xPC Target

For Use with Real-Time Workshop -

Modeling
—

Simulation
—

Implementation
—

User’s Guide ...e;‘__\The MathWorks

Version 2

X L8

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

xPC Target User’s Guide
0O COPYRIGHT 1999 - 2002 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

New for Version 1 (Release 11.1)
Revised for Version 1.1 (Release 12)
Revised for Version 1.2 (Release 12.1)
Revised for Version 1.3 (Release 12.1+)
Revised for Version 2 (Release 13)

Printing History: September 1999 First printing
November 2000 Online only
June 2001 Online only
September 2001 Online only
July 2002 Online only

Contents

Advanced Topics
1

I/ODriverBlocks 1-2
I/O Driver Block Library 1-2
Memory-Mapped Devicesccoiiiiinen... 1-5
ISABusI/ODevicesuiiiiiiiiiiinnnnn, 1-5
PCIBusI/ODevicesoiiiiiiiiiiiinnnnn, 1-5
xPC Target I/O Driver Structures 1-6
Updated Driver Information 1-8
Adding I/0O Blocks with the xPC Target Library 1-9
Adding I/O Blocks with the Simulink Library Browser 1-13
Defining I/O Block Parameters 1-17
PollingMode i, 1-20
xPC Target Kernel Polling Mode 1-20
Interrupt Mode 1-20
PollingMode 1-22
Setting the PollingMode 1-24
Restrictions Introduced by the Polling Mode 1-26
Controlling the Target Application 1-30
Polling Mode Performance 1-30
Target PC Command-Line Interface 1-32
Using Methods and Properties on the Target PC 1-32
Target Object Methods 1-33
Target Object Properties 1-33
Scope Object Methods 1-35
Scope Object Properties 1-36
Using Variables on the Target PC 1-39
Variable Commandstiiiiiinnn... 1-40
Web Browser Interface 1-41
Connecting the Web Interface Through TCP/IP 1-41
Connecting the Web Interface Through RS-232 1-42
Usingthe MainPage 1-45
Changing WWW Properties 1-47

ii

Contents

Viewing Signals with a Web Browser 1-48
Viewing Parameters with a Web Browser 1-49
Changing Access Levels to the Web Browser 1-49

Graphical User Interfaces

xPC Target Interface Blocks to Simulink Models 2-2
Simulink User Interface Model 2-2
Creating a Custom Graphical Interface 2-4
To xPC Target Block, 2-5
From xPC Target Block 2-6

Interface with Dials & Gauges Blockset 2-8
Introduction to the Dials & Gauges Blockset 2-8
Target Application Model Description 2-11
Creating a Target Application Model 2-12
Marking Block Parameters 2-13
Marking Block Signals 2-16
Description of the User Interface Model 2-18
Creating a User Interface Model 2-19
Adding Dials & Gaugesoiiiiiirniin. 2-21
Creating a Target Application 2-22

Running a Target Application with a User Interface Model .. 2-23

Embedded Option

Introduction 3-2
OVEIVIEW . .ottt e e 3-2
DOSLoader Mode Overviewccuuunn.. 3-3
StandAlone Mode Overviewc.couiiiiiio... 3-4
Software Architecture 3-4
Restrictions e 3-6

Embedded Option Setup 3-7

Updating the xPC Target Environment 3-7
Creating a DOS System Disk 3-9
DOSLoader Target Applications 3-11
Creating a Target Boot Disk for DOSLoader 3-11
Creating a Target Application for DOSLoader 3-12
Stand-Alone Target Applications 3-13
Creating a Target Application for Stand-Alone 3-13
Creating a Target Boot Disk for StandAlone 3-14
Using Target Scope Blocks with StandAlone 3-14

Software Environment

4

Environment Reference 4-2
Environment Properties 4-2
Environment Functions 4-10

Using Environment Properties and Functions 4-11
Getting a List of Environment Properties 4-11
Saving and Loading the Environment Properties 4-12
Changing Environment Properties with a

Graphical Interface 4-12
Changing Environment Properties with a
Command-Line Interface 4-15

System Functions 4-16
GUIFunctions0 .. 4-16
Test Functions 4-17
xPCTarget Demoso, 4-17

iii

iv

Target Objects

5]

Target Object Reference 5-2
What Is a Target Object? 5-2
Target Object Properties 5-3
Target Object Methods 5-9

Using Target Objects 5-11
Displaying Target Object Properties 5-11
Setting Target Object Properties from the Host PC 5-13
Setting Target Object Properties from the Target PC 5-14
Getting the Value of a Target Object Property 5-15
Using the Method Syntax with Target Objects 5-16

Scope Objects

6

Scope Object Reference 6-2
What Is a Scope Object? 6-2
Scope Object Properties i ... 6-3
Scope Object Methods 6-6

Using Scope Objects 6-7
Displaying Scope Object Properties for a Single Scope 6-7
Displaying Scope Object Properties for All Scopes 6-8
Setting the Value of a Scope Property 6-8
Getting the Value of a Scope Property 6-9
Using the Method Syntax with Scope Objects 6-11
Using the Property TriggerSample to Capture Data 6-12

Contents

Advanced Topics

After learning the basic procedures for creating and running a target application, acquiring signal
data and tuning parameters, you can try some of the special and advanced procedures with xPC
Target. This chapter includes the following sections:

I/O Driver Blocks (p. 1-2) Add I/O driver blocks to your Simulink model to connect
your model to sensors and actuators

Polling Mode (p. 1-20) Use polling mode as an alternative to interrupt mode for
reducing latency times with I/O drivers

Target PC Command-Line Interface Enter commands on the target PC for stand-alone

(p. 1-32) applications that are not connected to the host PC

Web Browser Interface (p. 1-41) Connect a target application running on a target PC to

any host PC connected to a network

T Advanced Topics

1/0O Driver Blocks

You add I/O driver blocks to your Simulink model to connect your model to
physical I/O boards. These I/O boards then connect to the sensors and actuators
in the physical system. This section includes the following topics:

¢ 1/O Driver Block Library

¢ Memory-Mapped Devices

¢ PCI Bus I/O Devices

¢ xPC Target I/O Driver Structures

¢ Updated Driver Information

¢ Adding I/O Blocks with the xPC Target Library

¢ Adding I/O Blocks with the Simulink Library Browser
¢ Defining I/O Block Parameters

1/0 Driver Block Library

A driver block does not represent an entire board, but an I/O section supported
by a board. Therefore, the xPC Target library can have more than one block for
each physical board. I/O driver blocks are written as C-code S-functions
(noninlined S-functions). The source code for the C-code S-functions with xPC
Target is included.

xPC Target supports PCI and ISA buses. If the bus type is not indicated in the
driver block number, you can determine the bus type of a driver block by
checking the block’s parameter dialog box. The last parameter is either a PCI
slot, for PCI boards, or a base address, for ISA boards.

You can open the I/O device driver library with the MATLAB command xpclib.
The library xpclib contains sublibraries grouped by the type of I/O function
they provide.

|/O Driver Blocks

E! Library: xpclib M=k

File Edit “iew Format

*¥PC Target Block Library

o) B B B) BB BBl

Digital Digital Counter ‘Watchdog Incremental RS232 =8 Updates
Input Output Encoder
Wersion 1.0
Copyright () 1996-1999 by The Mathifods Inc. All Rights Resenved.

When you double-click one of these groups, the sublibrary opens, displaying a
list grouped by manufacturer as shown below.

=] Library: xpclib/a/D (ol =]

File Edit “iew Format

D E B EBEEEE

Computer Burr-Brown Diamond Gespac Humusoft Keithlay Mational Real Time
Boards Metrabyte Instruments Devices

Double-clicking one of the manufacturer groups then displays the set of I/O
device driver blocks for the specified I/O functionality (for example, A/D, D/A,
Digital Inputs, Digital Outputs, and so on).

The following figure shows the A/D drivers for the manufacturer
ComputerBoards, Inc.

1-3

T Advanced Topics

E!Lihlaly: xpclib/A/D /Computer Boards =] S
File Edit “iew Format
CIO-DASIGUR ClO-DASIG01/M2 CIO-DASIG0ZM2 CIO-DAS16/220 CIO-DASIG/r EXP
ComputerBoards 1 ComputerBoards 1 ComputerBoards 1 ComputerBoards 1 ComputerBoard:
Analog Input Analog Input Analog Input Analog Input Analog Input
CIO-DASIG JR CIO-DASIG01 12 CIO-DASIG0Z 12 CIO-DASIG 320 CIO-DASIGIR EXP
CIO-DASIGIRMEG CIO-DASIG0ZMEG
ComputerBoards 1 ComputerBoards 1
Analog Input Analog Input
CIO-DASIGIR 16 CIO-DASIG0Z 16
FC104-DASIGJIRMZ FC104-DASIGJIRME
ComputerBoards 1 ComputerBoards 1
Analog Input Analog Input
FC104-DASIEJIR 12 FC104-DASIGJR 16
FCI-DAS1200/R FCI-DAS1200
ComputerBoards 1 ComputerBoards 1
Analog Input Analog Input
FCI-DAS1200 JR FCI-DAS1200

When you double-click one of these blocks, a Block Parameters dialog box
opens, allowing you to make hardware-specific parameters. Parameters

typically include

e Sample time

® Number of channels

® Voltage range

® Base address (ISA boards)

|/O Driver Blocks

Memory-Mapped Devices

Some supported boards in the xPC Target I/O library are memory-mapped
devices, for example, Burr-Brown boards. These memory-mapped boards are
accessed in the address space between 640 K and 1 M in the lower memory
area. xPC Target reserves a 112 kB memory space for memory-mapped devices
in the address range

C0000 - DCOOO

Base addresses of memory-mapped devices must be chosen within this memory
space for your target application to work properly.

ISA Bus I/O Devices
There are two types of ISA boards in the market:

¢ Jumper addressable ISA cards
¢ PnP (Plug and Play) ISA cards

xPC Target only supports jumper addressable ISA cards (non-PnP ISA boards)
where you have to set the base address manually.

PCI Bus 1/0O Devices

The xPC Target I/O library supports I/O boards with a PCI bus. During the boot
process, the BIOS creates a conflict-free configuration of base addresses and
interrupt lines for all PCI devices in the target system. The user does not need
to define any base address information in the dialog boxes of the drivers.

All PCI device driver blocks have an additional entry in their dialog boxes. This
entry is called PCI Slot (-1 Autodetect) and allows you to use several
identical PCI boards within one target system. This entry uses a default value
of -1, which allows the driver to search the entire PCI bus to find the board.
When more than one board of the same type is found, it is necessary for you to
use a designated slot number and avoid the use of autodetection. For manually
setting the slot number you use a number greater than or equal to 0. If the
board is not able to locate this slot in the target PC, your target application will
generate an error message after downloading.

T Advanced Topics

1-6

If this additional entry is set to any value equal to or greater than 0, you must
be aware of the manufacturer’s identification number (Vendor ID) and the
board identification number (Device ID) of those boards supported by the

I/0 library. When the target is booted, the BIOS is executed and the target PC
monitor shows parameters for any PCI boards installed on the target PC. An
example is shown below:

Bus No Device Func. Vendor Device Device Class IRQ
No. No. D ID
0 4 1 8086 7111 IDE controller 14/15
0 4 2 8086 7112 Serial bus 10
controller
0 11 0 1307 000B Unknown PCI device N/A
1 0 0 12D2 0018 Display controller 11

In this example, the third line indicates the location of the ComputerBoards
PCI-DIO48 board. This is known since the ComputerBoards Vendor ID is
0x1307 and the Device ID is 0xb. In this case, you now can see that the
ComputerBoards board is plugged into the PCI slot 11 (Device No.), and that
this value must be entered in the dialog box entry in your I/O device driver for
each model that uses this I/O device.

xPC Target 1/O Driver Structures

Properties for xPC Target I/O drivers are usually defined using the parameter
dialog box associated with each Simulink block. However, for more advanced

drivers, the available fields defined by text boxes, check boxes, and pull-down
lists are inadequate to define the behavior of the driver. In such cases, a more
textual description is needed to indicate what the driver has to do at run-time.
Textual in this context refers to a programming language like syntax and style.

xPC Target currently uses a textual description contained in message
structures for the RS-232, GPIB, CAN (initialization), and the general counter
drivers (AMD9513).

What is a message structure? — A message structure is a MATLAB array
with each cell containing one complete message (command). A message
consists of one or more statements.

|/O Driver Blocks

First message Second message Third message

Message(l).field | Message(l).field | Message(l).field
Message(l).field | Message(1).field | Message(l).field
Message(l).field | Message(1).field | Message(l).field

Syntax of a message statement — Each statement in a message has the
following format:

Structure_name(index).field name = <field string or value>

The field names are defined by the driver, and need to be entered with the
correct upper- and lowercase letters. However, you can choose your own
structure name and enter that name into the driver parameter dialog box.

Creating a message structure — You could enter the message structure
directly in the edit field of the driver parameter dialog box. But because the
message structure is an array and very large, this becomes cumbersome very
easily.

A better way is to define the message structure as an array in an M-file and
pass the structure array to the driver by referencing it by name. For example,
to initialize an external A/D module and acquire a value during each sample
interval, create an M-file with the following statements:

Message(1).senddata="'InitADConv, Channel %d'
Message (1) .inputports=[1]

Message(1).recdata=""'

Message (1) .outputports=[]

Message(2).senddata='Wait and Read converted Value'
Message(2) .inputports=[]

Message(2) .recdata="'5%f"

Message(2) .outputports=[1]

This approach is different from other xPC Target driver blocks:

1-7

T Advanced Topics

1-8

¢ The M-file containing the definition of the message structure has to be
executed before the model is opened.

After creating your Simulink model and message M-file, set the preload
function of the Simulink model to load the M-file the next time you open the
model. In the MATLAB window, type

set_param(gcs, 'PreLoadFcn', 'M-file_name'

® When you move or copy the model file to a new directory, you also need to
move or copy the M-file defining the message structure.

During each sample interval, the driver block locates the structure defined in
the Block Parameters dialog box, interprets the series of messages, and
executes the command defined by each message.

Specific drivers and structures — For detailed information on the fields in a
message structure, see the following chapters in the xPC Target I/O Reference
documentation:

¢ Chapter 1, “RS232 I/O Support”
¢ Chapter 2, “GPIB I/O Support”
¢ Chapter 3, “CAN I/O Support”

Updated Driver Information

Since we are always updating and adding new drivers to xPC Target, not all of
the information about these drivers is included in the online or printed
documentation.

For updated and additional driver information, see our developer Web site at

http://www.mathworks.com/support/product/XP/productnews/
productnews.shtml

|/O Driver Blocks

Adding 1/0 Blocks with the xPC Target Library

xPC Target includes a Simulink block library for I/O drivers. The highest
hierarchical level in the library is grouped by I/O function. The second level is
grouped by board manufacturer. The manufacturer groups within this second
level contain the driver blocks for specific boards.

This procedure uses the Simulink model xpc_osc.mdl as an example of how to
add and connect I/0 blocks.

1 In the MATLAB window, type
xpclib

The Library: xpclib window opens.

EjLibrarv: xpclib - |EI |£|

File Edit View Format Help

¥PC Target Block Likirary

g I i T I i B i B

AT Lnii Lrigital Lrigital Counter Wratchdog Incremental
Input Qutput Encoder
Synchra REZ32 GPIB CAN Thermo Signal Shared
Resalwer couple Conditioning Memony

icaIiceIice

Misz. Asynchronous uor
Ewent

Wersion 1.3
Copyright () 1995-2001 by The Mathiione, Inc.

Alternatively, you can access the I/O driver library with the Simulink Library
Browser. See “Adding I/0O Blocks with the Simulink Library Browser” on
page 1-13.

1-9

T Advanced Topics

2 Open a function group. For example, to open the A/D group, double-click the
A/D block.

The manufacturer level opens.

[T Library: xpclib/a /D * - o] x|

File Edit View Format Help

I KK R I e

Adwantech Computer Bur-Brown [rata Diamond Gespac Humusoft
Boards Translation

ol [o] [

Keithley Mational FReal Time ‘ersalogic
Metrabnyte Instruments Dewices

Within each manufacturer group are the blocks for a single function.

3 Open a manufacturer group. For example, to open the A/D driver blocks
from ComputerBoards, double-click the group marked ComputerBoards.

The window with the A/D driver blocks for ComputerBoards opens.

1-10

|/O Driver Blocks

E! Library: xpclib

File Edit

Viiew Format Help

=1alx]

ClI0-DASHEUIR
ComputerBoards 1
Analog Input

ClI0-DASIE01M2
ComputerBoards 1
Analog Input

ClI0-DASIE02M2
ComputerBoards 1
Analog Input

CIO-DAS16 JR

CIO-DAS1E01 12

CIO-DAS1602 12

CI0-DASIGIRMG
ComputarBoards 1
Analog Input

CI0-DAS1602/16
ComputarBoards 1
Analog Input

Cl0-DAS16/330
ComputerBoards 1
Analog Input

CIO-DASAGIR 16

ClO-DASAG0Z 16

CIO-DASE 330

PCAQG-DASIGIRMZ
ComputerBoards 1
Analog Input

PCAQG-DASIGIRME
ComputerBoards 1
Analog Input

CIO-DASAGr EXP
ComputerBoards
Analag Input

FCAD4-DASIGIR 12

FCAD4-DASIEIR 16

FCI-DAS12000R FCI-DAS1200

ComputarBoards 1 ComputarBoards 1
Analog Input Analog Input

PCI-DASH200 JR PCI-DASH200

CIO-DAS1GIR EXF

PCI-DASHE0202
ComputerBoards 1
Analog Input

PCI-DASHE0206
ComputerBoards 1
Analog Input

PCIM-DASAG0ZMEG
ComputerBoards 1
Analog Input

FCI-DAS1G02 12

FCI-DAS1G02 16

FCIM-DAS1602 16

XpC_0SC

4 In the Simulink window, type

The Simulink block diagram opens for the model xpc_osc.md1l.

KPC_0SC _ ol x|
File Edit View Simulation Format Tools Help
oooo 100072

a0 3 |

< +400s5+1000"2
Signal Transfer Fon Scopel
Generator
Ciutport

1-11

T Advanced Topics

5 From the block library, click-and-drag the name of an A/D board to the
Simulink block diagram. Likewise, click-and-drag the name of a D/A board
to your model.

Simulink adds the new I/O blocks to your model.

6 Remove the Signal Generator block and add the Analog Input block in its
place. Remove the Scope block and add the Analog Output block in its place.

The demo model xpcosc should look like the figure shown below.

) xpc_osc =1l

File Edit View Simulation Format Tools Help

ClO-DASAG02ME 10002

ComputerBoards 1 _
Analog Input 52+4005+100042
ClO-DAS1802 16 Transfer Fon

CIO-DASIG02ME
1 ComputerBoards
Analag Output

ClO-DASAE02 15 1

L J

Ciutport

Note You cannot run this model unless you have the I/O board shown
installed in your target PC. However, you can substitute the driver blocks
for another I/O board that is installed in the target PC.

Your next task is to define the I/O block parameters. See “Defining I/O Block
Parameters” on page 1-17.

1-12

|/O Driver Blocks

Adding 1/0 Blocks with the Simulink Library
Browser

xPC Target includes a Simulink block library for I/O drivers. The highest
hierarchical level in the library is grouped by I/O function. The second level is
grouped by board manufacturer. The manufacturer groups within this second
level contain the driver blocks for specific boards.

This procedure uses the Simulink model xpc_osc.mdl as an example of how to
add and connect I/0 blocks.

1 In the MATLAB window, type

XpC_o0sc

The Simulink block diagram opens for the model xpc_osc.mdl.

)xpc_osc ;IEI il

File Edit view Simulation Format Tools Help

DoDoD o | o002

7| 52 +2005+1 00072

Y

Signal Transfer Fcn | Scopel
Generatar - ; O
Qutport

2 In the Simulink window, from the View menu, click Show Library
Browser.

The Simulink Library Browser window opens. Alternatively, you can open
the Simulink Library Browser by typing simulink in the MATLAB
Command Window.

1-13

T Advanced Topics

[T simulink Library Browser _ ol x|
File Edit View Help
[= 4a Find ||
| Subsystems: simulink3/Subsystems
B simulink) . -
Assert —
B Control System Toolbox [seenions
B DsP Blockset i
: . Cont
B Dials & Gauges Blockset /_ oniinuous
B Fixed-Point Blockset .
i [} t
W Fuzzy Logic Toolbox i Discrete
¥ Power System Blockset | unctions &
¥ Real-Time Windows Target O Taples
¥ Real-Time Workshop 0=
¥ s-function demos s
B simulink Extras e Norlinsar
B stateflow i \
- @l Virtual Reality Toolbox m .
:l | ; Signals &
- T XPC Target Sretarme
Wy s]
=>8+4=| Sinks L
AT
(‘—\r/—f)- Sources
Fyn A
Ready S

You can access the xPC Target I/O library by right-clicking xPC Target, and
then clicking Open the xPC Target Library.

Alternatively, you can access driver blocks using the xPC Target I/O driver
library. See “Adding I/O Blocks with the xPC Target Library” on page 1-9.

3 Double-click xPC Target.

A list of I/O functions opens.

1-14

|/O Driver Blocks

E! Simulink Library Browser ;lglil
File Edit View Help
01 & 44 Find ||
| Watchdog: Selectthe settings for the subisystem block.
=- B xPC Target ;I g AD (B
-3 ASD [|
----- # Asynchronous Event E‘ Asynchranous
- CAN | FEvent
- 3 Counter r
CAN
-3 D/A %
- # Digital Input ™
e Count
- #+ Digital Qutput % e
-3 Incremental Encoder |
----- #| Misc, [, | -
Digital Input
4] RS2 % igital Inpu
- Shared Memory [| .
. . Digital Output
#- #+ Signal Conditioning % gl R
-2 Synchro Resolver E‘ GPIB
- # Thermo couple |
..... = upDp E_ Incrernertal
=- ¥ Watchdog _lm] Encoder
w
hisc.
N | ol L P ~|
Ready 4

4 Open a function group. For example, to open the A/D group for
ComputerBoards, double-click A/D, and then double-click
ComputerBoards.

A list with the A/D driver blocks for ComputerBoards opens.

1-15

T Advanced Topics

1-16

[T] simulink Library Browser = |EI |£|
File Edit view Help
0 &= 44 Ffind ||

| PCIM-DAS1602 16 : PCIM-DAZ1EDZ/16 :I

oW

<

®PC Target -
= A/D

-----] Advantech

----- | Burr-Brown

""" %] Computer Boards
----- # Data Translation

----- # Diamond

----- #| Gespac

----- | Humusoft

----- 2 Keithley Metrabyte
----- # National Instrumer
----- # Real Time Devices
----- # Wersalogic

#] Asynchronous Event

= CAN
w
| »

#| Counter
= D/A

-
| CIO-DASTE 330 —

= | CIO-DASTE JR

o+ | ClIO-DASTRDT 12

| CIO-DASTROZ 12

-+ | CIO-DASTR0Z 16

| CI0-DASTEIR 16

Ready

CIO-DASTEIR
ExF

o [PC104-DASTEIR

12

o [PCI04-DASTER

16 |

B

5 From the block library, click-and-drag the name of an A/D board to the
Simulink block diagram. Likewise, click-and-drag the name of a D/A board
to your model.

Simulink adds the new I/O blocks to your model.

6 Remove the Signal Generator block and add the analog input block in its
place. Remove the Scope block and add the analog output block in its place.

The model xpcosc should look like the figure shown below.

|/O Driver Blocks

T xpc_osc B —[o| x|

File Edit View Simulation Format Tools Help

ClO-DAS1602MG 10002 ClO-DAS1602MG

ComputerBoards 1 _ 1 ComputerBoards
Analog Input 52 +4005+10002 Analog Output

CI0-DAS1G02 16 Transfer Fon CIO-DASIE02 16 1

L J

Ciutport

Note You cannot run this model unless you have the I/O board shown above
installed in your target PC. However, you can substitute the driver blocks
for another I/O board that is installed in the target PC.

Your next task is to define the I/O block parameters. See “Defining I/O Block
Parameters”.

Defining 1/0 Block Parameters
The I/O block parameters define values for your physical I/O boards. For

example, I/O block parameters include channel numbers for multichannel
boards, input and output voltage ranges, and sample time.

This procedure uses the Simulink model xpc_osc.mdl as an example, and
assumes you have added an analog input and an analog output block to your
model. To add an I/O block, see either “Adding I/O Blocks with the xPC Target
Library” on page 1-9 or “Adding I/O Blocks with the Simulink Library Browser”
on page 1-13.

1 Inthe Simulink window, double-click the input block labeled Analog Input.
The dialog box for the A/D converter opens.

2 Fill in the dialog box. For example, for a single channel enter 1 in the
Number of Channels box, select +10 V for the input range, and select
single-ended (16 channels) for the MUX switch position. Enter the same

1-17

T Advanced Topics

1-18

sample time you entered for the step size in the Simulation Parameters
dialog box. Enter the base address for this ISA-bus board.

The Block Parameters dialog box should look similar to the figure shown
below.

Block Parameters: CIO-DAS1602 16 x|

—adcbhpeidas (mask) (link)

CIO-DASTE0Z 6
ComputerBoards
Analog Input

— Parameters
Mumber of Channels:

|1
Range: |+-1 1 LI

RALE: Isingle-ended (16 channels) LI

Sampletime:
|IZI.IZIDIZI250

Base Address:
IEI)(SEID|

(0] I Cancel Help Al

3 In the Simulink window, double-click the output block labeled Analog
Output.

The dialog box for the D/A converter opens.

4 Fill in the dialog box. For example, for one channel enter [1] in the Channel
Vector box; for an output level of #10 V enter the code [-10] in the Range
Vector box. Enter the same sample time you entered for the step size in the
Simulation Parameters dialog box. Enter the base address for this ISA-bus
board.

|/O Driver Blocks

The Block Parameters dialog box should look similar to the figure shown

below.

Block Parameters: CIO-DAS1602 16 1

—dachisa (mask) (link)

CIO-DASTE0Z 6
ComputerBoards
Analog Output

— Parameters
Channel Yactor:

[
Range Yector:

101

Sampletime:

|0.000250
Board Base Address (hex):

|uxauu

o]

Cancel

Help Apply

If you change the sample time by changing the target object property
SampleTime, the sample times you entered in both of the I/O blocks are set to
the new value. The step size you entered in the Simulation Parameters dialog

box remains unchanged.

Your next task is to build and run the target application. See “xPC Target

Application” on page 3-24.

1-19

T Advanced Topics

Polling Mode

1-20

A good understanding of polling mode will help you to effectively use it, and a
better understanding of interrupt mode will help you to decide under which
circumstances it makes sense for you to switch to the polling mode. See
“Interrupt Mode” on page 1-20 and “Polling Mode” on page 1-22. This section
includes the following topics:

¢ xPC Target Kernel Polling Mode

¢ Interrupt Mode

¢ Polling Mode

¢ Setting the Polling Mode

¢ Restrictions Introduced by the Polling Mode
¢ Controlling the Target Application

¢ Polling Mode Performance

xPC Target Kernel Polling Mode

Polling mode for the xPC Target real-time kernel is designed to execute target
applications at sample times close to the limit of the hardware (CPU). Using
polling mode with high-speed and low-latency I/O boards and drivers, allows
you to achieve smaller sample times for applications that you cannot achieve
using the interrupt mode of xPC Target.

Polling mode has two main applications:

¢ Control applications — Control applications of average model size and I/O
complexity that are executed at very small sample times (Ts = 5 to 50 us)

¢ DSP applications — Sample-based DSP applications (mainly audio and
speech) of average model size and I/O complexity that are executed at very
high sample rates (Fs = 20 to 200 kHz)

Interrupt Mode

Interrupt mode is the default real-time execution mode for the xPC Target
kernel. This mode provides the greatest flexibility and is the mode you should
choose for any application that executes at the given base sample time without
overloading the CPU.

Polling Mode

The scheduler assures real-time single-tasking and multitasking execution of
single-rate or multirate systems including asynchronous events (interrupts).
Additionally, background tasks like host-target communication or updating
the target screen run in parallel with the sample-time-based model tasks. This
allows you to interact with the target system while the target application is
executing in real time at high sample rates. This is made possible by an
interrupt-driven real-time scheduler that is responsible for executing the
various tasks according to their priority. The base sample time task can
interrupt any other task (larger sample time tasks or background tasks) and
execution of the interrupted tasks resumes as soon as the base sample time
task completes operation. This gives a quasi-parallel execution scheme with
consideration to the priorities of the tasks.

Latencies Introduced by Interrupt Mode

Compared to other modes, interrupt mode has more advantages. The exception
is the disadvantage of introducing a constant overhead or latency, which
reduces the minimal possible base sample time to a constant number. The
overhead is the sum of various factors related to the interrupt-driven execution
scheme and can be referred to as overall interrupt latency. The overall latency
consists of the following parts, assuming that the currently executing task is
not executing a critical section and has therefore not disabled any interrupt
sources.

¢ Interrupt controller latency — In a PC-compatible system the interrupt
controller is not part of the x86-compatible CPU but part of the CPU chipset.
The controller is accessed over the I/O-port address space, which introduces
a read or write latency of about 1 us for each 8 bit/16 bit register access.
Because the CPU has to check for the interrupt line requesting an interrupt,
and the controller has to be reset after the interrupt has been serviced, a
latency of about 5 us is introduced to properly handle the interrupt
controller.

¢ CPU hardware latency — Modern CPUs try to predict the next couple of
instructions, including branches, by the use of instruction pipelines. If an
interrupt occurs, the prediction fails and the pipeline has to be fully reloaded.
This process introduces an additional latency. Additionally, because of
interrupts, cache misses will occur.

¢ Interrupt handler entry and exit latency — Because an interrupt can stop
the currently executing task at any instruction and the interrupted task has
to resume proper execution when the interrupting task completes execution,

1-21

T Advanced Topics

1-22

its state has to be saved and restored accordingly. This includes saving CPU
data and address registers, including the stack pointer. In the case that the
interrupted task executed floating-point unit (FPU) operations, the FPU
stack has to be saved as well (108 bytes on a Pentium CPU). This introduces
additionally latency.

¢ Interrupt handler content latency — If a background task has been
executing for a longer time, say in a loop, its needed data will be available in
the cache. But as soon as an interrupt occurs and the interrupt service
handler is executed, the data needed in the interrupt handler might no
longer be in the cache, causing the CPU to reload it from slower RAM. This
introduces additional latency. Generally, an interrupt reduces the optimal
execution speed or introduces latency, because of its unpredictable nature.

The xPC Target real-time kernel in interrupt mode is close to optimal for
executing code on a PC-compatible system. However, interrupt mode
introduces an overall latency of about 8 us. This is a significant amount of time
when considering that a 1 GHz CPU can execute thousands of instructions
within 8 us. This time is equivalent to a Simulink model containing a hundred
nontrivial blocks. Additionally, because lower priority tasks have to be serviced
as well, a certain amount of headroom (at least 5%) is necessary, which can
cause additional cache misses and therefore nonoptimal execution speed.

Polling Mode

The polling mode for the xPC Target real-time kernel does not have the 8 us of
latency that is with the interrupt mode. This is because the kernel does not
allow interrupts at all, so the CPU can use this extra time for executing model
code.

Polling mode is sometimes seen as a “primitive” or “brute force” real-time
execution scheme. Nevertheless, when a real-time application executes at a
given base sample time in interrupt mode and overloads the CPU, switching to
polling mode is often the only alternative to getting the application executing
at the required sample time.

Polling means that the kernel waits in an empty while loop until the time at

which the next model step has to be executed is reached. Then the next model
step is executed. For this at least a counter implemented in hardware has to be
accessible by the kernel in order to get a base reference for when the next model
step execution has to commence. The kernel polls this hardware counter. If this

Polling Mode

hardware counter must be outside the CPU, say in the chipset or even on an
ISA or PCI board, the counter value can only be retrieved by an I/O or memory
access cycle that again introduces latency. This latency usually eats up the
freed-up time of polling mode. Fortunately, since the introduction of the
Pentium CPU family from Intel, the CPU is equipped with a 64 bit counter on
the CPU substrate itself, which commences counting at power-up time and
counts up driven by the actual clock rate of the CPU. Even a highly clocked
CPU is not likely to lead to an overflow of a 64 bit counter (2764 * 1e-9 (1 GHz
CPU) = 584 years). All in all the Pentium counter comes with the following
features:

® Accurate measurements — Because the counter counts up with the CPU
clock rate (~1 GHz nowadays), the accuracy of time measurements even in
the microsecond range is very high, therefore leading to very small absolute
real-time errors.

* No overflow — Because the counter is 64 bits wide, in a practical application
and overflow does not occur, which makes a CPU time expensive overflow
handler unnecessary.

® No latency — The counter resides on the CPU. Reading the counter value
can be done within one CPU cycle, introducing almost no latency.

The polling execution scheme is not dependent on any interrupt source to notify
the code to continue calculating the next model step. While this frees up the
CPU, it means that any code that is part of the exclusively running polling loop
is executed in real time, even components, which have so far been executed in
background tasks. Because these background tasks are usually non-real-time
tasks and can use a lot of CPU time, there is only one solution: Do not execute
them. And this is the big disadvantage of polling mode: In order to be efficient,
only the target application’s relevant parts should be executed, and this is, in
the case of xPC Target, the code representing the Simulink model itself.
Therefore, host-target communication and target display updating are
disabled. Because polling mode reduces the commonly known features of xPC
Target to a minimum, you should choose it only as the last possible alternative
to reach the required base sample time for a given model. Therefore, the
following should be assured before you consider polling mode.

¢ The model is optimal concerning execution speed — First, you should run
the model through the Simulink profiler to find any possible speed
optimizations using alternative blocks. If the model contains continuous
states, the discretization of these states will reduce model complexity

1-23

T Advanced Topics

1-24

significantly, because a costly fixed-step integration algorithm can be
avoided. If continuous states cannot be discretized, the integration algorithm
with the lowest order that still produces correct numerical results should be
used.

¢ Use the fastest available computer hardware — Ensure that the CPU
with the highest clock rate available is used for a given PC form factor. For
the desktop form factor, this would mean a clock rate above 1 GHz; for a
mobile application, say using the PC/104 form factor, this would mean a
clock rate above 400 MHz. Most of the time, you should use a desktop PC,
because the highest clocked CPUs are available for this form factor only.
Executing xpcbench at the MATLAB command prompt gives an
understanding about the best performing CPUs for xPC Target applications.

¢ Use the lowest latency I/O hardware and drivers available — Many xPC
Target applications communicate with hardware through I/O hardware over
either an ISA or PCI bus. Because each register access to such I/O hardware
introduces a comparably high latency time (~1 us), the use of the lowest
latency hardware/driver technology available is crucial.

® The base sample time is about 50 us or less — The time additionally
assigned to model code execution in polling mode is only about 8 us. If the
given base sample time of the target application exceeds about 50 us, the
possible percentage gain is rather small. Other optimization technologies
might have a bigger impact on increasing performance.

Setting the Polling Mode

Polling mode is an alternative to the default interrupt mode of the real-time
kernel. This means that the kernel on the bootable floppy disk created the
xpcsetup GUI allows running the target application in both modes without the
necessity to use another boot floppy disk.

By default the target application executes in interrupt mode. In order to switch
to polling mode, you need to pass an option to the System target file command.

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Options.

The Simulation Parameters dialog box opens with the Real-Time Workshop
pane open.

Polling Mode

<) Simulation Parameters: xpcoscadadio2 !E[

SD|'-.-'EI| Warkspacel.-‘[ll Diagnusticsl .ﬁ.dvancedl Real-Time Workshop

Categon: I Target configuration j Build |
Configuratioh

System target file: I wpctarget.tc Bmwse...l

Template makefile: I wpc_default_tmf

Make command: I make rtw

[T Generate code anly Stateflow ophions. . |

] | Eancell Help | Apply |

2 In the System target file edit field, specify the option
-axpcCPUClockPoll=CPUClockRateMHz

The assignment of the clock rate of the target PC’s CPU is necessary because
the Pentium’s on-chip counter used for polling mode counts up with the CPU
clock rate. If the clock rate is provided, the kernel knows how to convert clock
ticks to seconds and vice versa. If an incorrect clock rate is provided, the
target application executes at an incorrect base sample time. You can find
out about the CPU clock rate of the target PC by rebooting the target PC and
checking the screen output during BIOS execution time. The BIOS usually
displays the CPU clock rate in MHz right after the target PC has been
powered up.

For example, if your target PC is a 1.2 GHz AMD Athlon, specify option
-axpcCPUClockP011=1200

1-25

T Advanced Topics

1-26

<} Simulation Parameters: xpcoscadadioZ !El

Su:ulverl Wurkspacels’l]l Diagnusticsl Advancedl R eal-Time ‘Workshop

Categony: I Target configuration j Build |

Configuration

Swstem target file: I:u:target.tlu: -awpcCPUCIockPall=1200 Bn:uw&e...l

Template makefile: I wpc_default_traf

bd ake command: I make_rtw]

[Generate code only Stateflaw options... |

(] | Eancell Help | Appl_l,ll

If you want to execute the target application in interrupt mode again, either
remove the option or assign a CPU clock rate of 0 to the option:

-axpcCPUClockPol1l=0

If you make a change to the System target file field, you need to rebuild the
target application for the change to take effect. Building the target application,
downloading it, and preparing it for a run then works exactly the same way as
it did with default interrupt mode.

After the download of the target application has succeeded, the target screen
displays the mode, and if polling mode is activated, it additionally displays the
defined CPU clock rate in MHz. This allows checking for the correct setting.

Restrictions Introduced by the Polling Mode

As explained above, polling mode executes the Simulink-based target
application in real time exclusively. While the target application is executing
in polling mode, the background tasks, mainly the one for host-target
communication and target screen updating, are inactive. This is because all

Polling Mode

interrupts of the target PC are fully disabled during the execution of the target
application. On one hand this assures the highest polling performance; on the
other hand, as a consequence the background tasks are not serviced.

Here is a list of all relevant restrictions of polling mode, which are otherwise
available in the default interrupt mode.

Host-Target Communication Is Not Available During the Execution of the
Target Application
If the target application execution is started in polling mode, say with

start(tg)

host-target communication is disabled throughout the entire run, or in other
words until the stop time is reached. Each attempt to issue a command like

tg

leads to a communication-related error message. Even the start(tg)
command to start polling mode execution returns such an error message,
because the host side does not receive the acknowledgment from the target
before timing out. The error message when executing start(tg) is not
avoidable. Subsequently, during the entire run, it is best not to issue any
target-related commands on the host, in order to avoid displaying the same
error message over and over again.

As a consequence, it is not possible to issue a stop(tg) command to stop the
target application execution from the host side. The target application has to
reach its set stop time in order that polling mode is exited. You can use

tg.stoptime=x

before starting the execution, but once started the application executes until
the stop time is reached. Nevertheless, there is a way to stop the execution
interactively before reaching the target application stop time. See “Controlling
the Target Application” on page 1-30.

If the target application execution finally reaches the stop time and polling
mode execution is stopped, host-target communication will begin functioning
again. However, the host-target communication link might be in a bad state. If
you still get communication error messages after polling mode execution stops,
type the command

xpctargetping

1-27

T Advanced Topics

1-28

to reset the host-target communication link.
After the communication link is working again, type
tg

in order to resync the target object on the host side with the most current status
of the target application.

Target Screen Does Not Update During the Execution of the Target
Application

As with the restriction mentioned above, the target screen updating is disabled
during the entire execution of the target application. Using the kernel with the
TargetScope option enabled (see xpcsetup-GUI) loses its entire functionality
during a run, and it is therefore recommended that you use the kernel with the
TargetScope property disabled (text output only). The text mode enabled
kernel actually provides more information when running in polling mode.

Session Time Does Not Advance During the Execution of the Target
Application
Because all interrupts are disabled during a run, the session time does not

advance. The session time right before and after the run is therefore the same.
This is a minor restriction and should not pose a problem.

The Only Rapid-Prototyping Feature Available Is Data Logging

Because host-target communication and target screen updating are disabled
during the entire run, most of the common rapid-prototyping features of xPC
Target are not available in polling mode. These are

¢ Parameter tuning — Neither through the command-line interface nor
through External mode

¢ Signal tracing through scope objects — Neither through scope objects of type
host (xpcscope-GUI or scripts) or type target (scopes on the target screen if
property TargetScope is enabled)

¢ Signal monitoring — You cannot run a GUI interface on the host PC using
an environment that depends on communication between the host and target
computers

¢ Applications using the xPC Target API

® The Internet browser interface

Polling Mode

e Other utilities like xpctargetspy

The only rapid-prototyping feature available is signal logging, because the
acquisition of signal data runs independently from the host, and logged data is
retrieved only after the execution is stopped. Nevertheless, being able to log
data allows gathering good enough information about the behavior of the target
application. Signal logging becomes a very important feature in polling mode.

Multirate Simulink Models Cannot Be Executed in Multitasking Mode on
the Target PC

Because of the polling mode execution scheme, executing Simulink-based
target applications in multitasking mode is not possible. The modeling of
function-call subsystems to handle asynchronous events (interrupts) is not
possible either. This can be a hard restriction, especially for multirate systems.
Multirate systems can be executed in single-tasking mode, but because of its
sequential execution scheme for all subsystems with different rates, the CPU
will most likely overload for the given base sample time. As an important
consequence, polling mode is only a feasible alternative to the interrupt mode
if the model has a single rate or if it can be converted to a single-rate model. A
single-rate model implies continuous states only, discrete states only, or mixed
continuous and discrete states, if the continuous and discrete subsystems have
the same rate. Use the Format -> Sample time color feature of Simulink to
check for the single rate requirement. Additionally, set the Mode property in
the Simulation parameters / Solver dialog box to SingleTasking to avoid a
possible switch to multitasking mode. For more information on single-tasking
mode compared to multitasking mode, see the Real-Time Workshop User’s
Guide.

I/O Drivers Using Kernel Timing Information Cannot Be Used Within a
Model

Some xPC Target drivers use timing information exported from the kernel in
order to run properly, for example, for the detection of time-outs. Because the
standard timing engine of the real-time kernel is not running during the entire
target application execution in polling mode, timing information passed back
to the drivers is incorrect. Drivers importing the header file time_xpcimport.h
can therefore not be used. This is a current restriction only. In a future version
of polling mode, all drivers will make use of the Pentium counter for getting
timing information instead.

1-29

T Advanced Topics

1-30

Controlling the Target Application

As mentioned, there is no way to interact with the running target application
in polling mode. This is especially restricting for the case of stopping the model
execution before the application has reached the stop time that was defined
before the execution started. Because polling mode tries to be as optimal as
possible, any rapid-prototyping feature except signal logging is disabled. But
because I/O driver blocks added to the model are fully functional, you can use
I/0 drivers to get to a minimal level of interactivity.

Stopping a target application using polling mode — You can use a
low-latency digital input driver for the digital PCI board in your model, which
reads in a single digital TTL signal. The signal is TTL low unless the model
execution should be stopped, for which the signal changes to TTL high. The
output port of the digital input driver block can be connected to the input port
of a Stop simulation block, found in the standard Simulink block library. This
stops the target application’s execution, depending on the state of the digital
input signal. You can either use a hardware switch connected to the
board-specific input pin or you can generate the signal by other means. For
example, you could use another digital I/O board in the host machine and
connect the two boards (one in the host, the other in the target) over a couple
of wires. You could then use MathWorks Data Acquisition Toolbox to drive the
corresponding TTL output pin of the host board to stop the target application
execution from within MATLAB.

Generally the same software/hardware setup can be used for passing other
information back and forth during run time of the target application. It is
important to understand that any additional feature beside signal logging has
to be implemented at the model level, and it is therefore the user’s
responsibility to optimize for the minimal additional latency the feature
introduces. For example, being able to interactively stop the target application
execution has to be paid for by the introduction of an additional 1 us latency
necessary to read the digital signal over the digital I/O board. But perhaps you
need to read digital inputs from the plant hardware anyway and not all lines
are used. In this case you get the feature for free.

Polling Mode Performance

This is preliminary information. All benchmarks have been executed using a 1
GHz AMD Athlon machine, which is the same machine that is at the top of the
list displayed by xpcbench.

Polling Mode

The minimum achievable base sample time for model “minimal” (see “help
xpcbench”) is 1 us with signal logging disabled and 2 us with signal logging
enabled.

The minimum achievable base sample time for model “f14” (see “help
xpcbench”) using an ode4 fixed-step integration algorithm is 4 us with signal
logging disabled and 5 us with signal logging enabled.

A more realistic model, which has been benchmarked, is a second-order
continuous controller accessing real hardware over twol6 bit A/D channels and
two 16 bit D/A channels. The analog I/0 board used is the fast and low-latency
PMC-ADADIO from http://www.generalstandards.com, which is used in
conjunction with some recently developed and heavily optimized (lowest
latency) xPC Target drivers for this particular board. The minimum achievable
base sample time for this model using an ode4 fixed-step integration algorithm
is 11 us with signal logging disabled and 12 us with signal logging enabled.
This equals a sample rate of almost 100 kHz. The achievable sample time for
the same model in interrupt mode is ~28 us or a sample rate of ~33 kHz. For
this application, the overall performance increase using polling mode is almost
a factor of 3!

1-31

T Advanced Topics

Target PC Command-Line Interface

1-32

You can interact with the xPC Target environment through the target PC
command window. This interface is useful with stand-alone applications that
are not connected to the host PC. This section includes the following topics:

¢ Using Methods and Properties on the Target PC

¢ Target Object Methods

¢ Target Object Properties

¢ Scope Object Methods

® Scope Object Properties

¢ Using Variables on the Target PC

¢ Variable Commands

Using Methods and Properties on the Target PC

xPC Target uses an object-oriented environment on the host PC with methods
and properties. While the target PC does not use the same objects, many of the
methods on the host PC have equivalent target PC commands. The target PC
commands are case sensitive, but the arguments are not case sensitive.

After you have created and downloaded a target application to the target PC,
you can use the target PC commands to run and test your application.

1 On the target PC, press C or move the mouse over the command window.

The target PC command window is activated, and a command line opens. If
the command window is already activated, you do not have to press C. In
this case, pressing C is taken as the first letter in a command.

2 In the Cmd box, type a target PC command. For example, to start your
target application, type

start <enter>

Once the command window is active, you do not have to reactivate it before
typing the next command. For a list of target PC commands, see “Target Object
Methods” on page 1-33, “Target Object Properties” on page 1-33, “Scope Object
Methods” on page 1-35, and “Scope Object Properties” on page 1-36.

Target PC Command-line Interface

Target Object Methods

When you are using the target PC command-line interface, target object
methods are limited to starting and stopping the target application.

The following table lists the syntax for the target commands that you can use
on the target PC. The equivalent MATLAB syntax is shown in the right
column, and the target object name tg is used as an example for the MATLAB
methods.

Target PC MATLAB

start tg.start or +tg
stop tg.stopor -tg
reboot tg.reboot

Target Object Properties

When you are using the target PC command-line interface, target object
properties are limited to parameters, signals, stop time, and sample time.
Notice the difference between a parameter index (0, 1, . . .) and a parameter
name (PO, P1,...).

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right

1-33

T Advanced Topics

column, and the target object name tg is used as an example for the MATLAB

methods.
Target PC Description and Syntax MATLAB Equivalent
Command
getpar Display the value of a block set(tg,
parameter using the ‘parameter_name',
parameter index. number)
Syntax: getpar
parameter_index
setpar Change the value of a block get(tg,
parameter using the ‘parameter_name')
parameter index.
Syntax: setpar
parameter_index =
floating_point_number
stoptime Enter a new stop time. Use tg.stoptime = number
inf to run the target
application until you
manually stop it or reset
the target PC.
Syntax: stoptime =
floating point_number
sampletime Enter a new sample time. tg.sampletime = number
Syntax: sampletime = set(tg, 'SampleTime',
floating point_number number)

1-34

Target PC Command-line Interface

Target PC Description and Syntax MATLAB Equivalent
Command
P# Display or change the value tg.parameter_name
of a block parameter. For tg.parameter_name =
example, P2 or P2=1.23e-4 floating_point_number
Syntax: parameter_name, or
parameter_name =
floating_point_number
parameter_name is PO, P1,
S# Display the value of a tg.S#

signal. For example, S2.
Syntax: signal_name

signal_ name is SO, S1,

Scope Object Methods

When using the target PC command-line interface, you use scope object
methods to start a scope, and add signal traces. Notice that the methods
addscope and remscope are target object methods on the host PC, and notice
the difference between a signal index (0, 1, . . .) and a signal name (S0, S1, .. .).

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right

column. The target object name tg and the scope object name sc are used as an
example for the MATLAB methods.

Target PC Description and Syntax MATLAB Equivalent

Command

addscope addscope scope_index tg.addscope(scope_index)
addscope tg.addscope

remscope remscope scope_index tg.remscope(scope_index)

remscope all

tg.remscope

1-35

T Advanced Topics

1-36

Target PC
Command

Description and Syntax MATLAB Equivalent

startscope
stopscope

addsignal

remsignal

viewmode

ylimit

grid

startscope scope_index sc.start or +sc

stopscope scope_index sc.stopor -sc

addsignal scope_index sc.addsignal(signal_
signal_index1, index_vector)
signal_ index2,

remsignal scope_index sc.remsignal(signal_
signal_ index1, index_vector)
signal_ index2,

Zoom in to one scope, or
zoom out to all scopes.

Syntax: viewmode
scope_index or left-click
the scope window

viewmode 'all' or
right-click any scope
window

Press function key for
scope, and then press V to
toggle viewmode

ylimit scope_index
ylimit scope_index = auto
ylimit scope_index =
numi, num2

grid scope_index on
grid scope_index off

Scope Object Properties

When using the target PC command-line interface, scope object properties are
limited to those shown in the following table. Notice the difference between a
scope index (0, 1, . . .) and the MATLAB variable name for the scope object on

Target PC Command-line Interface

the host PC. The scope index is indicated in the top left corner of a scope

window (SCO, SC1, . . .).

If a scope is running, you need to stop the scope before you can change a scope

property.

The following table lists the syntax for the target commands that you can use
on the target PC. The equivalent MATLAB syntax is shown in the right
column, and the scope object name sc is used as an example for the MATLAB

methods.

Target PC

MATLAB

numsamples scope_index
number

decimation scope_index
number

scopemode scope_index = 0 or
numerical, 1 or redraw, 2 or
sliding, 3 or rolling

triggermode scope_index = 0,
freerun, 1 software, 2, signal,
3, scope

numprepostsamples scope_index
= number

triggersignal scope_index
signal index

triggersample scope_index =
number

triggerlevel scope_index =
number

triggerslope scope_index = 0,
either, 1, rising, 2, falling

triggerscope scope_index2 =
scope_index1

sc.NumSamples number

sc.Decimation = number

sc.Mode = 'numerical',
‘redraw', 'sliding', 'rolling'
sc.TriggerMode = 'freerun',
‘software', 'signal', 'scope’

sc.NumPrePostSamples = number

sc.TriggerSignal
signal index

sc.TriggerSample = number

sc.TriggerLevel = number

sc.TriggerSlope = 'Either',
'Rising', 'Falling'’

sc.TriggerScope = scope_index1

1-37

T Advanced Topics

Target PC MATLAB

triggerscopesample sc.TriggerSample = integer
scope_index= integer

Press function key for scope, and sc.trigger
then press S or move mouse into the
scope window.

1-38

Target PC Command-line Interface

Using Variables on the Target PC

Use variables to tag unfamiliar commands, parameter indices, and signal
indexes with more descriptive names.

After you have created and downloaded a target application to the target PC,
you can create target PC variables.

On the target PC, press C.
The target PC command window is activated, and a command line opens.

In the Cmd box, type a variable command. For example, if you have a
parameter that controls a motor, you could create the variables on and off

by typing
setvar on = p7 = 1
setvar off = p7 =0

Type a variable name. For example, to turn the motor on, type

on

The parameter P7 is changed to 1, and the motor turns on.

1-39

T Advanced Topics

Variable Commands

The following table lists the syntax for the target commands that you can use
on the target PC. The MATLAB equivalent syntax is shown in the right
column.

Target PC Description and Syntax MATLAB Equivalent
Command

setvar Set a variable to a value. none
Later you can use that
variable to do a macro
expansion.

Syntax: setvar
variable name =
target_pc_command

For example, you can type
setvar aa=startscope 2,
setvar bb=stopscope 2

getvar Display the value of a none
variable.

Syntax: getvar
variable_name

delvar Delete a variable. none

Syntax: delvar
variable_name

delallvar Delete all variables. none
Syntax: delallvar
showvar Display a list of variables. none

Syntax: showvar

1-40

Web Browser Interface

Web Browser Interface

xPC Target has a Web server built into the kernel that allows you to interact
with your target application using a Web browser. If the target PC is connected
to a network, you can use a Web browser to interact with the target application
from any host PC connected to the network.

Currently Microsoft Internet Explorer (Version 4.0 or later) and Netscape
Navigator (Version 4.5 or later) are the only supported browsers.

This section includes the following topics:

¢ Connecting the Web Interface Through TCP/IP
¢ Connecting the Web Interface Through RS-232
¢ Using the Main Page

¢ Changing WWW Properties

® Viewing Signals with a Web Browser

¢ Viewing Parameters with a Web Browser

® Changing Access Levels to the Web Browser

Connecting the Web Interface Through TCP/IP

If your host PC and target PC are connected with a network cable, you can
connect the target application on the target PC to a Web browser on the host
PC.

The TCP/IP stack on the xPC Target kernel supports only one simultaneous
connection, because its main objective is real-time applications. This
connection is shared between MATLAB and the Web browser. This also means
that only one browser or MATLAB is able to connect at one time.

Before you connect your Web browser on the host PC, you must load a target
application onto the target PC. The target application does not have to be
running, but it must be loaded. Also, your browser must have JavaScript and
StyleSheets turned on.

1 In the MATLAB window, type

1-41

T Advanced Topics

1-42

xpcwwwenable

MATLAB is disconnected from the target PC, and the connection is reset for
connecting to another client. If you do not use this command, your Web
browser might not be able to connect to the target PC.

2 Open a Web browser. In the address box, enter the IP address and port
number you entered in the xPC Target Setup window. For example, if the
target computer IP address is 192.168.0.1 and the port is 22222, type

http://192.168.0.1:22222/

The browser loads the xPC Target Web interface frame and pages.

Connecting the Web Interface Through RS-232

If the host PC and target PC are connected with a serial cable instead of a
network cable, you can still connect the target application on the target PC to
a Web browser on the host PC. xPC Target includes a TCP/IP to RS-232
mapping application. This application runs on the host PC and writes whatever
it receives from the RS-232 connection to a TCP/IP port, and it writes whatever
is receives from the TCP/IP port to the RS-232 connection. TCP/IP port
numbers must be less than 216 = 65536.

Before you connect your Web browser on the host PC, you must load a target
application onto the target PC. The target application does not have to be
running, but it must be loaded. Also, your Web browser must have JavaScript
and StyleSheets turned on.

1 In the MATLAB window, type

xpcwwwenable or close(xpc)

MATLAB is disconnected from the target PC, leaving the target PC ready to
connect to another client. The TCP/IP stack of the xPC Target kernel

supports only one simultaneous connection. If you do not use this command,
the TCP/IP to RS-232 gateway might not be able to connect to the target PC.

2 Open a DOS command window, and enter the command to start the TCP/IP
to RS-232 gateway. For example, if the target PC is connected to COM1 and
you would like to use the TCP/IP port 22222, type the following:

Web Browser Interface

c:\MATLABR12\toolbox\rtw\targets\xpc\xpc\bin\xpctcp2ser -v -t
22222 -c 1

The TCP/IP to RS-232 gateway starts running, and the DOS command

window displays the message

XxPC Target TCP/IP to RS-232 gateway *
Copyright 2002 The MathWorks *

Connecting COM to TCP port 22222
Waiting to connect

If you did not close the MATLAB to target application connection, then
xpxtcp2ser displays the message Could not initialize COM port.

3 Open a Web browser. In the address box, enter
http://localhost:2222/

The Web browser loads the xPC Target Web interface pages.

4 Using the Web interface, start and stop the target application, add scopes,
add signals, and change parameters.

5 In the DOS command window, press Ctrl+C.

The TCP/IP to RS-232 Gateway stops running, and the DOS command
window displays the message

interrupt received, shutting down

The gateway application has a handler that responds to Ctrl-C by
disconnecting and shutting down cleanly. In this case, Ctrl-C is not used to
abort the application.

6 In the MATLAB Command Window, type

1-43

T Advanced Topics

Xpc

MATLAB reconnects to the target application and lists the properties of the
target object.
If you did not close the gateway application, MATLAB displays the message

Error in ==>
C:\MATLABR13\toolbox\rtw\targets\xpc\xpc\@xpc\xpc.m
On line 31 ==> sync(xpcObj);

To correct this problem, you must close MATLAB and then restart it.
Syntax for the xpctcp2ser Command

The syntax for the xpctcp2ser command is

xpctcp2ser [-v] [-n] [-t tcpPort] [-c comPort]
xpctcp2ser -h

The options are described in the following table.

Command- Description
Line Option

-V Verbose mode. Produces a line of output every time a client
connects or disconnects.

-n Allows nonlocal connections. By default, only clients from
the same computer that the gateway is running on are
allowed to connect. This option allows anybody to connect to
the gateway.

If you do not use this option, only the host PC that is
connected to the target PC with a serial cable will be able to
connect to the selected port. For example, if you start the
gateway on your host PC, with the default ports, you can
type in the Web browser http://localhost:2222 .
However, if you try to connect to
http://Domainname.com:22222, you will probably get a
connection error.

1-44

Web Browser Interface

Command-
Line Option

Description

-t tcpPort

-h

-c comPort

Use TCP port tcpPort. Default t is 22222. For example, to
connect to port 20010, type -t 20010.

Print a help message.

Use COM port comPort (1 <= comPort <= 4). Default is 1.
For example, to use COM2, type -c 2.

Using the Main Page

The Main page is divided into four parts, one below the other. The four parts
are System Status, xXPC Target Properties, Navigation, and WWW

Properties.

After you connect a Web browser to the target PC, you can use the Main page
to control the target application.

1 In the left frame, click the Refresh button.

System status information in the top cell is uploaded from the target PC. If
the right frame is either the Signals List page or the Screen Shot page,
updating the left frame also updates the right frame.

1-45

T Advanced Topics

System Status

Anplication Zpcosc
Mode Real-Time Single-Tasking
Status Stopped
CFUCverload none

ExecTime 0.0
sessionTime 13305
StopTime Inf
SampleTime 0. 00025
AvgTET 2. 70114e-005

2 Click the Start Execution button.

The target application begins running on the target PC, the Status line is
changed from Stopped to Running, and the Start Execution button text
changes to Stop Execution.

3 Update the execution time and average task execution time (TET). Click the
Refresh button. To stop the target application, click the Stop Execution
button.

4 Enter new values in the StopTime and SampleTime boxes, then click the
Apply button. You can enter -1 or Inf in the StopTime box for an infinite
stop time.

1-46

Web Browser Interface

SampleTime [0.00025

StopTime [1000

Apply Feset

The new property values are downloaded to the target application. Notice
that the SampleTime box is visible only when the target application is
stopped. You cannot change the sample time while a target application is
running.

5 Select scopes to view on the target PC. From the ViewMode list, select one
or all of the scopes to view.

Yiewhode |S|::|:|pe1 *|

All

SCope 2

Note The ViewMode control is visible only if you add two or more scopes to
the target PC.

Changing WWW Properties

The WWW Properties cell in the left frame contains fields that affect the
display on the Web interface itself, and not the application. There are two
fields: maximum signal width to display, and refresh interval.

1 In the Maximum Signal Width box enter -1, Inf (all signals), 1 (show only
scalar signals), 2 (show scalar and vector signals less than or equal to 2
wide), or n (show signals with a width less than or equal to n).

Signals with a width greater than the value you enter are not displayed on
the Signals page.

1-47

T Advanced Topics

1-48

2 In the Refresh Interval box, enter a value greater than 10. For example,
enter 20.

The signal page updates automatically every 20 seconds. Entering -1 or Inf
does not automatically refresh the page.

Sometimes, both the frames try to update simultaneously, or the auto refresh
starts before the previous load has finished. This problem can happen with
slow network connections. In this case, increase the refresh interval or
manually refresh the browser (set the Refresh Interval = Inf).

This can also happen when you are trying to update a parameter or property
at the same time as the page is automatically refreshing.

Sometimes, when a race condition occurs, the browser becomes confused about
the format, and you might have to refresh it. This should not happen often.

Viewing Signals with a Web Browser
The Signals page is a list of the signals in your model.

After you connect a Web browser to the target PC you can use the Signals page
to view signal data.

1 In the left frame, click the Signals button.

The Signals page is loaded in the right frame with a list of signals and the
current values.

2 On the Signals page in the right frame, click the Refresh button.

The Signals page is updated with the current values. Vector/matrix signals
are expanded and indexed in the same column-major format that MATLAB
uses. This can be affected by the Maximum Signal Width value you enter
in the left frame.

3 In the left frame, click the Screen Shot button.

The Screen Shot page is loaded and a copy of the current target PC screen
is displayed. The screen shot uses the Portable Network Graphics file format
PNG.

Web Browser Interface

Viewing Parameters with a Web Browser

The Parameters page displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target PC, you can use the Parameters
page to change parameters in your target application while it is running in real
time.

1 In the left frame, click the Parameters button.
The Parameter List page is loaded into the right frame.

If the parameter is a scalar parameter, the current parameter value is
shown in a box that you can edit.

If the parameter is a vector/matrix, there is a button that takes you to
another page that displays the vector/matrix (in the correct shape) and
enables you to edit the parameter.

2 In the Value box, enter a new parameter value, and then click the Apply
button.

Changing Access Levels to the Web Browser

The Web browser interface allows you to set access levels to the target
application. The different levels limit access to the target application. The
highest level, 0, is the default level and allows full access. The lowest level, 4,
only allows signal monitoring and tracing with your target application.

1 Inthe Simulink window, click Simulation Parameters. On the Simulation
Parameters dialog box, click the Real-Time Workshop tab.

Access levels are set in the System target file box. For example, to set the
access level to 1, enter

xpctarget.tlc -axpcWWWAccessLevel=1

The effect of not specifying -axpcWWWAccessLevel is that the highest access
level (0) is set.

2 Click OK.

1-49

T Advanced Topics

1-50

The various fields disappear, depending on the access level. For example, if
your access level does not allow you access to the parameters, you do not see
the button for parameters.

There are various access levels for monitoring, which allow different levels of
hiding. The proposed setup is described below. Each level builds on the
previous one, so only the incremental hiding of each successive level is
described.

Level 0 — Full access to all pages and functions.

Level 1 — Cannot change the sample and stop times. Cannot change
parameters, but can view parameters.

Level 2 — Cannot start and stop execution of the target application or log data.

Level 3 — Cannot view parameters. Cannot add new scopes, but can edit
existing scopes.

Level 4 — Cannot edit existing scopes on the Scopes page. Cannot add or
remove signals on the Scopes page. Cannot view the Signals page and the
Parameters page, and cannot get scope data.

Graphical User Interfaces

You can run and test your target application using the MATLAB command-line interface or the
Simulink block diagram for your application. You cannot modify these interfaces, but you can use
special blocks provided with xPC Target to interface signals and parameters from a target application
to a custom GUI application. This chapter includes the following sections:

xPC Target Interface Blocks to Overview describing the software products you can use
Simulink Models (p. 2-2) with the To xPC Target and From xPC Target blocks

Interface with Dials & Gauges Blockset Example using Simulink, the Dials & Gauges Blockset,
(p. 2-8) and the To and From xPC Target blocks to create a
custom user interface to a target application

2 Graphical User Interfaces

xPC Target Interface Blocks to Simulink Models

You can use Simulink to create a custom graphical user interface (GUI) for
your xPC Target application. You do this by creating an user interface model
with Simulink and add-on products like the Dials and Gauges Blockset, Virtual
Reality Blockset, and Altia Design (a third-party product). This section
includes the following topics:

¢ Simulink User Interface Model — Simulink model with xPC Target
interface blocks to your target application and interface blocks to graphical
elements and interfaces.

¢ Creating a Custom Graphical Interface — The process for creating a
custom graphical interface includes tagging parameters and signals, and
then creating a Simulink user interface model with interface blocks to these
parameters and signals.

¢ To xPC Target Block — Simulink blocks that take new parameter values
from graphical elements and download those values to your target
application.

¢ From xPC Target Block — Simulink blocks that upload signal data from
your target application and pass that data to graphical elements for
visualization.

Simulink User Interface Model

An user interface model is a Simulink model containing Simulink blocks from
add-on products and interface blocks from xPC Target. This user interface
model can use Dials & Gauges or it can connect to a custom graphical interface
(using Virtual Reality Toolbox or Altia products). The user interface model
runs on the host PC and communicates to your target application running on
the target PC using To xPC Target and From xPC Target blocks.

The graphical interface allows you to change parameters by downloading them
to the target PC, and to visualize signals by uploading data to the host PC.

Virtual Reality Toolbox — The Virtual Reality Toolbox provides Simulink
blocks that communicate with xPC Target interface blocks. These blocks then
communicate to a graphical interface. This graphical interface is a VRML
world displayed with a Web browser using a VRML plug-in.

xPC Target Interface Blocks to Simulink Models

Altia Design — Altia also provides Simulink blocks that communicate with
xPC Target interface blocks. These blocks then communicate with Altia’s
graphical interface or with a Web browser using the Altia ProtoPlay plug-in.

Host PC Target PC

Third-party
j xPC Target H—Fx—p¢
blocks interface Parameters
blocks —
)
Signals
@006 11 —
Custom Simulink xPC Target
graphical instrumentation application

interface model

Dial & Gauges Blockset — You include graphic controls and displays from the
Dials & Gauges Blockset directly in your Simulink user interface model. This
user interface model is the graphical interface to your target application.

Host PC Target PC
—> ’ ‘
% XPC Target H——! porameters
interface
blocks N————
.)
Dials &
Gauges Signals
interface
Simulink xPC Target
instrumentation application

model

2 Graphical User Interfaces

Creating a Custom Graphical Interface

xPC Target provides Simulink interface blocks to connect graphical interface
elements to your target application. The steps for creating your own custom
graphical interface are listed below. For more information, see “Interface with
Dials & Gauges Blockset” on page 2-8.

1 In the Simulink target application model, decide which block parameters
and block signals you want to have access to through graphical interface
control devices and graphical interface display devices.

2 Tag all block parameters in the Simulink model that you want to be
connected to a control device. See “Marking Block Parameters” on page 2-13.

3 Tag all signals in Simulink model that you want to be connected to a display
device. See “Marking Block Signals” on page 2-16.

4 In MATLAB, run the function xpcsliface('model name') to create the
user interface template model. This function generates a new Simulink
model containing only the xPC Target interface blocks (To xPC Target and
From xPC Target) defined by the tagged block parameters and block signals
in the target application model. See “Creating a User Interface Model” on
page 2-19.

5 To the user interface template model, add Simulink interface blocks from
add-on products (Dials & Gauges, Virtual Reality Toolbox, Altia Design).
Connect these blocks to the xPC Target interface blocks (To PC Target and
From xPC Target). The To xPC Target blocks on the left should be connected
to control devices, and the From xPC Target blocks on the right should be
connected to the display devices. You can position these blocks to your liking.

6 Start both the xPC target application and the Simulink user interface model
that represents the xPC Target application. See “Running a Target
Application with a User Interface Model” on page 2-23.

xPC Target Interface Blocks to Simulink Models

To xPC Target Block

This block behaves as a sink and usually receives its input data from a control
device. The purpose of this block is to write a new value to a specific parameter
on the target application while it is running.

Host PC Target PC
Control device To xPC Target »|| Parameter
block block
Simulink instrumentation model xPC Target application

This block is implemented as an M-file S-function. The block is optimized so
that it only changes a parameter on the target application when the input
value differs from the value that existed at the last time step. This block uses
the parameter downloading feature of the xPC command-line interface.

Block Parameters: To ®xPC Target ﬂ

—dng2xpc (mask] (link)

— Parameters
*PC Application Name:

Imc:del

Fath to Block in Model Running on xPC Target:
[block

Farameter Marme:

Ip arameter

0]4 I Cancel Help Ay

Block Parameters

xPC Target application name — The function xpcsliface automatically
enters this name. It is the same name as the Simulink model that xPC Target
uses to build the target application.

2-5

2 Graphical User Interfaces

Path to block in model running on host PC — The function xpcsliface
automatically enters this name and uses it to access the block identifier.

Parameter name — The function xpcsliface automatically determines this
name and enters it. Notice that the parameter name might not match the label
name for that parameter in the Block Parameters dialog box. For example,
the label name for a gain block is Constant value, but the parameter name is
Value.

From xPC Target Block

This block behaves like a source and its output is usually connected to the input
of a display device.

Host PC Target PC
Display device From xPC Target .
[block " l block ¢ Signal
Simulink instrumentation model xPC Target application

Because only one numerical value per signal is uploaded during a time step,
the number of samples of the scope object is set to 1. The block uses the signal
tracing capability of the xPC Target command-line interface and is
implemented as an M-file S-function.

2-6

xPC Target Interface Blocks to Simulink Models

Block Parameters: From xPC Target x|

—xpc2dng (mask) (link)

— Parameters
*PC Application Name:

Imc:del

Signal Mame (Block Name):
[block

Observer Sampletime:

|1

0]4 I Cancel Help Ay

Block Parameters

xPC Target application name — The function xpcsliface automatically
enters this name. It is the same name as the Simulink model that xPC Target
uses to build the target application.

Signal name (block name) — The function xpcsliface automatically enters
this name.

Observer sample time — The function xpcsliface automatically enters the
sample time for the Simulink block with this signal. It can be equal to the
model base sample time or a multiple of the base sample time.

2-7

2 Graphical User Interfaces

2-8

Interface with Dials & Gauges Blockset

Use the Dials & Gauges Blockset and xPC Target interface blocks to create a
custom graphical user interface (GUI) for your xPC Target application. This
method allows you to create a user interface (UI) within a Simulink model.

This section includes the following topics:

¢ Introduction to the Dials & Gauges Blockset — What is the Dials &
Gauges blockset?

¢ Target Application Model Description — An example control system using
a water tank, pump, drain, and valve controller

¢ Creating a Target Application Model — A Simulink model for your
physical system and controller. xPC Target uses this model to create a target
application.

¢ Marking Block Parameters — Parameters you want to change using dial
blocks

® Marking Block Signals — Signals you want to visualize using gauge blocks

¢ Creating a User Interface Model — Create a Simulink user interface model
as a graphical user interface (GUI) to a target application.

¢ Adding Dials & Gauges Blockset — Dials for changing parameters and
gauges for visualizing signals

¢ Creating a Target Application — Create a real-time application from your
Simulink application model using Real-Time Workshop and a C compiler.

¢ Running a Target Application with a User Interface Model — Start the
target application running in real time and the user interface model running
in nonreal time.

Introduction to the Dials & Gauges Blockset

Using the Dials & Gauges blockset as a graphical interface to your target
application simplifies and enhances user interaction by providing an
alternative to using a command-line interface.

The Dial & Gauges Blockset consists of a library of blocks that you add to your
Simulink model. When used with xPC Target, components from the Dials &

Gauges Blockset provide a graphical user interface that you use from your host
PC. The graphical user interface allows you to change parameters that are then

Interface with Dials & Gauges Blockset

downloaded to your target PC. Other components from the Dials & Gauges
Blockset provide animation of data uploaded from the target PC. While you
change parameters or view the animation, your target application continues to
run in real time.

The Dials & Gauges Blockset includes control blocks and display blocks.

Control blocks — A control block is a block that you use to provide an input
using a mouse or keyboard. For example, a control block could be a slider or a
dial. Its output drives other blocks in the target application model and provides
a visual display of the output parameters.

Display blocks — A display block is a block that you use to view signals on
your host computer. For example, a display block could be a tachometer or a
gauge. A display block receives its input from the target application model and
provides a visual display of the input signal.

Dials & Gauges Blockset Blocks

The Dials & Gauges Blockset consists of approximately sixty blocks grouped

into the following libraries:

¢ Alphanumeric displays — Displays that show the numeric value of the
input

¢ Angular gauges — Displays that show an input value along the arc of a
circle

¢ Buttons and Switches (toggle)— Two-state controls that change state when
you click them

¢ Knobs and selectors — Controls that change their output values when you
drag a knob around a circle

¢ LEDs — Displays that graphically represent light-emitting diodes

¢ Linear gauges —Displays that graphically show an input value along a
linear line

® Percent indicators — Displays that show the percentages and ratios of
input values from 0 to 100 percent

¢ Sliders — Controls that change their output values when you drag a knob
along a linear line

¢ Strip chart — A display where the input value traces from left to right

2-9

2 Graphical User Interfaces

This environment allows you to interact with your target application using a
user interface while the target application is running in real time on the target

PC.
Host PC Target PC
)
% X.PC Target | ———pr Parameters
interface
blocks ——
. S
Dials &
Gauges Signals
interface \)
Simulink xPC Target
instrumentation application

model

The procedure for using xPC Target with the Dial & Gauges Blockset consists
of the following steps:

1 Install software for MATLAB, Simulink, Real-Time Workshop, xPC Target,
third-party C compiler, and Dials & Gauges Blockset.

2 Create a Simulink target application model containing model equations
describing the dynamic behavior of the application you want to run in real
time on the target PC. See “Creating a Target Application Model” on
page 2-12.

3 In your target application model, tag block properties and block signals. See
“Marking Block Parameters” on page 2-13 and “Marking Block Signals” on
page 2-16.

4 Create a Simulink user interface model using Dials & Gauges blocks as user
interface components (for example, control and display devices). See
“Creating a User Interface Model” on page 2-19 and “Adding Dials &
Gauges” on page 2-21.

5 Create a target application and download it to the target PC. See “Creating
a Target Application” on page 2-22.

2-10

Interface with Dials & Gauges Blockset

6 Start a simulation of the user interface model in nonreal time, and then start
the target application running in real time. See “Running a Target
Application with a User Interface Model” on page 2-23.

Target Application Model Description

xPC Target includes the Simulink model xpctank.mdl. This is a model of a
water tank with a pump, drain, and valve controller.

TankLevel — The water level in the tank is modeled using a limited integrator
named TankLevel.

PumpSwitch — The pump can be turned off manually to override the action of
the controller. This is done by setting PumpSwitch = 0. When PumpSwitch =1,
the controller is able to use the ControlValve to pump water into the tank.

ValveSwitch (drain valve) — The tank has a drain valve that allows water to
flow out of the tank. Think of this as water usage or consumption that reduces
the water level. This behavior is modeled with the constant block named
ValveSwitch, the gain block Gain2, and a summing junction. The minus sign
on the summing junction has the effect of producing a negative flow rate (drain)
that reduces the water level in the tank.

Although the ValveSwitch is modeled as a constant block, you can later alter
its value using the Dials & Gauges Blockset. When ValveSwitch = 0 (closed),
the valve is closed and water cannot flow out of the tank. When ValveSwitch =
1 (open), the valve is open and the water level is reduced by draining the tank.

Controller — The controller is very simple. It is a bang-bang controller and
can only maintain the selected water level by turning the control valve (pump
valve) on or off. A water level set point is used to define the desired median
water level. Hysteresis is provided to enable the pump to avoid high-frequency
on and off cycling. This is done using symmetric upper and lower bounds that
are offsets to the median set point. As a result, the controller turns the control
valve (pump valve) on whenever the water level is below the set point minus
the offset. The summing junction compares this lower bound against the tank
water level to determine whether or not to open the control valve. If the pump
is turned on (PumpSwitch = 1), water is pumped into the tank. When the water
level reaches or exceeds the set point plus the upper bound, the controller turns
off the control valve. Regardless of whether the pump is on or off, water stops
pumping into the tank.

2-11

2 Graphical User Interfaces

Scope blocks — A standard Simulink scope block is added to the model to view
signals during a simulation. xPC Target scope blocks are added to the model
for you to view signals while running the target application. Scope-Id1 displays
the actual water level and the selected water level in the tank. Scope-1d2
displays the control signals. Both scopes are displayed on the target PC using
a scope of type target. These scope blocks cannot be controlled by the Dials &
Gauges Blockset or xPC Target interface blocks.

Notice that the model xpctank.mdl does not contain any Dials & Gauges blocks
or xPC Target interface blocks. This model is built entirely from standard
Simulink blocks and scope blocks from xPC Target. It does not differ in any way
from a model you would normally use with xPC Target and it does not require
any changes (except for tagging properties and signals) to use it with a Dials &
Gauges interface.

Creating a Target Application Model

A target application model is a Simulink model that describes your physical
system, a controller, and its behavior. You use this model to create a real-time
target application, and you use this model to select the parameters and signals
you want to connect to a custom graphical interface.

You do not have to modify this model when you use it with the Dials & Gauge
Blockset, Virtual Reality Toolbox, or other third-party graphical elements.

Creating a target application model is the first step you need to do before you
can tag block parameters and block signals for creating a custom graphical
interface.

1 In the MATLAB Command Window, type

xpctank

A Simulink model for a water tank opens. This model contains a set of
equations to describe the behavior of a water tank and a simple controller.

The controller regulates the water level in the tank. This model contains
only standard Simulink blocks and you use it to create the xPC Target
application.

2-12

Interface with Dials & Gauges Blockset

=1aix]

File Edit View Simulation Format Tools Help

1 1
FumpSwitch W a e S

R = 1 >
5 Lashl Ly i} L =z G
-)] cope
SetPaint Controlle = oeIValug Bain Zaint Tapkewal

Farget Scopsg

larget Scopy
p 21 g 1d: 1

Id: 2

Scope (LT 1 Foope (<PL)

Tank Lewe| Control System

2 From the File menu, click Save as and enter a new file name. For example,
enter xpc_tank and then click OK.

Your next task is to mark the block properties and block signals. See “Marking
Block Parameters” on page 2-13 and “Marking Block Signals” on page 2-16.

Marking Block Parameters

Tagging parameters in your Simulink model allows the function xpcsliface to
create To xPC Target interface blocks. These interface blocks contain the
parameters you connect to control devices (dials) in your user interface model.

After you create a Simulink model, you can mark the block parameters. This
procedure uses the model xpc_tank1.mdl (or xpctank.mdl) as an example. See
“Creating a Target Application Model” on page 2-12.

1 Open a Simulink model. For example, in the MATLAB Command Window,
type
xpc_tank or xpctank

2 Point to a Simulink block, and then right-click.

2-13

2 Graphical User Interfaces

3 From the menu, click Block Properties. Do not click Block Parameters.

Copy
Clear

Block parameters...
Block properties...

A Block properties dialog box opens.

4 In the Description box, enter a tag to the parameters for this block.

For example, the Setpoint block is a constant with a single parameter that
selects the level of water in the tank. Enter the tag shown below.

Froperties
Description:

IxPCTagU J=water_lewvel;

The tag has the following format:
xPCTag(1, . . . index_n)= label 1 . . . label n;

For single dimension ports, the following syntax is also valid:

xPCTag=1label;

index_n — Index of a block parameter. Begin numbering parameters with
an index of 1.

label_n — Name for a block parameter that will be connected to a To xPC
Target block in the user interface model. Separate the labels with a space,
not a comma.

5 Repeat steps 1 through 3 for the remaining parameters you want to tag.

For example, for the Controller block, enter the tag

2-14

Interface with Dials & Gauges Blockset

FProperties
Descriptian:

IxPCTagU 2. 3=upper_water_level lower_water_level pump_flowrate;

For the Pump Switch and Drain Valve blocks, enter the tags

Froperties
Description:

IxPCTagU I=purmp_switch;

FProperties
Descriptian:

IxPCTagU J=drain_valve;

To create the To xPC blocks in an user interface model for a block with four
properties, use the following syntax:

xPCTag(1,2,3,4)=1abel 1 label 2 label 3 label 4,

To create the To xPC blocks for the second and fourth properties in a block
with at least four properties, use the following syntax:

xPCTag(2,4)=label 1 label 2;

6 From the File menu, click Save as. Enter a file name for your model. For
example, enter

xpc_tank1

You next task is to mark block signals if you have not already done so, and then
create the user interface template model. See “Marking Block Signals” on
page 2-16 and “Creating a User Interface Model” on page 2-19.

2-15

2 Graphical User Interfaces

Marking Block Signals

Tagging signals in your Simulink model allows the function xpcsliface to
create From xPC Target interface blocks. These interface blocks contain the
signals you connect to display devices (gauges) in your user interface model.

After you create a Simulink model, you can mark the block signals. This
procedure uses the model xpc_tank1.mdl (or xpctank.mdl) as an example. See
“Creating a Target Application Model” on page 2-12.

Notice that you cannot select signals on the output ports of any virtual blocks
such as Subsystems and Mux blocks. Also, you cannot select signals on any
Function-call, triggered signal output ports.

1 Open a Simulink model. For example, in the MATLAB Command Window,
type
Xpc_tank or xpctank

2 Point to a Simulink signal line, and then right-click.

3 From the menu, click Signal Properties.

cut

copy
Clear

Signal properties... k

A Signal Properties dialog box opens.
4 In the Description box, enter a tag to the signals for this line.

For example, the TankLevel block is an integrator with a single signal that
indicates the level of water in the tank. Enter the tag shown below.

2-16

Interface with Dials & Gauges Blockset

<} signal Properties: - o] x|

rDocumentation

Signal name:

Description:

*PCTag(1)=water_lewvel;

Document link:

The tag has the following syntax:
xPCTag(1, . . . index _n)=label 1 . . . label_ n;

For single dimension ports, the following syntax is also valid:

XPCTag=label;

index_n Index of a signal within a vector signal line. Begin
numbering signals with an index of 1.

label_n Name for a signal that will be connected to a From xPC
Target block in the user interface model. Separate the
labels with a space, not a comma.

To create the From xPC blocks in an user interface model for a signal line with
four signals (port dimension of 4), use the following syntax:

xPCTag(1,2,3,4)=1abel_1 label 2 label 3 label 4;

To create the From xPC blocks for the second and fourth signals in a signal line
with at least four signals, use the following syntax:

xPCTag(2,4)=1abel_1 label_2;

2-17

2 Graphical User Interfaces

5 From the File menu, click Save as. Enter a file name for your model. For
example, enter

xpc_tank1

You next task is to mark block parameters if you have not already done so, and
then create the user interface template model. See “Marking Block
Parameters” on page 2-13 and “Creating a User Interface Model” on page 2-19.

Description of the User Interface Model

xPC Target includes the Simulink model xpctank.mdl. This is the model of a
water tank with a pump, drain, and valve controller. See “Creating a Target
Application Model” on page 2-12. Using Real-Time Workshop, xPC Target, and
a third-party compiler, you can create a real-time target application from this
model.

An user interface model is a Simulink user interface model you create as a
graphical interface to a target application. You do this by using dial blocks,
gauges blocks, and xPC Target interface blocks.

After you create an user interface template model with xPC Target interface
blocks, you can create a user interface model with the following controls and
displays:

¢ Pump switch — Override the bang-bang controller by using a manual
switch to turn the pump on and off. Turn the pump on or off by setting
PumpSwitch to 1 or 0. Use a toggle switch.

¢ Drain valve — Open or close the drain valve by setting ValveSwitch to 1 or
0. Use a toggle switch.

® Selected water level — Change the level of the water in the tank by
changing the SetPoint block parameter Constant value. Use a slider to set
this value.

¢ Actual water level — This is the water level and the output from the
integrator block TankLevel. Use a tank gauge to visualize this signal.

¢ Pump flow rate — Change the pump flow rate by changing the Controller
block parameter Output when on. Use a slider to set this value.

2-18

Interface with Dials & Gauges Blockset

¢ Hysteresis — Select the upper and lower water level by changing the
Controller block parameters Switch on point and Switch off point. Use a
slider to set these values.

This single value adjusts the offset, which is the maximum and minimum
change the water level is allowed above or below the set point before
corrective action is taken by either turning the pump on or turning the pump
off.

Creating a User Interface Model

A user interface model contains components from the Dials & Gauges Blockset
and xPC Target interface blocks. It functions as a user interface that allows you
to view signals with gauges and change parameters using dials.

After you tag block properties and block signals, you are ready to generate the
user interface template model containing xPC Target interface blocks. These
blocks connect your user interface model with your target application.

This procedure users the Simulink model xpc_tank1.mdl as an example, and
assumes you have tagged the block properties and block signals. See “Marking
Block Parameters” on page 2-13 and “Marking Block Signals” on page 2-16.

1 In the MATLAB Command Window, type
xpc_tank1

A window with the Simulink model xpc_tank1.mdl opens.

2 Type
xpcsliface('xpc_tank1')

A new Simulink window opens with the user interface template model.

2-19

2 Graphical User Interfaces

File Edit View Simulation Format Tools Help

) xpc_tankl_gui - o] x|

TankLevel SetPoint Contraller
Value OnSmitchWalue
ater_lewal water_level_setpoint upper_tuater_lewel|
Contraller

OffSmitchWalue

lowwer_water_lewel

Fump Switch Contrallar
Walue OnOutputalue
pump_smitch

pump_flowrate

Crrain Wahre
Walue

drain_wale

3 From the Simulation menu, click Simulation parameters. On the
Simulation Parameters dialog box, click the Solver tab.

4 In the Stop time box, enter inf. From the Type list, select Fixed-step.
From the solver list, select discrete (no continuous states).Inthe Fixed
step size box, enter auto.

Your Solver page should look similar to the one shown below.

2-20

Interface with Dials & Gauges Blockset

<} Simulation Parameters: xpc_tankl ¢

Wiorkspace I,ﬁOl Diag

Saolkver

Simulation time

Starttime: I 0.0

Solver options

Stop time: I inf

=15

nostics | Advanced | Real-Time WWarkshoy

=l

Type: IFixed-step

Idisu:rete {no continuous states)

=

Fixed step size: I auto

Cutput options

hMode: IAutD vl

Fefine output

LI Fefine factar: I 1

(0] | Canc:ell Help | Al

Note The user interface model should only contain discrete-time elements
and therefore you should only select the discrete solver. The model should not

contain any continuous-time

states.

Your next task is to add dials and gauges, and connect them to the xPC Target
interface blocks. See “Adding Dials & Gauges” on page 2-21.

Adding Dials & Gauges Blockset

Open the model xpctankpanel.mdl for an example of connecting Dials and
Gauges to xPC Target interface blocks.

You model should look similar to the figure shown below.

2-21

2 Graphical User Interfaces

2-22

[~ xpc_tankl_gui (=154

File Edit View Simulation Format Tools Help

100 m — Controller
OnSwitchWalue

i — Fy

water level

g0

50

40

3
20 z l -1
n- — -

— 7 72

+ * Contraller
i = OffSwitchValuz
Sethoint TankLevel 100
Walue
Gaind 80 80
FumpSwitch
F =10]
Walue » Contraller
pump_amitch 40 OnOutputvalue

Gain2 pump_flowrate

Drain‘falve 20
Walue
D_

drain_walve

If you do not see the dials and gauges in the Active X blocks, try registering the
Active X controls. In the MATLAB Command Window, type

dng_register_ocx

Your next tasks are to create the target application from a target application
model, and then run that application with the user interface model. See
“Creating a Target Application” on page 2-22 and “Running a Target
Application with a User Interface Model” on page 2-23.

Creating a Target Application

Use this procedure to create a target application that you want to connect to a
Simulink user interface model as a graphical interface with dial and gauge
blocks.

After you create a Simulink model and tag the block parameters and block
signals for creating xPC Target interface blocks, you can create a target

Interface with Dials & Gauges Blockset

application and download it to the target PC. This procedure uses the Simulink
model xpc_tank1.mdl (or xpctank.mdl) as an example. See “Creating a Target
Application Model” on page 2-12.

1 Start or reset the target PC with an xPC Target boot disk in the floppy drive.

2 In the MATLAB Command Window, type
xpc_tank1 or xpctank

3 From the Simulation menu, click Simulation parameters.
The Simulation Parameters dialog box opens.

4 Click the Real-Time Workshop tab, and then click the Browse button. In
the System Target File Browser dialog box, click xpctarget.tle, and then
click OK.

5 Click the Solver tab, and check that the Stop time is long enough for you to
interact with the target application.

6 From the Tools menu, point to Real-Time Workshop, and then click Build
model.

Real-Time Workshop, xPC Target, and a third-party C compiler create the
target application and download it to the target PC.

Your next task is to start running the target application in real time and start
a simulation of the user interface model. See “Running a Target Application
with a User Interface Model” on page 2-23.

Running a Target Application with a User Interface
Model

After you create an xPC Target application, download that application to the
target PC, and create a Simulink user interface model, you are ready to use the
user interface model as a graphical interface to the target application. See
“Creating a Target Application Model” on page 2-12 and “Creating a User
Interface Model” on page 2-19.

1 In the MATLAB Command Window, type

xpc_tanki1_gui or xpctankpanel

2-23

2 Graphical User Interfaces

2 Type
start(tg) or +tg

The target application starts running in real time on the target PC.

3 In the Simulink window for the user interface model, from the Simulation
menu, click Normal, and then click Start.

The user interface model begins a simulation in nonreal time. You should
observe graphical information made available through the Dials & Gauges
components. For example, the tank icon shows the water level rising.

When starting the simulation of your GUI interface, you might get an error
with one or more of the To xPC Target or From xPC Target blocks. To correct
this problem, create a temporary GUI using the function
xpcsliface('xpc_tank1'), delete the problem blocks, and then copy new
xPC Target interface blocks from the temporary GUI. Save the model and
restart the simulation.

4 Click the pump switch or drain valve buttons, or click-and-drag the slider
knobs to change parameters to new values.

2-24

Embedded Option

The xPC Target Embedded Option allows you to boot the target PC from a device other than a floppy
disk drive, such as a hard disk or flash memory. It also allows you to create stand-alone applications
on the target PC independent from the host PC. This chapter includes the following sections:

Introduction (p. 3-2)

Embedded Option Setup (p. 3-7)

DOSLoader Target Applications
(p. 3-11)

Stand-Alone Target Applications
(p. 3-13)

Learn about the different types of embedded target
applications you can create using the xPC Target
Embedded Option

Configure xPC Target to generate embedded target
applications and create a DOS system boot disk

Create a target application that boots from a device other
than a floppy disk drive

Create a target application that runs on the target PC
disconnected from the host PC, and optionally, boots from
a device other than a floppy disk drive

3 Embedded Option

3-2

Introduction

The xPC Target Embedded Option has two modes which create two different

types of embedded target applications. This section includes the following
topics:

® Overview

¢ DOSLoader Mode Overview
¢ StandAlone Mode Overview
¢ Software Architecture

¢ Restrictions

Overview

The xPC Target Embedded Option allows you to boot the xPC Target kernel not
only from a floppy disk drive, but also from other devices, including a flash disk
or a hard disk drive. By using xPC Target Embedded Option, you can configure
target PCs to automatically start execution of your embedded application for
continuous operation each time the system is booted. You use this capability to
deploy your own real-time applications on target PC hardware.

The xPC Target Embedded Option extends the xPC Target base product by
adding two additional modes of operation:

¢ DOSLoader — This mode of operation is used to start the kernel on the
target PC not only from a floppy disk, but optionally to start it from a flash
disk or a hard disk. The target PC then waits for the host computer to
download a real-time application either using the RS232 serial connection or
using TCP/IP network communication. Control and setting of starting,
stopping, parameters, tracing, and other properties can be achieved from
either the host PC or from the target PC.

¢ StandAlone — This mode extends the DOSLoader mode. After starting the
kernel on the target PC, StandAlone mode automatically starts execution of
your target application for complete stand-alone operation. This eliminates
the need for using a host computer and allows you to deploy real-time
applications on PC hardware environments.

Infroduction

Whether you are using the xPC Target Embedded Option with the DOSLoader
mode or the StandAlone mode, you initially boot your target PC with DOS from
virtually any boot device. Then the kernel is invoked from DOS.

Note The xPC Target Embedded Option requires a boot device with DOS
installed. DOS software and license are not included with xPC Target or with
the xPC Target Embedded Option.

During setup of either the DOSLoader mode or StandAlone mode, the xPC
Target Setup window allows you to create files for installation on the target
boot device. One of these files is an autoexec.bat file. When DOS starts, it
invokes the autoexec.bat file, which in turn starts the xPC Target kernel on
the target PC.

If you do not provide a target application and an autoexec.bat file to invoke
your target application, xPC Target Embedded Option starts the kernel on
your target PC and is ready to receive your target application whenever you
build and download a new one from the host computer.

In comparison, when using xPC Target without the xPC Target Embedded
Option, you can only download real-time applications to the target PC after
booting from an xPC Target boot disk. Because of this, when using xPC Target
without the Embedded Option, you are always required to use a target PC
equipped with a floppy disk drive. However, there are several cases where your
target system might not have a floppy disk drive or where the drive is removed
after setting up the target system. These cases can be overcome by using the
DOSLoader mode.

DOSLoader Mode Overview

With the DOSLoader mode of operation, you first set up a boot device such as a
floppy disk, flash disk, or a hard disk drive. This boot device must include DOS
and modules from xPC Target Embedded Option. Once the kernel starts
running, it awaits commands from the host computer and a target application
that is downloaded from the host computer. The primary purpose of the

DOSLoader mode is to allow you to boot from devices other than the floppy drive.

3-3

3 Embedded Option

StandAlone Mode Overview

With the StandAlone mode of operation, you create completely stand-alone
applications that start execution automatically when the target PC is booted.
There is no need for communication with a host computer to download the
application after booting. Once the boot device has been set up with DOS,
modules from xPC Target Embedded Option, and your target application, you
boot the target PC. Upon booting, DOS invokes your autoexec.bat file, which
invokes the kernel. However, in StandAlone mode, your target application is
combined with the kernel in one binary *.rtb file. The final result is that your
target application starts automatically each time the target PC is booted. By
using xPC Target Embedded Option, you can deploy control systems, DSP
applications, and other systems on PC hardware for use in production
applications using PC hardware. Typically these production applications are
found in systems where production quantities are low to moderate.

xPC Target Embedded Option also gives you the choice of using target scopes
on the target PC. When using StandAlone mode, target scopes allow you to
trace signals using the target PC monitor without any interaction from the host
computer. Assuming that you do not want to view signals on the target PC, it
is not necessary to use target scopes or a monitor on your target PC. In such a
case, your system is able to operate as a black box without a monitor, keyboard,
or mouse. Stand-alone applications are automatically set to continue running
for an infinite time duration or until the target computer is turned off.

Software Architecture

xPC Target Embedded Option creates additional files that you add to your
target PC DOS boot device. With the DOSLoader mode, an autoexec.bat file is
generated. This file enables DOS to automatically execute the file xpcboot.com
once the target PC is booted. The file autoexec.bat includes an argument that
invokes a *.rtb file containing the xPC Target kernel. Therefore, when the
boot device invokes DOS, the autoexec.bat file then starts the xPC Target
kernel. All these files are placed on a floppy disk when you click BootDisk from
the xpcsetup GUI. Your real-time application is not copied to the boot device.
You create the real-time application later by clicking Build.

The StandAlone mode operates in a similar fashion, with a few important

differences. From the xpcsetup GUI, after choosing StandAlone, you only click
Update to make your current selections active. When you later click Build, an
autoexec.bat file and the xpcboot.com file are placed in a subdirectory that is

3-4

Infroduction

created within your current working directory. This directory is named
modelname_ xpc_emb. In addition, the build process creates your target
application and combines it with the xPC Target kernel. This combined *.rtb
file is also placed in the same modename _xpc_emb subdirectory. You copy these
files onto any DOS boot device. Then, upon booting DOS, the file xpcboot.com
is invoked with the kernel and with your target application. If you choose to use
target scopes with your stand-alone application, you can do so provided
appropriate xPC Target Scope blocks are added and configured prior to code
generation.

A small DOS executable called xpcboot.com is the core module of the
Embedded Option. This module is used in both the DOSLoader mode and the
StandAlone mode. The module xpcboot. comis executed from DOS. It loads and
executes any xPC Target application. The first argument given to xpcboot.com
is the name of the image file (*.rtb) to be executed. This image file contains
the xPC Target kernel and options, such as whether you are communicating
using a serial cable or TCP/IP, and the ethernet address you have assigned to
the target PC.

Before starting the kernel, you must first boot the target PC under DOS. The
module xpcboot.com is then automatically executed under DOS by
autoexec.bat. To boot the target PC under DOS, you must first install DOS on
the target PC boot device. The xPC Target Embedded Option does not have
specific requirements as to the type of device you use to boot DOS. It is possible
to boot from a floppy disk drive, hard disk drive, flash disk, or other device
where you have installed DOS.

DOS is only needed to execute xpcboot.com and read the image file from the
file system. After switching to the loaded kernel, and then executing the xPC
Target application, DOS is discarded and is unavailable, unless you reboot the
target PC without automatically invoking the xPC Target kernel. Once the xPC
Target application begins execution, the target application is executed entirely
in the protected mode using the 32-bit flat memory model.

3-5

3 Embedded Option

Restrictions

The following restrictions apply to the booted DOS environment when you use
xpcboot.com to execute the target applications:

¢ The CPU must be executed in real mode.

¢ While loaded in memory, the DOS partition must not overlap the address
range of a target application.

You can satisfy these restrictions by avoiding the use of additional memory
managers like emm386 or gemm. Also, you should avoid any utilities that attempt
to load in high memory (for example, himem. sys). If the target PC DOS
environment does not use a config.sys file or memory manager entries in the
autoexec.bat file, there should not be any problems when running
xpcboot.com.

It is also necessary for your TargetMouse setting to be consistent with your
hardware. Some PC hardware might use an RS232 port for the mouse, while
others use a PS2 mouse. If a mouse is not required in your application, you
might choose to select None as your setting for the TargetMouse.

3-6

Embedded Option Sefup

Embedded Option Setup

This section includes the following topics:

¢ Updating the xPC Target Environment
® Creating a DOS System Disk

Updating the xPC Target Environment

After the xPC Target Embedded Option software has been correctly installed,
the xPC Target environment, visible through xpcsetup or getxpcenv, contains
new property choices for DOSLoader or StandAlone, in addition to the default
BootDisk that is normally used with xPC Target.

It is assumed that the xPC Target environment is already set up and working
properly with the xPC Target Embedded Option disabled. If you have not
already done so, we recommend you confirm this now.

You can use the function getxpcenv to see the current selection for
TargetBoot, or you can view this through the xPC Target Setup window. Start
MATLAB and execute the function

xpcsetup

Within the frame of the xPC Target Embedded Option, you see the property
TargetBoot, as well as the currently selected value. The choices are

® BootFloppy — Standard mode of operation when xPC Target Embedded
Option is not installed.

¢ DOSLoader — For invoking the kernel on the target PC from DOS.

¢ StandAlone — For invoking the kernel on the target PC from DOS and
automatically starting the target application without connecting to a host
computer. With this mode, the kernel and the target application are
combined as a single module that is placed on the boot device.

3 Embedded Option

<} ¥PC Target Setup

—1alx|

File
—— =PCTarget
Version 1.3 1R12.1) FS232HostPart ICOM1 VI
CCompiler: YisualC VI RS23z2Baudrate |115200 Vl
CompilerPath: ChAbicrozoftvisual S TeplpTargetAddress: I 2hh.255.2Rh 255
TargetRAMSizet IAutD LI I TeplpTargetPart: |22222
MaxhMode|Size: 1ME ,l TeplpSubMethdask: |255.255.255.255
SystemFoniSize: Srmall vl ToplpGateway: |255.255.255.255
CANLibrany: MNone 'l TeplpTargetDriver: INE2DDD vl
HostTargetComm: |RS232 - l TcplpTargetBus Type FCl -
Target3cope: Enabled - l TeplpTargetlSAMemPart: I 0300
Targettouse: Nane v l ToplpTargetSAIRG: |5 v l
—— xPC Target Embedded Option
TargetBoot BootFloppy vl
2
Update Biewvert BootDisk Close

The default setting for the property TargetBoot is BootFloppy. When using
BootFloppy, xPC Target must first create a target boot disk, which is then
used to boot the target PC.

Embedded Option Sefup

The property TargetBoot can be set to two other values, namely DOSLoader or
StandAlone. If the xPC Target loader is booted from any boot device with DOS
installed, the value DOSLoader must be set as shown above. If you want to use
a stand-alone application that automatically starts execution of your target
application immediately after booting, specify StandAlone.

After changing the property value, you need to update the xPC Target
environment by clicking the Update button in the xPC Target Setup window.
If your choice is DOSLoader, you must create a new target boot disk by clicking
the BootDisk button. Note that this overwrites the data on the inserted target
boot disk as new software modules are placed on the target boot disk. If your
choice is StandAlone, you click the Update button. Upon building your next
real-time application, all necessary xPC Target files are saved to a subdirectory
below your current working directory. This subdirectory is named with your
model name with the string ' xpc_emb' appended, such as xpcosc_xpc_emb.

For more detailed information about how to use the xPC Target Setup, see
Chapter 4, “Software Environment.”

Creating a DOS System Disk

When using DOSLoader mode or StandAlone mode, you must first boot your
target PC with DOS. These modes can be used from any boot device including
flash disk, floppy disk drive, or a hard disk drive.

In order to boot DOS with a target boot disk, a minimal DOS system is required
on the boot disk. With Windows 95, Windows 98, or DOS, you can create a DOS
boot disk using the command

sys a:

Note xPC Target Embedded Option does not include a DOS license. You
must obtain a valid DOS license for your target PC.

It is helpful to copy additional DOS-utilities to the boot disk, including

® A DOS editor to edit files
® The format program to format a hard disk or FlashRAM

¢ The fdisk program to create partitions

3-9

3 Embedded Option

® The sys program to transfer a DOS system onto another drive, such as the
hard disk drive

A config.sys file is not necessary. The autoexec.bat file should be created to
boot the loader or a stand-alone xPC Target application automatically. This is
described in the following sections.

3-10

DOSloader Target Applications

DOSLoader Target Applications

This topics in this section are

¢ Creating a Target Boot Disk for DOSLoader
¢ Creating a Target Application for DOSLoader

Creating a Target Boot Disk for DOSLoader

As the first step, we assume you have created a DOS system disk and updated
the xPC Target environment by setting the property TargetBoot to DOSLoader.
From the xPC Target Setup window, click the BootDisk button. xPC Target
copies the necessary files to the DOS disk. The files that are added to the DOS
boot disk include

® checksum.dat
® autoexec.bat
® xpchoot.com

e * rtb (where * is defined in the following table)

With the DOSLoader mode, the correct *.rtb file is added to the DOS disk
according to the options specified in the following table.

xPC Target HostTargetComm: HostTargetComm:
Environment RS232 TCP/IP
TargetScope: Disabled xpcston.rtb xpctton.rtb
TargetScope: Enabled xpcsgon.rtb xpctgon.rtb

Note The numeric value of n corresponds to the maximum model size. This
value is either 1, 4, or 16 megabytes. The default value for nis 1, or a
1-megabyte maximum model size.

3-11

3 Embedded Option

The file autoexec.bat is copied to the DOS disk. This file should contain at
least the following line:

xpcboot xxx.rtb

where xxx.rtb is the file described in the table above. We recommend that you
view this autoexec.bat file to confirm this.

Now the target boot disk can be removed from the host and put into the target
PC disk drive. Upon rebooting the target PC, DOS is booted from the target
boot disk and the autoexec.bat file with the result in the xPC Target loader
being automatically executed. From this point onwards, the CPU runs in
protected mode and DOS is discarded.

You can repeat this procedure as necessary. There are no restrictions on the
number of xPC Target boot floppies that you can create. However, xPC Target
and the xPC Target Embedded Option do not include DOS licenses. You must
purchase valid DOS licenses for your target PCs from the supplier of your
choice.

If the xpcboot command is not placed in the autoexec.bat, xpcboot.comis not
executed when the target PC is booted. Instead, the target is finished once it
has booted DOS. You can then use the DOS environment to create a DOS
partition on a hard disk, format it, and transfer xpcboot.com and xxx. rtb onto
it. The autoexec.bat file can then be placed on the hard disk and edited so that
it automatically boots the xPC Target loader the next time the target PC is
booted. After this step the floppy disk drive can be removed from the system.
The same procedure works with flash disks and other boot devices.

Creating a Target Application for DOSLoader

After booting the target PC as described in the proceeding section, the target
PC is ready to receive xPC Target applications from the host computer. Only
now, these applications are received by the DOSLoader component of xPC
Target. In every aspect, the DOSLoader mode allows your target PC to operate
just as it normally would when running the xPC Target after booting from a
standard xPC Target boot disk. When you click Build for your model, the target
application is downloaded to the target PC using the communication protocol
you specified earlier in the xPC Target Setup window.

3-12

Stand-Alone Target Applications

Stand-Alone Target Applications

The topics in this section are

¢ Creating a Target Application for Stand-Alone
¢ Creating a Target Boot Disk for StandAlone
¢ Using Target Scope Blocks with StandAlone

Creating a Target Application for Stand-Alone

After you select StandAlone as your TargetBoot entry, the xPC Target

environment is ready to create completely stand-alone applications using the
Real-Time Workshop Build button.

Once the build process has finished, a message is displayed confirming that a
stand-alone application has been created. With the StandAlone mode, the
download procedure is not automated. The files necessary for creating
stand-alone operation are placed in a subdirectory below your working
directory. You copy these files to your DOS boot device.

After the build process is complete, files in your subdirectory include

® model.rtb. This image contains the xPC Target kernel and your target
application.

® autoexec.bat. This file is automatically invoked by DOS. It then runs
xpcboot.com and the *.rtb file.

® xpcboot.com. This file is a static file that is part of xPC Target Embedded
Option.

3-13

3 Embedded Option

Creating a Target Boot Disk for StandAlone

After making a bootable DOS boot disk, the file autoexec.bat file must contain
at least the following line

xpcboot model.rtb

where model is the name of your Simulink model.

These files should be copied to your DOS boot disk and inserted into the target
drive. By rebooting the target PC, DOS is booted from the boot disk. The
autoexec.bat file invokes the command string shown above, which starts the
kernel and the real-time application. Because of the stand-alone nature of the
executed .rtb file, the simulation of the xPC Target application starts
immediately. Interaction between the host PC and target PC is no longer
possible.

Is also possible to transfer the DOS system and stand-alone xPC Target
applications to a hard disk or a flash RAM board. This offers great flexibility in
creating self-starting stand-alone applications.

Using Target Scope Blocks with StandAlone

When using xPC Target Embedded Option with StandAlone mode, you can also
use target scopes for tracing signals and displaying them on the target screen.

Because host-to-target communication is not supported with the StandAlone
mode, scope objects of type target must be defined within the Simulink model
before the xPC Target application is built.

3-14

Stand-Alone Target Applications

xPC Target (basic package) offers a block for such purposes.

E! Library: xpclib/Misc.

File Edit “iew Format

Scope-1d: System
1 MotherBoard
Scope (xPC) Sofhuare
Reboot
0300, 762 0300, 762
10 port write 10 port read

Copy the Scope (xPC) block into your block diagram and connect the signals
you would like to view to this block. Multiple signals can be used, provided a
Mux block is used to bundle them.

E! Xpcosc *

File Edit “iew Simulation Format Tools

- 0] x|

IDcE&E sme 2 =« | &

Signal
Generator

<7l

ke

Outpart

|y Scoae-ld:

Fieady

Model xpoose
simple xPC Target demo model

¥

Scope (xPC)

[0z

[T-0.00 [aded 7

3-15

3 Embedded Option

3-16

It is necessary to edit the Scope (xPC) dialog box and confirm that the check
box entry for Start Scope after download is selected, as shown in the
following dialog box.

Block Parameters: Scope [xPC) x|
|— wpozcopeblock [mazk)] (link] |

=

Scope Mumber:
|1

Scope Type: | Target j
Scope Mode: [{ELE L

I Girid

& Limits:

Jio.on

¥ Start Scope after download

Mumber of Samples:
500

Interleave:
|1

Triggerode: | FreeFun j
Trigger Signal:

|1

Trigger Level:

Joo

Trigger Slope: | gither j

Trigger Scope Mumber:

|1
QK I Cancel | Help | Apply |

This setting is required to enable target scopes to begin operating as soon as
the application starts running. The reason this setting is required is that the
host PC is not available in StandAlone mode to issue a command that would
start scopes. With these settings, click Build and copy the files from your
modelname_xpc_emb subdirectory to your boot disk. Then boot your target PC.
When the target application starts to run, the target scopes start
automatically. A monitor is needed on your target PC to view the results.

Note When using target scopes with StandAlone mode, you must specify the
Scope Type as target prior to generating code.

Software Environment

The xPC Target environment defines the connections and communication between the host and
target computers. It also defines the build process for a real-time application. This chapter includes
the following sections:

Environment Reference (p. 4-2) List of environment properties and functions with a brief
description

Using Environment Properties and Common tasks within the xPC Target software

Functions (p. 4-11) environment

System Functions (p. 4-16) List of functions for testing and opening graphical

interfaces

4 Software Environment

Environment Reference

4-2

The xPC Target environment defines the software and hardware environment
of the host PC as well as the target PC. An understanding of the environment
properties will help you to correctly configure the xPC Target environment.
This section includes the following topics:

¢ Environment Properties — List of properties with a brief description

¢ Environment Functions — List of functions to view and change
environment properties

Environment Properties

The environment properties define communication between the host PC and
target PC, the type of C compiler and its location, and the type of target boot
floppy created during the setup process. You can view and change these
properties using the environment functions or the Setup window.

Environment Description

Property

Version xPC Target version number. Read-only.

Path xPC Target root directory. Read-only.
CCompiler Values are 'Watcom' or 'VisualC'. From the

Setup window CCompiler list, select either
Watcom or VisualC.

CompilerPath Value is a valid compiler root directory. Enter the
path where you installed a Watcom C/C++ or
Microsoft Visual C/C++ compiler.

If the path is invalid or the directory does not
contain the compiler, an error message appears
when you use the function updatexpcenv or build
a target application.

Environment Reference

Environment
Property

Description

TargetRAMSizeMB

MaxModelSize

Values are 'Auto' or 'MB of target RAM'.

From the Setup window TargetRAMSizeMB list,
select either Auto or Manual. If you select Manual,
enter the amount of RAM, in megabytes, installed
on the target PC. This property is set by default to
Auto.

TargetRAMSizeMB defines the total amount of
installed RAM in the target PC. This RAM is used
for the, kernel, target application, data logging,
and other functions that use the heap.

If TargetRAMSizeMB is set to Auto, the target
application automatically determines the amount
of memory up to 64 MB. If the target PC does not
contain more than 64 MB of RAM, or you do not
want to use more then 64 MB, select Auto. If the
target PC has more than 64 MB of RAM, and you
want to use more than 64 MB, select Manual, and
enter the amount of RAM installed in the target
PC.

Values are '1MB', '4MB', or '16MB".

From the Setup window MaxModelSize list, select
either 1 MB, 4 MB, or 16 MB.

Choosing the maximum model size reserves the
specified amount of memory on the target PC for
the target application. The remaining memory is
used by the kernel and by the heap for data
logging.

Selecting too high a value leaves less memory for
data logging. Selecting too low a value does not
reserve enough memory for the target application
and creates an error.

4-3

4 Software Environment

4-4

Environment
Property

Description

SystemFontSize

CANLibrary

HostTargetComm

RS232HostPort

RS232Baudrate

Values are 'Small' or 'Large’.

From the Setup window SystemFontSize list,
select either Small or Large.

The xPC Target GUIs use this information to
change the font size.

Values are 'None', '200 ISA', '527 ISA', '1000
PCI', '1000 MB PCI', or 'PC104".

From the Setup window CANLibrary list, select
None, 200 ISA, 527 ISA, 1000 PCI, 1000 MB PCI,
or PC104.

Values are 'RS232"' or 'TcpIp'.

From the Setup window HostTargetComm list,
select either RS232 or TCP/IP.

If you select RS232, you also need to set the
property RS232HostPort. If you select TCP/IP,
then you also need to set all properties that start
with Teplp.

Values are 'COM1' or 'COM2"'.

From the Setup window RS232HostPort list,
select either COM1 or COM2 for the connection on the
host computer. xPC Target automatically
determines the COM port on the target PC.

Before you can select an RS232 port, you need to
set the HostTargetComm property to RS232.

Values are '115200', '57600", '38400', '19200",
'9600', '4800', '2400", or '1200".

From the RS232Baudrate list, select 115200,
57600, 38400, 19200, 9600, 4800, 2400, or 1200.

Environment Reference

Environment Description

Property

TcpIpTargetAddress Value is ' xxx.XXX.XXX.XXX".
In the Setup window TcpIpTargetAddress box,
enter a valid IP address for your target PC. Ask
your system administrator for this value.
For example, 192.168.0.1

TcpIpTargetPort Value is 'xxxxx'.
In the Setup window TepIpTargetPort box, enter
a value greater than 20000.
This property is set by default to 22222 and should
not cause any problems. The number is higher
than the reserved area (telnet, ftp, ...) and it is only
of use on the target PC.

TcpIpSubNetMask Value is ' xxx.XXX.XXX.XXX".

In the Setup window TcepIpSubNetMask text box,
enter the subnet mask of your LAN. Ask your
system administrator for this value.

For example, your subnet mask could be
255.,255.255.0.

4-5

4 Software Environment

Environment
Property

Description

TcpIpGateway

TcpIpTargetDriver

TcpIpTargetBusType

Value is 'xxx.xXXX.XXX.XXX".

In the Setup window TcpIpGateway box, enter
the IP address for your gateway. This property is
set by default to 255.255.255.255, which means
that a gateway is not used to connect to the target
PC.

If you communicate with your target PC from
within a LAN that uses gateways, and your host
and target computers are connected through a
gateway, then you need to enter a value for this
property. If your LAN does not use gateways, you
do not need to change this property. Ask your
system administrator.

Values are 'NE2000' or 'SMC91C9X"'.

From the Setup window TcepIpTargetDriver list,
select NE2000, SMC91C9X, 182559, or RTLANCE. The
Ethernet card provided with xPC Target uses the
NE2000 driver.

Values are 'PCI' or 'ISA'.

From the Setup window TcpIpTargetBusType
list, select either PCI or ISA. This property is set by
default to PCI, and determines the bus type of your
target PC. You do not need to define a bus type for
your host PC, which can be the same or different
from the bus type in your target PC.

If TepIpTargetBusType is set to PCI, then the
properties TepIpISAMemPort and TecpIpISAIRQ
have no effect on TCP/IP communication.

If you are using an ISA bus card, set
TceplpTargetBusType to ISA and enter values for
TepIlpISAMemPort and TepIpISAIRQ.

4-6

Environment Reference

Environment
Property

Description

TcpIpTargetISAMemP
ort

TcpIpTargetISAIRQ

EmbeddedOption

Value is '0xnnnn'.

If you are using an ISA bus Ethernet card, you
must enter values for the properties
TcepIlpISAMemPort and TepIpISAIRQ. The
values of these properties must correspond to the
jumper settings or ROM settings on your ISA bus
Ethernet card.

On your ISA bus card, assign an IRQ and I/O port
base address by moving the jumpers on the card.

Set the I/O port base address to around 0x300. If
one of these hardware settings leads to a conflict in
your target PC, choose another I/O port base
address and make the corresponding changes to
your jumper settings.

Value is 'n' where n is between 4 and 15.

If you are using an ISA bus Ethernet card, you
must enter values for the properties
TcepIlpISAMemPort and TepIpISAIRQ. The
values of these properties must correspond to the
jumper settings or ROM settings on the ISA-bus
Ethernet card.

On your ISA bus card, assign an IRQ and I/O-port
base address by moving the jumpers on the card.

We recommend setting the IRQ to 5, 10, or 11. If
one of these hardware settings leads to a conflict in
your target PC, choose another IRQ and make the
corresponding changes to your jumper settings.

Values are 'Disabled' or 'Enabled'. This
property is read-only.

Note The xPC Target Embedded Option is enabled
only if you purchase an additional license.

4-7

4 Software Environment

4-8

Environment
Property

Description

TargetScope

Values are 'Disabled' or 'Enabled'.

From the Setup window TargetScope list, select
either Enabled or Disabled.

The property TargetScope is set by default to
Enabled. If you set TargetScope to Disabled, the
target PC displays information as text.

To use all the features of the target scope, you also
need to install a keyboard and mouse on the target
PC.

Environment Reference

Environment
Property

Description

TargetMouse

TargetBoot

Values are 'None', 'PS2', 'RS232 COM1', 'RS232
com2'.

From the Setup window TargetMouse list, select
None, PS2, RS232 COM1, or RS232 COM2.

Before you can select a target mouse, you need to
set the Target Scope property to Enabled.

TargetMouse allows you to disable or enable
mouse support on the target PC:

¢ If you do not connect a mouse to the target PC,
you need to set this property to None; otherwise,
the target application might not behave
properly.

¢ Ifthe target PC supports PS/2 devices (keyboard
and mouse) and you connect a PS/2 mouse, set
this property to PS2.

¢ If you connect a serial RS232 mouse to the
target PC, select either RS232 COM1 or RS232
COM2 depending on which serial port you
attached the mouse to.

Values are 'BootFloppy', 'DOSLoader', or
'StandAlone’.

From the Setup window TargetBoot list, select
BootFloppy, DOSLoader, or StandAlone.

If your license file does not include the license for
the xPC Target Embedded Option, the Target
Boot box is disabled, with BootFloppy as your
only selection. With the xPC Target Embedded
Option licensed and installed, you have the
additional choices of DOSLoader and
StandAlone.

4-9

4 Software Environment

Environment Functions

The environment functions allow you to change the environment properties.
The functions are listed in the following table.

Environment Description

Functions

getxpcenv List environment properties in the MATLAB
window or assign the list as a cell array to a
MATLAB variable.

setxpcenv First of two steps to change environment

properties. See also updatexpcenv.

updatexpcenv Change the current environment properties to
equal the new properties entered using the
function setxpcenv.

xpchootdisk Create a boot floppy disk containing the kernel
according to the current environment properties.

4-10

Using Environment Properties and Functions

Using Environment Properties and Functions

Use the xPC Target Setup window or the MATLAB command window to enter
environment properties that are independent of your model. This section
includes the following topics:

¢ Getting a List of Environment Properties

¢ Saving and Loading the Environment Properties

¢ Changing Environment Properties with a Graphical Interface

¢ Changing Environment Properties with a Command-Line Interface

To enter properties specific to your model and its build procedure, see
“Entering the Real-Time Workshop Parameters” on page 3-26. These
properties are saved with your Simulink model.

Getting a List of Environment Properties

To use the xPC Target functions to change environment properties, you need
to know the names and allowed values of these properties. Use the following
procedure to get a list of the property names, their allowed values, and their
current values:

1 In the MATLAB window, type

setxpcenv

MATLAB displays a list of xPC Target environment properties and the
allowed values. For a list of the properties, see “Environment Properties” on
page 4-2
2 Type
getxpcenv

MATLAB displays a list of xPC Target environment properties and the
current values.

Alternatively, you can use the xPC Target Setup dialog box to view and
change environment properties. In the MATLAB window, type xpcsetup.

4-11

4 Software Environment

Saving and Loading the Environment Properties

This feature makes it easy and fast to switch between different xPC Target
environments:

1 In the xPC Target Setup window, and from the File menu, click Save
Settings.
The Save xPC Target Environment dialog box opens.

2 Enter the name of an environment file (*.mat). Select a directory, and then
click Save.
xPC Target saves the current environment properties.

After you have saved an xPC Target environment, you can load those
property values back into xPC Target.

3 From the File menu, click Load Settings.
The Load xPC Target Environment dialog box opens.

4 Select a directory with a previously saved environment file (*.mat). Select
the file, and then click Open.

5 In the xPC Target Setup window, click the Close button.

If you change the environment properties but do not click the Update
button, xPC Target displays a warning.

Even if you decide to continue with the exit process, you do not lose the values
you changed. However, the current environment does not reflect the changes
you made in the xPC Target Setup window. If you reopen the xPC Target
Setup window, the changes you made reappear, and the Update button is
enabled.

Changing Environment Properties with a Graphical
Interface

xPC Target lets you define and change environment properties. These
properties include the path to the C/C++ compiler, the host PC COM port, the
logging buffer size, and many others. Collectively these properties are known
as the xPC Target environment.

4-12

Using Environment Properties and Functions

xpcsetup

To change an environment property using the xPC Target GUI, use the
following procedure:

1 In the MATLAB Command Window, type

MATLAB opens the xPC Target Setup window.

+) ®PC Target Setup
File

—— xPCTarget
Yersion:
CCompiler:
CaompilerPath:
TargetRAMSizeM
MaxtodelSize:
SystemFontSize:
CAMNLibrary:
HostTargetCarmm
TargetScope:
Targetouse:

=lolx|

13R1Z1

IVisuaIC VI
Id:\apphcations\micrc

| IAutD ﬂ I

I 115200 - l
TeplpTargetBus Type PCl -

TecplpTargetlSAMemPort IMUD—
TeplpTargetisaRa: 5 <]

FR5232HostPart:
R5232Baudrate
ToplpTargetiddress:
TeoplpTargetPort:
TeoplpSubMettask:
TeoplpGateway:
TeplpTargetDriver:

—— *PC Target Embeddead Option

TargetBoot: BootFloppy =
Update Rewvert BootDisk Close

4-13

4 Software Environment

4-14

The xPC Target Setup window has two sections:

= xPC Target
= xPC Target Embedded Option

If your license does not include the xPC Target Embedded Option, the
TargetBoot box is grayed out, with BootFloppy as your only selection. With
the xPC Target Embedded Option, you have the additional choices of
DOSLoader and StandAlone.

Change properties in the environment by entering new property values in
the text boxes or choosing items from the lists.

After you make changes to the environment properties, you need to update
the xPC Target environment. Updating makes your changes in the xPC
Target Setup window equal to the current property values.

Click the Update button.

xPC Target updates the xPC Target environment and disables (grays out)
the Update button. As long as the Update button is enabled, the xPC Target
environment needs to be updated.

Using Environment Properties and Functions

Changing Environment Properties with a
Command-Line Interface

xPC Target lets you define and change different properties. These properties
include the path to the C/C++ compiler, the host COM port, the logging buffer
size, and many others. Collectively these properties are known as the xPC
Target environment.

You can use the command-line functions to write an M-file script that accesses
the environment settings according to your own needs. For example, you could
write an M-file that switches between two targets.

The following procedure shows how to change the COM port property for your
host PC from COM1 to COM2:

1 In the MATLAB window, type
setxpcenv('RS232HostPort', 'COM2")

The up-to-date column shows the values that you have changed, but have
not updated.

HostTargetComm :RS232 up to date
RS232HostPort :COM1 com2
RS232Baudrate 1115200 up to date

Making changes using the function setxpcenv does not change the current
values until you enter the update command.

2 In the MATLAB window, type
updatexpcenv

The environment properties you changed with the function setxpcenv
become the current values.

HostTargetComm :RS232 up to date
RS232HostPort :Com2 up to date
RS232Baudrate 1115200 up to date

4-15

4 Software Environment

System Functions

The system functions allow you to open xPC Target GUIs and run tests from
the MATLAB window. This section includes the following topics:

¢ GUI Functions
¢ Test Functions
¢ xPC Target Demos

GUI Functions
The GUI functions are listed in the following table.

System Functions Description

xpcrctool Open the remote control tool on the host PC for
running the target application on the target PC

Xxpcscope Open the scope manager window on the host PC
for scopes with type host.

xpcsetup Open the Setup window.

xpctargetspy Open the Target Spy window on the host PC. Use
this GUI to upload the target PC screen to the
host PC.

xpctargetspy Open the Target Spy window on the host PC. Use
this GUI to upload the target PC screen to the
host PC.

xpctgscope Open the scope manager window on the host PC

for scopes with type target.

4-16

System Functions

Test Functions
The test functions are listed in the following table.

System Functions Description

getxpcpci Determine which PCI boards are installed in the
target PC.

xpctargetping Test the communication between the host PC and
the target PC

xpctest Test the xPC Target installation.

xPC Target Demos

The xPC Target demos are used to demonstrate the features of xPC Target. But
they are also M-file scripts that you can view to understand how to write your
own scripts for creating and testing target applications.

The following table lists the demo scripts that are provided with xPC Target.

Demo Filename
Parameter Sweep parsweepdemo
Signal tracing using free-run mode scfreerundemo
Signal tracing using software triggering scsoftwaredemo
Signal tracing using signal triggering scsignaldemo
Signal tracing using scope triggering scscopedemo
Signal tracing using the target scope tgscopedemo

To locate or edit a demo script

1 In the MATLAB window, type

scfreerundemo

MATLAB displays the location of the M-file.

4-17

4 Software Environment

D:\MATLAB\toolbox\rtw\targets\xpc\xpcdemos\scfreerundemo.m

2 Type

edit scfreerundemo

MATLAB opens the M-file in a MATLAB editing window.

4-18

getxpcenv

Purpose

Syntax

Description

Examples

See Also

List environment properties assigned to a MATLAB variable

MATLAB Command Line

getxpcenv

Function for environment properties. This function displays, in the MATLAB
window, the property names, the current property values, and the new
property values set for the xPC Target environment.

Return the xPC Target environment in the structure shown below. The output
in the MATLAB window is suppressed. The structure contains three fields for
property names, current property values, and new property values.

env =getxpcenv

env =
propname: {1x25 cell}
actpropval: {1x25 cell}
newpropval: {1x25 cell}

Display a list of the environment property names, current values, and new
values.

env =getxpcenv

The xPC Target functions setxpcenv, updatexpcenv, xpcbootdisk, and
xpcsetup.

4-19

getxpcpci

4-20

Purpose

Syntax

Arguments

Description

Examples

Determine which PCI boards are installed in the target PC

MATLAB Command Line
getxpcpci('type_of _boards')

type_of_boards Values are no arguments, 'all’', and 'supported'.

The information is displayed in the MATLAB window. Only devices supported
by driver blocks in the xPC Target Block Library are displayed. The

information includes the PCI bus number, slot number, assigned IRQ number,
manufacturer name, board name, device type, manufacturer PCI ID, and the

board PCI ID itself.

For a successful query:

® The host-target communication link must be working. (The function
xpctargetping must return success before using the function getxpcpci.

¢ Either a target application is loaded or the loader is active. The latter is used
to query for resources assigned to a specific PCI device, which have to be
provided to a driver block dialog box prior to the model build process.

Return the result of the query in the struct pcidevs instead of displaying it.
The struct pcidevs is an array with one element for each detected PCI device.
Each element combines the information by a set of field names. The struct
contains more information compared to the displayed list, such as the assigned
base addresses, the base and subclass.

pcidevs = getxpcpci
Display the supported and installed PCI devices.
getxpcpci('all')

Display the installed PCI devices, not only the devices supported by the xPC
Target Block Library. This includes graphics controller, network cards, SCSI
cards, and even devices that are part of the motherboard chipset (for example
PCI-to-PCI bridges).

getxpcpei('all')

getxpcpci

Display a list of the currently supported PCI devices in the xPC Target block
library. The result is stored in a struct instead of displaying it.

getxpcpci('supported')

When called with the ' supported' option, getxpcpci does not access the target
PC.

4-21

setxpcenv

Purpose

Syntax

Arguments

Description

Examples

See Also

4-22

Change xPC Target environment properties

MATLAB Command Line

setxpcenv('property_name', 'property value')
setxpcenv('prop_namel', 'prop_vall', 'prop_name2', 'prop_val2')
setxpcenv

property_name Not case sensitive. Property names can be shortened

as long as they can be differentiated from the other
property names.

property value Character string. Type setxpcenv without arguments
to get a listing of allowed values. Property values are
not case sensitive.

Function for environment properties. Enter new environment properties. If the
new value is different from the current value, the property is marked as having
a new value. Use the function updatexpcenv to change the current properties
to the new properties.

The function setxpcenv works similarly to the function set of the MATLAB
Handle Graphics system. The function setxpcenv must be called with an even
number of arguments. The first argument of a pair is the property name, and
the second argument is the new property value for this property.

Using the function setxpcenv without arguments returns a list of allowed
property values in the MATLAB window.
List the current environment properties. For a description of properties and
allowed values, see “Environment Properties” on page 4-2.
setxpcenv
Change the host PC, serial communication port, to COM2.
setxpcenv('HostCommPort','COM2"')

The xPC Target functions getxpcenv, updatexpcenv, xpcbootdisk, and
xpcsetup. The procedures “Changing Environment Properties with a

setxpcenv

Graphical Interface” on page 4-12 and “Changing Environment Properties
with a Command-Line Interface” on page 4-15.

4-23

updatexpcenv

Purpose Change current environment properties to equal new properties
Syntax MATLAB Command Line

updatexpcenv
Description Function for environment properties. This procedure includes creating

communication M-files as well as patching the xPC Target kernel and system
DLLs. Calling the function updatexpcenv is necessary after new properties are
entered with the function setxpcenv, but before creating a target boot floppy
with the function xpcbootdisk.

See Also The xPC Target functions setxpcenv, getxpcenv, updatexpcenv, xpcbootdisk,
and xpcsetup. The procedures “Changing Environment Properties with a
Graphical Interface” on page 4-12 and “Changing Environment Properties
with a Command-Line Interface” on page 4-15.

4-24

xpcbootdisk

Purpose

Syntax

Description

Examples

See Also

Create xPC Target boot disk, and confirm the current environment properties

MATLAB Command Line
xpchootdisk

Function for environment properties. This function creates an xPC target boot
floppy for the current xPC Target environment that has been updated with the
function updatexpcenv. Creating an xPC Target boot floppy consists of writing
the correct bootable kernel image onto the disk. You are asked to insert an
empty formatted floppy disk into the floppy drive.

All existing files are erased by the function xpcbootdisk. If the inserted floppy
disk already is an xPC Target boot disk for the current environment settings,
this function exits without writing a new boot image to the floppy disk. At the
end, a summary of the creation process is displayed.

If you update the environment, you need to update the target boot floppy for
the new xPC environment with the function xpcbootdisk.
To create a boot floppy disk, in the MATLAB window, type
xpchootdisk
The xPC Target functions setxpcenv, getxpcenv, updatexpcenv, xpcbootdisk,

and xpcsetup. The procedures “System Functions” on page 4-16 and “System
Functions” on page 4-16.

4-25

xpcrctool

4-26

Purpose

Syntax

Description

See Also

Open a the remote control tool on the host PC

MATLAB Command Line
xpcrttool

This graphical user interface (GUI) allows you to control your target
application running on the target PC. It also allows you to add scopes, acquire
signal data and tune parameters using the xPC Target Simulink browser.

The xPC Target functions xpcscope, xpctgscope, and the procedure “Signal
Tracing” on page 4-3.

Xxpcscope

Purpose

Syntax

Description

See Also

Open a scope manager window on the host PC

MATLAB Command Line

Xpcscope

This graphical user interface (GUI) allows you to define scopes that display on
your host PC, choose signals, and control the data acquisition process.

The xPC Target function xpctgscope and the procedure “Signal Tracing” on
page 4-3.

4-27

xXpcsetup

Purpose

Syntax

Description

See Also

4-28

Open the Setup window

MATLAB Command Line

xpcsetup

This graphical user interface (GUI) allows you to

¢ Enter and change environment properties

¢ Create an xPC Target boot floppy disk

Functions — setxpcenv, getxpcenv, updatexpcenv, xpcbootdisk

Procedures — “Environment Properties for Serial Communication” on
page 2-11 and “Environment Properties for Network Communication” on
page 2-19

xpctargetping

Purpose

Syntax

Examples

Description

See Also

Test communication between the host and target computers

MATLAB Command Line
xpctargetping

Check for communication between the host PC and target PC.
xpctargetping
Pings the target PC from the host PC and returns either 'success' or 'failed'.

If the xPC Target kernel is loaded, running, and communication is working
properly, this function returns the value 'success'.

This function works with both RS232 and TCP/IP communication.

ans =
success

The xPC Target procedure “Testing and Troubleshooting the Installation” on
page 2-28.

4-29

Xpctargetspy

Purpose Open an xPC Target Spy window on the host PC
Syntax MATLAB Command Line
xpctargetspy
Descripi‘ion This graphical user interface (GUI) allows you to upload displayed data from
the target PC.

The behavior of this function depends on the value for the environment
property TargetScope.

¢ If TargetScope is enabled, a single graphics screen is uploaded. The screen
is not continually updated because of a higher data volume when a target
graphics card is in VGA mode.

To update the host screen with another target screen, move the pointer into
the Spy window and left-click.

e If TargetScope is disabled, text output is transferred once every second to
the host and displayed in the window.

Examples To open the Target Spy window, in the MATLAB window, type
xpctargetspy

4-30

Xpctest

Purpose

Syntax

Arguments

Description

Examples

See Also

Test the xPC Target installation

MATLAB Command Line

xpctest
xpctest('noreboot')

'noreboot’ Only one possible option. Skips the reboot test. Use
this option if the target hardware does not support
software rebooting. Value is 'noreboot’.

Series of xPC Target tests to check the correct functioning of the following xPC
Target tasks:

¢ Initiate communication between the host and target computers.
® Reboot the target PC to reset the target environment.

® Build a target application on the host PC.

® Download a target application to the target PC.

® Check communication between the host and target computers using
commands.

¢ Execute a target application.

¢ Compare the results of a simulation and the target application run.

xpctest('noreboot') skips test 2. Use this option if target hardware does not
support software rebooting.

If the target hardware does not support software rebooting, or to skip test 2, in
the MATLAB window, type

xpctest('noreboot')

The procedures “Testing and Troubleshooting the Installation” on page 2-28
and “Test 1, Ping Target System Standard Ping” on page 2-29.

4-31

xpctgscope

4-32

Purpose

Syntax

Description

See Also

Open the target scope manager window

MATLAB Command Line

xpctgscope

This graphical user interface (GUI) allows you to define scopes that display on
your target PC, choose signals, and control the data acquisition process.

The xPC Target function xpcscope and the procedure “Signal Tracing” on
page 4-3.

xpcwwwenable

Purpose Disconnect the target PC from the current client application
Syntax MATLAB Command Line
xpcwwwenable
Description Use this function to disconnect the target application from MATLAB before you

connect to the Web browser. You can also use this function to connect to
MATLAB after using a Web browser, or to switch to another Web browser.

4-33

xpcwwwenable

4-34

Target Objects

xPC Target uses a target object to represent the target kernel and your target application. It also
uses a scope object to represent the data acquisition part of the kernel. Use target objects to run and
control real-time applications on the target PC with scope objects to collect signal data. This chapter
includes the following sections:

Target Object Reference (p. 5-2) Definition of a target object with a list of properties and
methods
Using Target Objects (p. 5-11) Use the MATLAB Command window to change

properties and use methods to control the target PC and
your target application

S rget Objects

Target Object Reference

5-2

xPC Target uses a target object to represent the target kernel and your target
application. An understanding of the target object properties and methods will
help you to control and test your application on the target PC. This section
includes the following topics:

e What Is a Target Object?
¢ Target Object Properties
¢ Target Object Methods

What Is a Target Object?

A target object on the host PC represents the interface to a target application
and the kernel on the target PC. You use target objects to run and control the
target application.

When you change a target object property on the host PC, information is
exchanged with the target PC and the target application.

To create a target object:

¢ Build a target application. xPC Target creates a target object during the
build process.

¢ Use the target object constructor function xpc. In the MATLAB window, type
tg = xpc.

A target object has associated properties and methods specific to that object.

Target Object Reference

Target Object Properties

Target object properties let you access information from your target application
and control its execution. You can view and change these properties using
target object methods.

The properties for a target object are listed in the following table. This table
includes a description of the properties and which properties you can change
directly by assigning a value.

Property

Description Write

Connected

Application

Mode

Status

CPUoverload

Communication status between the host PC
and the target PC. Values are 'Yes' or 'No'.

Name of the Simulink model and target
application built from that model.

Type of Real-Time Workshop code generation.
Values are 'Real-Time Singletasking',
'Real-Time Multitasking', or
'Accelerate'. The default value is
'Real-Time Singletasking'.

Note Even if you select 'Real-Time
Multitasking', the actual mode can be
'Real-Time Singletasking'. This happens if
your model contains only one or two tasks and
the sample rates are equal.

Execution status of your target application.
Values are 'stopped’' or 'running’.

CPU status for overload. If the target
application requires more CPU time than the
sample time of the model, this value is set
from 'none' to 'detected' and the current
run is stopped. Correcting CPUoverload
requires either a faster processor or a larger
sample time.

5-3

S rget Objects

Property

Description

Write

ExecTime

SessionTime

StopTime

SampleTime

AVgTET

MinTET

Execution time. Time, in seconds, since your
target application started running. When the
target application stops, the total execution
time is displayed.

Time since the kernel started running on your
target PC. This is also the elapsed time since
you booted the target PC. Values are in
seconds.

Time when the target application stops
running. Values are in seconds. The original
value is set in the Simulink Simulation
Parameters dialog box.

When the ExecTime reaches the StopTime, the
application stops running.

Time between samples. This value equals the
step size, in seconds, for updating the model
equations and posting the outputs.

Average task execution time. This value is an
average of the measured CPU times, in
seconds, to run the model equations and post
outputs during each sample interval. Task
execution time is nearly constant, with minor
deviations due to cache, memory access,
interrupt latency, and multirate model
execution.

Minimum task execution time. Corresponds to
the fastest time (smallest time measured), in
seconds, to update model equations and post
outputs.

Yes

Yes

5-4

Target Object Reference

Property

Description Write

MaxTET

ViewMode

TimelLog

Statelog

OutputLog

TETLog

Maximum task execution time. Corresponds
to the slowest time (longest time measured),
in seconds, to update model equations and
post outputs.

Display either all scopes or a single scope on Yes
the target PC. Values are 'all' or a single

scope index. This property is active only if the
environment property TargetScope is set to
enabled.

Storage in the MATLAB workspace for the
time or t-vector logged during execution of the
target application.

Storage in the MATLAB workspace for the
state or x-vector logged during execution of
the target application.

Storage in the MATLAB workspace for the
output or y-vector logged during execution of
the target application.

Storage in the MATLAB workspace for a
vector containing task execution times during
execution of the target application.

To enable logging of the TET, you need to
check the Log Task Execution Time box
located at Simulation Parameters dialog box
-> Real-Time Workshop page ->
Category:xPC Target code generation options

group.

5-5

S rget Objects

5-6

Property

Description

Write

MaxLogSamples

NumLogWraps

LogMode

Scopes

NumSignals

Maximum number of samples for each logged
signal within the circular buffers for TimeLog,
Statelog, OutputLog, and TETLog. StateLog

and OutputLog can have one or more signals.

This value is calculated by dividing the Signal
Logging Buffer Size by the number of logged
signals. The Signal Logging Buffer Size box
is located at Simulation Parameters dialog
box -> Real-Time Workshop page ->
Category:xPC Target code generation options

group.

The number of times the circular buffer
wrapped. The buffer wraps each time the
number of samples exceeds MaxLogSamples.

Controls which data points are logged.

* Time-equidistant logging. Logs a data point
at every time interval. Set value to
"Normal'.

¢ Value-equidistant logging. Logs a data
point only when an output signal from the
OutputLog changes by a specified value
(increment). Set the value to the difference
in signal values.

List of index numbers, with one index for each
scope.

The number of signals from your Simulink
model that are available to be viewed with a
scope.

Yes

Target Object Reference

Property

Description Write

ShowSignals

Signals

S#

NumParameters

ShowParameters

Flag set to view or hide the list of signals from Yes
your Simulink blocks. This list is shown when

you display the properties for a target object.

Values are 'on' or 'off'.

List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

¢ Property name. SO, S1. ..
¢ Property value. Value of the signal.

® Block Name. Name of the Simulink block
the signal is from.

Property name for a signal.

The number of parameters from your
Simulink model that you can tune or change.

Flag set to view or hide the list of parameters Yes
from your Simulink blocks. This list is shown

when you display the properties for a target

object. Values are 'on' or 'off'.

5-7

S rget Objects

5-8

Property

Description

Write

Parameters

P#

List of tunable parameters. This list is visible
only when ShowParameters is set to 'on'.

® Property name. PO, P1. ..

¢ Property value. Value of the parameter in a
Simulink block.

¢ Type. Data type of the parameter. Always
double.

® Size. Size of the parameter. For example,
scalar, 1-by-2 vector, or 2-by-3 matrix.

¢ Parameter name. Name of a parameter in a
Simulink block.

® Block name. Name of a Simulink block

Property name for only tunable block
parameter. One block can have one or more
parameters.

Yes

Target Object Reference

Target Object Methods

The target object methods allow you to control a target application on the
target PC from the host PC. You enter target object methods in the MATLAB
window on the host PC or use M-file scripts.

If you want to control the target application from the target PC, use target PC
commands. See “Target PC Command-Line Interface” on page 1-32.

The target object methods are listed in the following table.

Method Description

Xpc Create a target object on the host PC (constructor).

set Set writable target object properties to the specified
value.

get Return the value of readable properties from a target
object.

start Start the execution of a target application on the target
PC.

stop Stop the execution of a target application on the target
PC.

load Download a target application from the host PC to the
target PC.

unload Unload a target application from the target PC. If a
target application is running, it is stopped and
unloaded.

addscope Create a new scope with type 'host' or 'target' on
the target PC.

getscope Return the properties of a previously created scope

from the target PC. The scope properties can be
assigned to a MATLAB variable to create a scope object.

5-9

S rget Objects

5-10

Method Description

remscope Remove a scope from the target PC. This method does
not remove the scope object, on the host PC, that
represent the scope.

getparamid Return the property name or index of a parameter from
the target object.

getsignalid Return the property name or index of a signal from the
target object.

getlog Upload and returns one of the data logs from the target
PC to the host PC. TimeLog, StateLog, OutputLog,
TETLog

reboot Reboot the target PC. If a target application is running,
the target application is stopped, and then the target
PC is rebooted.

close Close the serial connection to the target PC so that the

host PC can use the COMM port for another device.

Using Target Obijects

Using Target Objects

xPC Target uses a target object to represent the target kernel and your target
application. This section shows some of the common tasks that you use with
target objects. This section includes the following topics:

¢ Displaying Target Object Properties

® Setting Target Object Properties from the Host PC

¢ Setting Target Object Properties from the Target PC
® Getting the Value of a Target Object Property

¢ Using the Method Syntax with Target Objects

Displaying Target Object Properties
You might want to list the target object properties to monitor a target

application. The properties include the execution time, and average task
execution time.

After you build a target application and target object from a Simulink model,
you can list the target object properties. This procedure uses the default target
object name tg as an example:

1 In the MATLAB window, type
tg

The current target application properties are uploaded to the host PC, and
MATLAB displays a list of the target object properties with the updated
values.

Note the target object properties for TimeLog, StateLog, OutputLog, and
TETLog are not updated at this time.

2 Type
+tg

The Status property changes from stopped to running, and the log
properties change to Acquiring.

5-11

S rget Objects

For a list of target object properties with a description, see “Target Object
Properties” on page 5-3.

5-12

Using Target Obijects

Setting Target Object Properties from the Host PC

You can change a target object property by using xPC Target methods on the
host PC.

With xPC Target you can use either a function syntax or an object property
syntax. The syntax set(target_object, property name,
new_property value) can be replaced by

target_object.property _name = new_property value

For example, to change the stop time mode for the target object tg:

1 In the MATLAB window, type
tg.stoptime = 1000

2 Alternatively, you could type
set(tg, 'stoptime', 1000)
Parameters are also target object properties. For example, to change the
frequency of the signal generator in the model xpcosc:
1 In the MATLAB window, type
tg.p2 = 30

2 Alternatively, you could type
set(tg, 'p2', 30)

When you change a target object property, the new property value is
downloaded to the target PC. The xPC Target kernel then receives the
information and changes the behavior of the target application.

To get a list of the writable properties, type set(target _object). The build
process assigns the default name of the target object to tg.

Note Method names are case sensitive and need to be complete, but property
names are not case sensitive and need not be complete as long as they are
unique.

5-13

S rget Objects

5-14

Setting Target Object Properties from the Target PC

You can type commands directly from a keyboard on the target PC. These
commands create a temporary difference between the behavior of the target
application and the properties of the target object. The next time you access the
target object, the properties are updated from the target PC:

On the target PC keyboard, press C, or point the target mouse in the
command window.

The target PC activates the command window.

Type a target command. For example, to change the frequency of the signal
generator (parameter 2) in the model xpcosc, type

setpar 2=30

Change the stop time. For example, to set the stop time to 1000, type
stoptime = 1000

The parameter changes are made to the target application but not to the

target object. When you type any xPC Target command in the MATLAB

command window, the target PC returns the current properties to the target
object.

Note The target PC command setpar does not work for vector parameters.

Using Target Obijects

Getting the Value of a Target Object Property

You can list a property value in the MATLAB window, or assign that value to
a MATLAB variable. With xPC Target you can use either a function syntax or
an object property syntax.

The syntax get(target _object, property name) can be replaced by

target_object.property _name

For example, to access the start time:

1 In the MATLAB window, type

endrun = tg.stoptime

2 Alternatively, you could type
endrun = get(tg, 'stoptime') or tg.get('stoptime')
Signals are also target object properties. For example, to get the value of the
Integratorl signal from the model xpcosc:
1 In the MATLAB window, type
outputvalue= tg.SO

2 Alternatively, you could type
outputvalue = get(tg, 's2') or tg.get('s2')

To get a list of readable properties, type target _object. Without assignment
to a variable, the property values are listed in the MATLAB window.

Note Method names are case sensitive and need to complete, but property
names are not case sensitive and need not be complete as long as they are
unique.

5-15

S rget Objects

5-16

Using the Method Syntax with Target Objects

Use the method syntax to run a target object method. The syntax
method _name (target_object, argument list) can be replaced with

target_object.method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
method names must be entered in full, and in lowercase. For example, to add a
scope of type target with a scope index of 1:

1 In the MATLAB window, type
tg.addscope('target',1)

2 Alternatively, you could type
addscope(tg, 'target’', 1)

addscope

Purpose

Syntax

Arguments

Description

Create one or more scopes on the target PC

MATLAB command line
Creating a scope and scope object without assigning to a MATLAB variable.

addscope(target_object, scope_type, scope_number)
target_object.addscope(scope_type, scope_number).

Creating a scope, scope object, and assign to a MATLAB variable.

scope_object = addscope(target_object, scope_type, scope_number)

scope_object = target object.addscope(scope_type, scope_number)

Target PC command line — When using this command on the target PC, it is
limited to adding a scope of type target.

addscope
addscope scope_number

target_object Name of a target object. The default target name
is tg.
scope_type Values are 'host' or 'target'. This argument is

optional with host as the default value.

scope_number Vector of new scope indices. This argument is
optional with the next available integer in the
target object property Scopes as the default
value.
If you enter a scope index for an existing scope
object, the result is an error.

Method of a target object. Creates a scope on the target PC, a scope object on
the host PC, and updates the target object property Scopes. This method
returns a scope object vector. If the result is not assigned to a variable, the
scope object properties are listed in the MATLAB window. If you try to add a
scope with the same index as an existing scope, the result is an error.

A scope acquires data from the target application and displays that data on the
target PC or uploads the data to the host PC.

5-17

addscope

All scopes of type target or host run on the target PC.

Scope of type target — Data collected is displayed on the target screen and
acquisition of the next data package is initiated by the kernel.

Scope of type host — Collects data and waits for a command from the host PC
for uploading the data. The data is then displayed using the host scope GUI
(xpcscope) or other MATLAB functions.

Host PC Target PC Host PC Target PC
target target ,m@m\ target
object application object) application
scope scope
object P
Scope engine Scope engine
kernel kernel
Examples Create a scope and scope object sc1 using the method addscope. A target scope

is created on the target PC with an index of 1, a scope object is created on the
host PC, and it is assigned to the variable sc1. The target object property
Scopes is changed from No scopes defined to 1.

sc1 = addscope(tg, 'target',1) or sc1 = tg.addscope('target',1)

Create a scope with the method addscope and then to create a scope object,
corresponding to this scope, using the method getscope. A target scope is
created on the target PC with an index of 1, a scope object is created on the host
PC, but it is not assigned to a variable. The target object property Scopes is
changed from No scopes defined to 1.

addscope(tg, 'target',1) or tg.addscope('target',1)
sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

Create two scopes using a vector of scope objects scvector. Two target scopes
are created on the target PC with scope indices of 1 and 2, and two scope objects
are created on the host PC that represent the scopes on the target PC. The
target object property Scopes is changed from No scopes defined to 1,2.

scvector = addscope(tg, 'target', [1, 2])

5-18

addscope
|

See Also The xPC Target target object methods remscope, getscope. The xPC Target
GUI function xpcscope. The xPC target M-file demo scripts listed in “xPC
Target Demos” on page 4-17.

5-19

close

Purpose Close the serial port connecting the host PC with the target PC

Syntax MATLAB command line

close(target_object)
target_object.close

Arguments target object Name of a target object.

Desc ripi‘ion Method of a target object. If you want to use the serial port for another function
without quitting MATLAB, for example a modem, use this function to close the
connection.

5-20

get

Purpose

Syntax

Arguments

Description

Examples

See Also

Return the property values for target and scope objects

MATLAB command line
get(target_object, 'target_object_property')

target_object Name of a target object.
target_object_property Name of a target object property.

Method of target objects. Gets the value of readable target object properties
from a target object.

List the value for the target object property StopTime. Notice that the property
name is a string, in quotation marks, and not case sensitive.

get(tg, 'stoptime’) or tg.get('stoptime’)

ans = 0.2

The xPC Target target object method set.The scope object methods get and
set. The built in MATLAB functions get and set.

5-21

getlog

Purpose

Syntax

Arguments

Description

Examples

See Also

5-22

Get all or part of the output logs from the target object

MATLAB command line

log = getlog(target _object, 'log_name', start_time,
number_points, decimation)

log User-defined MATLAB variable.

log_name Values are TimeLog, StateLog, OutputLog, or
TETLog. This argument is required.

first _point First data point. The logs begin with 1. This
argument is optional. Default is 1.

number _points Number of points after the start time. This
argument is optional. Default is all points in log.

decimation 1 returns all sample points. n returns every nth
sample point. This argument is optional. Default
is 1.

Method of a target object. Use this function instead of the function get when
you want only part of the data.

To get the first 1000 points in a log:
Out_log = getlog(tg, 'TETLog', 1, 1000)
To get every other point in the output log and plot values:

Output_log = getlog(tg, 'TETLoOg', 1, ,2)
Time_log = getlog(tg, 'TimeLog', 1, ,2)
plot(Time_log, Output_log)

The xPC Target target object method get. The procedures “Entering the
Real-Time Workshop Parameters” on page 3-26 and “Entering the Real-Time
Workshop Parameters” on page 3-26.

getparamid

Purpose

Syntax

Arguments

Description

Examples

Get a parameter index or property name from the parameter list

MATLAB command line
getparamid(target_object, 'block _name', 'parameter_name')
getparamid(target_object, 'block _name', 'parameter_name',
‘flag')
target_object Name of a target object. The default name is tg.
block _name Simulink block path and name.
parameter_name Name of a parameter within a Simulink block.
flag If flag = property, return the property name for

the parameter. If flag = numeric, return a
number index. This argument is optional. The
default behavior is to return a property name.

Method of a target object. Returns the index of a parameter in the parameter
list based on the path to the parameter name. The names must be entered in
full and are case sensitive.

Get the property name for the parameter Gain in the Simulink block Gainl,
incrementally increase gain, and pause to observe signal trace.

id = getparamid(tg, 'Subsystem/Gaini1', 'Gain')
for i =1:3

set(tg, id, i*2000);

pause(1);
end

Get the property name (PO, P1, . . .) of a single block.
getparamid(tg, 'Gaini', 'Gain')

Get the property index (0, 1, .. .) of a single block.
getparamid(tg, 'Gaini', 'Gain', 'numeric')

P5 is a property of the target object. For example, you could assign a value to
the gain with tg.p5 = 1000.

5-23

getparamid

See Also The xPC Target scope object method getsignalid. The xPC target M-file demo
scripts listed in “xPC Target Demos” on page 4-17.

5-24

getscope

Purpose

Syntax

Arguments

Description

Examples

Get a scope object pointing to a scope already defined in the kernel
MATLAB command line
scope _object_vector = getscope(target _object, scope_number)

scope_object = target _object.getscope(scope_number)

target_object Name of a target object

Vector of existing scope indices listed in the target
object property Scopes. The vector can have only
one element.

scope_number_vector

scope_object MATLAB variable for a new scope object vector.

The vector can have only one scope object.

Method of a target object. Returns a scope object vector. If you try to get a
nonexistent scope, the result is an error. You can retrieve the list of existing
scopes using the method get(target object, 'scopes') or
target_object.scopes.

Host PC Target PC Host PC Target PC
target target (target) target
object application object) application

T ’—:: A I
v getscope v
e \
scope scope
scope object P
N~—

Scope engine Scope engine
kernel kernel

If your Simulink model has an xPC Target scope block, a scope of type target
is created at the time the target application is downloaded to the target PC. To
change the number of samples, you need to create a scope object and then
change the scope object property NumSamples.

sc1 = getscope(tg,1) orscl = tg.getscope(1)
sc1.NumSample = 500

5-25

getscope

To get the properties of all scopes on the target PC and create a vector of scope
objects on the host PC. If the target object has more than one scope, creates a
vector of scope objects.

scvector = getscope(tg)

See Also The xPC Target target object methods addscope and remscope. The xPC target
M-file demo scripts listed in “xPC Target Demos” on page 4-17.

5-26

getsignalid

Purpose

Syntax

Arguments

Description

Examples

See Also

Get the signal index or property name from the signal list

MATLAB command line

getsignalid(target _object, 'block name')
getsignalid(target _object, 'block name', 'flag')

target_object Name of an existing target object.
block name Name of a Simulink block from your model.
flag If flag = property, return the property name for

the signal. If flag = numeric, return a number
index. This argument is optional. The default
behavior is to return a number.

Method of a target object. Returns the index or name of a signal from the signal
list, based on the path to the signal name. The block names must be entered in
full and are case sensitive.

Get the property name for the parameter Gain in the Simulink block Gainl.

getsignalid(tg, 'Gaint') or tg.getsignal('Gaini')
ans = S6

Get the property index for the parameter Gain in the Simulink block Gainl.

getsignalid(tg, 'Gaint', 'Gain', 'numeric')
ans = 6

S6 is a property of the target object. For example, you could get the value of a
signal with signal 6 = tg.s6.

The target object method getparamid. The xPC target M-file demo scripts
listed in “xPC Target Demos” on page 4-17.

5-27

load

5-28

Purpose

Syntax

Arguments

Description

Examples

See Also

Download a target application to the target PC

MATLAB command line

load(target_object, 'target_application')
target _object.load('target_application')

target_object Name of an existing target object.

target_application Simulink model and target application name.

Method of a target object. Before using this function, the target PC must be
booted with the xPC Target kernel, and the target application must be built in
the current working directory on the host PC.

If an application was previously loaded, the old target application is first
unloaded before downloading the new target application. The method load is
called automatically after the Real-Time Workshop build process.

Load the target application xpcosc represented by the target object tg.
load(tg, 'xpcosc') or tg.load('xpcosc')
+tg or tg.start or start(tg)

The xPC Target function unload. The xPC target M-file demo scripts listed in
“xPC Target Demos” on page 4-17.

reboot

Purpose

Syntax

Arguments

Description

See Also

Reboot the target PC

MATLAB command line

reboot(target_object)

Target PC command line

reboot

target_object Name of an existing target object.

Method of a target object. Reboots the target PC, and if a target boot disk is still
present, the xPC target kernel is reloaded.

You can also use this method to reboot the target PC back to Windows after
removing the target boot disk.

Note This method might not work on some target hardware.

The xPC Target target object methods load and unload.

5-29

remscope

Purpose

Syntax

Arguments

Description

5-30

Remove a scope from the target PC

MATLAB command line

remscope (target_object, scope_number_vector)
target_object.remscope(scope_number_vector)

remscope (target_object)
target_object.remscope

Target PC command line

remscope scope_number
remscope 'all'’

target_object Name of a target object. The default name is tg.

scope_number_vector Vector of existing scope indices listed in the target
object property Scopes.

scope_number Single scope index.

Method of a target object. If a scope index is not given, the method remscope
deletes all scopes on the target PC. The method remscope has no return value.
The scope object representing the scope on the host PC is not deleted.

Host PC Target PC Host PC Target PC
(target) target (target) target
| object application | object | application
]
) . v remscope)
scope scope scope
object P object
| J ~——
Scope engine Scope engine
kernel kernel

remscope

Examples

See Also

Remove a single scope.
remscope(tg,1) or tg.remscope(1)
Remove two scopes.
remscope(tg,[1 2]) or tg.remscope([1,2])

Remove all scopes.

remscope(tg) or tg.remscope

The xPC Target target object methods addscope and getscope. The xPC target
M-file demo scripts listed in “xPC Target Demos” on page 4-17.

5-31

set

5-32

Purpose

Syntax

Arguments

Description

Change property values for target objects

MATLAB command line
set(target_object)

set(target_object, property_nameil, property valuet,
property name2, property value2, . . .)

target_object.set('property_namei', property valuetl)
set(target _object, property name_vector, property value vector)
target_object.property _name = property value

Target PC command line - Commands are limited to the target object
properties: stoptime, sampletime, and parameters.

parameter_name = parameter_value
stoptime = floating point_number
sampletime = floating_point_number

target_object Name of a target object.

‘property_name' Name of a scope object property. Always use
quotation marks.

property value Value for a scope object property. Always use
quotation marks for character strings; quotation
marks are optional for numbers.

parameter_name The letter p followed by the parameter index. For
example, p0, p1, p2.

Method of a target object. Sets the properties of the target object. Not all
properties are user-writable.

Properties must be entered in pairs, or using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they have to both be
row vectors or both column vectors, and the corresponding values for properties
in property _name_vector are stored in property value vector.

sef

Examples

See Also

The function set typically does not return a value. However, if called with an
explicit return argument, for example, a = set(target_object,

property name, property value), it returns the value of the properties after
the indicated settings have been made.

Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sct)

xPC Target Object:
Writable Properties

StopTime

SampleTime

ViewMode

LogMode : [0]| 1]
ShowParameters : [On | {Off}]
ShowSignals : [On | {Off}]

Change the property showsignals to on.
tg.set('showsignals', 'on') or set(tg, 'showsignals', 'on')

As an alternative to the method set, use the target object property
showsignals. In the MATLAB window, type

tg.showsignals ='on'
The xPC Target target object method get. The scope object methods get and

set. The built in MATLAB functions get and set. The xPC target M-file demo
scripts listed in “xPC Target Demos” on page 4-17.

5-33

start

Purpose

Syntax

Arguments

Description

Examples

See Also

5-34

Start execution of a target application on a target PC

MATLAB command line

start(target_object)
target_object.start
t+target _object

Target PC command line

start

target_object Name of a target object. The default name is tg.

Method of both target and scope objects. Starts execution of the target
application represented by the target object. Before using this method, the
target application must be created and loaded on the target PC. If a target
application is running, this command has no effect.

Start the target application represented by the target object tg.

+tg
tg.start
start(tg)

The xPC Target target object methods stop on page 5-35, load on page 5-28,
and unload on page 5-36. The scope object method stop on page 6-24.

stop

Purpose

Syntax

Arguments

Description

Examples

See Also

Stop execution of a target application on a target PC

MATLAB command line

stop(target_object)
target_object.stop
-target_object

Target PC command line

stop

target_object Name of a target object.

Stops execution of the target application represented by the target object. If the
target application is stopped, this command has no effect.

Stop the target application represented by the target object tg.
stop(tg) or tg.stopor -tg

The xPC Target target object method start on page 5-34. The scope object
methods stop on page 6-24 and start on page 6-22.

5-35

unload

5-36

Purpose

Syntax

Arguments

Description

Examples

See Also

Remove the current target application from the target PC

MATLAB command line

unload(target _object)
target_object.unload

target_object Name of a target object that represents a target
application.

Method of a target object. The kernel goes into loader mode and is ready to
download new target application from the host PC.

Unload the target application represented by the target object tg.
unload(tg) or tg.unload

The xPC Target methods load and reboot.

xXpc

Purpose

Syntax

Arguments

Description

Examples

See Also

Create a target object representing the target application

MATLAB command line
target_object = xpc

target_object Variable name to reference the target object.

Constructor of a target object. The target object represents the target
application and target PC. Changes are made to the target application by
making changes to the target object, using methods and properties.

Before you build a target application, you can check the connection between
your host and target computers by creating a target object.

tg = xpc

xPC Object
Connected = Yes
Application = loader

The xPC Target methods get on page 5-21 and set on page 5-32.

5-37

xXpc

5-38

Scope Objects

xPC Target uses scope objects to represent the data acquisition part of the xPC Target kernel. Use
scope objects to view and collect signal data. This chapter includes the following sections:

Scope Object Reference (p. 6-2) Definition of a scope object with a list of properties and
methods
Using Scope Objects (p. 6-7) Use the MATLAB Command window to change

properties and use methods to create scopes for signal
logging and signal tracing

6 Scope Objects

6-2

Scope Object Reference

xPC Target uses scopes and scope objects as an alternative to using Simulink
scopes and external mode. Understanding the structure of scope objects will
help you to use the MATLAB command-line interface to view and collect signal
data. The topics in this section are

® What Is a Scope Object? — Definition, and ways to create scope objects

® Scope Object Properties — List of properties with definitions

¢ Scope Object Methods — List of methods with definitions

What Is a Scope Object?

A scope object on the host PC represents a scope on the target PC. You use
scope objects to observe the signals from your target application during a
real-time run or analyze the data after the run is finished.

To create a scope object:
¢ Add an xPC Target scope block to your Simulink model, build the model to

create a scope, and then use the target object method getscope to create a
scope object.

¢ Use the target object method addscope to create a scope, create a scope object
and assign the scope properties to the scope object.

A scope object has associated properties and methods specific to that object.

Scope Obiject Reference

Scope Object Properties

Scope object properties let you select signals to acquire, set triggering modes,
and access signal information from the target application. You can view and
change these properties using scope object methods

The properties for a scope object are listed in the following table. This table
includes a description of the properties and which properties you can change
directly by assigning a value.

Property

Description Write

Application

Scopeld

Status

Type

NumSamples

NumPrePostSamples

Name of the Simulink model associated to
this scope object.

A numeric index unique for each scope.

Indicate whether data is being acquired,
the scope is waiting for a trigger, the scope
has been stopped (interrupted), or
acquisition is finished. Values are
"Acquiring', 'Ready for being
Triggered', 'Interrupted', and
'"Finished'.

Determine whether the scope is displayed
on the host computer or on the target
computer. Values are 'host' and
"target’.

Number of contiguous samples captured Yes
during the acquisition of a data package.

Number of samples collected before or
after a trigger event. The default value is
0. Entering a negative value collects
samples before the trigger event. Entering
a positive value collects samples after the
trigger event. If you set TriggerMode to
FreeRun, this property has no effect on
data acquisition.

6-3

6 Scope Objects

6-4

Property

Description

Write

Decimation

TriggerMode

TriggerSignal

TriggerSample

A number n, where every nth sample is
acquired in a scope window.

Note This value is the same as Interleave
in a scope window.

Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software’,
‘Signal', and 'Scope"'.

If TriggerMode="'Signal"', identifies which
block output signal to use for triggering
the scope. You identify the signal with a
signal index from the target object
property Signal.

If TriggerMode="'Scope ', then
TriggerSample specifies which sample of
the triggering scope the current scope
should trigger on. For example, if
TriggerSample = 0 (default), the current
scope will trigger on sample 0 (first
sample acquired) of the triggering scope.
This means that the two scopes will be
perfectly synchronized. If TriggerSample
= 1, the first sample (sample 0) of the
current scope will be the at the same
instant as sample number 1 (second
sample in the acquisition cycle) of the
triggering scope.

As a special case, setting TriggerSample to
-1 means that the current scope will be
triggered at the end of the acquisition cycle
of the triggering scope. Thus, the first
sample acquired of the triggering scope
will be the one sample after the last
sample of the triggering scope.

Yes

Yes

Yes

Scope Obiject Reference

Property Description Write

TriggerLevel If TriggerMode="'Signal', indicates the Yes
value the signal has to cross to trigger the
scope and start acquiring data. The trigger
level can be crossed with either a rising or
falling signal.

TriggerSlope If TriggerMode="'Signal', indicates Yes
whether the trigger is on a rising or falling
signal. Values are 'Either' (default),

'Rising', or 'Falling'.

TriggerScope If TriggerMode="'Scope', identifies which Yes
scope to use for a trigger. A scope can be set
to trigger when another scope is triggered.
This is done by setting the slave scope
property TriggerScope to the scope index
of the master scope.

Mode Indicate how a scope displays the signals. Yes
Values are 'Numerical', 'Redraw'
(default), 'Sliding', or 'Rolling"'.

YLimit Minimum and maximum y-axis values. Yes
This property can be set to 'auto’.

Grid Values are 'on' or 'off'. Yes

StartTime Time within the total execution time, when
a scope begins acquiring a data package.

Time Contains the time data for a single data
package from a scope.

Data Contains the output data for a single data
package from a scope.

Signals List of signal indices from the target object
to display on the scope.

6-5

6 Scope Objects

Scope Object Methods

The scope object methods allow you to control scopes on your target PC.

If you want to control the target application from the target PC, use target PC
commands. See “Target PC Command-Line Interface” on page 1-32.

The scope object methods are listed in the following table.

Scope Method Description

set Set writable scope object properties to the specified
value. For a list of writable values, use
set(scope_object)

get Return the value of readable properties from a scope
object.

addsignal Add a signal to a scope and a scope object. The signal is
specified using the signal indices from the target object.

remsignal Remove a signal from a scope and a scope object. The
signal is specified using signal indices from the scope
object.

start Start a scope, but does not necessarily start the

acquisition of data. The acquisition of data is
dependent on the trigger mode.

stop Stop a scope and the acquisition of data.

trigger Starts the acquisition of data from the target
application using a scope.

¢ IfTriggerMode ='Software', then the scope can only
be triggered by software using the method
sc.trigger

¢ If TriggerMode = 'FreeRun', 'Signal’, or 'Scope',
you can trigger the scope by software before the scope
is triggers by one of the other modes.

6-6

Using Scope Objects

Using Scope Objects

xPC Target uses scope objects to represent scopes on the target PC. This
section shows some of the common tasks that you use with scope objects. The
topics in this section are

¢ Displaying Scope Object Properties for a Single Scope

¢ Displaying Scope Object Properties for All Scopes

® Setting the Value of a Scope Property

® Getting the Value of a Scope Property

¢ Using the Method Syntax with Scope Objects

¢ Using the Property TriggerSample to Capture Data

Displaying Scope Object Properties for a Single
Scope
To list the properties of a single scope object sc1:
1 In the MATLAB window, type
sc1l = getscope(tg,1) or sc1 = tg.getscopes(1)

MATLAB creates the scope object sc1 from a previously created scope.

2 Type
sct

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of the scope object properties with the updated
values. Because sc1 is a vector with a single element, you could also type
sc1(1) orsci([1]).

Note Only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

For a list of target object properties with a description, see “Target Object
Properties” on page 5-3.

6-7

6 Scope Objects

Displaying Scope Object Properties for All Scopes
To list the properties of all scope objects associated with the target object tg:

1 In the MATLAB window, type
getscope(tg) or tg.getscope

MATLAB displays a list of all scope objects associated with the target object.
2 Alternatively, type
allscopes = getscope(tg)

or type

allscopes = tg.getscope
The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of all the scope object properties with the updated

values. To list some of the scopes, use the vector index. For example, to list
the fist and third scopes, type allscopes([1,3]).

For a list of target object properties with a description, see “Target Object
Properties” on page 5-3.

Setting the Value of a Scope Property

With xPC Target you can use either a function syntax or an object property
syntax. The syntax set(scope_object, property name,
new_property value) can be replaced by

® scope_object_vector.property_name = new_property value.
® scope_object(index_vector).property_name = new_property_value.

For example, to change the trigger mode for the scope object sc1:

1 In the MATLAB window, type

sc1.triggermode = 'signal'

2 Alternatively, you could type

set(sc1, 'triggermode', 'signal')
or type
sc1.set('triggermode', 'signal')

6-8

Using Scope Objects

Assignment can also be done for a vector of scope objects, for example
allscopes([1, 2]).numsamples = 500. Notice, the indices are MATLAB
vector indices and not xPC Target scope indices.

To get a list of the writable properties, type set(scope_object).

Note Method names are case sensitive, but property names are not.

Getting the Value of a Scope Property

You can list a property value in the MATLAB window, or assign that value to
a MATLAB variable. With xPC Target you can use either a function syntax or
an object property syntax.

The syntax get (scope_object vector, property name) can be replaced by

® scope_object_vector.property name
® scope_object_vector(index_vector).property_name

For example, to assign the start time from the scope object sc1:

1 In the MATLAB window, type

beginrun = sci.starttime

2 Alternatively, you could type
beginrun = get(sci, 'starttime')
or type
scl.get('starttime')
Assignment can also be done using a vector of scope objects, for example
scopetypes = allscopes([1, 2]).type

Notice that the indices are MATLAB vector indices and not xPC Target scope
indices.

To get a list of readable properties, type scope_object. The property values are
listed in the MATLAB window.

6-9

6 Scope Objects

Note Method names are case sensitive, but property names are not.

6-10

Using Scope Objects

Using the Method Syntax with Scope Objects

Use the method syntax to run a scope object method. The syntax
method _name(scope_object vector, argument list) can be replaced with

® scope_object.method_name(argument_list)
® scope_object_vector(index_vector).method_name(list of arguments)

Unlike properties, for which partial but unambiguous names are permitted,
method names must be entered in full, and in lowercase. For example, to add
signals to the first scope in a vector of all scopes:

1 In the MATLAB window, type
allscopes(1).addsignal([0,1])

2 Alternatively, you could type
addsignal(allscopes(1), [0,1])

6-11

6 Scope Objects

Using the Property TriggerSample to Capture Data

xPC Target scopes include the ability to have one scope trigger another, and to
delay retrieving data from the second after a trigger event on the first. This
feature is most useful when data acquisition for the second scope is triggered
after data acquisition for the first scope is complete. In the following
explanation, Scope 2 is triggered by Scope 1:

® The two scopes objects are created as a vector with the command

sc = tg.addscope('host', [1 2]);

® For Scope 1, sc(1).Scopeld = 1, sc(1).NumSamples = N,
scl.NumPrePost Samples = P

¢ For Scope 2, sc(2).Scopeld = 2,sc(2).TriggerMode = 'Scope’,
sc(2).TriggerScope =1, sc(2).TriggerSample = range Oto(N + P - 1).

In the figures below, TP is the trigger point or sample where a trigger event

occurs.
Pre-triggering (P < 0)
First Sample End of
Acquired N Aoqmlsmon

TP

. P (N + P) ;
Trigger
Event

Figure 6-1: Pre-triggering (P<0)

6-12

Using Scope Objects

Post-triggering (P > 0)
End of
TP Acquisition
| (N+P) |
wm !

K First Sample
Acquired

Tri r
Event

Figure 6-2: Post-triggering (P>0)

In the simplest case, where P = 0, the first sample will be acquired. IfP < 0
(pre-triggering), acquisition will start |P| samples before TP, and if P > 0
(post-triggering), acquisition will start P samples after TP. It is not possible for
Scope 1 to trigger Scope 2 before the trigger event occurs:

® Setting sc(2).TriggerSample = 0 means that Scope 2 will be triggered
when Scope 1 is triggered. TP for both scopes will be at the same sample.

® Setting sc(2).TriggerSample = n > 0 means that TP for Scope 2 will be n
samples after TP for Scope 1. Note that setting sc(2) .TriggerSample to a
value larger than (N + P - 1) does not cause an error; it however implies
that Scope 2 will never trigger, since Scope 1 will never acquire more than (N
+ P - 1) samples after TP.

® Setting the sc(2).TriggerSample = 0 < n < (N + P) enables you to obtain
some of the functionality that is available with pre- or post-triggering. For
example, if Scope 1 has sc(1) .NumPrePostSamples = 0 (no pre- or
post-triggering), and Scope 2 has sc(2) .TriggerSample = 10 and
sc(2).NumPrePostSample = 0, the behavior displayed by Scope 2 is
equivalent to having sc(2).TriggerSample = 0 and
sc(2).NumPrePostSamples = 10.

6-13

6 Scope Objects

6-14

Note The difference between setting TriggerSample = (N + P - 1), where
N and P are the parameters of the triggering scope (Scope 1) and
TriggerSample = -1 is that in the former case, the first sample of Scope 2 will
be at the same time as the last sample of Scope 1, whereas in the latter, the
first sample of Scope 2 will be one sample after the last sample of Scope 1.
This means that in the former case both scopes will be acquiring
simultaneously for one sample, and in the latter they will never be
simultaneously acquiring.

Acquiring Gap-Free Data

When sc(1).TriggerSample = -1 and sc(2).TriggerSample = -1 you get
new functionality that cannot be achieved with pre- and post-triggering. This
new functionality is gap-free acquisition of data.

To do this, you would need to set up two scopes, each triggered by the other,
with both scopes having TriggerSample = -1. This is represented by the
following figure.

Software Trigger
(initialization)

Scope 1
NumSamples=200
Triggerscope=2
Triggersample= -1

Trigger at
Trigger at Acguisition End
Acguisition End

Scope 2
MNumSamples=500
TriggerScope=1
TriggerSample= -1

Both the scopes receive exactly the same signals, i.e. the signals you wish to
retrieve.

Using Scope Objects

One of the scopes needs to be software triggered in order for acquisition to
start. Otherwise, each scope would be waiting for the other to finish acquiring
data, and would never start. In the example, Scope 1 is software triggered to
start the acquisition.

The following script is a typical example of how you can use this feature to
retrieve data.

% assumes that model is built and loaded on target.

tg = xpc;

sc = tg.addscope('host', [1 2]);

sc.addsignal([0 1]); % [0 1] are the signals of interest; add
to both

% default value for TriggerSample is 0, need to change it.
set(sc, 'NumSamples', 500, 'TriggerSample', -1)
sc(1).TriggerScope = 2;

sc(2).TriggerScope 1;

start(sc);

start(tg);

sc(1).trigger; % start things off by triggering scope 1
data = zeros(0, 2);

t =11;

scNum = 1; % we will look at scope 1 first

% Use some appropriate condition instead of an infinite loop
while(1)

% loop until the scope has finished

while ~strcmp(sc(scNum).Status, 'Finished'), end

data(end + 1 : end + 500, :) = sc(scNum).Data;

t(end + 1 : end + 500) = sc(scNum).Time;

start(sc(scNum)); % restart the scope

scNum = 2 - scNum; % switch to the next scope
end

This example assumes that the communication speed and number of samples
is fast enough to acquire the full data set before the next acquisition cycle is
due to start. You can also use more than two scopes to implement a triple- or
quadruple-buffering scheme instead of the double-buffering one shown here.

6-15

addsignal

6-16

Purpose

Syntax

Arguments

Description

Examples

Add signals to a scope represented by a scope object

MATLAB command line
addsignal(scope object _vector, signal index_vector)
scope_object _vector.addsignal(signal index_vector)

Target command line

addsignal scope_index = signal_index, signal_index,

scope_object_vector Name of a single scope object, or the name of a
vector of scope objects.

signal index_vector For one signal, use a single number. For two or
more signals, enclose numbers in brackets and
separate with commas.

scope_index Single scope index.

Method of a scope object. The signals must be specified by their indices, which
can be retrieved using the target object method getsignalid. If the
scope_object _vector has two or more scope objects, the same signals are
assigned to each scope.

Add signals 0 and 1 from the target object tg to the scope object sc1. The
signals are added to the scope, and the scope object property Signals is
updated to include the added signals.

sc1 = getscope(tg,1)
addsignal(sc1,[0,1]) or sci1.addsignal([0,1])

Display a list of properties and values for the scope object sc1 with the property
Signals, as shown below.

sc1.S8Signals

Signals = : Signal Generator

1
0 : Integratori

Another way to add signals without using the method addsignal is to use the
scope object method set.

addsignal
|

set(sc1, 'Signals', [0,1]) or sc1.set('signals',[0,1]
Or to directly assign signal values to the scope object property Signals.

scl1.signals = [0,1]

See Also The xPC Target scope object methods remsignal and set. The target object
method addscope and getsignalid.

6-17

get

Purpose

Syntax

Arguments

Description

Examples

See Also

6-18

Return the property values for scope objects

MATLAB command line

get(scope_object_vector)
get(scope_object_vector, 'scope_object_property')

get(scope_object_vector, scope_object_property_vector)

target_object Name of a target object.

scope_object_vector Name of a single scope, or name of a vector of
scope objects.

scope_object_property Name of a scope object property.

Method of a scope object. Gets the value of readable scope object properties
from a scope object or the same property from each scope object in a vector of
scope objects.

List all of the readable properties, along with their current values. This is given
in the form of a structure, whose field names are the property names and field
values are property values.

get(sc)

List the value for the scope object property Type. Notice that the property name
is a string, in quotes, and is not case sensitive.

get(sc, 'type')
ans = Target

The xPC Target scope object method set. The target object methods get and
set. The built in MATLAB functions get and set.

remsignal

Purpose

Syntax

Arguments

Description

Examples

See Also

Remove signals from a scope represented by a scope object

MATLAB command line
remsignal (scope_object)
remsignal (scope_object, signal index_vector)
scope_object.remsignal(signal index_vector)

Target command line

remsignal scope index = signal index, signal index,

scope_object MATLAB object created with the target object
method addscope or getscope.

signal_index vector Index numbers from the scope object property
Signals. This argument is optional, and if it is
left out all signals are removed.

signal_index Single signal index.

Method for a scope object. The signals must be specified by their indices, which

can be retrieved using the target object method getsignalid. If the

scope_object vector has two or more scope objects, the same signals are

removed from each scope. The argument signal index is optional; if it is left

out, all signals are removed.

Remove signals 0 and 1 from the scope represented by the scope object scl.
scl.get('signals')

ans= 0 1

Remove signals from the scope on the target PC with the scope object property
Signals updated.

remsignal(sc1,[0,1]) or sc1.remsignal([0,1])

The xPC Target scope object method remsignal, and the target object method
getsignalid.

6-19

set

6-20

Purpose

Syntax

Arguments

Description

Examples

Change property values for scope objects
MATLAB command line
set(scope _object _vector)

set(scope_object_vector, property_nameil, property_ valuef,

property name2, property value2, . . .)
scope_object_vector.set('property_namei', property valuetl, ..)
set(scope object, 'property name', property value, . . .)
scope_object Name of a scope object, or a vector of scope
objects.
'property_name' Name of a scope object property. Always use

quotation marks.

property value Value for a scope object property. Always use
quotation marks for character strings; quotes are
optional for numbers.

Method for scope objects. Sets the properties of the scope object. Not all
properties are user-writable

Properties must be entered in pairs, or using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they have to both be
row vectors or both column vectors, and the corresponding values for properties
in property_name_vector are stored in property _value vector.

The function set typically does not return a value. However, if called with an
explicit return argument, for example, a = set(target_object,

property _name, property value), it returns the value of the properties after
the indicated settings have been made.

Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(scl)

xPC Scope Object:
Writable Properties

sef

NumSamples

Decimation

TriggerMode : [{FreeRun} | Software | Signal | Scope]
TriggerSignal

TriggerLevel

TriggerSlope : [{Either} | Rising | Falling]
TriggerScope

Signals

Mode : [Numerical | {Redraw} | Sliding | Rolling]
YLimit

Grid

The property value for the scope object scl is changed to on:

scl.set('grid', 'on') or set(sci, 'grid', 'on')

See Also The xPC Target scope object method get. The target object methods set and
get. The built-in MATLAB functions get and set.

6-21

start

Purpose

Syntax

Arguments

Description

Examples

6-22

Start execution of a scope on a target PC

MATLAB command line

start(scope_object _vector)
scope_object _vector.start
+scope_object_vector

start(getscope((target_object, signal_index_vector))

Target PC command line

startscope scope_index
startscope 'all'’

target_object Name of a target object.

scope_object_vector Name of a single scope object, name of vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the
target object method getscope, which returns a
scope_object vector.

signal index_vector Index for a single scope, or list of scope indices in
vector form.

scope_index Single scope index.

Method for a scope object. Starts a scope on the target PC represented by a
scope object on the host PC. This method does not necessarily start data
acquisition, which depends on the trigger settings. Before using this method, a
scope must be created. To create a scope, use the target object method addscope
or add xPC Target scope blocks to your Simulink model.

Start one scope with the scope object scl.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
start(sc1) or sci.start or +sci
or type

start (getscope(tg,1))

Start two scopes.

start

See Also

somescopes = getscope(tg,[1,2]) or somescopes=
tg.getscope([1,2])
start (somescopes) or somescopes.start

or type
sc1 = getscope(tg,1) or sc1 =tg.getscope(1)
sc2 = getscope(tg,2) or sc2 = tg.getscope(2)

start([sc1,sc2])
or type
start(getscope(tg,[1,2])
Start all scopes:

allscopes = getscope(tg) or allscopes = tg.getscope
start(allscopes) or allscopes.start or +allscopes

or type
start(getscope(tg)) or start(tg.getscope)

The xPC Target target object methods getscope and stop. The scope object
method stop.

6-23

stop

Purpose Stop execution of a scope on the target PC

Syntax MATLAB command line

stop(scope_object_vector)
scope_object.stop
-scope_object

stop(getscope(target_object, signal_index_vector))

Target PC command line

stopscope scope_index
stopscope 'all’

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope object, name of vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the
target object method getscope, which returns a
scope_object vector.

signal index_vector Index for a single scope, or list of scope indices in
vector form.
scope_index Single scope index.
Description Method for scope objects. Stops the scopes represented by the scope objects.
Examples Stop one scope represented by the scope object sc1.

stop(sc1) or sc1.stop or -sci

Stop all scopes with a scope object vector allscopes created with the command
allscopes = getscope(tg) or allscopes = tg.getscope.

stop(allscopes) or allscopes.stop or -allscopes

or type
stop(getscope(tg)) or stop(tg.getscope)

6-24

stop

See Also The xPC Target target object methods getscope, stop, and start. The scope
object method start.

6-25

trigger

Purpose

Syntax

Arguments

Description

Examples

6-26

Software-trigger the start of data acquisition for one or more scopes

MATLAB command line

trigger(scope_object vector) or scope _object vector.trigger

scope_object vector Name of a single scope object, name of a vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the
target object method getscope, which returns a
scope_object vector.

Method for a scope object. If the scope object property TriggerMode has a value
of 'software', this function triggers the scope represented by the scope object
to acquire the number of data points in the scope object property NumSamples.

Note Only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

Set a single scope to software trigger, trigger the acquisition of one set of
samples, and plot data.

sc1l = tg.addscope('host',1) or sc1=addscope(tg, 'host',1)
scl.triggermode = 'software'

tg.start, or start(tg), or +tg
scl.start or start(sci1) or +sci
sc1.trigger or trigger(sct)

plot(sci.time, sci.data)

sci.stop or stop(sci1) or -sci
tg.stop or stop(tg) or -tg1

Set all scopes to software trigger and trigger to start.

allscopes = tg.getscopes

allscopes.triggermode = ‘'software'’
allscopes.start or start(allscopes) or +allscopes
allscopes.trigger or trigger(allscopes)

B
block library

in Simulink 1-13

with xPC Target 1-9
block parameters

defining 1-17

C
changing
environment properties 4-15
changing properties
environment properties 4-12
command line interface
scope object 6-2
target object 5-2
commands
xPC Target 4-16
creating
model with I/O blocks 1-2

D
defining

I/0 block parameters 1-17

entering

environment properties 4-12
environment properties

changing 4-12, 4-15

list 4-11

loading 4-12

saving 4-12

updating 4-12, 4-15

G
getting
list of environment properties 4-11

I
I/0 block library

access in Simulink 1-13
access in xPC Target 1-9
I/O block parameters
defining 1-17
I/O blocks
in Simulink model 1-2
I/O driver
library 1-2

L
library
I/O driver 1-2
list
environment properties 4-11
scope properties 6-3
target properties 5-3
loading
environment properties 4-12

M
methods

scope object 6-6
target object 5-9

I1

Index

P

parameters

defining block 1-17
properties

changing environment 4-15

environment list 4-11

scope object 6-3

target object 5-3

updating environment 4-15

S
saving
environment properties 4-12
scope object
command line interface 6-2
commands 6-2
methods 6-6
methods, see commands
properties 6-2, 6-3
Setup window
using 4-11
Simulink
I/0 block library 1-13
Simulink model
with I/O blocks 1-2

T

target object
command line interface 5-2
commands 5-2
methods 5-9
methods, see commands
properties 5-2, 5-3

task execution time (TET)
average 5-4

logging 5-5

maximum 5-5

minimum 5-4

with the getlog function 5-22

TET (task execution time)

average 5-4

logging 5-5

maximum 5-5

minimum 5-4

with the getlog function 5-22

U
updating

environment properties 4-12, 4-15
using

setup window 4-11

xPC Target commands 4-16

xPC Target setup window 4-11

X

xPC Target
commands 4-16
Setup window 4-11

	Advanced Topics
	I/O Driver Blocks
	I/O Driver Block Library
	Memory-Mapped Devices
	ISA Bus I/O Devices
	PCI Bus I/O Devices
	xPC Target I/O Driver Structures
	Updated Driver Information
	Adding I/O Blocks with the xPC Target Library
	Adding I/O Blocks with the Simulink Library Browser
	Defining I/O Block Parameters

	Polling Mode
	xPC Target Kernel Polling Mode
	Interrupt Mode
	Polling Mode
	Setting the Polling Mode
	Restrictions Introduced by the Polling Mode
	Controlling the Target Application
	Polling Mode Performance

	Target PC Command-Line Interface
	Using Methods and Properties on the Target PC
	Target Object Methods
	Target Object Properties
	Scope Object Methods
	Scope Object Properties
	Using Variables on the Target PC
	Variable Commands

	Web Browser Interface
	Connecting the Web Interface Through TCP/IP
	Connecting the Web Interface Through RS-232
	Using the Main Page
	Changing WWW Properties
	Viewing Signals with a Web Browser
	Viewing Parameters with a Web Browser
	Changing Access Levels to the Web Browser

	Graphical User Interfaces
	xPC Target Interface Blocks to Simulink Models
	Simulink User Interface Model
	Creating a Custom Graphical Interface
	To xPC Target Block
	From xPC Target Block

	Interface with Dials & Gauges Blockset
	Introduction to the Dials & Gauges Blockset
	Target Application Model Description
	Creating a Target Application Model
	Marking Block Parameters
	Marking Block Signals
	Description of the User Interface Model
	Creating a User Interface Model
	Adding Dials & Gauges Blockset
	Creating a Target Application
	Running a Target Application with a User Interface Model

	Embedded Option
	Introduction
	Overview
	DOSLoader Mode Overview
	StandAlone Mode Overview
	Software Architecture
	Restrictions

	Embedded Option Setup
	Updating the xPC Target Environment
	Creating a DOS System Disk

	DOSLoader Target Applications
	Creating a Target Boot Disk for DOSLoader
	Creating a Target Application for DOSLoader

	Stand-Alone Target Applications
	Creating a Target Application for Stand-Alone
	Creating a Target Boot Disk for StandAlone
	Using Target Scope Blocks with StandAlone

	Software Environment
	Environment Reference
	Environment Properties
	Environment Functions

	Using Environment Properties and Functions
	Getting a List of Environment Properties
	Saving and Loading the Environment Properties
	Changing Environment Properties with a Graphical Interface
	Changing Environment Properties with a Command-Line Interface

	System Functions
	GUI Functions
	Test Functions
	xPC Target Demos

	Target Objects
	Target Object Reference
	What Is a Target Object?
	Target Object Properties
	Target Object Methods

	Using Target Objects
	Displaying Target Object Properties
	Setting Target Object Properties from the Host PC
	Setting Target Object Properties from the Target PC
	Getting the Value of a Target Object Property
	Using the Method Syntax with Target Objects

	Scope Objects
	Scope Object Reference
	What Is a Scope Object?
	Scope Object Properties
	Scope Object Methods

	Using Scope Objects
	Displaying Scope Object Properties for a Single Scope
	Displaying Scope Object Properties for All Scopes
	Setting the Value of a Scope Property
	Getting the Value of a Scope Property
	Using the Method Syntax with Scope Objects
	Using the Property TriggerSample to Capture Data

	Index

