public
interface
Collection
implements
Iterable<E>
java.util.Collection<E> |
Known Indirect Subclasses
AbstractCollection<E>,
AbstractList<E>,
AbstractQueue<E>,
AbstractSequentialList<E>,
AbstractSet<E>,
ArrayBlockingQueue<E>,
ArrayDeque<E>,
ArrayList<E>,
ArraySet<E>,
BlockingDeque<E>,
BlockingQueue<E>,
ConcurrentHashMap.KeySetView<K, V>,
ConcurrentLinkedDeque<E>,
ConcurrentLinkedQueue<E>,
ConcurrentSkipListSet<E>,
and
25 others.
|
The root interface in the collection hierarchy. A collection represents a group of objects, known as its elements. Some collections allow duplicate elements and others do not. Some are ordered and others unordered. The JDK does not provide any direct implementations of this interface: it provides implementations of more specific subinterfaces like Set and List. This interface is typically used to pass collections around and manipulate them where maximum generality is desired.
Bags or multisets (unordered collections that may contain duplicate elements) should implement this interface directly.
All general-purpose Collection implementation classes (which typically implement Collection indirectly through one of its subinterfaces) should provide two "standard" constructors: a void (no arguments) constructor, which creates an empty collection, and a constructor with a single argument of type Collection, which creates a new collection with the same elements as its argument. In effect, the latter constructor allows the user to copy any collection, producing an equivalent collection of the desired implementation type. There is no way to enforce this convention (as interfaces cannot contain constructors) but all of the general-purpose Collection implementations in the Java platform libraries comply.
The "destructive" methods contained in this interface, that is, the
methods that modify the collection on which they operate, are specified to
throw UnsupportedOperationException if this collection does not
support the operation. If this is the case, these methods may, but are not
required to, throw an UnsupportedOperationException if the
invocation would have no effect on the collection. For example, invoking
the addAll(Collection)
method on an unmodifiable collection may,
but is not required to, throw the exception if the collection to be added
is empty.
Some collection implementations have restrictions on the elements that they may contain. For example, some implementations prohibit null elements, and some have restrictions on the types of their elements. Attempting to add an ineligible element throws an unchecked exception, typically NullPointerException or ClassCastException. Attempting to query the presence of an ineligible element may throw an exception, or it may simply return false; some implementations will exhibit the former behavior and some will exhibit the latter. More generally, attempting an operation on an ineligible element whose completion would not result in the insertion of an ineligible element into the collection may throw an exception or it may succeed, at the option of the implementation. Such exceptions are marked as "optional" in the specification for this interface.
It is up to each collection to determine its own synchronization policy. In the absence of a stronger guarantee by the implementation, undefined behavior may result from the invocation of any method on a collection that is being mutated by another thread; this includes direct invocations, passing the collection to a method that might perform invocations, and using an existing iterator to examine the collection.
Many methods in Collections Framework interfaces are defined in
terms of the equals
method. For example,
the specification for the contains(Object o)
method says: "returns true if and only if this collection
contains at least one element e such that
(o==null ? e==null : o.equals(e))." This specification should
not be construed to imply that invoking Collection.contains
with a non-null argument o will cause o.equals(e) to be
invoked for any element e. Implementations are free to implement
optimizations whereby the equals invocation is avoided, for
example, by first comparing the hash codes of the two elements. (The
hashCode()
specification guarantees that two objects with
unequal hash codes cannot be equal.) More generally, implementations of
the various Collections Framework interfaces are free to take advantage of
the specified behavior of underlying Object
methods wherever the
implementor deems it appropriate.
This interface is a member of the Java Collections Framework.
See also:
Public methods | |
---|---|
abstract
boolean
|
add(E e)
Ensures that this collection contains the specified element (optional operation). |
abstract
boolean
|
addAll(Collection<? extends E> c)
Adds all of the elements in the specified collection to this collection (optional operation). |
abstract
void
|
clear()
Removes all of the elements from this collection (optional operation). |
abstract
boolean
|
contains(Object o)
Returns true if this collection contains the specified element. |
abstract
boolean
|
containsAll(Collection<?> c)
Returns true if this collection contains all of the elements in the specified collection. |
abstract
boolean
|
equals(Object o)
Compares the specified object with this collection for equality. |
abstract
int
|
hashCode()
Returns the hash code value for this collection. |
abstract
boolean
|
isEmpty()
Returns true if this collection contains no elements. |
abstract
Iterator<E>
|
iterator()
Returns an iterator over the elements in this collection. |
default
Stream<E>
|
parallelStream()
Returns a possibly parallel |
abstract
boolean
|
remove(Object o)
Removes a single instance of the specified element from this collection, if it is present (optional operation). |
abstract
boolean
|
removeAll(Collection<?> c)
Removes all of this collection's elements that are also contained in the specified collection (optional operation). |
default
boolean
|
removeIf(Predicate<? super E> filter)
Removes all of the elements of this collection that satisfy the given predicate. |
abstract
boolean
|
retainAll(Collection<?> c)
Retains only the elements in this collection that are contained in the specified collection (optional operation). |
abstract
int
|
size()
Returns the number of elements in this collection. |
default
Spliterator<E>
|
spliterator()
Creates a |
default
Stream<E>
|
stream()
Returns a sequential |
abstract
<T>
T[]
|
toArray(T[] a)
Returns an array containing all of the elements in this collection; the runtime type of the returned array is that of the specified array. |
abstract
Object[]
|
toArray()
Returns an array containing all of the elements in this collection. |
Inherited methods | |
---|---|
From
interface
java.lang.Iterable
|
boolean add (E e)
Ensures that this collection contains the specified element (optional operation). Returns true if this collection changed as a result of the call. (Returns false if this collection does not permit duplicates and already contains the specified element.)
Collections that support this operation may place limitations on what elements may be added to this collection. In particular, some collections will refuse to add null elements, and others will impose restrictions on the type of elements that may be added. Collection classes should clearly specify in their documentation any restrictions on what elements may be added.
If a collection refuses to add a particular element for any reason other than that it already contains the element, it must throw an exception (rather than returning false). This preserves the invariant that a collection always contains the specified element after this call returns.
Parameters | |
---|---|
e |
E :
element whose presence in this collection is to be ensured |
Returns | |
---|---|
boolean |
true if this collection changed as a result of the call |
Throws | |
---|---|
UnsupportedOperationException |
if the add operation is not supported by this collection |
ClassCastException |
if the class of the specified element prevents it from being added to this collection |
NullPointerException |
if the specified element is null and this collection does not permit null elements |
IllegalArgumentException |
if some property of the element prevents it from being added to this collection |
IllegalStateException |
if the element cannot be added at this time due to insertion restrictions |
boolean addAll (Collection<? extends E> c)
Adds all of the elements in the specified collection to this collection (optional operation). The behavior of this operation is undefined if the specified collection is modified while the operation is in progress. (This implies that the behavior of this call is undefined if the specified collection is this collection, and this collection is nonempty.)
Parameters | |
---|---|
c |
Collection :
collection containing elements to be added to this collection |
Returns | |
---|---|
boolean |
true if this collection changed as a result of the call |
Throws | |
---|---|
UnsupportedOperationException |
if the addAll operation is not supported by this collection |
ClassCastException |
if the class of an element of the specified collection prevents it from being added to this collection |
NullPointerException |
if the specified collection contains a null element and this collection does not permit null elements, or if the specified collection is null |
IllegalArgumentException |
if some property of an element of the specified collection prevents it from being added to this collection |
IllegalStateException |
if not all the elements can be added at this time due to insertion restrictions |
See also:
void clear ()
Removes all of the elements from this collection (optional operation). The collection will be empty after this method returns.
Throws | |
---|---|
UnsupportedOperationException |
if the clear operation is not supported by this collection |
boolean contains (Object o)
Returns true if this collection contains the specified element. More formally, returns true if and only if this collection contains at least one element e such that (o==null ? e==null : o.equals(e)).
Parameters | |
---|---|
o |
Object :
element whose presence in this collection is to be tested |
Returns | |
---|---|
boolean |
true if this collection contains the specified element |
Throws | |
---|---|
ClassCastException |
if the type of the specified element is incompatible with this collection (optional) |
NullPointerException |
if the specified element is null and this collection does not permit null elements (optional) |
boolean containsAll (Collection<?> c)
Returns true if this collection contains all of the elements in the specified collection.
Parameters | |
---|---|
c |
Collection :
collection to be checked for containment in this collection |
Returns | |
---|---|
boolean |
true if this collection contains all of the elements in the specified collection |
Throws | |
---|---|
ClassCastException |
if the types of one or more elements in the specified collection are incompatible with this collection (optional) |
NullPointerException |
if the specified collection contains one or more null elements and this collection does not permit null elements (optional), or if the specified collection is null. |
See also:
boolean equals (Object o)
Compares the specified object with this collection for equality.
While the Collection interface adds no stipulations to the general contract for the Object.equals, programmers who implement the Collection interface "directly" (in other words, create a class that is a Collection but is not a Set or a List) must exercise care if they choose to override the Object.equals. It is not necessary to do so, and the simplest course of action is to rely on Object's implementation, but the implementor may wish to implement a "value comparison" in place of the default "reference comparison." (The List and Set interfaces mandate such value comparisons.)
The general contract for the Object.equals method states that equals must be symmetric (in other words, a.equals(b) if and only if b.equals(a)). The contracts for List.equals and Set.equals state that lists are only equal to other lists, and sets to other sets. Thus, a custom equals method for a collection class that implements neither the List nor Set interface must return false when this collection is compared to any list or set. (By the same logic, it is not possible to write a class that correctly implements both the Set and List interfaces.)
Parameters | |
---|---|
o |
Object :
object to be compared for equality with this collection |
Returns | |
---|---|
boolean |
true if the specified object is equal to this collection |
int hashCode ()
Returns the hash code value for this collection. While the Collection interface adds no stipulations to the general contract for the Object.hashCode method, programmers should take note that any class that overrides the Object.equals method must also override the Object.hashCode method in order to satisfy the general contract for the Object.hashCode method. In particular, c1.equals(c2) implies that c1.hashCode()==c2.hashCode().
Returns | |
---|---|
int |
the hash code value for this collection |
See also:
boolean isEmpty ()
Returns true if this collection contains no elements.
Returns | |
---|---|
boolean |
true if this collection contains no elements |
Iterator<E> iterator ()
Returns an iterator over the elements in this collection. There are no guarantees concerning the order in which the elements are returned (unless this collection is an instance of some class that provides a guarantee).
Returns | |
---|---|
Iterator<E> |
an Iterator over the elements in this collection |
Stream<E> parallelStream ()
Returns a possibly parallel Stream
with this collection as its
source. It is allowable for this method to return a sequential stream.
This method should be overridden when the spliterator()
method cannot return a spliterator that is IMMUTABLE
,
CONCURRENT
, or late-binding. (See spliterator()
for details.)
Stream
from the
collection's Spliterator
.Returns | |
---|---|
Stream<E> |
a possibly parallel Stream over the elements in this
collection |
boolean remove (Object o)
Removes a single instance of the specified element from this collection, if it is present (optional operation). More formally, removes an element e such that (o==null ? e==null : o.equals(e)), if this collection contains one or more such elements. Returns true if this collection contained the specified element (or equivalently, if this collection changed as a result of the call).
Parameters | |
---|---|
o |
Object :
element to be removed from this collection, if present |
Returns | |
---|---|
boolean |
true if an element was removed as a result of this call |
Throws | |
---|---|
ClassCastException |
if the type of the specified element is incompatible with this collection (optional) |
NullPointerException |
if the specified element is null and this collection does not permit null elements (optional) |
UnsupportedOperationException |
if the remove operation is not supported by this collection |
boolean removeAll (Collection<?> c)
Removes all of this collection's elements that are also contained in the specified collection (optional operation). After this call returns, this collection will contain no elements in common with the specified collection.
Parameters | |
---|---|
c |
Collection :
collection containing elements to be removed from this collection |
Returns | |
---|---|
boolean |
true if this collection changed as a result of the call |
Throws | |
---|---|
UnsupportedOperationException |
if the removeAll method is not supported by this collection |
ClassCastException |
if the types of one or more elements in this collection are incompatible with the specified collection (optional) |
NullPointerException |
if this collection contains one or more null elements and the specified collection does not support null elements (optional), or if the specified collection is null |
See also:
boolean removeIf (Predicate<? super E> filter)
Removes all of the elements of this collection that satisfy the given predicate. Errors or runtime exceptions thrown during iteration or by the predicate are relayed to the caller.
iterator()
. Each matching element is removed using
remove()
. If the collection's iterator does not
support removal then an UnsupportedOperationException
will be
thrown on the first matching element.Parameters | |
---|---|
filter |
Predicate :
a predicate which returns true for elements to be
removed |
Returns | |
---|---|
boolean |
true if any elements were removed |
Throws | |
---|---|
NullPointerException |
if the specified filter is null |
UnsupportedOperationException |
if elements cannot be removed from this collection. Implementations may throw this exception if a matching element cannot be removed or if, in general, removal is not supported. |
boolean retainAll (Collection<?> c)
Retains only the elements in this collection that are contained in the specified collection (optional operation). In other words, removes from this collection all of its elements that are not contained in the specified collection.
Parameters | |
---|---|
c |
Collection :
collection containing elements to be retained in this collection |
Returns | |
---|---|
boolean |
true if this collection changed as a result of the call |
Throws | |
---|---|
UnsupportedOperationException |
if the retainAll operation is not supported by this collection |
ClassCastException |
if the types of one or more elements in this collection are incompatible with the specified collection (optional) |
NullPointerException |
if this collection contains one or more null elements and the specified collection does not permit null elements (optional), or if the specified collection is null |
See also:
int size ()
Returns the number of elements in this collection. If this collection contains more than Integer.MAX_VALUE elements, returns Integer.MAX_VALUE.
Returns | |
---|---|
int |
the number of elements in this collection |
Spliterator<E> spliterator ()
Creates a Spliterator
over the elements in this collection.
Implementations should document characteristic values reported by the
spliterator. Such characteristic values are not required to be reported
if the spliterator reports SIZED
and this collection
contains no elements.
The default implementation should be overridden by subclasses that
can return a more efficient spliterator. In order to
preserve expected laziness behavior for the stream()
and
parallelStream()
} methods, spliterators should either have the
characteristic of IMMUTABLE
or CONCURRENT
, or be
late-binding.
If none of these is practical, the overriding class should describe the
spliterator's documented policy of binding and structural interference,
and should override the stream()
and parallelStream()
methods to create streams using a Supplier
of the spliterator,
as in:
Stream<E> s = StreamSupport.stream(() -> spliterator(), spliteratorCharacteristics)
These requirements ensure that streams produced by the
stream()
and parallelStream()
methods will reflect the
contents of the collection as of initiation of the terminal stream
operation.
Iterator
. The spliterator inherits the
fail-fast properties of the collection's iterator.
The created Spliterator
reports SIZED
.
Spliterator
additionally reports
SUBSIZED
.
If a spliterator covers no elements then the reporting of additional
characteristic values, beyond that of SIZED
and SUBSIZED
,
does not aid clients to control, specialize or simplify computation.
However, this does enable shared use of an immutable and empty
spliterator instance (see emptySpliterator()
) for
empty collections, and enables clients to determine if such a spliterator
covers no elements.
Returns | |
---|---|
Spliterator<E> |
a Spliterator over the elements in this collection |
Stream<E> stream ()
Returns a sequential Stream
with this collection as its source.
This method should be overridden when the spliterator()
method cannot return a spliterator that is IMMUTABLE
,
CONCURRENT
, or late-binding. (See spliterator()
for details.)
Stream
from the
collection's Spliterator
.Returns | |
---|---|
Stream<E> |
a sequential Stream over the elements in this collection |
T[] toArray (T[] a)
Returns an array containing all of the elements in this collection; the runtime type of the returned array is that of the specified array. If the collection fits in the specified array, it is returned therein. Otherwise, a new array is allocated with the runtime type of the specified array and the size of this collection.
If this collection fits in the specified array with room to spare (i.e., the array has more elements than this collection), the element in the array immediately following the end of the collection is set to null. (This is useful in determining the length of this collection only if the caller knows that this collection does not contain any null elements.)
If this collection makes any guarantees as to what order its elements are returned by its iterator, this method must return the elements in the same order.
Like the toArray()
method, this method acts as bridge between
array-based and collection-based APIs. Further, this method allows
precise control over the runtime type of the output array, and may,
under certain circumstances, be used to save allocation costs.
Suppose x is a collection known to contain only strings. The following code can be used to dump the collection into a newly allocated array of String:
String[] y = x.toArray(new String[0]);Note that toArray(new Object[0]) is identical in function to toArray().
Parameters | |
---|---|
a |
T :
the array into which the elements of this collection are to be
stored, if it is big enough; otherwise, a new array of the same
runtime type is allocated for this purpose. |
Returns | |
---|---|
T[] |
an array containing all of the elements in this collection |
Throws | |
---|---|
ArrayStoreException |
if the runtime type of the specified array is not a supertype of the runtime type of every element in this collection |
NullPointerException |
if the specified array is null |
Object[] toArray ()
Returns an array containing all of the elements in this collection. If this collection makes any guarantees as to what order its elements are returned by its iterator, this method must return the elements in the same order.
The returned array will be "safe" in that no references to it are maintained by this collection. (In other words, this method must allocate a new array even if this collection is backed by an array). The caller is thus free to modify the returned array.
This method acts as bridge between array-based and collection-based APIs.
Returns | |
---|---|
Object[] |
an array containing all of the elements in this collection |