
Computation

Visualization

Programming

Release 11 New Features

MATLAB
®

The Language of Technical Computing

If You Are Upgrading to 
Release 11 (MATLAB 5.3) 
from ...

Read These Sections ...

MATLAB 5.2 (Release 10) Chapter 1 and “Upgrading From MATLAB 5.2 to
MATLAB 5.3” in Chapter 4

MATLAB 5.1 Chapters 1 and 2, as well as “Upgrading from
MATLAB 5.1 to MATLAB 5.3” and “Upgrading
From MATLAB 5.2 to MATLAB 5.3” in Chapter 4

MATLAB 5.0 All

MATLAB 4 The separate, online document called “Upgrading
from MATLAB 4 to MATLAB 5.3”



How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Release 11 New Features
 COPYRIGHT 1984 - 1999 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: January 1999 New for Release 11

☎

✉

@



Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Release 11 Product Family Documentation Set . . . . . . . . . . . vii

1
Release 11 Enhancements

What’s New in Release 11 (MATLAB 5.3)? . . . . . . . . . . . . . . . 1-2

PC Installation Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

MATLAB Language Enhancements . . . . . . . . . . . . . . . . . . . . . 1-6

Development Environment Enhancements . . . . . . . . . . . . . 1-15

Online Documentation Enhancements . . . . . . . . . . . . . . . . . 1-20

Japanese Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22

Visualization Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23

GUI Development Enhancements . . . . . . . . . . . . . . . . . . . . . 1-33

MATLAB Compiler 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-34

MATLAB C/C++ Math Library 2.0 . . . . . . . . . . . . . . . . . . . . . . 1-38

Simulink 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-42

Stateflow 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-50

The Real-Time Workshop 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . 1-53
i



ii Contents
Communications Toolbox 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 1-56

Control System Toolbox 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57

Financial Toolbox 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-61

Image Processing Toolbox 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 1-64

Mapping Toolbox 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-65

MATLAB Excel Link 1.0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-69

Optimization Toolbox 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-70

Signal Processing Toolbox 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 1-72

Statistics Toolbox 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-76

Symbolic Math Toolbox 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-78

DSP Blockset 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-80

Fixed-Point Blockset 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-93

Power System Blockset 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-101

New Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-102

2
Release 10 (MATLAB 5.2) Enhancements

What Was New in Release 10 (MATLAB 5.2)? . . . . . . . . . . . . . 2-2

MATLAB Language Enhancements . . . . . . . . . . . . . . . . . . . . . 2-5

Development Environment Tools Enhancements . . . . . . . . . 2-9



Online Documentation Enhancements . . . . . . . . . . . . . . . . . 2-11

ActiveX Support Enhanced . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

HDF File Format Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

Visualization Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

GUI Development Enhancements . . . . . . . . . . . . . . . . . . . . . . 2-18

MATLAB Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20

MATLAB C Math Library 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

MATLAB C++ Math Library 1.2 . . . . . . . . . . . . . . . . . . . . . . . . 2-23

Simulink 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24

Real-Time Workshop 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29

Stateflow 1.0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35

Toolboxes and Blocksets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36

3
MATLAB 5.1 Enhancements

What Was New in MATLAB 5.1? . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Language and Development Environment Enhancements 3-4

TIFF and JPEG Device Drivers . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

TIFF Preview Images for Encapsulated PostScript . . . . . . 3-10

API Enhancements for Windows NT . . . . . . . . . . . . . . . . . . . 3-11
iii



iv Contents
Stateflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12

Mapping Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13

4
Upgrading to Release 11

Migrating to Release 11 (MATLAB 5.3) . . . . . . . . . . . . . . . . . . 4-2

Upgrading From MATLAB 5.2 to MATLAB 5.3 . . . . . . . . . . . . 4-4

Upgrading from MATLAB 5.1 to MATLAB 5.3 . . . . . . . . . . . . 4-9

Upgrading from MATLAB 5.0 to MATLAB 5.3 . . . . . . . . . . . 4-19

Upgrading Simulink, Toolboxes, and Blocksets . . . . . . . . . 4-21



Introduction
Introduction
This document highlights the new features of Release 11 (MATLAB 5.3).

Note This document discusses the whole Release 11 product family, including
products for which you might not be currently licensed. If you are interested in
purchasing a license for a product, please contact your Sales Representative at
The MathWorks or your distributor.

This document provides the information you need to upgrade to Release 11,
whether you are currently using MATLAB 5.0, MATLAB 5.1, or MATLAB 5.2
(Release 10). If you are upgrading to Release 11 from MATLAB 4, then in
addition to this document, you should read the online document entitled
“Upgrading from MATLAB 4 to MATLAB 5.0.”

How to Use This Document

References and Links to Other Documents
Throughout Chapters 1, 2, and 3, there are references to other documents for
additional detailed information about new features highlighted in this
document.

If You Are Upgrading to 
Release 11 from ... Read These Sections ...

MATLAB 5.2 (Release 10) Chapter 1 and “Upgrading From MATLAB 5.2 to
MATLAB 5.3” in Chapter 4

MATLAB 5.1 Chapters 1 and 2, as well as "Upgrading from
MATLAB 5.1 to MATLAB 5.3" and "Upgrading
From MATLAB 5.2 to MATLAB 5.3" in Chapter 4

MATLAB 5.0 All

MATLAB 4 The separate, online document called “Upgrading
from MATLAB 4 to MATLAB 5.0”
v



 

vi
In the HTML version of this document, Chapters 1 and 2 include several direct
links to reference documentation describing specific Release 11 features in
more detail. By clicking on those links, you can go directly to the more detailed
information. For example, clicking on a highlighted command name in a table
displays the documentation for that command. Use your browser’s Back button
to return to this document.



Release 11 Product Family Documentation Set
Release 11 Product Family Documentation Set

Printed Manuals
The following manuals have been printed and distributed to existing customers
of MATLAB® and its optional associated products, as part of their update
package.

• Known Software and Documentation Problems

• Release 11 New Features

• MATLAB Installation Guide for PC

• MATLAB Installation Guide for UNIX

• Writing S-Functions (a new manual for Simulink customers)

• Real-Time Workshop User’s Guide

• Communications Toolbox New Features Guide (Version 1.4)

• Financial Toolbox User’s Guide

• Optimization Toolbox User’s Guide

• DSP Blockset User’s Guide

• Fixed-Point Blockset User’s Guide

• Using Simulink

• Stateflow User’s Guide

New Product Documentation
There are printed manuals for the following new Release 11 products:

• MATLAB Report Generator and Simulink Report Generator (one manual for
both)

• MATLAB Web Server

• Database Toolbox

• Real-Time Windows Target
vii



 

viii
Manuals Updated Online
All the updated manuals listed above are also available online, via the Help
Desk, in PDF format. In addition, the following manuals have been updated for
Release 11 in PDF form.

• Getting Started with MATLAB

• Using MATLAB

• MATLAB Function Reference (includes language and graphics)

• Application Program Interface Guide

• Application Program Interface Reference Manual

• SB2SL User’s Guide

• Target Language Compiler Reference Guide

• Control System Toolbox User’s Guide

• Database Toolbox User’s Guide

• Financial Toolbox User’s Guide

• Fuzzy Logic Toolbox User’s Guide

• Image Processing Toolbox User’s Guide

• Mapping Toolbox User’s Guide

• Mapping Toolbox Reference Manual

• Model Predictive Control Toolbox User’s Guide

• Mu Analysis and Synthesis Toolbox User’s Guide

• Signal Processing Toolbox User’s Guide

• Spline Toolbox User’s Guide

• Statistics Toolbox User’s Guide

• Symbolic Math Toolbox User’s Guide

• Power System Blockset User’s Guide



Release 11 Product Family Documentation Set
The reference documentation for each product listed above is also available in
HTML form. In addition, the following manuals are available in HTML form
(and in PDF form, too, except for Using MATLAB Graphics):

• Release 11 New Features

• Known Software and Documentation Problems

• Upgrading from MATLAB 4 to MATLAB 5.0

• Getting Started with MATLAB

• Using MATLAB Graphics

• Using Simulink

• Stateflow User’s Guide

• Report Generator User’s Guide

• Database Toolbox User’s Guide

There is context-sensitive help for the MATLAB Plot Editor, the Page Setup
dialog box, Simulink® , Stateflow® , and the new MATLAB and Simulink
Report Generator products.
ix



 

x



PC Installation Enhancements . . . . . . . . . . . 1-5
MATLAB Language Enhancements . . . . . . . . . 1-6
Development Environment Enhancements . . . . . . 1-15
Online Documentation Enhancements . . . . . . . . 1-20
Japanese Interface . . . . . . . . . . . . . . . . . 1-22
Visualization Enhancements . . . . . . . . . . . . 1-23
GUI Development Enhancements . . . . . . . . . . 1-33
MATLAB Compiler 2.0 . . . . . . . . . . . . . . . 1-34
MATLAB C/C++ Math Library 2.0 . . . . . . . . . . 1-38
Simulink 3.0 . . . . . . . . . . . . . . . . . . . . 1-42
Stateflow 2.0 . . . . . . . . . . . . . . . . . . . . 1-50
The Real-Time Workshop 3.0 . . . . . . . . . . . . 1-53
Communications Toolbox 1.4 . . . . . . . . . . . . 1-56
Control System Toolbox 4.2 . . . . . . . . . . . . . 1-57
Financial Toolbox 2.0 . . . . . . . . . . . . . . . . 1-61
Image Processing Toolbox 2.2 . . . . . . . . . . . . 1-64
Mapping Toolbox 1.1 . . . . . . . . . . . . . . . . 1-65
MATLAB Excel Link 1.0.8 . . . . . . . . . . . . . . 1-69
Optimization Toolbox 2.0 . . . . . . . . . . . . . . 1-70
Signal Processing Toolbox 4.2 . . . . . . . . . . . . 1-72
Statistics Toolbox 2.2 . . . . . . . . . . . . . . . . 1-76
Symbolic Math Toolbox 2.1 . . . . . . . . . . . . . 1-78
DSP Blockset 3.0 . . . . . . . . . . . . . . . . . . 1-80
Fixed-Point Blockset 2.0 . . . . . . . . . . . . . . 1-93
Power System Blockset 1.1 . . . . . . . . . . . . 1-101
New Products . . . . . . . . . . . . . . . . . . 1-102
1

Release 11 Enhancements

What’s New in Release 11 (MATLAB 5.3)? . . . . . . . 1-2



1 Release 11 Enhancements

1-2
What’s New in Release 11 (MATLAB 5.3)?
Release 11 includes:

• MATLAB® 5.3

• Simulink® 3.0, including SB2SL 2.0

• Real-Time Workshop® 3.0

• Real-Time Workshop Ada Coder 3.0

• Stateflow® and Stateflow® Coder 2.0

• New versions of most toolboxes

• The following new products:

- MATLAB Report Generator

- Simulink Report Generator

- Real-Time Windows Target

In addition, the following products, which were introduced between the release
of Release 10 and Release 11, are included as part of Release 11:

• Database Toolbox

• MATLAB Web Server

The new products are summarized at the end of this chapter.

Note You can access only the products for which you are licensed.

Enhancements to MATLAB 5.3
The language and development environment enhancements introduced with
MATLAB 5.3 include:

• Simplified installation process

• Support for integer data types

• File I/O enhancements

• Sparse matrix operations enhancements

• Numerical analysis enhancements



What’s New in Release 11 (MATLAB 5.3)?
• Development environment tools enhancements

• Online documentation enhancements

• Japanese interface

MATLAB 5.3 also includes many visualization enhancements, including:

• Figure window enhancements

• A new Plot Editor

• New plotting and 3-D visualization functions

• Support for HDF/EOS development tools

• Support for Portable Network Graphics (PNG) images

Upgrades to Simulink, Real-Time Workshop, 
Stateflow, Toolboxes, and Blocksets

Simulink 3.0
Simulink 3.0 includes several major enhancements, including:

• Graphical user interface (GUI) improvements, in particular

- A new Library Browser and Model Browser for the PC

- Zoomable views of diagrams

- A new Simplot tool to recreate saved data in a Handle Graphics® window

• Several new and enhanced blocks

• Modeling enhancements

• Simulation enhancements

• SB2SL 2.0

Real-Time Workshop 3.0 and Real-Time Workshop Ada Coder 3.0
Real-Time Workshop 3.0 includes several important enhancements, including:

• Generation of production-quality embedded code

• External mode enhancements

• Data typing support

Real-Time Workshop Ada Coder 3.0 is a separate product that supports the
generation of Real-Time Workshop Ada code.
1-3



1 Release 11 Enhancements

1-4
Stateflow 2.0
Stateflow 2.0 and Stateflow Coder 2.0 include enhancements to the GUI,
modeling features, printing, and code generation.

Toolboxes and Blocksets
These toolboxes and blocksets have significant enhancements for Release 11:

• Communications Toolbox 1.4

• Control System Toolbox 4.2

• DSP Blockset 3.0

• Financial Toolbox 2.0

• Fixed-Point Blockset 2.0

• Image Processing Toolbox 2.2

• Mapping Toolbox 1.1

• Excel Link 1.0.8

• Optimization Toolbox 2.0

• Power System Blockset 1.1

• Signal Processing Toolbox 4.2

• Statistics Toolbox 2.2

• Symbolic Math Toolbox 2.1

The following toolboxes and blocksets were updated for Release 11, but only in
minor ways, for Release 11 compatibility or to take advantage of Release 11
features, and to fix software problems:

• Model Predictive Control Toolbox 1.0.4

• Mu-Analysis and Synthesis Toolbox 3.0.4

• NAG Foundation Toolbox 1.0.3

• Neural Network Toolbox 3.0.1

• Nonlinear Control Design Blockset 1.1.3

• Robust Control Toolbox 2.0.6

• Spline Toolbox 2.0.1

• System Identification Toolbox 4.0.5

• Wavelet Toolbox 1.2



PC Installation Enhancements
PC Installation Enhancements

You Can Cut and Paste PLPs
Part of the overall simplification of the Release 11 installation process for the
PC is that you can now cut and paste Personal License Passwords (PLPs) from
the email you have received from The MathWorks or from Access.

New Desktop Shortcut to Start MATLAB
On PCs, you can start MATLAB from the MATLAB 5.3 shortcut on your
desktop (or you can continue to use the Start menu). This starts MATLAB in
the matlab/work directory.

Note If you have any existing files in the matlab/bin directory that you count
on accessing when you start up MATLAB, then you need to put those files in
the matlab/work directory.

Installing Notebook
The MATLAB installation script no longer installs the MATLAB Notebook
product.

To install the Notebook, at the MATLAB command line type

notebook -setup
1-5



1 Release 11 Enhancements

1-6
MATLAB Language Enhancements

Links to Function Descriptions  If you are reading this in HTML form,
clicking on the function name in the tables summarizing functions (or in
highlighted links in the text) displays the reference documentation for that
function. Use your browser’s Back button to return to this document.

Support for Integer Data Types

New Integer Array Classes
Version 5.3 extends the support for integer data types to include several
additional array classes that store integer data types. MATLAB 5.3 adds to the
existing uint8 class 8-, 16-, and 32-bit signed and unsigned integer array
classe; for example, int16 for signed 16-bit integers.

These classes are primarily meant to store integer values. Most operations that
manipulate arrays without changing their elements are defined for these data
types (examples are reshape, size, the logical and relational operators,
subscripted assignment, and subscripted reference). In addition, MATLAB
supports the find function for integer arrays, but the returned array is of class
double. No math operations except for sum are defined for these classes, since
such operations are ambiguous on the boundary of the set (for example, they
could wrap or truncate there).

sum Function Now Supports All Integer Types
The sum function can now be used with all of the integer data types supported
by MATLAB. Previously, sum only worked with uint8 data type. With this
release, sum also supports the int8, int16, and int32 data types and the
uint16 and uint32 unsigned data types. When the sum function is used with
integer data types, the value returned by sum is of class double.



MATLAB Language Enhancements
File I/O Enhancements

User-Extensible File Opening Function
The new open function is a user-extensible function that provides an interface
to file open operations. Default behavior is provided for these standard
MATLAB file types: Handle Graphics figure files, M-files, model files, and
P-files. You can extend the interface to include other file types and to override
the default behavior for the standard files.

Reading Data From a Uniformly Formatted File
The new textread function provides easy reading of data from a uniformly
formatted file, such as a comma- or tab-delimitered file, into MATLAB
variables. The formatted file can contain both numbers and strings. The data
is converted using the types and delimiters you specify.

Enhancements to dlmread
The dlmread function was enhanced to significantly improve function
performance.

Also, to use the range argument, use this new calling sequence:

M = dlmread (filename,delimiter,range)

Saving MATLAB Figures or Models
The new saveas function saves a MATLAB figure or model to a file using the
specified file format.

Support for Single Precision Data
MATLAB now supports single precision data, solely as a storage format. Using
the fread and fwrite functions, you can read input files containing single
precision data and write data to files in single precision format. To convert data
to single precision format, use the single function.
1-7



1 Release 11 Enhancements

1-8
Note  MATLAB does not support operations on single precision data other
than conversion. In particular, mathematical operations are not supported.
Currently, single precision data is primarily used in MATLAB with the
Hierarchical Data Format (HDF) development tools.

String Conversion
The new str2double function converts a character string to a double precision
value. The character string should contain the ASCII representation of a scalar
value (real or complex). Use of str2double is recommended over the str2num
function.

The new texlabel function produces the TeX format from a character string.

Constructing Complex Data
The new complex function constructs complex data from real and imaginary
parts.

pause Accepts Fractions of Seconds
The pause function now accepts a fractional number of seconds as an input
argument. This means that when you use the calling sequence pause(n), n can
be any real number. Previously, n was restricted to integer values.

Enhancements to quit
The quit function has been enhanced to run the script finish.m, if finish.m
exists anywhere on the MATLAB path. finish.m is a file you create that
contains commands you want to run when MATLAB terminates (i.e., you use
quit, exit, or click on the X button to close the window on the PC).

Two sample files illustrating what you could put in finish.m are provided in
/toolbox/local:

• finishsav.m – saves the workspace to a MAT-file when MATLAB quits

• finishdlg.m – displays a dialog box allowing you to cancel quitting

You can also cancel quitting from within the finish.m file by using quit 
cancel.



MATLAB Language Enhancements
Y2K Support
All versions of The MathWorks, Inc.’s software products have always
represented data in 8-byte double-precision floating-point data type form. This
ensures that our products will be able to function properly in your environment
in the year 2000 and beyond, including leap years, without any adjustments or
action required on your part.

Date Functions Calling Sequence Change
With MATLAB 5.3, the date functions datenum, datestr, and datevec include
a new calling sequence that allows a pivot year specification to override the
default. For example, here’s the new calling sequence for datevec:

[...] = datevec(t, pivotyear)

This new call uses the pivot year instead of the current year minus 50 years.

See “Upgrading From MATLAB 5.2 to MATLAB 5.3” in Chapter 4 for details
about possible changes you might want to make to existing applications.

Operating on Cell Arrays
The new cellfun function is a multipurpose function that performs common
operations on the elements of cell arrays, including: isreal, isempty,
islogical, length, ndims, prodofsize, size, and isclass.

Diagonal Concatenation
The new blkdiag function concatenates input arguments diagonally in a
matrix.

Enhancements to Sparse Matrix Operations
The iterative methods that operate on sparse matrices have been enhanced to
accept a function as an argument. For example,

x = pcg(A,b)

solves the system of linear equations A*x = b for x. When A is not explicitly
available as a matrix, you can express A as an operator that accepts vector
input x and returns the matrix-vector product A*x. This operator can be the
name of an M-file, a string expression, or an inline object.
1-9



1 Release 11 Enhancements

1-1
Here is a simple example.

function y = afun(x)
% AFUN(X) returns A*X, where A = diag(7*ones(n,1)) is diagonal.
y = 7*x; % y = A*x

This example calls pcg using the function afun in place of the matrix 
A = diag(7*ones(n,1)).

x = pcg('afun',b);

Numerical Analysis

Enhancements to Differential Equation Solvers

Mass Matrix Support. In previous versions of the ODE suite, only the stiff solvers
could handle problems of the form M*y'=F(t,y) with a mass matrix M. Since it
is often convenient to solve a problem in this mass matrix form, we extended
all of the solvers of the ODE suite to solve problems M*y'=F(t,y) with a mass
matrix M that is nonsingular and (usually) sparse. In addition, for all but one
solver, the mass matrix M can now be both time- and state-dependent, M(t,y).
(As before, the ode23s solver allows only constant M.)

The Mass property of odeset has been enhanced to include new possible values;
the old values are still available. For examples, see the M-file help for fem1ode,
fem2ode, or batonode.

Singular Mass Matrices and Differential-Algebraic Equations. If the mass matrix is
singular, then M*y' = F(t,y) is a differential-algebraic equation (DAE). DAEs
have solutions only when y0 is consistent, that is, when there is a vector yp0
such that M(t0)*yp0 = F(t0,y0). The two solvers ode15s and ode23t can solve
DAEs of index 1 provided that M is not state-dependent and y0 is sufficiently
close to being consistent.

If there is a mass matrix, you can use odeset to set MassSingular to 'yes', 'no',
or 'maybe'. The default of 'maybe' causes the solver to test whether the problem
is a DAE. If it is, the solver treats y0 as an initial estimate, attempts to compute
consistent initial conditions that are close to y0, and proceeds to solve the
problem. When solving DAEs, it is advantageous to formulate the problem so
that M is diagonal (a semi-explicit DAE). For examples, see the M-file help for
hb1dae or amp1dae.
0



MATLAB Language Enhancements
Changes to Function Functions
These MATLAB function functions have new names and calling sequences to
support new functionality.

Note that if you have older M-files that use the old names and calling
sequences, these calls will generally continue to work. However, the older
functions may be removed from MATLAB in future releases, so it is a good idea
to revise your code now to use the new names and calling sequences.

Changes to Least Squares Equation Solver
The name of the nnls (nonnegative least squares) function was changed to
lsqnonneg, and its calling sequences have changed as well. These changes have
been made to support new functionality.

As noted above, if you have older M-files that use the old names and calling
sequences, these calls will generally continue to work.

New Mechanism for Setting Optimization Parameters
MATLAB now has a new mechanism for setting parameters used by the
optimization functions. The options argument for these functions now takes a
structure containing the parameters to set, rather than a vector. This structure
is created and modified by a new function, optimset. The new optimget
function extracts the value of a parameter from an options structure.

This change affects the new optimization functions only (fminbnd, fminsearch,
and lsqnonneg). The older functions (fmin, fmins, and nnls) still use the vector
returned by the foptions function.

Note that not all of the parameters set with optimset apply to every function.
Many of the parameters apply only to functions in the Optimization Toolbox.

Old Function Name New Function Name

fmin fminbnd

fmins fminsearch
1-11



1 Release 11 Enhancements

1-1
Changes to cholinc Function
In the cholinc function’s handling of the Cholesky-Infinity factorization, the
input matrix is assumed to be positive semi-definite, so negative pivots are
treated as if they were 0. Because of this change, the functional form that
includes a second output argument p (shown below) is obsolete:

[R,p] = cholinc(X,'inf')

Programming Enhancements

New evalc Function
The new evalc function is an extension of eval. Calling evalc executes a
MATLAB expression and captures any output that would be written to the
MATLAB command window in a character array output argument.

New symvar Function
The new symvar function searches a MATLAB expression for symbolic
variables and returns the names of the variables in a cell array of strings. The
identifiers i, j, pi, and other MATLAB constants and function names are
ignored.

Enhancements to inline
The inline function was improved to better recognize symbolic variable names
in a function expression. In addition, multiple variable names are now located.

Enhancements to MATLAB Object-Oriented Programming
Several functions have been added or enhanced to provide additional support
for MATLAB object-oriented programming.

Loading and Saving Objects. The new loadobj function is an overloadable
function called by the load command when reading objects from a MAT file into
the MATLAB workspace. To define load behavior for user objects, create a
loadobj function in the associated class directory.

The new saveobj function is an overloadable function called by the save
command when writing objects from the MATLAB workspace to a MAT file. To
define save behavior for user objects, create a saveobj function in the
associated class directory.
2



MATLAB Language Enhancements
Enhancements to end Statement. You can overload the end statement for indexing a
user object. To do this, write a method end.m in the class directory. The end
method must have the following calling sequence

end(myobj,K,N)

where myobj is the object, K is the index for which you are using the end syntax,
and N is the number of indices in the indexing expression.

Use clear classes to Clear the Class Definition Table. To clear the class definition table,
use

clear classes

This is useful when, during a MATLAB session, you change the way a class is
defined.

You should no longer use

clear all

to clear the class definition table.

Application Program Interface (API) Enhancements

ActiveX Support Enhanced
The ActiveX support enhancements for MATLAB 5.3 include

• Support for interactively using get to return a list of properties and send to
get a list of all events for an interface

• Enhanced data conversion

• Improved event/callback management

The support for ActiveX controls is described in the Application Program
Interface Guide, in Chapter 7.

MATLAB 5.0 Data Types Supported in the MATLAB 5.3 API Engine
All MATLAB 5.3 data types, including those introduced in MATLAB 5.0 (cell
arrays, multidimensional arrays, and structures) are now supported in the
MATLAB 5.3 API Engine.
1-13



1 Release 11 Enhancements

1-1
Exploratory MATLAB Java Interface

Intended as a Prototype for Soliciting Your Feedback
Release 11 includes an exploratory MATLAB Java interface. Based on your
feedback and additional development and testing efforts, this MATLAB Java
interface may be refined and expanded in future releases.

Caution Do not use this exploratory version of the MATLAB Java interface
for production-level code. This interface will almost certainly change in future
releases, and The MathWorks does not commit to ensuring that code written
using this exploratory version of the interface will work with future versions
of the interface or MATLAB.

What You Can Do with the MATLAB Java Interface
You can use the MATLAB Java interface to:

• Create Java objects in the MATLAB workspace

• Invoke Java methods on objects in the MATLAB workspace

• Invoke Java static methods within MATLAB

• Pass Java objects to MATLAB M-file functions and built-in functions

• Add Java code to toolboxes

• List the methods defined by a Java class

How to Start the MATLAB Java Interface
To start the MATLAB Java interface, at the command line type:

java on 
4



Development Environment Enhancements
Development Environment Enhancements
MATLAB 5.3 includes a number of enhancements to these existing
development environment tools:

• Command Window

• Array Editor

• Profiler

• Figure Window

• PrintFrame Editor

MATLAB 5.3 also introduces two powerful tools, the Plot Editor and Print
Preview.

Enhancements to the Command Window (PC Only)
The MATLAB Command Window for the PC now includes new user interface
features.

Cap, Num, and Scroll LocksView Description of Feature

Show/Hide Toolbar 
from View Menu

Move Toolbar to a 
Different Position

Join Access and
View License Information from 
the Help Menu

Status Bar
1-15



1 Release 11 Enhancements

1-1
Show or Hide the Toolbar
To remove the toolbar from the Command Window, select Toolbar from the
View menu, which unchecks it. To display the toolbar, select Toolbar from the
View menu, which checks it.

Note that this feature does not affect the setting for Show Toolbar in the
Preferences dialog box. The preferences setting pertains to the toolbar status
when you first start MATLAB.

View License Information
Select Show License from the Help menu to view license information for your
MATLAB configuration.

Join Access
Select Join MATLAB Access from the Help menu to become a MATLAB
Access member. Access helps you stay up-to-date on the latest developments
for the MATLAB product family and provides many other benefits. You can
become a MATLAB Access member at no cost. To join Access from the Help
menu, you need to be connected to the Internet. Access membership is not
available for the Student Edition of MATLAB.

Dock the Toolbar
You can move the toolbar to another position (that is, undock the toolbar). Click
and hold on any separator bar (dividing line between groups of buttons) and
then move the toolbar to a new location. To dock the toolbar, move it to an
inside edge of the Command Window. The new toolbar position is maintained
when you restart MATLAB.

View Description of Feature
When you move the mouse over a toolbar button or menu item, a brief
description of the item appears in the left side of the status bar. This provides
more information than the tooltip provides.

Cap, Num, and Scroll Locks
In the right side of the status bar is a display area that shows whether the caps,
num, and scroll lock keys are active.
6



Development Environment Enhancements
Enhancements for the edit Command (UNIX)
The edit command uses the MATLAB Editor/Debugger unless you turned off
the builtinEditor in your ~home/.Xdefaults file. There is now a way to turn
off the builtinEditor during a MATLAB session:

system_dependent('builtinEditor','off')

edit then uses the editor defined for your UNIX$EDITOR environment variable.
To turn the MATLAB Editor/Debugger back on during the session, use

system_dependent('builtinEditor','on')

You can include the system_dependent command in your startup.m file or in
your matlabrc.m file if you have access to it. Type doc matlabrc for more
information.

Workspace Variables in the Array Editor
The openvar function now opens the named workspace variable in the Array
Editor for graphical debugging.

Enhanced Display for Structure Members
The MATLAB variable display feature has been enhanced to provide more
detailed information for structure members that contain an empty variable or
a cell.

For example, this assignment previously displayed the empty matrix ([]) for
the variable contents. The improved variable display is

s.a = zeros(0,4)

s = 

    a: [0x4 double]
1-17



1 Release 11 Enhancements

1-1
This assignment to a cell previously displayed only the cell class and size, as
shown here.

s.c = {[4 5 6] 'foo'}

s = 

    c: {1x2 cell}

The improved variable display is

s.c = {[4 5 6] 'foo'}

s = 

    c: {[4 5 6]  'foo'}

If the contents of the cell cannot be displayed on one line, MATLAB displays
the variable using the cell class and size as in previous versions of the software.

Enhanced MATLAB Profiler
The MATLAB profiler was significantly enhanced to expand data collection
about function performance. The profiler improvements include:

• Simultaneous data collection for all functions

• More information about each function, including: number of calls, list of
parent functions, list of child functions, and execution count and execution
time for each line of code

• Optional recording of function call history

• Report generation in HTML format

Use the profile command to start the profiler.

New profreport Function
You can use the new profreport command to generate a report of the function
call statistics logged by the M-file profiler. The report is in HTML format and
is displayed in your Web browser. You can generate a report for the current
profiler session or for statistics that were saved in an earlier session.
8



Development Environment Enhancements
Figure Window Enhanced
The figure window has been enhanced significantly for MATLAB 5.3:

• The File menu now includes options for

- Saving a figure using a standard graphics file format (e.g., TIFF)

- Setting up a page for printing

• A Tools menu has been added

• A new toolbar has been added

The Tools menu and the new toolbar give you access to the new Plot Editor.

For more details, see “Figure Window Enhancements” later in this chapter.

PrintFrame Editor Enhancements
While the functionality for the PrintFrame Editor has not changed, its user
interface has a new look. For more details, see the “New Look for the
PrintFrame Editor” section later in this chapter.
1-19



1 Release 11 Enhancements

1-2
Online Documentation Enhancements

Some User’s Guides Available in HTML Form
The following User’s Guides are available in HTML form for Release 11:

• Using MATLAB Graphics

• Using Simulink

• Stateflow User’s Guide

• Report Generator User’s Guide

• Database Toolbox User’s Guide

Getting Started with MATLAB, Release 11 New Features, and Release 11
Known Software and Documentation Problems, as well as documentation for
the Plot Editor, PrintFrame Editor, and Page Setup dialog box, are also
available in HTML form.

This allows these documents to take advantage of links to the reference
material, as well as additional online navigation features.

Microsoft HTML Help Viewer
On PCs, Using Simulink, the Stateflow User’s Guide, and the MATLAB Report
Generator User’s Guide, as well as the Plot Editor and PrintFrame Editor
documentation, when accessed via Help menus or buttons from within the
respective product, use the Microsoft HTML Help Viewer. That viewer is
provided with Internet Explorer Version 4.01 and higher. If you access these
documents via the Help Desk, they are displayed using your system’s Web
browser.

The Microsoft HTML Help Viewer provides a two-pane help display
mechanism: one for navigation, and the other for display of the text. The
navigation pane includes a collapsible/expandable table of contents and an
index tab and a search tab.

If you do not have the HTML Help Viewer, you can get it at no cost by
downloading and installing the minimum configuration for Internet Explorer
from the Microsoft Web site – http://www.microsoft.com/ie/download/.
0



Online Documentation Enhancements
On PCs that do not have Microsoft’s HTML Help Viewer installed, and on
UNIX platforms, these HTML documents use your system’s Web browser. The
Web browser interface uses a two-pane interface, but the table of contents is
not collapsible/expandable and it does not have the search tab.

Context-Sensitive Help
There is a new form of help available for the dialog boxes in the Plot Editor and
the Page Setup dialog box. For these dialog boxes, click the Help button in a
dialog box to go directly to help for that dialog box. This context-sensitive help
uses Microsoft HTML Help Viewer, if available, as described above.

Context-sensitive help is also available from dialog boxes or within tools, via
Help buttons or menus, for these products:

• MATLAB Report Generator and Simulink Report Generator

• Simulink

• Stateflow

• Fixed-Point Blockset
1-21



1 Release 11 Enhancements

1-2
Japanese Interface
The interfaces to MATLAB 5.3 have been translated into Japanese. This
includes the Editor/Debugger, the figure window, and command line help. The
interface for products in Release 11 other than MATLAB have not been
translated.

As with MATLAB 5.2, the Help Desk has also been translated into Japanese.
2



Visualization Enhancements
Visualization Enhancements

Figure Window Enhancements

Accessing Off-Screen Visible Figures
You can use the new findfigs function to find all visible figures that are
positioned completely off-screen and make them visible on screen, at the top
left corner of the screen.

New Menu Items in the Figure Window
When you create a plot, the File menu in the figure window now includes three
new items:

• Export: saves a figure using a standard graphics file format, such as TIFF
or EPS.

• Property Editor: allows you to modify any property of any Handle Graphics
object.

• Page Setup: replaces Page Position; for more information, click the Help
button in the Page Setup dialog box.

• Print Preview: displays a preview of how the figure will appear on the
printed page.

A new Tools menu now appears in the menu bar of the figure window. It
contains menu items for the Plot Editor and for zoom and rotate functions,
which are described below.

For UNIX platforms, the Figure Window menu bar has been enhanced to
match the functionality of the PC Figure Window menu bar.
1-23



1 Release 11 Enhancements

1-2
New Toolbar in Figure Window
When you create a plot, the figure window now includes a toolbar for quick
access to popular features that also appear in the File menu. Position the
cursor over a button, and a tooltip describing that feature appears.
.

The zoom in and out buttons allow you magnify or reduce the size of the figure.
For 2-D plots, the zoom buttons use the zoom command, and for 3-D plots, they
use the camzoom command.

The rotate button rotates a 3-D plot, using the rotate3d command.

The Plot Editor is an easy-to-use tool you use to add and modify:

• Text, arrow, and line annotations

• Axes labels, title, legend, tick steps, and grid

• Plot line properties such as line style, thickness, color, and marker

The Plot Editor is described in more detail in the next section.

File buttons Zoom and rotate 
buttons

Plot Editor
buttons

Tooltip
4



Visualization Enhancements
The Plot Editor 
This illustration shows the main features of the Plot Editor.

Click the selection button to start plot edit mode.

Use these toolbar buttons to 
add annotations quickly.

Use the Tools menu to 
add objects (axes, legend, 
and annotations) and to 
modify selected objects.

Get instructions by selecting Editing Plots from the Help menu.
For help with other graphics features, select Using MATLAB Graphics

To modify an object, right-click on it and then use 
the context-sensitive pop-up menu.
Drag annotations and the legend to move them.
1-25



1 Release 11 Enhancements

1-2
New Context-Sensitive Help
There is a new form of help available for the dialog boxes in the Plot Editor and
the Page Setup dialog box. For these dialog boxes, click the Help button in a
dialog box to go directly to help for that dialog box.

See the “Online Documentation Enhancements” earlier in this chapter for
details about context-sensitive help.

New Look for the PrintFrame Editor
While the functionality for the PrintFrame Editor has not changed, its user
interface has a new look. In addition, help for the PrintFrame Editor now is
available directly from the Help menu. To access the PrintFrame Editor, use
the frameedit command.
6



Visualization Enhancements
Support for HDF/EOS Development Tools
MATLAB 5.3 provides three additional functions that act as gateways to the
Hierarchical Data Format/Earth Observing System (HDF/EOS), for grid,
point, and swath objects.

HDF/EOS, an extension of the NCSA (National Center for Supercomputing
Applications) HDF standard, is the scientific data format standard selected by

Use these buttons to create and edit borders.

Use the File menu for page setup, and saving and opening print frames. Change the information in a cell, and resize, add, and 
remove cells.

Add and 
remove 
rows.

Zoom in or 
out on 
selected cell.

Use these 
buttons to align 
information 
within a cell.

Get help for the PrintFrame Editor.

Use the list box and button to add 
information in cells, such as text 
or the date.
1-27



1 Release 11 Enhancements

1-2
NASA as the baseline standard for EOS. The functions in the HDF-EOS C
library are developed and maintained by EOSDIS (Earth Observing System
Data and Information System).

The new MATLAB functions are listed below.

In addition to the MATLAB online help for HDF functions, you should also
have the document HDF-EOS Library User's Guide for the ECS Project,
Volume 1: Overview and Examples and Volume 2: Function Reference Guide.
This document is available on the Web at http://hdfeos.gsfc.nasa.gov. If
you are unable to obtain the document from this location, please contact
MathWorks Technical Support (support@mathworks.com).

New Histogram Function
You can use the new histc function for binning vector elements. histc differs
from the hist function in that it uses bin edges to define the bins. The output
vector can be plotted with the bar function.

New Plotting Functions
MATLAB 5.3 provides a set of new plotting functions to graph mathematical
expressions. Key features of these functions include:

• Direct evaluation of symbolic expressions

• Automatic labeling employing mathematical symbols

• Improved axis scaling

• Elimination of singularities of mathematical expressions in the graph

Function Description

hdfgd HDF-EOS GD (grid) interface

hdfpt HDF-EOS PT (point) interface

hdfsw HDF-EOS SW (swath) interface
8



Visualization Enhancements
These functions provide easy to use plotters.

New Volume Visualization Functions
MATLAB supports a set of new functions for visualizing 3-D scalar and vector
data.

Function Purpose

ezcontour Contour plotter

ezcontourf Filled contour plotter

ezmesh 3-D mesh plotter

ezmeshc Combination mesh/contour plotter

ezplot Function plotter

ezplot3 3-D parametric curve plotter

ezpolar Polar coordinate plotter

ezsurf 3-D colored surface plotter

ezsurfc Combination surf/contour plotter

Function Purpose

coneplot Plot velocity vectors as cones in a 3-D vector field

contourslice Draw contours in volume slice planes

isocaps Compute isosurface end-cap geometry

isonormals Compute normals of isosurface vertices

isosurface Extract isosurface data from volume data

reducepatch Reduce the number of patch faces

reducevolume Reduce the number of elements in a volume data set

shrinkfaces Reduce the size of patch faces
1-29



1 Release 11 Enhancements

1-3
findobj More Flexible
The findobj function now accepts any property value that is allowed with set.
For example,

findobj('Type','line','Color',[1 0 0])

can now be written

findobj('Type','line','Color','r')

Rectangle Object Added
MATLAB 5.3 adds a new rectangle Handle Graphics object. Use the rectangle
function to create a rectangle object.

legend Enhancements
MATLAB 5.3 enhances the legend function to:

• Support multiline labels, allowing you to wrap long labels

• Integrate with the Plot Editor

To support these enhancements, MATLAB 5.3 treats the legend text as one
text object, grouping all the text together.

smooth3 Smooth 3-D data

stream2 Compute 2-D stream line data

stream3 Compute 3-D stream line data

streamline Draw stream lines from 2-D or 3-D vector data

surf2patch Convert surface data to patch data

subvolume Extract subset of volume data set

Function Purpose
0



Visualization Enhancements
New Figure Properties

DoubleBuffer Figure Property
Figure objects have a new property called DoubleBuffer, which accepts the
values on and off, with off being the default. Double buffering works only
when the figure Renderer property is set to painters.

Double buffering is the process of drawing to an off-screen pixel buffer and then
displaying (blitting) the buffer contents on the screen once the drawing is
complete. Double buffering generally produces flash-free rendering for simple
animations (such as those involving lines, as opposed to objects containing
large numbers of polygons). Use double buffering with the animated objects’
EraseMode property set to normal. Use the set command to enable double
buffering:

set(figure_handle,'DoubleBuffer','on')

XDisplay, XVisual, XVisualMode Properties - UNIX Only

XDisplay. You can display a figure window on a different display using the
XDisplay property. For example, to display the current figure on a system
called fred, use the command:

set(gcf,'XDisplay','fred:0.0')

XVisual. You can select the visual used by MATLAB by setting the XVisual
property to the desired visual ID. This can be useful if you want to test your
application on an 8-bit or grayscale visual. To see what visuals are available on
your system, use the UNIX xdpyinfo command. From MATLAB type:

!xdpyinfo

The information returned contains a line specifying the visual ID. For example:

visual id:    0x21

To use this visual with the current figure, set the XVisual property to the ID:

set(gcf,'XVisual','0x21')
1-31



1 Release 11 Enhancements

1-3
XVisualMode. XVisualMode can take on two values – auto (the default) and
manual. In auto mode, MATLAB selects the best visual to use based on the
number of colors, availability of the OpenGL extension, etc. In manual mode,
MATLAB does not change the visual from the one currently in use. Setting the
XVisual property sets this property to manual.

New FontName Property Value
The text and axes FontName properties accept a new value of fixedwidth.
When FontName is set to fixedwidth, MATLAB uses the font name defined by
the new root property FixedWidthFontName, which is Courier by default.

uint16 CData for Images
You can now define images with CData of class uint16.

Support for Portable Network Graphics Images 
MATLAB can read or write images stored in the Portable Network Graphics
(PNG) format. The imread, imwrite, and imfinfo functions can now handle
files stored in any of the following PNG formats:

• 1-bit, 2-bit, 4-bit, 8-bit, and 16-bit grayscale images

• 8-bit and 16-bit indexed images

• 24-bit and 48-bit RGB images
2



GUI Development Enhancements
GUI Development Enhancements

Support for BackgroundColor for Push Buttons 
(PC only)
On the PC, you can now control the color displayed within the push button
rectangle by specifying the BackgroundColor property.

Support for Fixed-Width Fonts
To use a fixed-width font that looks good in any locale (and displays properly
in Japan) where multibyte fonts are used, set FontName to the string
FixedWidth (this string is case sensitive):

   set(uicontrol_handle,'FontName','FixedWidth')
1-33



1 Release 11 Enhancements

1-3
MATLAB Compiler 2.0

Summary of New Features
MATLAB Compiler 2.0 supports much of the functionality of MATLAB 5. The
new features of the Compiler are:

• Data constructs

- Multidimensional arrays

- Cell arrays

- Structure arrays

- Sparse arrays

• Programming tools

- Variable input and output argument lists (varargin/varargout)

- try … catch … end

- switch … end

• Language enhancements

- Persistent variables

- load and save commands

• Improved Compiler options

• Macro options

• Error/warning messages

• Improved mex and mbuild scripts

• Stand-alone Compiler

Data Constructs

Multidimensional Arrays
Multidimensional arrays in MATLAB are an extension of the two-dimensional
matrix. You access a two-dimensional matrix element with two subscripts: the
first represents the row index and the second represents the column index. In
multidimensional arrays, use additional subscripts for indexing. For example,
a three-dimensional array has three subscripts and a four-dimensional array
has four subscripts.
4



MATLAB Compiler 2.0
Cell Arrays
Cell arrays are a special class of MATLAB arrays where elements, or cells,
contain MATLAB arrays. Cell arrays allow you to store dissimilar classes of
arrays in the same array.

Structure Arrays
Structures are a class of MATLAB arrays that can store dissimilar arrays
together. Structures differ from cell arrays in that you reference them by
named fields.

Sparse Arrays
Sparse arrays provide an efficient representation of arrays that contain a
significant number of zero-valued elements.

Programming Tools

Variable Input Arguments
The special argument varargin can be used to pass any number of input
arguments to a function.

Variable Output Arguments
The special argument varargout can be used to return any number of output
arguments from a function.

try … catch … end
In an M-file, the statements between try and catch are executed until an error
occurs. Then, the statements between catch and end are executed. If no error
occurs, the statements between catch and end are not executed.

switch … end
The switch statement lets you conditionally execute code depending on the
value of a variable or expression.
1-35



1 Release 11 Enhancements

1-3
Language Enhancements

Persistent Variables
Variables that are defined as persistent do not change value from one call to
another. Persistent variables may be used within a function only and they
remain in memory until the M-file is cleared or changed.

load and save Commands
The support for load and save has been enhanced to include loading into a
structure.

Improved Compiler Options
The collection of new and improved options provides you with greater flexibility
to control Compiler 2.0. You also have full access to Compiler 1.2 and its set of
existing options.

Macro Options
These options (-m, -p, -x, and -S) let you quickly and easily generate C and C++
stand-alone applications, and MATLAB and Simulink C MEX-files,
respectively. Each macro replaces a sequence of several Compiler options
making it much easier to generate your output.

Error/Warning Messages
The MATLAB Compiler 2.0 contains a comprehensive set of error and warning
messages that help you isolate problems with your code.

Improved mex and mbuild Scripts
The mex script, which allows you to compile MEX-functions, and the mbuild
script, which allows you to customize the building and linking of your code,
have been enhanced to automatically search your system for supported
third-party compilers.
6



MATLAB Compiler 2.0
Stand-Alone Compiler
You can run the MATLAB Compiler 2.0 from the DOS or UNIX command line,
making it unnecessary to have MATLAB running on your system. You can call
the Compiler directly from a makefile. This stand-alone MATLAB Compiler is
faster than previous versions of the Compiler because it does not have to start
MATLAB each time you invoke a compilation.
1-37



1 Release 11 Enhancements

1-3
MATLAB C/C++ Math Library 2.0

MATLAB C Math Library 2.0

Summary of New Features
The MATLAB C Math Library 2.0 supports these new features:

• Over 60 new functions

• Automated memory management for temporary arrays

• Data types

- Multidimensional arrays

- Cell arrays

- MATLAB structures

- Sparse matrices

• New indexing functions

• Variable input and output argument lists (varargin/varargout)

• try blocks and catch blocks

• Improved mbuild script

Over 60 New Functions
New functions in the library support multidimensional arrays, cell arrays,
MATLAB structures, and sparse arrays.

Automated Memory Management for Temporary Arrays
The functions mlfAssign(), mlfEnterNewContext(),
mlfRestorePreviousContext(), and mlfReturnValue() provide automated
memory management for temporary arrays. Using these functions, you can
embed calls to library functions as function arguments. You don’t need to
declare mxArray* variables to store temporary values, or explicitly delete those
temporary arrays.
8



MATLAB C/C++ Math Library 2.0
Data Types

Multidimensional Arrays. Multidimensional arrays in MATLAB can have more
than two dimensions. You access a two-dimensional matrix element with two
indices: a row index and a column index. In a multidimensional array, use
additional subscripts for indexing. For example, a three-dimensional array has
three indices and a four-dimensional array has four.

Cell Arrays. Cell arrays are a special class of MATLAB arrays where elements,
or cells, contain MATLAB arrays. Cell arrays allow you to store dissimilar
classes of arrays in the same array. Cell arrays can be multidimensional.

MATLAB Structures. MATLAB structures are a class of MATLAB arrays that can
store dissimilar arrays together. MATLAB structures differ from cell arrays in
that you reference them by named fields. Structure arrays can be
multidimensional.

Sparse Matrices. Sparse arrays are two-dimensional matrices that contain a
significant number of zero-valued elements. An efficient matrix storage format
stores only the nonzero values.

New Indexing Functions
Three new indexing functions handle indexing for n-dimensional arrays,
including cell arrays, structure arrays, and sparse arrays:

• mlfIndexRef()

• mlfIndexAssign()

• mlfIndexDelete()

Calls to the Version 1.2 indexing functions, mlfArrayRef(),
mlfArrayAssign(), and mlfArrayDelete(), are still valid. However, you must
use the new indexing functions to access support for multidimensional
indexing, cell array indexing, structure indexing, and sparse indexing.

Variable Input and Output Argument Lists
MATLAB varargin functions accept any number of input arguments. The
library supports varargin functions through standard ANSI C variable-length
argument lists.
1-39



1 Release 11 Enhancements

1-4
MATLAB varargout functions return any number of output arguments. The
library supports varargout functions through the functions mlfVarargout()
and mlfIndexVarargout().

try and catch Blocks
The library’s mlfTry and mlfCatch macros let you handle errors with try and
catch blocks.

Improved mbuild Script
The mbuild script automatically detects the location of your C/C++ compiler
and determines whether you are compiling C or C++ code. You no longer need
to use the -setup option to configure mbuild; however, it is available if you
need to change compilers or customize the options that mbuild uses.

mbuild now creates DLLs in addition to executables.

MATLAB C++ Math Library 2.0

Summary of New Features
The MATLAB C++ Math Library 2.0 supports these new features:

• Over 60 new functions

• Data types

- Multidimensional arrays

- Cell arrays

- MATLAB structures

- Sparse matrices

• New indexing functions

• Variable input and output argument lists (varargin/varargout)

• Improved mbuild script

Over 60 New Functions
New functions in the library support multidimensional arrays, cell arrays,
MATLAB structures, and sparse arrays.
0



MATLAB C/C++ Math Library 2.0
Data Types

Multidimensional Arrays. Multidimensional arrays in MATLAB can have more
than two dimensions. You access a two-dimensional matrix element with two
indices: a row index and a column index. In a multidimensional array, use
additional subscripts for indexing. For example, a three-dimensional array has
three indices and a four-dimensional array has four.

Cell Arrays. Cell arrays are a special class of MATLAB arrays where elements,
or cells, contain MATLAB arrays. Cell arrays allow you to store dissimilar
classes of arrays in the same array. Cell arrays can be multidimensional.

MATLAB Structures. MATLAB structures are a class of MATLAB arrays that can
store dissimilar arrays together. MATLAB structures differ from cell arrays in
that you reference them by named fields. Structure arrays can be
multidimensional.

Sparse Matrices. Sparse arrays are two-dimensional matrices that contain a
significant number of zero-valued elements. An efficient matrix storage format
stores only the nonzero values.

New Indexing Functions
The mwArray member function cell() implements indexing into cell arrays.

The mwArray member function field() implements indexing into structure
arrays.

Variable Input and Output Argument Lists
MATLAB varargin functions accept any number of input arguments. The
library supports varargin functions through the mwVarargin class.

MATLAB varargout functions return any number of output arguments. The
library supports varargout functions through the mwVarargout class.

Improved mbuild Script
The mbuild script automatically detects the location of your C/C++ compiler
and determines whether you are compiling C or C++ code. You no longer need
to use the -setup option to configure mbuild; however, it is available if you
need to change compilers or customize the options that mbuild uses.
1-41



1 Release 11 Enhancements

1-4
Simulink 3.0
Simulink 3.0 introduces many significant enhancements in the following areas:

• User interface

• Blocks

• Modeling

• S-functions

• Simulation

• Printing

• SB2SL 2.0

User Interface Enhancements

Library Browser (PC Only)
On the PC, Simulink 3.0 provides a library browser, a tree-structured view of
all block libraries installed on your system. The browser enables you quickly to
locate and copy any library block into your model. Simulink displays the library
browser when you start Simulink.

See “Browsing Block Libraries” in Chapter 3 of Using Simulink.

Model Browser (PC Only)
On the PC, Simulink 3.0 model windows optionally display a model browser.
To display the browser, select Model Browser from the Simulink View menu.
See “The Model Browser” in Chapter 3 of Using Simulink.

Block Search Tool
2



Simulink 3.0
Block Data Tips (PC Only)
On the PC, Simulink 3.0 displays information about a block in a pop-up window
when you hover the pointer over the block in the diagram view. To disable this
feature or control what information a data tip includes, select Block Data Tips
from the Simulink View menu.

Zoomable Diagram View
Simulink 3.0 allows you to enlarge or shrink the view of the block diagram in
the current Simulink window. See “Zooming Block Diagrams” in Chapter 3 of
Using Simulink.

New Standard Dialog Button Layout
Simulink 3.0 changes the names and layout of the standard set of buttons that
appear on all dialog boxes. Previously, all dialog boxes contained the following
buttons: Apply, Revert, Help, and Close. These are now Ok, Help, Cancel,
and Apply. Ok applies any changes and dismisses the dialog box. Cancel
dismisses the dialog box without applying any changes. Apply applies any
changes without dismissing the dialog box.

Recreating Saved Data in a Handle Graphics Window
The new Simplot tool (invoked with the simplot command) recreates saved
data in a Handle Graphics window. This provides an easy way to interact with
the saved data and add annotations, etc., to plots. Some of the key features of
the Simplot tool include:

• Plot Simulink output data, producing scope-like graphics for all data
produced by Simulink output blocks. This includes matrices and structures
with or without time data

• Compare multiple runs

• Plot difference between runs

• Specify separate time vector

• Obtain handles for all graphics objects.
1-43



1 Release 11 Enhancements

1-4
Dynamic Masked Dialogs
Simulink 3.0 permits creation of dynamic masked dialogs, that is, dialogs that
alter their appearance in response to changes in control settings. Dynamic
masked dialogs permit you to replace several similar static dialogs with a
single dynamic dialog. See “Creating Dynamic Dialogs for Masked Blocks” in
Chapter 6 of Using Simulink.

Masked Dialog Parameter Limit Increased
Simulink 3.0 lets you define masked dialogs having as many as 100
parameters.

New Mask Display Command: port_label
Simulink 3.0 introduces a new mask display command, port_label, that lets
you specify the labels of ports displayed on the icon. See “Displaying Text on
the Block Icon” in Chapter 6 Using Simulink.

Signal Properties Dialog
The Signal Properties dialog allows you to view and edit properties of signals.
See “Setting Signal Properties” and “The Signal Properties Dialog” in Chapter
3 of Using Simulink.

Block Enhancements

Reorganized Block Library
The Simulink 3.0 block library has a new organization that categorizes many
blocks differently than the old organization did. Use the Library Browser (see
“Library Browser” in Chapter 3 of Using Simulink) to obtain a quick overview
of the new library structure.

Masked S-Function Blocks
Simulink 3.0 allows masking of the S-Function and Subsystem blocks.

Images in Masked Dialogs
Simulink 3.0 introduces a new pair of masked dialog functions, image and
patch, that enable you to display bitmapped images and draw patches on
masked block icons. See “Displaying Images on Masks” in Chapter 6 in Using
Simulink.
4



Simulink 3.0
New Blocks
Simulink 3.0 provides several new blocks. Each of these is described in more
detail in Chapter 8 of Using Simulink.

Enhanced Blocks
Simulink 3.0 also enhanced several blocks. Each of these is described in more
detail in Chapter 8 of Using Simulink.

Clock Block. The icon of the Simulink 3.0 Clock block optionally displays the
current simulation time.

Block Description

Bus Selector Selects a subset of bus signals from a bus
defined by a Mux or another Bus Selector
block. You can use the Bus Selector’s
parameters dialog box to specify which
signals to select.

Configurable Subsystem Allows you to choose from a library of
alternative implementations of a subsystem

Function-Call Generator Allows a model to execute a function-call
subsystem at a specified rate

Probe Outputs a signal’s width, sample time, and
type (real or complex)
1-45



1 Release 11 Enhancements

1-4
Mux Block. The Simulink 3.0 Mux block incorporates new features that allow it
to function as a data bus. The new features are:

• The output of a Mux block is a bus whose signals have names corresponding
to the labels of input lines. The names of signals corresponding to unlabeled
inputs default to SignalN where N is the number of the input.

• You can enter a comma-separated list of signal names as the value of the
Mux block’s Number of Inputs parameter.

• The Mux block has a new parameter, Display option, that affects the block
icon. The new parameter can have the following values:

- none (the default) displays Mux

- signals displays the signal labels next to each port

- bar displays the block as a solid bar

Round Sum Block. Simulink 3.0 allows you to choose a circular or rectangular
shape for a sum block, whichever is appropriate for your environment. To
change a sum block’s shape, open its parameters dialog and select the desired
shape from the Icon Shape drop-down list. Select the Apply or Ok button to
apply the change.

Simulink 3.0 also allows you to manipulate the position of sum block input
ports by inserting spacers between ports.

Scope Block. The Simulink 3.0 Scope block has the following new features:

• Multiple ports and axes. All axes share the same time base, but have
independent y-scales.

To set the number of axes, select the Properties button on the Scope’s
toolbar.

• No limit on the number of traces (except for the floating scope).

• New data structure gets written to the workspace when logging data.

• Property dialogs for each axis are opened via the context menu (right click)
on the axes.

• Zoom handles multiaxes. The basic rule is that all axes must always share
the same x-limits. So, if you zoom one axes, the x-limits of all other axes are
modified to match.
6



Simulink 3.0
• Axes can be given titles. If desired, these titles can be inherited from signal
names.

Modeling Enhancements

New Data I/O Formats
Simulink now allows structures and lists of structures and/or matrices to be
used for the input and output of data to and from either files or the MATLAB
workspace. In previous versions of Simulink, input and output data could be
only in matrix form. Blocks that support the new data I/O formats include:

• Outport

• Inport

• From File

• To File

• From Workspace

• To Workspace

For more information, see “The Workspace I/O Page” in Chapter 4 and “To
Workspace” in Chapter 8 of Using Simulink.

Data Type Conversion
The Data Type Conversion block allows you to convert a signal of one data type
(e.g., float) to a signal of another type (e.g., int32). See “Data Type
Conversion” in Chapter 8 in Using Simulink.

Data Types
Simulink 3.0 supports multiple data types for most signal and block parameter
values. See “Data Types” in Chapter 3 in Using Simulink.
1-47



1 Release 11 Enhancements

1-4
Complex/Real Conversions
Simulink 3.0 provides blocks for converting complex signals to real signals, and
vice versa. See the following sections in Chapter 8 of Using Simulink:

• “Complex to Magnitude-Angle”

• “Complex to Real-Imag”

• “Magnitude-Angle to Complex”

• “Real-Imag to Complex”

Version Control
Simulink 3.0 tracks changes to a model and optionally displays version
information, including that maintained by an external version control system,
in an annotation block in a model’s diagram. For more information, see
“Tracking Model Versions” in Chapter 3 and “Model Information” in Chapter 8
of Using Simulink.

S-Function Enhancements
S-functions support has been enhanced. New features include:

• Multiple ports

• Port-based sample times — you can independently set input and output port
sample times

• Tighter integration with the Real-Time Workshop code generation process

• Wrapper S-functions — eliminates calls through a function pointer

• Fully embedded (inlined) S-functions — eliminates the function call to your
algorithm

Port-Based Sample Times Supported for S-Functions
Simulink supports port-based sample times for S-functions. This feature
allows you to set sample times for input and output ports of your S-functions
independently.

Use port-based sample times if your application requires unequal sample rates
for input and output execution or if you don’t want the overhead associated
with running input and output ports at the highest sample rate of your block
(which is the case with block-based sample times).
8



Simulink 3.0
Simulation Enhancements

Reduced Memory Requirement
Simulink 3.0 reuses block I/O memory buffers to reduce simulation memory
requirements. You can turn this feature off to facilitate debugging a model. See
“Disable Optimized I/O Storage” in Chapter 4 of Using Simulink.

Simulation Error Navigation
Clicking on an error message in the simulation error dialog displays the block
that caused the error. See “Simulation Errors Dialog” in Chapter 4 of Using
Simulink.

Printing Enhancements
Simulink 3.0 printing has been enhanced to now support TIFF previews in EPS
files. Also, large models now print without resource leaks.

SB2SL 2.0
The SB2SL Version 2.0 reduces the work of migrating from Xmath® and
SystemBuild™ to MATLAB and Simulink. The translator reads a SystemBuild
Version 5 ASCII format model file and creates a Simulink model that
represents the structure and hierarchy of the SystemBuild model. Xmath data
from the SystemBuild model is translated into MATLAB workspace variables.

SB2SL is available to you free if you are licensed for Simulink. To install this
feature with Simulink, look for the SB2SL entry in the installation script
interface when you are installing MATLAB and Simulink.
1-49



1 Release 11 Enhancements

1-5
Stateflow 2.0
Stateflow 2.0 introduces many significant enhancements in the following
areas:

• GUIs

• Modeling

• Code generation

GUI Enhancements

Enhanced Debugger User Interface
Drop down option lists in the debugger dialog allow you to quickly choose the
kind and scope of debug information to display when running a model. For
example, you can choose to show active states for all charts or only loaded
charts, all data or only watched data, all breakpoints or only breakpoints for
loaded charts, and so on.

Enhanced Explorer Interface
The Stateflow 2.0 Explorer allows you to edit state and data properties
displayed in the Explorer’s content pane. You no longer have to bring up a
dialog box in order to change state or data properties. The Stateflow 2.0
Explorer allows you to apply property changes to groups of objects as well as
individual objects. You can also create objects by copying other objects.

Chart Styles
Stateflow 2.0 allows you to define and apply chart styles to a chart. A chart
style specifies the colors of various chart elements, such as states, transitions,
backgrounds, and so on. A chart style also specifies the font used to render
labels for states, transitions, and other chart objects. A chart style allows you
to specify the colors and fonts of all chart elements with a single menu
selection. Stateflow 2.0 comes with nine standard styles: Classic, Antique,
Rose, GrayScale, Neon, Desert, Slate, Valerie, Factory.
0



Stateflow 2.0
Enhanced Target Builder Interface
The new Stateflow 2.0 target builder interface greatly speeds and simplifies
the process of specifying automatic code generation and custom code options for
building simulation and stand-alone targets.

Modeling Features

Boxes
Boxes are graphical groupings of objects that can be cut, pasted, moved, and
annotated as a unit. Boxes allow you to break a large, complex chart into more
manageable modules without having to introduce additional states into your
model.

Chart Libraries
Stateflow 2.0 allows you to create and use chart libraries. A chart library is a
Simulink block library that includes Stateflow charts. You can include charts
from a library in a model by cutting-and-pasting or dragging-and-dropping the
charts from the library to the model. Chart libraries facilitate chart reuse. For
example, updating a chart in a library automatically updates all instances of
the chart included in Stateflow models.

Arrays
Stateflow 2.0 models can define and manipulate data arrays having an
arbitrary number of dimensions.

Support for Simulink Data Types
Stateflow 2.0 supports the same set of data types as Simulink 3.0. Stateflow
checks to ensure that the data types of input and output ports match the data
types of the Simulink blocks to which those ports are connected.

Directed Broadcasting of Implicit Events
Implicit events, such as entering a chart or state, previously woke up the entire
chart in which they occurred. In Stateflow 2.0, implicit events wake up only
states that listen for them. This speeds up execution of a model.
1-51



1 Release 11 Enhancements

1-5
Enhance Model Printing
The Stateflow 2.0 Print Book option on the File menu of the Chart Editor
generates a detailed, cross-referenced report on the Stateflow components of a
Stateflow model, including the diagram of each chart in the model and the
properties of each chart’s elements. The command supports both PDF (Adobe
Acrobat) and PostScript output formats. The optional Simulink Report
Generator allows you to produce a comprehensive report on a model that
includes Simulink as well as Stateflow blocks.

Code Generation

Incremental Code Generation
When generating code from a model, Stateflow 2.0 generates code only for
charts that have changed nongraphically since the last time code was
generated. In particular, Stateflow 2.0 codes and builds each chart as a
separate module when generating a simulation target. Each chart is coded and
built only if the chart has changed in such a way as to affect code generation
since the last time the chart was built. This dramatically speeds the rebuilding
of large models that have changed slightly.

Coder Optimizations
The Stateflow 2.0 code generator removes dead code and inlines functions to
reduce the size and increase the speed of targets significantly.
2



The Real-Time Workshop 3.0
The Real-Time Workshop 3.0

External Mode
External mode has been enhanced. A new comprehensive GUI allows you to:

• Download parameters for on-the-fly tuning

• Upload data to your simulation

• Save data in MAT-file format to:

- sequential files

- sequential directories

• Introduce triggers (with or without delays) into data collection

Code Generation for Embedded Applications
The Real-Time Workshop supports code generation for embedded applications.
The generated code has these features:

• Highly optimized — block I/O optimizations (including buffer reuse and local
block outputs), invariant signals, and inlined parameters

• Support for interfacing of parameters and signals

• More readable code — contains signal and parameter names

• Interfaces with existing handwritten code

• Integrated tightly with Stateflow Coder

• Open and customizable — new target configuration options

Real-Time Workshop S-Function Target
This target (code format) generates your model as an S-function. This target
has these advantages:

• Incremental code generation

• Speeding up simulation

• Sharing the model with other users without providing the source code. This
is useful if your code or algorithm is proprietary.

• Code reuse by multiply instantiating one model inside another
1-53



1 Release 11 Enhancements

1-5
mdlRTW Supports Data Typing
The mdlRTW routine now supports data typing.

Simulink Data Types
The Real-Time Workshop is fully compatible with Simulink data types.

Real-Time Workshop Ada Coder 3.0

Note  The Real-Time Workshop Ada Coder is a separate product from the
Real-Time Workshop.

The Real-Time Workshop Ada Coder supports generation of Ada code.

Features
Like the Real-Time Workshop, the Real-Time Workshop Ada Coder provides a
real-time development environment that features:

• A rapid and direct path from system design to hardware implementation

• Seamless integration with MATLAB and Simulink

• A simple, easy to use interface

• An open and extensible architecture

Restrictions
The Real-Time Workshop Ada Coder has the same constraints imposed upon it
as the C version of the Real-Time Workshop. The code generator does not
produce code that solves algebraic loops, and Simulink blocks that are
dependent on absolute time can be used only if the program is not intended to
run for an indefinite period of time.

There are additional constraints for the Ada code generation. The Real-Time
Workshop Ada Coder:

• Does not support nonreal-time variable step integration models

• Does not support blocks that contain continuous states (for example, the
continuous time integration block)

• Does not provide an Ada interface for interactive real-time parameter tuning
(you must use the C interface)
4



The Real-Time Workshop 3.0
Real-Time Windows Target 1.0
The Real-Time Windows Target 1.0 allows you to run C code generated by the
Real-Time Workshop on a PC in real time. For details, see “Real-Time Windows
Target” in the “New Products” section at the end of this chapter for details.
1-55



1 Release 11 Enhancements

1-5
Communications Toolbox 1.4
The Communications Toolbox Version 1.4 contains the following changes and
new features:

• Reorganized and streamlined Simulink block libraries

• The following new Simulink blocks:

- Convolutional Encoder

- Viterbi Decoder

- Data Mapper

- Error Rate Calculation

• Support for the new Simulink complex data type

• Other Simulink block enhancements

For details about these new features, see the Communications Toolbox New
Features Guide for Version 1.4.
6



Control System Toolbox 4.2
Control System Toolbox 4.2
The Control System Toolbox 4.2 contains several major new features, which
are documented in the Control System Toolbox User’s Guide. The major
enhancements include:

• Convenient transfer function and zero-pole-gain model specification using
rational expressions in s or z (Chapter 2)

• Ability to display multiple response types in a single LTI Viewer (Chapter 6)

• Right-click menus for customizing response plots such as those generated by
bode, impulse, nichols, nyquist, pzmap, sigma, and step (Chapters 5 and 6)

• Frequency Response Data (FRD) object (Chapter 2): New LTI object that
helps manipulate and analyze frequency response functions and
experimental frequency response data

• LTI arrays (Chapter 4):

- You can use LTI arrays to store a set of LTI models under one variable
name.

- You can perform operations on the entire set of models in an LTI array at
once.

- You can analyze response plots of LTI arrays using the LTI Viewer
(Chapter 6).

• New LTI properties for assigning time delays to LTI models (Chapter 2):

- InputDelay: for delays on the inputs of LTI models (This property replaces
Td, the former (yet compatible) LTI property for assigning input delays.)

- OutputDelay: for delays on the outputs of LTI models

- ioDelayMatrix: for assigning independent delays to each transfer function
I/O pair in MIMO transfer functions

• Support for assigning time delays to discrete-time models when the delays
are integer multiples of the sampling period (Chapter 2)
1-57



1 Release 11 Enhancements

1-5
Other enhancements to the Control System Toolbox 4.2 include:

• InputGroup and OutputGroup: two LTI properties that allow you to group a
set of input or output channels in MIMO LTI models into named categories
(Chapters 2 and 3)

• Name-based subsystem extraction (Chapter 3): the ability to specify
subsystems of an LTI model by referring to the names you assign to any of
following LTI properties of the model:

- InputName

- OutputName

- InputGroup

- OutputGroup

• Simulink LTI Viewer enhancements (Chapter 6):

- The Simulink LTI Viewer can now linearize both continuous-time and
discrete-time Simulink models.

- You can now drop Input and Output Point blocks on vectorized signals in
a Simulink model.

• An improved algorithm for computation of minimal state-space realizations
using minreal

In addition, the MAT-file LTIexamples.mat contains sample LTI models of
different types, as well as an LTI array. You can use these sample models to:

• Learn about the data format of the different types of models

• Learn how to use the Control System Toolbox GUIs

This MAT-file replaces LTIView.mat supplied with earlier versions of the
Control System Toolbox.

Helper Commands, New Commands, and Changed Commands
Typing the following two helper commands provides you with information on
LTI models or their properties:

• ltimodels

• ltiprops
8



Control System Toolbox 4.2
The following table lists all the other new or changed functions in Version 4.2.

For the functions that have been modified, note the following:

• The syntax to get the order of an LTI model system has been changed to
size(sys,’order’)

Type help ss/size for details.

Function Name Description

chgunits Convert the units property for FRD models.

delay2z Convert delays in discrete-time models or FRD
models.

frd Create or convert to a frequency response data
(FRD) model.

frdata Retrieve frequency response data from an FRD
model.

hasdelay Test true if LTI model has any type of delay.

lft Calculate the star product (LFT interconnection).

ndims Get the number of dimensions for LTI models or
LTI arrays.

reshape Change the shape of an LTI array

set Set LTI model properties.

size Display LTI model sizes and order.

sminreal Calculate structured model reduction.

stack Concatenate LTI models along array dimensions.

totaldelay Provide the aggregate delay for an LTI model.

zero Calculate zeros of an LTI model.
1-59



1 Release 11 Enhancements

1-6
• The description of the set command provides information on the data
formats for LTI arrays of transfer function, state-space, zero-pole-gain, and
frequency response data models.

• lft replaces star.

• zero replaces tzero.
0



Financial Toolbox 2.0
Financial Toolbox 2.0

Portfolio Analysis
The portfolio analysis and optimization functions now support constraints on
portfolios, compute asset allocation, and allow a more flexible specification of
asset expected returns and covariances.

Release 2.0 provides additional functions that handle asset time series,
including conversions between return and price series, expected return and
covariance computations, and Monte Carlo simulation.

Fixed Income Functions
Coupon functions now handle the SIA conventions for bonds with possible odd
first and last coupon periods. The functions also return an expanded set of

Function Description
corr2cov Convert standard deviation and correlation to covariance.
cov2corr Convert covariance to standard deviation and correlation

coefficient.
ewstats Expected return and covariance from return time series.
frontcon Efficient frontier with basic constraints.
pcalims Asset allocation bounds.
pcgcomp Group to group composition bounds.
pcglims Asset group allocation bounds.
pcpval Total value.
portalloc Capital allocation.
portcons Specify constraints.
portopt Efficient frontier with arbitrary constraint set.
portsim Random simulation of correlated asset returns.
portstats Risk and expected rate of return.
portvrisk Portfolio value at risk.
ret2tick Price tick series from incremental returns and initial price.
tick2ret Incremental return series from a tick price series.
1-61



1 Release 11 Enhancements

1-6
coupon parameters including lists of cash flow dates and amounts, accrued
interest, and time factors.

Univariate GARCH Processes
Release 2.0 provides functions for performing univariate ARCH/GARCH
analysis. Parameter estimation, volatility forecasting, and simulation are
possible for a GARCH process with Gaussian residuals.

Function Description
accrfrac Accrued interest coupon period fraction.
bndprice Price of an SIA standard fixed income security.
bndyield Yield of an SIA standard fixed income security.
cfamounts Cash flow and time mapping for bond portfolio.
cfdates Cash flow dates.
cftimes Time factors corresponding to bond cash flow dates.
cpncount Coupons payable between dates.
cpndaten Next coupon date after date.
cpndatenq Next quasi coupon date after date.
cpndatep Previous coupon date before date.
cpndatepq Previous quasi coupon date before date.
cpndaysn Number of days between date and next coupon date.
cpndaysp Number of days between date and previous coupon date.
cpnpersz Size in days of period containing date.

Function Description
ugarch GARCH parameter estimation.
ugarchllf Log-likelihood objective function.
ugarchpred Forecast conditional variance.
ugarchsim Simulate GARCH process.
2



Financial Toolbox 2.0
Pricing and Analyzing Derivatives
The Black-Derman-Toy model for valuing bond options is now included. The
function builds a recombining binary tree from input rate curve, volatility
curve, and credit spread.

Time Series Demonstration
The Financial Toolbox now includes a demonstration time series object. It has
an example implementation of an interface to a charting and analysis package.
Approximately 80 functions and overloaded methods are included.

Function Description
bdtbond Black-Derman-Toy pricing of option-embedded bonds.
bdttrans Translate a tree returned by bdtbond.
1-63



1 Release 11 Enhancements

1-6
Image Processing Toolbox 2.2

Support for 16-bit Image Data
Most of the functions in the toolbox have been rewritten to add support for
processing 16-bit image data. Chapter 1, “Introduction,” of the Image
Processing Toolbox User’s Guide discusses working with uint16 images.

Data Type Conversion
The new function im2uint16 converts uint8 and double images to uint16.
Chapter 1, “Introduction,” of the Image Processing Toolbox User’s Guide
discusses using im2uint16. (See “Converting the Data Types of Images.”)

Improved Speed
The following functions have been improved for faster performance: bwfill,
bwselect, bwlabel, dilate, erode, histeq, imresize, imrotate, ordfilt2,
medfilt2, and im2uint8.

New Border-Handling Options
New border-handling options have been added to medfilt2 and ordfilt2.

Image-Related MATLAB 5.3 Changes
Several enhancements to MATLAB 5.3 have a direct impact on the feature set
and usability of the Image Processing Toolbox 2.2:

• Improved support for integer types (uint8, int8, uint16, int16, uint32,
int32). When working with these data types, you can use relational
operators (<,>,==,~=), logical operators (&,|,~), bit functions, and the
following functions: any, all, find, min, max, permute, transpose, sum, and
reshape.

• Added support for the PNG graphics file format

• Added support for 16-bit image display

• Added support for 16-bit TIFF file I/O

Bug Fixes
Version 2.2 of the Image Processing Toolbox also incorporates several bug fixes.
Type info images at the command prompt for a detailed list of bug fixes.
4



Mapping Toolbox 1.1
Mapping Toolbox 1.1

New External Data Interface Functions

New Generalized Functions
These new functions make reading custom formats easier.

Function Purpose

avhrrgoode Read AVHRR data stored in the Goode Projection

avhrrlambert Read AVHRR data stored in the Lambert Projection

dted Read U.S. Department of Defense Digital Terrain
Elevation Data (DTED) data

egm96geoid Read 15-minute gridded geoid heights from the
EGM96 geoid model

gshhs Read Global Self-consistent Hierarchical
High-resolution Shoreline data

satbath Read global 2-minute (4 km) topography form
satellite bathymetry

usgs24kdem Read USGS 1:24,000 (30 m) digital elevation maps

vmap0data Extract selected data from the Vector Map Level 0
CD-ROMs

Function Purpose

readfields Read field or records from a fixed format file

grepfields Identify matching records in fixed record length
files

readmtx Read a matrix stored in a file
1-65



1 Release 11 Enhancements

1-6
New Projection Functions

New Calculate and Plot Projection Distortion 
Characteristic Functions

New Atlas Data Interface Functions

Function Purpose

aitoff Create a Aitoff projection

bries Create a Briesemeister’s projection

hammer Create a Hammer projection

ups Create a Universal Polar Stereographic projection

utm Create a Universal Transverse Mercator projection

vperspec Create a Vertical Perspective Azimuthal projection

Function Purpose

distortcalc Calculate distortion parameters for a map
projection

mdistort Display contours of constant distortion on a map

Function Purpose

coast Access world coastline data

usahi Access United States vector data

usalo Access United States vector data

worldlo Access world vector data
6



Mapping Toolbox 1.1
New Map Creation Functions

New Data Projection Functions

Function Purpose

usamap Create a map of the United States

worldmap Create a map of a country or a region

Function Purpose

contourfm Project a filled contour map

country2mtx Create a matrix map for a country in the worldlo
database

makemapped Make an object a mapped object

vec2mtx Create a regular matrix map from vector data
1-67



1 Release 11 Enhancements

1-6
New or Updated Map Appearance and Interaction 
Functions

New Moon Topography Datasets
The Mapping Toolbox 1.1 adds two moon topography datasets from the
Clementine satellite dataset: moontopo.mat and moonalb.mat.

Updated Graphical Interface
The maptool command invokes a GUI for working with map data.

Function Purpose

axesscale Resize axes for equivalent scale

scaleruler Add graphic scale

parallelui Interactively modify map parallels

polcmap Create colormaps for political maps

previewmap View map at printed size

restack Restack objects within the axes

rotatetext Rotate text to the projected graticule

scatterm (Not new) — Updated to include color scatter plots

tightmap Remove white space around a map
8



Excel Link 1.0.8
Excel Link 1.0.8

Support for Microsoft Excel 97
Excel Link 1.0.8 provides support for Microsoft Excel 97.

Note If you are using Microsoft Excel 5 or Excel 7, you must use MATLAB
Excel Link 1.0.3, which is available to licensed Excel Link customers via the
MATLAB Access Web page.
1-69



1 Release 11 Enhancements

1-7
Optimization Toolbox 2.0

Large-Scale Algorithms
The focus of Version 2.0 of the Optimization Toolbox is new algorithms for
solving large-scale problems, including:

• Linear programming

• Nonlinear least squares with bound constraints

• Nonlinear system of equation solving

• Unconstrained nonlinear minimization

• Nonlinear minimization with bound constraints

• Nonlinear minimization with linear equalities

• Quadratic problems with bound constraints

• Quadratic problems with linear equalities

• Linear least squares with bound constraints

The new large-scale algorithms have been incorporated into the toolbox
functions. The new functionality improves the ability of the toolbox to solve
large sparse problems.

Function Names and Calling Syntax
To accommodate this new functionality, many of the function names and
calling sequences have changed. Some of the improvements include:

• Command line syntax has changed:

- Equality constraints and inequality constraints are now supplied as
separate input arguments.

- Linear constraints are supplied as separate arguments from the nonlinear
constraint function.

- The gradient of the objective is computed in the same function as the
objective, rather than in a separate function, in order to provide more
efficient computation (because the gradient and objective often share
similar computations). Similarly, the gradient of the nonlinear constraints
is computed by the (now separate) nonlinear constraint function.
0



Optimization Toolbox 2.0
- The Hessian matrix is provided by the objective function when using the
large-scale algorithms.

• Optimization parameters are now contained in a structure, with functions to
create, change, and retrieve values.

• Each function returns an exit flag that denotes the termination state.

For more information on how to convert your old syntax to the new function
calling sequences, see the Optimization Toolbox User’s Guide.
1-71



1 Release 11 Enhancements

1-7
Signal Processing Toolbox 4.2
Version 4.2 of the Signal Processing Toolbox delivers a number of
improvements and enhancements, described below.

Also see the Signal Processing Toolbox readme file for a summary of the new
additions. To view the readme file, type

info signal

New Functions

Name Purpose

ac2poly Autocorrelation sequence to prediction polynomial
conversion

ac2rc Autocorrelation sequence to reflection coefficients
conversion

arburg AR parametric modeling via Burg’s method

arcov AR parametric modeling via the covariance method

armcov AR parametric modeling via the modified covariance
method

aryule AR parametric modeling via the Yule-Walker method

buffer Buffer a signal vector into a matrix of data frames

pcov Power Spectrum estimate via the covariance method

pmcov Power Spectrum estimate via the modified covariance
method

poly2ac Prediction polynomial to autocorrelation sequence
conversion

pwelch Power Spectrum estimate via Welch's modified
periodogram method
2



Signal Processing Toolbox 4.2
New Demos 

Enhanced Functions

firrcos
The firrcos function now:

• Accepts either a bandwidth or a roll-off factor

• Designs either a normal or square root raised cosine filter

• Accepts an arbitrary variable delay for the impulse response

• Accepts a window parameter for the filter design

rc2ac Reflection coefficients to autocorrelation sequence
conversion

rlevinson Reverse Levinson-Durbin recursion

sgolay Design a Savitzky-Golay smoothing filter

sgolayfilt Filter a signal with a Savitzky-Golay smoothing filter

sosfilt Filter a signal using second-order sections (biquad)

tf2sos Transfer function to second-order sections conversion

Name Purpose

sgolaydemo Demonstrates Savitzky-Golay filtering

Name Purpose
1-73



1 Release 11 Enhancements

1-7
pburg, pmtm, pmusic, pyulear
These functions have changed in a way that may affect your results.

When no sampling frequency (Fs) is specified, these functions return the PSD
estimate, Pxx(ω), as a function of normalized angular frequency,

in rads/sample. If Fs is specified, the functions return the PSD estimate,
Pxx(f)/Fs, as a function of linear frequency, f, in Hz. Fs defaults to 1 Hz. Note
that the new functions pcov, pmcov, and pwelch also adhere to this
specification.

poly2rc
Returns the zero-lag autocorrelation when called with the optional second
input argument, the final prediction error.

rc2poly
The rc2poly function has changed in ways that may affect your results:

• Returns a column vector rather than a row vector

• Returns the final prediction error when called with the optional second input
argument, the zero lag autocorrelation

sos2ss, sos2tf, sos2zp
The sos2ss, sos2tf, and sos2zp functions now accept an optional second input
argument, the gain returned by the functions that convert to
second-order-sections (SOS) form (ss2sos, tf2sos, and zp2sos).

ss2sos, zp2sos
The ss2sos and zp2sos functions have changed in ways that may affect your
results. These functions provide an additional output argument corresponding
to the gain of the second-order-sections structure and also accept an additional
input argument that specifies the desired scaling of the structure. Scaling
choices are: ∞-norm, 2-norm, and none.

ω 2πf
Fs---------=
4



Signal Processing Toolbox 4.2
detrend Now Part of MATLAB Language
The detrend function now ships in the toolbox/matlab/datafun directory as
part of the standard MATLAB language.

Interactive Tool Enhancements
The following tools have changed in ways that may affect your results.

• SPTool loads a default session upon startup.

• Signal Browser offers printing with preview.

• Filter Designer provides a Pole/Zero Editor to supplement the existing
design methods.

• Spectrum Viewer provides new covariance and modified covariance spectral
estimation methods, as well as printing with preview. Additionally,

- The maximum entropy method (MEM) has been removed. Use the
Yule-Walker AR method instead.

- Welch’s method now uses the pwelch function instead of psd, and therefore
no longer offers the scaling or detrending options. (pwelch internally scales
the PSD magnitude by 1/Fs, and does not detrend the original signal.)

- The Burg and Yule-Walker AR methods now scale the PSD magnitude by
1/Fs

- The option to specify an autocorrelation matrix as input to the
Yule-Walker AR method has been removed
1-75



1 Release 11 Enhancements

1-7
Statistics Toolbox 2.2
The Statistics Toolbox 2.2 supports functions that enable you to perform
cluster analysis on a dataset. Cluster analysis, also called segmentation
analysis or taxonomy analysis, is a way to partition a set of objects into groups,
or clusters, in such a way that the profiles of objects in the same cluster are very
similar and the profiles of objects in different clusters are distinct.

Cluster analysis can be performed on many different types of datasets. For
example, a dataset might contain a number of observations of subjects in a
study where each observation contains a set of variables.

The new cluster analysis functions are summarized below.

Cluster Analysis Functions

Function Description

cluster Create clusters from the output of the linkage
function

clusterdata Create clusters from a dataset

cophenet Check the validity of the clusters formed by the
linkage function

dendrogram Display the hierarchical cluster tree created by the
linkage function as a dendrogram plot

inconsistent Get information about the relative difference
between a particular link in the cluster tree and the
links immediately below it

linkage Group objects in a dataset into binary clusters,
based on the distance information generated by the
pdist function. The linkage function links objects
together using the Single linkage, Complete
linkage, Average linkage, Centroid linkage, or Ward
linkage algorithms.
6



Statistics Toolbox 2.2
pdist Calculate the distance between pairs of objects in a
dataset, using the Euclid, Standardized Euclid,
Minkowski, Mahalanobis, or City Block metrics

zscore Normalize data. Used before calculating the
pair-wise distance between objects in the dataset

Function Description
1-77



1 Release 11 Enhancements

1-7
Symbolic Math Toolbox 2.1
The Symbolic Toolbox 2.1 has been enhanced to provide:

• More plotting capabilities

• New Maple libraries

• A graphical user interface (GUI) for Taylor series analysis

Enhanced Plotting Capabilities
The following new functions provide additional plotting capabilities.

New Maple Libraries
The new Maple V Release 5 libraries (also known as MathEdge 2) are
incorporated into the Symbolic Math Toolbox 2.1. These libraries provide
better memory management and fix many bugs in previous versions of the
Maple kernel.

Mathematical Expression Type of Plot MATLAB Command

y = f(x) Planar curve ezplot

f(x,y) = 0 Implicitly defined function ezplot

x = f(t), y = g(t) Parametric curve (2-D) ezplot

r = f(θ) Polar coordinates ezpolar

x = f(t), y = g(t), z = h(t) Parametric curve (3-D) ezplot3

z = f(x,y) Surface ezsurf, ezsurfc, ezmesh,
ezmeshc

z = f(x,y) Surface contours ezcontour,
ezcontourf

x = f(s,t), y = g(s,t),
z = h(s,t)

Parametric surface ezsurf, ezsurfc,
ezmesh, ezmeshc

x = f(s,t), y = g(s,t),
z = h(s,t)

Parametric surface contours ezcontour,
ezcontourf
8



Symbolic Math Toolbox 2.1
Taylor Series Expansion
The new taylortool command invokes a GUI that shows how a Taylor series
converges to a given function.
1-79



1 Release 11 Enhancements

1-8
DSP Blockset 3.0
Version 3.0 of the DSP Blockset is a major release, and introduces a substantial
set of new features:

• All blocks now transparently handle both real and complex data.

Dedicated complex blocks (such as Complex To Workspace and Mag/Angle
Join) have been removed from the blockset.

Some of these complex blocks have been merged with their real counterparts.
For example, the Version 2.2 FFT and Complex FFT blocks are now a single
block, FFT. Other complex-data blocks, including most of those in the 2.2
Complex library, are now a part of the Simulink library (usually under
different names). Examples are the 2.2 Real and Imag blocks, which are now
combined as the Complex to Real-Imag block.

• All blocks support frame-based processing for increased throughput rates.

Most blocks that operate on sequential time-samples now offer a
Frame-based inputs checkbox in the parameter dialog box. When you check
the box, the block accepts frames of buffered time-samples rather than a
scalar sequence over time. Frame-based processing can return great
increases in efficiency for both simulated and compiled models.

• All blocks support the multirate sample time enhancements in Simulink 3.0.

The Sample time field in the parameter dialog box has been removed from
almost all blocks. Blocks now automatically detect the sample times of
inputs. Source blocks (such as Signal From Workspace) still retain the
Sample time parameter.

• Many blocks support internal buffer reuse for in-place algorithms and global
sharing. Inplace algorithms reuse the same block of memory to store the
intermediate results of a series of related operations. Global sharing allows
a previously allocated block of memory that is no longer in use at a given time
step to be recruited for a different operation. These buffer reuse modes help
to reduce the memory footprint of both the simulation and generated code.

• Real-time audio support for the PC.
0



DSP Blockset 3.0
• New speech, audio, and wavelet demos have been added.

• Many additional DSP block algorithms are now inlined and optimized in
code generated using Real-Time Workshop Target Language Compiler™
templates.

There are also a number of new and enhanced blocks, and new libraries. The
next few pages outline the new additions, and provide pointers to the complete
feature descriptions in the DSP Blockset User’s Guide. See Chapter 1 of the
DSP Blockset User’s Guide for an overview of the blockset’s contents.

Also see the DSP Blockset readme file for a summary of the new additions. To
view the readme file, at the MATLAB command line type

info dspblks

Note  The DSP Blockset 3.0 requires Simulink 3.0.

Running Different Blockset Versions
When you install the DSP Blockset 3.0 on your computer, Version 2.2 of the
blockset is also installed.

Run Version 3.0 by typing dsplib. To run Version 2.2, type dsplib 2.

Incompatibilities Between 3.0 and 2.2
Because of the extensive changes introduced in this release to support the new
Simulink complex data format, incompatibilities can arise when 3.0 blocks are
used in models containing 2.2 blocks. See “Upgrading to DSP Blockset 3.0 and
Communications Toolbox 1.4” in Chapter 4 for information about migrating a
model to the current version.

Library Structure
The library structure has undergone further refinement for Version 3.0. The
major alterations are:
1-81



1 Release 11 Enhancements

1-8
• The Spectrum Analysis library in Version 2.2 has been replaced by the
Version 3.0 Estimation library. This library contains two additional
libraries, Parametric Estimation and Power Spectrum Estimation.
2



DSP Blockset 3.0
• A new Linear Algebra library has been added in the Math Functions library.
The library primarily offers blocks for matrix factorization and linear
equation solvers.

• The Complex library has been removed from the Math Functions library as
a result of the change in the complex data format. Blocks that were formerly
in the Complex library have either been combined with their real-data
counterparts, or relocated to other libraries. See Table 1-2.

Data Frames
Most blocks whose operation can benefit from block processing now accept data
frames, vectors whose elements represent consecutive time samples from a
single signal. Framed data is a common format in real-time systems, where the
data acquisition hardware often operates most efficiently by accumulating a
large number of signal samples at a high rate, and then propagating these
samples to the real-time system as a block, or frame, of data. Data frames can
also be constructed through the usual DSP Blockset buffering operations
(using the Buffer block, for example).

See “Working with Arrays and Frames” in Chapter 3 of the User’s Guide for a
complete discussion of the frame data format, and how to use it to improve
model efficiency.
1-83



1 Release 11 Enhancements

1-8
Upgrading Your Models to Use Data Frames
You can realize large improvements in the efficiency of your models by using
data frames whenever possible. Although throughput gains are particularly
pronounced in systems where the sampled data is introduced in a framed
format (such as speech and audio), non-real-time simulations also benefit as a
result of the reduction in block-to-block communication overhead.

Complex Data
All blocks in the DSP Blockset are now capable of processing both real and
complex data (using Simulink’s new complex data type). In cases where two
separate blocks were previously provided for real and complex inputs (e.g., FFT
and Complex FFT), there is now a single block (FFT) that operates on both real
and complex data. This enhancement greatly simplifies the contents of most
libraries, in addition to allowing the removal of the Complex library from Math
Functions. Blocks in the Complex library that could not be combined with a
real data counterpart (e.g., Imag) are now in the Simulink Math library
(usually under a different name). Table 1-2 lists the new names and locations
of all former 2.2 blocks.

If any of your models use complex data, be sure to read “Why You Need to
Update Your Models to Use the New Complex Data Format” in Chapter 4
before adding any Version 3.0 blocks.

Multirate Sample Time Enhancements
As a result of the multirate sample time enhancements in Simulink 3.0, all
nonsource DSP blocks now inherit and propagate their sample times. This
means that you do not need to track sample times manually throughout a
model; when you make a change to the sample time of a source block, all other
DSP blocks in the model automatically adjust to the propagated sample time.

New and Enhanced Blocks
Table 1-1 lists the new blocks in Version 3.0. Among the most significant
additions are the linear algebra blocks and real-time audio blocks.
4



DSP Blockset 3.0
Table 1-1:  New Blocks in the DSP Blockset 3.0

Block Library Block Name Purpose

DSP Sources Chirp Generate a swept-frequency cosine.

Discrete Constant Generate a constant.

From Wave Device Read audio data from a standard audio device in real-time
(Windows 95/98/NT only).

From Wave File Read audio data from a Microsoft Wave (.wav) file (Windows
95/98/NT only).

Triggered Signal From Workspace Acquire and output a workspace signal when triggered.

Sine Wave Generate one or more sine waves.

DSP Sinks Buffered FFT Frame Scope Compute and display the frequency content of an input
sequence.

FFT Frame Scope Compute and display the frequency content of a framed
input.

Frequency Frame Scope Display frame-based data.

Matrix Viewer Display a matrix as an image with values mapped to colors.

Time Frame Scope Display frame-based data.

To Wave Device Send audio data to a standard audio device in real-time
(Windows 95/98/NT only).

To Wave File Write audio data to file in the Microsoft Wave (.wav) format
(Windows 95/98/NT only).

User-defined Frame Scope Display frame-based data.

Elementary Functions Contiguous Copy Recreate the input in a contiguous block of memory (for code
generation).

Convert Complex DSP to Simulink Convert complex data from the DSP Blockset v2.2 format to
the Simulink v3 format.

Convert Complex Simulink to DSP Convert complex data from the Simulink v3 format to the
DSP Blockset v2.2 format.

Inherit Complexity Change the complexity of the input to match that of a
reference signal.

Variable Selector Select a subset of elements (submatrix) in a matrix.

Matrix Functions Create Diagonal Matrix Create a matrix from a vector diagonal.

Extract Diagonal Create a vector from the elements of a matrix diagonal.

Extract Triangular Matrix Extract the lower or upper triangle from an input matrix.

Matrix Product Multiply the elements on a specified matrix row or column.

Matrix Scaling Scale the rows or columns of a matrix by a specified vector.

Matrix Sum Sum the elements on a specified matrix row or column.

Permute Matrix Reorder the rows or columns of a matrix.
1-85



1 Release 11 Enhancements

1-8
Linear Algebra Backward Substitution Solve the equation Ux=b for upper triangular matrix U.

Cholesky Factorization Factor a Hermitian positive definite matrix into triangular
components.

Cholesky Solver Solve the equation Sx=b for Hermitian positive definite
matrix S.

Forward Substitution Solve the equation Lx=b for lower triangular matrix U.

LDL Factorization Factor a Hermitian positive definite matrix into lower,
upper, and diagonal components.

LDL Solver Solve the equation Sx=b for Hermitian positive definite
matrix S.

LU Factorization Factor a square matrix into lower and upper triangular
components.

LU Solver Solve the equation Ax=b for square matrix A.

QR Factorization Factor a rectangular matrix into unitary and upper
triangular components.

QR Solver Find a minimum-norm-residual solution to the equation
Ax=b.

Reciprocal Condition Compute the reciprocal condition of a square matrix in the
1-norm.

Buffers Queue Buffer inputs into a FIFO (first input, first output) register.

Rebuffer Increase or decrease the size of the input frame.

Stack Buffer inputs into a LIFO (last input, first output) register.

Switches and Counters Counter Count up or down through a specified range of numbers.

Edge Detector Detect transition of input from zero to non-zero value.

Event-Count Comparator Detect threshold crossing of accumulated non-zero events.

Multiphase Clock Generate multiple binary clock signals.

Parametric Estimation Burg AR Estimator Compute an estimate of AR model parameters using the
Burg method.

Covariance AR Estimator Compute an estimate of AR model parameters using the
covariance method.

Modified Covariance AR Estimator Compute an estimate of AR model parameters using the
modified covariance method.

Yule-Walker AR Estimator Compute an estimate of AR model parameters using the
Yule-Walker method.

Table 1-1:  New Blocks in the DSP Blockset 3.0  (Continued)

Block Library Block Name Purpose
6



DSP Blockset 3.0
In addition to the new blocks above, most Version 2.2 blocks have received
enhancements for Version 3.0, and many have changed names (primarily as a
result of the new complex data format). Table 1-2 below lists all of the 2.2
blocks alphabetically, and shows the corresponding 3.0 block and library
location.

Note  The shaded rows indicate blocks that have either changed names or
library locations.

Power Spectrum Estimation Covariance Method Compute a parametric spectral estimate using the
covariance method.

Magnitude FFT Compute a nonparametric estimate of the spectrum using
the periodogram method.

Modified Covariance Method Compute a parametric spectral estimate using the modified
covariance method.

Short-Time FFT Compute a nonparametric estimate of the spectrum using
the modified, averaged periodogram method.

Filter Realizations Biquadratic Filter Apply a cascade of biquadratic (second-order-section) filters
to the input.

Direct-Form II Transpose Filter Apply an IIR filter to the input.

Time-Varying Direct-Form II Transpose Filter Apply a variable IIR filter to the input.

Time-Varying Lattice Filter Apply a variable lattice filter to the input.

Multirate Filters Dyadic Analysis Filter Bank Decompose a signal using a dyadic multirate filter bank.

Dyadic Synthesis Filter Bank Reconstruct a signal using a dyadic multirate filter bank.

Table 1-1:  New Blocks in the DSP Blockset 3.0  (Continued)

Block Library Block Name Purpose

Table 1-2:  Enhanced Blocks in the DSP Blockset 3.0

2.2 Block Name 3.0 Block Name Library Location

Analog Filter Design same same

Analytic Signal same same

Angle Complex to Magnitude-Angle Simulink

Autocorrelation same same

Buffer same same

Buffered FFT Scope Buffered FFT Frame Scope same

Burg Method same Power Spectrum Estimation

Commutator same same

Complex Autocorrelation Autocorrelation same
1-87



1 Release 11 Enhancements

1-8
Complex Buffer Buffer same

Complex Buffered FFT Scope Buffered FFT Frame Scope same

Complex Cepstrum same same

Complex Constant Constant Simulink

Complex Delay Integer Delay same

Complex Demux Demux Simulink

Complex Diagonal Matrix Constant Diagonal Matrix same

Complex Dot Product Dot Product Simulink

Complex Exponential same Elementary Functions

Complex FFT Scope FFT Frame Scope same

Complex Flip Flip same

Complex From Workspace Signal From Workspace same

Complex Gain Gain Simulink

Complex Kalman Adaptive Filter Kalman Adaptive Filter same

Complex Levinson-Durbin Levinson Solver same

Complex LMS Adaptive Filter LMS Adaptive Filter same

Complex LPC LPC same

Complex Matrix Constant Matrix Constant same

Complex Matrix From Workspace Matrix From Workspace same

Complex Matrix Multiplication Matrix Multiplication same

Complex Matrix To Workspace Matrix To Workspace same

Complex Multiply Product Simulink

Complex Mux Mux Simulink

Complex Normalization Normalization same

Complex Partial Unbuffer Partial Unbuffer same

Complex Reciprocal Math Function Simulink

Complex RLS Adaptive Filter RLS Adaptive Filter same

Complex Selector Selector Simulink

Complex Submatrix Submatrix same

Complex Sum Sum Simulink

Complex To Workspace To Workspace Simulink

Complex Transpose Transpose same

Complex Unbuffer Unbuffer same

Complex Unit Delay Integer Delay same

Complex Width Width Simulink

Complex Zero Pad Zero Pad same

Conjugate Math Function Simulink

Table 1-2:  Enhanced Blocks in the DSP Blockset 3.0  (Continued)

2.2 Block Name 3.0 Block Name Library Location
8



DSP Blockset 3.0
Constant Exponent Math Function Simulink

Convolution same same

Convolution C-C Convolution same

Convolution C-R Convolution same

Correlation same same

Correlation C-C Correlation same

Correlation C-R Correlation same

Cumulative Sum same same

dB same Elementary Functions

dB Gain same Elementary Functions

DCT same same

Delay Integer Delay same

Detrend same same

Diagonal Matrix Constant Diagonal Matrix same

Difference same same

Digital FIR Filter Design same same

Digital IIR Filter Design same same

Distributor same same

Dot Product same Simulink

Downsample same same

FFT same same

FFT Scope FFT Frame Scope same

Filter Discrete Filter Simulink

Filter Realization Wizard same same

FIR Decimation same same

FIR Interpolation same same

FIR Rate Conversion same same

FIR Rate Conversion (Frame) FIR Rate Conversion same

Fixed Truncation Rounding Function Simulink

Flip same same

Frequency Vector Scope Frequency Frame Scope same

Hermitian Transpose Transpose same

Histogram same same

IDCT same same

IFFT same same

Imag Complex to Real-Imag Simulink

Inverse-FFT FIR Filter Design obsolete same

Table 1-2:  Enhanced Blocks in the DSP Blockset 3.0  (Continued)

2.2 Block Name 3.0 Block Name Library Location
1-89



1 Release 11 Enhancements

1-9
Join Real-Imag to Complex Simulink

Kalman Adaptive Filter same same

Least Squares FIR Filter Design same same

Levinson-Durbin Levinson Solver Linear Algebra

LMS Adaptive Filter same same

LPC same same

Mag/Angle Join Magnitude-Angle to Complex Simulink

Mag/Angle Split Complex to Magnitude-Angle Simulink

Magnitude Abs Simulink

Magnitude Squared Math Function Simulink

Math Function same Simulink

Matrix Constant same same

Matrix From Workspace same same

Matrix Multiplication same same

Matrix To Workspace same same

Maximum same same

Mean same same

Median same same

Minimum same same

Multichannel IIR Filter Direct-Form II Transpose Filter same

Multichannel IIR Filter (Frame) Direct-Form II Transpose Filter same

N-Sample Enable same same

N-Sample Enable w/Reset N-Sample Enable same

N-Sample Switch same same

Normalization same same

Overlap-Add FFT Filter same same

Overlap-Save FFT Filter same same

Partial Unbuffer same same

Periodogram Short-Time FFT Power Spectrum Estimation

Quantizer same Simulink

Real Complex to Real-Imag Simulink

Real Cepstrum same same

Real DCT DCT same

Real FFT FFT same

Real IDCT IDCT same

Real IFFT IFFT same

Real To Complex Real-Imag to Complex Simulink

Table 1-2:  Enhanced Blocks in the DSP Blockset 3.0  (Continued)

2.2 Block Name 3.0 Block Name Library Location
0



DSP Blockset 3.0
Remez FIR Filter Design same same

Repeat same same

Reshape same same

RLS Adaptive Filter same same

RMS same same

Rounding Function same Simulink

Running Histogram Histogram same

Running Maximum Maximum same

Running Mean Mean same

Running Minimum Minimum same

Running RMS RMS same

Running Standard Deviation Standard Deviation same

Running Variance Variance same

Sample and Hold same same

Shift Register same same

Sign same Simulink

Signal From Workspace same same

Sort same same

Split Complex to Real-Imag Simulink

Standard Deviation same same

Submatrix same same

Time Varying FIR Filter Time-Varying Direct-Form II
Transpose Filter

same

Time Varying IIR Filter Time-Varying Direct-Form II
Transpose Filter

same

Time Vector Scope Time Frame Scope same

To Workspace Signal To Workspace same

Toeplitz same same

Transpose same same

Triggered Complex Matrix To Workspace Triggered Matrix To Workspace same

Triggered Complex To Workspace Triggered Signal To Workspace same

Triggered Matrix To Workspace same same

Triggered Shift Register same same

Triggered To Workspace Triggered Signal To Workspace same

Trigonometric Function same Simulink

Unbuffer same same

Unit Delay Integer Delay same

Unwrap same same

Table 1-2:  Enhanced Blocks in the DSP Blockset 3.0  (Continued)

2.2 Block Name 3.0 Block Name Library Location
1-91



1 Release 11 Enhancements

1-9
Upsample same same

Variable Fractional Delay same same

Variable Integer Delay same same

Variance same same

Width same Simulink

Window Function same same

Yule-Walker AR Yule-Walker Method Power Spectrum Estimation

Yule-Walker IIR Filter Design same same

Zero Pad same same

Table 1-2:  Enhanced Blocks in the DSP Blockset 3.0  (Continued)

2.2 Block Name 3.0 Block Name Library Location
2



Fixed-Point Blockset 2.0
Fixed-Point Blockset 2.0
Release 11 contains two versions of the Fixed-Point Blockset: Version 1.2,
which was included with Release 10 (MATLAB 5.2), and Version 2.0. The 2.0
blockset is located in /toolbox/fixpoint and the 1.2 blockset is located in
/toolbox/fixpoint/obsolete.

The Fixed-Point Blockset 2.0 features are discussed below.

Fixed-Point Blocks
The Fixed-Point Blockset 2.0 includes a number of building blocks to assist you
in designing and simulating dynamic systems using fixed-point arithmetic.
The fixed-point blocks are grouped together as shown below.

Arithmetic Blocks

Conversion Blocks

Block Name Description

FixPt Constant Generate a constant value

FixPt Gain Multiply the input by a constant

FixPt Matrix Gain Multiply the input by a constant matrix

FixPt Product Multiply or divide inputs

FixPt Sum Add or subtract inputs

Block Name Description

FixPt Conversion Convert from one Fixed-Point Blockset data
type to another

FixPt Conversion Inherited Convert input two to the data type of input
one
1-93



1 Release 11 Enhancements

1-9
Look-Up Table Blocks 

Logical and Comparison Blocks

FixPt Gateway In Convert a Simulink data type to a
Fixed-Point Blockset data type

FixPt Gateway Out Convert a Fixed-Point Blockset data type to
a Simulink data type

Block Name Description

FixPt Look-Up Table Approximate a one-dimensional function
using a selected look-up method

FixPt Look-Up Table (2D) Approximate a two-dimensional function
using a selected look-up method

Block Name Description

FixPt Logical Operator Perform the specified logical operation on the
inputs

FixPt Relational Operator Perform the specified relational operation on
the inputs

FixPt Relay Switch output between two constants

FixPt Saturation Bound the range of the input

FixPt Switch Switch output between input one or input
three based on the value of input two

Block Name Description
4



Fixed-Point Blockset 2.0
Discrete-Time Blocks

Filters and Systems
The Fixed-Point Blockset 2.0 provides several useful fixed-point filter and
system realizations. These realizations are intended to be used as design
templates so you can easily see how to build filters and systems suited to your
particular needs. The filters and systems are described below.

Block Name Description

FixPt FIR Implement a fixed-point finite impulse response
(FIR) filter

FixPt Unit Delay Delay a signal one sample period

FixPt Zero-Order Hold Implement a zero-order hold of one sample period

Filter or System Name Description

FixPt State-Space Realization Implement a fixed-point realization of a
state-space system

FixPt Integrator: Trapezoidal Implement a fixed-point realization of an
integrator based on trapezoidal numerical
integration

FixPt Integrator: Backward Implement a fixed-point realization of an
integrator based on backward numerical
integration

FixPt Integrator: Forward Implement a fixed-point realization of an
integrator based on forward numerical
integration

FixPt Filtered Derivative Implement a fixed-point realization of a
filtered derivative
1-95



1 Release 11 Enhancements

1-9
Data Types
The Fixed-Point Blockset 2.0 supports several fixed-point and floating-point
data types, which are collectively referred to as the “Fixed-Point Blockset data
types.” The supported data types and related features are described below.

Fixed-Point Data Types

• Integer, fractional, and generalized fixed-point data types are supported.

• Unsigned and two’s complement formats are supported.

• The fixed-point word size can range from 1 to 128 bits.

• The radix (binary) point is not required to be contiguous with the fixed-point
word.

Floating-Point Data Types

• IEEE-style singles and doubles are supported.

• A nonstandard IEEE-style data type is supported. For this data type, the
fraction (mantissa) can range from 1 to 52 bits and the exponent can range
from 1 to 11 bits.

The label “Fixed-Point Blockset data types” indicates that data types
supported by this blockset are unique to it, and not directly compatible with
Simulink. This means that a double generated by Simulink cannot be passed
directly into a Fixed-Point Blockset block, and a double generated by the
Fixed-Point Blockset cannot be passed directly into a Simulink block. Instead,
the FixPt Gateway In and FixPt Gateway Out blocks must be used as
interfaces between the Fixed-Point Blockset and Simulink.

FixPt Derivative Implement a fixed-point realization of a
derivative

FixPt Lead or Lag Filter Implement a fixed-point realization of a
lead filter or lag filter

Filter or System Name Description
6



Fixed-Point Blockset 2.0
Scaling
The Fixed-Point Blockset 2.0 supports two general scaling modes: radix
point-only scaling and slope/bias scaling. Additionally, some blocks support
scaling modes that maximize the precision for constant vectors or matrices.
These scaling modes are described below.

General Scaling Modes
Fixed-point numbers can be scaled in these ways:

• Radix Point-Only

This is “powers-of-two” scaling since it only involves moving the radix point.
Radix point-only scaling does not require the radix point to be contiguous
with the data word. The advantage of this scaling mode is the number of
processor arithmetic operations are minimized.

• Slope/Bias

With this scaling mode, you can provide a slope and a bias. The advantage of
slope/bias scaling is that it typically provides more efficient use of a finite
number of bits.

Constant Scaling for Best Precision
In addition to the general scaling modes described above, the Fixed-Point
Blockset provides you with block-specific scaling modes for constant vectors
and constant matrices. These scaling modes are based on radix point-only
scaling and are designed to maximize precision.

• Constant Vector Scaling

With this mode, you have the option of scaling a constant vector such that
the precision is maximized for each element, or a common radix point can be
found based on the maximum precision for the largest value of the vector.

• Constant Matrix Scaling

With this mode, you have the option of scaling a constant matrix such that
the precision is maximized for each element, or a common radix point can be
found based on the maximum precision for the largest value of each row,
each column, or the whole matrix.

The advantage of finding a common radix point is increased simulation speed,
while the disadvantage is reduced precision.
1-97



1 Release 11 Enhancements

1-9
Automatic Scaling Tool
A script is provided that automatically changes the scaling for each block that
has generalized fixed-point output and does not have its scaling locked. The
script uses the maximum and minimum values logged during the last
simulation run. The scaling is changed such that the simulation range is
covered and the precision is maximized.

As an alternative to (and extension of) the automatic scaling script, an
automatic scaling GUI is provided. This interface allows you to easily control
the parameters associated with automatic scaling and display the simulation
results for a given model. With the automatic scaling GUI, you can:

• Turn on or turn off logging for all blocks

• Override the output data type with doubles for all blocks

• Invoke the automatic scaling script

• Run the simulation

• Display the scaling results for each block that had its scaling changed

Locking the Output Scaling
If the output data type is a generalized fixed-point number, then you have the
option of locking its scaling. When locked, the automatic scaling tool will not
change the output scaling. Otherwise, the automatic scaling tool is free to
adjust the scaling.

Rounding
Fixed-point numbers can be rounded in these ways:

• Toward Zero

This mode rounds toward zero and is equivalent to MATLAB’s fix command.
• Toward Nearest

This mode rounds toward the nearest representable number, with the exact
midpoint rounded toward positive infinity. Rounding toward nearest is
equivalent to the MATLAB round command.

• Toward Ceiling

This mode rounds toward positive infinity and is equivalent to MATLAB’s
ceil command.
8



Fixed-Point Blockset 2.0
• Toward Floor

This mode rounds toward negative infinity and is equivalent to MATLAB’s
floor command.

Overflow Handling
Operations on fixed-point numbers that produce an overflow condition can be
dealt with in these ways:

• Saturate

Overflows are set to either the maximum or minimum value represented by
the word.

• Wrap

Overflows can be set to any value represented by the word.

Overriding with Doubles
The fixed-point data type can be overridden with doubles either globally or for
individual blocks. This feature is useful when debugging a simulation.

Specialized Storage Capabilities
The maximum and minimum values encountered during a simulation can be
logged to the MATLAB workspace. These values can then be accessed by the
automatic scaling tool.

Standardization with Simulink
The fixed-point blocks are feature-compatible with standard Simulink blocks.
Standardization with Simulink provides these expanded capabilities:

• Vectorization of inputs and outputs

• Variable number of input ports on appropriate blocks such as FixPt Sum

• More powerful blocks that combine and expand the features of the basic
blocks. For example, scalar addition and subtraction are combined in the
vectorized FixPt Sum block.
1-99



1 Release 11 Enhancements

1-1
Enhanced Model Construction
The Fixed-Point Blockset 2.0 makes it easier to construct models of systems
due to these main blockset features:

• Expanded features of old blocks such as vectorization

• Inclusion of two new blocks — FixPt Matrix Gain and FixPt FIR

Updating Obsolete Fixed-Point Blocks
Obsolete fixed-point blocks from previous Fixed-Point Blockset releases can be
updated to current fixed-point blocks using the fpupdate command.

Code Generation
With the Real-Time Workshop, you can generate C code for execution on a
fixed-point embedded processor. The generated code uses only integer types
and automatically includes all operations, such as shifts, needed to account for
differences in fixed-point locations. The code is structured so that key
operations can be readily replaced by optimized target-specific libraries that
you supply. You can also use the Target Language Compiler to customize the
generated code.

All fixed-point blocks support code generation, but not every simulation feature
is supported. For example, 13-bit numbers can be used for simulation but not
for code generation.

Demos
The Fixed-Point Blockset 2.0 provides several demos that illustrate the main
product features. You can access these demos via the fixed-point library’s
Demos block.

Online Help
Each Fixed-Point Blockset block, system, and filter has online HTML-based
help. The help is accessed through the dialog box Help button.
00



Power System Blockset 1.1
Power System Blockset 1.1

DC Machine Block Added
A new block, DC Machine, has been added to the Extra Library of powerlib.
This block implements a separately exited DC machine. Access is provided to
the field connections so that the machine can be used as a shunt-connected or
a series-connected DC machine. The model is built with both Simulink and
Power System Blockset blocks and provides a good example of building a
user-defined block.
1-101



1 Release 11 Enhancements

1-1
New Products

New MATLAB and Simulink Report Generators
The Report Generator is a software package that can take any information
from your MATLAB workspace and export it to a document in the form of a
report. The reports you create with the Report Generator can include figures,
data, variables, and functions from your models or M-files, as well as snapshots
of all system graphics or figures.

Two Report Generator Products
There are two Report Generator products: the MATLAB Report Generator and
the Simulink Report Generator. If you want to create reports for MATLAB
M-files, you need the MATLAB Report Generator. If you want to create reports
for Simulink or Stateflow models, you need both the MATLAB Report
Generator and the Simulink Report Generator, which is built on top of the
MATLAB Report Generator.

Both the MATLAB Report Generator and the Simulink Report Generator are
documented in the Report Generator User’s Guide.

Multiple Report Formats
One of the key features of the Report Generator is that you can create reports
in multiple documentation formats, such as:

• RTF

• HTML

• XML

• SGML

Creating Reports with the Report Generator
A report is a formatted document that contains the information specified by a
setup file. A setup file specifies which components will be in the report,
component attributes, and component relationships.

A component is a self-contained, modular element that controls the report
generation process and inserts elements into a report. Components control
such aspects of your report as formatting, how Handle Graphics objects are
handled, the logical flow for processing the report, etc. You can use the
02



New Products
components provided with the Report Generator, or you can create your own
components with the Component Creation Wizard.

You can create reports using the setup files that are provided with the Report
Generator, or you can create customized reports with the Setup File Editor.
The Setup File Editor is the primary graphical user interface (GUI) for the
Report Generator; you can view, modify, or create setup files with it.

Real-Time Windows Target
The Real-Time Windows Target allows you to run C code generated by
Real-Time Workshop on a PC in real time. In this environment, your PC is the
host for MATLAB, Simulink, and the Real-Time Workshop. Once C code is
generated and compiled, your same PC, running Microsoft Windows 95 or
Windows 98 is then used as a target for running the generated code. Typical
applications for the Real-Time Windows Target include real-time control,
signal processing, and hardware-in-the-loop simulation.

Note  The Real-Time Windows Target requires Real-Time Workshop 3.0 and
the Watcom 11.0 C/C++ compiler.

Features
The Real-Time Windows Target has many useful features:

• The generated code runs fast (in real time, at ring zero) under Microsoft
Windows 95 or Windows 98 operating systems using standard yet
cost-effective I/O boards.

• When running your models in real time, Real-Time Windows Target
captures a sample of data from one or more input channels, uses the data as
inputs to your block diagram model, immediately processes the data, and
sends it back to the outside world via an output channel on your I/O board.

• The Real-Time Windows Target uses the unique real-time capabilities of a
special kernel for each of the supported Windows operating systems,
combined with the speed of compiled C code.

• The Real-Time Windows Target provides a custom Simulink block library
and more than 60 ready-to-use hardware I/O drivers.
1-103



1 Release 11 Enhancements

1-1
• Signals may be captured and graphed in Simulink Scope blocks by using
Simulink’s external mode, which enables you to observe the behavior of your
real-time system.

• Simulink’s external mode also allows you to alter parameters on-the-fly by
simply editing the block diagram while running Simulink in external mode.
New parameter values are automatically transferred to the compiled version
of your block diagram during real-time execution.

Supported Boards
The Real-Time Windows Target has support for over 60 boards from these
manufacturers:

• Advantech

• Analog Devices

• Axiom

• Computer Boards

• Data Translation

• Humusoft

• Keithley-Metrabyte

• National Instruments

• Scientific Solutions

Refer to the Real-Time Windows Target User’s Guide for more specific
information about which boards are supported.

Database Toolbox

Note The Database Toolbox was made available via FTP prior to Release 11.
However, the Database Toolbox is appearing on a MATLAB CD-ROM for the
first time with Release 11.

The Database Toolbox enables you to move data (both importing and exporting)
between MATLAB and popular relational databases. With the Database
Toolbox, you can bring data from an existing database into MATLAB, use any
of MATLAB’s computational and analytic tools, and store the results back in
04



New Products
the database or in another database. The Database Toolbox imports and
exports data directly to and from databases (without your needing to use
intermediary files).

For example, a financial analyst working on a mutual fund could import a
company’s financial data into MATLAB, run selected analyses, and store the
results for future tracking. The analyst could then export the saved results to
a database.

The Database Toolbox connects MATLAB to a database using MATLAB
commands. Data is retrieved from the database as a string, parsed into the
correct data types, and stored in a MATLAB cell array. At that point, you can
use MATLAB’s extensive set of tools to work with the data.

The Database Toolbox has the following features:

• Data types are automatically preserved in MATLAB – No data massaging or
manipulation is required. The data is stored in MATLAB cell arrays, which
support mixed data types.

• Different databases can be used in a single session – For example, you can
import data from one database, perform calculations, and export the
modified or unmodified data to another database. Multiple databases can be
open during a session.

• You can dynamically import data from within MATLAB – Modify your SQL
queries with MATLAB statements to retrieve the data you need.

• Single environment promotes for faster data analysis – Access both database
data and MATLAB functions at the MATLAB command prompt.

• Database connections remain open until explicitly closed – Once the
connection to a database has been established, it remains open during the
entire MATLAB session until you explicitly close it. This improves database
access and reduces the number of commands necessary to import/export
data.

• Multiple cursors are supported for a single database connection – Once a
connection has been established with a database, the connection can support
the use of multiple cursors. You can execute several queries on the same
connection.

• Retrieval of large data sets or partial data sets is supported – You can
retrieve large data sets from a database in a single fetch or in discrete
amounts using multiple fetches.
1-105



1 Release 11 Enhancements

1-1
MATLAB Web Server

Note The MATLAB Web Server was made available via FTP prior to Release
11. However, the MATLAB Server is appearing on a MATLAB CD-ROM for
the first time with Release 11.

The MATLAB Web Server enables you to create MATLAB applications that
use the capabilities of the World Wide Web to send data to MATLAB for
computation and to display the results in a Web browser.

In the simplest configuration, a Web browser runs on your client workstation
while MATLAB, the MATLAB Web Server, and the Web server daemon run on
another machine. In a more complex network, the Web server daemon can run
on a machine apart from the others.

The MATLAB Web Server depends upon TCP/IP networking for transmission
of data between the client system and MATLAB.

MATLAB Web Server applications are a combination of M-files, HTML, and
graphics. Knowledge of MATLAB programming and basic HTML are the only
requirements.

The process of creating a MATLAB Web Server application involves the
creation of:

• An HTML input document for data submission to MATLAB

• An HTML output document for display of MATLAB’s computations

• A MATLAB M-file to process input data and compute results

• A test file to validate code before distributing the application over the Web

The MATLAB Web Server is packaged with templates to simplify the process
described above. Each template provides actual code that you need to
incorporate into your application plus instructions on how to modify the
template where necessary.
06



MATLAB Language Enhancements . . . . . . . . . 2-5

Development Environment Tools Enhancements . . . 2-9

Online Documentation Enhancements . . . . . . . . 2-11

ActiveX Support Enhanced . . . . . . . . . . . . . 2-12

HDF File Format Support . . . . . . . . . . . . . . 2-13

Visualization Enhancements . . . . . . . . . . . . 2-14

GUI Development Enhancements . . . . . . . . . . 2-18

MATLAB Compiler . . . . . . . . . . . . . . . . . 2-20

MATLAB C Math Library 1.2 . . . . . . . . . . . . 2-22

MATLAB C++ Math Library 1.2 . . . . . . . . . . . 2-23

Simulink 2.2 . . . . . . . . . . . . . . . . . . . . 2-24

Real-Time Workshop 2.2 . . . . . . . . . . . . . . 2-29

Stateflow 1.0.6 . . . . . . . . . . . . . . . . . . . 2-35

Toolboxes and Blocksets . . . . . . . . . . . . . . 2-36
2

Release 10 (MATLAB 5.2)
Enhancements

What Was New in Release 10 (MATLAB 5.2)? . . . . . 2-2



2 Release 10 (MATLAB 5.2) Enhancements

2-2
What Was New in Release 10 (MATLAB 5.2)?

Note All the features introduced in Release 10 are also in Release 11.

Release 11 completed bringing the whole MATLAB product family up to a
MATLAB 5 level: the MATLAB Compiler and MATLAB C and C++ Math
Libraries now work with MATLAB 5 and its associated products.

MATLAB 5.2 also added many important application development and
visualization features.

In addition, other licensed products were updated with the release of MATLAB
5.2:

• Simulink 2.2 added several enhancements, including new user interface
features and additional simulation features.

• Real-Time Workshop 2.2 added important enhancements.

• New versions of most toolboxes were made available with Release 10 (see the
“Toolboxes and Blocksets” on page 2-36 for a complete list).

• The Power System Blockset was introduced with Release 10.

Enhancements to MATLAB
The language and development environment enhancements introduced with
MATLAB 5.2 include:

• New MATLAB language functions, implementing features such as try/catch
error handling, additional ODE functions, and M-file locking.

• Expanded application development tools for the Microsoft Windows 95 and
NT and UNIX platforms.

• Improved Help Desk, with a much faster search engine that supports
full-text searches, and easier HTML reference page navigation.

• Support for two new ActiveX technologies: ActiveX control containment and
ActiveX Automation client capabilities, so that now MATLAB can both
control and be controlled by other ActiveX components.

• Support for HDF (Hierarchical Data Format) files.



What Was New in Release 10 (MATLAB 5.2)?
MATLAB 5.2 also added the following visualization and GUI development
enhancements:

• Support for OpenGL rendering to improve performance dramatically for
many visualization applications.

• Enhanced visualization features, including enhanced camera control,
simplified placement of Light objects, tighter and more consistent control of
graphics object hiding.

• A print frame editor that enables you to create custom layouts for printing
Simulink model diagrams.

• Additional GUI development features, including the ability to define the
location and size of user interface objects in units that are based on the size
of the default system font, and to add tooltips, toggle buttons, context menus,
etc.

Upgrades to Simulink, Real-Time Workshop, 
Toolboxes, and Blocksets
Simulink 2.2 introduced several enhancements, including Level 2 S-function
support, new user interface features for the PC, additional simulation features,
some new blocks and commands, and the ability to add print frames (header
and footer annotation) to printouts of Simulink models.

Real-Time Workshop 2.2 utilized the Simulink Level-2 S-function feature to
support Interrupt Service Routines (ISRs) for VxWorks, customized ISRs for
your target system, multiple input/multiple output S-functions, and parameter
checking while running.

Almost all toolboxes and blocksets were updated for Release 10. Toolboxes and
blocksets with especially significant enhancements for Release 10 included:

• Communications Toolbox 1.3

• Control System Toolbox 4.1

• DSP Blockset 2.2

• Financial Toolbox 1.1

• Fuzzy Logic Toolbox 2.0

• Image Processing Toolbox 2.1

• Neural Network Toolbox 3.0
2-3



2 Release 10 (MATLAB 5.2) Enhancements

2-4
• Signal Processing Toolbox 4.1

• Spline Toolbox 2.0

New Power System Blockset
The Power System Blockset 1.0 was introduced with Release 10. This new
blockset is described in more detail later in this chapter.



MATLAB Language Enhancements
MATLAB Language Enhancements

Links to Command Descriptions  Clicking on the command name in the
following tables displays the documentation for that command. Use your
browser’s Back button to return to this document.

Support for try/catch
MATLAB 5.2 added functions to support try/catch error handling.

Warning Messages
The new lastwarn function, depending how it is called, returns either a string
containing the last warning message issued by MATLAB or an empty string
matrix until the next warning is encountered, or sets the last warning message
to a specified string.

Setting the Recursion Limit
You can now set the limit for recursion so that you will receive an error instead
of being forced out of MATLAB when the recursion limit is reached. The default
recursion limit is 500. To change the recursion limit, change the following line

set(0, 'recursionlimit', limitnumber)

in your matlabrc.m file in the toolbox/local directory.

Function Description

catch Begin catch block.

try Begin try block.
2-5



2 Release 10 (MATLAB 5.2) Enhancements

2-6
New Mathematical Functions
MATLAB 5.2 provided these new mathematical functions.

New String Comparison Functions
MATLAB 5.2 provided two additional string comparison functions.

M-File Locking
You can now lock (and unlock) an M-file so that clear does not clear that M-file
from memory.

Function Description

cholinc Sparse Incomplete Cholesky and Cholesky-Infinity
factorizations.

cholupdate Rank 1 update to Cholesky factorization.

ifftshift Inverse fast Fourier transform shift.

ode23t Solve moderately stiff problems for a solution
without numerical damping.

ode23tb Solve stiff systems using crude error tolerances.
May also be used if there is a mass matrix.

qrupdate Rank 1 update to QR factorization.

Function Description

strcmpi Compare strings ignoring case.

strncmpi Compare first n characters of strings ignoring case.

Function Description

mislocked True if M-file cannot be cleared.

mlock Prevent M-file clearing.

munlock Allow M-file clearing.



MATLAB Language Enhancements
Persistent Variables
A variable may be defined as persistent (with the keyword persistent) so that
it does not change value from one call to another. Persistent variables may be
used within a function only. Persistent variables remain in memory until the
M-file is cleared or changed. persistent is exactly like global, except that the
variable name is not in the global workspace, and the value is reset if the M-file
is changed or cleared.

Three MATLAB functions support the use of persistent variables (see “M-File
Locking” above):

• mislocked

• mlock

• munlock

File and Directory Handling
You can copy a file and make a directory from within MATLAB.

Enhancement to load
MATLAB 5.2 added a new option to the load function.

S = load(...) 

returns the contents of a MAT-file as a structure instead of directly loading the
file into the workspace. The field names in S match the names of the variables
that were retrieved. When the file is ASCII, S will be a double precision array.

Function Description

copyfile Copy file.

mkdir Make directory.
2-7



2 Release 10 (MATLAB 5.2) Enhancements

2-8
Cell Array of Strings
You can now use a cell array of strings with the following functions:

• intersect

• ismember

• lower

• setdiff

• setxor

• sort

• union

• unique

• upper

Enhancement to strjust
The strjust function now does right, left, and center justification.

Change in clc and home Behavior
The clc and home commands now both clear the command window. After
issuing either of these commands, it is no longer possible to scroll back to see
previous contents of the command window.

Additional Functions Changed in MATLAB 5.2
In addition to the above functions, the MATLAB 5.2 version of the following
functions changed in minor ways, generally to reflect the addition of the new
functions described above (e.g., clear does not clear if mlock is called first).

• clear

• end

• horzcat

• lasterr

• paren

• spline

• strcmp

• strncmp



Development Environment Tools Enhancements
Development Environment Tools Enhancements
MATLAB 5.2 provided enhanced environment tools for the PC (Microsoft
Windows 95 and NT) platform and introduced environment tools for the UNIX
platform. These enhancements are described in detail in Chapter 2 of the
online (PDF) version of Using MATLAB.

Changes to the MATLAB Editor/Debugger
With MATLAB 5.2, the Editor/Debugger provided a new Tools menu. Some of
the options that were under the View menu in previous releases on the PC are
now found under the Tools menu. MATLAB 5.2 provided a tabbed dialog that
allows you to set General and Editor options. You do so from the Tools menu,
by selecting Options.

You can now use MATLAB to add your own commands to the Editor, by using
the Customize option that appears as a submenu of the Tools menu.
Commands that you add will also work with the Path Browser and Array
Editor although the results may differ. Chapter 2 of Using MATLAB provides
a table that explains these differences.

You can set up the Editor so that the values of MATLAB variables are
expanded and displayed in the Editor window as the cursor hovers over a
variable. To do so, under General options, check Show Data Tips.

Also under General options, if you check Show worksheet style tabs, the
main Editor window displays a tab at the bottom for each open file. This allows
quick navigation among all open files.

You can also control the Editor’s font, style, and size. In previous releases of
MATLAB, font control was available only for the command window. In
MATLAB 5.2, you could select Font from the Tools menu to control Editor
fonts.

Array Editor Added
MATLAB 5.2 provided an Array Editor. This tool allows you to view and edit
two-dimensional numeric arrays.
2-9



2 Release 10 (MATLAB 5.2) Enhancements

2-1
New Tools for UNIX Environments
Several tools that were available on PCs in earlier versions of MATLAB were
made available in MATLAB 5.2 for some UNIX machines (Sol2, Sun4, SGI, and
HP 700):

• Built-in MATLAB Editor/Debugger

• Workspace Browser

• Path Browser

SGI64 Fully Supported
MATLAB 5.2 provided full support for the SGI64 platform. The SGI64 platform
was supported only as a Beta product in previous MATLAB 5 versions.

Note The Symbolic Math Toolbox 2.0.1 and Extended Symbolic Math Toolbox
2.0.1 are not available for the SGI64 platform; however, the SGI image can be
used on the SGI64 platform.
0



Online Documentation Enhancements
Online Documentation Enhancements

Full-Text Search Facility
The 5.2 Help Desk added a full-text search facility for the HTML online
documentation. You can access the full-text search facility from the top page of
the Help Desk or from the “Search” link on reference pages.

Reference Page Navigation
The 5.2 HTML reference pages introduced additional navigational aids. The
“Examples” and “See Also” links at the top of the first reference page for a
function allow you to jump directly to the examples or to links to associated
functions.

Also at the top of the reference pages is a “Go to function” edit box. Enter the
name of the function and press the Enter key to see the reference page for that
function.

The doc Command
The doc command now accesses the HTML reference documentation for all
MathWorks products for which HTML reference documentation has been
installed. Before Version 5.2, the doc command only accessed the
documentation for MATLAB functions.

Japanese Help Desk
MATLAB 5.2 provided a Japanese version of the Help Desk, in addition to the
English version.

Note Most of the Japanese documentation is at a pre-Release 11 level.

During the installation process you can specify what, if any, Japanese
documentation you want to install.

If you install any Japanese documentation, the Japanese Help Desk will be
displayed when you use the helpdesk command.
2-11



2 Release 10 (MATLAB 5.2) Enhancements

2-1
ActiveX Support Enhanced
MATLAB 5.2 provided support for two new ActiveX technologies: ActiveX
control containment and ActiveX Automation client capabilities. ActiveX
controls are application components that can be both visually and
programmatically integrated into an ActiveX control container; in the
MATLAB context, this would be figure windows. Some examples of useful
ActiveX controls are the Microsoft Internet Explorer Web Browser control, the
Microsoft Windows Communications control for serial port access, and the
graphical user interface (GUI) controls delivered with the Visual Basic
development environment.

Before 5.2, MATLAB supported ActiveX Automation server capabilities. When
MATLAB is controlled by another component, it is acting as an automation
server. MATLAB 5.2 added support for ActiveX Automation client capabilities.
When MATLAB controls another component, MATLAB is the automation
client, and the other component is the automation server. In other words,
MATLAB 5.2 ActiveX Automation allowed MATLAB to both control and be
controlled by other ActiveX components.

This feature is described in more detail in Chapter 7 of the Application
Program Interface Guide.
2



HDF File Format Support
HDF File Format Support
MATLAB 5.2 extended the support for HDF files beyond that previously
provided by imread and imwrite. This additional support is provided through
an interface to different HDF formats via new MATLAB functions that enable
you to access the HDF library developed and supported by the National Center
for Supercomputing Applications (NCSA). MATLAB 5.2 also provided an
extensible gateway for reading and writing HDF files.

To use these functions, you must be familiar with the HDF library.
Documentation for the library is available on the NCSA HDF Web page at
http://hdf.ncsa.uiuc.edu. MATLAB provides extensive command line help
for each of these functions.

Function Interface

hdfan Multifile annotation

hdfdf24 24-bit raster image

hdfdfr8 8-bit raster image

hdfh HDF H interface

hdfhd HDF HD interface

hdfhe HDF HE interface

hdfml Gateway utilities

hdfsd Multifile scientific data set

hdfv Vgroup

hdfvf Vdata VF functions

hdfvh Vdata VH functions

hdfvs Vdata VS functions
2-13



2 Release 10 (MATLAB 5.2) Enhancements

2-1
Visualization Enhancements

Support for OpenGL Renderers
The OpenGL renderer is available on many computer systems. This renderer
is generally faster than MATLAB’s painters or Z-buffer renderers. If your
system has graphics hardware that is available to OpenGL, MATLAB uses it
to achieve even greater performance improvements. This results in greatly
improved drawing performance, particularly with graphics cards that support
OpenGL. See the Figure Renderer property in the online MATLAB Function
Reference for more information.

New View Control Commands
MATLAB 5.2 contained a number of new commands that simplify camera
positioning and aspect ratio control. These commands implement operations
similar to those associated with movie camera operation – dollying, panning,
rolling, as well as some that are more typically associated with computer
graphics, such as orbiting the camera around the scene and selecting a method
for projecting the three-dimensional scene on the computer screen.

Complex Camera Operations
This table lists commands that simplify the process of moving the camera in a
well defined manner through three-dimensional space.

Function or Property Purpose

camdolly Move camera position and camera target.

camorbit Orbit about camera target.

campan Rotate camera target about camera
position.

camroll Rotate camera about viewing axis.

camzoom Zoom camera in or out.
4



Visualization Enhancements
Camera and Axis Control
This table lists new commands that provide a convenient way to set axes
properties. These properties control camera positioning as well as axis limits
and aspect ratio.

New Lighting Convenience Commands
MATLAB 5.2 added two new commands to simplify the placement of light
objects in the axes.

Function or Property Purpose

campos Set or get camera position.

camproj Set or get projection type.

camtarget Set or get camera target.

camup Set or get camera up-vector.

camva Set or get camera view angle.

daspect Set or get data aspect ratio.

pbaspect Set or get plot box aspect ratio.

xlim Set or get the current x-axis limits.

ylim Set or get the current y-axis limits.

zlim Set or get the current z-axis limits.

Function or Property Purpose

camlight Create or positition a light object in the
camera’s coordinate system.

lightangle Create or position a light object in spherical
coordinates.
2-15



2 Release 10 (MATLAB 5.2) Enhancements

2-1
Support for Predefined Paper Types
MATLAB supports a number of new predefined paper types. For a list of these
paper types, see the figure PaperType property.

Mechanism to Hide Objects from Selection
All graphics objects have a new property called HitTest that enables you to
determine if this object can become the current object or in appropriate cases,
the current figure or current axes (see the figure CurrentObject and
CurrentAxes properties and the root CurrentFigure property). This feature is
useful to exclude certain graphics objects from user interaction (for example, to
prevent MATLAB from selecting text annotations that overlay an image as the
user clicks on the image to obtain information returned by a callback routine).
See the HitTest property for an example.

New Behavior for newplot, clf, and cla
The behavior of the newplot, clf, and cla commands is now clearly defined
with respect to hidden-handle objects. There are basically three options when
drawing graphics in existing figures:

• Add the new graphics without changing any properties or deleting any
objects.

• Delete all existing objects whose handles are not hidden before drawing the
new objects.

• Delete all existing objects regardless of whether or not their handles are
hidden and reset most properties to their defaults before drawing the new
objects.

These features are particularly useful for protecting Uicontrol objects that
compose part of a user interface constructed with MATLAB.
6



Visualization Enhancements
Behavior of newplot
The newplot function now always sets the Figure NextPlot property to add
after obeying the current setting. Previously, newplot:

• Did not reset the Figure NextPlot property if its current value was
replacechildren.

• Did set the NextPlot property to its currently defined default after obeying
its value of replace. (While the factory default is add, user-defined settings
can change this.)

With MATLAB 5.2, newplot:

• Always reset the Figure NextPlot property to add after obeying the current
setting (regardless of user-defined defaults set for NextPlot).

• Deleted all handle-visible children (i.e., children whose HandleVisibility
property is set to on) when the Figure or Axes NextPlot property is
replacechildren.

• Deleted all children (regardless of the setting of the HandleVisibility
property) when the Figure or Axes NextPlot property is replace.

Behavior of clf and cla
The behavior of the clf command without the reset argument has not
changed: clf deletes all children of the current Figure whose handles are not
hidden (i.e., their HandleVisibility property is set to on).

clf reset now deletes all children of the current Figure, regardless of the
setting of their HandleVisibility property. In addition, clf reset also resets
all Figure properties to their defaults with the exception of Position, Units
PaperPosition, and PaperUnits. Previously, clf reset deleted only
handle-visible objects.

cla behaves in a way directly analogous to that of clf: cla deletes all children
of the current Axes whose handles are not hidden (i.e., their HandleVisibility
property is set to on).

cla reset deletes all children of the current Axes, regardless of the setting of
their HandleVisibility property. In addition, cla reset also resets all Axes
properties to their defaults with the exception of Position and Units.
2-17



2 Release 10 (MATLAB 5.2) Enhancements

2-1
GUI Development Enhancements
MATLAB 5.2 added several new features to make it easier for you to develop
an effective graphical user interface (GUI) for your applications. In the online
HTML version of this document, you can use the highlighted links to get more
information about these new features.

New Units Property Value
If you write user interfaces intended to be used on more than one computer
platform, you may find that you need to adjust the size of controls to
accommodate the differences in the size of the fonts used to label the controls.

The new characters value for the Units property enables you to define
Uicontrol objects whose sizes are based on the default system font size.

Tooltips
A tooltip is a small rectangle that contains textual information. A tooltip is
associated with a Uicontrol and appears below the control when the cursor is
held over the control for a certain amount of time (determined by system
settings).

You define a tooltip for a Uicontrol by specifying a string value for the new
TooltipString property.

Toggle Buttons
MATLAB 5.2 provides a new style of Uicontrol object called a toggle button.
Toggle buttons have two states, down (selected) and up (unselected). When you
click on a toggle button, its state changes and its callback is executed.

Displaying Truecolor Images on Controls
MATLAB 5.2 supported the ability to display truecolor images on push buttons
and toggle buttons.
8



GUI Development Enhancements
Context Menus
A context menu is a menu that is attached to an object and is activated by a
right-button click. Defining a context menu requires that you define a
Uicontextmenu object and Uimenu children and associate the Uicontextmenu
with the object to which it is attached.
2-19



2 Release 10 (MATLAB 5.2) Enhancements

2-2
MATLAB Compiler

Compatibility Release
Version 1.2 of the MATLAB Compiler was a compatibility release that brought
the MATLAB Compiler into compliance with MATLAB 5. Although the 1.2
Compiler works with MATLAB 5, it does not support several of the new
features of MATLAB 5.

Improved Installation and Configuration Process
Installing and configuring the MATLAB Compiler 1.2 was made easier than
before. The MATLAB Compiler User’s Guide includes a complete set of
recommended steps to perform during installation to ensure that everything is
working properly. It includes troubleshooting sections to help you diagnose and
correct some of the more common installation problems.

Enhanced Support for Windows 95 and NT 
Compilers
In MATLAB 5.2 and the Compiler, all of the main compiler vendors and
product releases were supported “out of the box” (no additional steps required).
These compilers include:

• Watcom 10.6

• Borland 5.0

• MSVC 4.2

Building Simulink CMEX S-Functions
The MATLAB Compiler now supports building Simulink CMEX S-functions
from the MATLAB Function block in Simulink. See the MATLAB Compiler
User’s Guide for details.
0



MATLAB Compiler
Additional Enhancements
Version 1.2 of the MATLAB Compiler also includes these enhancements:

• Loading MATLAB MAT-files (using the load command) is now supported.

• Compiler-generated command line applications can accept input arguments
(text-strings) from a POSIX shell and return a status. In this way command
line M-files can be turned into command line executable applications in a
POSIX shell.
2-21



2 Release 10 (MATLAB 5.2) Enhancements

2-2
MATLAB C Math Library 1.2

Compatibility Release
Version 1.2 of the MATLAB C Math Library is a compatibility release that
brings the library into compliance with MATLAB 5. Although the library works
with MATLAB 5, it does not support several of the new features of MATLAB 5.

Note Many functions have changed between MATLAB 4 and MATLAB 5.
These changes are reflected in the MATLAB C Math Library. If you are using
the MATLAB Compiler to generate your C Math Library programs, you will
need to regenerate your C files from your MATLAB 4 M-files before the C files
will work with the new libraries. If you have written C Math Library
programs by hand, you need to make the changes manually.

New Features
Version 1.2 of the C Math Library added 47 new functions, providing several
significant new features, including:

• Indexing (operations like MATLAB's 'x(:, 4) = 1'). This adds three new
functions: mlfArrayAssign, mlfArrayRef, and mlfArrayDelete.

• The MATLAB 5 suite of ODE solvers. The Version 1.1 library supported only
two ODE routines; Version 1.2 supports six of them.

• String handling functions.

• Support for feval with multiple output arguments (return values); Version
1.1 supported feval of functions with a single output argument.

• load and save support.

• Improved user-defined error handling.
2



MATLAB C++ Math Library 1.2
MATLAB C++ Math Library 1.2

Compatibility Release
Version 1.2 of the MATLAB C++ Math Library was a compatibility release that
brought the library into compliance with MATLAB 5. Although the library
works with MATLAB 5, it does not support several of the new features of
MATLAB 5.

Note Many functions have changed between MATLAB 4 and MATLAB 5.
However, through the use of C++ function overloading, most of the old
functions remain for backward compatibility, and new functions have been
added to handle the new functionality (in most cases, with additional function
arguments).

If you are generating C++ Math Library programs using the MATLAB
Compiler, the changes in functions between MATLAB 4 and 5 should not
affect you very much, because the MATLAB Compiler knows about the new
functions and generated the correct code. You will, in some cases, however,
have to regenerate your C++ code from your M-files to use the new libraries. If
you have written stand-alone programs by hand, you may have to edit some of
your code before you can link with the new libraries.

New Features
Version 1.2 of the C++ Math Library added 47 new functions, providing several
significant new features, including:

• The MATLAB 5 suite of ODE solvers. The Version 1.1 library supported only
two ODE routines; Version 1.2 supports six of them.

• String handling functions.

• Support for feval with multiple output arguments (return values); Version
1.1 supported feval functions with a single output argument.

• load and save support.

• Improved user-defined error handling.
2-23



2 Release 10 (MATLAB 5.2) Enhancements

2-2
Simulink 2.2
Simulink 2.2 added many enhancements relating to these aspects of the
product:

• User Interface

• Simulation

• Model Construction Commands

• Printing

These enhancements are described in more detail in the online (PDF) version
of Using Simulink.

User Interface

Note See Chapter 3 of Using Simulink for more information about each of
these new user interface features.

Toolbar
The PC (Microsoft Windows 95 and NT) version of Simulink displays an
optional toolbar below the menu bar in the model and block library windows.
You can use the toolbar’s buttons to create, save, edit, print, and run models.

Status Bar
The PC version of Simulink displays an optional status bar at the bottom of
model and block library windows. The status bar displays the current time and
solver when a simulation is running.

Context-Sensitive Menus
The PC version of Simulink displays a popup menu when you press the right
mouse button over a model or block library window. If a block is selected, the
menu displays editing, formatting, and property commands applicable to
blocks and annotations; otherwise, the menu displays commands applicable to
the model or library as a whole.
4



Simulink 2.2
Automatic Block Connection
You can insert a block having a single input and output into a model by
dropping it onto a line segment.

Block Properties Dialog Box
Simulink 2.2 added a Block Properties dialog box, accessed from the Edit
menu. You can set the following block parameter values:

• Description

• Priority

• Open function

• Attribute format

Undoing Breaking of Library Links
Simulink 2.2 allows you to undo the breaking of library links.

Simulation

Block Priorities
You can assign evaluation priorities to nonvirtual blocks in a model. Higher
priority blocks evaluate before lower priority blocks, though not necessarily
before blocks that have no assigned priority. You can do this with either the
Block Properties dialog box from the Edit menu or with the set_param
command. See Chapter 3 of Using Simulink (online version) for more
information.

Additional Solvers
Simulink 2.2 adds two stiff solvers, ode23t and ode23tb. See the section about
solvers in Chapter 4 of Using Simulink (online version) for more information.
2-25



2 Release 10 (MATLAB 5.2) Enhancements

2-2
Debugger
The Simulink debugger allows you to run a model step by step and inspect the
values of any variables at any step. See Chapter 11 of Using Simulink for more
information.

Tunable Mask Parameters
You can specify whether a mask parameter is tunable, that is, modifiable while
a simulation is running. See Chapter 6 of Using Simulink for more
information.

Level 2 S-Functions
Simulink 2.2 supports Level 2 S-functions in a C MEX S-function. In
particular, these Level 2 S-functions support:

• Multiple input and output ports

• More simulation S-function routines:

- mdlProcessParameters, which is called during simulation after
parameters have been changed and verified by mdlCheckParameters

- mdlStart, which performs actions such as allocating memory and
attaching to PWork elements.

• mdlRTW, a method for code generation in which your S-function influences the
code generation process.

In mdlRTW, you can write additional subrecords into the model.rtw file for the
S-function block record. The Target Language Compiler (TLC) file that
inlines your S-function can use this information. For more details about
Level 2 S-functions, see Writing S-Functions.

Merge Block
The Merge block allows you to combine multiple input lines into a single output
line for reduced memory utilization and increased model flexibility. See
Chapter 8 of Using Simulink (online version) for more information.

Non-Algebraic Feedback Loops
Prior to Version 2.2, Simulink treated as algebraic loops any loops that
involved Triggered Subsystems and that were also composed entirely of blocks
with direct feedthrough.
6



Simulink 2.2
With Version 2.2, for Variable-Step solvers, Simulink now takes advantage of
the implicit sequencing inherent in triggered execution (i.e., inputs must be
stable prior to the trigger, and outputs appear after the trigger) to break such
loops, thus:

• Eliminating the need to invoke the algebraic loop solver

• Providing more meaningful results

For Fixed-Step solvers, it is still necessary to insert a memory block in the
appropriate location (usually at the output of the triggered subsystem) to break
such algebraic loops.

See “Algebraic Loops” in Chapter 9 of Using Simulink (online version) for more
information.

Model Construction Commands

Object Parameters
The command get_param(obj,'ObjectParameters') where obj is an object
name returns a cell array describing the object’s parameters. See get_param in
Using Simulink (online version) for more information.

Dialog Parameters
The command get_param(b,'DialogParameters'), where b is the name of a
block, returns a cell array describing the parameters that appear in a block’s
parameter dialog. See get_param in Using Simulink (online version) for more
information.

Lines/Annotations API
You can use the find_system command to get handles to all the lines and
annotations in a model. The returned handles can be used with get_param and
set_param to read and write the line or annotation properties. See
find_system in Chapter 10 of Using Simulink (online version) for more
information.
2-27



2 Release 10 (MATLAB 5.2) Enhancements

2-2
Printing

Print Frames
You can add print frames (customized headers and footers) to printouts of
Simulink model diagrams. To edit a print frame, use the new frameedit
command. See “Printing a Block Diagram” in Chapter 3 of Using Simulink
(online version) for more information.
8



Real-Time Workshop 2.2
Real-Time Workshop 2.2

Asynchronous Processes
The Real-Time Workshop added support for asynchronous interrupt handling
in VxWorks and provides templates so that you can create your own interrupt
handlers for your target hardware. These blocks include:

• Interrupt block

• Task Synchronization block

• Asynchronous Buffer Reader/Writer blocks

• Asynchronous Rate Transition block

For a discussion of asynchronous processes, see the chapter on RTWlib in the
Real-Time Workshop User’s Guide (online version).

RTWlib
The Real-Time Workshop now has a graphical user interface (GUI), called
RTWlib, for quick access to:

• VxWorks Tornado — blocks for Matrix, Xycom, and VME Microsystems I/O
support; and asynchronous blocks for ISR support

• DOS — blocks for Keithley-Metrabyte I/O support

• Custom Code — blocks for inserting your custom code into the code that the
Real-Time Workshop generates from your model

• Create Your Own Asynchronous Library — templates that use the VxWorks
asynchronous blocks as a starting point for developing your own
asynchronous blocks

• Real-Time Workshop extras — contains a Function-call Configuration block

The GUI is located in the “Blocksets and Toolboxes” Library in the Simulink
window. For more information about RTWlib, see the Real-Time Workshop
User’s Guide.

Merge Block Added
The new Merge block merges multiple signals into one for reduced memory
utilization and increased model flexibility.
2-29



2 Release 10 (MATLAB 5.2) Enhancements

2-3
Level 2 S-Functions
Real-Time Workshop 2.2 supports Level 2 S-functions. In particular, these
Level 2 S-functions support:

• Multiple input and output ports

• More simulation S-function routines:

- mdlProcessParameters, which is called during simulation after
parameters have been changed and verified by mdlCheckParameters

- mdlStart, which performs actions such as allocating memory and
attaching to pwork elements. Can only be in a C MEX S-function

• mdlRTW, a method for code generation in which your S-function influences the
code generation process.

In mdlRTW, you can write additional subrecords into the model.rtw file for the
S-function block record. The Target Language Compiler (TLC) file that
inlines your S-function can use this information. For more details about
Level 2 S-functions, see Writing S-Functions.

Target Language Compiler (TLC) Enhancements
This section describes enhancements to the Target Language Compiler that is
included as part of the Real-Time Workshop.

Passing Parameters: mdlRTW and RTWData
The Real-Time Workshop generates a model.rtw file that is a description of the
model. There are two additional methods of passing user-specified information
into the model.rtw file:

• mdlRTW — Used with Level 2 S-functions

• RTWData — Used with any nonvirtual Simulink block and with empty
subsystems
0



Real-Time Workshop 2.2
mdlRTW. Level 2 S-functions can use the mdlRTW function to pass information
from a C-MEX S-function into the model.rtw file for use during code
generation.

The information that the mdlRTW function writes to model.rtw is used by the
block target file for that block type. The writer of the block target file can use
the additional identifier/value pairs as desired. For all the possible functions
that you can use inside mdlRTW to generate information in the model.rtw file,
see the file matlabroot/simulink/src/sfuntmpl.doc. See Chapter 8 of Using
Simulink for a discussion of how to write an mdlRTW function.

Below is an example of how to use mdlRTW in a Level 2 S-function.
2-31



2 Release 10 (MATLAB 5.2) Enhancements

2-3
static void mdlRTW(SimStruct *S)
{
    int_T numElements = mxGetNumberOfElements(TASK_NAME);
    char *buf = NULL;
    
    if ((buf = malloc(numElements +1)) == NULL) {
        ssSetErrorStatus(S,"memory allocation error in mdlRTW");
        return;
    }
    if (mxGetString(TASK_NAME,buf,numElements+1) != 0) {
        ssSetErrorStatus(S,"mxGetString error in mdlRTW");
        free(buf);
        return;
    }
    /* Write out the parameters for this block.*/
    if (!ssWriteRTWParamSettings(S, 3, 

SSWRITE_VALUE_QSTR,"TaskName", buf,
SSWRITE_VALUE_NUM,"Priority",
(real_T) (*(mxGetPr(PRIORITY))),
SSWRITE_VALUE_NUM,"StackSize",
(real_T) (*(mxGetPr(STACK_SIZE))))) {

        return; /* An error occurred which will be reported by SL */
    }
    
    /* Write out names for the IWork vectors.*/
    if (!ssWriteRTWWorkVect(S, "IWork", 1, "TaskID", 1)) {
        return; /* An error occurred which will be reported by SL */
    }
    
    /* Write out names for the PWork vectors.*/
    if (!ssWriteRTWWorkVect(S, "PWork", 1, "SemID", 1)) {
        return; /* An error occurred which will be reported by SL */
    }
    
    free(buf);
}

2



Real-Time Workshop 2.2
This code contains the resulting model.rtw information:

    Block {
      . . .
      SFcnParamSettings {

TaskName""
Priority20
StackSize1024

      }
      NumIWorkDefines       1
      IWorkDefine {

Name "TaskID"
Width 1

      }
      NumPWorkDefines       1
      PWorkDefine {

Name "SemID"
Width 1

      }
    }

RTWData. RTWData is a parameter that you can set on Simulink blocks using the
set_param() command and view with the get_param() command. The
parameter/value pair is saved along with the model.

The command syntax is

set_param(gcb,'rtwdata',userdata)

where gcb is the current block pathname. The variable userdata must be a
MATLAB data structure where each element is a string. For example:

userdata.a = 'rpm'
userdata.b = '1.25'
2-33



2 Release 10 (MATLAB 5.2) Enhancements

2-3
When attached to a nonvirtual block, the associated model.rtw information for
the block is:

Block {
. . .
RTWdata {
a "rpm"
b "1.25"

}
}

The block target file for that block type can process the information as desired.
For example, if RTWData is attached to a S-function, the TLC inlining file for the
S-function could process the information in the BlockInstanceSetup function.

Besides nonvirtual blocks, RTWData can be attached to one special case of a
virtual block, an empty subsystem. This allows information the be passed into
the model.rtw without it being associated with a specific nonvirtual block. This
is useful when some block-independent information needs to be passed into
model.rtw for use during code generation. For empty subsystems, the RTWData
parameter is placed in the System record for the nonvirtual system in which the
empty subsystem is contained.

System {
. . .
EmptySubsysInfo {
NumRTWdatas 1
RTWdata {
a "rpm"
b "1.25"

}
}

}

Because the empty subsystem technique is used by the Custom Code block of
the RTWLib, there is support built into the system target files to handle RTWData
attached to empty subsystems. Specifically, if an EmptySubsysInfo record
exists, all RTWdata subrecords are checked for the existence of an identifier
named TLCFile. If the identifier exists, the value of TLCFile is used as a block
target filename and the TLC function ProcessRTWdata in that file is called
using the TLC GENERATE directive. This functionality can also be used by other
(user-written) blocks if desired.
4



Stateflow 1.0.6
Stateflow 1.0.6
Version 1.0.6 of Stateflow and Stateflow Coder was shipped with MATLAB 5.2.
Version 1.0.6 is essentially the same as the Patch Release 1.0.5 that was made
available to Stateflow customers via FTP. However, 1.0.6 fixes some software
problems that still existed in the patch release.
2-35



2 Release 10 (MATLAB 5.2) Enhancements

2-3
Toolboxes and Blocksets
Almost all of the toolboxes and blocksets were updated for release with
MATLAB 5.2. For many of these toolboxes and blocksets, the updates simply
involved fixing software problems and taking more advantage of MATLAB 5
features.

These toolboxes and blocksets were updated for 5.2. The toolboxes and
blocksets with significant updates are highlighted with an asterisk and are
discussed in more detail in the rest of this chapter (in alphabetical order).

• Communications Toolbox 1.3*

• Control System Toolbox 4.1*

• DSP Blockset 2.2*

• Extended Symbolic Math Toolbox 2.0.1

• Financial Toolbox 1.1*

• Frequency Domain System Identification 2.0.3

• Fuzzy Logic Toolbox 2.0*

• Higher-Order Spectral Analysis Toolbox 2.0.2

• Image Processing Toolbox 2.1*

• LMI Control Toolbox 1.0.4

• Mapping Toolbox 1.0.1

• Model Predictive Control Toolbox 1.0.3

• Mu-Analysis and Synthesis Toolbox 3.0.3

• NAG Foundation Blockset 1.0.3 (for Sun4, Sol2, Alpha, SGI, and SGI64)

• Neural Network Toolbox 3.0*

• Optimization Toolbox 1.5.2

• Partial Differential Equation Toolbox 1.0.3

• QFT Control Design Toolbox 1.0.3

• Robust Control Toolbox 2.0.5

• Signal Processing Toolbox 4.1*

• Spline Toolbox 2.0*

• Statistics Toolbox 2.1.1
6



Toolboxes and Blocksets
• System Identification Toolbox 4.0.4

• Wavelet Toolbox 1.1

Power System Blockset 1.0
The Power System Blockset is a new blockset introduced with MATLAB 5.2.

The Power System Blockset is a modern design tool that allows scientists and
engineers to build models rapidly and easily that simulate power systems. The
blockset uses the Simulink environment, allowing a model to be built using
simple click-and-drag procedures. Not only can you draw the circuit topology
rapidly, but the analysis of the circuit can include its interactions with
mechanical, thermal, control, and other disciplines. This is possible because
the electrical portions of the simulation interact with Simulink’s extensive
modeling library. Because Simulink uses MATLAB as the computational
engine, MATLAB’s toolboxes can also be used by the designer.

Power System Blockset libraries contain models of typical power equipment
such as transformers, lines, machines, and power electronics. Their validity is
based on the experience of the Power Systems Testing Laboratory of
Hydro-Quebec, a large North American utility located in Canada.

See the Power System Blockset User’s Guide for information about using this
blockset.

Communications Toolbox 1.3

Note Much of the new functionality of the Communications Toolbox 1.3
requires Simulink 2.2. However, even if you use the Communications Toolbox
without Simulink, upgrading to Version 1.3 will let you take advantage of a
number of other software quality improvements in the toolbox.

The Communications Toolbox 1.3 added 22 new Simulink function blocks and
12 new example block diagrams.

The new function blocks are:

• Passband digital modulation/demodulation blocks

• Interleave and scrambler blocks
2-37



2 Release 10 (MATLAB 5.2) Enhancements

2-3
These new blocks expand the functionality of the Communications Toolbox so
that it now provides:

• Five new phase-shift keying modulation/demodulation methods

• Three new phase-shift keying mapping/demapping techniques

• Differential encoding/decoding

• Block interleaving and deinterleaving

• Scrambling/descrambling

• Pseudorandom sequence generation

The Communications Toolbox 1.3 also builds on recent MATLAB and Simulink
enhancements. These minor changes to the Communications Toolbox are
primarily in the area of graphical scopes such as the Error Rate Meter,
Eye-Pattern and Scatter plots, and the Trellis plot in the Convolutional Decode
block.

This release of the Communications Toolbox also includes changes made to
ensure integration with the Real-Time Workshop 2.2. If you are using
Real-Time Workshop with the Communications Toolbox 1.3, you need
Real-Time Workshop 2.2. Specifically, a few parameter definitions in the
Communications Toolbox have been changed for use with C-coded S-functions
in Real-Time Workshop.

See the Communications Toolbox 1.3 New Features Guide, available in printed
form and online (PDF), for more details on these new features.

Control System Toolbox 4.1
The Control System Toolbox 4.1 provided two main enhancements:

• The Root Locus Design GUI (graphical user interface)

• The Simulink LTI Viewer
8



Toolboxes and Blocksets
The Root Locus Design GUI is an interactive design tool that you can use to:

• Implement root locus methods on single input-single output (SISO) LTI
models defined using zpk, tf, or ss

• Specify the parameters of a feedback compensator: poles, zeros, and gain

• Examine how changing the compensator parameters affects the root locus,
as well as various closed-loop system responses (step response, Bode plot,
Nyquist plot, or Nichols chart)

The Root Locus Design GUI is documented in Chapter 6 of the Control System
Toolbox User’s Guide.

The Simulink LTI Viewer is similar to the Control Systems Toolbox LTI
Viewer. The Simulink LTI Viewer is used to analyze portions of a Simulink
model. Its features include:

• Drag-and-drop blocks that identify the location for the inputs and outputs of
the portion of a continuous-time Simulink model you want to analyze

• The ability to specify the operating conditions about which the Simulink
model is linearized

• Access to all time and frequency response tools featured in the regular
Control System Toolbox LTI Viewer

• The ability to compare a set of linearized models obtained from the same
Simulink diagram by varying either the operating conditions or some model
parameter values

The Simulink LTI Viewer is documented in Chapter 4 of the Control System
Toolbox User’s Guide.

Two additional enhancements are:

• Sharper Root Locus plots

• An Export option for the LTI Viewer

DSP Blockset 2.2
DSP Blockset 2.2 introduced a number of new features and improvements.
There are over 30 new and enhanced blocks, a filter design wizard, support for
data frames, and expanded support of vector and matrix inputs. This section
outlines the new additions and provides pointers to the complete feature
2-39



2 Release 10 (MATLAB 5.2) Enhancements

2-4
descriptions in the DSP Blockset User’s Guide. See Chapter 1 of the online
User’s Guide for an overview of the blockset’s contents.

Also see the DSP Blockset readme file for a summary of the new additions. To
view the readme file, type

info dspblks

at the MATLAB command line.

Data Frames
The DSP Blockset added support for data frames, vectors whose elements
represent consecutive time samples from a single signal. Framed data is a
common format in real-time systems, where the data acquisition hardware
often operates most efficiently by accumulating a large number of signal
samples at a high rate, and then propagating these samples to the real-time
system as a block, or frame, of data. Data frames can also be constructed
through the usual DSP Blockset buffering operations (using the Buffer and
Complex Buffer blocks, for example).

Version 2.2 includes two new blocks designed to operate specifically on framed
data. They are frame-oriented counterparts to the FIR Rate Conversion and
Multichannel IIR Filter blocks and are distinguished by the word “Frame” in
the block name:

• FIR Rate Conversion (Frame)

• Multichannel IIR Filter (Frame)

Use these blocks to directly filter or resample framed data in its native format
without the computational expense of unbuffering. Other blocks that operate
on framed data include the FFT, DCT, and cepstrum blocks in the Transforms
library.

In addition to these frame-based blocks, the data frame format is accepted by
all blocks in the blockset that accept vector inputs. Be aware, however, that
many blocks implicitly expect the elements of vector inputs to represent
independent channels and not consecutive samples. Besides the FIR Rate
Conversion and Multichannel IIR Filter blocks, others that expect non-frame
data include the “running” blocks in the Statistics library, the variable delay
blocks, and the filter design blocks. In general, if a block uses past inputs in
generating the current output (and is not specifically designated as a
0



Toolboxes and Blocksets
frame-based block), then it considers the elements of a vector (or matrix) input
to represent distinct channels, and not a frame of consecutive samples.

See “Working with Frames” in Chapter 3 of the User’s Guide for a complete
discussion of this data format.

Filter Realization Wizard
Another new element of the blockset is the Filter Realization Wizard, a GUI
that allows you to construct filters easily with a a variety of different
architectures. The GUI is shown below.

When you click the GUI’s Build button with the particular settings shown
above, the wizard constructs the specified moving average (MA) lattice
architecture as a subsystem within a new model window.

You can then alter or optimize the filter to suit your own needs. Additional
information about the Filter Realization Wizard can be found in the online
Reference.
2-41



2 Release 10 (MATLAB 5.2) Enhancements

2-4
New and Enhanced Blocks
The table below lists the blocks added in Version 2.2. Among the most
significant additions were variable delay blocks, discrete cosine transform and
cepstrum blocks, linear prediction blocks (LPC, Levinson-Durbin), and new
spectral estimation blocks.

Block Library Block Name Purpose

DSP Sources Complex Diagonal Matrix Generate a square, constant-diagonal complex matrix

DSP Sinks Triggered Complex Matrix To
Workspace

Send a time sequence of complex matrices to the
MATLAB workspace

Triggered Complex To Workspace Write the time sequence of a complex input to the
MATLAB workspace

Triggered Matrix To Workspace Send a time sequence of matrices to the MATLAB
workspace

Triggered To Workspace Write the time sequence of an input to the MATLAB
workspace

Signal Operations Complex Delay Delay a complex input by an integer number of
sample periods

Complex Levinson-Durbin Apply Levinson-Durbin recursion to design an IIR
filter with a prescribed autocorrelation sequence

Complex LPC Determine the coefficients of an FIR filter that
predicts the next sequence value from past and
present inputs

Levinson-Durbin Apply Levinson-Durbin recursion to design an IIR
filter with a prescribed autocorrelation sequence

LPC Determine the coefficients of an FIR filter that
predicts the next sequence value from past and
present inputs

Variable Fractional Delay Delay an input by a fractional number of sample
periods

Variable Integer Delay Delay an input by an integer number of sample
periods

Transforms Complex Cepstrum Compute the complex cepstrum of an input

DCT Compute the DCT of a complex vector input

IDCT Compute the complex-valued IDCT of a complex input

Real Cepstrum Compute the real cepstrum of an input

Real DCT Compute the DCT of a real vector input

Real IDCT Compute the IDCT of a real input
2



Toolboxes and Blocksets
In addition to the new blocks, several blocks were enhanced for Version 2.2,
and are highlighted in the table below. The most important area of growth

Buffers Shift Register Convert a scalar time series into a vector time series
with the same sample period (serial-to-parallel
conversion)

Triggered Shift Register Convert a scalar time series into a vector time series
with the same sample period (serial-to-parallel
conversion)

Switches and
Counters

N-Sample Enable w/Reset Output 1s for a specified number of sample times

Sample and Hold Sample and hold an input signal

Vector Math Autocorrelation Compute the autocorrelation of a real vector

Complex Autocorrelation Compute the autocorrelation of a complex vector

Complex Complex Gain Multiply an input by a complex constant

Real to Complex Construct a complex output from a real input

Statistics Histogram Compute the histogram (frequency distribution) of
values in a vector input

Median Find the median value of a vector input

Running Histogram Track frequency distribution of values in a vector
input over time

Sort Sort the elements in a vector by value

Filter Realizations Filter Realization Wizard Build an IIR or FIR filter with a particular
architecture

Multichannel IIR Filter (Frame) Apply an IIR filter to a multichannel input signal

Time Varying FIR Filter Apply a variable FIR filter to a multichannel input
signal

Time Varying IIR Filter Apply a variable IIR filter to a multichannel input
signal

Multirate Filters FIR Rate Conversion (Frame) Upsample, filter, and downsample a real input

Spectrum Analysis Burg Method Compute a parametric estimate of the spectrum using
the Burg method

Yule-Walker AR Compute a parametric estimate of the spectrum using
the Yule-Walker AR method

Block Library Block Name Purpose
2-43



2 Release 10 (MATLAB 5.2) Enhancements

2-4
among the existing blocks is in the expanded support of vector and matrix
inputs for buffering and unbuffering operations.

For Users Upgrading from Version 1.0a
The DSP Blockset 2.2 is completely compatible with Version 1.0a, but there are
some limitations on mixing buffer blocks from the two versions, and you will
need to recompile any custom blocks that use C-MEX S-functions so that they
work with Simulink 2.2.

See “Upgrading to DSP Blockset 3.0 and Communications Toolbox 1.4” in
Chapter 4 for more details about upgrading from Version 1.0a.

Block Library Block Name Enhancement

DSP Sources Diagonal Matrix Allows specification of a nonconstant diagonal

DSP Sinks Frequency Vector Scope Offers new menus, and window position memory

Time Vector Scope Offers new menus, and window position memory

Signal Operations Complex Zero Pad Offers the option of truncating the input to the
specified output vector length

Delay Accepts an initial condition

Zero Pad Offers the option of truncating the input to the
specified output vector length

Buffers Buffer Supports vector inputs, and accepts an initial
condition

Complex Buffer Supports vector inputs, and accepts an initial
condition

Complex Partial Unbuffer Supports matrix inputs

Complex Unbuffer Supports matrix inputs

Partial Unbuffer Supports matrix inputs

Unbuffer Supports matrix inputs

Switches and
Counters

Commutator Supports matrix inputs

Distributor Supports vector inputs, and accepts an initial
condition

Multirate Filters FIR Rate Conversion Supports matrix inputs
4



Toolboxes and Blocksets
Financial Toolbox 1.1
The Financial Toolbox 1.1 supports detailed term structure analysis. In
addition, this version provided new date functions, coupon date functions,
portfolio allocation tools, and a new derivative pricing function. These new
functions are summarized below.

For information about these functions, refer to the Financial Toolbox User’s
Guide.

Term Structure Functions

Derivatives Function

Function Description

disc2zero Zero rate curve from a discount curve.

fwd2zero Forward rate curve from a zero curve.

pyld2zero Par yield curve from a zero curve.

tbl2bond Conversion of TBills to TBond market convention.

termfit Demo function for smoothing rates with splines.

tr2bonds Conversion of Treasury data to bond input format.

zbtprice Bootstrap a zero curve from market bond prices.

zbtyield Bootstrap a zero curve from market bond yields.

zero2disc Discount factors from a zero curve.

zero2fwd Zero curve from a forward curve.

zero2pyld Zero curve from a par curve.

Function Description

blkprice Black’s pricing model.
2-45



2 Release 10 (MATLAB 5.2) Enhancements

2-4
Portfolio Analysis Function

Date Functions

Function Description

ewcov Asset covariance estimation with exponential
weighting.

Function Description

accrfrac Accrued interest coupon period fraction.

busdate Next or previous business day.

cfdates Cash flow dates of a security.

datefind Indices of date numbers in a matrix.

eomdate Last date of month.

fbusdate First business date of month.

holidays Holidays and nontrading days.

ibusday True for dates that are business days.

lbusday Last business date of the month.

lweekdate Date of last occurrence of weekday in month.

m2xdate MATLAB serial date number to Excel date number.

months Number of whole months between dates.

nweekdate Date of specific occurrence of weekday in month.

yeardays Number of days in year.

x2mdate Excel serial date number to MATLAB date number.
6



Toolboxes and Blocksets
Demo of an Excel Link Portfolio Optimizer Tool
The following files provide a demo of an Excel Link portfolio optimizer tool:

• excelportopt.m

• excelportopt.xls

Fuzzy Logic Toolbox 2.0
The Fuzzy Logic Toolbox 2.0 featured several improvements, including:

• Additional and enhanced GUIs for performing a number of tasks

• Several enhanced Fuzzy Logic algorithms

• Fuzzy Inference Systems (FIS) are represented as MATLAB structures

• More dimensions are allowed in user-defined membership functions

Graphical User Interface Enhancements
Fuzzy Logic Toolbox 2.0 added or enhanced several GUIs:

• GUI for Adaptive Neuro-Fuzzy Inference System (ANFIS) learning.

With this GUI, you can implement an ANFIS and use automatic
membership function adaptation without resorting to the command line. The
learning process can also be viewed graphically and in real time, so any
necessary adjustment can be made efficiently. The ANFIS Editor is also fully
integrated with the other GUI tools: the Fuzzy System Editor, Membership
Function Editor, Rule Editor, Rule Viewer, and Surface Viewer. This GUI is
described in Chapter 2 of the Fuzzy Logic Toolbox User’s Guide.

• Membership Function Editor.

You can click and drag both the shape and the location of your membership
functions.

• Rule Editor.

You can point and click to build your rules easily, rather than typing in long
rules.

• GUI for fuzzy clustering.

This GUI lets you view both fuzzy c-means clustering and subtractive
clustering while they are in progress.
2-47



2 Release 10 (MATLAB 5.2) Enhancements

2-4
• Rule Viewer for the fuzzy Simulink block.

When a fuzzy inference system is used in Simulink, the Rule Viewer lets you
see when each rule is triggered and how each membership function is applied
during a simulation.

Fuzzy Algorithm Improvements
The following Fuzzy Logic algorithms have been added or enhanced:

• Backpropagation learning algorithm for ANFIS.

Backpropagation is now available as an ANFIS learning algorithm.

• Constant output membership functions for ANFIS.

You can now use constant output membership functions with ANFIS in
addition to linear output membership functions.

• Fuzzy arithmetic.

Basic fuzzy arithmetic functions are now provided for addition, subtraction,
multiplication, and division operations among different membership
functions.

• Customizable membership function discretization.

Now you can adjust the sampling rate used to discretize the output
membership functions of your rules. This gives you control of the accuracy
and efficiency of the defuzzification calculations.

FIS Represented As MATLAB Structures
The Fuzzy Inference System (FIS) is now represented as a MATLAB structure.
A structure (instead of a flat matrix) is now the basic element in constructing
a fuzzy logic system. This fundamental change in the way of representing the
fuzzy logic system makes many details of working with the constructed system
easier.

A Fuzzy Inference System that you created with a pre-2.0 version of the Fuzzy
Logic Toolbox is still usable in 2.0, if you run the convertfis function on it. The
convertfis function automatically converts pre-2.0 Fuzzy Inference Systems to
work with Version 2.0.

More Dimensions Allowed for User-Defined Membership Functions
You can now use up to 16 parameters when you define your own customized
membership functions.
8



Toolboxes and Blocksets
Image Processing Toolbox 2.1

Interactive Pixel Value Display
The new function pixval installs in a figure an interactive display of the data
values for whatever image pixel the cursor is currently over. You can also click
and drag to display the Euclidean distance between two pixels.

Feature Measurement
The new function imfeature computes feature measurements, such as the
center of mass and the bounding box, for regions in an image.

Inverse Radon Transform
The new function iradon uses the inverse Radon transform to reconstruct
images from projection data. In addition, the toolbox has a new function,
phantom, that generates test images for use with the Radon and inverse Radon
transforms.

Canny Edge Detector
The edge function now supports the Canny edge detection method. This
method is better at detecting weak edges and is less sensitive to noise than the
other supported edge-detection methods.

Other Enhancements

• The bwfill function can now automatically detect and fill holes in objects.

• The toolbox now supports the YCbCr color space with two new functions,
ycbcr2rgb and rgb2ycbcr.

• You can now easily convert images between double precision and uint8
using two new functions, im2double and im2uint8.

• You can control whether imshow automatically calls truesize by setting the
new toolbox preference 'ImshowTruesize'.
2-49



2 Release 10 (MATLAB 5.2) Enhancements

2-5
Neural Network Toolbox 3.0
The Neural Network Toolbox 3.0 provided several important new features,
including:

• Modular network representation.

All network properties are collected in a single “network object.” Networks
can have any number of sets of inputs and layers, any input or layer can be
connected to any layer with a weight, and any weight can have a tapped
delay.

• Reduced memory Levenberg-Marquardt (LM) algorithm.

The fast LM algorithm (by a factor of 10 to 100 over other methods) can be
used in much larger problems than in Version 2.0.

• New algorithms, including:

- Conjugate gradient

- R-Prop

- Two quasi-newton methods

• New network types, including:

- Probabilistic

- Generalized Regression

• Automatic regularization and new training options, including:

- Training on variations of mean square error for better generalization

- Training against a validation set

- Training until the gradient of the error reaches a minimum

• Pre- and post-processing functions, such as Principal Component Analysis.

• Better Simulink support: the Neural Network Toolbox now generates
network simulation blocks.

These features are summarized in more detail in the “What’s New in 3.0”
section of the updated Neural Network Toolbox User’s Guide.
0



Toolboxes and Blocksets
Signal Processing Toolbox 4.1
The Signal Processing Toolbox 4.1 introduces a number of improvements,
including a new GUI for the Filter Designer. This section outlines the new
additions and provides pointers to the complete feature descriptions in the
online (PDF) Signal Processing Toolbox User’s Guide. The Signal Processing
Toolbox readme file also contains a short summary of this information.

To view the readme file, type at the MATLAB command line

info signal

Spectral Estimation
The MEM spectral estimation method (previously implemented by the pmem
function) has been more accurately renamed the Yule-Walker AR method, and
is now implemented by the pyulear function. The pmem function continues to
work, but generates the following warning message:

Warning: pmem is obsolete and will be discontinued.
Use pyulear instead.

In addition to this name change, the Burg method of spectral estimation has
been added to the toolbox via the pburg function.

SPTool Graphical User Interface
Several areas of the SPTool interactive signal processing environment have
been enhanced for Version 4.1. See Chapter 5 in the PDF version of the User’s
Guide for complete instructions on using the new features.

The Filter Designer interface has been revised for improved usability. A
signal’s spectrum can now be superimposed on any filter response, and a new
Measurements panel displays the filter’s characteristics as it is being
designed.
2-51



2 Release 10 (MATLAB 5.2) Enhancements

2-5
General controls

Viewing (zoom) controls

Specifications panel for 
setting filter parameters

Filter magnitude response display area

Measurements 
panel for viewing 
filter characteristics

Apply the specifications, 
or revert to the previous 
specifications

Overlay a signal’s 
spectrum on the 
filter response
2



Toolboxes and Blocksets
The Filter Viewer is now capable of displaying multiple filter responses
simultaneously, and also benefits from new rulers that can be used for fine
measurement on all of the plot types.

The Spectrum Viewer offers two new spectral estimation
methods, the fundamental FFT method, and the Burg method.
Additionally, the MEM method has been renamed the
Yule-Walker AR method. The MEM option has been retained in
the Method pop-up menu for backwards compatibility, but will be
removed in a future release. Please use Yule AR instead.

Rulers

Multiple filter responses
2-53



2 Release 10 (MATLAB 5.2) Enhancements

2-5
General Enhancements
The following enhancements and bug-fixes are also included in the 4.1 release.

• The generalized cosine window functions (hamming, hanning, and blackman)
can now generate both periodic and symmetric windows. Formerly, they
generated only symmetric windows.

• A bug in cremez that produced a complex filter instead of the appropriate
real filter has been fixed. Additionally, the opt.fgrid and opt.fextr
outputs are now normalized to the Nyquist frequency.

• The invfreqz and invfreqs functions now work for complex as well as real
filters.

Spline Toolbox 2.0

Multivariate Spline Support
All M-files for the construction of splines (in B-form or ppform) have been
expanded to handle tensor-product splines in any number of variables. The
same is true for most of the M-files that make use of splines. This means that
it is now possible to interpolate, approximate, or smooth gridded data in any
number of variables and then evaluate, plot, differentiate, or integrate the
resulting multivariate spline.

User Interface Enhancements
In the same spirit of keeping the number of commands small (and of
object-oriented programming), most of the form-specific commands (such as
spval or ppbrk) have been replaced by generic commands (such as fnval or
fnbrk). The forms themselves are now structures, but that should be irrelevant
to the casual user.

Vector-Valued Spline Enhancements
Since splines in the toolbox can be vector-valued, it is now possible to handle
certain surfaces as 3-vector-valued bivariate tensor-product splines.
4



Toolboxes and Blocksets
Additional Enhancements
Further new features include:

• Use of sparse matrices wherever appropriate

• Construction, in spaps, of the smoothing spline (linear, cubic, or quintic) that
fits given data within a given tolerance

• Conversion, in fnrfn, of a given form to one on a refined knot or break
sequence

• More flexibility in fncmb for arithmetic functions

• More freedom and ease with the input arguments to various M-files

• Optional use of weights in the construction of least-squares and of smoothing
splines

• New M-files for helping with the conversion between forms and between
breaks and knots and their multiplicities
2-55



2 Release 10 (MATLAB 5.2) Enhancements

2-5
6



Language and Development Environment
Enhancements . . . . . . . . . . . . . . . . . 3-4

TIFF and JPEG Device Drivers . . . . . . . . . . . 3-7

TIFF Preview Images for Encapsulated PostScript . . 3-10

API Enhancements for Windows NT . . . . . . . . . 3-11

Stateflow . . . . . . . . . . . . . . . . . . . . . 3-12

Mapping Toolbox . . . . . . . . . . . . . . . . . . 3-13
3

MATLAB 5.1
Enhancements

What Was New in MATLAB 5.1? . . . . . . . . . . . 3-2



3 MATLAB 5.1 Enhancements

3-2
What Was New in MATLAB 5.1?

Note All the features introduced in MATLAB 5.1 are also in Release 11
(MATLAB 5.3).

The main purpose of the MATLAB 5.1 release was to complete upgrades to the
5.0 level of the entire set of toolboxes and blocksets, and to introduce the
Stateflow product. In addition, a number of small but useful enhancements to
MATLAB were provided with this release.

Enhancements to MATLAB
MATLAB 5.1 added several enhancements to the MATLAB language and
development environment, Handle Graphics®, printing, and the Application
Program Interface (API).

The language and development environment enhancements included:

• find returns an empty matrix

• Multibyte character support

• Several PC enhancements:

- Removal of Microsoft Windows TCP/IP requirement

- Notebook support for Office 97

- PC Editor/Debugger icons changed

The Handle Graphics and printing enhancements included:

• Scatter plot functions

• X-Windows support for uisetcolor (UNIX)

• Patch and surface printing enhancements

• TIFF and JPEG device drivers

• TIFF preview images for Encapsulated Postscript



What Was New in MATLAB 5.1?
The Application Program Interface enhancements included setting up the
compiler location for Windows NT.

MATLAB 5.1 also fixed bugs from earlier releases either reported by customers
or found through additional internal testing.

Upgrades to Simulink, Real-Time Workshop, 
Toolboxes, and Blocksets
MATLAB 5.1 completed the upgrades to the entire set of toolboxes. The
Fixed-Point Blockset 1.0.2 was introduced with MATLAB 5.1.

New releases of the following products were also produced with MATLAB 5.1;
however, these products were upgraded again in Release 10 (MATLAB 5.2) and
in Release 11. The enhancements for these products are reflected in the
Release 11 online documentation for each product.

• Simulink

• Real-Time Workshop

• DSP Blockset

• Image Processing Toolbox

• Symbolic Math Toolboxes

• Communications Toolbox

New Products
In addition to these toolboxes, two new products were introduced with
MATLAB 5.1:

• Stateflow 1.0

• Mapping Toolbox 1.0

Stateflow and the Mapping Toolbox are described in more detail starting on
page 3-12.
3-3



3 MATLAB 5.1 Enhancements

3-4
Language and Development Environment Enhancements

find Returns Empty Matrix
The find function returns an empty matrix if nothing is found. Previously it
returned [0,1].

Multibyte Character Support
On the PC, MATLAB 5.1 added support for multibyte characters (including
Kanji) for data.

This feature allows you to use multibyte characters in MATLAB strings. You
can also use multibyte characters in Handle Graphics property values and
Simulink blocks.

Note that you cannot use multibyte characters in variable, file, or function
names. Also, multibyte text may not be machine independent.

Removal of Microsoft Windows TCP/IP Issues
MATLAB 5.0 for Microsoft Windows 95 required the use of TCP/IP networking
software even for non-networked installations. For MATLAB 5.1 this
requirement was removed. The portions of the MATLAB user interface that
depended upon TCP/IP were recoded to use ActiveX.

Notebook Support for Office 97
MATLAB 5.1 provided Notebook support for Microsoft Office 97.

Note The MATLAB 5.1 Notebook worked with Windows NT with Microsoft
Office 97. However, for Windows 95, due to an Office 97 problem, you may
experience problems printing a Notebook document that includes an imported
graphic. See “OFF97: Imported EMF Files Are Not Printed Correctly” in the
online Microsoft Knowledge Base for details.



Language and Development Environment Enhancements
PC Editor/Debugger
For MATLAB 5.1 the PC Editor/Debugger provided new debugging icons on the
toolbar. The debugging operations are the same as for MATLAB 5.0. The new
debugging icons on the toolbar were:

Handle Graphics Enhancements
MATLAB 5.1 provided some new Handle Graphics functions.

Scatter Plot Functions Added
MATLAB added two new functions, scatter and scatter3, which enable you
to create two-dimensional and three-dimensional scatter plots. Each function
allows you to specify the style, size, and color of the marks used to create the
scatter diagrams.

Toolbar
Button 

Description Equivalent 
Command

Set/Clear Breakpoint: set or clear a
breakpoint at the line containing the
cursor.

dbstop/
dbclear

Clear All Breakpoints: clear all
breakpoints that are currently set.

dbclear all

Step In: execute the current line of the
M-file and if the line is a call to another
function, step into that function.

dbstep in

Single Step: execute the current line of
the M-file.

dbstep

Continue: continue execution of M-file
until completion or until another
breakpoint is encountered.

dbcont

Quit Debugging: exit the debugging
state.

dbquit
3-5



3 MATLAB 5.1 Enhancements

3-6
See the online MATLAB Function Reference for more information about these
functions.

X-Windows Support for uisetcolor
The uisetcolor function is supported on X-Windows systems (UNIX).

Previously Undocumented Functions
These two functions existed in MATLAB 5.0, with command line help, but were
not documented in the MATLAB 5.0 online Function Reference; they are
documented in the MATLAB 5.2 online Function Reference:

• pagedlg – Dialog box to set page layout properties for printing Figures.

• printdlg – Dialog box to manage printing of Figures.

Printing Patches and Surfaces
MATLAB 5.1 added support for printing texture-mapped patches and surfaces
(this did not work in Version 5.0).

Also, printing interpolated patches and surfaces is more efficient than in
Version 5.0.



TIFF and JPEG Device Drivers
TIFF and JPEG Device Drivers
MATLAB 5.1 added new built-in device drivers for producing Tagged Image
File Format (TIFF) and Joint Photographic Experts Group (JPEG) graphics
files from MATLAB figures. These drivers are available on all platforms.

This table summarizes the command-line switches for these drivers.

Note These drivers work with MATLAB figures only. You cannot use these
drivers to print Simulink models.

This section summarizes how to use these drivers with the print command.

TIFF
To produce a TIFF file from a MATLAB figure, use the –dtiff switch. For
example, this command produces a TIFF file named newplot.tif from the
current figure

print –dtiff newplot.tif

You can use the –r option in conjunction with the –dtiff switch to specify the
resolution of the output. For example,

print –dtiff –r100 newplot.tif

If you do not specify the resolution, MATLAB uses the default resolution of 150
dots per inch.

Device Description

–dtiff TIFF with packbit compression

–dtiffnocompression TIFF with no compression

–djpeg Baseline JPEG, quality level 75

–djpegnumber Baseline JPEG, quality level specified by number
3-7



3 MATLAB 5.1 Enhancements

3-8
Note that you must specify a filename because TIFF files cannot be sent
directly to a printer. If you omit the filename, MATLAB assigns the file a name,
such as figure1.tif. If you specify a filename that does not include the .tif
extension, MATLAB appends the extension automatically.

The TIFF files that MATLAB produces are 24-bit truecolor bitmaps. MATLAB
renders these graphics using the Z-buffer renderer, regardless of the setting of
the figure Renderer property. If you use the –painters switch with the print
command, the switch is ignored.

Compression
The TIFF output produced by –dtiff uses packbit compression, a lossless
compression scheme that is supported by virtually all applications that can
import TIFF graphics. If you need to import a TIFF file into an application that
does not read packbit-compressed TIFF, use the –dtiffnocompression switch
to produce an uncompressed TIFF file. (You can abbreviate this switch to
–dtiffn.) For example,

print –dtiffn –r100 newplot.tif

An uncompressed TIFF file is often much larger than the same file compressed.
For certain plots, the uncompressed file may be more than 10 times the size of
the compressed file. (The actual ratio will vary. The size of an uncompressed
file depends only on the resolution and the width and height values in the
PaperPosition figure property; the size of the compressed file also depends on
the content of the figure.)

JPEG
To produce a JPEG file from a MATLAB figure, use the –djpeg switch. For
example, this command produces a JPEG file named newplot.jpg from the
current figure

print –djpeg newplot.jpg

You can you use the –r option in conjunction with the –djpeg switch to specify
the resolution of the output. For example,

print –djpeg –r100 newplot.jpg

If you do not specify the resolution, MATLAB uses the default resolution of 150
dots per inch.



TIFF and JPEG Device Drivers
Note that you must specify a filename because JPEG files cannot be sent
directly to a printer. If you omit the filename, MATLAB assigns the file a name
such as figure1.jpg. If you specify a filename that does not include the .jpg
extension, MATLAB appends the extension automatically.

The JPEG files that MATLAB produces are 24-bit truecolor bitmaps. MATLAB
renders these graphics using the Z-buffer renderer, regardless of the setting of
the figure Renderer property. If you use the –painters switch with the print
command, the switch is ignored.

Compression
JPEG files use a lossy compression scheme that compresses files dramatically
with relatively little loss of information. This scheme enables you to make
tradeoffs between file size and quality, by specifying a quality level between 0
(minimum quality, maximum compression) and 100 (maximum quality,
minimum compression). By default, –djpeg uses a quality level of 75; however,
you can use a different level by appending the value to the device name. For
example, this command produces a JPEG file with a quality level of 50

print –djpeg50 –r100 newplot.jpg

Even at the highest quality level, JPEG files are often highly compressed. In
fact, depending on the figure, a JPEG file with a quality level of 100 may be
considerably smaller than a packbit-compressed TIFF file of the same figure.
3-9



3 MATLAB 5.1 Enhancements

3-1
TIFF Preview Images for Encapsulated PostScript
MATLAB 5.1 introduced support for TIFF preview images for Encapsulated
PostScript (EPS) files. To produce a TIFF preview, use the –tiff switch. For
example, this command creates an EPS file called newplot.eps that contains
a TIFF preview

print –deps –tiff newplot.eps

The preview image has a resolution of 72 dots per inch, and the colors in the
preview match the colors in the EPS file. MATLAB creates the EPS with a loose
bounding box (i.e., white space around the figure), so that the size and position
of the preview image match the EPS. There may be some differences between
the EPS and the TIFF preview because the preview is always rendered using
Z-buffer, while the EPS may be rendered with painter’s algorithm.

The –tiff switch works on all platforms; you can view the resulting preview
image within any application that can display TIFF graphics.
0



API Enhancements for Windows NT
API Enhancements for Windows NT

Setting Up the Compiler Location
MATLAB 5.1 provided a new switch for the mex script. The switch, setup,
allows you to configure the default options file, mexopts.bat, for your system
C compiler. This eliminates the need to reinstall MATLAB if you change
compilers for your environment.

You can run the setup option from either the MATLAB or DOS command
prompt, and it can be called anytime to configure the options file.

Executing the setup option presents a list of compilers whose options files are
currently shipped in the bin subdirectory of MATLAB. This example shows
how to select the Microsoft Visual C++ compiler.

C:\mex –setup
C compilers
[1] Microsoft Visual C++
[2] Borland C/C++
[3] Watcom C/C++

Fortran compilers
[4] Microsoft Powerstation

[0] None

compiler: 1

If the selected compiler has more than one options file (because of more than
one version of the compiler), you are asked for a specific version. For example,

Which version
[1] 4.x
[2] 5.x
version: 1

Finally, you are asked to enter the location of your compiler.

Please enter the location of your C compiler c:\msdev
3-11



3 MATLAB 5.1 Enhancements

3-1
Stateflow

Addition to the Simulink Modeling Environment
Stateflow was introduced with MATLAB 5.1, adding to the Simulink modeling
and simulation environment. A graphical tool for designing complex control
and supervisory logic systems, Stateflow allows you to model and simulate the
behavior of complex reactive, event-based systems based on finite state
machine theory. Stateflow lets you add event-driven elements of a system to
Simulink continuous or discrete modeling for a single, closed-loop simulation.

Stateflow represents an evolution from finite state machine theory by adding
several major improvements, including hierarchy, parallelism, junctions, and
history. These changes enable Stateflow to make practical use of finite state
machine theory with realistic application to control systems.

A major benefit of Stateflow is its seamless point-and-click interface to
Simulink. The control behavior that Stateflow models provides an ideal
complement to the algorithmic behavior modeled in Simulink. In Simulink, you
develop your model of continuous- and discrete-time dynamic systems using its
graphical, block diagram environment. Then you drag and drop the blocks that
represent Stateflow diagrams directly into your Simulink model to add
event-driven behavior to Simulink simulations.

Applications for Stateflow include developing the control logic in embedded
systems for electronic and mechanical systems found in automobiles, aircraft,
telecommunications systems, computer peripherals, office automation
equipment, and medical instrumentation.

Stateflow works with the latest versions of Simulink and Real-Time Workshop
to offer an integrated environment for modeling, simulating, and prototyping
real-time embedded systems applications.

Stateflow Coder
Stateflow provides automatic C-code generation through the optional Stateflow
Coder. C code generated by Stateflow Coder can be used independently or
integrated with code from Real-Time Workshop. Thus, Simulink, Stateflow,
and Real-Time Workshop are integrated from the design and modeling phase
through the code generation stage. The generated code can be executed for
rapid prototyping, hardware-in-the-loop testing, or for stand-alone
simulations.
2



Mapping Toolbox
Mapping Toolbox
The Mapping Toolbox was introduced with MATLAB 5.2, providing a toolbox
for geographic display and cartographic analysis. The toolbox gives you the
ability to plot geographically based information as easily as any other type of
data that you can plot in MATLAB. Both vector and matrix map data can be
displayed, manipulated, and analyzed. The toolbox manages the projection,
clipping, and trimming of the data automatically for you, even if you change the
projection.

The Mapping Toolbox provides more than 60 map projections. There are
extensive geographic analysis functions, such as computations of distance,
tracks, great and small circles, intersections, and navigation functions. These
computations can be made for a spherical body or can make use of spheroidal
models of the earth and other planets when more accuracy is required. Utility
functions allow you to convert easily among different time, distance, and angle
units.

The toolbox provides a number of global map data sets and allows you to import
detailed data from government sources over the Internet and on CD-ROM.
These data sets include the Digital Chart of the World, Tiger/Line files, and
Digital Elevation Models of the world and the United States.

In addition to the command-line functions, the toolbox also provides an
extensive suite of GUIs for accessing the toolbox functionality. These GUIs
allow you to manage data interactively, plot it, modify the display, make
measurements, and generate geographic data like tracks and circles. The GUIs
are available as an integrated set and also are available individually.
3-13



3 MATLAB 5.1 Enhancements

3-1
4



MATLAB Migration . . . . . . . . . . . . . . . . . 4-2
Roadmap for Different Migration Routes . . . . . . . . . 4-2

Upgrading From MATLAB 5.2 to MATLAB 5.3 . . . . . 4-4
Language Issues . . . . . . . . . . . . . . . . . . . 4-4
Changes to legend . . . . . . . . . . . . . . . . . . 4-8

Upgrading from MATLAB 5.1 to MATLAB 5.3 . . . . . 4-9
Use of P-Code Between MATLAB Versions . . . . . . . . 4-9
Colon Expressions with Floating-Point Numbers . . . . . . 4-9
Invoking the Path Editor from the Command Line . . . . . 4-10
Frame Uicontrols and Stacking Order . . . . . . . . . . 4-10
Change to clear Behavior . . . . . . . . . . . . . . . 4-11
try, catch, and persistent Are Now Keywords . . . . . . . 4-11
Matrix Assignment . . . . . . . . . . . . . . . . . . 4-12
Change to Method Search Order . . . . . . . . . . . . 4-12
Changes to legend . . . . . . . . . . . . . . . . . . 4-13
PC-Specific Changes . . . . . . . . . . . . . . . . . 4-13
API Memory Management Compatibility Issue . . . . . . 4-14

Upgrading from MATLAB 5.0 to MATLAB 5.3 . . . . . 4-19

Upgrading Simulink, Toolboxes, and Blocksets . . . . 4-21
Upgrading to Simulink 3.0 From Simulink 2.1 . . . . . . . 4-21
Upgrading to DSP Blockset 3.0 and Communications

Toolbox 1.4 . . . . . . . . . . . . . . . . . . . 4-21
Upgrading Optimization Toolbox 2.0 . . . . . . . . . . . 4-24
Upgrading to Fuzzy Logic Toolbox 2.0 . . . . . . . . . . 4-24
4

Upgrading to Release 11

Migrating to Release 11 (MATLAB 5.3) . . . . . . . . 4-2



4 Upgrading to Release 11

4-2
Migrating to Release 11 (MATLAB 5.3)

MATLAB Migration
It is useful to introduce two terms in discussing this migration. The first step
in converting your code to MATLAB 5.3 is to make it MATLAB 5.3 compatible.
This involves a rather short list of possible changes that let your M-files run
under MATLAB 5.3. The second step is to make it MATLAB 5.3 compliant.
This involves making further changes so that your M-file is not using obsolete,
but temporarily supported, features of MATLAB. It also can mean taking
advantage of MATLAB 5.3 features like the new data constructs, graphics, and
so on.

There are a relatively small number of things that are likely to be in your code
that you must change to make your M-files MATLAB 5.3 compatible. Most of
these are in the language area.

There are a somewhat larger number of things you can do (but don’t have to)
to make your M-files fully MATLAB 5.3 compliant. To help you gradually make
your code compliant, MATLAB 5.3 displays warning messages when you use
functions that are obsolete, even though they still work correctly.

Roadmap for Different Migration Routes
The sections of this chapter that you need to read depend on the version of
MATLAB from which you are upgrading.

If You Are Upgrading 
to MATLAB 5.3 from... Read These Sections or Document ...

MATLAB 5.2 “Upgrading From MATLAB 5.2 to MATLAB 5.3”

MATLAB 5.1 “Upgrading from MATLAB 5.1 to MATLAB 5.3”
“Upgrading From MATLAB 5.2 to MATLAB 5.3”

MATLAB 5.0 “Upgrading from MATLAB 5.0 to MATLAB 5.3”
“Upgrading from MATLAB 5.1 to MATLAB 5.3”
“Upgrading From MATLAB 5.2 to MATLAB 5.3”

MATLAB 4 The separate online (PDF and HTML) document
Upgrading from MATLAB 4 to MATLAB 5.0



Migrating to Release 11 (MATLAB 5.3)
Note The last section in this chapter discusses upgrade issues for Simulink,
toolboxes, and blocksets.
4-3



4 Upgrading to Release 11

4-4
Upgrading From MATLAB 5.2 to MATLAB 5.3
This section describes differences between Release 11 and Release 10 that may
require code changes to your Release 10 code.

Language Issues

pcode
Prior to MATLAB 5.3, by default pcode put all its .p files, including methods
and private functions, in the current directory.

That approach resulted in losing the scope directories (private and class
directories) for the function and had the potential to have a method from one
directory overwrite the method from another directory.

In MATLAB 5.3, by default pcode puts its .p files for methods and functions
in a corresponding class or private directory (created in the current directory if
those directories don’t already exist).

If you have any pre-5.3 code that relies on the .p file being in the current
directory, and you generate new P-code for the method, the .p file will not be
where the pre-5.3 code expected it.

Date Functions Need pivotyear Parameter
With MATLAB 5.3, the date functions datenum, datestr, and datevec include
a new calling sequence that allows a pivot year specification to override the
default. For example, here’s the new calling sequence for datevec:

[...] = datevec(t, pivotyear)

This new call uses the pivot year instead of the current year minus 50 years.

Whether you update your applications that use these date functions depends
on the nature of your data and the timeframe when you plan to use the
application:

• If the dates of all your data are always going to be within 50 years of the
current year, then you do not need to specify the pivot year.

• If your data includes dates that are older than 50 years before the current
year, you will have to specify a pivot year of 1900 to produce the same results
as with 5.2.



Upgrading From MATLAB 5.2 to MATLAB 5.3
Sparse scalar Expansion
A(:,:) = scalar was incorrectly producing the result A = scalar when it
should have been changing all the elements of A to the scalar value (which is
what A(1:end,1:end) = scalar does).

getfield Must Use a 1-by-1 Structure
In MATLAB 5.3, the getfield function produces an error message if you use
other than a 1-by-1 structure. In MATLAB 5.2, the commands

a(1).b = 1;
a(2).b = 3;
a(2).b.c = 4;
a(1).b.c = 2;
d = [getfield([a.b], 'c')];

successfully returned the two element vector

d =
     2    4

but in MATLAB 5.3, the same code would lead to getfield returning an error
message.

Syntax Change for dlmread
The dlmread syntax has changed. You should no longer use the range
argument together with the row and column offsets as you could in previous
versions of MATLAB (the row and column offsets actually were not used in
pre-5.3 MATLAB, if you specified a range argument). Using this calling
sequence now produces a warning message:

M = dlmread(filename,delimiter,row_offset,column_offset,range)

To use the range argument, use this new calling sequence:

M = dlmread (filename,delimiter,range)
4-5



4 Upgrading to Release 11

4-6
Behavior of linspace and logspace Now the Same as with MATLAB 5.1
In MATLAB 5.3, linspace and logspace now handle NANs, Infs, and complex
vectors in the same manner as they did for MATLAB 5.1 and earlier versions.
This eliminates an inconsistency in how linspace and logspace handled NANs,
Infs, and complex vectors in MATLAB 5.2, as compared to previous MATLAB
releases.

Name Changes
These MATLAB functions have new names and calling sequences to support
new functionality.

Note that if you have older M-files that use the old names and calling
sequences, these calls will generally continue to work. However, the older
functions may be removed from MATLAB in future releases, so it is a good idea
to revise your code now to use the new names and calling sequences.

Method Search Order Changed
MATLAB now calls converter methods on the path before calling a constructor.
Prior to 5.3, MATLAB called constructors before calling methods on the path.

One visible effect of this is that in the case where

@double/ss.m
@ss/ss.m

exist, MATLAB calls @double/ss.m instead of @ss/ss.m (i.e., the previously
shadowed converter functions become visible).

Old Function Name New Function Name

fmin fminbnd

fmins fminsearch

nnls lsgnonneg



Upgrading From MATLAB 5.2 to MATLAB 5.3
Change to Subscripting for Objects
In MATLAB 5.3, subscripting syntax is dispatched differently from how it was
dispatched in previous releases. Within a method, the syntaxes

a(i), a(i,j), etc.
a{i}, a{i,j}, etc.
a(i).name, a.name, a(i.j).name, etc.

now use the built-in subsref or subsasgn method if the type of a doesn’t match
the class directory and no overloaded subsref is defined for the object a. This
change only affects child objects within parent methods.

Prior to 5.3, use of the subsref or subsasgn syntax called the parent’s subsref
method recursively for a child object. Now the syntax uses the built-in method.

For example, for the following

@parent/get.m
function b = get(a,i)
b = a(i);

@parent/subsref.m
function r = subsref(a,s)
r = a(1).dat;

when no subsref existed for @child

c = child(5);
get(c,1)  

used to call the parent’s subsref method inside @parent/get.m. MATLAB now
uses the built-in method.

Within parent methods where you want the parent’s subsref to be used, call
the parent’s subsref directly (using the function syntax).
4-7



4 Upgrading to Release 11

4-8
Use clear classes to Clear the Class Definition Table
To clear the class definition table so that MATLAB picks up changes in an
object’s field definition, use

clear classes

In previous releases, using

clear all

would often clear the class definition table, but not always in the proper
manner. Replace clear all with clear classes when you want to clear the
class definition table safely.

Changes to legend
MATLAB 5.3 enhances legend to:

• Support multiline labels, allowing you to wrap long labels

• Keep the legend the same size as it is displayed on screen when you print a
figure

• Integrate with the Plot Editor

To support these enhancements, MATLAB 5.3 treats the legend text as one
text object, grouping all the text together. So, if your pre-5.3 code manipulates
individual handles within a legend, to specify properties such as font size or
font color, that code will probably no longer work in MATLAB 5.3.



Upgrading from MATLAB 5.1 to MATLAB 5.3
Upgrading from MATLAB 5.1 to MATLAB 5.3
This section describes compatibility issues involved in upgrading from
MATLAB 5.1 to MATLAB 5.2.

Note If you are upgrading from MATLAB 5.1 to MATLAB 5.3, in addition to
reading this section, you should read the previous section, called “Upgrading
From MATLAB 5.2 to MATLAB 5.3.”

Use of P-Code Between MATLAB Versions
You cannot use Version 5.2 P-code in a pre-5.2 P-code application. You can use
pre-5.2 P-code in a Version 5.2 P-code application.

If you want to distribute an application to users who might be running a
different version of MATLAB than the one in which you are writing the
application, you should use M-files instead of P-code.

Colon Expressions with Floating-Point Numbers
Values produced in colon (:) expressions may vary between MATLAB 5.2 and
pre-5.0 versions of MATLAB, if you are doing an exact comparison of
floating-point numbers.

For floating-point numbers, you should use tolerance-based comparisons (eps),
not exact comparisons. (Use exact comparisons only for integers.)

Warning When Using == with an Empty Matrix

The expression A == [] produces 0 or 1 (as it did in MATLAB 4), and MATLAB
issues the following warning message when this expression is used:

Warning: X == [] is technically incorrect. Use isempty(X) instead.

This warning is issued in anticipation of future versions of MATLAB, which
will return an empty matrix, [], for this expression.
4-9



4 Upgrading to Release 11

4-1
Invoking the Path Editor from the Command Line
To invoke the MATLAB path editor from the command line, issue the pathtool
command. In previous releases on various platforms the pathedit and
editpath commands also invoked the path editor, but the command that works
on all platforms for Version 5.2 is pathtool.

Frame Uicontrols and Stacking Order
Frames are opaque, not transparent, so the order you define Uicontrols is
important in determining whether Uicontrols within a frame are covered by
the frame or are visible. Stacking order determines the order objects are drawn:
objects defined first are drawn first; objects defined later are drawn over
existing objects. If you use frames to enclose objects, you must define the
frames before you define the objects.

Before MATLAB 5.2, frames were always drawn below other Uicontrols on
Microsoft Windows applications regardless of the order they were created.

If you use MATLAB on UNIX computers, this change does not affect you. If,
however, you use MATLAB on Microsoft Windows, stacking order affects any
applications that define frames after they define objects contained within the
frames. To ensure that frames are drawn below other objects, either:

• Revise the M-files by altering the order in which these objects are defined.
Create frames before creating the objects contained in the frames.

• Modify the stacking order to ensure that objects within the frames are
visible. For example, these statements define a push button, a check box, and
a frame, then alter the stacking order for the Figure (position vectors are
defined by pbpos, cbpos, and fpos to simplify the code):
hpush = uicontrol('Style','pushbutton','Position',pbpos);
hcheck = uicontrol('Style','checkbox','Position',cbpos);
hframe = uicontrol('Style','frame','Position',fpos);
% change stacking order to put frame on bottom
% gcf is the current figure
stackvec(1)=hpush; stackvec(2)=hcheck; stackvec(3)=hframe;
set(gcf,'Children',stackvec)
0



Upgrading from MATLAB 5.1 to MATLAB 5.3
• Issue a system_dependent command to force frames to be drawn below other
objects. The form of this command is:
system_dependent('ForceFramesOnBottom','on')

Note that the ForceFramesOnBottom string is case sensitive. Issue the
command before running the application. When you issue the command,
MATLAB issues a warning indicating that frames will be inserted below
other objects. To suppress the warning message for just this command,
include these statements in your M-file or your startup.m file:
warning off
system_dependent('ForceFramesOnBottom','on')
warning on

You should use these commands only until you have had a chance to correct
the M-files. The first two solutions are preferable to this solution; this
solution is provided to ease the transition for users who were not aware that
the Microsoft Windows behavior was inconsistent with stacking order rules
that applied to all other Handle Graphics objects.

You can turn off this behavior using this statement:
system_dependent('ForceFramesOnBottom','off')

Change to clear Behavior
The clear function does not remove an M-file from the MATLAB workspace if
that M-file is locked with the mlock function, introduced in MATLAB 5.2.

Although pre-5.2 code does not use mlock, if that code is modified to use mlock,
clear will not behave as it did in previous versions of MATLAB (i.e., it will not
be guaranteed to clear all M-files in the workspace). To unlock an M-file, use
munlock.

try, catch, and persistent Are Now Keywords
You can no longer use try, catch, and persistent as variable names in
MATLAB. In previous releases MATLAB did not treat these as keywords.
4-11



4 Upgrading to Release 11

4-1
Matrix Assignment
In pre-5.2, for

A(:) = b

where b is a scalar or vector, the resulting type was the type of b. Starting with
MATLAB 5.2, the resulting type is the type of A. So, if A is a uint8 array to
begin with, and b is a double, the result is that A is still a uint8.

This change to preserve A’s type was made to ensure consistent indexing
behavior.

Change to Method Search Order
When an object inherits from two different classes, MATLAB performs a
depth-first search when a method is called (this is how the method search was
documented as working in pre-5.2 versions). MATLAB exhausts the search in
one parent, then goes up the class hierarchy for each class from which the
object inherits (from left to right, as appears in the class definition). In previous
releases, MATLAB actually performed a modified breadth-first search.

In this hierarchy:

If function foo is called:

• In MATLAB 5.2 and later, Class X’s foo would be invoked.

• In MATLAB 5.0 or 5.1, Class Z’s foo would be invoked.

Class X
foo

Class Y

Class A

Class Z
foo

Class A lists Class Y, then
Class Z as its parent classes
2



Upgrading from MATLAB 5.1 to MATLAB 5.3
Changes to legend
The second output argument for legend is no longer m-by-2. Instead, it is a
column containing line, patch, and text object handles, in no particular order.

PC-Specific Changes

Change to clc Command
In MATLAB 5.2, the clc command produces the same result as using the Edit
menu item Clear Sessions. Thus, after you issue clc, you can no longer scroll
back to see the previous contents of the Command Window (as you could in
earlier versions of MATLAB).

However, you can use the up arrow to see the history of the commands, one at
a time.

Change to cd Command
In MATLAB 5.2, if you cd from one drive to another for your working directory,
the cd command does not retain any subdirectory part of the path if you cd back
to the initial drive.

For example, if you first issue a cd command such as

cd C:\MyApps

and then issue

cd D:\MyMatlabDir
cd C:
pwd

you will see

C:\

In earlier versions of MATLAB, if you issued the same commands as shown
above, you saw

C:\MyApps
4-13



4 Upgrading to Release 11

4-1
API Memory Management Compatibility Issue
To address performance issues, the internal MATLAB memory management
model has been changed somewhat. These changes support future
enhancements to the MEX-file API.

With this release, MATLAB now implicitly calls mxDestroyArray, the mxArray
destructor, at the end of a MEX-file’s execution on any mxArrays that are not
returned in the left-hand side list (plhs[]). You are now warned if MATLAB
detects any misconstructed or improperly destroyed mxArrays.

We highly recommend that you fix code in your MEX-files that produces any of
the warnings discussed in the following sections. For additional information,
see the “Memory Management” section in Chapter 3 of the Application
Program Interface Guide.

The rest of this discussion describes situations in which you would receive such
warning messages. The discussion of each situation includes an example and a
solution.

Improperly Destroying an mxArray
You cannot use mxFree to destroy an mxArray.

Warning
Warning:  You are attempting to call mxFree on a <class-id> array. 
The destructor for mxArrays is mxDestroyArray; please call this 
instead. MATLAB will attempt to fix the problem and continue, but 
this will result in memory faults in future releases.

Note In MATLAB 5.2, these warnings are enabled by default for
compatibility reasons. They can be disabled with the command

  feature('MEXFileCompat',0)

Disabling the code that detects and fixes these error conditions may slightly
improve performance, but will cause serious problems if your MEX-file
actually causes any of these errors.
4



Upgrading from MATLAB 5.1 to MATLAB 5.3
Example That Causes Warning

    mxArray *temp = mxCreateDoubleMatrix(1,1,mxREAL);
...
    mxFree(temp);  /* INCORRECT */

mxFree does not destroy the array object. This operation frees the structure
header associated with the array, but MATLAB will still operate as if the array
object needs to be destroyed. Thus MATLAB will try to destroy the array object,
and in the process, attempt to free its structure header again.

Solution

Call mxDestroyArray instead:

mxDestroyArray(temp);  /* CORRECT */

Incorrectly Constructing a Cell or Structure mxArray
You cannot call mxSetCell or mxSetField variants with prhs[] as the member
array.

Warning

Warning: You are attempting to use an array from another scope 
(most likely an input argument) as a member of a cell array or 
structure. You need to make a copy of the array first. MATLAB will 
attempt to fix the problem and continue, but this will result in 
memory faults in future releases.

Example That Causes Warning

myfunction('hello')
/* myfunction is the name of your MEX-file and your code */
/* contains the following:    */

    mxArray *temp = mxCreateCellMatrix(1,1);
...
    mxSetCell(temp, 0, prhs[0]);  /* INCORRECT */
4-15



4 Upgrading to Release 11

4-1
When the MEX-file returns, MATLAB will destroy the entire cell array. Since
this includes the members of the cell, this will implicitly destroy the MEX-file’s
input arguments. This can cause several strange results, generally having to
do with the corruption of the caller’s workspace, if the right-hand side
argument used is a temporary array (i.e., a literal or the result of an
expression).

Solution

Make a copy of the right-hand side argument with mxDuplicateArray and use
that copy as the argument to mxSetCell (or mxSetField variants); for example:

mxSetCell(temp, 0, mxDuplicateArray(prhs[0]));  /* CORRECT */

Creating a Temporary mxArray with Improper Data
You cannot call mxDestroyArray on an mxArray whose data was not allocated
by an API routine.

Warning

Warning: You have attempted to point the data of an array to a 
block of memory not allocated through the MATLAB API. MATLAB will 
attempt to fix the problem and continue, but this will result in 
memory faults in future releases.

Example That Causes Warning

If you call mxSetPr, mxSetPi, mxSetData, or mxSetImagDatawith memory as the
intended data block (second argument) and that memory was not allocated by
mxCalloc, mxMalloc, or mxRealloc, as shown below

   mxArray *temp = mxCreateDoubleMatrix(0,0,mxREAL);
   double data[5] = {1,2,3,4,5};
...
   mxSetM(temp,1); mxSetN(temp,5); mxSetPr(temp, data); 
   /* INCORRECT */

then when the MEX-file returns, MATLAB will attempt to free the pointer to
real data and the pointer to imaginary data (if any). Thus MATLAB will
attempt to free memory, in this example, from the program stack. This will
cause the above warning when MATLAB attempts to reconcile its consistency
checking information.
6



Upgrading from MATLAB 5.1 to MATLAB 5.3
Solution

Rather than use mxSetPr to set the data pointer, instead create the mxArray
with the right size and use memcpy to copy the stack data into the buffer
returned by mxGetPr:

    mxArray *temp = mxCreateDoubleMatrix(1,5,mxREAL);
    double data[5] = {1,2,3,4,5};
...
    memcpy(mxGetPr(temp), data, 5*sizeof(double));  /* CORRECT */

Potential Memory Leaks
Prior to Version 5.2, if you created an mxArray using one of the API creation
routines and then you overwrote the pointer to the data using mxSetPr,
MATLAB would still free the original memory. This is no longer the case.

For example

pr = mxCalloc(5*5, sizeof(double));
... <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxSetPr(plhs[0], pr);  /* INCORRECT */

will now leak 5*5*8 bytes of memory, where 8 bytes is the size of a double.

You can avoid that memory leak by changing the code

plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
pr = mxGetPr(plhs[0]);
... <load data into pr> 

or alternatively:

pr = mxCalloc(5*5, sizeof(double));
... <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxFree(mxGetPr(plhs[0]));
mxSetPr(plhs[0], pr);

Note that the first solution is more efficient.

Similar memory leaks can also occur when using mxSetPi, mxSetData,
mxSetImagData, mxSetIr, or mxSetJc. You can address this issue as shown
above to avoid such memory leaks.
4-17



4 Upgrading to Release 11

4-1
Recommendation: MEX-Files Should Destroy Their Own Temporary Arrays
In general, we recommend that MEX-files destroy their own temporary arrays
and clean up their own temporary memory. All inconsistent mxArrays except
those returned in the left-hand side list and the return from the mxGetArrayPtr
may be safely destroyed. This approach is consistent with other MATLAB API
applications (i.e., MAT-file applications, Engine applications, and MATLAB
Compiler-generated applications).
8



Upgrading from MATLAB 5.0 to MATLAB 5.3
Upgrading from MATLAB 5.0 to MATLAB 5.3
This table describes some changes you can make to your code to eliminate error
messages and warnings due to incompatible and noncompliant statements in
MATLAB 5.0 code that you are upgrading to MATLAB 5.1.

Note If you are upgrading from MATLAB 5.0 to MATLAB 5.3, in addition to
this section, you should read the previous two sections, called “Upgrading
From MATLAB 5.2 to MATLAB 5.3“and “Upgrading from MATLAB 5.1 to
MATLAB 5.3.”

Function Change Action

find find was modified for sparse row
vectors. find(sparse_row) was a
column in MATLAB 4 and
MATLAB 5.0. In 5.1 it produces a
row when the input is a row. All
other cases still return columns.

Update code.

lasterr In MATLAB 5.1, lasterr doesn’t
contain the ??? that prints out
when you get an error. Some types
of errors in MATLAB 5.0
erroneously contained ???.

None required.

plot In MATLAB 5.0, plot incorrectly
accepted arrays with more than
two dimensions, but treated them
as two-dimensional arrays. In 5.1,
this causes an error.

Do not use arrays of more than two
dimensions as arguments for plot.
4-19



4 Upgrading to Release 11

4-2
Set functions:
intersect, 
setdiff, 
setxor, union, 
unique

These functions now error out if
the inputs aren’t vectors, and you
aren’t using the rows flag.

Update code if required.

size An empty string created within a
MEX-file is now of size 0,0,
consistent with the rest of
MATLAB. (This change occurred
with MATLAB 5.1.)

Update code accordingly.

Function Change Action
0



Upgrading Simulink, Toolboxes, and Blocksets
Upgrading Simulink, Toolboxes, and Blocksets

Upgrading to Simulink 3.0 From Simulink 2.1
Starting in Version 2.2 (Release 10), Simulink changed the way it treats
direct-feedthrough loops containing triggered subsystems. Before Version 2.2,
Simulink treated such loops as algebraic and attempted to use an algebraic
solver to solve them. Beginning in Version 2.2, Simulink treats direct
feedthrough loops containing triggered subsystems as nonalgebraic, thereby
allowing use of nonalgebraic solvers.

For example, Simulink 2.1 unsuccessfully attempts to simulate the following
counter model, using an algebraic solver.

In particular, it stops the simulation after detecting discontinuities in the
algebraic solution. Simulink 2.2 and subsequent versions successfully use a
variable-step discrete solver to simulate the same model.

Upgrading to DSP Blockset 3.0 and 
Communications Toolbox 1.4

The New Complex Data Format
Versions 1.0 through 2.2 of the DSP Blockset and Versions 1.0 through 1.3 of
the Communications Toolbox provided complex data capability by creating a
double-length real vector whose first half contained the real components of the
vector’s elements, and whose second half contained the imaginary components
of the vector’s elements. This format was generally only recognized by other
4-21



4 Upgrading to Release 11

4-2
blocks in the DSP Blockset and Communications Toolbox that had the complex
identifier (∗) at the appropriate port.

Simulink 3.0 provides an intrinsic complex data type (see Chapter 8 of Using
Simulink) that supplants the earlier DSP Blockset and Communications
Toolbox implementation. Complex data in Simulink is now handled very much
the same as complex data in MATLAB. Double-length vectors are no longer
used to convey complex information.

Your existing complex-data models will continue to work in Simulink 3.0 since
the complex capability in older models is implemented solely by the blocks
themselves. The older blocks also continue to be available to you by typing
dsplib(2) and commlib(1) at the command line. However, 3.0 blocks cannot
be directly intermixed with the older blocks in complex-data models. The next
section explains options for upgrading.

Why You Need to Update Your Models to Use the New Complex Data 
Format
The new complex data format introduced by Simulink 3.0 is not compatible
with the old complex data format implemented in the DSP Blockset 2.2 and the
Communications Toolbox 1.3. Mixing new (i.e., Simulink 3.0 and its associated
toolboxes and blocksets) and old (2.2) blocks in a simulation using complex
data can easily lead to errors and incorrect results.

For small models, we recommend completely replacing all old blocks in the
complex portion of the model with their new equivalents when you begin
incorporating new blocks into the model.

For larger models, where the required block substitutions might be extensive,
you can use the Convert Complex DSP to Simulink block to convert complex
data in the old format to complex data in the new format. To convert back to
the old format, use the Convert Complex Simulink to DSP block.
2



Upgrading Simulink, Toolboxes, and Blocksets
The figure below shows how you can use these two convertor blocks to migrate
part of a complex-data model to the new complex format while letting other
components continue to use the old complex-data format.

The convertor blocks are only needed for interfacing new blocks to the
complex-data section of an older model. New blocks can be added to real-data
sections of older models without any data format conversion.

The Convert Complex DSP to Simulink and Convert Complex Simulink to DSP
blocks are provided to facilitate the transition from 2.2 to 3.0 by allowing you
to upgrade your models incrementally, as convenient. Ultimately, of course,
you should try to migrate all of your models to the 3.0 complex data format.

Note  Within a section of model that uses the old complex format, you should
continue to use the complex port identifier (∗) as a guide to wiring blocks.
Output ports labeled with the ∗ symbol should only be connected to input ports
labeled with the ∗ symbol.

Existing 2.2 complex-data model

Subsystem B upgraded to 3.0 complex-data format

Subsystem A upgraded to 3.0 complex-data format

(Subsystem A remains a 2.2 
implementation)

(Subsystem B remains a 2.2 
implementation)
4-23



4 Upgrading to Release 11

4-2
Locating Old Blocks in a Model
In a DSP Blockset model that contains both old and new blocks, you can
determine which blocks are linked to a particular version by using the
dsp_links utility. At the command line, type

blks = dsp_links

to highlight (in red) blocks in the current model that are linked to old libraries.
Blocks that are linked to new libraries are highlighted in blue. The dsp_links
command analyzes all levels of the model, and also displays a summary in the
command window of the number of blocks linked to each library version. The
function returns a structure, blks, containing separate lists of the old and new
blocks in the model.

Similarly, you can use the comm_links utility to perform the same analysis for
the Communications Toolbox.

Upgrading Optimization Toolbox 2.0
New large-scale algorithms have been incorporated into the Optimization
Toolbox 2.0 functions. The new functionality improves the ability of the toolbox
to solve large sparse problems. To accommodate this new functionality, many
of the function names and calling sequences have changed.

For more information on how to convert your old syntax to the new function
calling sequences, see the Optimization Toolbox User’s Guide.

Upgrading to Fuzzy Logic Toolbox 2.0

Note The Fuzzy Logic Toolbox has not been updated for Release 11. If you have
already updated your FIS models from a pre-2.0 version of the Fuzzy Logic
Toolbox to the 2.0 level (as part of a Release 10 upgrade), you can ignore this
section.

In the Fuzzy Logic Toolbox 2.0, the Fuzzy Inference System (FIS) is
represented as a MATLAB structure. A structure (instead of a flat matrix) is
now the basic element in constructing a fuzzy logic system. This fundamental
change in the way of representing fuzzy logic system makes many details of
working with the constructed system easier.
4



Upgrading Simulink, Toolboxes, and Blocksets
A Fuzzy Inference System that you created with a pre-2.0 version of the Fuzzy
Logic Toolbox is still usable in 2.0, if you run the convertfis function on it. The
convertfis function automatically converts pre-2.0 Fuzzy Inference Systems
to work with Version 2.0.
4-25



4 Upgrading to Release 11

4-2
6



Index
A
Access

joining 1-16
ActiveX support 1-13, 2-12
Ada Coder

Real-Time Workshop 1-54
API

compiler location 3-11
function upgrade issues 4-14
memory leaks 4-17
memory management 4-14
MEX-files 4-18
mexopts.bat file 3-11
setup option 3-11

Application Program Interface
See API

application toolboxes
enhancements 2-3, 3-3

argument
variable input 1-35
variable output 1-35

Array Editor 1-17
arrays

cell 1-9
assignment

matrix 4-12

B
blkdiag function 1-9
block diagram

zooming 1-43
block library 1-44
Block Properties dialog box (Simulink) 2-25
blocks

automatic connection 2-25
data tips 1-43
enhancements for DSP Blockset 1-80
enhancements for Fixed-Point Blockset 1-93
enhancements for Signal Processing Toolbox

1-72
enhancements for Simulink 3.0 1-45

boxes
Stateflow 1-51

Bus Selector block 1-45

C
C Math Library 1.2 2-22
C++ Math Library 1.2 2-23
C/C++ Math Library 2.0 1-38
camera enhancements 2-14
Canny edge detection 2-49
catch 4-11
cell array 1-35

operations on 1-9
use by functions 2-8

cellfun function 1-9
character strings 1-8
characters Units 2-18
chart libraries 1-51
chart styles 1-50
Cholesky factorization 2-6
cla function 2-16, 2-17
class definition table

clearing 1-13, 4-8
clc function 2-8
clear 4-11
clear all 1-13

upgrade issues 4-8
clear classes 1-13
clf function 2-16, 2-17
I-1



Index

I-2
cluster analysis functions
Statistics Toolbox 1-76

code generation
Real-Time Workshop 1-53
Stateflow 1-52

Command Window 1-15
clearing 2-8

Communications Toolbox 1.3
enhancements 2-37
integration with Real-Time Workshop 2.2

2-38
integration with Simulink 2.2 2-38
interleave and scrambler blocks 2-37
passband digital modulation/demodulation

blocks 2-37
Communications Toolbox 1.4

Simulink support enhancements 1-56
compatibility 4-2
Compiler 1.2 2-20
Compiler 2.0 1-34
compiler location 3-11
complex data

creating from real data 2-43
complex function 1-8
compliance 4-2
Configurable Subsystem block 1-45
context menus 2-19
Continue

in debugger 3-5
Control System Toolbox 4.1

Root Locus Design GUI 2-39
Simulink LTI Viewer 2-39

Control System Toolbox 4.2
new or changed functions 1-59
summary of enhancements 1-57

convertfis function 2-48, 4-25
D
data

complex 1-8
integer types 1-6
single precision 1-7
types 1-13, 1-54, 1-105

data frames
DSP Blockset 1-83, 2-40

data handling
Simulink 1-47

Database Toolbox 1.0 1-105
date functions 1-9

Financial Toolbox 2-46
use of pivotyear parameter 4-4

datenum function
upgrade issues 4-4

datestr function
upgrade issues 4-4

datevec function
upgrade issues 4-4

debugger
Continue 3-5
Simulink 2-26
step 3-5

derivatives functions
Financial Toolbox 2-45

device drivers
JPEG 3-7, 3-8
TIFF 3-7

dialogs 1-44
differential equation solvers 1-10
directory handling 2-7
dlmread function

upgrade issues 4-5
doc command 2-11



Index
documentation
online viii, 2-11
Release 11 vii

double buffering 1-31
double precision 1-8
DoubleBuffer property 1-31
DSP Blockset 2.2

data frames 2-40
enhanced blocks 2-43
enhancements (summary) 2-39
Filter Realization Wizard 2-41
new blocks 2-42

DSP Blockset 3.0
block enhancements 1-80
complex data support 1-84
data frames 1-83
enhanced blocks 1-87
library structure changes 1-82
multirate sample time enhancements 1-84
new blocks 1-84
running different blockset versions 1-81

E
Earth Observatory System 1-27
edit command 1-17
Editor/Debugger 1-17, 3-5
Encapsulated PostScript 3-10
end statement 1-13
EOS 1-27
EPS files 1-49, 3-10
evalc function 1-12
Excel Link 1.0.8 1-69
Excel Link Portfolio Optimizer Tool

demo 2-47
Explorer 1-50
external mode 1-53

ezcontour 1-78
ezmesh 1-78
ezplot 1-78
ezpolar 1-78
ezsurf 1-78

F
feedback loops

Simulink 2-26
figure property 1-31
figure window 1-19

accessing off-screen figures 1-23
toolbar 1-23

file handling 2-7
files

EPS 1-49
opening 1-7
reading data from 1-7
saving figures or models 1-7
TIFF 1-49

Filter Realization Wizard, for DSP Blockset 2-41
Filter Viewer

Signal Processing Toolbox 2-53
Financial Toolbox 1.1

date functions 2-46
derivatives functions 2-45
enhancements 2-45
portfolio analysis functions 2-46
term structure functions 2-45

Financial Toolbox 2.0
fixed income functions 1-62
portfolio analysis functions 1-61
pricing and analyzing derivatives functions

1-63
time series demonstration 1-63
univariate GARCH processes functions 1-62
I-3



Index

I-4
find function 3-4, 4-19
find_system command 2-27
findfigs function 1-23
findobj command 1-30
FIS conversion function 2-48
Fixed-Point Blockset 1.0.2 3-3
Fixed-Point Blockset 2.0

blocks 1-93
code generation 1-100
data types 1-96
demos 1-100
filters and systems 1-95
model construction enhancements 1-100
overflow handling 1-99
rounding 1-98
scaling 1-97
standardization with Simulink 1-99
storage capabilities 1-99
updating obsolete blocks 1-100

fmin function
now fminbnd 4-6

fmins function
now fminsearch 4-6

FontName Property 1-32
full-text search 2-11
function functions 1-11
Function-Call Generator block 1-45
functions

API
mxFree 4-14
mxSetCell 4-15
mxSetData 4-16, 4-17
mxSetField 4-15
mxSetImagData 4-16, 4-17
mxSetIr 4-17
mxSetJc 4-17
mxSetPi 4-16, 4-17
mxSetPr 4-16, 4-17
ordinary differential equations 2-6
use of cell arrays 2-8

Fuzzy Inference System
conversion function 2-48

Fuzzy Logic Toolbox 2.0
algorithm improvements 2-48
enhancements 2-47
FIS represented by MATLAB structures 2-48
GUI enhancements 2-47
user-defined membership functions 2-48

G
get_param command 2-27
getfield function

upgrade issues 4-5
graphics 1-23

OpenGL 2-14
graphics objects handles, hiding 2-16

H
handles, of graphics objects 2-16
HDF 1-27

MATLAB support 2-13
HDF/EOS development tools 1-27
HDF-EOS 1-27
Help Desk 2-11

Japanese 2-11
Hierarchical Data Format 1-27
histc function 1-28
histogram 1-28
home function 2-8
HTML

documentation 1-20
reference pages 2-11



Index
I
Image Processing Toolbox 2.1

Canny edge detection method 2-49
converting images 2-49
enhancements 2-49
feature measurements 2-49
handling holes in objects 2-49
inverse Radon transform 2-49
YCbCr color space support 2-49

Image Processing Toolbox 2.2
16-bit image data support 1-64
border-handling options 1-64
MATLAB support for image processing 1-64

images, truecolor 2-18
inline function 1-12
installation 1-5
integer data types 1-6
interleave and scrambler blocks 2-37
intersect 4-20
inverse Radon transform 2-49

J
Japanese Help Desk 2-11
Japanese interface 1-22
Java interface for MATLAB (exploratory) 1-14
JPEG device driver 3-7
justification, string 2-8

K
Kanji 3-4
Keithley-Metrbyte I/O support 2-29

L
language enhancements

MATLAB 5.1 4
MATLAB 5.2 2-5
MATLAB 5.3 1-6

lasterr 4-19
lastwarn function 2-5
least squares equation solver 1-11
legend function

upgrade issues 4-8, 4-13
Level 2 S-functions 2-26, 2-30
library browser 1-42
lighting, convenience commands for 2-15
linspace function

upgrade issues 4-6
load 1-36, 2-7
loading objects 1-12
loadobj function 1-12
locking M-files 2-6
logspace function

upgrade issues 4-6
LTI Viewer 2-39

M
makefile 1-37
Maple libraries 1-78
Mapping Toolbox 3-13
Mapping Toolbox 1.1

atlas data interface functions 1-66
data projection functions 1-67
external data interface functions 1-65
generalized functions 1-65
GUI for working with map data 1-68
map creation functions 1-67
moon topography 1-68
projection functions 1-66
I-5



Index

I-6
mask parameter
Simulink 2-26

MathEdge 2 1-78
MATLAB 5.1

API enhancements 3-11
Editor/Debugger 3-5
Encapsulated Postscript files 3-10
enhancements (summary) 3-2
find function 3-4
JPEG device driver 3-8
Kanji 3-4
multibyte characters 3-4
TCP/IP 3-4
TIFF device driver 3-7

MATLAB 5.2
ActiveX support 2-12
API memory management 4-14
blockset upgrades 2-36
camera enhancements 2-14
cell array support 2-8
cla enhancement 2-17
clc and home changes 2-8
clf enhancement 2-17
Compiler 2-20
context menus 2-19
directory handling 2-7
Editor/Debugger enhancements 2-9
file handling 2-7
HDF file format support 2-13
Help Desk enhancements 2-11
hiding graphics objects 2-16
language enhancements 2-5
lighting convenience commands 2-15
mathematical functions 2-6
matrix assignment 4-12
method search order 4-12
M-file locking 2-6
Microsoft Windows tool enhancements 2-9
newplot enhancement 2-17
ODE functions 2-6
online documentation enhancements 2-11
paper types for printing 2-16
PC tools enhancements 2-9
persistent variables 2-8
recursion limit 2-5
string comparison 2-6
strjust enhancement 2-8
toggle buttons 2-18
toolbox upgrades 2-36
tooltips 2-18
truecolor Images on controls 2-18
Units property value 2-18
view control commands 2-14
warning messages 2-5

MATLAB 5.3
ActiveX support 1-13
API enhancements 1-13
Array Editor 1-17
cell arrays 1-9
Command Window 1-15
date functions 1-9
development tools 1-15
differential equation solvers 1-10
Editor/Debugger 1-17
figure window 1-19
file I/O enhancements 1-7
function functions 1-11
graphics enhancements 1-23
GUI development enhancements 1-33
HDF/EOS tools 1-27
image related changes 1-64
installation enhancements 1-5
integer data types 1-6
Japanese interface 1-22



Index
MATLAB 5.3 (continued)
Java Interface (exploratory) 1-14
language enhancements 1-6
legend function 1-30
Notebook installation 1-5
numerical analysis enhancements 1-10
object-oriented programming enhancements

1-12
optimization parameters 1-11
Plot Editor 1-25
plotting 1-28
PrintFrame Editor 1-26
profiler 1-18
programming enhancements 1-12
quitting 1-8
sparse matrices 1-9
visualization enhancements 1-23
volume visualization 1-29

MATLAB C Math Library 1.2 2-22
MATLAB C++ Math Library 1.2 2-23
MATLAB C/C++ Math Library 2.0

data types 1-39
indexing functions 1-39
mbuild script 1-40
memory management for temporary arrays

1-38
new features 1-38
try and catch blocks 1-40

MATLAB Compiler 2.0
cell arrays 1-35
data constructs 1-34
error and warning messages 1-36
language enhancements 1-36
mex and mbuild scripts 1-36
multidimensional arrays 1-34
new features 1-34
programming tools 1-35

sparse arrays 1-35
stand-alone compiler 1-37
structure arrays 1-35

MATLAB Editor/Debugger 2-9
MATLAB Report Generator 1-102
MATLAB Web Server 1-106
matrices

sparse 1-9
matrix assignment 4-12
mbuild 1-40
mbuild script 1-36
mdlProcessParameters S-function 2-26, 2-30
mdlRTW S-function 2-26, 2-30
mdlStart S-function 2-26, 2-30
measuring features in images 2-49
memory leaks 4-17
memory management

API 4-14
Merge block 2-26
method search order 4-6, 4-12

upgrade issues 4-6
mex script 1-36
M-file

clearing 2-6
locking 2-6

Microsoft
HTML Help 1-20
Office 97 3-4

mlock 4-11
model browser 1-42
modeling 1-47
multibyte characters 3-4
multidimensional array 1-34
munlock function 4-11
Mux block 1-46
mxArray

memory management 4-14
I-7



Index

I-8
mxFree function 4-14
mxSetCell function 4-15
mxSetData function 4-16, 4-17
mxSetField function 4-15
mxSetImagData function 4-16, 4-17
mxSetIr function 4-17
mxSetJc function 4-17
mxSetPi function 4-16, 4-17
mxSetPr function 4-16, 4-17

N
Neural Network Toolbox 3.0

enhancements 2-50
improved Simulink support 2-50
modular network representation 2-50
new algorithms 2-50
new network types 2-50
new training options 2-50

newplot function 2-16
nnls function

now lsgnonneg 4-6
Notebook 3-4

installing 1-5

O
objects

loading and saving 1-12
subscripting 4-7

ODE functions 2-6
Office 97 3-4
online documentation 1-20, 2-11

Japanese 2-11
open function 1-7
OpenGL renderer 2-14
optimization functions 1-11
Optimization Toolbox 2.0

function name and syntax changes 1-70
large-scale algorithms 1-70

ordinary differential equation functions 2-6

P
paper types for printing 2-16
passband digital modulation/demodulation blocks

2-37
patches

printing 3-6
pause function 1-8
p-code 4-4
pcode function

upgrade issues 4-4
persistent 4-11
persistent keyword 2-8
persistent variables 2-8
Plot Editor 1-25

interface 1-25
overview 1-24

plot function 4-19
plotting 1-28

Symbolic Math Toolbox 2.1 1-78
PNG format 1-32
Portable Network Graphics images 1-32
portfolio analysis functions

Financial Toolbox 2-46
Postscript 3-10
Power System Blockset 1.0 2-37
Power System Blockset 1.1 1-101
print frames, in Simulink 2-28
print function 3-7, 3-10
PrintFrame Editor 1-26



Index
printing 3-7, 3-10
paper types 2-16
patches 3-6
Simulink 1-49, 2-28
Stateflow 1-52
surfaces 3-6

Probe block 1-45
profiler 1-18
profreport command 1-18
projection 1-66
property values 1-30

Q
quit function 1-8

R
Radon transform 2-49
Real-Time Workshop

relationship to Stateflow 3-12
Real-Time Workshop 2.2

asynchronous interrupt handling 2-29
Keithley-Metrabyte I/O support 2-29
Level 2 S-functions 2-26, 2-30
Merge block 2-29
RTWlib GUI 2-29
summary of enhancements 1-3, 2-3
Target Language Compiler 2-30
VxWorks 2-29
VxWorks Tornado 2-29
with Communications Toolbox 1.3 2-38

Real-Time Workshop 3.0
code generation for embedded applications

1-53
data types 1-54
external mode 1-53

S-function target 1-53
Simulink data type support 1-54

Real-Time Workshop Ada Coder 3.0 1-3, 1-54
rectangle function 1-30
recursion limit 2-5
reference pages

navigation 2-11
renderer

OpenGL 2-14
Root Locus Design GUI 2-39
Round Sum block 1-46
RTWlib GUI 2-29

S
save 1-36
saveas function 1-7
saving objects 1-12
SB2SL 1-49
scalar

upgrade issues 4-5
scatter function 3-5
Scope block 1-46
search

full text 2-11
segmentation analysis 1-76
setdiff function 4-20
setxor function 4-20
S-functions 1-48

Level 2 2-26, 2-30
mdlProcessParameters 2-26, 2-30
mdlRTW 2-26, 2-30
mdlStart 2-26, 2-30

SGI64 platform 2-10
Signal Processing Toolbox 4.1

enhancements 2-51, 2-54
Filter Viewer enhancements 2-53
I-9



Index

I-10
Signal Processing Toolbox 4.1 (continued)
spectral estimation enhancements 2-51
SPTool enhancements 2-51

Signal Processing Toolbox 4.2
enhanced functions 1-73
interactive tool enhancements 1-75
new demos 1-73
new functions 1-72

simplot command 1-43
simulation 2-25
Simulink

relationship to Stateflow 3-12
Simulink 2.2

additional solvers 2-25
automatic block connection 2-25
Block Properties dialog box 2-25
context-sensitive menus 2-24
debugger 2-26
dialog parameters 2-27
editing frames 2-28
enhancements (summary) 2-3
feedback loop handling 2-26
find_system 2-27
get_param 2-27
lines and annotations API 2-27
mask parameter 2-26
Merge block 2-26
model construction 2-27
object parameters 2-27
printing frames 2-28
printing title blocks 2-28
simulation 2-25
status bar 2-24
toolbar 2-24
undoing breaking of library links 2-25

Simulink 3.0
block enhancements 1-45
block library 1-44
blocks 1-45
data handling 1-47
dialogs 1-44
enhancements (summary) 1-3
Fixed-Point Blockset standardization 1-99
library browser 1-42
model browser 1-42
modeling enhancements 1-47
printing enhancements 1-49
saving data in a Handle Graphics window 1-43
S-functions 1-48
simulation enhancements 1-49
user interface enhancements 1-42
version information for models 1-48

Simulink LTI Viewer 2-39
Simulink Report Generator 1-102
single precision data 1-7
size function 4-20
solvers

Simulink 2-25
sparse matrices 1-9
Spline Toolbox 2.0

multivariate spline support 2-54
user interface enhancements 2-54
vector-valued spline enhancements 2-54

Stateflow
relationship to Real-Time Workshop 3-12
relationship to Simulink 3-12

Stateflow 1.0.6 2-35
Stateflow 2.0

boxes 1-51
chart libraries 1-51
chart styles 1-50
code generation 1-52
debugger 1-50
Explorer 1-50



Index
Stateflow 2.0 (continued)
GUI enhancements 1-50
implicit events 1-51
model printing 1-52
Simulink data type support 1-51
target builder 1-51

Stateflow Coder 3-12
Statistics Toolbox 2.2

cluster analysis functions 1-76
enhancements 1-76

step
in debugger 3-5

str2double function 1-8
string comparison 2-6
strings

comparing 2-6
converting 1-8
justification 2-8

strjust function 2-8
structure arrays 1-35
structure members 1-17
subscripting

upgrade issues 4-7
sum function 1-6
surfaces

printing 3-6
switch 1-35
Symbolic Math Toolbox 2.1

new Maple libraries 1-78
plotting enhancements 1-78

symbolic variables 1-12
symvar function 1-12
SystemBuild 1-49

T
target builder 1-51

Target Language Compiler 2-30
taxonomy analysis 1-76
taylor function 1-79
Taylor series expansion 1-79
TCP/IP 1-106, 3-4
term structure functions

Financial Toolbox 2-45
TeX format 1-8
texlabel function 1-8
textread function 1-7
texture-mapped patches and surfaces 3-6
three-dimensional data visualization 1-29
TIFF

device driver 3-7
preview images for encapsulated PostScript

3-10
TIFF files 1-49
title blocks

printing 2-28
TLC 2-30
toggle buttons 2-18
toolboxes

enhancements 2-36
updated for MATLAB 5.2 2-3
updated for Release 11 1-4

tools 1-15
tooltips 2-18
TooltipString property 2-18
truecolor images 2-18
try 4-11
try / catch 1-35
types of data 1-105

U
uisetcolor function 3-6
I-11



Index

I-12
undoing breaking of library links
Simulink 2-25

union function 4-20
unique function 4-20
Units property 2-18
upgrading from MATLAB 5.0 4-19
upgrading from MATLAB 5.1 4-9
upgrading from MATLAB 5.2 4-4

V
varargin 1-35
varargout 1-35
variable input argument 1-35
variable output argument 1-35
version

compatibility 4-2
compliance 4-2

view control 2-14
visualization, volume 1-29
volume visualization 1-29
VxWorks

support in Real-Time Workshop 2.2 2-29
VxWorks Tornado 2-29

W
warning messages 2-5
Web Server

See MATLAB Web Server

Y
Y2K support 1-9
YCbCr color space 2-49
Z
zooming on block diagrams 1-43


	Introduction
	How to Use This Document
	References and Links to Other Documents

	Release 11 Product Family Documentation Set
	Printed Manuals
	New Product Documentation

	Manuals Updated Online

	Release 11 Enhancements
	What’s New in Release 11 (MATLAB 5.3)?
	Enhancements to MATLAB 5.3
	Upgrades to Simulink, Real-Time Workshop, Stateflo...
	Simulink 3.0
	Real-Time Workshop 3.0 and Real-Time Workshop Ada ...
	Stateflow 2.0
	Toolboxes and Blocksets


	PC Installation Enhancements
	You Can Cut and Paste PLPs
	New Desktop Shortcut to Start MATLAB
	Installing Notebook

	MATLAB Language Enhancements
	Support for Integer Data Types
	New Integer Array Classes
	sum Function Now Supports All Integer Types

	File I/O Enhancements
	User-Extensible File Opening Function
	Reading Data From a Uniformly Formatted File
	Enhancements to dlmread
	Saving MATLAB Figures or Models
	Support for Single Precision Data

	String Conversion
	Constructing Complex Data
	pause Accepts Fractions of Seconds
	Enhancements to quit
	Y2K Support
	Date Functions Calling Sequence Change

	Operating on Cell Arrays
	Diagonal Concatenation
	Enhancements to Sparse Matrix Operations
	Numerical Analysis
	Enhancements to Differential Equation Solvers
	Mass Matrix Support
	Singular Mass Matrices and Differential-Algebraic ...

	Changes to Function Functions
	Changes to Least Squares Equation Solver
	New Mechanism for Setting Optimization Parameters
	Changes to cholinc Function

	Programming Enhancements
	New evalc Function
	New symvar Function
	Enhancements to inline
	Enhancements to MATLAB Object-Oriented Programming...
	Loading and Saving Objects
	Enhancements to end Statement
	Use clear classes to Clear the Class Definition Ta...


	Application Program Interface (API) Enhancements
	ActiveX Support Enhanced
	MATLAB 5.0 Data Types Supported in the MATLAB 5.3 ...

	Exploratory MATLAB Java Interface
	Intended as a Prototype for Soliciting Your Feedba...
	What You Can Do with the MATLAB Java Interface
	How to Start the MATLAB Java Interface


	Development Environment Enhancements
	Enhancements to the Command Window (PC Only)
	Show or Hide the Toolbar
	View License Information
	Join Access
	Dock the Toolbar
	View Description of Feature
	Cap, Num, and Scroll Locks

	Enhancements for the edit Command (UNIX)
	Workspace Variables in the Array Editor
	Enhanced Display for Structure Members
	Enhanced MATLAB Profiler
	New profreport Function

	Figure Window Enhanced
	PrintFrame Editor Enhancements

	Online Documentation Enhancements
	Some User’s Guides Available in HTML Form
	Microsoft HTML Help Viewer

	Context-Sensitive Help

	Japanese Interface
	Visualization Enhancements
	Figure Window Enhancements
	Accessing Off-Screen Visible Figures
	New Menu Items in the Figure Window
	New Toolbar in Figure Window

	The Plot Editor
	New Context-Sensitive Help

	New Look for the PrintFrame Editor
	Support for HDF/EOS Development Tools
	New Histogram Function
	New Plotting Functions
	New Volume Visualization Functions
	findobj More Flexible
	Rectangle Object Added
	legend Enhancements
	New Figure Properties
	DoubleBuffer Figure Property
	XDisplay, XVisual, XVisualMode Properties - UNIX O...
	XDisplay
	XVisual
	XVisualMode


	New FontName Property Value
	uint16 CData for Images
	Support for Portable Network Graphics Images

	GUI Development Enhancements
	Support for BackgroundColor for Push Buttons (PC o...
	Support for Fixed-Width Fonts

	MATLAB Compiler 2.0
	Summary of New Features
	Data Constructs
	Multidimensional Arrays
	Cell Arrays
	Structure Arrays
	Sparse Arrays

	Programming Tools
	Variable Input Arguments
	Variable Output Arguments
	try … catch … end
	switch … end

	Language Enhancements
	Persistent Variables
	load and save Commands

	Improved Compiler Options
	Macro Options
	Error/Warning Messages
	Improved mex and mbuild Scripts
	Stand-Alone Compiler

	MATLAB C/C++ Math Library 2.0
	MATLAB C Math Library 2.0
	Summary of New Features
	Over 60 New Functions
	Automated Memory Management for Temporary Arrays
	Data Types
	Multidimensional Arrays
	Cell Arrays
	MATLAB Structures
	Sparse Matrices

	New Indexing Functions
	Variable Input and Output Argument Lists
	try and catch Blocks
	Improved mbuild Script

	MATLAB C++ Math Library 2.0
	Summary of New Features
	Over 60 New Functions
	Data Types
	Multidimensional Arrays
	Cell Arrays
	MATLAB Structures
	Sparse Matrices

	New Indexing Functions
	Variable Input and Output Argument Lists
	Improved mbuild Script


	Simulink 3.0
	User Interface Enhancements
	Library Browser (PC Only)
	Model Browser (PC Only)
	Block Data Tips (PC Only)
	Zoomable Diagram View
	New Standard Dialog Button Layout
	Recreating Saved Data in a Handle Graphics Window
	Dynamic Masked Dialogs
	Masked Dialog Parameter Limit Increased
	New Mask Display Command: port_label
	Signal Properties Dialog

	Block Enhancements
	Reorganized Block Library
	Masked S-Function Blocks
	Images in Masked Dialogs
	New Blocks
	Enhanced Blocks
	Clock Block
	Mux Block
	Round Sum Block
	Scope Block


	Modeling Enhancements
	New Data I/O Formats
	Data Type Conversion
	Data Types
	Complex/Real Conversions
	Version Control

	S-Function Enhancements
	Port-Based Sample Times Supported for S-Functions

	Simulation Enhancements
	Reduced Memory Requirement
	Simulation Error Navigation

	Printing Enhancements
	SB2SL 2.0

	Stateflow 2.0
	GUI Enhancements
	Enhanced Debugger User Interface
	Enhanced Explorer Interface
	Chart Styles
	Enhanced Target Builder Interface

	Modeling Features
	Boxes
	Chart Libraries
	Arrays
	Support for Simulink Data Types
	Directed Broadcasting of Implicit Events
	Enhance Model Printing

	Code Generation
	Incremental Code Generation
	Coder Optimizations


	The Real-Time Workshop 3.0
	External Mode
	Code Generation for Embedded Applications
	Real-Time Workshop S-Function Target
	mdlRTW Supports Data Typing
	Simulink Data Types
	Real-Time Workshop Ada Coder 3.0
	Features
	Restrictions

	Real-Time Windows Target 1.0

	Communications Toolbox 1.4
	Control System Toolbox 4.2
	Helper Commands, New Commands, and Changed Command...

	Financial Toolbox 2.0
	Portfolio Analysis
	Fixed Income Functions
	Univariate GARCH Processes
	Pricing and Analyzing Derivatives
	Time Series Demonstration

	Image Processing Toolbox 2.2
	Support for 16-bit Image Data
	Data Type Conversion
	Improved Speed
	New Border-Handling Options
	Image-Related MATLAB 5.3 Changes
	Bug Fixes

	Mapping Toolbox 1.1
	New External Data Interface Functions
	New Generalized Functions
	New Projection Functions
	New Calculate and Plot Projection Distortion Chara...
	New Atlas Data Interface Functions
	New Map Creation Functions
	New Data Projection Functions
	New or Updated Map Appearance and Interaction Func...
	New Moon Topography Datasets
	Updated Graphical Interface

	Excel Link 1.0.8
	Support for Microsoft Excel 97

	Optimization Toolbox 2.0
	Large-Scale Algorithms
	Function Names and Calling Syntax

	Signal Processing Toolbox 4.2
	New Functions
	New Demos
	Enhanced Functions
	firrcos
	pburg, pmtm, pmusic, pyulear
	poly2rc
	rc2poly
	sos2ss, sos2tf, sos2zp
	ss2sos, zp2sos
	detrend Now Part of MATLAB Language

	Interactive Tool Enhancements

	Statistics Toolbox 2.2
	Cluster Analysis Functions

	Symbolic Math Toolbox 2.1
	Enhanced Plotting Capabilities
	New Maple Libraries
	Taylor Series Expansion

	DSP Blockset 3.0
	Running Different Blockset Versions
	Incompatibilities Between 3.0 and 2.2
	Library Structure
	Data Frames
	Upgrading Your Models to Use Data Frames

	Complex Data
	Multirate Sample Time Enhancements
	New and Enhanced Blocks

	Fixed-Point Blockset 2.0
	Fixed-Point Blocks
	Arithmetic Blocks
	Conversion Blocks
	Look-Up Table Blocks
	Logical and Comparison Blocks
	Discrete-Time Blocks

	Filters and Systems
	Data Types
	Fixed-Point Data Types
	Floating-Point Data Types

	Scaling
	General Scaling Modes
	Constant Scaling for Best Precision

	Automatic Scaling Tool
	Locking the Output Scaling
	Rounding
	Overflow Handling
	Overriding with Doubles
	Specialized Storage Capabilities
	Standardization with Simulink
	Enhanced Model Construction
	Updating Obsolete Fixed-Point Blocks
	Code Generation
	Demos
	Online Help

	Power System Blockset 1.1
	DC Machine Block Added

	New Products
	New MATLAB and Simulink Report Generators
	Two Report Generator Products
	Multiple Report Formats
	Creating Reports with the Report Generator

	Real-Time Windows Target
	Features
	Supported Boards

	Database Toolbox
	MATLAB Web Server


	Release 10 (MATLAB 5.2) Enhancements
	What Was New in Release 10 (MATLAB 5.2)?
	Enhancements to MATLAB
	Upgrades to Simulink, Real-Time Workshop, Toolboxe...
	New Power System Blockset

	MATLAB Language Enhancements
	Support for try/catch
	Warning Messages
	Setting the Recursion Limit
	New Mathematical Functions
	New String Comparison Functions
	M-File Locking
	Persistent Variables
	File and Directory Handling
	Enhancement to load
	Cell Array of Strings
	Enhancement to strjust
	Change in clc and home Behavior
	Additional Functions Changed in MATLAB 5.2

	Development Environment Tools Enhancements
	Changes to the MATLAB Editor/Debugger
	Array Editor Added
	New Tools for UNIX Environments
	SGI64 Fully Supported

	Online Documentation Enhancements
	Full-Text Search Facility
	Reference Page Navigation
	The doc Command
	Japanese Help Desk

	ActiveX Support Enhanced
	HDF File Format Support
	Visualization Enhancements
	Support for OpenGL Renderers
	New View Control Commands
	Complex Camera Operations
	Camera and Axis Control

	New Lighting Convenience Commands
	Support for Predefined Paper Types
	Mechanism to Hide Objects from Selection
	New Behavior for newplot, clf, and cla
	Behavior of newplot
	Behavior of clf and cla


	GUI Development Enhancements
	New Units Property Value
	Tooltips
	Toggle Buttons
	Displaying Truecolor Images on Controls
	Context Menus

	MATLAB Compiler
	Compatibility Release
	Improved Installation and Configuration Process
	Enhanced Support for Windows 95 and NT Compilers
	Building Simulink CMEX S-Functions
	Additional Enhancements

	MATLAB C Math Library 1.2
	Compatibility Release
	New Features

	MATLAB C++ Math Library 1.2
	Compatibility Release
	New Features

	Simulink 2.2
	User Interface
	Toolbar
	Status Bar
	Context-Sensitive Menus
	Automatic Block Connection
	Block Properties Dialog Box
	Undoing Breaking of Library Links

	Simulation
	Block Priorities
	Additional Solvers
	Debugger
	Tunable Mask Parameters
	Level 2 S-Functions
	Merge Block
	Non-Algebraic Feedback Loops

	Model Construction Commands
	Object Parameters
	Dialog Parameters
	Lines/Annotations API

	Printing
	Print Frames


	Real-Time Workshop 2.2
	Asynchronous Processes
	RTWlib
	Merge Block Added
	Level 2 S-Functions
	Target Language Compiler (TLC) Enhancements
	Passing Parameters: mdlRTW and RTWData
	mdlRTW
	RTWData



	Stateflow 1.0.6
	Toolboxes and Blocksets
	Power System Blockset 1.0
	Communications Toolbox 1.3
	Control System Toolbox 4.1
	DSP Blockset 2.2
	Data Frames
	Filter Realization Wizard
	New and Enhanced Blocks
	For Users Upgrading from Version 1.0a

	Financial Toolbox 1.1
	Term Structure Functions
	Derivatives Function
	Portfolio Analysis Function
	Date Functions
	Demo of an Excel Link Portfolio Optimizer Tool

	Fuzzy Logic Toolbox 2.0
	Graphical User Interface Enhancements
	Fuzzy Algorithm Improvements
	FIS Represented As MATLAB Structures
	More Dimensions Allowed for User-Defined Membershi...

	Image Processing Toolbox 2.1
	Interactive Pixel Value Display
	Feature Measurement
	Inverse Radon Transform
	Canny Edge Detector
	Other Enhancements

	Neural Network Toolbox 3.0
	Signal Processing Toolbox 4.1
	Spectral Estimation
	SPTool Graphical User Interface
	General Enhancements

	Spline Toolbox 2.0
	Multivariate Spline Support
	User Interface Enhancements
	Vector-Valued Spline Enhancements
	Additional Enhancements



	MATLAB 5.1 Enhancements
	What Was New in MATLAB 5.1?
	Enhancements to MATLAB
	Upgrades to Simulink, Real-Time Workshop, Toolboxe...
	New Products

	Language and Development Environment Enhancements
	find Returns Empty Matrix
	Multibyte Character Support
	Removal of Microsoft Windows TCP/IP Issues
	Notebook Support for Office 97
	PC Editor/Debugger
	Handle Graphics Enhancements
	Scatter Plot Functions Added
	X-Windows Support for uisetcolor
	Previously Undocumented Functions
	Printing Patches and Surfaces

	TIFF and JPEG Device Drivers
	TIFF
	Compression

	JPEG
	Compression


	TIFF Preview Images for Encapsulated PostScript
	API Enhancements for Windows NT
	Setting Up the Compiler Location

	Stateflow
	Addition to the Simulink Modeling Environment
	Stateflow Coder

	Mapping Toolbox

	Upgrading to Release 11
	Migrating to Release 11 (MATLAB 5.3)
	MATLAB Migration
	Roadmap for Different Migration Routes

	Upgrading From MATLAB 5.2 to MATLAB 5.3
	Language Issues
	pcode
	Date Functions Need pivotyear Parameter
	Sparse scalar Expansion
	getfield Must Use a 1-by-1 Structure
	Syntax Change for dlmread
	Behavior of linspace and logspace Now the Same as ...
	Name Changes
	Method Search Order Changed
	Change to Subscripting for Objects
	Use clear classes to Clear the Class Definition Ta...

	Changes to legend

	Upgrading from MATLAB 5.1 to MATLAB 5.3
	Use of P-Code Between MATLAB Versions
	Colon Expressions with Floating-Point Numbers
	Invoking the Path Editor from the Command Line
	Frame Uicontrols and Stacking Order
	Change to clear Behavior
	try, catch, and persistent Are Now Keywords
	Matrix Assignment
	Change to Method Search Order
	Changes to legend
	PC-Specific Changes
	Change to clc Command
	Change to cd Command

	API Memory Management Compatibility Issue
	Improperly Destroying an mxArray
	Warning
	Example That Causes Warning
	Solution

	Incorrectly Constructing a Cell or Structure mxArr...
	Warning
	Example That Causes Warning
	Solution

	Creating a Temporary mxArray with Improper Data
	Warning
	Example That Causes Warning
	Solution

	Potential Memory Leaks
	Recommendation: MEX-Files Should Destroy Their Own...


	Upgrading from MATLAB 5.0 to MATLAB 5.3
	Upgrading Simulink, Toolboxes, and Blocksets
	Upgrading to Simulink 3.0 From Simulink 2.1
	Upgrading to DSP Blockset 3.0 and Communications T...
	The New Complex Data Format
	Why You Need to Update Your Models to Use the New ...
	Locating Old Blocks in a Model

	Upgrading Optimization Toolbox 2.0
	Upgrading to Fuzzy Logic Toolbox 2.0


	Index

