public
interface
Stream
implements
BaseStream<T, Stream<T>>
java.util.stream.Stream<T> |
A sequence of elements supporting sequential and parallel aggregate
operations. The following example illustrates an aggregate operation using
Stream
and IntStream
:
int sum = widgets.stream()
.filter(w -> w.getColor() == RED)
.mapToInt(w -> w.getWeight())
.sum();
In this example, widgets
is a Collection<Widget>
. We create
a stream of Widget
objects via Collection.stream()
,
filter it to produce a stream containing only the red widgets, and then
transform it into a stream of int
values representing the weight of
each red widget. Then this stream is summed to produce a total weight.
In addition to Stream
, which is a stream of object references,
there are primitive specializations for IntStream
, LongStream
,
and DoubleStream
, all of which are referred to as "streams" and
conform to the characteristics and restrictions described here.
To perform a computation, stream
operations are composed into a
stream pipeline. A stream pipeline consists of a source (which
might be an array, a collection, a generator function, an I/O channel,
etc), zero or more intermediate operations (which transform a
stream into another stream, such as filter(Predicate)
), and a
terminal operation (which produces a result or side-effect, such
as count()
or forEach(Consumer)
).
Streams are lazy; computation on the source data is only performed when the
terminal operation is initiated, and source elements are consumed only
as needed.
Collections and streams, while bearing some superficial similarities,
have different goals. Collections are primarily concerned with the efficient
management of, and access to, their elements. By contrast, streams do not
provide a means to directly access or manipulate their elements, and are
instead concerned with declaratively describing their source and the
computational operations which will be performed in aggregate on that source.
However, if the provided stream operations do not offer the desired
functionality, the iterator()
and spliterator()
operations
can be used to perform a controlled traversal.
A stream pipeline, like the "widgets" example above, can be viewed as
a query on the stream source. Unless the source was explicitly
designed for concurrent modification (such as a ConcurrentHashMap
),
unpredictable or erroneous behavior may result from modifying the stream
source while it is being queried.
Most stream operations accept parameters that describe user-specified
behavior, such as the lambda expression w -> w.getWeight()
passed to
mapToInt
in the example above. To preserve correct behavior,
these behavioral parameters:
Such parameters are always instances of a
functional interface such
as Function
, and are often lambda expressions or
method references. Unless otherwise specified these parameters must be
non-null.
A stream should be operated on (invoking an intermediate or terminal stream
operation) only once. This rules out, for example, "forked" streams, where
the same source feeds two or more pipelines, or multiple traversals of the
same stream. A stream implementation may throw IllegalStateException
if it detects that the stream is being reused. However, since some stream
operations may return their receiver rather than a new stream object, it may
not be possible to detect reuse in all cases.
Streams have a close()
method and implement AutoCloseable
,
but nearly all stream instances do not actually need to be closed after use.
Generally, only streams whose source is an IO channel will require closing. Most streams
are backed by collections, arrays, or generating functions, which require no
special resource management. (If a stream does require closing, it can be
declared as a resource in a try
-with-resources statement.)
Stream pipelines may execute either sequentially or in
parallel. This
execution mode is a property of the stream. Streams are created
with an initial choice of sequential or parallel execution. (For example,
Collection.stream()
creates a sequential stream,
and Collection.parallelStream()
creates
a parallel one.) This choice of execution mode may be modified by the
sequential()
or parallel()
methods, and may be queried with
the isParallel()
method.
Nested classes | |
---|---|
interface |
Stream.Builder<T>
A mutable builder for a |
Public methods | |
---|---|
abstract
boolean
|
allMatch(Predicate<? super T> predicate)
Returns whether all elements of this stream match the provided predicate. |
abstract
boolean
|
anyMatch(Predicate<? super T> predicate)
Returns whether any elements of this stream match the provided predicate. |
static
<T>
Builder<T>
|
builder()
Returns a builder for a |
abstract
<R, A>
R
|
collect(Collector<? super T, A, R> collector)
Performs a mutable
reduction operation on the elements of this stream using a
|
abstract
<R>
R
|
collect(Supplier<R> supplier, BiConsumer<R, ? super T> accumulator, BiConsumer<R, R> combiner)
Performs a mutable reduction operation on the elements of this stream. |
static
<T>
Stream<T>
|
concat(Stream<? extends T> a, Stream<? extends T> b)
Creates a lazily concatenated stream whose elements are all the elements of the first stream followed by all the elements of the second stream. |
abstract
long
|
count()
Returns the count of elements in this stream. |
abstract
Stream<T>
|
distinct()
Returns a stream consisting of the distinct elements (according to
|
static
<T>
Stream<T>
|
empty()
Returns an empty sequential |
abstract
Stream<T>
|
filter(Predicate<? super T> predicate)
Returns a stream consisting of the elements of this stream that match the given predicate. |
abstract
Optional<T>
|
findAny()
Returns an |
abstract
Optional<T>
|
findFirst()
Returns an |
abstract
<R>
Stream<R>
|
flatMap(Function<? super T, ? extends Stream<? extends R>> mapper)
Returns a stream consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping function to each element. |
abstract
DoubleStream
|
flatMapToDouble(Function<? super T, ? extends DoubleStream> mapper)
Returns an |
abstract
IntStream
|
flatMapToInt(Function<? super T, ? extends IntStream> mapper)
Returns an |
abstract
LongStream
|
flatMapToLong(Function<? super T, ? extends LongStream> mapper)
Returns an |
abstract
void
|
forEach(Consumer<? super T> action)
Performs an action for each element of this stream. |
abstract
void
|
forEachOrdered(Consumer<? super T> action)
Performs an action for each element of this stream, in the encounter order of the stream if the stream has a defined encounter order. |
static
<T>
Stream<T>
|
generate(Supplier<T> s)
Returns an infinite sequential unordered stream where each element is
generated by the provided |
static
<T>
Stream<T>
|
iterate(T seed, UnaryOperator<T> f)
Returns an infinite sequential ordered |
abstract
Stream<T>
|
limit(long maxSize)
Returns a stream consisting of the elements of this stream, truncated
to be no longer than |
abstract
<R>
Stream<R>
|
map(Function<? super T, ? extends R> mapper)
Returns a stream consisting of the results of applying the given function to the elements of this stream. |
abstract
DoubleStream
|
mapToDouble(ToDoubleFunction<? super T> mapper)
Returns a |
abstract
IntStream
|
mapToInt(ToIntFunction<? super T> mapper)
Returns an |
abstract
LongStream
|
mapToLong(ToLongFunction<? super T> mapper)
Returns a |
abstract
Optional<T>
|
max(Comparator<? super T> comparator)
Returns the maximum element of this stream according to the provided
|
abstract
Optional<T>
|
min(Comparator<? super T> comparator)
Returns the minimum element of this stream according to the provided
|
abstract
boolean
|
noneMatch(Predicate<? super T> predicate)
Returns whether no elements of this stream match the provided predicate. |
static
<T>
Stream<T>
|
of(T t)
Returns a sequential |
static
<T>
Stream<T>
|
of(T... values)
Returns a sequential ordered stream whose elements are the specified values. |
abstract
Stream<T>
|
peek(Consumer<? super T> action)
Returns a stream consisting of the elements of this stream, additionally performing the provided action on each element as elements are consumed from the resulting stream. |
abstract
T
|
reduce(T identity, BinaryOperator<T> accumulator)
Performs a reduction on the elements of this stream, using the provided identity value and an associative accumulation function, and returns the reduced value. |
abstract
Optional<T>
|
reduce(BinaryOperator<T> accumulator)
Performs a reduction on the
elements of this stream, using an
associative accumulation
function, and returns an |
abstract
<U>
U
|
reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner)
Performs a reduction on the elements of this stream, using the provided identity, accumulation and combining functions. |
abstract
Stream<T>
|
skip(long n)
Returns a stream consisting of the remaining elements of this stream
after discarding the first |
abstract
Stream<T>
|
sorted(Comparator<? super T> comparator)
Returns a stream consisting of the elements of this stream, sorted
according to the provided |
abstract
Stream<T>
|
sorted()
Returns a stream consisting of the elements of this stream, sorted according to natural order. |
abstract
Object[]
|
toArray()
Returns an array containing the elements of this stream. |
abstract
<A>
A[]
|
toArray(IntFunction<A[]> generator)
Returns an array containing the elements of this stream, using the
provided |
Inherited methods | |
---|---|
From
interface
java.util.stream.BaseStream
| |
From
interface
java.lang.AutoCloseable
|
boolean allMatch (Predicate<? super T> predicate)
Returns whether all elements of this stream match the provided predicate.
May not evaluate the predicate on all elements if not necessary for
determining the result. If the stream is empty then true
is
returned and the predicate is not evaluated.
This is a short-circuiting terminal operation.
true
(regardless of P(x)).Parameters | |
---|---|
predicate |
Predicate :
a non-interfering,
stateless
predicate to apply to elements of this stream |
Returns | |
---|---|
boolean |
true if either all elements of the stream match the
provided predicate or the stream is empty, otherwise false
|
boolean anyMatch (Predicate<? super T> predicate)
Returns whether any elements of this stream match the provided
predicate. May not evaluate the predicate on all elements if not
necessary for determining the result. If the stream is empty then
false
is returned and the predicate is not evaluated.
This is a short-circuiting terminal operation.
Parameters | |
---|---|
predicate |
Predicate :
a non-interfering,
stateless
predicate to apply to elements of this stream |
Returns | |
---|---|
boolean |
true if any elements of the stream match the provided
predicate, otherwise false
|
Builder<T> builder ()
Returns a builder for a Stream
.
Returns | |
---|---|
Builder<T> |
a stream builder |
R collect (Collector<? super T, A, R> collector)
Performs a mutable
reduction operation on the elements of this stream using a
Collector
. A Collector
encapsulates the functions used as arguments to
collect(Supplier, BiConsumer, BiConsumer)
, allowing for reuse of
collection strategies and composition of collect operations such as
multiple-level grouping or partitioning.
If the stream is parallel, and the Collector
is concurrent
, and
either the stream is unordered or the collector is
unordered
,
then a concurrent reduction will be performed (see Collector
for
details on concurrent reduction.)
This is a terminal operation.
When executed in parallel, multiple intermediate results may be
instantiated, populated, and merged so as to maintain isolation of
mutable data structures. Therefore, even when executed in parallel
with non-thread-safe data structures (such as ArrayList
), no
additional synchronization is needed for a parallel reduction.
List<String> asList = stringStream.collect(Collectors.toList());
The following will classify Person
objects by city:
Map<String, List<Person>> peopleByCity
= personStream.collect(Collectors.groupingBy(Person::getCity));
The following will classify Person
objects by state and city,
cascading two Collector
s together:
Map<String, Map<String, List<Person>>> peopleByStateAndCity
= personStream.collect(Collectors.groupingBy(Person::getState,
Collectors.groupingBy(Person::getCity)));
Parameters | |
---|---|
collector |
Collector :
the Collector describing the reduction |
Returns | |
---|---|
R |
the result of the reduction |
R collect (Supplier<R> supplier, BiConsumer<R, ? super T> accumulator, BiConsumer<R, R> combiner)
Performs a mutable
reduction operation on the elements of this stream. A mutable
reduction is one in which the reduced value is a mutable result container,
such as an ArrayList
, and elements are incorporated by updating
the state of the result rather than by replacing the result. This
produces a result equivalent to:
R result = supplier.get();
for (T element : this stream)
accumulator.accept(result, element);
return result;
Like reduce(Object, BinaryOperator)
, collect
operations
can be parallelized without requiring additional synchronization.
This is a terminal operation.
collect()
.
For example, the following will accumulate strings into an ArrayList
:
List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add,
ArrayList::addAll);
The following will take a stream of strings and concatenates them into a single string:
String concat = stringStream.collect(StringBuilder::new, StringBuilder::append,
StringBuilder::append)
.toString();
Parameters | |
---|---|
supplier |
Supplier :
a function that creates a new result container. For a
parallel execution, this function may be called
multiple times and must return a fresh value each time. |
accumulator |
BiConsumer :
an associative,
non-interfering,
stateless
function for incorporating an additional element into a result |
combiner |
BiConsumer :
an associative,
non-interfering,
stateless
function for combining two values, which must be
compatible with the accumulator function |
Returns | |
---|---|
R |
the result of the reduction |
Stream<T> concat (Stream<? extends T> a, Stream<? extends T> b)
Creates a lazily concatenated stream whose elements are all the elements of the first stream followed by all the elements of the second stream. The resulting stream is ordered if both of the input streams are ordered, and parallel if either of the input streams is parallel. When the resulting stream is closed, the close handlers for both input streams are invoked.
StackOverflowException
.Parameters | |
---|---|
a |
Stream :
the first stream |
b |
Stream :
the second stream |
Returns | |
---|---|
Stream<T> |
the concatenation of the two input streams |
long count ()
Returns the count of elements in this stream. This is a special case of a reduction and is equivalent to:
return mapToLong(e -> 1L).sum();
This is a terminal operation.
Returns | |
---|---|
long |
the count of elements in this stream |
Stream<T> distinct ()
Returns a stream consisting of the distinct elements (according to
equals(Object)
) of this stream.
For ordered streams, the selection of distinct elements is stable (for duplicated elements, the element appearing first in the encounter order is preserved.) For unordered streams, no stability guarantees are made.
This is a stateful intermediate operation.
distinct()
in parallel pipelines is
relatively expensive (requires that the operation act as a full barrier,
with substantial buffering overhead), and stability is often not needed.
Using an unordered stream source (such as generate(Supplier)
)
or removing the ordering constraint with unordered()
may result
in significantly more efficient execution for distinct()
in parallel
pipelines, if the semantics of your situation permit. If consistency
with encounter order is required, and you are experiencing poor performance
or memory utilization with distinct()
in parallel pipelines,
switching to sequential execution with sequential()
may improve
performance.Returns | |
---|---|
Stream<T> |
the new stream |
Stream<T> empty ()
Returns an empty sequential Stream
.
Returns | |
---|---|
Stream<T> |
an empty sequential stream |
Stream<T> filter (Predicate<? super T> predicate)
Returns a stream consisting of the elements of this stream that match the given predicate.
This is an intermediate operation.
Parameters | |
---|---|
predicate |
Predicate :
a non-interfering,
stateless
predicate to apply to each element to determine if it
should be included |
Returns | |
---|---|
Stream<T> |
the new stream |
Optional<T> findAny ()
Returns an Optional
describing some element of the stream, or an
empty Optional
if the stream is empty.
This is a short-circuiting terminal operation.
The behavior of this operation is explicitly nondeterministic; it is
free to select any element in the stream. This is to allow for maximal
performance in parallel operations; the cost is that multiple invocations
on the same source may not return the same result. (If a stable result
is desired, use findFirst()
instead.)
Returns | |
---|---|
Optional<T> |
an Optional describing some element of this stream, or an
empty Optional if the stream is empty |
Throws | |
---|---|
NullPointerException |
if the element selected is null |
See also:
Optional<T> findFirst ()
Returns an Optional
describing the first element of this stream,
or an empty Optional
if the stream is empty. If the stream has
no encounter order, then any element may be returned.
This is a short-circuiting terminal operation.
Returns | |
---|---|
Optional<T> |
an Optional describing the first element of this stream,
or an empty Optional if the stream is empty |
Throws | |
---|---|
NullPointerException |
if the element selected is null |
Stream<R> flatMap (Function<? super T, ? extends Stream<? extends R>> mapper)
Returns a stream consisting of the results of replacing each element of
this stream with the contents of a mapped stream produced by applying
the provided mapping function to each element. Each mapped stream is
closed
after its contents
have been placed into this stream. (If a mapped stream is null
an empty stream is used, instead.)
This is an intermediate operation.
flatMap()
operation has the effect of applying a one-to-many
transformation to the elements of the stream, and then flattening the
resulting elements into a new stream.
Examples.
If orders
is a stream of purchase orders, and each purchase
order contains a collection of line items, then the following produces a
stream containing all the line items in all the orders:
orders.flatMap(order -> order.getLineItems().stream())...
If path
is the path to a file, then the following produces a
stream of the words
contained in that file:
Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8);
Stream<String> words = lines.flatMap(line -> Stream.of(line.split(" +")));
The mapper
function passed to flatMap
splits a line,
using a simple regular expression, into an array of words, and then
creates a stream of words from that array.Parameters | |
---|---|
mapper |
Function :
a non-interfering,
stateless
function to apply to each element which produces a stream
of new values |
Returns | |
---|---|
Stream<R> |
the new stream |
DoubleStream flatMapToDouble (Function<? super T, ? extends DoubleStream> mapper)
Returns an DoubleStream
consisting of the results of replacing
each element of this stream with the contents of a mapped stream produced
by applying the provided mapping function to each element. Each mapped
stream is closed
after its
contents have placed been into this stream. (If a mapped stream is
null
an empty stream is used, instead.)
This is an intermediate operation.
Parameters | |
---|---|
mapper |
Function :
a non-interfering,
stateless
function to apply to each element which produces a stream
of new values |
Returns | |
---|---|
DoubleStream |
the new stream |
See also:
IntStream flatMapToInt (Function<? super T, ? extends IntStream> mapper)
Returns an IntStream
consisting of the results of replacing each
element of this stream with the contents of a mapped stream produced by
applying the provided mapping function to each element. Each mapped
stream is closed
after its
contents have been placed into this stream. (If a mapped stream is
null
an empty stream is used, instead.)
This is an intermediate operation.
Parameters | |
---|---|
mapper |
Function :
a non-interfering,
stateless
function to apply to each element which produces a stream
of new values |
Returns | |
---|---|
IntStream |
the new stream |
See also:
LongStream flatMapToLong (Function<? super T, ? extends LongStream> mapper)
Returns an LongStream
consisting of the results of replacing each
element of this stream with the contents of a mapped stream produced by
applying the provided mapping function to each element. Each mapped
stream is closed
after its
contents have been placed into this stream. (If a mapped stream is
null
an empty stream is used, instead.)
This is an intermediate operation.
Parameters | |
---|---|
mapper |
Function :
a non-interfering,
stateless
function to apply to each element which produces a stream
of new values |
Returns | |
---|---|
LongStream |
the new stream |
See also:
void forEach (Consumer<? super T> action)
Performs an action for each element of this stream.
This is a terminal operation.
The behavior of this operation is explicitly nondeterministic. For parallel stream pipelines, this operation does not guarantee to respect the encounter order of the stream, as doing so would sacrifice the benefit of parallelism. For any given element, the action may be performed at whatever time and in whatever thread the library chooses. If the action accesses shared state, it is responsible for providing the required synchronization.
Parameters | |
---|---|
action |
Consumer :
a
non-interfering action to perform on the elements
|
void forEachOrdered (Consumer<? super T> action)
Performs an action for each element of this stream, in the encounter order of the stream if the stream has a defined encounter order.
This is a terminal operation.
This operation processes the elements one at a time, in encounter order if one exists. Performing the action for one element happens-before performing the action for subsequent elements, but for any given element, the action may be performed in whatever thread the library chooses.
Parameters | |
---|---|
action |
Consumer :
a
non-interfering action to perform on the elements |
See also:
Stream<T> generate (Supplier<T> s)
Returns an infinite sequential unordered stream where each element is
generated by the provided Supplier
. This is suitable for
generating constant streams, streams of random elements, etc.
Parameters | |
---|---|
s |
Supplier :
the Supplier of generated elements |
Returns | |
---|---|
Stream<T> |
a new infinite sequential unordered Stream
|
Stream<T> iterate (T seed, UnaryOperator<T> f)
Returns an infinite sequential ordered Stream
produced by iterative
application of a function f
to an initial element seed
,
producing a Stream
consisting of seed
, f(seed)
,
f(f(seed))
, etc.
The first element (position 0
) in the Stream
will be
the provided seed
. For n > 0
, the element at position
n
, will be the result of applying the function f
to the
element at position n - 1
.
Parameters | |
---|---|
seed |
T :
the initial element |
f |
UnaryOperator :
a function to be applied to to the previous element to produce
a new element |
Returns | |
---|---|
Stream<T> |
a new sequential Stream
|
Stream<T> limit (long maxSize)
Returns a stream consisting of the elements of this stream, truncated
to be no longer than maxSize
in length.
This is a short-circuiting stateful intermediate operation.
limit()
is generally a cheap operation on sequential
stream pipelines, it can be quite expensive on ordered parallel pipelines,
especially for large values of maxSize
, since limit(n)
is constrained to return not just any n elements, but the
first n elements in the encounter order. Using an unordered
stream source (such as generate(Supplier)
) or removing the
ordering constraint with unordered()
may result in significant
speedups of limit()
in parallel pipelines, if the semantics of
your situation permit. If consistency with encounter order is required,
and you are experiencing poor performance or memory utilization with
limit()
in parallel pipelines, switching to sequential execution
with sequential()
may improve performance.Parameters | |
---|---|
maxSize |
long :
the number of elements the stream should be limited to |
Returns | |
---|---|
Stream<T> |
the new stream |
Throws | |
---|---|
IllegalArgumentException |
if maxSize is negative
|
Stream<R> map (Function<? super T, ? extends R> mapper)
Returns a stream consisting of the results of applying the given function to the elements of this stream.
This is an intermediate operation.
Parameters | |
---|---|
mapper |
Function :
a non-interfering,
stateless
function to apply to each element |
Returns | |
---|---|
Stream<R> |
the new stream |
DoubleStream mapToDouble (ToDoubleFunction<? super T> mapper)
Returns a DoubleStream
consisting of the results of applying the
given function to the elements of this stream.
This is an intermediate operation.
Parameters | |
---|---|
mapper |
ToDoubleFunction :
a non-interfering,
stateless
function to apply to each element |
Returns | |
---|---|
DoubleStream |
the new stream |
IntStream mapToInt (ToIntFunction<? super T> mapper)
Returns an IntStream
consisting of the results of applying the
given function to the elements of this stream.
This is an intermediate operation.
Parameters | |
---|---|
mapper |
ToIntFunction :
a non-interfering,
stateless
function to apply to each element |
Returns | |
---|---|
IntStream |
the new stream |
LongStream mapToLong (ToLongFunction<? super T> mapper)
Returns a LongStream
consisting of the results of applying the
given function to the elements of this stream.
This is an intermediate operation.
Parameters | |
---|---|
mapper |
ToLongFunction :
a non-interfering,
stateless
function to apply to each element |
Returns | |
---|---|
LongStream |
the new stream |
Optional<T> max (Comparator<? super T> comparator)
Returns the maximum element of this stream according to the provided
Comparator
. This is a special case of a
reduction.
This is a terminal operation.
Parameters | |
---|---|
comparator |
Comparator :
a non-interfering,
stateless
Comparator to compare elements of this stream |
Returns | |
---|---|
Optional<T> |
an Optional describing the maximum element of this stream,
or an empty Optional if the stream is empty |
Throws | |
---|---|
NullPointerException |
if the maximum element is null |
Optional<T> min (Comparator<? super T> comparator)
Returns the minimum element of this stream according to the provided
Comparator
. This is a special case of a
reduction.
This is a terminal operation.
Parameters | |
---|---|
comparator |
Comparator :
a non-interfering,
stateless
Comparator to compare elements of this stream |
Returns | |
---|---|
Optional<T> |
an Optional describing the minimum element of this stream,
or an empty Optional if the stream is empty |
Throws | |
---|---|
NullPointerException |
if the minimum element is null |
boolean noneMatch (Predicate<? super T> predicate)
Returns whether no elements of this stream match the provided predicate.
May not evaluate the predicate on all elements if not necessary for
determining the result. If the stream is empty then true
is
returned and the predicate is not evaluated.
This is a short-circuiting terminal operation.
true
, regardless of P(x).Parameters | |
---|---|
predicate |
Predicate :
a non-interfering,
stateless
predicate to apply to elements of this stream |
Returns | |
---|---|
boolean |
true if either no elements of the stream match the
provided predicate or the stream is empty, otherwise false
|
Stream<T> of (T t)
Returns a sequential Stream
containing a single element.
Parameters | |
---|---|
t |
T :
the single element |
Returns | |
---|---|
Stream<T> |
a singleton sequential stream |
Stream<T> of (T... values)
Returns a sequential ordered stream whose elements are the specified values.
Parameters | |
---|---|
values |
T :
the elements of the new stream |
Returns | |
---|---|
Stream<T> |
the new stream |
Stream<T> peek (Consumer<? super T> action)
Returns a stream consisting of the elements of this stream, additionally performing the provided action on each element as elements are consumed from the resulting stream.
This is an intermediate operation.
For parallel stream pipelines, the action may be called at whatever time and in whatever thread the element is made available by the upstream operation. If the action modifies shared state, it is responsible for providing the required synchronization.
Stream.of("one", "two", "three", "four")
.filter(e -> e.length() > 3)
.peek(e -> System.out.println("Filtered value: " + e))
.map(String::toUpperCase)
.peek(e -> System.out.println("Mapped value: " + e))
.collect(Collectors.toList());
Parameters | |
---|---|
action |
Consumer :
a
non-interfering action to perform on the elements as
they are consumed from the stream |
Returns | |
---|---|
Stream<T> |
the new stream |
T reduce (T identity, BinaryOperator<T> accumulator)
Performs a reduction on the elements of this stream, using the provided identity value and an associative accumulation function, and returns the reduced value. This is equivalent to:
T result = identity;
for (T element : this stream)
result = accumulator.apply(result, element)
return result;
but is not constrained to execute sequentially.
The identity
value must be an identity for the accumulator
function. This means that for all t
,
accumulator.apply(identity, t)
is equal to t
.
The accumulator
function must be an
associative function.
This is a terminal operation.
Integer sum = integers.reduce(0, (a, b) -> a+b);
or:
Integer sum = integers.reduce(0, Integer::sum);
While this may seem a more roundabout way to perform an aggregation compared to simply mutating a running total in a loop, reduction operations parallelize more gracefully, without needing additional synchronization and with greatly reduced risk of data races.
Parameters | |
---|---|
identity |
T :
the identity value for the accumulating function |
accumulator |
BinaryOperator :
an associative,
non-interfering,
stateless
function for combining two values |
Returns | |
---|---|
T |
the result of the reduction |
Optional<T> reduce (BinaryOperator<T> accumulator)
Performs a reduction on the
elements of this stream, using an
associative accumulation
function, and returns an Optional
describing the reduced value,
if any. This is equivalent to:
boolean foundAny = false;
T result = null;
for (T element : this stream) {
if (!foundAny) {
foundAny = true;
result = element;
}
else
result = accumulator.apply(result, element);
}
return foundAny ? Optional.of(result) : Optional.empty();
but is not constrained to execute sequentially.
The accumulator
function must be an
associative function.
This is a terminal operation.
Parameters | |
---|---|
accumulator |
BinaryOperator :
an associative,
non-interfering,
stateless
function for combining two values |
Returns | |
---|---|
Optional<T> |
an Optional describing the result of the reduction |
Throws | |
---|---|
NullPointerException |
if the result of the reduction is null |
U reduce (U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner)
Performs a reduction on the elements of this stream, using the provided identity, accumulation and combining functions. This is equivalent to:
U result = identity;
for (T element : this stream)
result = accumulator.apply(result, element)
return result;
but is not constrained to execute sequentially.
The identity
value must be an identity for the combiner
function. This means that for all u
, combiner(identity, u)
is equal to u
. Additionally, the combiner
function
must be compatible with the accumulator
function; for all
u
and t
, the following must hold:
combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t)
This is a terminal operation.
map
and reduce
operations.
The accumulator
function acts as a fused mapper and accumulator,
which can sometimes be more efficient than separate mapping and reduction,
such as when knowing the previously reduced value allows you to avoid
some computation.Parameters | |
---|---|
identity |
U :
the identity value for the combiner function |
accumulator |
BiFunction :
an associative,
non-interfering,
stateless
function for incorporating an additional element into a result |
combiner |
BinaryOperator :
an associative,
non-interfering,
stateless
function for combining two values, which must be
compatible with the accumulator function |
Returns | |
---|---|
U |
the result of the reduction |
Stream<T> skip (long n)
Returns a stream consisting of the remaining elements of this stream
after discarding the first n
elements of the stream.
If this stream contains fewer than n
elements then an
empty stream will be returned.
This is a stateful intermediate operation.
skip()
is generally a cheap operation on sequential
stream pipelines, it can be quite expensive on ordered parallel pipelines,
especially for large values of n
, since skip(n)
is constrained to skip not just any n elements, but the
first n elements in the encounter order. Using an unordered
stream source (such as generate(Supplier)
) or removing the
ordering constraint with unordered()
may result in significant
speedups of skip()
in parallel pipelines, if the semantics of
your situation permit. If consistency with encounter order is required,
and you are experiencing poor performance or memory utilization with
skip()
in parallel pipelines, switching to sequential execution
with sequential()
may improve performance.Parameters | |
---|---|
n |
long :
the number of leading elements to skip |
Returns | |
---|---|
Stream<T> |
the new stream |
Throws | |
---|---|
IllegalArgumentException |
if n is negative
|
Stream<T> sorted (Comparator<? super T> comparator)
Returns a stream consisting of the elements of this stream, sorted
according to the provided Comparator
.
For ordered streams, the sort is stable. For unordered streams, no stability guarantees are made.
This is a stateful intermediate operation.
Parameters | |
---|---|
comparator |
Comparator :
a non-interfering,
stateless
Comparator to be used to compare stream elements |
Returns | |
---|---|
Stream<T> |
the new stream |
Stream<T> sorted ()
Returns a stream consisting of the elements of this stream, sorted
according to natural order. If the elements of this stream are not
Comparable
, a java.lang.ClassCastException
may be thrown
when the terminal operation is executed.
For ordered streams, the sort is stable. For unordered streams, no stability guarantees are made.
This is a stateful intermediate operation.
Returns | |
---|---|
Stream<T> |
the new stream |
Object[] toArray ()
Returns an array containing the elements of this stream.
This is a terminal operation.
Returns | |
---|---|
Object[] |
an array containing the elements of this stream |
A[] toArray (IntFunction<A[]> generator)
Returns an array containing the elements of this stream, using the
provided generator
function to allocate the returned array, as
well as any additional arrays that might be required for a partitioned
execution or for resizing.
This is a terminal operation.
Person[] men = people.stream()
.filter(p -> p.getGender() == MALE)
.toArray(Person[]::new);
Parameters | |
---|---|
generator |
IntFunction :
a function which produces a new array of the desired
type and the provided length |
Returns | |
---|---|
A[] |
an array containing the elements in this stream |
Throws | |
---|---|
ArrayStoreException |
if the runtime type of the array returned from the array generator is not a supertype of the runtime type of every element in this stream |