the vrclear command.

When the HTTP Server is running, your browser can see a list of available
virtual worlds at the following address:

http://localhost:port_number

Remote users can connect to the following address:

http://your_machine:port_number

You can set the port number of the server in the Virtual Reality Toolbox
Preferences dialog box from the Simulink interface, or use vrsetpref in the
MATLAB Command Window.

Depending on the status of served vrworld objects, the list of available virtual
worlds can be empty.

1 Introduction

1-24

VRML Compatibility
Virtual Reality Toolbox currently supports most features of VRML97, with the
following limitations:

• The Virtual Reality Toolbox Server ignores the VRML Script node, but it
passes the node to the VRML viewer. This allows you to run VRML scripts
on the viewer side. You cannot run them on the Virtual Reality Toolbox
Server.

• The Virtual Reality Toolbox Server ignores the Inline node, but it passes the
node to the viewer. Therefore, the viewer sees the complete virtual world
with all included substructures, but the included parts are not accessible
from the toolbox. In some rare cases, this limitation can render the virtual
world unusable with the Virtual Reality Toolbox. This happens under either
of the following conditions:

- The virtual world contains a USE reference to a node that is in the
included part.

- The virtual world contains an included part with a PROTO or
EXTERNPROTO declaration that is referenced in the main virtual world
file.

For a complete list of VRML97 nodes, refer to the VRML97 specification.

2
Installation

The Virtual Reality Toolbox Version 3.0 is distributed on the Release 13 CD. This CD has the files you
need for installation on both your host computer and client computer.

System Requirements (p. 2-2) Minimum hardware and software requirements to run
the Virtual Reality Toolbox with MATLAB and Simulink

Installing the Virtual Reality Toolbox
on the Host Computer (p. 2-9)

Install the Virtual Reality Toolbox on your desktop
computer

Installing the VRML Viewer on the
Host Computer (p. 2-15)

Install a viewer to view virtual worlds

Installing the VRML Editor on the
Host Computer (p. 2-25)

Install VRML authoring tools to create virtual worlds

Removing Components (p. 2-31) Uninstalling the Virtual Reality Toolbox and its
components

Installation on the Client Computer
(p. 2-33)

Install a viewer on another computer to view virtual
worlds remotely

Testing the Installation (p. 2-35) Open a Simulink model, display a virtual world, and run
a simulation

2 Installation

2-2

System Requirements
The Virtual Reality Toolbox has the same hardware requirements as
MATLAB. It is a multiplatform product that runs on PC-compatible computers
with Windows or Linux. It also runs on SGI, Solaris, and Alpha hardware. For
a list of supported operating systems, see “Supported Computer Platforms” on
page 2-2.

This section includes the following topics:

• Supported Computer Platforms — Summary of the supported computer
platforms and the viewer and editor that are provided for each of them.

• Host Computer — Run MATLAB, Simulink, the Virtual Reality Toolbox,
VRML editor, and VRML viewer (Virtual Reality Toolbox viewer or Web
browser with VRML plug-in).

• Client Computer — Run a Web browser with a VRML plug-in.

Supported Computer Platforms
The VR server is the part of the Virtual Reality Toolbox that interfaces with
your Simulink models. It stores information about the current state of virtual
worlds and manages connections to VR clients. The VR client is a VRML viewer
that displays a virtual world. The VR client can be either the Virtual Reality
Toolbox viewer or a Web browser with a VRML plug-in.

System Requirements

2-3

The following table summarizes the supported computer platforms and the
viewer and editor that are provided for each of them.

* Distributed on the MathWorks Release 13 product CD.

Platform/Product VR
Server

Virtual
Reality
Toolbox
Viewer

VRML
Editor

VRML
Browser
Plug-In

Microsoft
Windows 98,
Windows NT 4.0,
Windows XP,
Windows ME, or
Windows 2000

Yes Yes V-Realm
Builder*

blaxxun
Contact*

Linux 2.2.x and
2.4.x kernels

Yes Yes MATLAB
editor*

No

SGI IRIX and
IRIX64 6.5.8
(minimum)

Yes Yes MATLAB
editor*

No (Cosmo
Player)

Sun Solaris 2.6,
2.7, 2.8

Yes Yes MATLAB
editor*

No

Compaq Alpha
Tru64 UNIX 4.0f
(minimum), 5.0,
5.1

Yes Yes MATLAB
editor*

No

2 Installation

2-4

Host Computer
The host computer is a desktop computer where you install MATLAB,
Simulink, the Virtual Reality Toolbox, a VRML editor and, optionally, a Web
browser with a VRML plug-in. You can also install Real-Time Workshop with
Real-Time Windows Target or xPC Target to run and view a real-time
application.

The following table lists the minimum resources the Virtual Reality Toolbox
requires on the host computer.

Hardware Requirements

Hardware Description

CPU Pentium, Athlon or higher (PC)

Graphics card Graphics card with hardware 3-D acceleration

RAM 128 Mbytes or more

Peripherals Hard disk drive with 45 Mbytes of free space

CD-ROM drive

TCP/IP
Communication

If you want to allow a connection from a client
computer, you need a network connection between the
host computer and the client computer.

System Requirements

2-5

The following table lists the minimum software the Virtual Reality Toolbox
requires on your host computer. For a list of optional software products related
to the Virtual Reality Toolbox, see “Related Products” in the Preface.

Software Requirements

Software Description

Operating
system

Windows 98, Windows NT 4.0, Windows ME, Windows
XP, or Windows 2000
Sun Solaris 2.6, 2.7, 2.8
SGI IRIX and IRIX64 6.5.8 (minimum)
Compaq Alpha Tru64 UNIX 4.0f (minimum), 5.0, 5.1
Linux 2.2.x or 2.4.x kernels
The TCP/IP protocol needs to be installed.

MATLAB Version 6.5 on the Release 13 CD.

Simulink Version 5.0 on the Release 13 CD. Simulink is not
required, but we highly recommend that you install it.

Virtual
Reality
Toolbox

Version 3.0 on the Release 13 CD.

VRML
editor

For Windows platforms, you can install the VRML editor
(V-Realm Builder 2.0) provided on the MathWorks CD.
For UNIX/Linux the default editor is the MATLAB editor.
When you create VRML worlds on these operating
systems, you can use any 3-D modeling tool with the
VRML97 export capability.

2 Installation

2-6

Web
browser

On PC platforms, you can use a Web browser and the
blaxxun Contact plug-in to view virtual worlds. This is an
alternative to using the Virtual Reality Toolbox viewer.

Use Microsoft Internet Explorer 4.0 or higher, or
Netscape Navigator 4.0 or higher with Java enabled.

VRML
plug-in

If you are using a Web browser instead of the Virtual
Reality Toolbox viewer, you need to install a VRML97
plug-in with External Authoring Interface (EAI) support.
If you have blaxxun Contact (Windows) or Cosmo Player
(SGI) on your computer, you have already installed a
VRML plug-in.

Windows platforms — You can install the blaxxun
Contact 4.4 plug-in provided on the MathWorks CD, or
you can download it from the MathWorks Web site at

http://www.mathworks.com/support/product/VR/

For information on how to install the blaxxun Contact
plug-in, see “Installing a VRML Plug-In (Windows)” on
page 2-16.

Software Requirements (Continued)

Software Description

System Requirements

2-7

Client Computer
You can use a client computer to view and control a virtual world. Because
MATLAB or Simulink does not run on this computer, you need to connect to a
host computer running a simulation or executable code. The host computer,
through the VR Server, provides the values needed to animate a virtual world.

The client computer communicates with the host computer over TCP/IP, and it
displays the virtual world using a VR client. In this case, the VR client is a
VRML-enabled Web browser. You can verify the TCP/IP connection between
the host and client computers by using the ping command from a
command-line prompt. If there are problems, you must first fix the TCP/IP
protocol settings according to the documentation for your operating system.

The following table lists the minimum hardware resources the Virtual Reality
Toolbox needs on the client computer.

The following table lists the software the Virtual Reality Toolbox requires on
the client computer. You do not need to install the Virtual Reality Toolbox on
the client computer.

Because the only component required for the client computer is standard
VRML97 viewing software, it is possible that different configurations will
work. For example, you might be able to run an operating system not listed in
the table “Supported Computer Platforms” on page 2-2. However, these
configurations have not been tested and they are not supported.

Hardware Requirements

Hardware Description

Graphics card Graphics card with hardware 3-D acceleration.

TCP/IP
Communication

If you want to allow a connection from a client
computer, you need a network connection between the
host computer and the client computer.

2 Installation

2-8

Software Requirements

Software Description

Operating
system

Windows 98, Windows NT 4.0, Windows ME, Windows
XP, or Windows 2000
SGI IRIX and IRIX64 6.5.8 (minimum)
The TCP/IP protocol needs to be installed.

Web browser Use Microsoft Internet Explorer 4.0 or higher, or
Netscape Navigator 4.0 or higher with Java enabled.

VRML plug-in VRML97 plug-in with External Authoring Interface
support. If you have blaxxun Contact (Windows) or
Cosmo Player (SGI) on your computer, you have already
installed a VRML plug-in.

Windows platforms — You can install the blaxxun
Contact 4.4 plug-in provided on the MathWorks CD, or
you can download it from the MathWorks Web site at

http://www.mathworks.com/support/product/VR/

For information on how to install the blaxxun Contact
plug-in, see “Installing a VRML Plug-In (Windows)” on
page 2-16.

Installing the Virtual Reality Toolbox on the Host Computer

2-9

Installing the Virtual Reality Toolbox on the Host Computer
The Virtual Reality Toolbox Version 3.0 is distributed on the Release 13 CD.
For Web downloads, you need your MATLAB Access Number. Before you
install the Virtual Reality Toolbox, you need to get a valid license file and/or
personal license password. For detailed information about the installation
process, see the installation documentation for your platform.

This section contains the following topics:

• Getting or Updating Your License — Valid license file and personal license
password (PLP)

• Components on a Host Computer — Description of the individual
components used with the Virtual Reality Toolbox

• Installing from CD (Windows) — PC installation procedure
• Installing from CD (UNIX/Linux) — UNIX/Linux installation procedure
• Downloading from the Web— Downloading the product from the Web

Getting or Updating Your License
Before you install the Virtual Reality Toolbox, you must have a valid license
file and/or personal license password (PLP). The license file and/or personal
license password identify the products you purchased from The MathWorks.
These are the products you are permitted to install and use.

When you purchase a product, The MathWorks sends you a license file and/or
personal license password (PLP) in an e-mail message. If you have not received
a PLP number, contact The MathWorks.

Internet http://www.mathworks.com/mla

Log in to MATLAB Access using your last name and Access
number. Follow the license links to determine your PLP
number.

E-mail mailto:service@mathworks.com. Include your license
number.

Telephone 508-647-7000. Ask for Customer Service.

Fax 508-647-7001. Include your license number.

2 Installation

2-10

Components on a Host Computer
This section introduces you to the individual components of the Virtual Reality
Toolbox: what they are, what they are used for, and when they should or should
not be installed. If you are not interested, you can skip this section, or you can
simply accept the defaults at the component selection screen, and the
recommended default components are installed:

• Virtual Reality Toolbox — This component contains the core files that
interconnect MATLAB and Simulink to VRML. This component is required
for the Virtual Reality Toolbox to operate, and you must install it on the host
computer. This component is not used on a client computer.

• Virtual Reality Toolbox viewer — This is a multiplatform VRML viewer
that is included with the Virtual Reality Toolbox, and it is set as the default
viewer for displaying virtual worlds.

• VRML plug-in — Optionally, you can use a VRML plug-in for a Web browser
to view virtual reality worlds. The blaxxun Contact plug-in is included with
the Virtual Reality Toolbox for Windows platforms. However, you can also
use the Virtual Reality Toolbox viewer. A VRML plug-in is the only
component that you need to install on a client computer.

• VRML editor — If you are going to create and modify virtual worlds, you
need a VRML97-compatible editor. V-Realm Builder is included on the
MathWorks CD for Windows platforms. If you do not plan to edit virtual
reality worlds or if you prefer to use a different VRML editor, you do not need
to install it on your computer. For UNIX/Linux platforms, the MATLAB
editor is the default VRML editor. This component is not used on a client
computer.

• Example Models — These are MATLAB and Simulink programs and models
connected to prebuilt virtual reality worlds. You can use these models and
virtual reality worlds both for discovering the capabilities of the Virtual
Reality Toolbox and as templates for building your own projects. This
component is not used on the client computer.

• Online Documentation — This component contains the manual you are
reading now. You can access the online version through the MATLAB Help
browser. An Adobe Acrobat PDF file is available on the Release 13 CD. This
documentation can be read using the Adobe Acrobat Reader. If you do not
have this reader installed on your computer, you can download it from
http://www.adobe.com.

Installing the Virtual Reality Toolbox on the Host Computer

2-11

Installing from CD (Windows)
You can install the Virtual Reality Toolbox from The MathWorks Release 13
CD:

1 Insert the Release 13 CD into your host CD-ROM drive.

The installation program should start automatically after a few seconds. If
the installation program does not start automatically, run setup.exe on the
CD.

During the installation process, a screen similar to the following allows you
to select the products to install.

2 Select the Virtual Reality Toolbox check box, then click Next.

3 Follow the instructions on each of the remaining screens.

Installation for the Virtual Reality Toolbox is complete.

The Virtual Reality Toolbox viewer is installed with the Virtual Reality
Toolbox. For PC platforms, you have the option of installing a VRML plug-in
for your browser as an alternative to the viewer. See “Installing a VRML
Plug-In (Windows)” on page 2-16.

If you are on a PC platform, you need to complete additional steps for installing
the VRML editor. See “Installing VRML Editor (Windows)” on page 2-25.

2 Installation

2-12

Installing from CD (UNIX/Linux)
The following is an overview of how to install the Virtual Reality Toolbox on a
UNIX/Linux platform. If you have not installed any MathWorks products
before, consult the installation guide for your platform for a more
comprehensive explanation of the installation process:

1 Log in to your system.

2 Mount the CD-ROM drive.

3 Create a directory to be the mount point for the CD-ROM drive. For
example:

mkdir /cdrom

4 Create the installation directory and move into it using the cd command. For
example, to install into the location /usr/local/matlab6p5, use these
commands:

cd /usr/local
mkdir matlab6p5
cd matlab6p5

Subsequent instructions in this book refer to this directory as $MATLAB.

Note This installation directory might already exist if you have installed
MATLAB on your system. In this case, move into the already existing
directory using the cd command.

5 Move your license file, named license.dat, into the $MATLAB directory.

If you are upgrading an existing MATLAB installation, rename the license
file in $MATLAB/etc directory. The installer does not process the new license
file if it finds an existing license file in $MATLAB/etc.

6 Run the appropriate installation script for your platform.

/cdrom/install* & (Sun, Alpha, SGI, and Linux platforms)

Installing the Virtual Reality Toolbox on the Host Computer

2-13

7 During the installation process, a screen similar to the following allows you
to select the products to install.

This dialog box lists all the products you are licensed to install in the Items
to Install box. Make sure the Virtual Reality Toolbox is listed in this box.

8 Follow the instructions on each of the remaining screens.

Installation for the Virtual Reality Toolbox is complete.

The Virtual Reality Toolbox viewer is the default viewer for UNIX platforms.
For more information, see “Virtual Reality Toolbox Viewer” on page 2-15.

If you are on a UNIX platform, the MATLAB editor is your default VRML
editor. For more information, see “VRML Editor (UNIX/Linux)” on page 2-26.

2 Installation

2-14

Downloading from the Web
Version 3.0 of the Virtual Reality Toolbox is available for Web download. You
download products from the Web when you want to obtain a demo, product
update, or any product available on a MATLAB installation CD:

1 Open your Web browser and navigate to http://www.mathworks.com.

2 From the list on the right side of the page, select Downloads.

3 Under MATLAB Access Members, select download products.

The Access Login page appears.

4 Enter your Last name and MATLAB Access Number.

5 Click login.

The downloads page appears.

6 Select your platform and click Continue.

7 Select the Virtual Reality Toolbox and click Continue.

8 Follow the instructions on the Download and Install page in order to
download and install the Virtual Reality Toolbox successfully. For more
specific information relating to the installation of the Virtual Reality
Toolbox, see the installation guide for your platform.

Note The most recent PDF documentation file is not always included in the
product download. To get the latest PDF file for a product, go to
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml and
select the product’s name. The Roadmap Page for the selected product
appears. This Roadmap page contains a link to the latest version of the PDF
documentation.

Installing the VRML Viewer on the Host Computer

2-15

Installing the VRML Viewer on the Host Computer
You can use the Virtual Reality Toolbox viewer or VRML-enabled Web browser
to view virtual worlds. The Virtual Reality Toolbox viewer is the only viewer
that can be used on all supported platforms. The blaxxun Contact plug-in is
available for PC platforms only.

This section includes the following topics:

• Virtual Reality Toolbox Viewer — Preferred method of viewing virtual
scenes.

• Installing a VRML Plug-In (Windows) — Install the blaxxun Contact
plug-in.

• Installing a VRML Plug-in (UNIX/Linux) — Install a VRML97 plug-in with
External Authoring Interface support.

• Setting the Default Viewer of Virtual Scenes — View virtual scenes with
the Virtual Reality Toolbox viewer or your VRML-enabled Web browser.

Virtual Reality Toolbox Viewer
The Virtual Reality Toolbox viewer is the preferred method of viewing a virtual
scene. The viewer can be used on any supported operating system. It is
installed and set as the default viewer when you install the Virtual Reality
Toolbox. You can view virtual scenes as soon as the Virtual Reality Toolbox is
installed on your machine.

Note It is possible to view virtual scenes with a Web browser that contains a
VRML plug-in. Every VRML plug-in installs Java classes into the Web
browser. It is best to limit the number of plug-ins you install on your machine
in order to avoid Java errors and conflicts. For this reason, use only the
Virtual Reality Toolbox viewer and the blaxxun Contact VRML plug-in on PC
platforms. On UNIX and Linux platforms, use only the Virtual Reality
Toolbox viewer.

2 Installation

2-16

Installing a VRML Plug-In (Windows)
When you install the Virtual Reality Toolbox, the Virtual Reality Toolbox
viewer is set as the default viewer. If you want to use a Web browser as a VRML
viewer, use the following procedure to install the blaxxun Contact plug-in. You
can use this plug-in with either Microsoft Internet Explorer or Netscape
Navigator. The blaxxun Contact plug-in is the only supported VRML plug-in.

Note The blaxxun Contact installer installs the plug-in for the current
default browser only. If you change the default browser, you need to complete
the install procedure a second time. The blaxxun Contact executable files are
located at C:\<MATLAB root>\toolbox\vr\blaxxun.

You must use blaxxun Contact 4.4 with Version 3.0 of the Virtual Reality
Toolbox. This version of the blaxxun Contact VRML plug-in is distributed with
the Virtual Reality Toolbox. You can download blaxxun Contact 4.4 from
http://www.mathworks.com/support/product/VR/.

If you have the MATLAB Web Server installed on your machine, make sure
that the Web Server is stopped before you install the blaxxun Contact plug-in.
Also, verify that you are connected to the Internet before starting this
installation procedure:

1 Start MATLAB.

2 In the MATLAB Command Window, type

vrinstall -install viewer

MATLAB displays the message

Do you want to use OpenGL or Direct3d acceleration? (o/d)

3 Check the graphic card manual to determine the acceleration method to
select. If you are not sure, select Direct 3d by typing

d

Installing the VRML Viewer on the Host Computer

2-17

The blaxxun installer starts running and displays the following dialog box.

4 Follow the instructions on the remaining screens.

5 In the MATLAB Command Window, type

vrinstall -check

If the viewer installation was successful, MATLAB displays the following
message:

VRML viewer: installed

2 Installation

2-18

If the viewer installation was unsuccessful, MATLAB displays the message

VRML viewer: not installed

Known Issue with the blaxxun Contact Plug-In
The blaxxun Contact VRML plug-in can fail to update the virtual scene when
used with the Virtual Reality Toolbox 3.0 and Microsoft Internet Explorer 5.5
and above. Netscape users do not experience this problem.

If you are using Internet Explorer 5.5 or above, you must manually change a
network security setting before you can use blaxxun Contact 4.4 with the
Virtual Reality Toolbox Version 3.0. Upgrading your version of blaxxun
Contact does not resolve this problem.

Changing the Default Network Security Setting
You must change your default network security setting before using the
blaxxun Contact plug-in with Internet Explorer 5.5 and above to ensure that
the virtual scene is updated appropriately:

1 Open Internet Explorer.

2 From the Tools menu, choose Internet Options.

The Internet Options dialog box opens.

3 Click the Security tab.

4 Select the Custom Level button.

The Security Settings dialog box opens.

5 Scroll down until you see Microsoft VM. The first subheading is Java
permissions.

6 Select Custom.

The Java Custom Settings button appears in the lower left of the Security
Settings dialog box.

7 Click Java Custom Settings.

The Local intranet dialog box opens.

Installing the VRML Viewer on the Host Computer

2-19

8 Click the Edit Permissions tab.

9 Scan the main headings and subheadings (marked with a lock icon) until
you see Access to all Network Addresses.

10 Under Access to all Network Addresses, select Enable.

11 Click OK.

The Local intranet dialog box closes.

12 In the Security Settings dialog box, click OK.

You are asked if you want to change the security settings for this zone.

13 Select Yes.

14 In the Internet Options dialog box, select OK.

Installing a VRML Plug-in (UNIX/Linux)
If you want to use a Web browser instead of the Virtual Reality Toolbox viewer
to view virtual scenes, you need to install a VRML97 plug-in with External
Authoring Interface (EAI) support. This requirement is met by blaxxun
Contact for Windows platforms and Cosmo Player for SGI platforms. If you are
using any other operating system, you need to use the Virtual Reality Toolbox
viewer to view virtual worlds.

If you are on an SGI platform, you might already have the Cosmo Player
plug-in installed in your Web browser:

1 At the MATLAB command prompt, type

vrsetpref('DefaultViewer','web')

This sets your default viewer of virtual scenes to your VRML-enabled Web
browser.

2 Installation

2-20

2 Type

vrbounce

If the bouncing ball demo loads in your Web browser, Cosmo Player is
already installed on your system. See “Setting the Default Viewer of Virtual
Scenes” on page 2-20 for more information.

Go to http://www.sgi.com/software/cosmo/player.html for more
information about Cosmo Player for SGI. If you do not have Cosmo Player
installed on your system, follow the instructions provided on this Web site to
install the Cosmo Player VRML plug-in into your default Web browser.

Note blaxxun Contact is the only supported VRML plug-in.

Setting the Default Viewer of Virtual Scenes
If you install a VRML plug-in in your Web browser, it is possible to view virtual
scenes with either the Virtual Reality Toolbox viewer or your Web browser. You
determine the viewer used to display your scene using the vrsetpref and
vrgetpref commands. The following procedure assumes that you are working
on a PC platform:

1 At the MATLAB command prompt, type

vrinstall -check

to determine whether blaxxun Contact is installed.

MATLAB displays

VRML viewer: installed
VRML editor: installed

The viewer and editor are installed. If the viewer is not installed, see
“Installing a VRML Plug-In (Windows)” on page 2-16.

Installing the VRML Viewer on the Host Computer

2-21

2 Determine your default viewer by typing

vrgetpref

MATLAB displays

ans =

 DefaultFigurePosition: [5 25 400 320]
 DefaultPanelMode: 'halfbar'
 DefaultViewer: 'internal'
 Editor: [1x60 char]
 HttpPort: 8123
 TransportBuffer: 5
 VrPort: 8124

The DefaultViewer property is set to 'internal'. The Virtual Reality
Toolbox viewer is the default viewer for viewing virtual scenes. Any virtual
scenes that you open are displayed in the viewer.

2 Installation

2-22

3 For example, at the MATLAB command prompt, type

vrbounce

The Bouncing Ball demo is loaded and the virtual scene is displayed in the
Virtual Reality Toolbox viewer.

4 Change the default viewer to your Web browser by typing

vrsetpref('DefaultViewer','web')

The default Windows system VRML plug-in is used. The blaxxun Contact
VRML plug-in sets itself as the default VRML plug-in during its
installation.

Installing the VRML Viewer on the Host Computer

2-23

5 At the MATLAB command prompt, type

vrbounce

The Bouncing Ball demo is loaded and the virtual scene is displayed in your
Web browser.

6 Reset the Virtual Reality Toolbox viewer as your default viewer by typing

vrsetpref('DefaultViewer','factory')

All virtual scenes are displayed by the Virtual Reality Toolbox viewer.

2 Installation

2-24

7 In the vrbounce model window, double-click the VR Sink block.

A Block Parameters dialog box opens.

The target of the View button is determined by the DefaultViewer property.
If the DefaultViewer property is set to 'internal', clicking the View
button opens the virtual world in the Virtual Reality Toolbox viewer. If the
DefaultViewer property is set to 'web', clicking the View button opens the
virtual world in your Web browser.

Installing the VRML Editor on the Host Computer

2-25

Installing the VRML Editor on the Host Computer
You can create virtual worlds with a VRML authoring tool or by writing VRML
code in a text editor.

This section contains the following topics:

• Installing VRML Editor (Windows) — Install V-Realm Builder on your PC.

• VRML Editor (UNIX/Linux) — The MATLAB editor is the default VRML
editor for UNIX platforms.

• Setting the Default Editor of Virtual Scenes — Edit virtual scenes with a
VRML authoring tool or a text editor.

Installing VRML Editor (Windows)
When you install the Virtual Reality Toolbox, files are copied to your hard drive
for V-Realm Builder, but the installation is not complete.

Installing the VRML editor writes a key to the Windows registry, making extra
library files in V-Realm Builder available for you to use, and it associates the
Edit button in Virtual Reality Toolbox blocks with this editor:

1 Start MATLAB.

2 In the MATLAB Command Window, type

vrinstall -install editor

or type

vrinstall('-install','editor')

MATAB displays the following messages:

Starting editor installation...
Done.

2 Installation

2-26

3 Type

vrinstall -check

If the editor installation was successful, MATLAB displays the following
message:

VRML editor: installed

VRML Editor (UNIX/Linux)
The MATLAB editor is the default VRML editor for UNIX platforms and no
installation procedure is required. Currently, no VRML editor with the
functionality of those available for Windows platforms exists for UNIX
platforms. This means that you will need to understand and program the
VRML language in order to create your virtual worlds. Alternatively, it is
possible to use a general 3-D modeling tool with VRML97 export capabilities.
For more information about the VRML modeling language, we recommend
Teach Yourself VRML2 in 21 Days by Chris Marrin and Bruce Campbell.

Setting the Default Editor of Virtual Scenes
You can edit virtual scenes with a VRML authoring tool, such as V-Realm
Builder, or with any text editor, as the VRML language is written in text files.
You determine the editor that is used to edit your scene by using the vrsetpref
and vrgetpref commands.

The following procedure demonstrates how to change your editor from V-Realm
Builder to a text editor. It assumes that you are working on a PC platform:

1 At the MATLAB command prompt, type

vrinstall -check

to determine whether V-Realm Builder is installed.

MATLAB displays

VRML viewer: installed
VRML editor: installed

The viewer and editor are installed. If the editor is not installed, see
“Installing VRML Editor (Windows)” on page 2-25.

Installing the VRML Editor on the Host Computer

2-27

2 Determine your default editor by typing

a = vrgetpref

MATLAB displays

a =
DefaultFigurePosition: [5 25 400 320]
 DefaultPanelMode: 'halfbar'
 DefaultViewer: 'web'
 Editor: [1x60 char]
 HttpPort: 8123
 TransportBuffer: 5
 VrPort: 8124

The variable a is a structure array. You need to index into it to determine
the Editor property.

3 To determine your default editor, type

a.Editor

MATLAB displays

ans =
"%matlabroot\toolbox\vr\vrealm\program\vrbuild2.exe" "%file"

This is the path to the V-Realm Builder executable file. V-Realm Builder is
the current VRML editor.

4 Verify that V-Realm Builder is your default editor. At the MATLAB
command prompt, type

vrpend

The Inverted Pendulum demo loads and the pendulum is visible in the
viewer.

2 Installation

2-28

5 In the vrpend model window, double-click the VR Sink block.

The Block Parameters dialog box opens.

Installing the VRML Editor on the Host Computer

2-29

6 Click Edit.

The vrpend model opens in the V-Realm Builder authoring tool.

7 Change the default editor to the MATLAB editor by typing

vrsetpref('Editor','%matlabroot\bin\win32\meditor.exe %file')

You can set your editor to any text editor you want to use by specifying the
path to the executable of the text editor.

8 Within the vrpend demo, open the VR Sink Block Parameters dialog box.

2 Installation

2-30

9 Click the Edit button.

The MATLAB editor opens and is now set as your default VRML editor.

10 To reset the V-Realm Builder authoring tool as your default VRML editor,
type

vrsetpref('Editor','factory')

Clicking the Edit button now launches V-Realm Builder.

Removing Components

2-31

Removing Components
Normally, you should not have to uninstall the Virtual Reality Toolbox, the
blaxxun Contact plug-in, or V-Realm Builder. If you do, the following topics
describe the appropriate procedures.

This section contains the following topics:

• Removing the Virtual Reality Toolbox and V-Realm Builder —
Uninstalling the Virtual Reality Toolbox and V-Realm Builder

• Removing the blaxxun Contact Plug-In — Uninstalling the blaxxun
Contact plug-in

Removing the Virtual Reality Toolbox and V-Realm
Builder
Use the MathWorks uninstaller. Running this utility removes the Virtual
Reality Toolbox and V-Realm Builder from your system. It also restores your
previous system configuration:

1 On the task bar, click Start, point to MATLAB, and then click R13
uninstaller.

The MathWorks uninstaller begins running.

2 Clear the Virtual Reality Toolbox check box.

3 Follow the remaining uninstall instructions.

Note The blaxxun Contact plug-in is not uninstalled during the Virtual
Reality Toolbox removal.

Removing the blaxxun Contact Plug-In
You can uninstall this VRML plug-in from the host computer by using the
following procedure:

1 From the task bar, click Start, point to Settings, and click Control Panel.

2 Installation

2-32

2 In the Control Panel window, click Add/Remove Programs.

3 In the Add/Remove Programs dialog box, select blaxxun Contact, then
click the Add/Remove button.

Installation on the Client Computer

2-33

Installation on the Client Computer
In most configurations, you do not need to install a viewer on a client computer
because you can perform all the tasks on a host computer. However, if you have
very large models that take considerable computational resources, you might
want to use a client computer to run and view the virtual world.

The client computer must have a VRML97 plug-in with External Authoring
Interface (EAI) support. This means that your client computer must be a PC
platform with the blaxxun Contact plug-in or an SGI platform with Cosmo
Player. Of these two options, only blaxxun Contact is supported.

This section contains the following topics:

• Installing a VRML Plug-In (Windows) — Install the blaxxun Contact
VRML plug-in on a computer running Microsoft Windows.

• VRML Plug-In (UNIX/Linux) — Install Cosmo Player on your SGI machine.

Installing a VRML Plug-In (Windows)
If you want to view a virtual world on a client computer, you need to use a Web
browser with a VRML plug-in.

The blaxxun Contact plug-in is provided with the Virtual Reality Toolbox, but
you cannot install the blaxxun Contact plug-in Version 4.4 on a client computer
with the MathWorks installer. If you do not have this plug-in installed, use one
of the following methods.

• Copy the file blaxxuncontact44.exe from your host computer to the client
computer. This file is located at C:\<MATLAB root>\toolbox\vr\blaxxun.

• Download the blaxxun Contact plug-in from the MathWorks Web site at
http://www.mathworks.com/support/product/VR/.

2 Installation

2-34

VRML Plug-In (UNIX/Linux)
Cosmo Player for SGI is currently the only VRML97 plug-in with External
Authoring Interface (EAI) support available for UNIX/Linux platforms.

For more information about Cosmo Player for SGI, go to
http://www.sgi.com/software/cosmo/player.html. If you do not have
Cosmo Player installed on your system, follow the instructions provided on this
Web site to install the Cosmo Player VRML plug-in in your default Web
browser.

Note blaxxun Contact for PC platforms is the only supported method for
viewing virtual worlds on a client computer.

Testing the Installation

2-35

Testing the Installation
The Virtual Reality Toolbox includes several Simulink models with the
associated virtual worlds. These models are examples of what you can do with
this toolbox. You can use one of these examples to test the installation of the
Virtual Reality Toolbox, the VRML viewer, and the VRML editor.

This section contains the following topics:

• Running a Simulink Interface Example — Open a Simulink model for an
inverted pendulum, start a simulation, and view the pendulum in a virtual
world.

• Running a MATLAB Interface Example — View a virtual world of the
MathWorks membrane.

Running a Simulink Interface Example
In the demo directory for the Virtual Reality Toolbox, there is a Simulink model
for a two-dimensional inverted pendulum. This model, which you can view in
three dimensions with the toolbox, has an interactive set point and trajectory
graph.

Before you can run this demo, you have to install MATLAB, Simulink, and the
Virtual Reality Toolbox:

2 Installation

2-36

1 In the MATLAB Command Window, type

vrpend

A Simulink window opens with the model for an inverted pendulum.

Testing the Installation

2-37

The Virtual Reality Toolbox viewer opens with a 3-D model of the pendulum.

Note Right-clicking in a virtual world displays a floating menu. From this
menu, you can choose viewer settings and navigation modes. These settings
include graphic quality and speed.

2 Installation

2-38

2 In the Simulink window, from the Simulation menu, click Start. A
Trajectory Graph window opens, and a simulation starts running.

3 In the Virtual Reality Toolbox viewer window, point to a position on the blue
surface and left-click.

The pendulum set point, represented by the green cone, moves to a new
location. Next, the path is drawn on the trajectory graph, and then the
pendulum itself moves to the new location.

In the Virtual Reality Toolbox viewer window you see the animated
movement of the pendulum. Use the viewer controls to navigate through the
virtual world, change the viewpoints, and move the set point. For more
information about using the Virtual Reality Toolbox viewer controls, see
“Virtual Reality Toolbox Viewer” on page 5-21.

4 In the Simulink window, double-click the Trajectory Graph block.

The Block Parameters: Trajectory Graph dialog box opens.

Testing the Installation

2-39

5 From the Setpoint mode list, choose Mouse, then click OK.

You can now use the trajectory graph as a 2-D input device to set the position
of the pendulum.

6 Move the mouse pointer into the graph area and click.

The set point (red circle) for the pendulum position moves to a new location,
and its trajectory is displayed as a blue line.

2 Installation

2-40

7 In the Simulink window, from the Simulation menu, click Stop. Close the
Virtual Reality Toolbox viewer window and close the Simulink window.

You can try other examples in “Simulink Interface Examples” on page 1-14, or
you can start working on your own projects.

Running a MATLAB Interface Example
This model, which can be viewed in three dimensions with the toolbox, has a
MATLAB interface to control the figure in a VRML viewer window.

Additional examples are listed in the table “MATLAB Interface Examples” on
page 1-21:

1 In the MATLAB window, type

vrmemb

MATLAB displays the following messages:

Loading...

This example shows you how to to use a MATLAB generated 3-D
graphic object in the Virtual Reality Toolbox.
. . .
Press Enter to start the demonstration.

Testing the Installation

2-41

2 Press the Enter key.

The Virtual Reality Toolbox viewer opens with a 3-D model.

3 Use the viewer controls to move within the virtual world, or use the demo
dialog box to rotate the membrane.

Note Sometimes the Virtual Reality Toolbox Demo dialog box is hidden
behind the viewer window.

2 Installation

2-42

3

Simulink Interface

The Virtual Reality Toolbox works with both MATLAB and Simulink. However, the Simulink
interface is the preferred way of working with the toolbox. It is more straightforward to use and all
the toolbox features are easily accessible through a graphical user interface (GUI).

Associating a Virtual World with
Simulink (p. 3-2)

Associate a Simulink model with a virtual world, and
connect signals from the Simulink model to the virtual
world

Using the Simulink Interface (p. 3-13) Open a Simulink model, display the associated virtual
world on a host computer or on a client computer, and
observe the simulated process in the virtual world

3 Simulink Interface

3-2

Associating a Virtual World with Simulink
With the Virtual Reality Toolbox you can interface a Simulink block diagram
with a virtual world. The example in this section explains how to display a
simulated virtual world on a host computer. This is the recommended way to
view associated virtual worlds on the host computer.

This section includes the following topics:

• Adding a Virtual Reality Toolbox Block — Connect a Simulink model to a
virtual world

• Changing the Virtual World Associated with a Simulink Block — Change
the virtual world associated with a Simulink model, and change the signals
passed between Simulink and the virtual world

Adding a Virtual Reality Toolbox Block
Simulating a Simulink model generates signal data for a dynamic system. By
connecting the Simulink model to a virtual world, you can use this data to
control and animate the virtual world.

After you create a virtual world and a Simulink model, you can connect the two
with Virtual Reality Toolbox blocks. The example in this procedure simulates
a plane taking off and lets you view it in a virtual world:

1 In the MATLAB Command Window, type

vrtut2

Associating a Virtual World with Simulink

3-3

A Simulink model opens without a Virtual Reality Toolbox block that
connects the model to a virtual world.

2 From the Simulation menu, select Normal, then click Start.

Observe the results of the simulation in the scope windows.

3 In the MATLAB Command Window, type

vrlib

3 Simulink Interface

3-4

The Virtual Reality Toolbox library opens.

4 From the Library window, drag and drop the VR Sink block to the Simulink
diagram. You can then close the Library: vrlib window.

Now you are ready to select a virtual world for the visualization of your
simulation. A simple virtual world with a runway and a plane is in the
VRML file vrtkoff.wrl.

Associating a Virtual World with Simulink

3-5

5 In the Simulink model, double-click the block labeled VR Sink.

The Block Parameters: VR Sink dialog box opens.

6 In the Description text box, enter a brief description of the model. This
description appears on the list of available worlds served by the Virtual
Reality Toolbox server. For example, type

VR Plane taking off

7 Click the Browse button. The Select World dialog box opens. Find the
directory <matlab root>\toolbox\vr\vrdemos. Select the file vrtkoff.wrl,
and click Open.

8 In the Block Parameters: VR Sink dialog box, click Apply.

A VRML tree appears on the right side, showing the structure of the
associated virtual reality scene.

3 Simulink Interface

3-6

9 Select Show node types. On the left of the Plane Transform node, click the
+ square.

The Plane Transform tree expands. Now you can see what characteristics of
the plane can be driven from Simulink. This model computes the position
and the pitch of the plane.

10 In the Plane Transform tree, select the translation and rotation fields.

The selected fields are marked with checks. These fields represent the
position (translation) and the pitch (rotation) of the plane.

11 Click OK.

In the Simulink diagram, the VR Sink block is updated with two inputs.

Associating a Virtual World with Simulink

3-7

The first input is Plane rotation. The rotation is defined by a four-element
vector. The first three numbers define the axis of rotation. In this example,
it should be [1 0 0] for the x-axis. The pitch of the plane is expressed by the
rotation about the x-axis. The last number is the rotation angle around the
x-axis, in radians.

12 In the Simulink model, connect the line going to the Scope block labeled
Display Pitch to the Plane rotation input.

The second input is Plane translation. This input describes the plane’s
position in the virtual world. This position consists of three coordinates, x,
y, z. The connected vector must have three values. In this example, the
runway is in the x-z plane. The y-axis defines the altitude of the plane.

3 Simulink Interface

3-8

13 In the Simulink model, connect the line going to the Scope block labeled
Display Position to the Plane translation input.

After connecting the signals and removing the Scope blocks, your model
should look similar to the figure shown.

Note Virtual world degrees of freedom have different requested input vector
sizes depending on the associated VRML field types. If the vector size of the
connected signal does not match the associated VRML field size, an Incorrect
input vector size error is reported when you start the simulation.

Associating a Virtual World with Simulink

3-9

14 Double-click the VR Sink block in the Simulink model. Select the View
button. A viewer window containing the plane’s virtual world opens.

3 Simulink Interface

3-10

15 From the Simulation menu of the model file, click Start.

A plane, moving right to left, starts down the runway and takes off into the
air.

Changing the Virtual World Associated with a
Simulink Block
Sometimes you might want to associate a different virtual world with a
Simulink model or connect different signals.

After you associate a virtual world with a Simulink model, you can select
another virtual world or change signals connected to the virtual world. This
procedure assumes that you have connected the Simulink model with a virtual
world. See “Adding a Virtual Reality Toolbox Block” on page 3-2:

Associating a Virtual World with Simulink

3-11

1 Double-click the VR Sink block in the model.

The Block Parameters: VR Sink dialog box opens.

2 Click the Browse button. The Select World dialog box opens. Find the
directory <matlab root>\toolbox\vr\vrdemos. Select the file
vrtkoff2.wrl, and click Open.

3 In the Block Parameters: VR Sink dialog box, click Apply.

A VRML tree appears on the right side. Simulink associates a new virtual
world with the model.

4 On the left of the Plane Transform node, click the plus sign square.

The Plane Transform tree expands. Now you can see what characteristics
of the plane you can drive from Simulink. This model computes the position.

5 In the Plane Transform tree, select the translation field check box. Clear
the rotation field check box. Click OK.

The VR Sink block updates and changes to just one input, the Plane
translation. The Virtual Reality block is ready to use with the new
parameters defined.

3 Simulink Interface

3-12

6 Verify that the correct output is connected to your VR Sink block. The output
from the VR Signal Expander should be connected to the single input.

7 Run the simulation again and view the new model in the viewer.

Using the Simulink Interface

3-13

Using the Simulink Interface
You can view a virtual world connected to a Simulink block diagram and make
parameter changes from Simulink or the virtual world.

This section includes the following topics:

• Displaying a Virtual World and Starting Simulation — Display and
interact with a virtual world on your host computer using the Virtual Reality
Toolbox viewer.

• View a Virtual World with a Web Browser on the Host Computer —
Connect to the Virtual Reality Toolbox host to access and view virtual
worlds.

• View a Virtual World with a Web Browser on the Client Computer —
Display and interact with a virtual world on a client computer.

Displaying a Virtual World and Starting Simulation
This example explains how to display a simulated virtual world using the
Virtual Reality Toolbox viewer on your host computer. This is the default and
recommended method for viewing virtual worlds. A Simulink window opens
with the model of a simple automobile. Automobile trajectory (vehicle position
and angle) is viewed in virtual reality:

3 Simulink Interface

3-14

1 In the MATLAB Command Window, type

vrtut1

A Simulink window opens with the model of an automobile.

Using the Simulink Interface

3-15

A VRML viewer also opens with a three-dimensional model of the virtual
world associated with the model.

2 Arrange the viewer and Simulink windows on your screen so that they are
both visible at the same time.

3 In the Simulink window, from the Simulation menu, click Start.

The simulation starts and, in the VRML viewer window, a car moves along
the mountain road.

4 Use the VRML viewer controls to move the camera within this virtual world
while the simulation is running. For more information on the Virtual Reality
Toolbox viewer controls, see “Virtual Reality Toolbox Viewer” on page 5-21.

5 In the Simulink window, from the Simulation menu, click Stop.

Opening a Viewer Window
If you close the viewer window, you might want to reopen it:

3 Simulink Interface

3-16

1 In the Simulink model window, double-click the VR Sink or VR Source block.

A Block Parameters dialog box opens.

2 Click View.

Your default viewer opens and displays the virtual scene. For more
information on setting your default viewer, see “Setting the Default Viewer
of Virtual Scenes” on page 2-20.

Multiple instances of the viewer can exist on your screen. A viewer appears
each time you click View in the Block Parameters dialog box. This feature is
particularly useful if you want to view one scene from many different
viewpoints at the same time.

View a Virtual World with a Web Browser on the
Host Computer
Normally, you view a virtual world by clicking the View button in a block
parameters dialog box. The virtual world opens in the Virtual Reality Toolbox
viewer or your VRML-enabled Web browser, depending on your
DefaultViewer setting. For more information on setting your default viewer,
see “Setting the Default Viewer of Virtual Scenes” on page 2-20.

Alternatively, you can view a virtual world in your Web browser by selecting
an open virtual world from a list in your Web browser. You can display the
HTML page that contains this list by connecting to the Virtual Reality Toolbox
host. This is the computer on which the toolbox is currently running.

The following procedure describes how to connect to the Virtual Reality
Toolbox host:

1 At the MATLAB command prompt, type

vrcrane

The Tower Crane demo is loaded and becomes active.

Using the Simulink Interface

3-17

2 Open your VRML-enabled Web browser. In the address line of the browser,
type

http://localhost:8123

Note To connect to the main HTML page from a client computer, type
http://hostname:8123, where hostname is the name of the computer on
which the toolbox is currently running.

The following page is loaded and becomes active.

3 Simulink Interface

3-18

The main HTML page for the Virtual Reality Toolbox lists the currently
available virtual worlds. The Tower Crane virtual world appears as a link.

3 Click Tower Crane.

The Tower Crane virtual world appears in your Web browser.

From the main HTML page, you can select one of the listed available worlds or
click the reload link to update the status of the virtual worlds supported by the
toolbox. This page does not require the VRML capabilities from the browser; it
is a standard HTML page. Nevertheless, when you click one of the virtual
world links in the list, the browser has to be VRML-enabled to display the
virtual world correctly and to communicate with the Virtual Reality Toolbox.

Using the Simulink Interface

3-19

View a Virtual World with a Web Browser on the
Client Computer
The Virtual Reality Toolbox allows you to simulate a process on a host
computer while running the visualization of the process on a client computer.
You view the virtual world on the client computer using a Web browser. This
client computer is connected to the host computer through a network using the
TCP/IP protocol. This means you need to know the name or IP address of the
host computer you want to access from the client computer.

Viewing a virtual world on a client computer might be useful for remote
computing, presentation of the results over the Web, or in situations where it
is desirable to distribute computing and graphical power.

This example explains how to display a simulated virtual world on a client
computer. In this case, the client computer is a PC platform with the blaxxun
Contact plug-in. The same procedure can be used to view a virtual world
remotely on an SGI platform with Cosmo Player. However, blaxxun Contact is
the only supported VRML plug-in. In this example, a Simulink window opens
with the model of a simple automobile. The automobile trajectory (vehicle
position and angle) is viewed in virtual reality:

1 On the host computer, in the MATLAB Command Window, type

vrtut1

A Simulink window opens with the model of an automobile.

3 Simulink Interface

3-20

2 Double-click the VR Sink block. This block is in the right part of the model
window.

Using the Simulink Interface

3-21

A Block Parameters: VR Sink dialog box opens.

3 Select the Allow remote access to world check box.

Note This option allows any computer connected to the network to view your
model. You should never select this box when you want your model to be
private or confidential.

4 Click OK.

5 On the client computer, open your VRML-enabled Web browser. In the
Address line, enter the address and Virtual Reality Toolbox port number for
the host computer running Simulink. For example, if the IP address of the
host computer is 192.168.0.1, enter

http://192.168.0.1:8123

To determine your IP address on a Windows system,

- Click Start, click Run, type cmd, and enter ipconfig (Windows 2000).

3 Simulink Interface

3-22

- Click Start, click Run, in the Open box enter wntipcfg (Windows NT).

- Click Start, click Run, and in the Open box enter winipcfg (Windows 98).

To determine your IP address on a UNIX system, type the command

ifconfig device_name

Click OK. An IP Configuration dialog box opens with a list of your IP,
mask, and gateway addresses.

Alternatively, for Windows platforms, you can open a DOS shell and type
ipconfig.

Using the Simulink Interface

3-23

The Web browser displays the main Virtual Reality Toolbox HTML page.
There is only one virtual world in the list because you only have one
Simulink model open.

3 Simulink Interface

3-24

6 Click Car in the Mountains.

The Web browser displays a 3-D model of the virtual world associated with
the model.

Using the Simulink Interface

3-25

7 On the host computer, in the Simulink window, from the Simulation menu,
click Start.

On the client computer, the animation of the scene reflects the process
simulated in the Simulink diagram on the host computer.

You can tune communication between the host and the client computer by
setting the Sample time and Transport buffer size parameters.

8 Use the Web browser controls to move within this virtual world while the
simulation is running.

9 On the host computer, in the Simulink window, from the Simulation menu,
click Stop. On the client computer, close the Web browser window.

3 Simulink Interface

3-26

4
MATLAB Interface

Although using The Virtual Reality Toolbox with the Simulink interface is the preferred way of
working with the toolbox, you can also use the MATLAB interface. Enter commands directly in the
MATLAB Command Window or use M-files to control virtual worlds.

Creating Virtual Reality Toolbox
Objects (p. 4-2)

Create vrworld and vrnode objects so you can interact
with a virtual world through the MATLAB command-line
interface

Using the MATLAB Interface (p. 4-4) Control virtual worlds by entering commands directly in
the MATLAB Command Window or by using M-files

4 MATLAB Interface

4-2

Creating Virtual Reality Toolbox Objects
You need to create vrworld objects before you can interact with a virtual world
through the MATLAB command-line interface.

This section includes the following topic:

• Creating a vrworld Object — Create a vrworld object to connect MATLAB
with a virtual world

Note The Simulink interface and the MATLAB interface share the same
virtual world objects. This makes it possible for you to use the MATLAB
interface to change the properties of vrworld objects originally created by
Simulink with Virtual Reality Toolbox blocks.

Creating a vrworld Object
To connect MATLAB to a virtual world, you need to create a vrworld object. A
virtual world is defined by a VRML file with the extension .wrl. For a complete
list of virtual world objects, see Chapter 8, “vrworld Object Reference,” Chapter
9, “vrnode Object Reference,” and Chapter 10, “vrfigure Object Reference.”

After you create a virtual world, you can create a vrworld object. This
procedure uses the virtual world vrmount.wrl as an example:

1 Open MATLAB. In the MATLAB Command Window, type

myworld = vrworld('vrmount.wrl')

MATLAB displays

myworld =
vrworld object: 1-by-1

2 Type

vrwhos

Creating Virtual Reality Toolbox Objects

4-3

MATLAB displays the messages

(untitled)
Closed, associated with
'C:<matlab root>\toolbox\vr\vrdemos\vrmount.wrl'.
Visible for local viewers.
No clients are logged on.
World id is 'W995480635991'.

The vrworld object myworld is associated with the virtual world vrmount.wrl.
You can think of the variable myworld as a handle to the vrworld object stored
in the MATLAB workspace.

Your next step is to open a virtual world using the vrworld object. See “Opening
a Virtual World” on page 4-4.

4 MATLAB Interface

4-4

Using the MATLAB Interface
This section includes the following topics:

• Opening a Virtual World — Open a virtual world and scan its structure
• Interacting with a Virtual World — Set new values for the available virtual

world nodes and their fields

• Closing and Deleting a vrworld Object — Close open virtual worlds and
remove them from memory

Opening a Virtual World
Opening a virtual world lets you view the virtual world in a VRML viewer, scan
its structure, and change virtual world properties from the MATLAB
Command Window.

After you create a vrworld object, you can open the virtual world by using the
vrworld object associated with that virtual world. This procedure uses the
vrworld object myworld associated with the virtual world vrmount.wrl as an
example:

1 In the MATLAB Command Window, type

open(myworld);

MATLAB opens the virtual world vrmount.wrl.

2 Type

set(myworld, 'Description', 'My first virtual world');

The description property is changed to My first virtual world. This is the
description that is displayed in all Virtual Reality object listings, in the title
bar of the Virtual Reality Toolbox viewer, and in the list of virtual worlds on
the Virtual Reality Toolbox HTML page.

3 Open a Web browser. In the Address box, type

http://localhost:8123

The browser displays the Virtual Reality Toolbox HTML page with a link to
My first virtual world. The number 8123 is the default Virtual Reality
Toolbox port number. If you set a different port number on your system,

Using the MATLAB Interface

4-5

enter that number in place of 8123. For more information on the Virtual
Reality Toolbox HTML page, see “View a Virtual World with a Web Browser
on the Host Computer” on page 3-16.

4 In the browser window, click My first virtual world.

Your default VRML-enabled Web browser displays the virtual world
vrmount.wrl.

Alternatively, you can display the virtual world by using the command
view(myworld), which displays the virtual scene in your default viewer. For
more information on changing your default viewer, see “Setting the Default
Viewer of Virtual Scenes” on page 2-20.

Interacting with a Virtual World
In the life cycle of a vrworld object you can set new values for all the available
virtual world nodes and their fields using vrnode object methods. This way, you
can change and control the degrees of freedom for the virtual world from within
the MATLAB environment.

An object of type vrworld contains nodes named in the VRML file using the
DEF statement. These nodes are of type vrnode. For more information, see
Chapter 8, “vrworld Object Reference” and Chapter 9, “vrnode Object
Reference” for the full description of these objects.

After you open a vrworld object, you can get a list of available nodes in the
virtual world. This procedure uses the vrworld object myworld and the virtual
world vrmount.wrl as an example:

1 In the MATLAB Command Window, type

nodes(myworld);

4 MATLAB Interface

4-6

MATLAB displays a list of the vrnode objects and their fields that are
accessible from the Virtual Reality Toolbox.

View1 (Viewpoint) [My first virtual world]
Camera_car (Transform) [My first virtual world]
VPfollow (Viewpoint) [My first virtual world]
Automobile (Transform) [My first virtual world]
Wheel (Shape) [My first virtual world]
Tree1 (Group) [My first virtual world]
Wood (Group) [My first virtual world]
Canal (Shape) [My first virtual world]
ElevApp (Appearance) [My first virtual world]
River (Shape) [My first virtual world]
Bridge (Shape) [My first virtual world]
Road (Shape) [My first virtual world]
Tunnel (Transform) [My first virtual world]

2 Type

mynodes = get(myworld, 'Nodes')

MATLAB creates an array of vrnode objects corresponding to the virtual
world nodes and displays

mynodes =
vrnode object: 13-by-1

3 Type

whos

MATLAB displays the messages

Name Size Bytes Class
 mynodes 13x1 3344 vrnode object
 myworld 1x1 120 vrworld object

Now you can get node characteristics and set new values for certain node
properties. For example, you can change the position of the automobile by
using Automobile, which is the fourth node in the virtual world.

Using the MATLAB Interface

4-7

4 Access the fields of the Automobile node by typing

fields(mynodes(4));

or

fields(myworld.Automobile)

Note that dot notation is the preferred method for accessing the nodes of the
vrworld object myworld.

MATLAB displays the following table.

Field Access Type Sync

translation exposedField SFVec3f off
center exposedField SFVec3f off
bboxCenter field SFVec3f off
children exposedField MFNode off
scale exposedField SFVec3f off
bboxSize field SFVec3f off
removeChildren eventIn MFNode off
scaleOrientation exposedField SFRotation off
rotation exposedField SFRotation off
addChildren eventIn MFNode off

The Automobile node is of type Transform. This VRML node allows you to
change its position by changing its translation field values. From the list,
you can see that translation requires three values, representing the [x y z]
coordinates of the object.

5 Type

view(myworld)

Your default viewer opens and displays the virtual world vrmount.wrl.

6 Move the MATLAB window and the browser window side by side so you can
view both at the same time. In the MATLAB Command Window, type

4 MATLAB Interface

4-8

myworld.Automobile.translation = [15 0.25 20];

MATLAB sets a new position for the Automobile node, and you can observe
that the car is repositioned in the VRML browser window.

It is possible to change the node fields listed by using the function
vrnode/setfield.

Closing and Deleting a vrworld Object
After you are finished with a session, you must close all open virtual worlds and
remove them from memory:

1 In the MATLAB Command Window, type

close(myworld);
delete(myworld);

The virtual world representation of the vrworld object myworld is removed
from memory. All possible connections to the viewer and browser are closed
and the virtual world name is removed from the list of available worlds.

Note Closing and deleting a virtual world does not delete the vrworld object
handle myworld from the MATLAB workspace.

5
Virtual Worlds

The Virtual Reality Toolbox includes the Virtual Reality Toolbox viewer for all supported platforms.
For PC platforms, it includes a VRML plug-in (blaxxun Contact) and a VRML editor (V-Realm
Builder). For UNIX/Linux platforms, the default VRML editor is the MATLAB editor. A basic
understanding of these tools and how to use them will help you to get started quickly.

VRML Editing Tools (p. 5-2) Description of the differences between general and native
editors

Deformation of a Sphere Example
(p. 5-5)

Tutorial for creating a simple virtual world with V-Realm
Builder and associating this virtual world with Simulink
blocks from the Virtual Reality Toolbox

Viewing a Virtual World (p. 5-21) Description of the Virtual Reality Toolbox viewer and the
blaxxun Contact VRML plug-in

VRML Data Types (p. 5-37) VRML data types are data types used by VRML nodes to
define objects and types of data that can appear in the
VRML node fields and events.

5 Virtual Worlds

5-2

VRML Editing Tools
There is more than one way to create a virtual world described with the VRML
code. For example, you can use a text editor to write VRML code directly, or you
can use a VRML editor to create a virtual world without having to know
anything about the VRML language. However, you need to understand the
structure of a VRML tree to connect your virtual world to Simulink blocks and
signals.

This section includes the following topics:

• Editors for Virtual Worlds — General 3-D and native VRML editors

• V-Realm Builder — Native VRML editor shipped with the PC version of the
Virtual Reality Toolbox

Editors for Virtual Worlds
A VRML file uses a standard text format that you can read with any text editor.
Reading the text is useful for debugging, automated processing, and directly
changing VRML code. Also, if you use the correct VRML syntax, you can use
any common text editor to create virtual scenes similar to the way you create
HTML pages.

Many people prefer to create simple virtual worlds using their favorite text
editor. However, the primary way for you to create a virtual world is with a 3-D
editing tool. These tools allow you to create complex virtual scenes without a
deep understanding of the VRML language.

These 3-D editing tools offer the power and versatility necessary for creating
many types of practical and technical models. For example, you can import 3-D
objects from some CAD packages to make the authoring process easier and
more efficient. For VRML authoring, there are basically two types of 3-D
editing tools:

• General 3-D authoring packages that can export into VRML format

• Native VRML authoring tools

General 3-D Editors — General 3-D editors do not use VRML as their native
format. They export their formats to VRML. There are many commercial
packages, such as 3D Studio, that can do this. These tools have many features
and are very easy to use. General 3-D editing tools target specific types of work.
For example, they can target visual art, animation, games, or technical

VRML Editing Tools

5-3

applications. They offer different working environments depending on the
application area for which they are designed. Some of these general 3-D editing
tools can be very powerful, expensive, and complex to learn, but others are
relatively inexpensive and might satisfy your specific needs.

It is interesting to note that the graphical user interfaces for many of the
general commercial 3-D editors use features typical of the native VRML editing
tools. For example, in addition to displaying 3-D scenes in various graphical
ways, they also offer hierarchical tree-style views that provide a good overview
of the model structure and a convenient shortcut to 3-D element definitions.

Native VRML Editors — Native VRML editors use VRML as their native
format. This guarantees that all the features in the editor are compatible with
VRML. Also, native VRML editors can use features that are unique for the
VRML format, like interpolators and sensors.

Unfortunately, there are currently few advanced VRML editors of commercial
quality. Most native VRML editors are in the development stage and are
harder to use than a general 3-D editor. V-Realm Builder by Ligos Corporation
is one of the exceptions. It is one of the most advanced VRML editing tools
currently available for personal computers. V-Realm Builder is available only
for Windows operating systems.

For PC, the Virtual Reality Toolbox includes V-Realm Builder as a native 3-D
editor. For more information, see “V-Realm Builder” on page 5-4 and
“Deformation of a Sphere Example” on page 5-5.

5 Virtual Worlds

5-4

V-Realm Builder
V-Realm Builder is a flexible, graphically oriented tool for 3-D editing and is
available for Windows operating systems only. It is a native VRML authoring
tool that provides a convenient interface to the VRML syntax. Its primary file
format is VRML. Its graphical interface (GUI) offers not only the graphical
representation of a 3-D scene and tools for interactive creation of graphical
elements, but also a hierarchical tree-style view (tree viewer) of all the
elements present in the virtual world.

These structure elements are called nodes. V-Realm Builder lists the nodes and
their properties according to their respective VRML node types, and it supports
all 54 VRML97 types. For each type of node there is a specific tool for
convenient modification of the node parameters. You can access node
properties in two ways:

• Using dialog boxes accessible from the tree viewer

• Directly, using a pointing device

In many cases, it is easier to use the tree viewer to access nodes because it can
be difficult to select a specific object in a 3-D scene. The tree view also lets you
easily change the nesting levels of certain nodes to modify the virtual world
according to your ideas. In the tree viewer, you can give the nodes unique
names — a feature necessary for working with Virtual Reality Toolbox.

Deformation of a Sphere Example

5-5

Deformation of a Sphere Example
The example in this section shows you how to create a simple virtual world
using V-Realm Builder. It does not describe everything you can do with
V-Realm Builder, but it does describe the basics to get you started.

This example assumes you finished the installation of V-Realm Builder using
the function vrinstall. See “Installing VRML Editor (Windows)” on page 2-25.

This section includes the following topics:

• “Defining the Problem” on page 5-5

• “Adding a Virtual Reality Toolbox Block” on page 5-6

• “Creating a Sphere in a Virtual World” on page 5-8

• “Creating a Box in a Virtual World” on page 5-13

• “Connecting a Simulink Model to a Virtual World” on page 5-17

Defining the Problem
Suppose you want to simulate and visualize in virtual reality the deformation
of a sphere. In your virtual world, you want to have two boxes representing
rigid plates (B1, B2) and an elastic sphere (S) between them. All three of the
objects are center-aligned along the X axis. The boxes B1 and B2 move towards
S with identical velocities, but they move in opposite directions. As they reach
the sphere S, they start to deform it by reducing its X dimension and stretching
it in both its Y and Z dimensions.

Positions and dimensions of the objects are listed in the following table.

Your first task is to open a Simulink model and add a Virtual Reality Toolbox
block to your model. See “Adding a Virtual Reality Toolbox Block” on page 5-6.

Simulink model — The Virtual Reality Toolbox includes the tutorial model
vrtut3.mdl. This is a simplified model in which the deformation of an elastic

Object Center Position Dimensions

B1 [3 0 0] [0.3 1 1]

B2 [-3 0 0] [0.3 1 1]

S [0 0 0] r = 0.9

5 Virtual Worlds

5-6

sphere is simulated. After collision with the rigid blocks, the sphere’s X
dimension is decreased by a factor from 1 to 0.4, and the Y and Z dimensions
are expanded so that the volume of the deformed sphere-ellipsoid remains
constant. There are also additional blocks in the model to supply the correctly
sized vectors to the Virtual Reality Toolbox block. The simulation stops when
the sphere is deformed to 0.4 times its original size in the X direction.

Adding a Virtual Reality Toolbox Block
This procedure uses the Simulink model vrtut3.mdl as an example to explain
how to add a Virtual Reality Toolbox block to your model. The model generates
the values for the position of B1, the position of B2, and the dimensions of S for
the problem previously defined. See “Defining the Problem” on page 5-5.

1 From the directory C:\<matlab root>\toolbox\vr\vrdemos\, copy the file
vrtut3.mdl to your MATLAB working directory.

2 Start MATLAB, and then change the current directory to your MATLAB
working directory.

3 In the MATLAB Command Window, type

vrtut3

Deformation of a Sphere Example

5-7

A Simulink window opens with a model that does not contain a Virtual
Reality Toolbox block. Instead, this model uses Scope blocks to temporarily
monitor the relevant signals.

4 From the MATLAB Command Window, type

vrlib

5 Virtual Worlds

5-8

The Virtual Reality Toolbox library opens.

5 From the Library window, drag-and-drop the VR Sink block to the Simulink
diagram. You can then close the Library: vrlib window.

Your next task is to create a virtual world that you will associate with the VR
Sink block. See “Creating a Sphere in a Virtual World” on page 5-8.

Creating a Sphere in a Virtual World
You need to create a virtual world before you can connect it to a Simulink model
and visualize signals.

After you add a VR Sink block to your Simulink model, you can create a virtual
world using V-Realm Builder. This procedure uses the model vrtut3.mdl as an
example and assumes that you have opened the model and that you have added
a VR Sink block. See “Adding a Virtual Reality Toolbox Block” on page 5-6.

1 From the task bar, click Start, and then click Run.

Deformation of a Sphere Example

5-9

2 In the Run dialog box, enter

C:\<matlab root>\toolbox\vr\vrealm\program\vrbuild2.exe

The V-Realm Builder application window opens.

3 From the File menu, click New or click the blank page icon .

In the left pane, V-Realm Builder displays an empty VRML tree, and in the
right pane it displays an empty virtual world.

4 On the toolbar, click the sphere icon .

In the left pane you can see the VRML syntax tree for a sphere. This tree
includes the following nodes: Transform, Shape, Appearance, Material,
and Sphere. A yellow icon indicates the field of a node.

The top-level node is the Transform node. This grouping node allows you to
change the position and scale of objects (children) that are part of this node.

5 Virtual Worlds

5-10

Its subtree consists of one object, which is described in the Shape node. The
Shape node contains the appearance and geometry fields.

5 Expand the Sphere node.

The radius field appears. The yellow icon indicates the type of value. In this
case, f indicates a value with the type SFFloat. SFFloat is a 32-bit
floating-point value.

6 Double-click the radius field.

The Edit SFFloat dialog box opens.

7 In the text box, enter 0.9, and then click OK. In the right pane, the sphere
appears smaller.

Deformation of a Sphere Example

5-11

8 Under the Shape node, expand the appearance field. Under the appearance
field, expand the Appearance node. Under the Appearance node, expand
the material field. Under the material field, expand the Material node.

9 Under the Material node, double-click the diffuseColor field.

The Edit Color dialog box opens.

5 Virtual Worlds

5-12

10 Set the color to blue or any other color you would like, and then click OK.

11 If you want to check or modify the position of the sphere, double-click the
translation field under the Transform node. You do not need to change the
default values from [0 0 0].

In this exercise, you want to deform the sphere. You can apply deformation
by changing the scale field of the sphere’s Transform node. The Virtual
Reality Toolbox requires you to assign a name to this node so that it can
access it. In VRML syntax, the named nodes are indicated by the “DEF
Name Node” statement. V-Realm Builder lists node names next to their
icons in the tree viewer.

12 Click the Transform node, and then click the node a second time.

The text appears in edit mode.

13 Enter a name for the node. For example, enter the letter S, and then click
anywhere to exit the text mode.

Your next task is to create two boxes in the virtual world. See “Creating a Box
in a Virtual World” on page 5-13.

Deformation of a Sphere Example

5-13

Creating a Box in a Virtual World

1 In the tree, click New World (the topmost item). On the toolbar, click the box
icon .

A new box object appears at the same position as the sphere centered in the
origin of the coordinate system. Note that the sphere is hidden behind the
box and currently is not visible.

2 Double-click the translation field under the Transform node.

The Edit Vector 3 dialog box opens. Notice that there are two Transform
nodes. Use the one with the Box node in its subtree.

3 Select the X Axis check box. In the text box below, enter 3, then click OK.

The position of the box is set to [3 0 0].

5 Virtual Worlds

5-14

4 Expand the Box node. Double-click the size field under the Box node.

The Edit Vector 3 dialog box opens.

5 Set the values to [0.3 1 1], and then click OK.

Deformation of a Sphere Example

5-15

The figure below shows the tree view with the expanded branch of the box.

6 Create a second box the same way you created the first box.

7 To move the second box to its correct place, double-click the translation field
of the second Transform node, and change its position to [-3 0 0].

8 Double-click the size field under the Box node. Set the values to [0.3 1 1],
and then click OK.

The scene is now complete.

9 To access the positions of the boxes from a Virtual Reality Toolbox block,
give each Transform node a name. For example, set the name of the first
Transform node to B1 and the second Transform node to B2. The Virtual

5 Virtual Worlds

5-16

Reality Toolbox allows you to access fields of only those nodes that are
named in virtual worlds.

10 Save the virtual world as vrtut3.wrl in the same working directory where
the file vrtut3.mdl resides, and then exit V-Realm Builder.

Caution If you want to use your virtual worlds with the Virtual Reality
Toolbox, do not save them in a compressed Gzip format.

Deformation of a Sphere Example

5-17

Your next task is to connect the model outputs to the Virtual Reality Toolbox
block in your Simulink model. See “Connecting a Simulink Model to a Virtual
World” on page 5-17.

Connecting a Simulink Model to a Virtual World
After you create a virtual world, a Simulink model, and add a Virtual Reality
Toolbox block to your model, you can define the associations between the model
signals and the virtual world. This procedure uses the model vrtut3.mdl as an
example. It assumes that you have opened the model and that you have added
a VR Sink block. See “Adding a Virtual Reality Toolbox Block” on page 5-6.

1 In the Simulink window, double-click the VR Sink block.

The Block Parameters: VR Sink dialog box opens again.

2 Click Browse.

The Select World dialog box opens.

3 Select vrtut3.wrl, and then click Open.

4 In the tree viewer, select the S scale, B1 translation, and B2 translation
check boxes as the nodes you want to connect to your model signals. Click
OK to close the dialog box.

The Virtual Reality Toolbox block appears with corresponding inputs.

5 Virtual Worlds

5-18

5 Connect these input lines to the matching signals in the model. These
signals were originally connected to Scope blocks.

Deformation of a Sphere Example

5-19

6 Double-click the VR Sink block. In the Block Parameters: VR Sink dialog
box, click the View button.

Your default viewer opens and displays the virtual world. For more
information on changing your default viewer, see “Setting the Default
Viewer of Virtual Scenes” on page 2-20.

5 Virtual Worlds

5-20

7 In the Simulink window, from the Simulation menu, click Start.

In your default viewer, you see a 3-D animation of the scene. Using the
viewer controls you can observe the action from various viewpoints.

When the width of the sphere is reduced to 0.4 of its original size, the
simulation stops running.

This example shows you how to create and use a very simple virtual reality
model. Using the same method, you can create more complex models for solving
your particular problems.

Viewing a Virtual World

5-21

Viewing a Virtual World
After you create a virtual world with VRML code, you can visualize that virtual
world with the Virtual Reality Toolbox viewer or with a VRML-enabled Web
browser. The Virtual Reality Toolbox viewer can be used on all supported
platforms and is the preferred method of viewing virtual worlds.

This section includes the following topics:

• “Virtual Reality Toolbox Viewer” on page 5-21

• “blaxxun Contact VRML Plug-in” on page 5-33

Virtual Reality Toolbox Viewer
The Virtual Reality Toolbox contains a viewer as the default method for
viewing virtual worlds. You can use this viewer on any supported operating
system. For a list of supported operating systems, see “System Requirements”
on page 2-2. The following topic provides an overview of the features and
controls of the viewer.

1 Open a virtual world by selecting a Virtual Reality demo or by clicking the
View button in the Block Parameters dialog box of a Virtual Reality block.

The Virtual Reality Toolbox viewer is loaded and becomes active. It displays
the virtual scene with a control panel at the bottom.

Note The Virtual Reality Toolbox viewer settings are saved when you save
your model file.

Information

Headlight toggle
Wireframe toggle

Viewpoint control

Hide panel

Navigation wheel Navigation method

5 Virtual Worlds

5-22

Viewpoint Control
There are three buttons on the control panel that affect the viewpoint of the
scene. The center circular button resets the camera to the current viewpoint.
This button is useful when you have been moving about the scene and need to
reorient yourself. The keyboard equivalents of this button are Home and R.
The Esc key resets the camera to the default viewpoint.

You can use the right and left arrows associated with viewpoint control to
browse through predefined viewpoints. These buttons are inactive if other
viewpoints are not specified by the author. You can also use the Page Up and
Page Down keys to navigate through these viewpoints.

Control Menu
Access the control menu by right-clicking in the viewer window. You can use
the control menu to specify a predefined viewpoint or change the appearance of
the control panel. You can also control the navigation method, speed, and
rendering of the virtual world. For more information about navigation
methods, see “Navigation” on page 5-25. For more information about
rendering, see “Rendering” on page 5-23.

Changing the Navigation Speed

1 In the viewer window, right-click.

2 Point to Navigation.

3 Point to Speed, then select Very Slow.

Your navigation speed within the virtual world is much slower than before.

Note Your navigation speed controls the distance you move with each
keystroke. It does not affect rendering speed.

Consider setting a higher speed for large scenes and a slower speed for more
controlled navigation in smaller scenes.

Viewing a Virtual World

5-23

Rendering
You can change the rendering of the scene through the control panel or the
control menu. The vrpend demo is used to demonstrate the viewer’s
functionality.

You can turn the antialiasing of the scene on or off. Antialiasing is a technique
that attempts to smooth the appearance of jagged lines. These jagged lines are
the result of a printer or monitor’s not having enough resolution to represent a
line smoothly. When Antialiasing is on, the jagged lines are surrounded by
shades of gray or color. Therefore, the lines appear fuzzy rather than jagged.

You can turn the camera headlight and the lighting of the scene on or off. When
Headlight is off, the camera does not emit light. Consequently, the scene can
appear dark. For example, the following figure depicts the vrpend demo with
Headlight(on).

Headlight toggle

5 Virtual Worlds

5-24

The scene looks darker when Headlight is set to off.

Note It is helpful to define enough lighting within the virtual scene so that it
is lit regardless of the Headlight setting.

Viewing a Virtual World

5-25

When Lighting is off, the virtual world appears as if lit in all directions.
Shadows disappear and the scene loses some of its three-dimensional quality.
The following is the vrpend demo with Lighting(off).

If Textures is off, objects do not have texture in the virtual scene.

If Transparency is off, transparent objects are rendered as solid objects.

Turning Wireframe on changes the scene’s objects from solid to wireframe
renderings.

Navigation
You can navigate around a virtual scene using the control panel, control menu,
mouse, and keyboard. The vrbounce demo is used to demonstrate the viewer’s
functionality.

Control Panel — The center navigation wheel and two curved buttons on
either side move you about the scene. Experiment by moving backward and
forward and side to side until you become comfortable with the controls.

Wireframe toggle

5 Virtual Worlds

5-26

Control Menu — Right-click in the viewer window to access the control menu.
Point to Navigation and a new menu is displayed.

From this menu, you can reset the camera so that it is pointed straight ahead
by choosing Straighten up. You can also return to the current viewpoint by
choosing Go to current viewpoint. This option is useful if you are navigating
about the scene and want to reorient yourself.

Viewing a Virtual World

5-27

Mouse — Navigation with the mouse depends on the navigation method you
select and the navigation zone you are in when you first click and hold down
the mouse button. You can set the navigation method using the W, E, or F
buttons on the control panel or by right-clicking in the viewer. Point to
Navigation. Next, point to Method and click Walk, Examine, or Fly.

To view the navigation zones for a scene, right-click in the viewer and point to
Navigation. Then click Show navigation zones (off). The navigation zones
are toggled on and appear in the virtual scene.

Navigation Method

5 Virtual Worlds

5-28

For example, using the vrbounce demo with Method set to Fly, there are three
navigation zones.

Viewing a Virtual World

5-29

The following table summarizes the behavior associated with the movement
modes and navigation zones when you use your mouse to navigate through a
virtual world. Turn the navigation zones on and experiment by clicking and
dragging your mouse in the different zones of a virtual world.

If your virtual world contains sensors, these sensors take precedence over
mouse navigation at the sensor’s location.

Mouse Navigation

Movement
Mode

Zone and Description

Walk Outer — Click and drag the mouse up, down, left, or
right to move the camera in any of these directions in a
single plane.
Inner — Click and drag the mouse up and down to
move forward and backward. Drag the mouse left and
right to turn left or right.

Examine Outer — Click and drag the mouse up and down to move
forward and backward. Drag the mouse left and right to
pan left or right.
Inner — Click and drag the mouse to rotate the
viewpoint about the origin of the scene.

Fly Outer — Click and drag the mouse to tilt the view
either left or right.
Inner — Click and drag the mouse to move the camera
up, down, left, or right within the scene.
Center — Click and drag the mouse up and down to
move forward and backward. Move the mouse left or
right to turn in either of these directions.

5 Virtual Worlds

5-30

Example of How Sensors Affect Mouse Navigation

1 In the MATLAB Command Window, type

vrpend

at the MATLAB command prompt. The inverted pendulum demo starts, and
the viewer displays the following scene.

2 In the Simulink model window, from the Simulation menu, choose Start.

The demo starts running.

3 Click in the viewer window inside and outside the sensor area. Notice that
the sensor takes precedence over navigation with the left mouse button. The
shape of your pointer changes when it is located over the sensor area.

If the sensor covers the entire navigable area, mouse navigation is effectively
disabled. In this case, use the control panel or the keyboard to move about the
scene. For a three-button mouse or a mouse with a clickable wheel, you can

Viewing a Virtual World

5-31

always use the middle button or the wheel to move about the scene. The middle
mouse button and wheel do not trigger sensors within the virtual world.

Keyboard — It is also possible to use the keyboard to navigate through a
virtual world. It can be faster and easier to issue a keyboard command,
especially if you want to move the camera repeatedly in a single direction. The
following table summarizes the keyboard commands and their associated
navigation functions. Note that the letters presented do not need to be
capitalized in order to perform their intended function.

Keyboard Navigation

Keyboard
Command

Navigation Function

0 Reset the camera so that it is pointed straight ahead

B Toggle the alpha blending on/off. If alpha blending is
on, objects that have a set alpha value are displayed as
transparent.

F/G Zoom in/out

H Toggle the headlight on/off

I Show/hide information on viewpoint name and camera
position

L Toggle the lighting on/off

T Toggle the object textures on/off

V Toggle the navigation zones on/off

W Toggle the wireframe option on/off

Esc Return to default viewpoint

R, Home Return to current viewpoint

Page Up, Page
Down

Move between preset viewpoints

S,X, <, > Rotate the viewpoint about the origin of the scene

5 Virtual Worlds

5-32

Left Arrow,
Right Arrow

Move the camera left and right

Up Arrow, Down
Arrow

Move the camera forward and backward

N,M Tilt the camera right and left

\ Camera is bound/unbound from the viewpoint

Shift-W Set the navigation method to Walk

Shift-E Set the navigation method to Examine

Shift-F Set the navigation method to Fly

A, Z Pan up and down

Shift-A, Shift-Z Slide up and down

O,P Pan right and left

Shift-O, Shift-P Slide right and left

Keyboard Navigation (Continued)

Keyboard
Command

Navigation Function

Viewing a Virtual World

5-33

blaxxun Contact VRML Plug-in
The Virtual Reality Toolbox includes the blaxxun Contact VRML plug-in. This
is a popular VRML plug-in for either Microsoft Internet Explorer or Netscape
Navigator on a Windows platform. This section provides a quick overview of
the functions and controls of the blaxxun Contact VRML plug-in.

When you open a VRML file with a Web browser, the blaxxun Contact VRML
plug-in is used to display a virtual scene. A control panel is located at the
bottom of the scene.

Viewpoint Control
There are three buttons on the control panel for controlling the viewpoint. The
square button in the middle resets the current viewpoint to its initial position.
This is the most useful viewpoint control button until you gain enough
experience with the viewer to explore worlds using navigation. The keyboard
shortcut for the square button is the Esc key.

You use the other two triangular buttons to browse forward and backward
through author-defined viewpoints of the virtual world. If the author does not
define other viewpoints, these buttons are inactive. The keyboard shortcuts for
the triangular buttons are the Page Up and Page Down keys.

Control Menu
You use the control menu to review or select viewer settings and navigation
methods. To access the control menu, use the following procedure:

1 On the control panel, click the question mark, or place your mouse pointer
anywhere in the browser window, and then right-click.

If you selected DirectX with the blaxxun Contact installation, a menu
similar to the one shown appears.

Viewpoint control

Show/Hide panel

Movement mode
and dial control

Left/Right buttons

Show menu

5 Virtual Worlds

5-34

2 From the menu, you can make changes to the navigational mode, graphic
quality, and graphic speed.

Depending on the complexity of the virtual world and the required speed and
rendering quality, you can choose the settings that best meet your needs.

Because the viewer’s graphical performance is strongly dependent on several
factors, you might want to experiment to find a reasonable compromise
between the quality and speed for your system.

Navigation
The dial control and left/right buttons give you direct access to the movement
mode for walking through a virtual world. However, the movement behavior of
your mouse pointer changes depending on the movement mode you select.
When you select a different movement mode, clicking your left mouse button
causes your viewpoint to move differently. Practice changing the movement
mode and navigating through a virtual world until you get satisfactory results.

To select a movement mode, use the following procedure:

1 Place your mouse pointer over a virtual world, then right-click. A menu
appears.

2 On the menu, point to Movement. A submenu appears.

3 Select Walk, Slide, Rotate, Examine, Fly, Pan, or Jump.

Viewing a Virtual World

5-35

A letter in the center of the dial indicates the current movement mode. For
example, in the preceding illustration, the large E stands for Examine mode.

Initially, you should use Examine mode, which is for examining objects from
various angles. You will find that the functions of the left/right button controls
in Examine mode are the easiest for beginners to master.

Movement Modes
The following table lists the movement modes.

Movement
Mode

Description

Walk Drag the mouse toward the top or the bottom of the
screen to move forward or backward, and drag toward
the left or right to turn left or right.

Slide Drag the mouse to move up, down, left, or right within
a plane that is perpendicular to your view.

Rotate Press the left mouse button to select a rotation point
within the scene. Then drag the mouse toward the top
or bottom to move forward or back, or drag the mouse
toward left or right to rotate around the fixed point.

Examine Press the left mouse button to select a rotation point
within the scene. Then drag the mouse up, down, left,
or right to rotate the object.

Fly Press the left mouse button to start flying. Drag the
mouse toward the top or bottom to rise or sink, and
drag toward the left or right.

Pan Drag the mouse toward the top or bottom of the scene
to loop up and down, and drag toward the left or right
to turn left or right.

Jump Place your mouse pointer over an object, then left-click.
Your view moves to that point.

5 Virtual Worlds

5-36

blaxxun Contact Settings
For PC, the Virtual Reality Toolbox includes the blaxxun Contact VRML
plug-in for Web browsers. The viewer allows you to select several working
configurations, and its performance depends on several factors:

• The speed of your hardware

• System display driver settings

• Method of 3-D rendering

• blaxxun Contact parameters

• The size of the window in which you display the 3-D visualization

You might want to test the various combinations possible on your system to
find an optimal configuration for the best performance in 3-D visualization.

With respect to the 3-D rendering method, you can install blaxxun Contact
with two basic configurations using OpenGL and Direct3-D drivers. You can
tune the viewer performance by setting the parameters in the
Settings-Preferences dialog box of the viewer floating menu, accessible by
right-clicking when viewing a virtual scene.

In Direct3D configuration, you can select the speed and quality on the fly from
the top level of the menu. You can, depending on the system capabilities, select
one of the options on the menu. For example, you can select High Speed, High
Quality, Hardware Acceleration, and MMX Speed.

In the OpenGL configuration, you can set similar rendering properties. From
the floating menu, choose Settings, and then choose Preferences.

VRML Data Types

5-37

VRML Data Types
VRML data types are data types used by VRML nodes to define objects and
types of data that can appear in the VRML node fields and events.

This section includes the following topics:

• VRML Field Data Types

• VRML Data Class Types

VRML Field Data Types
The following table shows the VRML data types and how they are converted to
MATLAB types.

For a detailed description of the VRML fields, refer to the VRML97 Standard.

VRML Type Description VR Toolbox Type

SFBool The Boolean value true or false. 'on' or 'off'

SFFloat A 32 bit floating-point value. Double

SFInt32 A 32 bit signed-integer value.

SFInt32_value =
floor(double_value)

Double

SFTime An absolute or relative time
value.

Double

SFVec2f Vector of two floating-point values
that you usually use for 2-D
coordinates. For example, texture
coordinates.

Double array (1-by-2)

SFVec3f Vector of three floating-point
values that you usually use for
3-D coordinates

Double array (1-by-3)

5 Virtual Worlds

5-38

SFColor Vector of three floating-point
values you use for RGB color
specification.

Double array (1-by-3)

SFRotation Vector of four floating-point
values you use for specifying
rotation coordinates (x,y,z) of an
axis plus rotation angle around
that axis.

Double array (1-by-4)

SFImage Two-dimensional array
represented by a sequence of
floating-point numbers.

N/A

SFString String in UTF-8 encoding.
Compatible with ASCII, allowing
you to use Unicode characters.

String

SFNode Container for a VRML node. N/A

MFFloat Array of SFFloat values. Double array (n-by-1)

MFInt32 Array of SFInt32 values. Double array (n-by-1)

MFVec2f Array of SFVec2f values. Double array (n-by-2)

MFVec3f Array of SFvec3f values. Double array (n-by-3)

MFColor Array of SFColor values. Double array (n-by-3)

MFRotation Array of SFRotation values. Double array (n-by-4)

MFString Array of SFString values. Cell array of strings

MFNode Array of SFNode values. N/A

VRML Type Description VR Toolbox Type

VRML Data Types

5-39

VRML Data Class Types
A node can contain four classes of data: field, exposedField, eventIn, and
eventOut. These classes define the behavior of the nodes, the way the nodes are
stored in the computer memory, and how they can interact with other nodes
and external objects.

eventIn
Usually, eventIn events correspond to a field in the node. Node fields are not
accessible from outside the node. The only way you can change them is by
having a corresponding eventIn.

Some nodes have eventIn events that do not correspond to any field of that
node, but provide additional functionality for it. For example, the Transform
node has an addChildren eventIn. When this event is received, the child nodes
that are passed are added to the list of children of a given transform.

You use this class type for fields that are exposed to other objects.

eventOut
This event is sent whenever the value of a corresponding node field that allows
sending events changes its value.

You use this class type for fields that have this functionality.

VRML Data Class Description

eventIn An event that can be received by the node

eventOut An event that can be sent by the node

field A private node member, holding node data

exposedField A public node member, holding node data

5 Virtual Worlds

5-40

field
A field can be set to a particular value in the VRML file. Generally, the field is
private to the node and its value can be changed only if its node receives a
corresponding eventIn. It is important to understand that the field itself
cannot be changed on the fly by other nodes or via the external authoring
interface.

You use this class type for fields that are not exposed and do not have the
eventOut functionality.

exposedField
This is a powerful VRML data class that serves many purposes. You use this
class type for fields that have both eventIn and eventOut functionality. The
alternative name of the corresponding eventIn is always the field name with a
set_ prefix. The name of the eventOut is always the field name with a
_changed suffix.

The exposedField class defines how the corresponding eventIn and eventOut
behave. For all exposedField classes, when an event occurs, the field value is
changed, with a corresponding change to the scene appearance, and an
eventOut is sent with the new field value. This allows the chaining of events
through many nodes.

The exposedField class is accessible to scripts, whereas the field class is not.

6
Block Reference

The Virtual Reality Toolbox includes Simulink blocks to output and input signals from a virtual
world, control input devices, and interface VRML fields with Simulink signals.

This chapter is a reference for the following blocks:

Joystick Input (p. 6-2) Asynchronous joystick input device driver

Magellan SpaceMouse (p. 6-4) Magellan SpaceMouse input device driver

VR Placeholder (p. 6-6) Generate a vector of signals for masking the unused
or unaffected components of VRML fields

VR Signal Expander (p. 6-7) Expand an input vector into a fully qualified VRML
field signal by filling the blank positions in the
output port with VR Placeholder signals

VR Sink (p. 6-9) Provide the GUI interface to output signals from
Simulink to virtual worlds

VR Source (p. 6-12) Provide the GUI interface to input signals from
virtual worlds to Simulink

Joystick Input

6-2

6Joystick InputPurpose Asynchronous joystick input

Library Virtual Reality Toolbox

Description The Joystick Input block provides a convenient interaction between a Simulink
model and the virtual world associated with a Virtual Reality Toolbox block. It
works only on Windows operating systems.

The Joystick Input block uses axes, buttons and, if present, the point-of-view
selector. You can use this block as you would use any other Simulink source
block. Its output ports reflect the status of the joystick controls for axes and
buttons.

Block
Parameters
Dialog Box

Joystick ID — The system ID assigned to the given joystick device. You can
find the properties of the joystick connected to the system in the Game
Controllers section of the system Control Panel.

Adjust output ports according to joystick capabilities — If you select this
check box, the output ports do not have the full width provided by the Windows
Game Controllers interface. Instead, the Virtual Reality Toolbox dynamically
adjusts the output ports to correspond to the capabilities of the connected
joystick each time the model is opened.

Output Ports — Depending on the check box setting previously described,
output ports either have fixed maximum width provided by the system Game
Controllers interface or the output ports change to correspond to the actual
capabilities of the connected joystick.

Joystick Input

6-3

Output Port Value Description

Axes Vector of doubles
in the range < -1; 1 >

Outputs correspond to the
current position of the joystick
in the given axis. Values are
normalized to the range from -1
to 1.

Buttons Vector of doubles

0 — Button released
1 — Button pressed

Outputs correspond to the
current status of joystick
buttons.

Point of view -1 — selector inactive
<0;360) — the angle of
the POV selector, in
degrees

Output corresponds to the
current status of the joystick
Point of View selector.

Magellan SpaceMouse

6-4

6Magellan SpaceMousePurpose Process input from Magellan SpaceMouse device

Library Virtual Reality Toolbox

Description The Magellan SpaceMouse is a device similar to a joystick in purpose, but it
also provides movement control with six degrees of freedom. This block reads
the status of the SpaceMouse and provides some commonly used
transformations of the input. The SpaceMouse block supports all models of
SpaceMouse and PuckMan devices manufactured by 3Dconnexion. It is only
supported on Windows operating systems.

Data Type
Support

A Magellan SpaceMouse block outputs signals of type double.

Block
Parameters
Dialog Box

Port — Serial port to which the Magellan SpaceMouse is connected. Possible
values are COM1…COM4 and USB.

Output Type — This field specifies how the inputs from the device are
transformed:

• Speed — No transformations are done. Outputs are translation and rotation
speeds.

• Position — Translations and rotations are integrated. Outputs are position
and orientation in the form of roll/pitch/yaw angles.

• Viewpoint Coordinates — Translations and rotations are integrated.
Outputs are position and orientation in the form of an axis and an angle. You
can use these values as viewpoint coordinates in VRML.

Dominant mode — If this check box is selected, the mouse accepts only the
prevailing movement and rotation and ignores the others. This is very useful
for beginners using the Magellan SpaceMouse.

Disable position movement — Fixes the positions at the initial values,
allowing you to change rotations only.

Disable rotation movement — Fixes the rotations at initial values, allowing
you to change positions only.

Magellan SpaceMouse

6-5

Normalize output angle — Determines whether the integrated rotation
angles should wrap on a full circle (360°) or not. This is not used when you set
the output mode to Speed.

Position sensitivity — Mouse sensitivity for translations. Lower values
correspond to higher sensitivity.

Rotation sensitivity — Mouse sensitivity for rotations. Lower values
correspond to higher sensitivity.

Initial position — Initial condition for integrated translations. This is not
used when you set the output mode to Speed.

Initial rotation — Initial condition for integrated rotations. This is not used
when you set the output mode to Speed.

VR Placeholder

6-6

6VR PlaceholderPurpose Send an unspecified value to a Virtual Reality Toolbox block

Library Virtual Reality Toolbox

Description The VR Placeholder block sends out a special value that is interpreted as
“unspecified” by the VR Sink block. When this value appears on the VR Sink
input, whether as a single value or as an element of a vector, the appropriate
value in the virtual world stays unchanged. Use this block to change only one
value from a larger vector. For example, use this block to change just one
coordinate from a 3-D position.

The value output by the VR Placeholder should not be modified before being
used in other VR blocks.

Data Type
Support

A VR Placeholder block outputs signals of type double.

Block
Parameters
Dialog Box

Output Width — Length of the vector containing placeholder signal values.

VR Signal Expander

6-7

6VR Signal ExpanderPurpose Expand input vectors into fully qualified VRML field vectors

Library Virtual Reality Toolbox

Description The VR Signal Expander block creates a vector of predefined length, using
some values from the input ports and filling the rest with placeholder signal
values.

Data Type
Support

 A VR Signal Expander block accepts and outputs signals of type double.

Block
Parameters
Dialog Box

Output width — How long the output vector should be.

Output signal indices — Vector indicating the position at which the input
signals appear at the output. The remaining positions are filled with VR
Placeholder signals.

VR Signal Expander

6-8

For example, suppose you want an input vector with two signals, and you want
an output vector with three signals, and you want the first input signal in
position 3 and the second input signal in position 2. In the Output width box,
enter [3] and in the Output signal indices box, enter [3,2]. The first output
signal is unspecified.

VR Sink

6-9

6VR SinkPurpose Write data from the Simulink model to the virtual world

Library Virtual Reality Toolbox

Description The VR Sink block writes values from its ports to virtual world fields specified
in the Block Parameters dialog box.

Data Type
Support

A VR Sink block accepts signals of type double.

Block
Parameters
Dialog Box

VR Sink

6-10

Source file — VRML file name specifying the virtual world this block is
connected to. The View button allows you to view the world in the Virtual
Reality Toolbox viewer or a Web browser. The Edit button launches an external
VRML editor, and the Reload button reloads the world after you change it. By
default, the full path to the associated .wrl file appears in this text box. If you
enter only the filename in this box, the Virtual Reality Toolbox assumes that
the .wrl file resides in the same directory as the model file.

Open VRML viewer automatically — If you select this check box, the default
VRML viewer displays the virtual world after loading the Simulink model.

Allow remote access to world — If you select this check box, the virtual world
is accessible for viewing on a client computer. If it is not selected, the world is
visible only on the host computer. This is equivalent to the RemoteView
property of a vrworld object. See Chapter 4, “MATLAB Interface.”

Description — Description that is displayed in all virtual reality object
listings, in the title bar of the Virtual Reality Toolbox viewer, and in the list of
virtual worlds on the Virtual Reality Toolbox HTML page. This is equivalent
to the Description property of a vrworld object. See Chapter 4, “MATLAB
Interface.”

Sample time — Enter the sample time or -1 for inherited sample time.

VRML Tree — This box shows the structure of the VRML file and the virtual
world itself.

Nodes that have names are marked with red arrows and can be accessed from
MATLAB. Nodes without names, but whose children are named, are also
marked with red arrows. This marking scheme makes it possible for you to find
all accessible nodes by traversing the tree using arrows. Other nodes have a
blue dot before their names.

Fields with settable values have check boxes. Use these check boxes to select
the fields you want Simulink to output values to. For every selected field, an
input port is created in the block. Input ports are assigned to the selected nodes
and fields in the order corresponding to the VRML file.

Fields whose values cannot be written (because their parent nodes do not have
names, or because they are not of VRML type eventIn or exposedField), have
an X-shaped icon.

VR Sink

6-11

Show node types — If you select this check box, node types are shown in the
VRML tree.

Show field types — If you select this check box, field types are shown in the
VRML tree.

Show field values — If you select this check box, the dialog box shows, in the
VRML tree, the current numeric values of the fields.

VR Source

6-12

6VR SourcePurpose Read data from the virtual world to a Simulink model

Library Virtual Reality Toolbox

Description The VR Source block reads values from virtual world fields specified in the
Block Parameters dialog box and inputs their values.

Data Type
Support

A VR Source block outputs signals of type double.

Block
Parameters
Dialog Box

VR Source

6-13

Source file — VRML file name specifying the virtual world this block is
connected to. The View button allows you to view the world in a viewer, the
Edit button launches an external VRML editor, and the Reload button reloads
the world after you change it.

Open VRML viewer automatically — If you select this check box, the default
VRML viewer displays the virtual world after loading the Simulink model.

Allow remote access to world — If this check box is selected, the virtual world
is accessible for viewing on a client computer. If it is not selected, the world is
visible only on the host computer. This is equivalent to the RemoteView
property of a vrworld object. See Chapter 4, “MATLAB Interface.”

Description — Description that is displayed in all virtual reality object
listings, in the title bar of the Virtual Reality Toolbox viewer, and in the list of
virtual worlds on the Virtual Reality Toolbox HTML page. This is equivalent
to the Description property of a vrworld object. See Chapter 4, “MATLAB
Interface.”

Sample time — Enter the sample time or -1 for inherited sample time.

VRML Tree — This box shows the structure of the VRML file and the virtual
world itself.

Nodes that have names are marked with red arrows and can be accessed from
MATLAB. Nodes that do not have names, but whose children are named, are
also marked with red arrows. This marking scheme makes it possible for you
to find all accessible nodes by traversing the tree using arrows. Other nodes
have a blue dot before their names.

Fields with readable values have check boxes. Use these check boxes to select
the fields you want Simulink to monitor and to input values from. For every
selected field, an output port is created in the block. Output ports are assigned
to the selected nodes and fields in the order corresponding to the VRML file.

Fields whose values cannot be read (because their parent nodes do not have
names, or because their values cannot be imported to Simulink), have an
X-shaped icon.

Show node types — If this check box is selected, node types are shown in the
VRML tree.

VR Source

6-14

Show field types — If this check box is selected, field types are shown in the
VRML tree.

Show field values — If you select this check box, the dialog box shows the
current numeric values of the fields in the VRML tree.

7

Function Reference

This chapter is a reference for the MATLAB interface functions. Some of the Virtual Reality Toolbox
features, such as setting VRML text values or arrays with variable size, are accessible from the
MATLAB interface only.

This chapter is a reference for the following functions.

vrclear (p. 7-2) Delete all closed virtual worlds from memory

vrclose (p. 7-3) Close Virtual Reality figure windows

vrdrawnow (p. 7-4) Update the virtual world

vrgetpref (p. 7-5) Read values of Virtual Reality Toolbox preferences

vrinstall (p. 7-8) Install and check Virtual Reality Toolbox components

vrlib (p. 7-10) Open Simulink block library for the Virtual Reality
Toolbox

vrsetpref (p. 7-11) Change Virtual Reality Toolbox preferences

vrview (p. 7-12) View a virtual world using either the Virtual Reality
Toolbox viewer or the Web browser

vrwho (p. 7-13) Provide list of virtual worlds in memory

vrwhos (p. 7-14) Provide detailed list of virtual worlds in memory

vrclear

7-2

7vrclearPurpose Delete all closed virtual worlds from memory

Syntax vrclear
vrclear('force')

Description The vrclear function removes from memory all virtual worlds that are closed
and invalidates all vrworld objects related to them. This command does not
affect open virtual worlds. Open virtual worlds include those loaded from
Simulink. You use this command to

• Ensure that the maximum amount of memory is free before a
memory-consuming operation takes place

• Perform a general cleanup of memory

The vrclear('force') command removes all virtual worlds from memory,
including worlds opened from Simulink.

See Also vrworld/delete, vrworld

vrclose

7-3

7vrclosePurpose Close virtual reality figure windows

Syntax vrclose
vrclose all

Description vrclose and vrclose all close all the open virtual reality figures.

Example Open a series of virtual reality figure windows by typing

vrpend
vrbounce
vrlights
vrcrane

Arrange the viewer windows so they are all visible. Type

vrclose

All the virtual reality figure windows disappear from the screen.

See also vrfigure/close

vrdrawnow

7-4

7vrdrawnowPurpose Update the virtual world

Syntax vrdrawnow

Description vrdrawnow removes from the queue pending changes to the virtual world and
makes these changes to the scene in the viewer.

Changes to the scene are normally queued and the views are updated when

• MATLAB is idle for some time (no Simulink model is running and no M-file
is being executed).

• A Simulink step is finished.

vrgetpref

7-5

7vrgetprefPurpose Read values of Virtual Reality Toolbox preferences

Syntax x = vrgetpref
x = vrgetpref('preference_name')
x = vrgetpref('preference_name','factory')
x = vrgetpref('factory')

Arguments

Description x = vrgetpref returns the values of all the Virtual Reality Toolbox
preferences in a structure array.

x = vrgetpref('preference_name') returns the value of the specified
preference. If preference_name is a cell array of preference names, a cell array
of corresponding preference values is returned.

x = vrgetpref('preference_name','factory')returns the default value for
the specified preference.

x = vrgetpref('factory') returns the default values for all the preferences.

The following preferences are defined.

preference_name Name of the preference to read.

DefaultFigurePosition Sets the position and size of the Virtual Reality
Toolbox viewer window.

DefaultPanelMode Determines the appearance of the control
panel in the viewer. Valid values are 'opaque',
'translucent', 'off', 'halfbar', 'bar', and
'factory'. Default is 'halfbar'.

DefaultViewer Specifies which viewer is used to view a virtual
scene. The Virtual Reality Toolbox viewer is
used when the preference is set to 'internal'.
The Web browser is used when this preference
is set to 'web'. Default is 'internal'.

Editor Path to the VRML editor. If this path is empty,
the MATLAB editor is used.

vrgetpref

7-6

Note that the HttpPort, VrPort, and TransportBuffer preferences affect
Web-based viewing of virtual worlds. DefaultFigurePosition and
DefaultPanelMode affect the Virtual Reality Toolbox viewer.

DefaultPanelMode — The DefaultPanelMode preference controls the
appearance of the control panel in the Virtual Reality Toolbox viewer. For
example, setting this value to 'translucent' causes the control panel to appear
translucent.

DefaultViewer — The DefaultViewer preference determines whether the
virtual scene appears in the Virtual Reality Toolbox viewer or in your Web
browser. If the preference is set to 'internal', the Virtual Reality Toolbox
viewer is the default viewer. If it is set to 'web', the default Web browser with
the VRML plug-in is the default viewer.

Editor Preference — The Editor preference contains a path to the VRML
editor executable file. When you use the edit command, the Virtual Reality
Toolbox runs the VRML editor executable with all parameters required to edit
the VRML file.

When you run the editor, the Virtual Reality Toolbox uses the Editor
preference value as if you typed it into a command line. The following tokens
are interpreted:

HttpPort IP port number used to access the VR server
over the Web via HTTP. If you change this
preference, you must restart MATLAB before
the change takes effect.

TransportBuffer Length of the transport buffer (network packet
overlay) for communication between the VR
server and its clients.

VrPort IP port used for communication between the
VR server and its clients. If you change this
preference, you must restart MATLAB before
the change takes effect.

%matlabroot Refers to the MATLAB root directory

%file Refers to the VRML file name

vrgetpref

7-7

For instance, a possible value for the Editor preference is

'%matlabroot\bin\win32\meditor.exe %file'

Note the quotation marks around the executable filename and the VRML
filename. If this preference is empty, the MATLAB editor is used.

HttpPort Preference — The HttpPort preference specifies the network port
to be used for Web access. The port is given in the Web URL as follows:

http://server.name:port_number

The default value of this preference is 8123.

Transport Buffer — The TransportBuffer preference defines the size of the
message window for client-server communication. This value determines how
many messages, at a maximum, can travel between the client and the server
at one time.

Generally, higher values for this preference make the animation run more
smoothly, but with longer reaction times. (More messages in the line create a
buffer that compensates for the unbalanced delays of the network transfer.)

The default value is 5, which is optimal for most purposes. You should change
this value only if the animation is significantly distorted or the reaction times
are very slow. On fast connections, where delays are introduced more by the
client rendering speed, this value has very little effect. Viewing on a host
computer is equivalent to an extremely fast connection. On slow connections,
the correct value can improve the rendering speed significantly but, of course,
the absolute maximum is determined by the maximum connection throughput.

VrPort Preference — The VrPort preference specifies the network port to use
for communication between the Virtual Reality Toolbox server (host computer)
and its clients (client computers). Normally, this communication is completely
invisible to the user. However, if you view a virtual world from a client
computer, you might need to configure the security network system (firewall)
so that it allows connections on this port. The default value of this preference
is 8124.

See Also vrsetpref

vrinstall

7-8

7vrinstallPurpose Install and check Virtual Reality Toolbox components

Syntax vrinstall('action')
vrinstall action
vrinstall('action','component')
vrinstall action component
x = vrinstall('action', 'component')

Arguments

Description You use this function to manage the installation of optional software
components related to the Virtual Reality Toolbox. Currently there are two
such components: VRML plug-in and VRML editor.

action Type of action for this function. Values are -interactive,
-selftest, -check, -install, and -uninstall.

component Name of the component for the action. Values are viewer
and editor.

Action Value Description

-selftest Checks the integrity of the Virtual Reality Toolbox.
If this function reports an error, you should reinstall
the Virtual Reality Toolbox. The function
vrinstall automatically does a self-test with any
other actions.

-interactive Checks for the installed components, and then
displays a list of uninstalled components you can
choose to install.

-check Checks the installation of optional components.

If the given component is installed, returns 1. If the
given component is not installed, returns 0. If you do
not specify a component, displays a list of
components and their status.

vrinstall

7-9

Examples Install the VRML plug-in. This command starts the blaxxun Contact install
program and installs the plug-in to your default Web browser.

vrinstall -install viewer

Install the VRML editor. This command associates V-Realm Builder with the
Edit button in the Block parameters dialog boxes.

vrinstall -install editor

-install Installs optional components. This action requires
you to specify the component name. All components
can be installed using this command, but some of
them (currently only the plug-in) need to be
uninstalled using the system standard
uninstallation procedure.

-uninstall Uninstalls optional components. This option is
currently available for the editor only. Note that
this action does not remove the files for the editor
from the installation directory. It removes the editor
registry information.

If you want to uninstall the VRML plug-in, exit
MATLAB and, from the Control Panel window,
select Add/Remove Programs.

Action Value Description (Continued)

vrlib

7-10

7vrlibPurpose Open the Simulink block library for the Virtual Reality Toolbox

Syntax vrlib

Description The Simulink library for the Virtual Reality Toolbox has six blocks: VR Sink,
VR Source, VR Placeholder, VR Signal Expander, Joystick Input, and
Magellan SpaceMouse.

Alternatively, you can access these blocks from a Simulink block diagram. In
the Simulink window, from the View menu, click Show Library Browser.

vrsetpref

7-11

7vrsetprefPurpose Change Virtual Reality Toolbox preferences

Syntax vrsetpref('preference_name', preference_value)
vrsetpref('factory')

Arguments

Description This command sets the given Virtual Reality Toolbox preference to a given
value. For detailed description of the preferences, see vrgetpref on page 7-5.
Changes to the HttpPort or VrPort preferences only take effect after you
restart MATLAB.

When you use 'factory' as a single argument, all preferences are reset to
their default values. If you use 'factory' for a preference value, that single
preference is reset to its default.

See Also vrgetpref

preference_name Name of the preference.

preference_value New value of the preference.

vrview

7-12

7vrviewPurpose View a virtual world using either the Virtual Reality Toolbox viewer or a Web
browser

Syntax vrview
x = vrview('filename')
x = vrview('filename','-internal')
x = vrview('filename','-web')

Description vrview opens the default Web browser and loads the Virtual Reality Toolbox
Web page containing a list of virtual worlds available for viewing.

x = vrview('filename') creates a virtual world associated with the .wrl file,
opens the virtual world, and displays it in the Virtual Reality Toolbox viewer
or the Web browser depending on the value of the DefaultViewer preference.
The handle to the virtual world is returned.

x = vrview('filename','-internal') creates a virtual world associated with
the .wrl file, opens the virtual world, and displays it in the Virtual Reality
Toolbox viewer.

x = vrview('filename','-web') creates a virtual world associated with the
.wrl file, opens the virtual world, and displays it in your Web browser.

See Also vrworld, vrworld/open, vrworld/view

vrwho

7-13

7vrwhoPurpose Provide a list of virtual worlds in memory

Syntax vrwho
x = vrwho

Description If you do not specify an output parameter, vrwho displays a list of virtual
worlds in memory in the MATLAB Command Window.

If you specify an output parameter, vrwho returns a vector of handles to
existing vrworld objects, including those opened from Simulink.

See Also vrwhos, vrworld, vrclear

vrwhos

7-14

7vrwhosPurpose Provide a detailed list of virtual worlds in memory

Syntax vrwhos

Description Displays a list of virtual worlds currently in memory, with a description, in the
MATLAB Command Window. The relation between vrwho and vrwhos is
similar to the relation between who and whos.

See Also vrwho, vrclear

8

vrworld Object Reference

While the Simulink interface is the preferred method for using the Virtual Reality Toolbox, you can
access virtual worlds through the MATLAB interface. To use this interface, you create objects in the
MATLAB workspace and associate those objects with your virtual worlds.

MATLAB functions and the Simulink interface share the same Virtual Reality Toolbox objects. It is
possible to access these objects from both the MATLAB and Simulink interfaces simultaneously.

This chapter includes the following sections:

vrworld Object Properties (p. 8-2) vrworld object properties allow you to control the
behavior of objects

vrworld Object Methods (p. 8-4) vrworld object methods allow you to access and
manipulate objects

8 vrworld Object Reference

8-2

vrworld Object Properties
A vrworld object is a handle of a virtual scene. It allows you to interact with
and control the scene.

The vrworld object properties allow you to control the behavior of objects. The
following table lists the properties for vrworld objects.

Property Value Description

Clients Scalar Number of clients currently
viewing the virtual world.
Read-only

ClientUpdates off | on

Default: on

Client cannot or can update
the virtual scene. Read/write.

Description String

Default:
automatically taken
from the VRML file
property Title

Description of the world.
Read/write.

Figures Vector of vrfigure
objects

Vector of handles to Virtual
Reality Toolbox viewer
windows currently viewing the
virtual world. Read-only.

FileName String Name of the associated VRML
file. Read/write.

Nodes Vector of vrnode
objects

Named vrnode objects in the
virtual world. Read-only.

Open off | on

Default: off

Indicates a closed or open
virtual world. Read-only.

vrworld Object Properties

8-3

RemoteView off | on

Default: off

Remote access flag.
Read/write.

View off | on

Default: on

Indicates an unviewable or
viewable virtual world.
Read/write.

Property Value Description (Continued)

8 vrworld Object Reference

8-4

vrworld Object Methods
The vrworld object methods allow you to access and manipulate objects. The
following is a list of vrworld object methods. A reference page for each vrworld
object method follows the table.

Method Description

vrworld Create a new vrworld object associated with a
virtual world.

vrworld/close Close a virtual world.

vrworld/delete Delete virtual world from memory.

vrworld/edit Open a virtual world file in external VRML
editor.

vrworld/get Read the property value of a vrworld object.

vrworld/isvalid Return 1 if the vrworld object is valid, and 0 if it
is not.

vrworld/nodes List nodes available in the virtual world.

vrworld/open Open virtual world.

vrworld/reload Reload virtual world from the associated VRML
file.

vrworld/save Write virtual world to VRML file.

vrworld/set Change property value of a vrworld object.

vrworld/view View a virtual world.

vrworld

8-5

8vrworldPurpose Create a new vrworld object associated with a virtual world

Syntax myworld = vrworld('vrml_file.wrl')
myworld = vrworld
myworld = vrworld([])

Arguments

Description myworld = vrworld('vrml_file.wrl') creates a handle to a vrworld object
that is associated with the specified VRML file.

myworld = vrworld creates an empty vrworld handle that does not refer to any
virtual world.

myworld = vrworld([]) returns an empty array of vrworld handles.

A vrworld object identifies a virtual world in a way very similar to a handle. All
functions that affect virtual worlds accept a vrworld object as an argument to
identify the virtual world.

If the given virtual world already exists in memory, the new vrworld object is
associated with the existing virtual world. That is, a second virtual world is not
loaded into memory. If the virtual world does not exist in memory, it is loaded
from the associated VRML file. The newly loaded virtual world is closed and
must be opened before you can use it.

The vrworld object associated with a virtual world remains valid until you use
either delete or vrclear.

Examples myworld = vrworld('vrpend.wrl')

See Also vrworld/open, vrworld/delete, vrworld/close

vrml_file.wrl Name of the VRML file from which the virtual
world is loaded. If no file extension is specified,
the file extension .wrl is assumed.

vrworld/close

8-6

8vrworld/closePurpose Close a virtual world

Syntax close(vrworld_object)

Arguments

Description This method changes the virtual world from an opened to a closed state:

• If the world was opened more than once, you must use an appropriate
number of close calls before the virtual world closes.

• If vrworld_object is a vector of vrworld objects, all associated virtual
worlds close.

• If the virtual world is already closed, close does nothing.

Opening and closing virtual worlds is a mechanism of memory management.
When the system needs more memory and the virtual world is closed, you can
discard its contents at any time.

Generally, you should close a virtual world when you no longer need it. This
allows you to reuse the memory it occupied. The vrworld objects associated
with this virtual world stay valid after it is closed, so the virtual world can be
opened again without creating a new vrworld object.

Examples myworld = vrworld('vrpend.wrl')
open(myworld)
close(myworld)

See Also vrworld, vrworld/open, vrworld/delete

vrworld_object Name of a vrworld object representing the
virtual world.

vrworld/delete

8-7

8vrworld/deletePurpose Delete a virtual world from memory

Syntax delete(vrworld_object)

Arguments

Description The delete function removes from memory the virtual world associated with a
vrworld object. The virtual world must be closed before you can delete it.

Deleting a virtual world frees the virtual world from memory and invalidates
all existing vrworld objects associated with the virtual world.

You do not commonly use this method. One of the possible reasons to use this
method is to ensure that a large virtual world is removed from memory before
another memory-consuming operation starts.

See Also vrworld/close, vrclear

vrworld_object Name of a vrworld object representing a virtual
world.

vrworld/edit

8-8

8vrworld/editPurpose Open a virtual world file in an external VRML editor

Syntax edit(vrworld_object)

Arguments

Description The edit function opens the VRML file associated with the vrworld object in a
VRML editor. The Editor preference specifies the VRML editor to use.

The VRML editor saves any changes you make directly to a virtual world file.
If the virtual world is open,

• Use the save command in the VRML editor to save the changes to a virtual
world file. In MATLAB, the changes appear after you reload the virtual
world.

• Use the save method in MATLAB to replace the modified VRML file. Any
changes you made in the editor are lost.

See Also vrworld/reload, vrworld/save

vrworld_object Name of a vrworld object representing a virtual
world.

vrworld/get

8-9

8vrworld/getPurpose Read the property value of a vrworld object

Syntax get(vrworld_object)
x = get(vrworld_object, 'property_name')

Arguments

Description If no property name is given, the get(vrworld_object) method displays all the
virtual world properties and their values. When a property name is given, the
value of that property is returned.

The following are properties of vrworld objects. Names are not case sensitive.

vrworld_object Name of a vrworld object representing a virtual
world.

property_name Name of the property.

Field Name Description

Clients Number of clients viewing this world.

ClientUpdates This is 'on' if the clients are allowed to update the
viewed scene and 'off' if they are not.

Description Description of the virtual world, as it appears on
the main Web page.

Figures Handles of figures currently open for this world.

FileName Name of the VRML file associated with this world.

Nodes A vector of vrnode objects for all nodes in the
virtual world.

Open If the virtual world is open, value is 'on'. If the
virtual world is closed, value is 'off'.

RemoteView If virtual world is enabled for remote viewing, it is
set to 'on'; otherwise, it is set to 'off'.

View If virtual world is enabled for viewing, it is set to
'on'; otherwise, it is set to 'off'.

vrworld/get

8-10

The ClientUpdates property is set to 'on' by default and can be set by the
user. When it is set to 'off', the viewers looking at this virtual world should
not update the view according to the virtual world changes. That is, the view is
frozen until this property is changed to 'on'. This is useful for preventing
tearing effects with complex animations. Before every animation frame, set
ClientUpdates to 'off', make the appropriate modifications to the object
positions, and then switch ClientUpdates back to 'on'.

The Description property defaults to '(untitled)' and can be set by the user.
If the virtual world is loaded from a VRML file containing a WorldInfo node
with a title property (see the VRML reference), the Description property is
loaded from the VRML file instead.

The Nodes property is valid only when the virtual world is open. If the virtual
world is closed, Nodes always contains an empty vector.

The RemoteView property is set to 'off' by default and can be set by the user.
If it is set to 'on', all viewers can access the virtual world through the Web
interface. If it is set to 'off', only host viewers can access it.

The View property is set to 'on' by default and can be set by the user. When it
is set to 'off', the virtual world is not accessible by the viewer. You rarely use
this property.

See Also vrworld/set, vrworld

vrworld/isvalid

8-11

8vrworld/isvalidPurpose Return 1 if the vrworld object is valid, and 0 if it is not

Syntax x = isvalid(vrworld_object)

Arguments

Description A vrworld object is considered valid if its associated virtual world still exists. x
= isvalid(vrworld_object) returns an array that contains a 1 where the
elements of vrworld_object are valid vrworld objects, and returns a 0 where
they are not.

You use this method to check whether the vrworld object is still valid. Using a
delete or vrclear command can make a vrworld object invalid.

See Also vrfigure/isvalid, vrnode/isvalid

vrworld_object Name of a vrworld object representing a
virtual world.

vrworld/nodes

8-12

8vrworld/nodesPurpose List nodes available in the virtual world

Syntax nodes(vrworld_object)
x = nodes(vrworld_object)

Arguments

Description If you give an output argument, the method nodes returns a cell array of the
names of all available nodes in the world. If you do not give an output
argument, the list of nodes is displayed in the MATLAB window.

You can use the '-full' switch to obtain a detailed list that contains not only
the nodes, but also all their fields. This switch affects only the output to the
MATLAB Command Window.

The virtual world must be open for you to use this method.

See Also vrworld, vrworld/open

vrworld_object Name of a vrworld object representing a virtual
world.

vrworld/open

8-13

8vrworld/openPurpose Open a virtual world

Syntax open(vrworld_object)

Arguments

Description The open method changes the associated virtual world from a closed to an
opened state. This ensures that the virtual world is loaded into memory and
you cannot remove it from memory until you close it. If the input argument is
an array of virtual world handles, all the virtual worlds associated with those
handles are opened. The virtual world must be open for you to use it. You can
close the virtual world by using the method close.

You can call the method open more than once, but you must use an appropriate
number of close calls before the virtual world returns to a closed state.

Example Create two vrworld objects by typing

myworld1 = vrworld('vrmount.wrl')

myworld2 = vrworld('vrpend.wrl')

Next, create an array of virtual world handles by typing

myworlds = [myworld1 myworld2];

open(myworlds) opens both of these virtual worlds.

See Also vrworld, vrworld/close

vrworld_object Name of a vrworld object representing a virtual
world.

vrworld/reload

8-14

8vrworld/reloadPurpose Reload a virtual world from VRML file

Syntax reload(vrworld_object)

Arguments

Description The reload method reloads the virtual world from the VRML file associated
with the vrworld object. If the input argument is an array of virtual world
handles, all the virtual worlds associated with those handles are reloaded. The
virtual world must be open for you to use this method.

reload forces all the clients currently viewing the virtual world to reload it.
This is useful when there are changes to the VRML file.

See Also vrworld/edit, vrworld/save, vrworld/open

vrworld_object A vrworld object representing a virtual world.

vrworld/save

8-15

8vrworld/savePurpose Write a virtual world to VRML file

Syntax save(vrworld_object, 'vrml_file')

Arguments

Description The save method saves the current virtual world to a VRML97 file. The virtual
world must be open for you to use this method.

The resulting file is a VRML97 compliant UTF-8 encoded text file. Lines are
indented using spaces. Line ends are encoded as CR-LF or LF according to the
local system default. Values are separated by spaces.

See Also vrworld/edit, vrworld/reload, vrworld/open

vrworld_object Name of a vrworld object representing a virtual
world.

vrml_file Name of the VRML file to save the virtual world
to.

vrworld/set

8-16

8vrworld/setPurpose Change property values of a vrworld object

Syntax set(vrworld_object, 'property_name', property_value)

Arguments

Description You can change the Description, View, RemoteView, and ClientUpdates
properties. For a detailed discussion of these properties, see vrfigure/get.

See Also vrworld/get, vrworld

vrworld_object Name of a vrworld object representing a virtual
world.

property_name Name of the property.

property_value New value of the property.

vrworld/view

8-17

8vrworld/viewPurpose View a virtual world

Syntax view(vrworld_object)
x = view(vrworld_object)
x = view(vrworld_object,'-internal')
x = view(vrworld_object,'-web')

Arguments

Description The view method opens the default VRML viewer on the host computer and
loads the virtual world associated with the vrworld object into the viewer
window. You specify the default VRML viewer using the DefaultViewer
preference. The virtual world must be opened for you to use this method.

x = view(vrworld_object) opens the default VRML viewer on the host
computer and loads the virtual world associated with the vrworld object into
the viewer window. If the Virtual Reality Toolbox viewer is used, view also
returns the vrfigure handle of the viewer window. If a Web browser is used,
view returns an empty array of vrfigure handles.

x = view(vrworld_object,'-internal') opens the virtual world in the
Virtual Reality Toolbox viewer.

x = view(vrworld_object,'-web') opens the virtual world in the Web
browser.

If the virtual world is disabled for viewing (that is, the View property for the
associated vrworld object is set to 'off'), the view method does nothing.

Examples myworld = vrworld('vrpend.wrl')
open(myworld)
view(myworld)

See Also vrworld, vrview

vrworld_object Name of a vrworld object representing a virtual
world.

vrworld/view

8-18

9

vrnode Object Reference

While the Simulink interface is the preferred method for using the Virtual Reality Toolbox, you can
access virtual worlds through the MATLAB interface. To use this interface, you create objects in the
MATLAB workspace and associate those objects with your virtual worlds.

MATLAB functions and the Simulink interface share the same Virtual Reality Toolbox objects. It is
possible to access these objects from both the MATLAB and Simulink interfaces simultaneously.

This chapter includes the following sections:

vrnode Object Properties (p. 9-2) vrnode object properties allow you to control the behavior
of objects.

vrnode Object Methods (p. 9-3) vrnode object methods allow you to access and
manipulate objects

9 vrnode Object Reference

9-2

vrnode Object Properties
A vrnode object is a handle of a VRML node. It allows you to get and set the
node properties. A vrnode object is a child object of a vrworld object.

The vrnode object properties allow you to control the behavior of objects. The
following table lists the properties for vrnode objects.

Property Value Description

Fields Cell array Valid field names for the VRML node.
Read-only.

Name String Name of the node. Read-only.

Type String VRML type of the node. Read-only.

World Handle Handle of the parent vrworld object.
Read-only.

vrnode Object Methods

9-3

vrnode Object Methods
A vrnode object is a handle of a VRML node. It allows you to get and set the
node properties. A vrnode object is a child object of a vrworld object.

The vrnode object methods allow you to access and manipulate objects. The
following is a list of the vrnode object methods. A reference page for each
vrnode object method follows the table.

Method Description

vrnode Create a new node or a handle to an existing
node.

vrnode/delete Delete a vrnode object.

vrnode/fields Return summary of VRML fields of a node
object.

vrnode/get Read property value of vrnode object or VRML
field.

vrnode/getfield Get a field value of a vrnode object.

vrnode/isvalid Return 1 if the vrnode object is valid, and 0 if it
is not.

vrnode/set Change a property or a VRML field of a virtual
world node.

vrnode/setfield Change a field value of a vrnode object.

vrnode/sync Enable or disable synchronization of VRML
fields with clients.

vrnode

9-4

9 vrnodePurpose Create a new node or a handle to an existing node

Syntax mynode = vrnode
mynode = vrnode([])
mynode = vrnode(vrworld_object, 'node_name')
mynode = vrnode(vrworld_object, 'node_name','node_type')
mynode = vrnode(parent_node,'parent_field', 'node_name',
'node_type')

Arguments

Description mynode = vrnode creates an empty vrnode handle that does not reference any
node.

mynode = vrnode([]) creates an empty array of vrnode handles.

mynode = vrnode(vrworld_object, 'node_name') creates a handle to an
existing named node in the virtual world.

mynode = vrnode(vrworld_object, 'node_name','node_type') creates a new
node called node_name of type node_type on the root of the virtual world. It
returns the handle to the newly created node.

mynode = vrnode(parent_node,'parent_field', 'node_name','node_type')
creates a new node called node_name of type node_type that is a child of the
parent_node and resides in the field parent_field. It returns the handle to the
newly created node.

A vrnode object identifies a virtual world node in a way very similar to a
handle. If the vrnode method is applied to a node that does not exist, the node
is created, the vrnode object is created, and the handle to the vrnode object is
returned. If the vrnode method is applied to an existing node, the handle to the
vrnode object associated with this node is returned.

vrworld_object Name of a vrworld object representing a virtual
world.

node_name Name of the node.

node_type Type of the node.

parent_node Name of the parent node that is a vrnode object.

parent_field Name of the field of the parent node.

vrnode

9-5

 See Also vrworld, vrnode/get, vrnode/set, vrnode/getfield, vrnode/setfield,
vrnode/delete

vrnode/delete

9-6

9vrnode/deletePurpose Delete a vrnode object

Syntax delete(vrnode_object)
delete(n)

Arguments

Description delete(vrnode_object) deletes the virtual world node.

delete(n) deletes the vrnode object referenced by the vrnode handle n. If n is
a vector of vrnode handles, multiple nodes are deleted.

As soon as a node is deleted, it and all its child objects are removed from all
clients connected to the virtual world.

See Also vrworld/delete

vrnode_object Name of a vrnode object.

vrnode/fields

9-7

9vrnode/fieldsPurpose Return a summary of VRML fields of a node object

Syntax fields(vrnode_object)
x = fields(vrnode_object)

Arguments

Description fields(vrnode_object) displays a list of VRML fields and subfields of the
node associated with the vrnode object in the MATLAB Command Window.

x = fields(vrnode_object) returns the VRML fields of the node associated
with the vrnode object in a structure array. The resulting structure contains
the VRML fields and the following subfields:

• Type is the name of the VRML field type, for example, 'MFString',
'SFColor'.

• Access is the accessibility description, for example, 'eventIn',
'exposedField'.

• Sync is the synchronization status 'on' or 'off'. See also vrnode/sync on
page 9-14.

See Also vrnode/get, vrnode/set

vrnode_object Name of a vrnode object representing the node
to be queried.

vrnode/get

9-8

9vrnode/getPurpose Read property value of vrnode object or VRML field

Syntax get(vrnode_object)
x = get(vrnode_object, 'property_name')
x = get(vrnode_object, 'field_name')

Arguments

Description If a vrnode object is the only argument, a list of all properties and VRML fields
is displayed in the MATLAB Command Window.

If a property name is given as an argument, the method returns the value of
that property. All these properties are read-only.

Vrnode objects are case sensitive and have the following properties.

Node fields queried by get can be eventOut or exposedField. EventIn does not
have values; therefore, you cannot read these values.

vrnode_object Name of a vrnode object representing the node
to be queried.

property_name Name of the property to be read.

field_name Name of the VRML field to be read.

Property Description

Fields Valid field names for this type of VRML node.

Name Node name.

Type Node type string (for example, 'Transform',
'Shape').

World A vrworld object representing the node’s parent
world.

vrnode/get

9-9

If a VRML field name is given as an argument, the method returns the value
of that VRML field. The type of the result depends on the type of the field.

Values that consist of more than one double are returned in the form of a row
vector.

VRML fields with types SFNode and MFNode are not accessible in this version of
the Virtual Reality Toolbox. These fields always return an empty vector.

See Also vrnode/set, vrnode/getfield, vrnode/setfield, vrnode

Field Name Field and Result Type

SFInt32, SFFloat, SFTime Double

SFVec2f Two doubles

SFVec3f, SFColor Three doubles

SFRotation Four doubles

MFInt32, MFFloat n doubles

MFVec2f n-by-2 doubles

MFVec3f, MFColor n-by-3 doubles

MFRotation n-by-4 doubles

SFString String

MFString Cell array of strings

SFBool 'on' or 'off'

vrnode/getfield

9-10

9vrnode/getfieldPurpose Get a field value of a vrnode object

Syntax getfield(vrnode_object)
x = getfield(vrnode_object)
x = getfield(vrnode_object,'fieldname')

Arguments

Description getfield(vrnode_object) displays all the field names and their current
values for the vrnode object.

x = getfield(vrnode_object) returns a structure array whose fields are the
fields of the vrnode object. Each field contains the values of a vrnode object
field.

x = getfield(vrnode_object,'fieldname') returns the values in the vrnode
object’s specified field. If fieldname is a 1-by-N or N-by-1 cell array of strings
containing field names, getfield returns a 1-by-N or N-by-1 cell array of field
values.

See Also vrnode/get, vrnode/set, vrnode/setfield, vrnode

vrnode_object Name of a vrnode object representing the node
to be queried.

fieldname Name of the vrnode object field whose values
you want to query.

vrnode/isvalid

9-11

9vrnode/isvalidPurpose Return 1 if the vrnode object is valid, and 0 if it is not

Syntax x = isvalid(vrnode_object_vector)

Arguments

Description This function detects whether the vrnode objects contained in the vector are
valid, and returns a vector containing a 1 for the valid vrnode objects and a 0
for the invalid ones.

The vrnode object is considered valid if the following three conditions are met:

• The parent world of the node still exists.

• The parent world of the node is open.

• The node still exists in the parent world.

See Also vrworld/isvalid, vrfigure/isvalid

vrnode_object_vector Name of an array of vrnode objects to be
queried.

vrnode/set

9-12

9vrnode/setPurpose Change a property or a VRML field of a virtual world node

Syntax x = set(vrnode_object, 'property_name','property_value')
x = set(vrnode_object, 'fieldname','fieldvalue')

Arguments

Description x = set(vrnode_object, 'property_name','property_value') changes the
specified property of the vrnode object to the specified value.

x = set(vrnode_object, 'fieldname','fieldvalue') changes the specified
field of the vrnode object to the specified value. Note that you can specify
multiple field names and field values in one line of code by grouping them in
pairs. For example, x = set(vrnode_object, 'fieldname', 'fieldvalue',
'fieldname', 'fieldvalue', ...)

If a vrnode object is the only argument, a list of all settable VRML fields along
with allowed value types is displayed in the MATLAB Command Window.

Because all node properties are read-only, you can write values only to VRML
fields. VRML field names are case sensitive, while property names are not.

See Also vrnode/get, vrnode/getfield, vrnode/setfield, vrnode

vrnode_object Name of a vrnode object representing a node in
the virtual world.

property_name Name of a property.

fieldname Name of a field.

vrnode/setfield

9-13

9vrnode/setfieldPurpose Change a field value of a vrnode object

Syntax x = setfield(vrnode_object,'fieldname','fieldvalue')

Arguments

Description x = setfield(vrnode_object,'fieldname','fieldvalue') changes the
specified field of the vrnode object to the specified value. You can specify
multiple field names and field values in one line of code by grouping them in
pairs. For example, x = setfield(vrnode_object, 'fieldname',
'fieldvalue', 'fieldname', 'fieldvalue', ...). Note that VRML field
names are case sensitive, while property names are not.

See Also vrnode/get, vrnode/set, vrnode/getfield, vrnode

vrnode_object Name of a vrnode object representing the node
to be queried.

fieldname Name of the vrnode object field whose values
you want to query.

vrnode/sync

9-14

9vrnode/syncPurpose Enable or disable synchronization of VRML fields with clients

Syntax sync(vrnode_object, 'field_name', 'action')

Arguments

Description The sync method controls whether the value of a VRML field is synchronized.

When the field is marked 'on', the field value is updated every time it is
changed on the client computer. If the field is marked 'off', the host computer
ignores the changes on the client computer.

Synchronized fields add more traffic to the network line because the value of
the field must be resent by the client any time it is changed. Because of this,
you should mark for synchronization only the fields you need to scan for user
changes. By default, fields are not synchronized.

Synchronization is meaningful only for readable fields. For example, readable
fields are eventOuts and exposedFields. You cannot enable synchronization
for the field eventIns or the nonexposed fields.

See Also vrnode/get, vrnode

vrworld_object Name of a vrworld object representing a virtual
world.

field_name Name of the VRML field to be changed.

action The action parameter determines what should
be done:

• 'on' enables synchronization of this field.

• 'off' disables synchronization of this field.

10

vrfigure Object Reference

While the Simulink interface is the preferred method for using the Virtual Reality Toolbox, you can
access virtual worlds through the MATLAB interface. To use this interface, you create objects in the
MATLAB workspace and associate those objects with your virtual worlds.

MATLAB functions and the Simulink interface share the same Virtual Reality Toolbox objects. It is
possible to access these objects from both the MATLAB and Simulink interfaces simultaneously.

This chapter includes the following sections:

vrfigure Object Properties (p. 10-2) vrfigure object properties allow you to control the
behavior of objects

vrfigure Object Methods (p. 10-5) vrfigure object methods allow you to access and
manipulate objects

10 vrfigure Object Reference

10-2

vrfigure Object Properties
A vrfigure object is a handle to the Virtual Reality Toolbox viewer window that
allows you to get and set the viewer properties. A vrfigure object is a child
object of a vrworld object.

The vrfigure object properties allow you to control the behavior of objects. The
following table lists the properties for vrfigure objects.

Property Value Description

Antialiasing 'off' | 'on'

Default: off

Determine whether
antialiasing is used when
rendering scene. Antialiasing
smoothes textures by
interpolating values between
texture points. Read/write.

CameraBound 'off' | 'on'

Default: on

Control whether or not the
camera moves with the
current viewpoint. Read/write.

CameraDirection Vector of three
doubles

Specify the camera direction
relative to the direction of the
current viewpoint. Read/write.

CameraDirectionAbs Vector of three
doubles

Specify the camera direction in
world coordinates. Read-only.

CameraPosition Vector of three
doubles

Specify the camera position
relative to the position of the
current viewpoint. Read/write.

CameraPositionAbs Vector of three
doubles

Specify the camera position in
world coordinates. Read-only.

CameraUpVector Vector of three
doubles

Specify the camera up vector
relative to the up vector of the
current viewpoint. Read/write.

vrfigure Object Properties

10-3

CameraUpVectorAbs Vector of three
doubles

Specify the camera up vector
in world coordinates.
Read-only.

DeleteFcn String Callback invoked when closing
the vrfigure object.
Read/write.

Headlight 'off' | 'on'

Default: on

Turn the headlight on or off.
Read/write.

Lighting 'off' | 'on'

Default: on

Turn the lighting of the scene
on or off. Without lighting, the
scene loses its
three-dimensional quality.
Read/write.

Name String Name of this vrfigure object.
Read/write.

PanelMode 'opaque'
'translucent'
'off'
'halfbar'
'bar'

Default:
'halfbar'

Control the appearance of the
control panel in the Virtual
Reality Toolbox viewer
window. Read/write.

Position Vector of four
doubles

Screen coordinates of this
vrfigure object. Read/write.

Textures 'off' | 'on'

Default: on

Turn texture rendering on or
off. Read/write.

Property Value Description (Continued)

10 vrfigure Object Reference

10-4

Transparency 'off' | 'on'

Default: on

Specify whether or not
transparency information is
taken into account when
rendering. Read/write.

Viewpoint String

If active
viewpoint does
not have a
name, value is
empty.

Vrfigure object’s active
viewpoint. Read/write.

Wireframe 'off' | 'on'

Default: off

Specify whether objects are
drawn as solids or wireframes.
Read/write.

World Vrworld object World this vrfigure object is
displaying. Read-only

ZoomFactor Double Camera zoom factor.
Read/write.

Property Value Description (Continued)

vrfigure Object Methods

10-5

vrfigure Object Methods
A vrfigure object is a handle to the Virtual Reality Toolbox viewer window that
allows you to get and set the viewer properties. A vrfigure object is a child
object of a vrworld object.

The vrfigure object methods allow you to access and manipulate objects. The
following is a list of the vrfigure object methods. A reference page for each
vrfigure object method follows the table.

Method Description

vrfigure Create a new virtual reality figure.

vrfigure/capture Create a RGB image from a virtual reality
figure.

vrfigure/close Close a virtual reality figure.

vrfigure/get Read property value of vrfigure object.

vrfigure/isvalid Return 1 if the vrfigure object is valid, and 0 if
it is not.

vrfigure/set Change property value of vrfigure object.

vrfigure

10-6

10vrfigurePurpose Create a new virtual reality figure

Syntax f = vrfigure(world)
f = vrfigure(world,position)
f = vrfigure
f = vrfigure([])

Description f = vrfigure(world)creates a new virtual reality figure showing the specified
world and returns an appropriate vrfigure object. The input argument world
must be a vrworld object.

f = vrfigure(world,position) creates a new virtual reality figure at the
specified position.

f = vrfigure returns an empty vrfigure object that does not have a visual
representation.

f = vrfigure([]) returns an empty vector of type vrfigure.

Example Create a vrworld object. At the MATLAB command prompt, type

myworld = vrworld('vrmount.wrl')

The vrworld object myworld is associated with the virtual world vrmount.wrl.

Next, open the virtual world using the vrworld object. You must open the
virtual world before you can view it. At the MATLAB command prompt, type

open(myworld)

You can now view the virtual world in the Virtual Reality Toolbox viewer by
typing

f = vrfigure(myworld)

Your viewer opens and displays the virtual scene.

See also vrworld, vrworld/open

vrfigure/capture

10-7

10vrfigure/capturePurpose Create an RGB image from a virtual reality figure

Syntax image_capture = capture(vrfigure_object)

Description image_capture = capture(vrfigure_object) captures a virtual reality figure
into a TruColor RGB image that can be displayed by the image command.

Example Create a vrworld object. At the MATLAB command prompt, type

myworld = vrworld('vrmount.wrl')

The vrworld object myworld is associated with the virtual world vrmount.wrl.

Next, open the virtual world using the vrworld object. You must open the
virtual world before you can view it. At the MATLAB command prompt, type

open(myworld)

You can now view the virtual world in the Virtual Reality Toolbox viewer by
typing

f = vrfigure(myworld)

Your viewer opens and displays the virtual scene. Next, create an RGB image
by typing

image_capture = capture(f);

Lastly, view the image

image(image_capture)

The scene from the viewer window is displayed in a MATLAB figure window.

See also vrfigure

vrfigure/close

10-8

10vrfigure/closePurpose Close a virtual reality figure

Syntax close(vrfigure_object)

Arguments

Description close(vrfigure_object) closes the virtual reality figure referenced by
vrfigure_object. If vrfigure_object is a vector of vrfigure handles, then
multiple figures are closed.

Examples myworld = vrworld('vrpend.wrl')
open(myworld)
f = vrfigure(myworld)
close(f)

See Also vrworld, vrworld/open, vrfigure

vrfigure_object Name of a figure object.

vrfigure/get

10-9

10vrfigure/getPurpose Read a property value of a vrfigure object

Syntax get(vrfigure_object)
x = get(vrfigure_object, 'property_name')

Arguments

Description The get(vrfigure_object) method returns the object properties of the
vrfigure object. This method is useful when you want to determine the current
values of these properties.

The following are properties of vrfigure objects.

vrfigure_object Name of a vrfigure object.

property_name Name of the property.

Property Value Description

Antialiasing 'off' | 'on'

Default: off

Determine whether
antialiasing is used when
rendering scene. Antialiasing
smoothes textures by
interpolating values between
texture points. Read/write.

CameraBound 'off' | 'on'

Default: on

Control whether or not the
camera moves with the
current viewpoint. Read/
write.

CameraDirection Vector of three
doubles

Specify the camera direction
relative to the direction of the
current viewpoint. Read/
write.

CameraDirectionAbs Vector of three
doubles

Specify the camera direction
in world coordinates.
Read-only.

vrfigure/get

10-10

CameraPosition Vector of three
doubles

Specify the camera position
relative to the position of the
current viewpoint. Read/
write.

CameraPositionAbs Vector of three
doubles

Specify the camera position in
world coordinates. Read-only.

CameraUpVector Vector of three
doubles

Specify the camera up vector
relative to the up vector of the
current viewpoint. Read/
write.

CameraUpVectorAbs Vector of three
doubles

Specify the camera up vector
in world coordinates.
Read-only.

DeleteFcn String Callback invoked when
closing the vrfigure object.
Read/write.

Headlight 'off' | 'on'

Default: on

Turn the headlight on or off.
Read/write.

Lighting 'off' | 'on'

Default: on

Turn the lighting of the scene
on or off. Without lighting, the
scene loses its
three-dimensional quality.
Read/write.

Name String Name of this vrfigure object.
Read/write.

Property Value Description (Continued)

vrfigure/get

10-11

PanelMode 'opaque'
'translucent'
'off'
'halfbar'
'bar'

Default:
'halfbar'

Control the appearance of the
control panel in the Virtual
Reality Toolbox viewer
window. Read/write.

Position Vector of four
doubles

Screen coordinates of this
vrfigure object. Read/write.

Textures 'off' | 'on'

Default: on

Turn texture rendering on or
off. Read/write.

Transparency 'off' | 'on'

Default: on

Specify whether or not
transparency information is
taken into account when
rendering. Read/write.

Viewpoint String

If active
viewpoint does
not have a name,
value is empty.

Vrfigure object’s active
viewpoint. Read/write.

Wireframe 'off' | 'on'

Default: off

Specify whether objects are
drawn as solids or wireframes.
Read/write.

World Vrworld object World this vrfigure object is
displaying. Read only

ZoomFactor Double Camera zoom factor. Read/
write.

Property Value Description (Continued)

vrfigure/get

10-12

Example Create a vrworld object:

myworld = vrworld('vrmount.wrl');

The vrworld object myworld is associated with the virtual world vrmount.wrl.
Open the world:

open(myworld)

Create a vrfigure object:

f = vrfigure(myworld);

You can now get the object properties of the vrfigure object f:

get(f)

This returns the following object properties:

Antialiasing = 'off'
CameraBound = 'on'
CameraDirection = [0 0 -1]
CameraDirectionAbs = [0 -0.198669 -0.980067]
CameraPosition = [0 0 0]
CameraPositionAbs = [20 4 50]
CameraUpVector = [0 1 0]
CameraUpVectorAbs = [0 0.980067 -0.198669]
Headlight = 'on'
Lighting = 'on'
Name = 'VR Car in the Mountains'
PanelMode = 'opaque'
Textures = 'on'
Transparency = 'on'
Viewpoint = 'View1'
Wireframe = 'off'
ZoomFactor = 1

See Also vrfigure/set, vrfigure

vrfigure/isvalid

10-13

10vrfigure/isvalidPurpose Return 1 if the vrfigure object is valid, and 0 if it is not

Syntax x = isvalid(vrfigure_object_vector)

Arguments

Description This function detects whether the vrfigure handles are valid and returns an
array that contains a 1 where the vrfigure handles are valid and returns a 0
where they are not.

See Also vrworld/isvalid, vrnode/isvalid

vrfigure_object_vector Name of an array of vrfigure objects.

vrfigure/set

10-14

10vrfigure/set Purpose Change a property value of vrfigure object

Syntax set(vrfigure_object, 'property_name', property_value)

Arguments

Description The set(vrfigure_object) method allows you to set the property value of a
vrfigure object. This method is useful when you want to change the value of a
property.

Example Create a vrworld object.

myworld = vrworld('vrmount.wrl');

The vrworld object myworld is associated with the virtual world vrmount.wrl.
Open the world:

open(myworld)

Create a vrfigure object:

f = vrfigure(myworld);

The VR Car in the Mountains virtual world opens in the Virtual Reality
Toolbox viewer. You can now set the object properties of the vrfigure object f:

set(f,'Name','Car on a Mountain Road')

You can see that the name of the virtual world has changed in the viewer.

See Also vrfigure/get, vrfigure

vrfigure_object Name of a vrfigure object.

property_name Name of the property you want to set.

property_value New value of the property.

I-1

Index

A
adding

Virtual Reality Toolbox blocks 3-2
associating virtual worlds with Simulink blocks

3-10

B
blaxxun Contact

creating virtual worlds 5-8
installing 2-16
known issue 2-18
VRML viewer 5-33

bouncing ball
Simulink example 1-15

C
capture

Virtual Reality Toolbox vrfigure method 10-7
car

MATLAB interface example 1-21
changing default network security setting 2-18

See also blaxxun Contact
changing virtual world associated with Simulink

block 3-10
client computer

installation of VRML viewer (UNIX) 2-34
installation of VRML viewer (Windows) 2-33
system requirements 2-7

close

Virtual Reality Toolbox vrfigure method 10-8
Virtual Reality Toolbox vrworld method 8-6

closing virtual worlds 4-8
components on client computer 2-33
components on host computer 2-10

connecting
Simulink model to a virtual world 5-17

control menu 5-22
coordinate system

MATLAB 1-9
VRML 1-9

creating vrworld object 4-2

D
default editor

setting 2-26
default viewer

setting 2-20
deformation of a sphere example

adding Virtual Reality Toolbox blocks 5-6
connecting Simulink to a virtual world 5-17
creating a box in a virtual world 5-13
creating a sphere in a virtual world 5-8
defining the problem 5-5

delete

Virtual Reality Toolbox vrnode method 9-6
Virtual Reality Toolbox vrworld method 8-7

deleting virtual worlds 4-8
displaying virtual worlds 3-13

E
edit

Virtual Reality Toolbox vrworld method 8-8
editor

uninstalling 2-31
editors 5-2

general 3-D 5-2
native VRML 5-2

Index

I-2

examples
bouncing ball 1-15
car 1-21
deformation of a sphere 5-5
heat transfer 1-21
inverted pendulum 1-19
lighting 1-16
magnetic levitation 1-16
magnetic levitation for Real-Time Windows

Target 1-17
manipulator with SpaceMouse 1-17
MATLAB interface 1-14
plane taking off 1-20
rotating membrane 1-22
Simulink interface 1-14
solar system 1-20
tower crane 1-16
using MATLAB interface 1-21

F
features

Virtual Reality Toolbox 1-3
fields

Virtual Reality Toolbox vrnode method 9-7
file format

VRML 1-10

functions
MATLAB interface 7-1
vrclear 7-2
vrgetpref 7-5
vrinstall 7-8
vrlib 7-10
vrsetpref 7-11
vrview 7-12
vrwho 7-13
vrwhos 7-14

G
get

Virtual Reality Toolbox vrfigure method 10-9
Virtual Reality Toolbox vrnode method 9-8
Virtual Reality Toolbox vrworld method 8-9

getfield

Virtual Reality Toolbox vrnode method 9-10

H
heat transfer

MATLAB example 1-21
history

VRML 1-8
host computer

installing Virtual Reality Toolbox 2-9
installing VRML editor (Windows) 2-25
installing VRML viewer (UNIX) 2-19
installing VRML viewer (Windows) 2-16
required components 2-10
system requirements 2-4
Virtual Reality Toolbox viewer 2-15
VRML editor (UNIX) 2-26

Index

I-3

I
installation

blaxxun Contact 2-16
client computer 2-33
components on host computer 2-10
host computer 2-9
supported platforms 2-2
system requirements 2-2
testing 2-35
viewer on host computer 2-15
Virtual Reality Toolbox 2-9
VRML editor (UNIX) 2-26
VRML editor (Windows) 2-25
VRML viewer (UNIX) 2-19
VRML viewer (Windows) 2-16

interacting with a virtual world 4-5
inverted pendulum

Simulink example 1-19
isvalid

Virtual Reality Toolbox vrfigure method
10-13

Virtual Reality Toolbox vrnode method 9-11
Virtual Reality Toolbox vrworld method 8-11

L
license

getting or updating 2-9
lighting

Simulink example 1-16

M
magnetic levitation

Simulink example 1-16
Simulink example for Real-Time Windows

Target 1-17

manipulator with Space Mouse
Simulink example 1-17

MATLAB
coordinate system 1-9
interface examples 1-21

MATLAB interface
creating a vrworld object 4-2
interacting with a virtual world 4-5
opening a virtual world 4-4
table of general functions 7-1
vrfigure object methods 10-5
vrnode object methods 9-3
vrworld object methods 8-4

methods
capture 10-7
close

Virtual Reality Toolbox vrfigure method
10-8

Virtual Reality Toolbox vrworld method
8-6

delete

Virtual Reality Toolbox vrnode method 9-6
Virtual Reality Toolbox vrworld method

8-7
edit 8-8
fields 9-7
get

Virtual Reality Toolbox vrfigure method
10-9

Virtual Reality Toolbox vrnode method 9-8
Virtual Reality Toolbox vrworld method

8-9
getfield 9-10

Index

I-4

methods (continued)
isvalid

Virtual Reality Toolbox vrfigure method
10-13

Virtual Reality Toolbox vrnode method
9-11

Virtual Reality Toolbox vrworld method
8-11

nodes 8-12
open 8-13
reload 8-14
save 8-15
set

Virtual Reality Toolbox vrfigure method
10-14

Virtual Reality Toolbox vrnode method
9-12

Virtual Reality Toolbox vrworld method
8-16

setfield 9-13
sync 9-14
view 8-17
vrfigure 10-6
vrnode 9-4
vrworld 8-5

N
native VRML 5-2
navigation

about a virtual scene 5-25
example of navigation 5-30
keyboard 5-31
using the control menu 5-26
using the control panel 5-25
using the mouse 5-27

navigation speed
changing 5-22

nodes

Virtual Reality Toolbox vrworld method 8-12
non-preferred-term

See preferred-term

O
objects

vrfigure methods 10-5
vrnode methods 9-3
vrworld methods 8-4
See also methods

open

Virtual Reality Toolbox vrworld method 8-13
opening a viewer window 3-15
opening virtual worlds 4-4
overview

associating virtual worlds with Simulink 3-2
Simulink interface 3-2
viewing a virtual world 5-21
virtual worlds 5-2
vrfigure objects 10-1
VRML 1-8
VRML editing tools 5-2
vrnode objects 9-1
vrworld objects 8-1

P
plane taking off

Simulink example 1-20
platforms

supported 2-2

Index

I-5

R
reload

Virtual Reality Toolbox vrworld method 8-14
rendering of a virtual scene 5-23
rotating membrane

Simulink example 1-19
Virtual Reality Toolbox example 1-22

running Simulink example 2-35

S
save

Virtual Reality Toolbox vrworld method 8-15
server

Virtual Reality Toolbox 1-23
set

default editor 2-26
default viewer 2-20

set

Virtual Reality Toolbox vrfigure method
10-14

Virtual Reality Toolbox vrnode method 9-12
Virtual Reality Toolbox vrworld method 8-16

setfield

Virtual Reality Toolbox vrnode method 9-13
simulation

displaying virtual worlds 3-13
starting 3-13

Simulink
associating with virtual worlds 3-2
interface examples 1-14
See also examples

Simulink blocks
adding Virtual Reality Toolbox blocks 3-2
changing virtual world association 3-10
VR Placeholder 6-6
VR Signal Expander 6-7

VR Sink 6-2
VR Source 6-4

Simulink interface
overview 3-2

Simulink interface examples
bouncing ball 1-15
deformation of a sphere 5-6
inverted pendulum 1-19
lighting 1-16
magnetic levitation 1-16
magnetic levitation with Real-Time Windows

Target 1-17
manipulator with SpaceMouse 1-17
plane taking off 1-20
rotating membrane 1-19
running and viewing 2-35
solar system 1-20
tower crane 1-16

solar system
Simulink example 1-20

SpaceMouse
Simulink examples 1-17

supported platforms 2-2
sync

Virtual Reality Toolbox vrnode method 9-14
system requirements

client computer 2-7
host computer 2-4

T
testing

installation 2-35
MATLAB example 2-40
Simulink example 2-35

tower crane
Simulink example 1-16

Index

I-6

U
uninstalling

editor 2-31
Virtual Reality Toolbox 2-31
V-Realm Builder 2-31
VRML viewer (Windows) 2-31

V
view

Virtual Reality Toolbox vrworld method 8-17
view a virtual world

using a Web browser on the client computer
3-19

using a Web browser on the host computer
3-16

viewer
installation on client computer 2-33
installation on host computer 2-15
opening 3-15
See also VRML viewer

viewpoint control 5-22
Virtual Reality Toolbox

description 1-2
Virtual Reality Toolbox blocks

VR Placeholder 6-6
VR Signal Expander 6-7
VR Sink 6-2
VR Source 6-4

Virtual Reality Toolbox example
car 1-21
heat transfer 1-21
rotating membrane 1-22
running and viewing 2-40

Virtual Reality Toolbox viewer 5-21
changing navigation speed 5-22
control menu 5-22

navigation 5-25
rendering 5-23
viewpoint control 5-22

virtual worlds
associating with Simulink 3-2
closing 4-8
deleting 4-8
displaying 3-13
interacting with 4-5
opening 4-4
overview 5-2

VR Placeholder
Simulink block 6-6

VR Signal Expander
Simulink block 6-7

VR Sink
Simulink block 6-2

VR Source
Simulink block 6-4

vrclear

Virtual Reality Toolbox function 7-2
V-Realm Builder

installing 2-25
uninstalling 2-31
VRML editor 5-4

vrfigure

Virtual Reality Toolbox method 10-6
vrfigure object

Virtual Reality Toolbox methods 10-5
vrgetpref

Virtual Reality Toolbox function 7-5
vrinstall

Virtual Reality Toolbox function 7-8
vrlib

Virtual Reality Toolbox function 7-10

Index

I-7

VRML
coordinate system 1-9
file format 1-10
history 1-8
overview 1-8

VRML editor 5-2
general 3-D 5-2
installing on host computer (Windows) 2-25
on UNIX platforms 2-26
V-Realm Builder 5-4

VRML object reference
vrfigure objects 10-1
vrnode objects 9-1
vrworld objects 8-1

VRML objects
overview of vrfigure objects 10-1
overview of vrnode objects 9-1
overview of vrworld objects 8-1

VRML viewer
blaxxun Contact 5-33
changing navigation speed 5-22
control menu 5-22
installing on client computer (UNIX) 2-34
installing on client computer (Windows) 2-33
installing on host computer (UNIX) 2-19
installing on host computer (Windows) 2-16
known issue (blaxxun Contact) 2-18
navigation 5-25
rendering 5-23
uninstalling 2-31
viewpoint control 5-22
Virtual Reality Toolbox 5-21

vrnode

Virtual Reality Toolbox method 9-4
vrnode object

Virtual Reality Toolbox methods 9-3
vrsetpref

Virtual Reality Toolbox function 7-11
vrview

Virtual Reality Toolbox function 7-12
vrwho

Virtual Reality Toolbox function 7-13
vrwhos

Virtual Reality Toolbox function 7-14
vrworld

Virtual Reality Toolbox method 8-5
vrworld object

creation 4-2
Virtual Reality Toolbox methods 8-4

W
Web browser

view a virtual world on a client computer 3-19
view a virtual world on the host computer 3-16

Index

I-8

	Preface
	Required Products
	MATLAB
	Simulink
	VRML Viewer
	VRML Editor

	Related Products
	Documentation and Help
	Installing Online Documentation
	Viewing Online Documentation
	Printing the Documentation
	Product News Pages

	Using This Guide
	Expected Background
	Organization

	Conventions
	Terminology

	Typographical Conventions

	Introduction
	What Is the Virtual Reality Toolbox?
	Features of the Virtual Reality Toolbox
	VRML Support
	MATLAB Interface
	Simulink Interface
	VRML Viewers
	VRML Editor
	Real-Time Workshop Support
	SimMechanics Support
	Hardware Support
	Client-Server Architecture

	VRML Overview
	VRML History
	VRML Coordinate System
	VRML File Format

	Examples Using the Virtual Reality Toolbox
	Simulink Interface Examples
	MATLAB Interface Examples

	Implementation Notes
	Virtual Reality Toolbox Server
	VRML Compatibility

	Installation
	System Requirements
	Supported Computer Platforms
	Host Computer
	Client Computer

	Installing the Virtual Reality Toolbox on the Host Computer
	Getting or Updating Your License
	Components on a Host Computer
	Installing from CD (Windows)
	Installing from CD (UNIX/Linux)
	Downloading from the Web

	Installing the VRML Viewer on the Host Computer
	Virtual Reality Toolbox Viewer
	Installing a VRML Plug-In (Windows)
	Installing a VRML Plug-in (UNIX/Linux)
	Setting the Default Viewer of Virtual Scenes

	Installing the VRML Editor on the Host Computer
	Installing VRML Editor (Windows)
	VRML Editor (UNIX/Linux)
	Setting the Default Editor of Virtual Scenes

	Removing Components
	Removing the Virtual Reality Toolbox and V-Realm Builder
	Removing the blaxxun Contact Plug-In

	Installation on the Client Computer
	Installing a VRML Plug-In (Windows)
	VRML Plug-In (UNIX/Linux)

	Testing the Installation
	Running a Simulink Interface Example
	Running a MATLAB Interface Example

	Simulink Interface
	Associating a Virtual World with Simulink
	Adding a Virtual Reality Toolbox Block
	Changing the Virtual World Associated with a Simulink Block

	Using the Simulink Interface
	Displaying a Virtual World and Starting Simulation
	View a Virtual World with a Web Browser on the Host Computer
	View a Virtual World with a Web Browser on the Client Computer

	MATLAB Interface
	Creating Virtual Reality Toolbox Objects
	Creating a vrworld Object

	Using the MATLAB Interface
	Opening a Virtual World
	Interacting with a Virtual World
	Closing and Deleting a vrworld Object

	Virtual Worlds
	VRML Editing Tools
	Editors for Virtual Worlds
	V-Realm Builder

	Deformation of a Sphere Example
	Defining the Problem
	Adding a Virtual Reality Toolbox Block
	Creating a Sphere in a Virtual World
	Creating a Box in a Virtual World
	Connecting a Simulink Model to a Virtual World

	Viewing a Virtual World
	Virtual Reality Toolbox Viewer
	blaxxun Contact VRML Plug-in
	blaxxun Contact Settings

	VRML Data Types
	VRML Field Data Types
	VRML Data Class Types

	Block Reference
	Joystick Input
	Magellan SpaceMouse
	VR Placeholder
	VR Signal Expander
	VR Sink
	VR Source

	Function Reference
	vrclear
	vrclose
	vrdrawnow
	vrgetpref
	vrinstall
	vrlib
	vrsetpref
	vrview
	vrwho
	vrwhos

	vrworld Object Reference
	vrworld Object Properties
	vrworld Object Methods
	vrworld
	vrworld/close
	vrworld/delete
	vrworld/edit
	vrworld/get
	vrworld/isvalid
	vrworld/nodes
	vrworld/open
	vrworld/reload
	vrworld/save
	vrworld/set
	vrworld/view

	vrnode Object Reference
	vrnode Object Properties
	vrnode Object Methods
	vrnode
	vrnode/delete
	vrnode/fields
	vrnode/get
	vrnode/getfield
	vrnode/isvalid
	vrnode/set
	vrnode/setfield
	vrnode/sync

	vrfigure Object Reference
	vrfigure Object Properties
	vrfigure Object Methods
	vrfigure
	vrfigure/capture
	vrfigure/close
	vrfigure/get
	vrfigure/isvalid
	vrfigure/set

	Index

